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It has been known that three core transcription factors (TFs), NANOG, OCT4, and SOX2, collaborate to form a transcriptional
circuitry to regulate pluripotency and self-renewal of human embryonic stem (ES) cells. Similarly, MYC also plays an important
role in regulating pluripotency and self-renewal of human ES cells. However, the precise mechanism by which the transcriptional
regulatory networks control the activity of ES cells remains unclear. In this study, we reanalyzed an extended core network, which
includes the set of genes that are cobound by the three core TFs and additional TFs that also bind to these cobound genes. Our results
show that beyond the core transcriptional network, additional transcriptional networks are potentially important in the regulation
of the fate of human ES cells. Several gene families that encode TFs play a key role in the transcriptional circuitry of ES cells. We
also demonstrate that MYC acts independently of the core module in the regulation of the fate of human ES cells, consistent with
the established argument. We ^nd that TP53 is a key connecting molecule between the core-centered andMYC-centered modules.
Lis study provides additional insights into the underlying regulatory mechanisms involved in the fate determination of human ES
cells.

1. Introduction

Pluripotency and self-renewal are two de^ning properties of
embryonic stem (ES) cells. Pluripotency is the capacity to
generate all cell types, while self-renewal is the capacity to
maintain ES cells in a proliferative state for prolonged periods
[1]. It has been of great interest to know how the ES cells
balance the two statuses of pluripotency and self-renewal.
It has been found that the three core transcription factors
(TFs) NANOG, OCT4, and SOX2 collaborate to regulate
pluripotency and self-renewal of human ES cells in the form
of a regulatory circuitry [2]. NANOG is a gene expressed in
ES cells, which plays a key role in maintaining the pluripo-
tency of ES cells. Downregulation of NANOG will result in
dicerentiation, while expression will block dicerentiation of
ES cells. OCT4, also known as POU5F1, is a gene encoding
the protein that is critically involved in the self-renewal of
undicerentiated ES cells. OCT4 expression level must be

within a certain range to maintain the undicerentiated status
of ES cells. SOX2 gene encodes a member of the SRY-related
HMG-box (SOX) family of TFs involved in the regulation of
embryonic development and in the determination of cell fate.
It plays a critical role in the maintenance of embryonic and
neural stemcells. SOX2has been shown to interactwith PAX6
[3],NPM1 [4], andOCT4 [5] and cooperatively regulate REX1
with OCT3/4 [6].

Boyer et al. have identi^ed the bound genes of the three
core TFs in vivo by genome-scale location analysis [2]. Ley
found that OCT4 is associated with 623 (3%) promoter
regions of the known protein-coding genes in human ES
cells, while SOX2 and NANOG are associated with 1271 (7%)
and 1687 (9%) genes, respectively. Further, they identi^ed a
set of 353 genes (Table S1; see Supplementary Material avail-
able online at http://dx.doi.org/10.1155/2014/725780) that are
cobound by all the three TFs in humanES cells and found that
this set includes a substantial number of genes that encode
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homeodomain TFs, which are important in developmental
regulation of ES cells. Lese discoveries suggested that the
three TFs function together to control pluripotency and self-
renewal of human ES cells. Hereajer, we refer to the set of 353
genes as the core-bound genes.

MYC is another important transcriptional regulator in
ES cells, which is involved in somatic cell reprogramming
and cancer [7]. Takahashi and Yamanaka generated induced
pluripotent stem cells (iPSCs) by forced expression of four
transcriptional factors (OCT3/4, SOX2, KLF4, and MYC) in
mouse embryonic and adult ^broblast cultures [8] and later
in adult human dermal ^broblasts [9]. Lese studies indicate
that MYC also plays a key role in controlling pluripotency
and self-renewal of ES cells, although it may act in a distinct
way from the core module [1, 7, 10]. However, the precise
mechanism by which the transcriptional regulatory networks
control the activity of ES cells remains unclear. It is likely
that the transcriptional circuitry of ES cells is regulated by
multiple core TFs using independent networks, to regulate
self-renewal and dicerentiation of human ES cells.

In this study, we reanalyzed the core-bound genes using
Ingenuity Pathway Analysis tool (IPA, Ingenuity Systems,
http://www.ingenuity.com/) and the gene set enrichment
analysis (GSEA) sojware [11]. Important networks, biological
functions, and pathways associated with the gene sets were
annotated. We induced the TFs that bind to the subsets of
the core-bound genes with DAVID tool [12, 13] and analyzed
the transcriptional network based on the induced TFs. In
addition, we compared the regulatory targets of MYC with
the core-bound genes and also the MYC-centered and core-
centered regulatory modules to determine if these regulatory
circuits operate independently or collaboratively.

2. Materials and Methods

We obtained the set of 353 genes that are cobound by
NANOG, OCT4, and SOX2 in human ES cells from
Boyer et al. [2]. We downloaded the 189 TFs which have
been experimentally veri^ed to contribute to transcriptional
regulation in human ES cells from the literature [14]. Le
MYC targeted gene lists in human ES cells were obtained
from the literature [15]. Le gene lists for the core module
and the MYC module in ES cells were downloaded from
Kim et al. [7].

We inferred signi^cant networks, biological functions,
and pathways associatedwith gene sets using the core analysis
tool in IPA (Ingenuity Systems, http://www.ingenuity.com/).
IPA is a system that yields a set of networks relevant to a
list of genes based on the preserved records contained in the
Ingenuity Pathways Knowledge Base (IPKB). For the input of
a gene set into IPA, its core analysis tool will map the gene
list to the IPKB and then algorithmically generate molecular
networks, biological functions, and canonical pathways that
are most likely relevant to the input gene list. IPA is the
primary tool used by us to produce visualized gene regulatory

networks for analysis of transcriptional regulatory circuits in
human ES cells.

We classi^ed genes into dicerent gene families using
the “Investigate Gene Sets Tool” in the molecular signatures
database (MSigDB) of the gene set enrichment analysis
(GSEA) sojware [11]. We induced the TFs that bind to
subsets of a given gene list using the “Functional Annotation
Tool” in DAVID [12, 13]. DAVID provides a category called
“UCSC TFBS” in the “Protein Interactions” option of the
functional annotation tool. For an input gene list, DAVID
analysis will output a list of TFs that bind subsets of the
given gene set. For each identi^ed TF, its binding genes and
corresponding ! values are provided.

3. Results and Discussion

3.1. Functional Analysis of the Core-Bound Genes. We ^rst
classi^ed the core-bound genes into dicerent gene families
using the gene set enrichment analysis (GSEA) sojware [11].
Table 1 shows that a signi^cant proportion of genes are TF
genes (90 of 353), suggesting that the core TFs in turn bind
and regulate a large number of other TF genes in the ES cells
[2]. Le genes encoding homeodomain proteins also have a
large proportion in the core-bound genes (34 of 353), all of
which encode homeodomain TFs. Le homeodomain TFs
have been shown to play key roles in fate-determination of
ES cells by contributing to the core regulatory networks. It
should be noted that there are 11 oncogenes in the core-bound
genes, which is indicative of certain similarities between ES
and cancer cell transcription programs [7, 14].

Network analysis of the 353 core-bound genes using IPA
(Ingenuity Systems, http://www.ingenuity.com/) shows that
the top network involves 32 genes among which the three
core TFs, NANOG, OCT4, and SOX2, were hub nodes in
the network, and formed interconnected autoregulatory and
feedforward circuitry (Figure 1). Biological function analysis
shows that the core-bound genes are mostly relevant to
regulation of gene expression and developmental processes.
Le developmental processes include nervous system devel-
opment and function, embryonic development, and organ,
organismal, tissue, and cellular development. Le six most
signi^cant pathways associated with the core-bound genes
include transcriptional regulatory network in embryonic

stem cells (! value ≈ 10−47), role of OCT4 in mammalian
embryonic stem cell pluripotency (! value ≈ 10−8), human
embryonic stemcell pluripotency (! value≈ 10−7), embryonic
stem cell dicerentiation into cardiac lineages (! value ≈
10−5), Wnt/#-catenin signaling (! value ≈ 10−4), and role of
NANOG inmammalian embryonic stem cell pluripotency (!
value ≈ 10−4). Lese results corroborate the previous ^ndings
that the core TFs and the core TF-bound genes are essential
for maintaining the pluripotency of ES cells.

3.2. IdentiOcation of Other TFs Qat Target the Core-Bound
Genes. In addition to the three core TFs, many other TFs
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Figure 1: Top network related to the core-bound genes. Le three core TFs form hub nodes in the network as highlighted in red color.

Table 1: Category of the core-bound genes.

Cytokines
and growth
factors

Transcription
factors

Homeodomain
proteins

Cell diceren-
tiation
markers

Protein
kinases

Translocated
cancer genes

Oncogenes

Cytokines and growth factors 14

Transcription factors 0 90

Homeodomain proteins 0 34 34

Cell dicerentiation markers 0 0 0 8

Protein kinases 0 1 0 3 11

Translocated cancer genes 0 6 1 1 2 9

Oncogenes 0 6 1 3 4 9 11
∗Some genes are not present in any gene family above.

also bind to the same set of core-bound genes. Using DAVID
tool [12, 13], we identi^ed 145 TFs, where each TF bound
at least 30 genes in the core-bound gene set (Table S2). We
referred to the 145 TFs as the computationally predicted TFs
associated with transcriptional regulation in human ES cells
because these TFs are regulating the same genes that are also

transcriptionally regulated by the core TFs. We carried out
a network analysis for the 145 TFs using IPA. Our goal is to
see if these extended TFs are part of the original core TF
circuitry or if they use independent circuitries to regulate the
core-bound genes. Figure 2 presents a signi^cant regulatory
network related to the 145 TF gene set. Le network involved
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Figure 2: A signi^cant regulatory network related to the 145 computationally predicted human ES cell related gene set. Le GATA family of
TFs and other important TFs are highlighted.

70 nodes among which the GATA transcription factor family
members (GATA1, GATA2, GATA3, and GATA6) form
interconnected autoregulatory and feedforward circuitry (in
yellow), suggesting that GATA TFs are active in transcrip-
tional regulation in human ES cells. Le network also shows
that several TF genes such as TCF3, TCF4, SRF, MYOD1, and
JUN form hub nodes (in red), suggesting their signi^cance
in the same circuitry. Biological function analysis indicated
that the TFs were signi^cant in regulation of cell and organ
development (Figure S1). Pathway analysis indicated that the
TFs were mostly involved in the transcriptional regulatory

network in embryonic stem cells pathway (! value ≈ 10−12)
(Figure S2), the same result as that shown in the core-bound
gene analysis.

In a recent study [14], we have collected 189 TFs that have
been experimentally veri^ed to contribute to transcriptional
regulation in human ES cells. We found that there were 41

overlaps between the 189 TFs set and the computationally
predicted 145 TF set fromDAVID program as shown in Table
S3.

3.3. Extension of Transcriptional Network in Human ES
Cells. Boyer et al. have identi^ed the core transcriptional
regulatory network in human ES cells in which the three
core TFs collaborate to regulate a substantial number of their
target genes [2]. We tried to extend the core transcriptional
regulatory network based on the combination of the core-
bound genes and the TFs that bind to subsets of the core-
bound genes.Le combined gene set was composed of the 353
core-bound genes and the aforementioned 145 TF genes. Le
^ve most signi^cant networks associated with the combined
gene set were summarized in Table S4. Note that 4 of the
5 networks were associated with embryonic development.
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Below, we describe the regulatory circuits of important TFs
or families of TFs in each network.

Figure S3 shows that the three core TFs (NANOG/
OCT4/SOX2) act as the hub genes in the regulatory network,
which is anticipated; Figure S4 shows that TP53 is the
center of the regulatory network with the third highest score,
indicating that TP53 plays an active role in the transcriptional
circuit for human ES cells. In fact, many experimental
lines of evidence have revealed that TP53 plays a key role
in determining the fate of ES cells [16–20]. Silencing of
the tumor suppressor gene TP53 signi^cantly increased the
reprogramming exciency of human somatic cells [17]. Some
studies have shown that the p53 pathway can maintain the
homeostasis of self-renewal and dicerentiation of human ES
cells [21–23].

Figure 3 shows three important gene families, HOX,
PAX, and STAT, that are highly active in the regulatory

network. Le members of PAX and HOX gene family form
autoregulatory loop and also regulate members of other
gene families in the network. Interestingly, within individual
autoregulatory loop, PAX2 and PAX6 self-regulate and show
bidirectional regulation on each other but with contrary
ecect: PAX2 positively regulated PAX6, while PAX6 has
inhibitory ecect on PAX2. Based on the regulatory circuitry
shown in Figure 3, we infer that HOX, PAX, and STAT gene
families play a very important role in controlling the fate of
human ES cells by forming a speci^c regulatorymotif. In fact,
these three gene families have been experimentally veri^ed to
be important in the regulation of developmental processes of
human ES cells. HOX genes encode TF proteins which are
master regulators of embryonic development [24]. Ley are
important targets of OCT4, SOX2, and NANOG and ojen
transcriptionally inactive when bound by the core regulators
to inhibit dicerentiation. Our results show that except for
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the other TFs that interact with the GATA TF family member.

regulated by the core regulators (Figure 1), HOX family of
genes could form their own internal and autoregulatory loop
to control the developmental processes of human ES cells.
On the other hand, PAX is a family of tissue-speci^c TFs
containing a paired domain and usually with a partial or
complete homeodomain. PAX regulates cell proliferation and
self-renewal, resistance to apoptosis, migration of embryonic
precursor cells, and the coordination of speci^c dicerenti-
ation programs during embryonic development. Lerefore,
PAX plays an essential role in regulation of the pluripotency
and self-renewal of human ES cells [25]. Finally, STAT family
of TFs regulate cell growth, survival, and dicerentiation via
activation by JAK (Janus kinase). Lis pathway is critical for
regulation of stem cell self-renewal and dicerentiation [26].

Another network (Figure 4) shows that the GATA family
of TFs interconnects and forms regulatory circuit with the

other six TFs including NFE2, NFIL3, RUNX1, NKX3-1,
TAL1, and FLI1. Lerefore we infer that GATA is also
important in regulation of pluripotency and self-renewal of
human ES cells. Previous studies have revealed that GATA
was active in transcriptional regulation in human ES cells
through transcriptional coexpression with many other key
regulators [25, 27, 28].

Lerefore, in addition to the core transcriptional net-
work, we infer that some other transcriptional networks are
potentially important in regulation of pluripotency and self-
renewal of human ES cells.

Pathway analysis shows that the most signi^cant
pathways associated with the combined gene set (353
core-bound genes and 145 TFs) include transcriptional
regulatory network in embryonic stem cells (! value = 3.73

× 10−49), role of OCT4 in mammalian embryonic stem
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cell pluripotency (! value = 4.76 × 10−11), Wnt/#-catenin
signaling (! value = 1.08 × 10−8), and human embryonic

stem cell pluripotency (! value = 4.03 × 10−8). Apparently,
these pathways are strongly associated with the function of
regulating the fate of human ES cells.

3.4. MYC Transcriptional Network in Human ES Cells. Sim-
ilar to the core TFs, MYC is a very important TF in the
ES cells. A set of 369 genes was identi^ed as MYC targeted
genes in human ES cells [26], which are listed in Table S5.
We explored the regulatory network involving MYC and
MYC target genes using IPA sojware. As expected, MYC
and TP53 turned out as the hub genes in the two most
important networks, respectively (Figure S5 and Figure S6).
Le most signi^cant biological functions associated with this
gene set are involved in embryonic, organismal, tissue, and
cell development, cell cycle, gene expression, cancer, and so
forth.Lemost signi^cant pathways associated with the gene
set included Wnt/#-catenin (! value = 9.37 × 10−5), human

ES cell pluripotency (! value = 2.14 × 10−4), MYC mediated

apoptosis signaling role (! value = 7.59 × 10−4), and so forth.
Notably, MYC regulated a cluster of genes that were involved
in the human ES cell pluripotency pathway.

We were also curious to see if MYC and core TFs regulate
the same transcriptional circuitry or operate individually.
Hence, we carried out a combined network analysis of the
core-bound genes and the MYC target genes. Lere are only
17 overlapping genes between the core-bound gene set and
the MYC target gene set that corresponds to only 5% of each
target gene set. In fact, the number of overlapping genes
between the MYC target gene set and each of the three
core TF’s target gene sets is also small (50, 19, and 37 for
NANOG, OCT4, and SOX2, resp.). Le lower overlapping
rate supports the previous argument that the MYC-centered
regulatory network belonged to a dicerent module from
the core transcriptional module in ES cells [1, 7, 10]. Our
network analysis clearly shows that there are two separable
modules, the core-centered module and the MYC-centered
module, which form the transcriptional circuity in the ES
cells (Figure 5).

It has been shown that the core TFs and MYC play key
roles in the regulation of ES cells’ fate by regulating many TF
genes which in turn regulate a large number of other genes
[1, 2, 10]. We found that there are 90 TF genes in the 353 core-
bound genes and 38 TF genes in the 369 MYC target genes.
We carried out an analysis of the regulatory network based
on these TF genes only. Figure 6 shows that the core TFs and
MYC form center of the two distinct modules. An interesting
^nding is that MYC has no connection with any of the three
core TFs but interconnects with TP53, which in turn regulates
NANOGand is regulated byOCT4.Lis ^nding suggests that
TP53 has stronger link with the core TFs than MYC and also
indicates that TP53might play a key role in bridging the core-
centered and MYC-centered modules.

To further investigate the dicerences in the regulatory
modules of the core- and MYC-centered networks, we

obtained two gene sets: a gene set in the core regulatory
module and a gene set in the MYC-centered regulatory
module, both from the mouse ES cells [7]. We used the
human orthologs of the mouse genes in bothmodules, which
contained 75 and 356 genes, respectively (Table S6). Lere
were only three overlapping genes between both modules,
again showing that both modules were functionally separate.
Similarly, we inferred the signi^cant networks associatedwith
the core module and the MYC module, respectively (Figure
S7 and Figure S8). Le top 5 pathways associated with both
modules were present in Table S7. Lere are no overlapping
pathways between both modules, suggesting that the MYC
module and the core module are indeed involved in very
dicerent pathway patterns in regulating pluripotency and
self-renewal of ES cells.

4. Conclusions

It has been found that transcriptional networks were essen-
tially responsible for regulation of pluripotency and self-
renewal of human ES cells. Some key TFs like NANOG,
OCT4, and SOX2 have been identi^ed to collaboratively
control pluripotency and self-renewal by forming interactive
regulatory circuits [2, 29]. However, it is presently unclear
how the transcriptional networks precisely control the activ-
ity of ES cells. It is likely that additional TFs may also regulate
the key downstream TFs or form additional regulatory
circuits that are involved in the regulation of pluripotency
and self-renewal of human ES cells. We have explored an
extension of the core transcriptional regulatory network by
adding additional TFs into the core transcriptional networks.

Evidence shows thatmanyTFs are involved in bothES cell
fate determination and cancerous pathogenesis. For example,
oncogene MYC and tumor suppressor gene TP53 have been
shown to signi^cantly contribute to the formation of the
transcriptional networks that determine the self-renewal or
dicerentiation fate of human ES cells. Several families of
human ES cell associated TFs like MYB, E2F, PAX, SMAD,
STAT, POU, SP, and GLI are related to cancer [14]. Lis
evidence suggests that ES cell and cancer cells may share
essential regulatory mechanisms. Lerefore, understanding
of how the regulatory network regulates self-renewal or
dicerentiation fate of human ES cells may pave the way for
understanding of cancer, and further conquering cancer.

In addition, based on the comparisons of the MYC-
centered regulatory module and the core regulatory module
in humanES cells, our results suggest thatMYC acts indepen-
dently of the core module in the regulation of pluripotency of
humanES cells. In addition, we also showed that TP53 is a key
connecting molecule between the core-centered and MYC-
centered modules.

Our computational network-based approach supple-
ments the experimental methods to unravel the transcrip-
tional regulatory mechanisms that control pluripotency and
self-renewal in the ES cells, although the reliability of our
results needs further experimental veri^cation. However, it
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should be noted that there exist certain limitations in the
present methods. First, the information collected by IPA
and DAVID databases is from many dicerent studies that
are not necessarily speci^c to human ES cells; hence, the
extrapolation of such data to ES cellsmay lead to false positive

information in certain cases. Secondly, as the new ^ndings
presented in this study lack experimental veri^cation, it is dif-
^cult to assess the sensitivity and speci^city of this approach.
We plan to collaborate with experimental investigators to
validate some of these ^ndings in the future.
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