

University of Nebraska Medical Center

DigitalCommons@UNMC

Data: Geriatrics Geriatrics

2016

Age-related changes in cerebellar and hypothalamic function accompany non-microglial immune gene expression, altered synapse organization, and excitatory amino acid neurotransmission deficits

Stephen J. Bonasera *University of Nebraska Medical Center*, sbonasera@unmc.edu

Jyothi Arikkath *University of Nebraska Medical Center*, jyothi.arikkath@unmc.edu

Michael D. Boska *University of Nebraska Medical Center*, mboska@unmc.edu

Tammy R. Chaudoin *University of Nebraska Medical Center*, tammy.chaudoin@unmc.edu

Nicholas W. Dek orygrthis information in this short survey. *University of Nebraska Medical Center*, nicholas.dekorver@unmc.edu
Follow this and additional works at: https://digitalcommons.unmc.edu/geriatrics_data

Recommended Citation

Bonasera, Stephen J.; Arikkath, Jyothi; Boska, Michael D.; Chaudoin, Tammy R.; DeKorver, Nicholas W.; Goulding, Evan H.; Hoke, Traci A.; Mojtahedzedah, Vahid; Reyelts, Crystal D.; Sajja, Balasrinivasa R.; Schenk, A. Katrin; Tecott, Laurence H.; and Volden, Tiffany A., "Age-related changes in cerebellar and hypothalamic function accompany non-microglial immune gene expression, altered synapse organization, and excitatory amino acid neurotransmission deficits" (2016). *Data: Geriatrics*. 2. https://digitalcommons.unmc.edu/geriatrics_data/2

This Dataset is brought to you for free and open access by the Geriatrics at DigitalCommons@UNMC. It has been accepted for inclusion in Data: Geriatrics by an authorized administrator of DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu.

tephen J. Bonasera, Jyothi Arikkath, Michael D. Boska, Tammy R. Chaudoin, Nicholas W. DeKorver, Evai . Goulding, Traci A. Hoke, Vahid Mojtahedzedah, Crystal D. Reyelts, Balasrinivasa R. Sajja, A. Katrin		
r. Gouloing, Traci A. Hoke, vanid Mojanedzedan, Crystal D. Reyelts, Balasrinivasa R. Sajja, A. Katrinchenk, Laurence H. Tecott, and Tiffany A. Volden	uthors tephen J. Bonasera, Jyothi Arikkath, Michael D. Boska, Tammy R. Chaudoin, Nicholas W. DeKor	ver, Evar
	. Goulding, Traci A. Hoke, Vahid Mojtahedzedan, Crystal D. Reyelts, Balasrinivasa R. Sajja, A. Ka chenk, Laurence H. Tecott, and Tiffany A. Volden	atrin

DATA KEY FOR MATLAB home cage monitoring data files

These files can be read by MATLAB R6 or later versions. Each file represents one-day-one-mouse worth of data. Each file contains a single structure (MouseDayStruct) containing the following fields:

All times are reported in milliseconds from midnight of the day that the system was started unless otherwise specified

ExpName : experiment name

ExpRndName : experiment round name (identifies system cage rack)

Rnd : round (identifies system cage rack)
Run : identifies if longitudinal experiment

Sys : data collection system (usually same as cage rack)

Enc : enclosure (specific cage within the rack)

ExpDay : day from placing mice into the home cage system

Date : date mm/dd/yyyy

Mouse : mouse ID number

GroupCode : mouse cohort code

GroupName : mouse cohort name

meData : structure containing the above fields as well as the following

information for load cell data

MoveOnCumCT ms : column vector; movement start times for event, in ms

MoveOnOn ms : not used

XM_cm
 YM_cm
 column vector; distance along x axis moved for event_i
 MoveQuality
 column vector; distance along y axis moved for event_i
 column vector; data quality for event_i; good data = 1
 column vector; comment number (if any) for event_i

PosOnCumCT_ms : not used PosOffCumCT_ms : not used

PosDur_ms : column vector; movement event; duration in ms

XP_cm : column vector; drift corrected x position for event;

YP_cm : column vector; drift corrected y position for event;

PosQuality : column vector; data quality for positions; good data = 1

PosComment : column vector; comment number (if any) for event;

peData : structure containing above fields as well as the following

information for photobeam data

OnCumCT_ms : column vector; photobeam break start time for event; in ms
OffCumCT_ms : column vector; photobeam break stop time for event; in ms
OnOn_ms : column vector; photobeam duration from event; break start to

event_{i+1} break start, in ms

Dur ms : column vector; duration of photobeam event_i, in ms

OffOn ms : column vector; duration of photobeam break stop time for

event; to photobeam start time for event; in ms (photobeam

interevent interval)

XP_cm : column vector; drift corrected x position for event; YP_cm : column vector; drift corrected y position for event;

Quality : column vector; data quality for photobeam breaks; good data = 1

Comment : column vector; comment number (if any) for event_i
PosQuality : column vector; data quality for positions; good data = 1
PosComment : column vector; comment number (if any) for event_i

leData : structure containing above fields as well as information for

lickometer data; organization identical to that of peData

nestData : structure containing above fields as well as information for nest

position

Xcoord : user-provided visual x coordinate of nest (x = 1-3)Yccord : user-provided visual y coordinate of nest (y = 1-7)

CoordXPlim_cm : user x coordinate of nest potential range CoordYPlim_cm : user y coordinate of nest potential range

PredXPlim_cm : predicted x coordinate of nest (generated during state analysis)
PredYPlim_cm : predicted y coordinate of nest (generated during state analysis)

UserXPlim_cm : not implemented UserYPlim cm : not implemented

LimitsType : limit type (only 'coord' supported)

CoordQuality : data quality for nest, good data = 1

CoordComment : data comment number (if any) for nest

PredQuality : data quality for nest prediction (generated during state analysis)

PredComment : data comment number (if any) for nest prediction

sysData : structure containing above fields as well as information for

system operation

SysStartMT : system start time, military time
SysStopMT : system stop time, military time

SystemStartCumCT_hrs: system start time, hours from midnight of start day
SystemStopCumCT_hrs: system stop time, hours from midnight of start day
LightStartState : 1 if lights on, 0 if lights off when system started
LightsOffCumCT_hrs : time for lights off, hours from midnight of start day
LightsOnCumCT_hrs : time for lights on, hours from midnight of start day
LightsOffCumCT_ms : time for lights off, ms from midnight of start day
LightsOnCumCT ms : time for lights on, ms from midnight of start day

StartStopQuality : successful system start, good data = 1

StartStopComment : data comment number (if any) for system start
LightsQuality : lights confirmed by system sensor, good data = 1

LightsComment : data comment number (if any) for lighting

sumData : structure containing above fields as well as summary data for

this mouse, this day

StartAge days : mouse age on this day (in days)

StartBW_g : mouse body weight at experiment start (g) EndBW_g : mouse body weight at experiment finish (g)

AvgBW_g : mouse average body weight (g)

DeltaBW g : change in mouse body weight over experiment (g)

Length_cm : mouse length (often not input)
Chow_g : mouse chow intake (g) for this day
DC_Chow_g : mouse dark cycle chow (g) for this day
LC_Chow_g : mouse light cycle chow (g) for this day

FeedingCoeff_mgs : feeding coefficient (grams ingested/photobeam break duration)

ChowType : not used

Liquid_g : mouse water intake (g) for this day
DC_Liquid_g : mouse dark cycle water (g) for this day
LC Liquid g : mouse light cycle water (g) for this day

LickingCoeff mgl : licking coefficient (grams ingested/lickometer on duration)

LiquidType : not used

Move_m : mouse movement (m) for this day

DC_move_m : mouse dark cycle movement (m) for this day
LC_move_m : mouse light cycle movement (m) for this day
PerCageInt : percent of cage area crossed by mouse for this day

GenQuality : general experiment quality (1 = good data) for this day
GenComment : general experiment comment number (if any) for this day

ChowQuality : quality of feeding data (1 = good data) for this day
ChowComment : feeding comment number (if any) for this day
CC_ChowQuality : DC chow data quality (1 = good data) for this day
CC_ChowQuality : DC chow comment number (if any) for this day
CC_ChowQuality : LC chow data quality (1 = good data) for this day
CC_ChowComment : LC chow comment number (if any) for this day

FeedingCoeffQuality: feeding coefficient quality (1 = good data) for this day FeedingCoeffComment: feeding coefficient comment number (if any) for this day

LiquidQuality : quality of drinking data (1 = good data) for this day
LiquidComment : drinking comment number (if any) for this day
DC_LiquidQuality : DC drinking data quality (1 = good data) for this day
DC_LiquidComment : DC drinking comment number (if any) for this day
LC_LiquidQuality : LC drinking data quality (1 = good data) for this day
LC_LiquidComment : LC drinking comment number (if any) for this day
LickingCoeffQuality : drinking coefficient quality (1 = good data) for this day
LickingCoeffComment: drinking coefficient comment number (if any) for this day

MoveQuality : quality of movement data (1 = good data) for this day

MoveComment : movement comment number (if any) for this day

DC_MoveQuality : DC movement data quality (1 = good data) for this day

CC_MoveQuality : LC movement data quality (1 = good data) for this day

CC_MoveComment : LC movement data quality (1 = good data) for this day

CC_MoveComment : LC movement comment number (if any) for this day

MEQuality : load beam data quality (1 = good data) for this day

MEComment : load beam comment number (if any) for this day
PEQuality : photobeam data quality (1 = good data) for this day
PEComment : photobeam comment number (if any) for this day
LEQuality : lickometer data quality (1 = good data) for this day
LEComment : lickometer comment number (if any) for this day
NestQuality : nest data quality (1 = good data) for this day
NestComment : nest comment number (if any) for this day