Prolonged-acting, Multi-targeting Gallium Nanoparticles Potently Inhibit Growth of Both HIV and Mycobacteria in Co-Infected Human Macrophages

Prabagaran Narayanasamya*, Barbara L. Switzerb,c and Bradley E. Britigana,b,c*

aDepartment of Pathology and Microbiology; bDepartment of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, 68198 and Research Service, VA Medical Center- Nebraska Western Iowa, Omaha, Nebraska 68105

Corresponding authors: for PN: p.narayanasamy@unmc.edu; for BB:

bradley.britigan@unmc.edu

Supporting information
Supplementary Figure 1: Combined HIV-smegmatis infection and use of isoniazid, rifampin, tenofovir, nevirapine combination. A). RT assay of HIV from co-infection showing no HIV growth, Data are analysed using the t-test. Data are shown as mean +/- s.e.m. for n = 9, P < 0.05. B). P24 staining of co-infected macrophage showing no HIV growth, C). CFU counting of mycobacteria from co-infection showing no bacterial growth. Data are analysed using the t-test. Data are shown as mean +/- s.e.m. for n = 3, P < 0.05.
Supplementary Figure 2: **Bacterial infection followed by HIV infection and use of isoniazid, rifampin, tenofovir, nevirapine combination.** A). RT assay of HIV from co-infection showing no HIV growth. Data are analysed using the t-test. Data are shown as mean +/- s.e.m. for n = 9, P < 0.05. B). P24 staining of co-infected macrophage showing no HIV growth. C). CFU counting of mycobacteria from co-infection showing no bacterial growth. Data are analysed using the t-test. Data are shown as mean +/- s.e.m. for n = 3, P < 0.05.
Supplementary Figure 3: HIV infection followed by bacterial infection and use of isoniazid, rifampin, tenofovir, nevirapine combination. A). RT assay of HIV from co-infection showing no HIV growth. Data are analysed using the t-test. Data are shown as mean +/- s.e.m. for n = 9, P < 0.05. B). P24 staining of co-infected macrophage showing little immature HIV growth. C). CFU counting of mycobacteria from co-infection showing no bacterial growth. Data are analysed using the t-test. Data are shown as mean +/- s.e.m. for n = 3, P < 0.05.
Supplementary Figure 4: Combined HIV-smegmatis infection and use of anti-TB drug. A). RT assay of HIV from co-infection showing normal HIV growth. Data are analysed using the t-test. Data are shown as mean +/- s.e.m. for n = 9, P < 0.05. B). P24 staining of co-infected macrophage showing normal HIV growth, C). CFU counting of mycobacteria from co-infection showing no bacterial growth. Data are analysed using the t-test. Data are shown as mean +/- s.e.m. for n = 3, P < 0.05.
Supplementary Figure 5: Combined HIV-smegmatis infection and use of antiviral drug (tenofovir). A). RT assay of HIV from co-infection showing no HIV growth. Data are analysed using the t-test. Data are shown as mean +/- s.e.m. for n = 9, P < 0.05. B). P24 staining of co-infected macrophage showing no HIV growth, C). CFU counting of mycobacteria from co-infection showing normal bacterial growth. Data are analysed using the t-test. Data are shown as mean +/- s.e.m. for n = 3, P < 0.05.
Supplementary Figure 6: **Combined HIV-smegmatis infection and use Ga-NP.** A). RT assay of HIV from co-infection showing no HIV growth. Data are analysed using the t-test. Data are shown as mean +/- s.e.m. for n = 9, P < 0.05. B). P24 staining of co-infected macrophage showing no HIV growth, C). CFU counting of mycobacteria from co-infection showing no bacterial growth. Data are analysed using the t-test. Data are shown as mean +/- s.e.m. for n = 3, P < 0.05.