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OPEN

The evolutionary young miR-1290 favors mitotic exit
and differentiation of human neural progenitors
through altering the cell cycle proteins

SV Yelamanchili*,1, B Morsey1, EB Harrison1, DA Rennard1, K Emanuel1, I Thapa2, DR Bastola2 and HS Fox*,1

Regulation of cellular proliferation and differentiation during brain development results from processes requiring several

regulatory networks to function in synchrony. MicroRNAs are part of this regulatory system. Although many microRNAs are

evolutionarily conserved, recent evolution of such regulatory molecules can enable the acquisition of new means of attaining

specialized functions. Here we identify and report the novel expression and functions of a human and higher primate-specific

microRNA, miR-1290, in neurons. Using human fetal-derived neural progenitors, SH-SY5Y neuroblastoma cell line and H9-ESC-

derived neural progenitors (H9-NPC), we found miR-1290 to be upregulated during neuronal differentiation, using microarray,

northern blotting and qRT-PCR. We then conducted knockdown and overexpression experiments to look at the functional

consequences of perturbed miR-1290 levels. Knockdown of miR-1290 inhibited differentiation and induced proliferation in

differentiated neurons; correspondingly, miR-1290 overexpression in progenitors led to a slowing down of the cell cycle and

differentiation to neuronal phenotypes. Consequently, we identified that crucial cell cycle proteins were aberrantly changed in

expression level. Therefore, we conclude that miR-1290 is required for maintaining neurons in a differentiated state.

Cell Death and Disease (2014) 5, e982; doi:10.1038/cddis.2013.498; published online 9 January 2014
Subject Category: Neuroscience

The brain is a unique and complex structure. Primates,

particularly apes and humans, have brains that are clearly

distinct both morphologically and functionally from the rest

of the animal kingdom. This evolutionary process is accom-

panied by tightly regulated interplay of cellular and molecular

processes. The molecular events that differ during the

development of higher-order animals remain largely

unknown. An important event in development, the expansion

of neural progenitor reservoirs and their differentiation to

generate specific neuronal subtypes, is under the control of

several extrinsic and intrinsic factors. Recently, small non-

coding RNA molecules, microRNAs (miRNAs) have been

shown to play a pivotal role in embryonic development1,2 and

have remained attractive candidates to study properties of

neural stem cells such as neurogenesis and neural fate

commitment.3 Global disruption of miRNAs through ablation

of Dicer in neural stem cells lead to significant defects in

embryonic mouse brain development.4,5 Importantly, certain

miRNAs affect neuronal differentiation via regulation of their

mRNA targets.6–8

Themajority of studies on miRNAs and the brain have been

carried out on miRNAs that are conserved during evolution,

and the conservation of miRNA target in the mRNA

30-untranslated region (UTR) is used as a criterion in

assessing potential miRNA actions on a gene.9 Recently, a

number of evolutionarily young miRNAs have been found.10–12

Many of the novel miRNAs discovered in higher species are

differentially expressed in developing tissues, supporting the

notion that miRNAs may have a key role in the evolved

complexity of higher mammals.11 However, the role of these

nonconserved miRNAs is yet not clear, largely because of the

limitations that accompany studying higher organisms and

organs such as the brain. Here we investigated the function of

a higher species miRNA in human neuronal development

through the use of three different model systems. We have

identified miR-1290, found only in great apes (including

humans), as an important regulator of human neuronal

differentiation process by regulating the levels of critical cell

cycle proteins.

Results

Identification and validation of higher species-specific

miR-1290 in neurons. Isolated single cells from aborted

human fetal brains were grown as neurospheres for a week

and then further differentiated into postmitotic neurons in

culture for 21 days in vitro (DIV) (Supplementary Figure 1A).

Positive immunostaining for markers such as Nestin and
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SOX2 as well as PAX6 and Ki67 (Supplementary Figure 1B)

indicated the progenitor identity and proliferative capacity of

the human neural progenitor cells (hNPCs). Upon differentia-

tion, populations enriched for neurons (hNPC-Ns) were

produced. These neuronal cultures expressed markers such

as MAP2, synaptic vesicle marker VGLUT1 and immature

neuronal marker TUC-4. In addition, a minority of cells in

these cultures also expressed the astrocytic marker GFAP

(Supplementary Figure 1C).

To assess alterations in miRNAs, RNA isolated from

hNPCs and hNPC-Ns from three independent donors

was hybridized to Affymetrix miRNA microarray chips

(Santa Clara, CA, USA). Several miRNAs were differentially

expressed (Supplementary Table 1), and the greatest fold

change and significance in hNPC-Ns when compared with

progenitor cells was for miR-1290 (Figure 1a, left panel).

Further validation by quantitative real-time PCR (qRT-PCR)

confirmed a significant increase in miR-1290 expression

(15-fold, Po0.001, n¼3, t-test) in hNPC-Ns compared with

hNPCs (Figure 1a, right panel). To validate this finding we

next performed northern blotting on RNA derived from hNPC

and hNPC-N samples on four independent donors. The

northern blot revealed the expression of the mature form

(B21nt) in hNPC-N but not in hNPC samples (Figure 1b).

Next, we asked whether miR-1290 expression is associated

with neuronal, as opposed to astrocytic, differentiation. The

hNPCs containing neurospheres were therefore differentiated

to either astrocytes (hNPC-As) or neurons (hNPC-Ns)

(Figure 1c). qRT-PCR from three independent donors

indicated a robust signal from neurons relative to a low

baseline in astrocytes (4100-fold, Po0.001, n¼3, t-test),

indicating that miR-1290 is strongly associated with a

neuronal phenotype.

MiR-1290 is encoded in the first intron of the ALDH4A1

gene in the human genome, and its expression has only been

described in humans. We examined the Multiz sequence

alignment13 of 44 vertebrate genomic sequences to assess

the evolution of miR-1290. Our results indicate that miR-1290

homologs are present in the Haplorhini clade of primates but

not other vertebrates, dating its origin toB87.2 million years

ago14 and that the mature miR-1290 sequence is exclusive to

the subfamily Homininae (the great apes including humans),

dating its origin to 16.5 million years ago14 (Supplementary

Figure 2).

Although several sequencing studies have reported the

identification of mature miR-1290,15–17 we validated its ability

to be expressed experimentally by the introduction of a

31.4 kb fosmid clone containing the ALDH4A1 and MIR1290

genomic region from humans into mouse NIH3T3 cells that

otherwise do not express miR-1290, lacking the sequence in

the genome. The in situ hybridization (ISH) revealed

the expression of miR-1290 in only transfected cells

(Supplementary Figure 3), and qRT-PCR corroborated

expression of miR-1290 in transfected cells but not mock-

transfected cells (4100-fold, Po0.001, n¼3, t-test),

confirming its ability to be expressed and processed.

Next, we performed ISH on human fetal (20-week

gestation) and adult brain sections to assess the expression

of miR-1290. ISH on the fetal frontal cortical sections revealed

that miR-1290 expression was highly nuclear. In order to

eliminate the possibility of false-positive signals that may arise

because of nonspecific binding of the probe to the genomic

DNA in the nucleus, we treated the fetal sections with RNAse

A that completely destroyed both the positive control U6 signal

and miR-1290 from the nucleus, indicating that the signal was

indeed because of RNA and may result from the unprocessed

pri- and pre-forms (Figure 2a, upper panels). In adult human

frontal brain sections, miR-1290 was highly expressed in

cytoplasm rather than in the nucleus, consistent with the

mature form (Figure 2b, lower panels).

The miR-1290 expression in differentiating human

neuronal cells. In order to model neuronal differentiation

in vitro, we then performed a time course analysis of

differentiating primary hNPCs. ISH indicated a steady

increase in miR-1290 during the course of differentiation

along with the neuronal differentiation marker Tuj1 (Figure 3a).

Simultaneously performed qRT-PCR analysis corroborated

with the results, thereby associating increase in miR-1290

expression with neuronal differentiation (Figure 3b, left

panel).

Next, we utilized the neuroblastoma cell line SH-SY5Y that

can be induced to differentiate into neurons in culture to model

the differentiation process. Indeed, such neuronal differentia-

tion of SH-SY5Y cells led to a significant upregulation of miR-

1290 expression (Figure 3b, right panel).

Finally, we differentiated the H9 human embryonic stem cell

line (H9-hESC)-derived NPCs (H9-NPCs). H9-NPCs were

positive for neural progenitor markers such as Nestin, Sox2

and Pax6, and for proliferative markers such as Mushashi-1

(MUSH-1). They were negative for the embryonic stem cell

marker OCT4, indicating commitment to neural lineage as

well as for postmitotic marker TUC-4 (Supplementary

Figure 4). Upon differentiation to neurons for 7 DIV, these

cells expressed all the neuronal markers examined: MAP2,

NeuN and Tuj-1 (Figure 3c), along with an increase in

miR-1290 expression in phenotypic neurons (Figure 3c,

bottom panels). Furthermore, qRT-PCR revealed a significant

increase in miR-1290 expression in day 7 differentiated

neurons, corroborating with our initial observation in primary

cells (threefold, Po0.001, n¼4, t-test; Figure 3c, right).

These data further ascertain that increased miR-1290

expression is strongly associated with neuronal differentiation

process.

The miR-1290 inhibition in differentiated immature

neurons leads to increased cellular proliferation and

eventually cell death. As postmitotic differentiation process

increased the expression of miR-1290 drastically, we

assessed the effect of inhibition of miR-1290 in such cells.

H9-NPCs were transfected with miR-1290 or negative (Neg)

inhibitors followed by neuronal differentiation as described

previously. Inhibition of miR-1290 during differentiation of

progenitor cells showed a dramatic increase in cellular

proliferation that is indicated by bromodeoxyuridine (BrdU)

labeling as well as Ki67 staining when compared with

controls (Figures 4a and b); the lower proportion of BrdU

or Ki67-positive cells in the negative control cultures might

represent newly born neurons. In addition, we assessed the

proliferative growth by determining the density of cultures
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Figure 1 MiR-1290 is upregulated during neuronal differentiation. (a) Top five miRNAs that were significantly upregulated in neurons. Volcano plot of the miRNA
microarray performed on three independent donors shows an B15-fold (Po0.001, unpaired Student’s t-test) expression of miR-1290 in h-NPCNs when compared with
h-NPCs. Bar graph on the right represents the postvalidation of miR-1290 by qRT-PCR, and results indicate a 15-fold (Po0.001, n¼ 3) increase in miR-1290 expression in
hNPCNs. (b) Representative northern blot of RNA derived from hNPCs and hNPC-Ns from four individual donors (D1–D4); note that the anti-DIG signals for the mature form
(B21 nt) were only seen after neuronal differentiation (hNPC-N). A prestained small molecular weight miRNA marker (M) was used to monitor RNA size. (c) Double

immunostaining of astrocytic marker GFAP and neuronal marker MAP2 performed on hNPC differentiated astrocytes in culture, bar¼ 20 mm. Bar graph on the right
represents 104-fold increased expression in miR-1290 in h-NPC-Ns when compared with astrocytes (104-fold, ***Po0.001, n¼ 3, unpaired Student’s t-test)
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Figure 2 MiR-1290 signal localizes to nucleus in fetal neurons and to cytoplasm in adult neurons. (a) Double immunolabeling (MAP2) in situ hybridization was performed
on human fetal frontal brain sections with CY5-labeled miR-1290 (upper panels) or a positive control U6 (lower panels). In addition, RNAse A treatment on sections before
probe hybridization abolished any signal for both miR-1290 and U6, confirming that nuclear signals seen in fetal sections are not the result of nonspecific probe binding to
genomic DNA. Bar¼ 20mm. (b) Double immunolabeling (MAP2) coupled to in situ hybridization (Cy5-labeled miR-1290) on human adult frontal brain sections. MAP2/miR-
1290 staining is evident in MAP2-positive neurons where staining is mostly in the cytoplasm. Note that RNase A treatment before probe hybridization abolished miR-1290 or

U6 signals from cytoplasm and nucleus respectively. Bar ¼ 20 mm
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grown on numeric grid coverslips and saw a drastic increase

in density after miR-1290 inhibition (Figure 4c). We hypothe-

sized that such miR-1290 inhibition-induced proliferation in

differentiating cells could lead to apoptosis, and therefore

performed terminal deoxynucleotidyl transferase dUTP nick

end labeling (TUNEL) staining. We observed an increase in

TUNEL-positive cells, confirming that inhibiting miR-1290 not

only disrupted the normal differentiation process but also led

to untimely cell death (Figure 4d). To further examine the

effects on cell proliferation, we transfected SH-SY5Y cells

grown in differentiation medium with miR-1290 inhibitor. The

miR-1290 inhibitor-transfected cells divided more rapidly,

forming a cluster or a colony by day 3 followed by increased

proliferation by day 6. On the other hand, the negative control

inhibitor-transfected cell revealed normal differentiation

process (Figure 4e).

Finally, we examined the effect of miR-1290 inhibition in

differentiated primary human neurons. We transfected

neurons in culture at DIV 21 (where the highest peak of

miR-1290 expression was seen) with miR-1290 inhibitor or a

negative control sequence. ISH revealed the loss of miR-1290

in the neurons that were transfected with the miR-1290

inhibitor when compared with the negative control

(Supplementary Figure 5). During 5 days in culture with the

inhibitor, as compared with the no inhibitor and negative

controls, the miR-1290-inhibited cells started to lose their

processes and formed colonies, indicating an increase in

proliferation, as measured by BrdU labeling (Figure 5).

Results from two different neuronal differentiation models

clearly indicate that inhibiting miR-1290 not only disrupted

differentiation, but also increased proliferation, and ultimately

led to apoptotic cell death.

The miR-1290 overexpression in undifferentiated cells

results in slowing down of the cell cycle and induces

neuronal differentiation. Next, we asked whether we could

induce differentiation by overexpressing miR-1290 in neural

progenitor cells. Using a lentiviral vector to overexpress

miR-1290 (and coexpress fluorescent dsRED) in undiffer-

entiated SH-SY5Y cells, cell cycle analysis performed using

flow cytometry revealed a decrease in proliferating cells, with

a higher proportion of cells in G0/G1 (Figure 6a, control

lentivirus 60.17±0.95, miR-1290 lentivirus 83.33±0.67,

Po0.001, n¼6, t-test) and lower proportion of cells in the

S phase as compared with control (Figure 6a, control

lentivirus 22.33±0.80, miR-1290 lentivirus 6.72±0.17,

Po0.001, n¼6, t-test). We further validated this result in

H9-NPCs by transducing them with lentivirus and selecting

cells for puromycin resistance in medium containing growth

factors that induce proliferation. We observed a dramatic

decrease in colony size when transduced with miR-1290

(Figure 6b). We hypothesized that this could be because

of exiting of cells from cell cycle in order to differentiate.

Indeed, miR-1290-transduced H9-NPCs showed evidence of

neuronal differentiation as indicated by Tuj1 staining

(Figure 6c, control lentivirus 9.00±2.65, miR-1290 lentivirus

56.67±2.40, Po0.001, n¼3, t-test). In order to better

characterize the miR-1290-overexpressing H9-NPCs, we

performed more in-depth examination of Tuj1-positive cells

as well as cells expressing an additional neuronal marker

Tuc-4 and the proliferative marker Ki67. The differentiation

marker Tuj1 showed a stronger staining in cells with neuronal

phenotype than the surrounding cells (Figure 7a, see white

arrows). Similarly, miR-1290-overexpressing cells also

stain strongly with postmitotic marker Tuc-4 (Figure 7b).

Furthermore, compared with the cells transduced with the

negative control lentivirus, Ki67 staining was completely lost

in cells that overexpress miR-1290 (Figures 7c and d),

confirming reduced cellular proliferation.

The miR-1290 targets key cell cycle proteins. The

miR-1290 inhibition and overexpression experiments in

different cell systems have confirmed our hypothesis that

miR-1290 not only plays an important role in neural

differentiation, but also that its lowered expression is

necessary to keep the cells in a proliferative stage, a critical

process during development. Therefore, we hypothesized

its role in maintaining cell cycle repression in neurons.

Repression of gene expression by miRNAs is initiated by its

recognition of target sequences, largely in the 30-UTR of

mRNAs. To determine the potential targets we examined the

30-UTRs of all mRNA transcripts for complementarity to the

miR-1290 seed region. These gene targets were examined

for enrichment in Gene Ontology categories, and although

many were present in functional categories related to brain

developmental processes including neuron differentiation,

neural fate commitment and neurogenesis, we also saw an

significant enrichment of target genes whose proteins were

involved in the categories of cell cycle, cell cycle arrest, G1/S

transition of mitotic cell cycle and interphase of mitotic cell

cycle (Supplementary Table 1). These targets included

cyclins, cyclin kinases and cyclin kinase inhibitors. The effect

of miR-1290 on cell cycle regulators was then examined by

western blot analysis on samples derived from miR-1290

overexpression in undifferentiated H9-NPCs and miR-1290

inhibition in neuronally differentiated H9-NPCs. The impor-

tant cyclin kinase inhibitor p27kip1 (p27), which is respon-

sible for cell cycle exit, and its regulatory components CDK5

and p35, which positively regulate the production of p27,

were examined. Results indicate that when miR-1290 is

inhibited, p27 levels are significantly decreased along with

CDK5 and p35, whereas proliferating cell nuclear antigen

(PCNA) increased (Figure 8a), consistent with miR-1290

inhibition leading to proliferation. Conversely, overexpression

of miR-1290 led to increase in p27, CDK5 and p35 levels and

decrease in PCNA (Figure 8b), consistent with mIR-1290

expression leading to increased cell cycle exit. These data

correlate well with our finding that overexpression of

miR-1290 caused decrease in cell number or colony size.

Discussion

The differentiation of multipotent neural progenitors to

neurons involves complex changes in gene expression that

can be driven by transcriptional and post-transcriptional

mechanisms. To learn more about these changes, we

examined miRNAs, key post-transcriptional regulators of

gene expression with effects on neuronal differentiation.

Newly acquired miRNAs in genomes of higher species can

alter the physiological gene balance at specific stages, for
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example during development.18 Our data are consistent with

these findings.We identifiedmiR-1290, an evolutionary young

miRNA, as an important regulator of neuronal differentiation in

newly born neurons. Inhibition of miR-1290 in differentiated

H9-NPCs and human primary neurons reverted their post-

mitotic state, and prolonged inhibition of miR-1290 in

differentiated cells led to cellular death. Overexpression of

miR-1290 in undifferentiated cells led to slowing down of cell

cycle in SH-SY5Y cells and led to differentiation to neurons in

H9-NPCs. Furthermore, we showed that important regulators

for cell cycle exit are perturbed such as p27kip1, CDK5 and

p35 during knockdown or overexpression of miR-1290.
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Figure 4 MiR-1290 is required for neuronal differentiation. (a and b) The miR inhibitor (for miR-1290 and control) in green (miR-FAM)-transfected H9-NPCs were placed in
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(e) SH-SY5Y cells were differentiated with 10mM RA followed by 10 ng/ml BDNF in the presence of the miR inhibitor and monitored during days 1, 3 and 6 of differentiation.
Note the increase in density of culture and lack of neurite formations in miR-1290 inhibitor-transfected cells

Figure 3 MiR-1290 is upregulated during differentiation. (a) Differentiated hNPC-derived neurons (hNPC-Ns) from neurosphere stained with differentiation marker Tuj-1
(green, top panels) and double labeled with miR-1290 (pink, bottom panel), bar¼ 20mm. (b) Bar graph on the left represents fold increase in miR-1290 during different days of
h-NPC differentiation to neurons. Bar graph on the right represents fold increase in miR-1290 expression in differentiated SH-SY5Y cells. (c) H9-NPC-derived neurons were

stained with neuronal markers, MAP2, NeuN and Tuj-1 (left panel, bar¼ 50mm). Lower-most panels represent ISH images (bar¼ 20mm) of H9-NPC-derived neurons during
differentiation; particularly, day 7 neurons show localization of miR-1290, not only in cell body and nucleus but also extending into the processes. Bar graph represents fold
increase in miR-1290 in H9-NPC differentiated cells (threefold, Po0.001, n¼ 4, unpaired Student’s t-test). *Po0.05, **Po0.01, ***Po0.001 determined by one-way
ANOVA for (b)
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Studies have shown that perturbations in evolutionarily

conserved miRNAs can affect crucial aspects of neurogen-

esis. For example, miR-9 is essential for proliferation and

migration of H9-hESC-derived NPCs,19 and in mouse NPCs,

miR-34a overexpression reduces neuron yield upon differ-

entiation.20 In addition, the combination of three miRNAs

(miR-9*/miR-9 and miR-124) has been shown to induce

conversion of human fibroblasts into neurons.8 However,

although higher-species specific miRNAs have been found in

the brain,10,11,21 their functional relevance has been

addressed only in few studies. For example, the recently

discovered human-specific miR-941 has been identified to

play a critical role in pluripotent stem cell proliferation and in

neurotransmitter release;21 our microarray analysis did not

show a significance change in its expression during differ-

entiation. Another young miRNA, miR-1246 (following

miR-1290, had next highest significant change in our

microarray analysis, upregulatedB10-fold during differentia-

tion), can target DYRK1A, a Down syndrome-associated

protein kinase, and inhibit its activity.22 It is interesting to

speculate that these higher miRNAs have specific roles

in brain functions, and the subtle differences in miRNA

sequences are crucial in determining their evolutionary

conservation across species and thus might help us to

understand their specific functional properties.

One of our models, primary cultures of fetal neurons, do not

represent adult mature neurons as seen in adult human brain

but can represent neurodevelopmental events taking place in

the developing brain. When stained for neuronal markers, the

human fetal-derived primary cultures not only expressed

MAP2 and NeuN but also markers for immature neurons, Tuj-

1 and Tuc-4. Interestingly, when we compared ISH signals

between adult human brain and fetal brain, miR-1290 signal in

neurons is predominantly seen in cytoplasm and nucleus,

respectively (Figure 2). This nuclear localization of signal is

also seen in neurons differentiated from primary cultures

(Figure 3a). Studies on the neuronal miR-124 also reveal both

cytoplasmic and nuclear localization.23 Evidence suggests

that processing of the inactive precursor miRNA into the

mature, active form by Dicer may be, in part, regulated by

the sequestration of the precursor form, typically in the

nucleus.24,25 Therefore, it is likely that nuclear signal in

immature neurons represents the unprocessedmiR-1290 and

becomes more cytoplasmic as neuron matures that is

evidenced in the adult brain sections. Indeed, this is true as

when we analyzed mature miR-1290 levels by qRT-PCR, we

saw a gradual increase during days of differentiation in vitro

(Figure 3a). Furthermore, northern blot revealed presence of

mature miR-1290 in only differentiated cultures. As inhibition

of mir-1290 levels led to increased proliferation of cells and

overexpression of miR-1290 slowed down cell cycle, we

inferred that it has a role in regulating cell cycle. In support of

this, miR-1290 was upregulated in senescent human lung

fibroblasts when compared with proliferating fibroblasts.26

Human primary neurons
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Figure 5 MiR-1290 is required to maintain differentiated hNPC-derived neurons. (a) Neurons were grown in the presence of the miR inhibitor in green (miR-FAM) for 5
days and cells were labeled with BrdU (red), bar¼ 20mm. (b) Bar graph represents increase in % of BrdU labeling in miR-1290-inhibited neuronal culture (n¼ 3). **Po0.01
determined by one-way ANOVA
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The cyclin kinase inhibitor p27 is a central regulator for cell

cycle and is vital for neuronal differentiation. Overexpression

of p27 arrests cells in G1,27 whereas its loss leads to an

increase in cell proliferation.28–30 Cyclin-dependent kinase 5

(CDK5) directly phosphorylates p27,31 and is strongly

activated in postmitotic neurons.32 Loss of CDK5 in mature

neurons facilitated the reentry of the neurons into cell

cycle.33 During neuronal differentiation and migration, a

positive feedback loop exists between CDK5, its activator

p35 and p27.34 Therefore, we speculated changes in these

core cell cycle proteins during inhibition or overexpression

of miR-1290 in cells. Indeed, we saw a significant

upregulation of p27, CDK5 and p35 with miR-1290

inhibition and their downregulation with miR-1290 in

levels, suggesting that the functional changes are

indeed a result of changes in these proteins. Whether

miR-1290 binds directly to or has an indirect effect on these

proteins through targeting other upstreammediators is yet to

be ascertained.

Although we identified several cell cycle-related genes as

putative targets for miR-1290 (Supplementary Table 2), it is

indeed hard to attribute a specific role for miR-1290 in

controlling cell cycle as its targets are verymuch spread out as

mapped in the KEGG cell cycle pathway (Supplementary

Figure 6). However, it is possible to construct a tenable

working hypothesis (Figure 8c). There is a direct target, SKP2

(S-phase kinase-associated protein 2, E3 ubiquitin protein

ligase), an E3 ubiquitinase that preferentially ubiquitinates

phosphorylated p27 and targets it for degradation, thus

controlling p27 levels.35–37 Hence, inhibition of SKP2 by

miR-1290 binding will lead to increased p27 levels and cell

cycle exit. Furthermore, we also identified cyclin genes such

as cyclin A and E in the cell cycle pathway that are direct

targets of miR-1290 and can therefore have an indirect effect

on p27, CDK5 and p35 levels.

Reactivation of cell cycle genes in neurons has been found

in neurodegenerative diseases such as Alzheimer’s Disease,

Parkinson’s Disease, Amyotrophic Lateral Sclerosis and

Ataxia Telangiectasia, where entry into the cell cycle is

implicated in untimely neuronal death.38,39 Indeed, these

findings highlight the need of cell cycle check in neurons and

show its failure to be detrimental in adult brain. The neuronal

differentiation models used in this study may recapitulate the

differentiation of immature neurons as seen in the developing

brain; interestingly, reentry into the cell cycle in immature

neurons may lead to a quicker onset of apoptotic death than it

does in mature neurons.38 Intriguingly, delay in cell cycle exit

during brain development may underlie the larger brain sizes

and increased number of neurons in autism spectrum

disorders.40 It would be interesting to study the role of

miR-1290 in such disorders.

Our study strongly suggests that miR-1290 can play a role

in mitotic exit during neuronal differentiation by regulating key

cell cycle proteins. Most miRNA studies utilize evolutionarily

conserved molecules that readily enable studies in vivo in

experimentally tractable animals such as rodents. However,

some physiological systems, in particular the brain, have

evolved to quite advanced functions in humans compared

with rodents. The greatly increased cognitive ability of

humans is linked to the enlargement of the frontal cortex,

and humans and the other great apes share this dispropor-

tionate enlargement.41 Determining the unique aspects of

brain and neuronal development and differentiation in higher

organisms will be key to uncovering the processes leading to

these structural and functional differences. The combined

and compelling evidence drawn from various model

systems further strengthens our study. These exciting

studies emphasize the need to study human-specific

miRNAs that have specific and central roles in crucial

neuronal developmental process and much more subtler

processes such as the cell cycle.

In summary, miR-1290 plays a crucial role in neuronal

differentiation. Knockdown of mir-1290 increased proliferation

and inhibited differentiation, whereas overexpression slowed

down the cell cycle and initiated differentiation. The strictly

regulated expression patterns of miR-1290 during prolifera-

tion and differentiation stages, its expression exclusive to

higher species and its interaction with key cell cycle proteins

offer strong support for future studies further defining its role

in the neuronal fate specification.

Materials and Methods
Cell culture. Human aborted fetal brain tissue (12–16 weeks post
conception), obtained from University of Washington, was handled in full
compliance with the University of Nebraska Medical Center (UNMC) and NIH

ethical guidelines under IRB approval. Derivation and culturing of NPCs and
derived neurons were carried out as described previously.42 Briefly, cortex was
enzymatically (0.25% trypsin) dissociated into a single-cell suspension.
The cells were maintained in Ex-Vivo15 (Biowhittaker-Lonza Walkersville Inc.,
Walkersville, MD, USA) medium supplemented with N2 supplement (Life
Technologies, Carlsbad, CA, USA), bFGF 20 ng/ml (Sigma, St. Louis, MO,

USA), EGF 20 ng/ml (Sigma), LIF 10 ng/ml (Sigma), NSF-1 (Biowhittaker-Lonza
Walkersville Inc.) and 60 ng/ml N-acetylcarnitine (Sigma). After 3–5 days, cells
form clusters/neurospheres of hNPCs, and are further maintained in the above
medium until differentiation.

After 7–10 days in culture, hNPCs were differentiated into neurons or astrocytes,
which was achieved by gentle mechanical dissociation, if needed; Stempro
Accutase (Life Technologies) was used for dissociation. For neurons, dissociated
cells were plated onto poly-D-lysine-coated plates in Neurobasal media

supplemented with B27 (Life Technologies), 0.5 mM L-glutamine, 10 ng/ml BDNF
(Peprotech Inc., Rocky Hill, NJ, USA) and 10 ng/ml NT3 (Peprotech). Neurons were
grown until DIV 14–21; media was half exchanged as needed. For astrocyte
conversion, hNPCs were plated in astrocyte growth media (DMEM, 10% FBS)
for 1 week.

SH-SY5Y cells were differentiated to neuronal-like cells by replacing the media to

growth media containing 10mM all-trans retinoic acid (Sigma) for 3 days, followed
by 3 days in 50 ng/ml BDNF.

H9-NPCs were obtained from ArunA Biomedical Inc (Athens, GA, USA) and
passaged three times before using them for experiments. H9-NPCs were cultured
on Matrigel (BD Biosciences, Sparks, MD, USA) in the presence of growth media

(ArunA Biomedical) supplemented with 20 ng/ml bFGF. For differentiation, cells
were plated on Matrigel and bFGF was not added to the growth media; instead, we
added 20 ng/ml NT3 and 20 ng/ml BDNF to sustain the differentiated neurons.
Differentiation was typically carried for 7 DIV.

Antibodies and immunofluorescence. Immunofluorescence was
performed on 4% paraformaldehyde (PFA)-fixed cells permeabilized with 0.25%
Tween-20. Primary antibodies were mouse anti-Nestin (Millipore, Billerica, MA,

USA), rabbit anti-Sox2 (Millipore), mouse anti-MAP2 (Covance, Princeton, NJ,
USA), rabbit anti-GFAP (DAKO, Carpinteria, CA, USA), rabbit anti-Mushashi1
(Millipore), rabbit anti-Tuj1 (Millipore), mouse anti-NeuN (Millipore), mouse anti-
Oct4 (Millipore), rabbit anti-Pax6 (Covance), rabbit anti-TUC4 (Millipore), mouse
anti-Vglut1 (Synaptic Systems, Goettingen, Germany), mouse anti-BrdU (SBCT,
Santa Cruz, CA, USA) and rabbit anti-Ki67 (Abcam, Cambridge, MA, USA).

Species-specific Alexa-Fluor-labeled secondary antibodies was used for detection
followed by mounting in Prolong gold anti-fade with DAPI (Life Technologies).
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Proliferation analysis by BrdU staining. BrdU staining was performed

as described before.43 Briefly, BrdU (10 mM) was added to the cells and incubated
for 4 h at 371C and fixed with 4% PFA for 15 min. Next, the fixed cells were
incubated in 2 N HCl with 0.3% Triton X-100 for 30 min followed by 0.1 M boric
acid (pH 8.0) for 10 min and three rinses with PBS before incubation blocking
solution (0.3% Triton X-100, 1% bovine serum albumin and 3% normal goat serum
in PBS) for 1 h. Next, the cells were incubated with a mouse monoclonal anti-BrdU
antibody (1 : 100) in the blocking solution overnight at 41C. After three PBS rinses,
the Alexa Fluor 568 goat anti-mouse secondary antibody (1 : 500) was applied in

blocking solution for 4 h at room temperature. The cells were rinsed in PBS three
times and visualized using a fluorescent microscope and images were taken. Total
number of BrdU-labeled cells was calculated by normalizing the BrdU signals to
the nuclei stain, DAPI. ImageJ software (http://rsb.info.nih.gov/ij/index.html) was used
for counting the cells in a given field.

RNA isolation and microarray. RNA was isolated using Trizol (Life
Technologies). The miRNA microarray was performed on Affymetrix GeneChip
miRNA 2.0 Array. GeneChip miRNA arrays were run by the UNMC microarray
core using the manufacturer’s recommended equipment and protocols. Data were
analyzed using Partek genomics suite (Partek Inc., St. Louis, MO, USA).

Quantitative real-time PCR. TaqMan mature miR assays for hsa-miR-1290
(Applied Biosystems, Carlsbad, CA, USA) was used to quantify according to the
manufacturer’s protocol. U6 snRNA was used as housekeeping control. Reactions
were performed and calculations made as described using the 2�DDCT method.44

miRNA ISH. Brain tissue sections were obtained for normal adult and fetal
brains from BioChain (BioChain Institute, Inc., Hayward, CA, USA). Tissue

sections were deparaffinized and hydrated before citrate treatment (10 mM citrate,
pH 6.39) at 901C for 40 min followed by washes in 1� PBS. Next, sections were
washed in freshly prepared methlyimidazole buffer containing 130 mM
1-methlyimidazole, 300 mM NaCl, pH 8.0, followed by 1-h incubation with 160 mM
EDC (1-ethly-3-(3-dimethlyaminopropyl)) pH 8.0 solution. Tissue culture cells on
coverslips were fixed in 4% PFA, coverslips were incubated overnight with 70%

ethanol and permeabilized using 0.25% Triton-X-100 for 15 min followed by two
washes in 2� SSC. All specimens were then prehybridized in hybridization buffer
(50% formamide, 10 mM Tris-HCl, pH 8.0, 200mg/ml yeast tRNA, 1 � Denhardt’s
solution, 600 mM NaCl, 0.25% SDS, 1 mM EDTA and 10% dextran sulfate) for 1 h
at 371C in a humidified chamber. LNA-modified miR-1290, U6 snRNA and
scrambled miR probes, labeled at both the 50 and 30 ends with digoxigenin

(Exiqon, Vedbaek, Denmark), were diluted to a final concentration of 4 pM, heated
to 651C for 5 min and separately hybridized at 371C overnight. Specimens were
then washed twice in hybridization buffer (without probe) at 371C, followed by
washing three times in 2 � SSC and twice in 0.2� SSC at 421C. They were then
blocked with 1% BSA, 3% normal goat serum in 1� PBS for 1 h at room
temperature and incubated with anti-digoxigenin conjugated with horseradish
peroxidase (Roche Applied Science, Indianapolis, IN, USA). The following day,
sections were washed with two PBS washes and signal amplification (for the

in situ, now labeled with horseradish peroxidase) using TSA Cy5 kit (PerkinElmer,
Waltham, MA, USA) according to the manufacturer’s protocol. The slides were
mounted in Prolong gold anti-fade reagent with DAPI (Life Technologies).

Double label in situ/immunofluorescence was performed as previously
described.44,45 In order to examine the potential for false-positive signals arising
because of nonspecific probe hybridization to the nuclear DNA, sections were

treated with RNAse A (100mg/ml) for 1 h at 371C before the hybridization step.

miRNA northern blotting. Northern blotting for miRNA detection was
performed with minor modifications as described previously.46,47 Briefly, 10mg of
RNA denatured in Ambion gel loading buffer II (Life technologies) at 751C for 15 min

was loaded and ran on a 15% TBE-Urea gels (Invitrogen, Carlsbad, CA, USA) at

180 V for 1 h. The gel was then transferred onto a nylon membrane using an iBLOT

DNA transfer stack (Invitrogen) as per the manufacturer’s instructions. Subsequently,
the membrane was crosslinked at 1200 kJ using a STRATALINKER (Stratagene,
La Jolla, CA, USA). The membrane was then prehybridized in the prehyb buffer
(Sigma) at 371C for 1 h followed by addition of 1.2 pmol/ml of LNA-modified 50 and 30

DIG-labeled hsa-miR-1290 probe (Exiqon) to the buffer and hybridization overnight at
371C. The next day, the membrane was washed for 5 min with a low stringency wash
buffer (2� SSC, 0.1% SDS) followed by 2� washes for 20 min each with a high
stringency wash buffer (0.5� SSC, 0.1% SDS) and a final wash for 20 min with

ultrahigh stringency wash buffer (0.1� SSC, 0.1% SDS). After the washes, the
membrane was blocked for 1 h with 1� blocking buffer for 1 h followed by incubation
with Anti-DIG AP antibody in a 1 : 20 000 dilution in blocking buffer. Finally, DIG signal
development was carried out using the DIG wash and block buffer set.

Knockdown and overexpression of miR-1290. The LNA-based

miRNA power inhibitors (with or without 50-FAM label) were purchased from
Exiqon. Undifferentiated SH-SY5Y cells and H9-NPCs were plated on coverslips
or in six-well plates, at 70% confluency, and 25 nM of the unlabeled/FAM-labeled
miR-1290 or the scrambled inhibitor (Negative control) was transfected using
XtremeGENE-siRNA (Roche Applied Science) as per the manufacturer’s

instructions. The cells were differentiated in the presence of the inhibitor. At the
end of 6 days (for SH-SY5Y) and 5 days (H9-NPCs), coverslips were placed in 4%
PFA for staining and cells on plates were harvested in Trizol for RNA extraction.
Cells transfected with FAM-labeled probes were monitored daily for phenotypic
changes. For knockdown experiments on human neurons derived from primary
fetal cells (hNPC-Ns), neurons were grown in culture for 21 days until fully
differentiated and then transfected with inhibitor as described above. Coverslips
were fixed in 4% PFA at the end of 5 days for analysis.

For overexpression studies, the undifferentiated SH-SY5Ys or H9-NPCs were
transduced with lentivirus expressing miR-1290 (Biosettia, San Diego, CA, USA)
and were maintained in proliferative growth media.

Western blotting. Whole-cell lysates were prepared using RIPA buffer
(50 mM Tris/HCl, pH 8; 150 mM NaCl; 1% Nonidet P-40; 0.5% sodium

deoxycholate; and 0.1% SDS) and protein quantification was carried out using
Pierce BCA protein assay (Thermo Scientific, Rockford, IL, USA). Protein (5–
15 mg) was loaded in each lane of NuPAGE 4–12% Bis-Tris gels (Invitrogen).
Separated proteins were transferred onto nitrocellulose membranes using iBlot
(Invitrogen). The membranes were blocked in SuperBlock (TBS) blocking buffer
(Thermo Scientific) and then incubated overnight at 41C with primary antibody.

The following primary antibodies were used: rabbit polyclonal p27kip1 (1 : 500,
Abcam), rabbit polyclonal p35 (1 : 500, SBCT), mouse monoclonal CDK5 (1 : 1000,
Millipore), mouse monoclonal PCNA (1 : 1000, DAKO) and rabbit polyclonal actin
(1 : 5000; Sigma-Aldrich, St. Louis, MO, USA). This was followed by incubation
with secondary antibody, HRP conjugated anti-rabbit IgG (1 : 20 000; Thermo
Scientific) and anti-mouse IgG (1 : 20 000; Thermo Scientific) for 1 h at room
temperature. Blots were developed using SuperSignal West Pico Chemilumines-
cent Substrate (Thermo Scientific), imaged and quantified using Carestream MI

software (Carestream Health INC, Rochester, NY, USA).

Preparation of miR-1290-expressing lentivirus. The miR-1290-
expressing lentiviral vector (pLV-miR-1290) and the packaging mix (LTR-pack-1
and LTR-pack-2) were purchased from Biosettia and viral preparations were done

as per the instructions. Briefly, human embryonic kidney (HEK) 293T cells were
transfected with pLV-miR1290, LTR-pack-1 and LTR-pack-2 using XtremeGene
HP transfection reagent (Roche Applied Science) according to the manufacturer’s
protocol. Cell supernatant containing virions was collect 48 and 72 h after
transfection, and concentrated by ultracentrifugation. pLV vector without insert was
used as control. Lentivirus titer was determined using HIV p24 ELISA assay

(Express Biotech International, Thurmont, MD, USA).

Figure 6 MiR-1290 overexpression leads to slowdown of cell cycle in SH-SY5Y cells, reduces the colony formation and induces differentiation in H9-NPCs.
(a) Flow cytometry histograms on the right reveal that SH-SY5Y cells transduced with a lentivirus construct expressing miR-1290 show an increased proportion in G0/G1
phase and a lower proportion in the S phase (bottom), representing the slowing down of cell proliferation (n¼ 3). (b) H9-NPCs were transduced with a lentivirus
construct expressing miR-1290 or a negative control sequence. Transduced cells selected with puromycin show a drastic decrease in colony size and cell number in
miR-1290-transduced cells when compared with negative (Neg.) control, bar¼ 50mm. (c) Immunostaining the colonies with differentiation marker, Tuj-1, showed increased

staining in miR-1290-transduced cells, bar¼ 20mm. Bar graph represents increase in % of Tuj1-positive labeling in miR-1290-overexpressed H9-NPCs (n¼ 3). ***Po0.001
determined by unpaired Student’s t-test
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SH-SY5Y cells or H9-NPCs were grown in vitro till they achieve 80% confluency
and transduced with miR-1290 or control lentivirus at a concentration of 5� 106

lentiviral particles/ml. Successful transduction was confirmed by visualizing dsRED
expression. At 5 days after transduction, cells were visualized in Zeiss Observer.Z1
microscope equipped with Axiocam MRm camera using Axiovision 40 v.4.8.0.0
software (CarlZeiss, Oberkochen, Germany).

Proliferation assay. Numeric grid-marked coverslips (Bellco Biotechnology,

Vineland, NJ, USA) coated with Matrigel were used to track proliferation. The
numbers on the grid were used to identify the grid squares that had equivalent cell
densities before transfections. In order to verify the proliferation of H9-NPCs, cells
were plated at a low density (20 000 cells/coverslip) and transfected with FAM-
labeled miR-1290 or negative control inhibitors (Exiqon). Cells were differentiated
for 5 days post transfection and fixed in 4% PFA. Each square with equivalent
number of cells was imaged for nuclei stain DAPI. Images were then exported to
ImageJ software for further analysis. The number of DAPI-stained nuclei from

negative control inhibitor and Mir-1290 inhibitor-transfected squares (n¼ 4) were
normalized to no inhibitor control and the values were represented as percentages
in the bar graphs.

Bioinformatics. The mRNA transcripts were extracted from ENSEMBL. The
miR-1290 gene targets were filtered by mir-1290 seed region (50-AAAUCCA-30)

complementarity in the 30-UTR. To identify the biological networks or pathways,
the FatiGO tool in the Babelomics suite (http://babelomics.bioinfo.cipf.es/) was
utilized.48 FatiGO uses Fisher’s exact test to check for significant overrepresented
GO terms in a group of genes.

Transfection of fosmid DNA. NIH3T3 cells were grown in glass coverslips
or six-well plates and transfected with fosmid clone (G248P89639D9, http://
bacpac.chori.org) by Fugene-HD (Roche Applied Sciences) as per the
manufacturer’s instructions. After 48 h of transfection, coverslips were fixed with
4% PFA and wells harvested for RNA.

Flow cytometry for cell cycle analysis. Cells were stained with Hoechst
stain, assessed by flow cytometry and cell cycle was measured as described

previously.49

TUNEL staining. TUNEL staining was performed as described previously.50

Briefly, ApopTag Plus Peroxidase In situ Apoptosis Detection kit (Millipore) was
used according to the manufacturer’s instructions with minor modifications. Cells
were fixed on coverslips with 1% paraformaldehyde, followed by washes and

postfixation for 5 min at � 201C with ethanol/acetic acid (2 : 1), followed by PBS
washes. Samples were reacted for 5 min with 3% H2O2 in PBS to deplete
endogenous peroxidase activity and then washed with PBS. Slides were next
prehybridized in equilibration buffer for 5 min, followed by hybridization with
terminal deoxynucleotidyl transferase enzyme for 1 h at 371C. The hybridization
reaction was terminated by incubation with stop buffer and PBS wash. HRP-

conjugated anti-digoxigenin was added next (30 min at RT), followed by PBS
wash. The signal was converted to fluorescence using TSA Cy5 kit (PerkinElmer)
according to the manufacturer’s protocol. Coverslips were mounted in Prolong
gold anti-fade reagent with DAPI (Invitrogen).

Statistical analysis. Statistical analysis was performed using GraphPad
Prism software (La Jolla, CA, USA). Student’s t-test or one-way ANOVA followed
by Dunnett’s multiple comparison tests were performed and the P-value was

calculated for each experiment. For all experiments with error bars, S.D. was
calculated to indicate the variation between experiments.

Data deposition accession numbers: The microarray data have been deposited
in NCBI’s gene expression omnibus (GEO) accession number GSE34016
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi).

Figure 7 MiR-1290 overexpression in H9-NPCs leads to the expression of
differentiation markers and proliferative arrest. (a and b) H9-NPCs were transduced
with a lentivirus construct expressing miR-1290 and a negative control sequence.
Immunostaining on transduced cells with differentiation marker Tuj-1 and postmitotic

marker Tuc 4 shows increased expression in miR-1290 cells, indicating that miR-1290
drives differentiation of proliferating cells, bar¼ 10mm. (c) Immunostaining on
transduced cells with proliferation marker, Ki67, reveals that miR-1290-expressing cells
stain negative for Ki67, indicating the loss of proliferative capacity when compared with
negative controls (Neg. Control), bar¼ 10mm. (d) The miR-1290-transduced
H9-NPCs coexpress the differentiation markers TUC4 and Tuj1, whereas the Neg.

control-transduced cells only show coexpression with proliferation marker Ki67.
Postimage processing was done for DAPI (Blue) channel in Adobe Photoshop as the
signal was weak during capture. Data are represented as % of total DAPIþ cells
under each condition
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Figure 8 Mir-1290 affects cell cycle proteins. (a) H9-NPCs were differentiated in the presence of miR inhibitors: Neg. Control (NC inhib) or miR-1290 (1290 inhib). Western
blots were run on the protein lysates and probed for p27kip1, CDK5, p35 and PCNA; actin was used as an internal control. Note the decrease in the levels of cell cycle proteins
in the presence of miR-1290 inhibitor. Bar graphs on the right represent statistical analysis for the protein levels normalized to the internal control, actin. (b) H9-NPCs were
transfected with plasmids overexpressing a Neg. Control or miR-1290 sequence for overexpression. Western blots were run on the protein lysates and probed for p27kip1,
CDK5, p35 and PCNA; actin was used as an internal control. Note the increase in the levels of cell cycle proteins during miR-1290 overexpression. Bar graphs on the right
represent statistical analysis for the protein levels normalized to the internal control, actin. *Po0.05, **Po0.01, ***Po0.001 determined by unpaired Student’s t-test. (c)
Schematic representation of a neural progenitor cell and its cell cycle dynamics involving core cell cycle regulators, specifically combinations of CDK/cyclin heterodimers

allowing the progression of cell cycle. Proteins belonging to the Ink family; p15 Ink-4b, p18 Ink-4c and p19 Ink-4d, and Cip/Kip family: p27kip1, p21cip1 and p57kip2, of CDKs
promote cell cycle withdrawal by blocking the activity of cyclins. Proteins in blue represent miR-1290 targets in the core cell cycle regulation. A dual function of miR-1290 is
represented in the working hypothesis on the right. MiR-1290 can target and therefore inhibit the expression of SKP2, an E3 ubiquitinase ligase, thereby increasing p27kip1
levels in the cell favoring mitotic cell exit, or can indirectly effect the levels of p27kip1 by binding to cyclin A and cyclin E (CCNA and CCNE) and therefore inhibit cell cycle
progression

Regulation of neuronal differentiation by miR-1290

SV Yelamanchili et al

13

Cell Death and Disease



Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements. We thank Benjamin Lamberty and Katy Emanuel for
outstanding technical assistance. This work is supported by grants to HSF from the
National Institute of Mental Health and Nebraska Tobacco Settlement Biomedical
Research Development funds.

Author Contributions
This study was conceived by SVY and designed by HSF and SVY; SVY performed
experiments with BM, DAR, EBH (hNPC and tissue culture), KE (RNA and

qRT-PCR), and IT and DRB (bioinformatics); SVY and HSF wrote the paper
with comments from all authors.

1. Chua JH, Armugam A, Jeyaseelan K. MicroRNAs: biogenesis, function and applications.
Curr Opin Mol Ther 2009; 11: 189–199.

2. Fineberg SK, Kosik KS, Davidson BL. MicroRNAs potentiate neural development.

Neuron 2009; 64: 303–309.
3. Kawahara H, Imai T, Okano H. MicroRNAs in neural stem cells and neurogenesis.

Front Neurosci 2012; 6: 30.

4. De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB.
miRNAs are essential for survival and differentiation of newborn neurons but not for

expansion of neural progenitors during early neurogenesis in the mouse embryonic
neocortex. Development 2008; 135: 3911–3921.

5. Kawase-Koga Y, Otaegi G, Sun T. Different timings of Dicer deletion affect neurogenesis

and gliogenesis in the developing mouse central nervous system. Dev Dyn 2009; 238:

2800–2812.
6. Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The MicroRNA miR-124 promotes

neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing.
Mol Cell 2007; 27: 435–448.

7. Yoo AS, Staahl BT, Chen L, Crabtree GR. MicroRNA-mediated switching of chromatin-

remodelling complexes in neural development. Nature 2009; 460: 642–646.
8. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y et al. MicroRNA-mediated

conversion of human fibroblasts to neurons. Nature 2011; 476: 228–231.

9. Rajewsky N. microRNA target predictions in animals. Nat Genet 2006; 38(Suppl): S8–S13.
10. Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, Cuppen E et al.Diversity

of microRNAs in human and chimpanzee brain. Nat Genet 2006; 38: 1375–1377.
11. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O et al. Identification of

hundreds of conserved and nonconserved human microRNAs.Nat Genet 2005; 37: 766–770.

12. Zheng GX, Ravi A, Gould GM, Burge CB, Sharp PA. Genome-wide impact of a recently

expanded microRNA cluster in mouse. Proc Natl Acad Sci USA 2011; 108: 15804–15809.
13. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM et al. Aligning multiple

genomic sequences with the threaded blockset aligner. Genome Res 2004; 14: 708–715.
14. Perelman P, Johnson WE, Roos C, Seuanez HN, Horvath JE, Moreira MA et al. A

molecular phylogeny of living primates. PLoS Genet 2011; 7: e1001342.
15. Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL et al.

Application of massively parallel sequencing to microRNA profiling and discovery in human

embryonic stem cells. Genome Res 2008; 18: 610–621.

16. Stark MS, Tyagi S, Nancarrow DJ, Boyle GM, Cook AL, Whiteman DC et al. Characterization
of the melanoma miRNAome by deep sequencing. PLoS One 2010; 5: e9685.

17. Witten D, Tibshirani R, Gu SG, Fire A, Lui WO. Ultra-high throughput sequencing-based
small RNA discovery and discrete statistical biomarker analysis in a collection of cervical

tumours and matched controls. BMC Biol 2010; 8: 58.
18. Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and

microRNAs. Nat Rev Genet 2007; 8: 93–103.

19. Delaloy C, Liu L, Lee JA, Su H, Shen F, Yang GY et al. MicroRNA-9 coordinates

proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell
Stem Cell 2010; 6: 323–335.

20. Fineberg SK, Datta P, Stein CS, Davidson BL. MiR-34a represses Numbl in murine neural
progenitor cells and antagonizes neuronal differentiation. PLoS One 2012; 7: e38562.

21. Hu HY, He L, Fominykh K, Yan Z, Guo S, Zhang X et al. Evolution of the human-specific
microRNA miR-941. Nat Commun 2012; 3: 1145.

22. Zhang Y, Liao JM, Zeng SX, Lu H. p53 downregulates Down syndrome-associated
DYRK1A through miR-1246. EMBO Rep 2011; 12: 811–817.

23. de Planell-Saguer M, Rodicio MC, Mourelatos Z. Rapid in situ codetection of noncoding
RNAs and proteins in cells and formalin-fixed paraffin-embedded tissue sections without

protease treatment. Nat Protoc 2010; 5: 1061–1073.
24. Nuovo GJ. In situ detection of precursor and mature microRNAs in paraffin embedded,

formalin fixed tissues and cell preparations. Methods 2008; 44: 39–46.

25. Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD. Systematic evaluation

of microRNA processing patterns in tissues, cell lines, and tumors. RNA 2008; 14: 35–42.

26. Dhahbi JM, Atamna H, Boffelli D, Magis W, Spindler SR, Martin DI. Deep sequencing
reveals novel microRNAs and regulation of microRNA expression during cell senescence.
PLoS One 2011; 6: e20509.

27. Coats S, Flanagan WM, Nourse J, Roberts JM. Requirement of p27Kip1 for restriction point
control of the fibroblast cell cycle. Science 1996; 272: 877–880.

28. Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M et al.
Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of

p27(Kip1). Cell 1996; 85: 721–732.

29. Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E et al. A syndrome of multiorgan
hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-
deficient mice. Cell 1996; 85: 733–744.

30. Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N et al. Mice lacking
p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and

pituitary tumors. Cell 1996; 85: 707–720.

31. Kawauchi T, Chihama K, Nabeshima Y, Hoshino M. Cdk5 phosphorylates and stabilizes
p27kip1 contributing to actin organization and cortical neuronal migration. Nat Cell Biol

2006; 8: 17–26.
32. Tsai LH, Takahashi T, Caviness VS Jr, Harlow E. Activity and expression pattern of

cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development 1993;

119: 1029–1040.
33. Cicero S, Herrup K. Cyclin-dependent kinase 5 is essential for neuronal cell cycle arrest

and differentiation. J Neurosci 2005; 25: 9658–9668.

34. Kawauchi T, Hoshino M. Molecular pathways regulating cytoskeletal organization and
morphological changes in migrating neurons. Dev Neurosci 2008; 30: 36–46.

35. Carrano AC, Eytan E, Hershko A, Pagano M. SKP2 is required for ubiquitin-mediated

degradation of the CDK inhibitor p27. Nat Cell Biol 1999; 1: 193–199.
36. Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U et al. p45SKP2

promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1999;

1: 207–214.
37. Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H. p27(Kip1) ubiquitination and degradation

is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol
1999; 9: 661–664.

38. Herrup K, Yang Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new

biology? Nat Rev 2007; 8: 368–378.
39. Folch J, Junyent F, Verdaguer E, Auladell C, Pizarro JG, Beas-Zarate C et al. Role of cell

cycle re-entry in neurons: a common apoptotic mechanism of neuronal cell death. Neurotox

Res 2012; 22: 195–207.
40. Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP et al.

Mapping early brain development in autism. Neuron 2007; 56: 399–413.
41. Semendeferi K, Lu A, Schenker N, Damasio H. Humans and great apes share a large

frontal cortex. Nat Neurosci 2002; 5: 272–276.

42. Peng H, Huang Y, Rose J, Erichsen D, Herek S, Fujii N et al. Stromal cell-derived factor

1-mediated CXCR4 signaling in rat and human cortical neural progenitor cells. J Neurosci
Res 2004; 76: 35–50.

43. Garza JC, Guo M, Zhang W, Lu XY. Leptin increases adult hippocampal neurogenesis
in vivo and in vitro. J Biol Chem 2008; 283: 18238–18247.

44. Yelamanchili SV, Chaudhuri AD, Chen LN, Xiong H, Fox HS. MicroRNA-21 dysregulates
the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease.
Cell Death Dis 2010; 1: e77.

45. Chaudhuri AD, Yelamanchili SV, Fox HS. Combined fluorescent in situ hybridization for

detection of microRNAs and immunofluorescent labeling for cell-type markers. Front Cell
Neurosci 2013; 7: 160.

46. Varallyay E, Burgyan J, Havelda Z. MicroRNA detection by northern blotting using locked
nucleic acid probes. Nat Protoc 2008; 3: 190–196.

47. Tran N. Fast and simple micro-RNA northern blots. Biochem Insights 2009; 2: 1–3.
48. Al-Shahrour F, Diaz-Uriarte R, Dopazo J. FatiGO: a web tool for finding significant

associations of Gene Ontology terms with groups of genes. Bioinformatics 2004; 20:

578–580.

49. Schmid I, Sakamoto KM. Analysis of DNA content and green fluorescent protein
expression. Curr Protoc Cytom 2001; Chapter 7: Unit 7.16.

50. Yelamanchili SV, Chaudhuri AD, Flynn CT, Fox HS. Upregulation of cathepsin D in the
caudate nucleus of primates with experimental parkinsonism. Mol Neurodegener 2011;

6: 52.

Cell Death and Disease is an open-access journal

published by Nature Publishing Group. This work is

licensed under a Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

Supplementary Information accompanies this paper on Cell Death and Disease website (http://www.nature.com/cddis)

Regulation of neuronal differentiation by miR-1290

SV Yelamanchili et al

14

Cell Death and Disease


	The evolutionary young miR-1290 favors mitotic exit and differentiation of human neural progenitors through altering the cell cycle proteins.
	Recommended Citation
	Authors

	The evolutionary young miR-1290 favors mitotic exit and differentiation of human neural progenitors through altering the cell c

