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Abst ract
Background: One intractable problem with using microarray data analysis for cancer classification
is how to reduce the extremely high-dimensionality gene feature data to remove the effects of
noise. Feature selection is often used to address this problem by selecting informative genes from
among thousands or tens of thousands of genes. However, most of the existing methods of
microarray-based cancer classification utilize too many genes to achieve accurate classification,
which often hampers the interpretability of the models. For a better understanding of the
classification results, it is desirable to develop simpler rule-based models with as few marker genes
as possible.

Methods: We screened a small number of informative single genes and gene pairs on the basis of
their depended degrees proposed in rough sets. Applying the decision rules induced by the selected
genes or gene pairs, we constructed cancer classifiers. We tested the efficacy of the classifiers by
leave-one-out cross-validation (LOOCV) of training sets and classification of independent test sets.

Results: We applied our methods to five cancerous gene expression datasets: leukemia (acute
lymphoblastic leukemia [ALL] vs. acute myeloid leukemia [AML]), lung cancer, prostate cancer,
breast cancer, and leukemia (ALL vs. mixed-lineage leukemia [MLL] vs. AML). Accurate
classification outcomes were obtained by utilizing just one or two genes. Some genes that
correlated closely with the pathogenesis of relevant cancers were identified. In terms of both
classification performance and algorithm simplicity, our approach outperformed or at least
matched existing methods.

Conclusion: In cancerous gene expression datasets, a small number of genes, even one or two if
selected correctly, is capable of achieving an ideal cancer classification effect. This finding also means
that very simple rules may perform well for cancerous class prediction.

Background
Rapid advances in gene expression microarray technology

have enabled the simultaneous measurement of the

expression levels of tens of thousands of genes in  a single

experiment [1]. By measuring gene expression levels

related to multiple individuals and multiple tissue or

tumor samples, investigators can discover molecular

markers to be used for cancer diagnosis, prognosis, and

prediction. Many researchers have explored the use of

microarray technology to build cancer diagnosis, progno-

sis, and prediction classifiers, since the pioneering work of

Golub et al. in  applying gene expression monitoring by
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DNA microarray to cancer classification [2]. However, one

intractable problem with using microarray data analysis

to create cancer classifiers is how to reduce the exceedingly

high-dimensional gene expression data, which contain a

large amount of noise. On the other hand, compared with

the measured quantities of gene expression levels in

experiments, the numbers of samples are severely limited.

This brings about two computational challenges: compu-

tational cost and classification accuracy. To achieve effi-

cient and accurate classification, it is natural for

researchers to investigate feature selection; i.e., gene filter-

ing [3]. However, one serious drawback of most existing

methods is that too many genes are ultimately selected for

the classification of cancer, thereby hampering the inter-

pretability of the models. In fact, it is not easy to gauge

which gene is essential in determining a cancerous class if

accurate classification is obtained based on a large cluster

of genes.

In parallel with feature selection, classifier construction is

an important topic in this field. In  machine learning and

data mining, the methods of generating classifiers include

unsupervised and supervised approaches. The latter is fur-

ther classified into two categories: "black-box" and

"white-box" models. The "black-box" models, such as

support vector machines (SVMs), discriminant analysis

(DA), artificial neural networks (ANNs), genetic algo-

rithms (GAs), na�̈ve Bayes (NB), and k-nearest neighbors

(k-NNs), address classification problems without any

knowledge-based explanation rules. In  contrast, the

"white-box" models, such as Decision Trees [4], Rough

Sets [5], and emerging patterns (EPs) [6], often imple-

ment classification by giving "IF-THEN"-like rules. The

"white-box" models are sometimes more welcomed by

biologists and clinicians because they are easily under-

stood.

Many investigators have utilized the rule-based

approaches (i.e., "white-box" models) to produce cancer

classifiers [6-13]. In general, these classifiers involve few

genes, whereas they exhibit efficient prediction perform-

ance. In [6], the authors proposed one method of identi-

fying good diagnostic gene groups from gene expression

profiles using the concept of EPs. The authors sought to

find the gene groups whose frequency of patterns changed

significantly between two classes of cells. They then used

the rules arising from these patterns to construct cancer

classifiers. Their classifiers were uncomplicated, as they

merely contained the rules involving a few genes. In [11],

decision tree algorithms involving single C4.5, Bagging,

and AdaBoost decision trees were applied to classify gene

expression datasets. In  essence, a decision tree is a rule-

based classifier. The classifier screens the informative fea-

tures to build decision trees based on the information

entropy concept. Subsequently, rules are derived from the

trees. Because decision tree algorithms commonly con-

duct pruning of the trees to remove unnecessary features,

the derived rules generally involve only a small number of

features. In  [13], the authors proposed the use of high-

ranked association rule groups to construct cancer classifi-

ers instead of utilizing all of the mined association rules,

which commonly involves excessive numbers of redun-

dant rules.

Some investigators have addressed the problem of using

pairs of genes to conduct cancer classification. In [14], the

authors classified gene expression profiles using a com-

parison-based approach, the "top-scoring pair(s)," called

the TSP classifier. The authors attempted to predict classes

by comparing the expression levels of a single pair of

genes, chosen based on a simple measure of class discrim-

ination. In [15], the authors investigated the use of gene

pairs for classification. They screened the gene pairs that

had marked differences in  average expression levels

between the tumor types in the training set. The gene pairs

were then applied to classify test sets.

Rough sets, a data-analysis method originally proposed by

Pawlak in the early 1980s [5], has evolved into a widely

accepted machine-learning and data-mining method [16].

In  [7-10], rough sets was applied for cancer classification

and prediction based on an attribute reduction approach.

In [17], we proposed a rough sets-based soft computing

method to conduct cancer classification using single genes

or gene pairs. In this article, we also explore the use of sin-

gle genes and gene pairs in constructing cancer classifiers;

however, in contrast to [17], we first aimed to use the con-

cept of canonical depended degree, as proposed in rough

sets for gene selection. In  the cases that this approach was

unsuccessful, we considered utilizing the α depended

degree standard suggested in [17] for gene selection. In

this work, the α depended degree was employed for a por-

tion of the datasets. In addition, unlike the other rough

sets-based methods, we did not carry out attribute reduc-

tion for gene selection. Instead, we first implemented fea-

ture ranking according to the depended degree or α
depended degree of attributes, and then selected the top-

ranked genes to create classifiers so as to avoid expensive

computation for attribute reduction. Moreover, we made

use of the decision rules induced by the chosen genes to

build classifiers, whereas existing rough sets-based meth-

ods only utilized rough sets for gene selection, and the

classifier constructions depended upon other machine-

learning algorithms such as SVMs, ANNs, GAs, NB, and k-

NNs [7-10].

We tested the methods in  the five publicly available gene

expression datasets: Leukemia 1 (ALL vs. AML), Lung Can-

cer, Prostate Cancer, Breast Cancer, and Leukemia 2 (ALL

vs. MLL vs. AML), which can be downloaded from the
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Kent Ridge Bio-medical Data Set Repository http:/ /

datam.i2r.a-star.edu.sg/datasets/krbd/. We compared our

results with the findings of previous studies. Furthermore,

we examined and analyzed the biological relevance of the

selected genes.

Methods
Rough sets
In rough sets, an equivalence relation on U is referred to

as one knowledge, and a family of equivalence relations is

referred to as a knowledge base on U. In reality, we are often

faced with a large amount of ill-defined data, and we want

to learn about them based on pre-existing knowledge.

However, most of these data cannot be precisely defined

based on pre-existing knowledge, as they incorporate both

definite and vague components. In [5], Pawlak describes

the definite parts using the concept of positive region.

Defin ition  1 Let U be a universe of discourse, X ⊆ U, and

R is an equivalence relation on U. U/R represents the set

of the equivalence class of U induced by R. The positive

region of X on R in U is defined as pos(R, X) = ∪ {Y ∈ U/R

|  Y ⊆ X}[5].

The decision table is the data form studied by rough sets.

One decision table can be represented as S = (U, A = C ∪

D), where U is the set of samples, C is the condition

attribute set, and D is the decision attribute set. Without

loss of generality, hereafter we assume D is a single-ele-

ment set, and we call D the decision attribute. A can be

viewed as a knowledge base in  S, as each attribute or

attribute subset can induce an equivalence relation on U.

In the decision table, if we designate Ia as the function

mapping a member (sample) of U to the value of the

member on the attribute a (a ∈ A), then the equivalence

relation R(A') induced by the attribute subset A' ⊆ A is

defined as: for ∀x, y ∈ U, xR(A')y, if and only if Ia(x)  = Ia(y)

for each a ∈ A'.

For the cancer classification problem, every collected set

of microarray data can be represented as a decision table

in the form of Table 1. In the microarray data decision

table, there are m samples and n genes. Every sample is

assigned to one class label. The expression level of gene y

in sample x is represented by g(x, y) .

In  rough sets, the degree of dependency of a set of attributes

Q on another set of attributes P is denoted by γP(Q) and is

defined as

Where  represents the

size of the union of the lower approximation of each

equivalence class in  U/R(Q) on P in  U, and | U|  represents

the size of U (set of samples).

If Q is the decision attribute D, and P is a subset of condi-

tion attributes, then γP(D) represents the depended degree

of the condition attribute subset P by the decision

attribute D; that is, to what degree P can discriminate the

distinct classes of D. In this sense, γP(D) reflects the classi-

fication power of the subset P of attributes. The greater is

γP(D), the stronger the classification ability P is inclined to

possess. We chose the measure of the depended degree of

condition attributes by class attributes as the basis for

selecting informative genes.

In contrast to other correlation-based feature selection

standards such as t-score, the depended degree can be calcu-

lated only when the attribute values are discrete. Thus, for

the studied microarray datasets, the discretization of gene

expression values is an essential step. Indeed, the discreti-

zation will bring about several advantages. First, some

unimportant genes will be found immediately after the

discretization. When the discretized expression values of a

gene are identical among all of the samples, we view the

gene as being insignificant because distinct classes cannot

be separated according to the gene's expression values.

Second, when gene expression values are reduced to dis-

gP Q P Q
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( )
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| |
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Table 1: Microar ray data decision t able

Samples Condit ion at t r ibutes (genes) Decision at t r ibutes (classes)
Gene 1 Gene 2 ... Gene n Class label

1 g(1,1) g(1,2) ... g(1, n) Class (1)

2 g(2,1) g(2,2) ... g(2, n) Class (2)

... ... ... ... ... ...

m g(m,1) g(m,2) ... g(m, n) Class (m)
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crete states, the rules formed by the genes can be described

naturally via the discretized data.

However, for some datasets it is difficult to detect the dis-

criminative features based on the depended degree

because of its excessively rigid definition. In this case, we

employed the α depended degree proposed in  [17] as the

basis for choosing genes. The α depended degree of an

attribute subset P by the decision attribute D is defined as

, where 0 ≤ α ≤ 1,

 and pos(P, X, α) =

∪{Y ∈ U/R(P) |  | Y ∩ X| / | Y|≥ α} [17]. In fact, as indicated

in [17], the depended degree is a specific case of the α

depended degree when α = 1. In  the case that the

depended degree was largely ineffective as a basis on

which to screen features, we employed the α (0.7 ≤ α < 1)

depended degree.

Inducing decision rules that are hiding in  decision tables

is one of the key tasks of rough sets, which is also an essen-

tial procedure of our classifier construction. One decision

rule in  the form of "A ⇒  B" indicates that "if A, then B,"

where A is the description of condition attributes and B

the description of decision attributes. The confidence of a

decision rule A ∧ B is defined as follows:

, where support(A)

denotes the proportion of the samples satisfying A and

where support(A ∧ B) denotes the proportion of the sam-

ples satisfying A and B simultaneously. The confidence of

a decision rule indicates the reliability of the rule. If a deci-

sion rule had 100% confidence, we called it a consistent

decision rule. It is evident that if γP(D) equals 1, P ⇒  D

must be a consistent decision rule. In contrast, γP(D, α) =

1 does not mean that P ⇒  D must be a consistent decision

rule.

To ensure the reliability of the classification rules, we

chose only the genes or gene pairs with γP(D) or γP(D, α)

equal to 1 when forming decision rules. Suppose g is one

of the selected genes and U is the sample set. U/R(g) =

{c1(g), c2(g), ..., cn(g)} represents the set of the equiva-

lence class of samples induced by R(g). Two samples, s1

and s2, belong to the same equivalence class of U/R(g) if

and only if they have the same value on g. In addition, we

represented the set of the equivalence class of samples

induced by R(D) as U/R(D) = {d1(D), d2(D), ..., dm(D)},

where D is the decision attribute. Likewise, two samples,

s1 and s2, belong to the same equivalence class of U/R(D)

if and only if they have the same value on D. For each ci(g)

(i = 1, 2, ..., n), if there exists some d j(D) (j ∈ {1, 2, ...,

m}), satisfying ci(g) ⊆ d j(D) in light of the depended

degree or | ci(g) ∩ d j(D)| / | ci(g)|≥ α in light of the α
depended degree, we then generated the following classi-

fication rule: A(ci(g)) ⇒  B(d j(D)), where A(ci(g)) is the

formula describing the sample set ci(g) by the g value, and

B(d j(D)) is the formula describing the sample set d j(D) by

the class value. We used the same strategy to construct

classification rules for gene pairs.

In  the case of the depended degree, each employed classi-

fication rule was the consistent decision rule. However, in

the case of the α depended degree, the classification rules

may not have been consistent, yet the confidence of every

classification rule must be no less than α, as proven in

[17]. Hence, if we specified a large enough α threshold,

the confidence of classification rules would have been suf-

ficiently high.

Datasets
Leukemia dataset 1 (ALL vs. AML)
The first dataset we analyzed was the well-known leuke-

mia data studied by Golub et al. [2], which has been

explored widely by many researchers. In this dataset, there

are 72 observations, each of which is described by the

gene expression levels of 7129 genes and a class attribute

with two distinct labels: AML vs. ALL. The 72 observations

are divided into a training set with 38 samples (27 ALL, 11

AML) and a test set with 34 samples (20 ALL, 14 AML).

Lung Cancer dataset
The Lung Cancer dataset is a classification of malignant

pleural mesothelioma (MPM) vs. adenocarcinoma

(ADCA) of the lung [15], and consists of 181 tissue sam-

ples (31 MPM, 150 ADCA). The training set contains 32

of the samples (16 MPM vs. 16 ADCA); the remaining 149

samples are used for testing. Each sample is described by

12,533 genes.

Prostate Cancer dataset
The Prostate Cancer dataset is concerned with prostate

tumor vs. normal classification. The training set contains

52 prostate tumor samples and 50 non-tumor prostate

samples [18]; the total number of genes is 12,600. Two

classes are denoted as "Tumor" and "Normal." The test set

samples were from a different experiment and have a

nearly 10-fold difference in  overall microarray intensity

compared with the training data. We made use of the test

set provided by Kent Ridge Bio-medical Data Set Reposi-

tory, which includes 25 tumor and 9 normal samples.

g a
a
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U
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Breast Cancer dataset
This dataset is concerned with the prediction of patient

outcome for breast cancer [19]. The training set contains

78 patient samples, 34 of which are from patients who

had developed distant metastases within 5 years

("relapse"); the remaining 44 samples are from patients

who remained healthy from the disease for an interval of

at least 5 years after initial diagnosis ("non-relapse").

There are 12 relapse and 7 non-relapse samples in  the test

set, and the number of genes is 24,481.

Leukemia dataset 2 (ALL vs. MLL vs. AML)
This dataset is about subtype prediction for leukemia [20].

The training set contains 57 samples (20 ALL, 17 MLL,

and 20 AML), while the testing set contains 15 samples (4

ALL, 3 MLL, and 8 AML). The number of genes is 12,582.

The gene number, class, training sample number and test

sample number contained in  the five datasets are listed in

Table 2.

Data preprocessing
Normalization of attributes value

Because the training set samples and the test set samples

in the prostate cancer dataset are from two different exper-

iments, and because discrepancies in  microarray intensity

exist between the two sets of samples, we normalized both

the training set and the test set. Suppose that the original

expression level of gene y in  sample x is g(x, y). Then, the

normalized value of g(x, y) is

, where max g(�, y) and min

g(�, y) represent the maximum and the minimum expres-

sion levels of gene y in all of the samples, respectively.

After normalization, all of the expression levels of the

genes lie within the interval [-1, 1]. As a result, we can

apply the rules induced in  the training set to the test set.

Because the training set samples and the test set samples

in the other datasets are from the same experiments, we

chose not to normalize these data to avoid any loss of

information.

Discretization of decision tables
Because rough sets is suitable for handling discrete

attributes, we needed to first discretize the training set

decision tables. We used the entropy-based discretization

method, as first proposed by Fayyad et al. [21]. This algo-

rithm recursively applies an entropy minimization heuris-

tic to discretize the continuous-valued attributes. The stop

of the recursive step for this algorithm depends on the

minimum description length (MDL) principle. We imple-

mented the discretization in the Weka package [22]. After

the discretization, the majority of attributes contained at

most two distinct values, while a small number of

attributes contained three or four distinct values. We exe-

cuted our learning algorithm in the discretized decision

tables.

Feature selection, classifier construction, and validation
For the Leukemia 1 and Lung Cancer datasets, we con-

ducted feature selection by the depended degree, while for

the Prostate Cancer, Breast Cancer and Leukemia 2 data-

sets, we implemented feature selection by the α depended

degree. For each dataset, we employed the LOOCV

approach for the training set to identify high class-dis-

crimination genes or gene pairs. That is, in  the training set

containing n samples, each sample is left out in  turn, and

the learning algorithm is trained on the remaining n-1

samples. Then, the training result is tested on the left-out

sample. The final estimate is the average of n test results.

We emphasize that only the single genes or gene pairs

chosen by all of the leave-one-out training sets are used

for LOOCV. In other words, when the depended degree

standard is utilized, only those genes or gene pairs with a

100% depended degree in all leave-one-out training sets

are selected; when the α depended degree standard is

used, only the genes and gene pairs satisfying γP(D, α) = 1

in all of the leave-one-out training sets are chosen. Accord-

ing to the results of LOOCV, we finally determined the

informative genes or gene pairs. Applying the classifica-

tion rules induced by the single genes or gene pairs in the

entire training set to classify the independent test set, we

further verified their classification performance.

g x y g y g y

g y g y

( , ) (max ( , ) min ( , ))/

(max ( , ) min ( , ))/

− • + •
• − •

2

2

Table 2: Summary of t he five gene expression datasets

Dat aset # Or iginal genes Class # Tr aining samples # Test  samples

Leukemia 1 7129 ALL/AML 38 (27/11) 34 (20/14)

Lung Cancer 12533 MPM/ADCA 32 (16/16) 149 (15/134)

Prostate Cancer 12600 Tumor/Normal 102 (52/50) 34 (25/9)

Breast Cancer 24481 relapse/non-relapse 78 (34/44) 19 (12/7)

Leukemia 2 12582 ALL/MLL/AML 57 (20/17/20) 15 (4/3/8)
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Results
Classification results
Leukemia dataset 1
In this dataset, we first selected informative single genes.

Among the 7129 genes, only gene #4847 had a 100%

depended degree in all leave-one-out training sets. We

denoted the expression level of gene x by g(x). The deci-

sion rules induced by gene #4847 in every leave-one-out

training set are of the following form: if g(#4847) > t, then

AML; if g(#4847) ≤ t, then ALL, where t is equal or close

to 994. One can apply the decision rules to classify the

left-out sample. The final LOOCV accuracy resulting from

the gene was 97.4%, with 37 of the 38 samples classified

correctly, wherein all of the 27 ALL samples were classified

correctly, and one AML sample was misclassified. Subse-

quently, we examined the depended degree of the gene in

the whole training set of 38 samples. As expected, the gene

had a 100% depended degree in the training set. The two

consistent decision rules generated by this gene were as

follows: if g(#4847) > 994, then AML; if g(#4847) ≤ 994,

then ALL. One can use the above rules to classify the inde-

pendent test set with 91.2% classification accuracy.

Among the 34 samples, 31 were classified correctly and 3

were classified incorrectly: 2 ALL samples were misclassi-

fied into AML, and 1 ALL sample was misclassified into

AML.

Next, we searched for informative gene pairs. Because

there are 7129 genes, the combination number would be

huge if all were taken into account. Therefore, for each

leave-one-out training set, only the genes with more than

18/37 depended degree were considered in forming gene

pairs (excluding the aforementioned gene #4847). As a

result, 350 gene pairs were found to possess a 100%

depended degree in all leave-one-out training sets. Every

gene pair was capable of inducing four consistent decision

rules, which were used for classification. We set the

threshold of LOOCV accuracy such that at least 35 of the

38 samples were classified correctly. Accordingly, 347

gene pairs satisfied the condition. Likewise, using the

decision rules induced by the gene pairs in the whole

training set to classify the test set, we detected 13 gene

pairs with no less than 32 test samples classified correctly

(at most, 2 errors). Table 3 lists data for these 13 pairs of

genes. In  this table, the classification results regarding

LOOCV and the test set are shown in terms of both the

number of correctly classified samples and accuracy. The

Table 3: Thir t een gene pairs wit h high classificat ion accuracy in the Leukemia dataset  1

1st  - 2nd Probe ID Classificat ion results in LOOCV Classificat ion result s in the t est  set

# Cor rect ly classified samples Accuracy (%) # Correct ly classified samples Accuracy (%)

U46499_at - M92287_at 35 (26/9) 92.11 (96.30/81.82) 33 (20/13) 97.06 (100/92.86)

U46499_at - M12959_s_at 36 (27/9) 94.74 (100/81.82) 34 (20/14) 100 (100/100)

U46499_at - D63880_at 36 (27/9) 94.74 (100/81.82) 33 (20/13) 97.06 (100/92.86)

U46499_at - S50223_at 37 (27/10) 97.37 (100/90.91) 33 (19/14) 97.06 (95/100)

U46499_at - Z15115_at 35 (26/9) 92.11(96.30/81.82) 33 (20/13) 97.06 (100/92.86)

L09209_s_at - M92287_at 37 (27/10) 97.37 (100/90.91) 33 (20/13) 97.06 (100/92.86)

L09209_s_at - S50223_at 37 (27/10) 97.37 (100/90.91) 33 (19/14) 97.06 (95/100)

X61587_at - M92287_at 36 (26/10) 94.74 (96.30/90.91) 33 (20/13) 97.06 (100/92.86)

X61587_at - M12959_s_at 37 (27/10) 97.37 (100/90.91) 33 (19/14) 97.06 (95/100)

L09209_s_at - D63880_at 37 (27/10) 97.37 (100/90.91) 32 (19/13) 94.12 (95/92.86)

U05259_rna1_at - M92287_at 36 (26/10) 94.74 (96.30/90.91) 32 (20/12) 94.12 (100/100)

L09209_s_at - X59417_at 37 (27/10) 97.37 (100/90.91) 32 (19/13) 94.12 (95/92.86)

L09209_s_at - Z15115_at 37 (27/10) 97.37 (100/90.91) 32 (19/13) 94.12 (95/92.86)
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results with respect to every class are presented in paren-

theses, and the optimal results are formatted in boldface.

Among the 13 gene pairs, the combination #3252-#6167

possessed 100% classification accuracy on the test set. The

decision rules produced by the gene pair were as follows:

� if g(#3252) ≤ 156.5 and g(#6167) > 820.5, then ALL;

� if g(#3252) ≤ 156.5 and g(#6167) ≤ 820.5, then ALL;

� if g(#3252) > 156.5 and g(#6167) > 820.5, then ALL;

� if g(#3252) > 156.5 and g(#6167) ≤ 820.5, then

AML.

The above rules were then simplified into three equivalent

rules:

� if g(#3252) ≤ 156.5, then ALL;

� if g(#6167) > 820.5, then ALL;

� if g(#3252) > 156.5 and g(#6167) ≤ 820.5, then

AML.

These three rules are fairly simple and easily understood.

Using these rules, we classified the test set without any

errors. The rules derived from the other 12 gene pairs are

provided in the Additional file 1, and we also provide

information on the top 87 genes in  the training set with

depended degrees of no less than 0.5 in  the Additional file

2.

Lung Cancer dataset
This dataset contained 16 genes with a 100% depended

degree in  all of the 32 leave-one-out training sets. The

LOOCV accuracy of the 16 genes was between 93.75%

and 100%. Namely, the number of correctly classified

samples ranged from 30 to 32. In  the training set, each of

the 16 genes had a 100% depended degree. These obser-

vations indicate that each single gene among the 16 genes

was likely to have high class-discriminative power in the

training set. Using the rules generated by these single

genes, we examined the test set. As expected, these genes

showed high classification performance, with classifica-

tion accuracy ranging from 79% to 97%. The classification

results are presented in  Table 4, which shows that some of

the genes in the Lung Cancer dataset, such as gene

37716_at, have impressive classification performance.

The rules induced by gene 37716_at were the following: if

g(37716_at) > 197.75, then mesothelioma; if

g(37716_at) ≤ 197.75, then ADCA. Using these two rules,

we could classify the test set with 97% accuracy. The rules

produced by the 16 genes are provided in  the Additional

file 3. From these rules, we suspected that 2047_s_at,

2266_s_at, 32046_at, 33245_at, 41286_at, 41402_at,

575_s_at, and 988_at have higher expression levels in

ADCA, while the others have higher expression levels in

mesothelioma.

If more than one gene is considered when developing

rules, higher classification accuracy should be achieved.

Therefore, we carried out further classification tests using

gene pairs. As before, we tried to find the gene pairs with

high LOOCV accuracy. To avoid combination explosion,

to constitute gene pairs we only selected genes with more

than 12/31 and less than 100% depended degree in all 32

leave-one-out training sets. Furthermore, to avoid intri-

cate classification rules produced by gene pairs, we

excluded genes with more than two distinct discretized

values. Accordingly, we found 82 gene pairs with a 100%

depended degree in  all 32 leave-one-out training sets.

Among them, 25 pairs possessed 100% LOOCV accuracy.

These pairs also had comparatively strong classification

power in  the test set. Their classification accuracy was

between 71.14% and 96.64%; 21 pairs showed accuracy

exceeding 80%, and nine pairs had accuracy exceeding

90%. Data for these 25 gene pairs are listed in  Table 5. The

classification rules induced by these pairs are presented in

the Additional file 3.

To observe the relationship between the depended

degrees of single genes and the classification accuracy of

gene pairs, we carried out another experiment. In  the dis-

cretized training set, we first excluded the genes with

depended degrees 0 and 100%, as well as the genes with

above two distinct values. As a result, there were 1428

genes left for pair combination. We set the threshold

number of correctly classified samples as 148; that is, we

searched for the gene pairs by which the test set are classi-

fied with at most one error. In  addition, we set another

threshold k, and required that the sizes of the positive

regions caused by the selected genes must exceed k, with k

varying from 13 to 0. When k equals 13, 61 genes are

selected, and 743 pair combinations have 100%

depended degree. Using the rules derived from each of the

743 gene pairs to classify the test set, we detected 4 com-

binations with 148 samples classified correctly. When k

was 12, 11, and 10, only the same four combinations were

found. When k decreased to 9 and 8, five and seven com-

binations were found, respectively. At lower values, no

more combinations were found to classify 148 samples or

more correctly, even when k was reduced to 0, and the

selected gene number is 1428 accompanied by 33,390

combinations with a 100% depended degree. The results

indicate that combinations between genes with higher

depended degrees are more likely to produce accurate

classification.

To explore whether the combinations between the genes

with 100% depended degrees and other genes with lower
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depended degrees would yield more gene pairs having no

less than 148 samples classified correctly, we added the 16

genes with a 100% depended degree to the 1428 genes

and repeated the above experiment. Surprisingly, the

results were exactly the same as those of the first experi-

ment; i.e., no new gene pair was found. This finding indi-

cates that to obtain perfect classification performance by

combined genes, although the class-discrimination ability

of individual genes is important, the mutual information

complement between individual genes might also be cru-

cial. Additional details regarding this experiment are pro-

vided in  Table S1 of the Additional file 4.

Table S2 of the Additional file 4 shows the most seven pair

combinations found in  the experiment. Each of the seven

gene pairs generates four rules, which can be simplified

into three equivalent rules. The rules can be used to cor-

rectly classify 148 of 149 samples in the test set, with only

one error (one mesothelioma was misclassified as ADCA).

The detailed rules formed by the seven pairs of genes are

presented in  the Additional file 3.

Prostate Cancer dataset
Because of differences in  microarray intensity between the

training set and the test set, we first normalized the

attribute values for both sets. Every attribute value was

normalized to a number between -1 and 1. In this dataset,

if the depended degree standard is employed for gene

selection, it is somewhat difficult to find authentically dis-

criminative genes, as no gene has a 100% depended

degree, and the highest depended degree in the training

set is 36%. Therefore, we utilized the α depended degree

as the criterion for gene selection. For α ≥ 0.9, no common

gene was detected among all of the 102 leave-one-out

training sets; when α = 0.85, gene #10493 was found;

when α = 0.80, nine genes were found. Of these nine

genes, we excluded gene #5261 with three distinct values,

and calculated the LOOCV accuracy of the other eight

Table 4: Sixt een genes wit h high classificat ion accuracy in t he Lung Cancer dataset

Probe ID Classificat ion results in LOOCV Classificat ion result s in the test  set

# Cor rect ly classified samples Accuracy(%) # Cor rect ly classified samples Accuracy(%)

2047_s_at 30 (15/15) 93.75 (93.75/93.75) 122 (11/111) 81.88 (73.33/82.84)

266_s_at 32 (16/16) 100 (100/100) 129 (13/116) 86.58 (86.67/86.57)

32046_at 30 (15/15) 93.75 (93.75/93.75) 133 (12/121) 89.26 (80/90.30)

32551_at 31 (15/16) 96.88 (93.75/100) 134 (14/120) 89.93 (93.33/89.55)

33245_at 30 (15/15) 93.75 (93.75/93.75) 137 (14/123) 91.95 (93.33/91.79)

33833_at 32 (16/16) 100 (100/100) 139 (13/126) 93.29 (86.67/94.03)

35330_at 31 (15/16) 96.88 (93.75/100) 118 (14/104) 79.19 (93.33/77.61)

36533_at 30 (15/15) 93.75 (93.75/93.75) 141 (13/128) 94.64 (86.67/95.52)

37205_at 30 (15/15) 93.75 (93.75/93.75) 135 (12/123) 90.60 (80/91.79)

37716_at 30 (15/15) 93.75 (93.75/93.75) 145 (11/134) 97.32 (73.33/100)

39795_at 31 (16/15) 96.88 (100/93.75) 135 (14/121) 90.60 (93.33/90.30)

40936_at 31 (15/16) 96.88 (93.75/100) 140 (12/128) 93.96 (80/95.52)

41286_at 30 (15/15) 93.75 (93.75/93.75) 121 (13/108) 81.21 (86.67/80.60)

41402_at 31 (16/15) 96.88 (100/93.75) 123 (13/110) 82.55 (86.67/82.09)

575_s_at 32 (16/16) 100 (100/100) 141 (14/127) 94.64 (93.33/94.78)

988_at 30 (15/15) 93.75 (93.75/93.75) 132 (13/119) 88.59 (86.67/88.81)
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Table 5: Twenty-five gene pairs wit h 100% LOOCV accuracy in t he Lung Cancer  dataset

1st  - 2nd Probe ID Classificat ion results in t he t est  set

# Cor rect ly classified samples Accuracy (%)

33754_at - 36562_at 144 (13/131) 96.64 (86.67/97.76)

33754_at - 40496_at 143 (11/132) 95.97 (73.33/98.51)

34105_f_at - 40496_at 141(9/132) 94.64 (60/98.51)

34105_f_at - 36562_at 140 (10/130) 93.96 (66.67/97.01)

37004_at - 40496_at 140 (11/129) 93.96 (73.33/96.27)

36562_at - 37004_at 139 (13/126) 93.29 (86.67/94.03)

38827_at - 40445_at 138 (15/123) 92.62 (100/91.79)

1882_g_at - 36562_at 136 (11/125) 91.28 (73.33/93.28)

1882_g_at - 40496_at 136 (10/126) 91.28 (66.67/94.03)

33907_at - 36562_at 134 (10/124) 89.93 (66.67/92.54)

36562_at - 40496_at 134 (9/125) 89.93 (60/93.28)

1882_g_at - 33907_at 133 (11/122) 89.26 (73.33/91.04)

1882_g_at - 37004_at 132 (13/119) 88.59 (86.67/88.81)

35947_at - 36269_at 132 (12/120) 88.59 (80/89.55)

33907_at - 34105_f_at 131(9/122) 87.92 (60/91.04)

36269_at - 40445_at 131(14/117) 87.92 (93.33/87.31)

35947_at - 40445_at 130 (14/116) 87.25 (93.33/86.57)

38074_at - 38827_at 129 (14/115) 86.58 (93.33/85.82)

33907_at - 40496_at 127(8/119) 85.23 (53.33/88.81)

36269_at - 38074_at 125 (13/112) 83.89 (86.67/83.58)

38074_at - 40445_at 122 (13/109) 81.88 (86.67/81.34)

1117_at - 38827_at 116 (15/101) 77.85 (100/75.37)

1117_at - 36269_at 113 (13/100) 75.84 (86.67/74.63)

1117_at - 35947_at 109 (12/97) 73.15 (80/72.39)

1117_at - 38074_at 106 (14/92) 71.14 (93.33/68.66)
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genes. Relatively high LOOCV outcomes were obtained.

Applying the decision rules induced by each of the eight

genes in the training set, we classified the test set and

achieved satisfactory classification results (see Table 6).

The classification rules generated by the eight genes are

presented in the Additional file 5.

As for gene pairs, when α = 0.75 and the threshold of the

positive region sizes caused by single genes was 13, 16

gene pairs were shared by all 102 of the leave-one-out

training sets. The LOOCV accuracy of the 16 gene pairs

was between 81% and 86%, yet there were three pairs of

genes with relatively good classification performance in

the test set (Table 7). The classification rules generated by

the three pairs are presented in the Additional file 5.

We also analyzed the training set based on the depended

degree. We ranked all of the genes in the discretized train-

ing set by their depended degrees. The top two genes,

37639_at and 41755_at, had the highest depended degree

of 36%. When we examined the rules formed by gene

37639_at, we found the following: if g(37639_at) > -

0.491443, then Tumor (100% confidence); if

g(37639_at) ≤ -0.694377, then Normal (95% confi-

dence). Both rules were highly reliable. Using the two

rules, we correctly classified 33 of the 34 test samples. This

result indicates that gene 37639_at possessed high class-

discrimination power. The rules arising from this gene

indicate that it is relatively highly expressed in  tumor sam-

ples. Gene 41755_at produced the following two rules: if

g(41755_at) > 0.261438, then Tumor (100% confidence);

if g(41755_at) ≤ -0.477124, then Normal (100% confi-

dence). Using these two rules, 14 of the 34 test samples

were classified correctly, whereas all 9 samples labeled

"Normal" were classified correctly. The rules implied that

gene 41755_at is expressed at a low level in normal sam-

ples. Apart from 37639_at and 41755_at, gene

38087_s_at produced the following rule: if g(38087_s_at)

> -0.281725, then Normal (100% confidence). We cor-

rectly classified six of nine normal samples using the rule,

indicating that this gene is comparatively highly expressed

in normal samples. Information on the top 20 genes

ranked based on depended degree is provided in the Addi-

tional file 6.

Breast Cancer dataset
In  the dataset, when α ≥ 0.8, no shared gene was detected

in all of the 78 leave-one-out training sets; when α = 0.75,

four genes were found; when α = 0.70, 46 genes were

found. Most of these 46 genes had LOOCV accuracy rang-

ing from 70% to 80%, while a few had LOOCV accuracy

slightly less than 70%. Using each of the 46 genes to clas-

sify the test set, we found eight genes by which no less

than 13 of the 19 test samples were classified correctly.

Information on the eight genes is listed in  Table 8. The

classification rules generated by each of the eight genes are

available in the Additional file 7. In  the dataset, we did

not find any gene pairs with satisfactory classification per-

formance. The best classification accuracy obtained by

gene pairs was 12 test samples classified correctly; accu-

racy was 63.16%.

Leukemia dataset 2
This dataset contains three classes, being a multi-class

classification problem. When α ≥ 0.95, no shared gene

was detected in the 57 leave-one-out training sets; when α
= 0.9 and 0.85, a single gene was found; when α = 0.80,

five genes were found; when α = 0.75, eight genes were

Table 6: Eight  genes wit h high classificat ion accuracy in the Prostate Cancer  dataset

Probe ID Classificat ion results in LOOCV Classificat ion result s in the test  set α

# Cor rect ly classified samples Accuracy (%) # Correct ly classified samples Accuracy (%)

32598_at 92 (50/42) 90.20 (96.15/84.00) 23 (17/6) 67.65 (68.00/66.67) 0.85

36491_at 84 (41/43) 82.35 (78.85/86.00) 30 (23/7) 88.24 (92.00/77.78) 0.80

40856_at 85 (46/39) 83.33 (88.46/78.00) 23 (15/8) 67.65 (60.00/88.89) 0.80

32243_g_at 84 (41/43) 82.35 (78.85/86.00) 31 (22/9) 91.18 (88.00/100) 0.80

36601_at 85 (46/39) 83.33 (88.46/78.00) 17 (8/9) 50.00 (32.00/100) 0.80

38044_at 81 (41/40) 79.41 (78.85/80.00) 29 (21/8) 85.29 (84.00/88.89) 0.80

41288_at 88 (41/47) 86.27 (78.85/94.00) 31 (22/9) 91.18 (88.00/100) 0.80

1767_s_at 83 (40/43) 81.37 (76.92/86.00) 24 (22/2) 70.59 (88.00/22.22) 0.80
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found; when α = 0.70, 21 genes were identified. Almost

every one of these 21 genes had a high LOOCV accuracy

and good classification performance in the test set. Their

classification information is listed in Table 9. Gene

36239_at had the best LOOCV accuracy and classification

accuracy in  the test set. The classification rules induced by

this gene were as follows: if g(36239_at) > 1796.5, then

ALL; if g(36239_at) > 214 and g(36239_at) ≤ 1796.5, then

MLL; if g(36239_at) ≤ 214, then AML; with 95.24%,

93.33%, and 90.48% confidence, respectively. Using

these three rules, we correctly classified 14 of the 15 test

samples; accuracy reached 93.33%. The other genes pro-

duced similar classification rules. The classification rules

generated by every gene can be found in the Additional

file 8. We did not examine gene pairs for the classification,

as the rules induced by gene pairs tended to be complex.

Comparison and analysis of results
Leukemia dataset 1
Other researchers have explored the problem concerned

with the classification of the dataset using rule-based

machine-learning methods. In [7], the authors proposed

Table 7: Three gene pairs with good classificat ion accuracy in t he Prostate Cancer dataset

1st  - 2nd Probe ID Classificat ion results in LOOCV Classificat ion results in the test  set α

# Correct ly classified 
samples

Accuracy (%) # Correct ly classified 
samples

Accuracy (%)

35178_at - 35277_at 83 (33/50) 81.37 (63.46/100) 26 (20/6) 76.47 (80.00/66.67) 0.7
5

35178_at - 38087_s_at 83 (33/50) 81.37 (63.46/100) 27 (21/6) 79.41 (84.00/66.67) 0.7
5

39331_at - 33121_g_at 86 (38/48) 84.31 (73.08/96.00) 27 (18/9) 79.41 (72.00/100) 0.7
5

Table 8: Eight  genes wit h high classificat ion accuracy in the Breast  Cancer  dataset

GenBank accession 
number

Classificat ion results in LOOCV Classificat ion results in the test  set α

# Correct ly classified 
samples

Accuracy (%) # Correct ly classified 
samples

Accuracy (%)

NM_012261 57 (21/36) 73.08 (61.76/81.82) 16 (10/6) 84.21 (83.33/85.71) 0.7
0

AW237580 58 (18/40) 74.36 (52.94/90.91) 13 (8/5) 68.42 (66.67/71.43) 0.7
0

U45975 58 (22/36) 74.36 (64.71/81.82) 13 (9/4) 68.42 (75.00/57.14) 0.7
0

AI742029 55 (17/38) 70.51 (50.00/86.36) 13 (11/2) 68.42 (91.67/28.57) 0.7
0

NM_001689 57 (22/35) 73.08 (64.71/79.55) 15 (9/6) 78.95 (75.00/85.71) 0.7
0

TSPYL5 58 (24/34) 74.36 (70.59/77.27) 16 (10/6) 84.21 (83.33/85.71) 0.7
0

NM_000271 57 (20/37) 73.08 (58.82/84.09) 13 (9/4) 68.42 (75.00/57.14) 0.7
0

AL049689 55 (22/33) 70.51 (64.71/75.00) 13 (10/3) 68.42 (83.33/42.86) 0.7
0
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first using feature ranking (t-test) and then rough sets

attribute reduction for gene selection. They ultimately

identified one gene, which classified 31 samples correctly

in the test set. This gene was the gene identified in the

present study: gene #4847. However, our method identi-

fied not only this gene, but also other informative genes,

including one gene pair with 100% classification accu-

racy. In  [8], the authors also used rough sets for gene selec-

tion. They chose genes with maximum relevance with

respect to the class variable and the maximum positive

interaction between different genes. We also selected

genes with maximum relevance with respect to the class

variable (i.e., the depended degree of a single gene), while

we chose gene pairs with maximum relevance with respect

to the class variable rather than maximum positive inter-

action between the genes, since the maximum positive

interaction between two genes may counteract the

depended degree of a single gene. Because this previous

Table 9: Twenty-one genes with high classificat ion accuracy in t he Leukemia dataset  2

Probe ID Classificat ion result s in LOOCV Classificat ion results in the test  set α

# Correct ly classified samples Accuracy (%) # Cor rect ly classified samples Accuracy (%)

36239_at 51 (20/12/19) 89.47 (100/70.59/95) 14 (4/2/8) 93.33 (100/66.67/100) 0.90

39318_at 47 (17/11/19) 82.46 (85/64.71/95) 13 (2/3/8) 86.67 (50/100/100) 0.80

40191_s_at 48 (17/13/18) 84.21 (85/76.47/90) 12 (2/2/8) 80 (50/66.67/100) 0.80

840_at 47 (19/10/18) 82.46 (95/58.82/90) 11 (3/1/7) 73.33 (75/33.33/87.50) 0.80

266_s_at 46 (19/11/16) 80.70 (95/64.71/80) 13 (4/1/8) 86.67 (100/33.33/100) 0.80

37933_at 45 (20/7/18) 78.95 (100/41.18/90) 8 (2/0/6) 53.33 (50/0/75) 0.75

38989_at 43 (19/6/18) 75.44 (95/35.29/90) 12 (3/1/8) 80 (75/33.33/100) 0.75

33833_at 44 (16/10/18) 77.19 (80/58.82/90) 10 (2/0/8) 66.67 (50/0/100) 0.75

32874_at 43 (14/11/18) 75.44 (70/64.71/90) 10 (2/1/7) 66.67 (50/33.33/87.5) 0.7

37487_at 41 (14/7/20) 71.93 (70/41.18/100) 11 (3/0/8) 73.33 (75/0/100) 0.7

31886_at 42 (16/8/18) 73.68 (80/47.06/90) 13 (3/2/8) 86.67 (75/66.67/100) 0.7

35164_at 48 (19/15/14) 84.21 (95/88.24/70) 13 (4/2/7) 86.67 (100/66.67/87.5) 0.7

36905_at 46 (14/12/20) 80.70 (70/70.59/100) 9 (0/1/8) 60 (0/33.33/100) 0.7

37539_at 50 (16/16/18) 87.72 (80/94.12/90) 10 (3/3/4) 66.67 (75/100/50) 0.7

37910_at 45 (18/9/18) 78.95 (90/52.94/90) 9 (1/1/7) 60 (25/33.33/87.5) 0.7

32847_at 44 (18/12/14) 77.19 (90/70.59/70) 11 (4/2/5) 73.33 (100/66.67/62.5) 0.7

35260_at 42 (20/8/14) 73.68 (100/47.06/70) 9 (2/1/6) 60 (50/33.33/75) 0.7

41790_at 47 (19/11/17) 82.46 (95/64.71/85) 13 (3/2/8) 86.67 (75/66.67/100) 0.7

32579_at 48 (15/13/20) 84.21 (75/76.47/100) 11 (2/1/8) 73.33 (50/33.33/100) 0.7

1373_at 47 (16/12/19) 82.46 (80/70.59/95) 10 (1/1/8) 66.67 (25/33.33/100) 0.7

1325_at 47 (19/14/14) 82.46 (95/82.35/70) 10 (3/3/4) 66.67 (75/100/50) 0.7
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study assessed classification performance using LOOCV

on a total of 72 samples instead of separating them into

training and test sets, it is impractical to compare their

results with those of the present study. Likewise, in  [9] the

authors took into account all attributes depending upon

the degree of dependency. They selected the top λ
attributes (λ = 2, 4, 6, 8, 10, 12, 14, 15) by the degree of

dependency, and found all possible combinations of

these λ attributes as a subset. The authors calculated the

depended degrees of every subset and chose those with

100% depended degrees. Finally, they evaluated the clas-

sification performance of the selected subsets using k-

NNs. In  essence, their method was to find the reducts with

limited sizes and to use them for classification. As we

mentioned above, finding all of the reducts is computa-

tionally intensive, even for a small attribute number.

Moreover, one reduct does not indicate high classification

performance. Another difference between our method

and that of [9] is that our classifier is based on rules,

whereas theirs is not. Although they gain a classification

score of 97% with gene subsets of size two, they did not

find any gene pair with a classification score of 100%, and

they did not identify any important genes. In  [10], a

method of combining rough sets with GAs was proposed

to classify microarray gene expression patterns. A correct

classification of 90.3% was obtained with a nine-gene

classifier in  the dataset.

In [6], the authors used the EPs approach to mark one

important gene, Zyxin, which is our gene #4847. Using

the two rules induced by the gene, the authors accurately

classified 31 samples, the same result as ours. However,

they did not identify any gene pair with higher classifica-

tion performance, as we did. In [11], the authors used

decision trees (Single C4.5, Bagging C4.5, AdaBoost C4.5)

to perform classification tasks on seven publicly available

cancerous microarray datasets, including the ALL-AML

leukemia data. They first employed Fayyad and Irani's

[21] discretization method to filter out noise. The remain-

ing 1038 genes were used in  the actual learning process.

Their highest accuracy was 91.2% (31 samples classified

correctly). Since the authors did not report the size of the

pruned decision trees, we have no knowledge of how

many genes they used to reach the highest accuracy. In

[13], 91.2% classification accuracy was achieved by using

the rule classifiers containing gene subsets with sizes rang-

ing from 10 to 40. In  [14], the authors utilized a single

pair of genes to correctly classify 31 test set samples.

Besides, a number of different non-rule-based methods

have been proposed for gene selection and cancer classifi-

cation in  the dataset. Golub et al. [2] were the first to clas-

sify ALL-AML by gene expression data. The authors

constructed the predictor using 50 informative genes,

trained by weighted voting on the training set. The predic-

tion rates included 36 samples classified correctly, with

two samples labeled "uncertain" in LOOCV, as well as 29

of the 34 samples in the test set classified correctly, with

no predictions made for the remaining five samples. In

[23], the authors applied probabilistic neural networks

(PNNs) to the class prediction of ALL-AML, and achieved

100% prediction accuracy in  the test set using the 50-gene

predictors derived from cross-validation tests of the train-

ing set by means of the signal-to-noise statistic feature

selection method. In [24], the authors used a correlation-

based feature (CBF) selector in conjunction with

machine-learning algorithms such as decision trees

(JP48), NB, and SVMs to analyze cancer microarray data.

They reported one noteworthy gene, Zyxin, which classi-

fied 31 samples correctly. In  [25], the authors proposed a

maximal margin linear programming (MAMA) method

for the classification of tumor samples based on microar-

ray data. This procedure detected groups of genes and con-

structed models that strongly correlated with particular

tumor types. They achieved 100% prediction accuracy on

the test set using gene subsets ranging in size from 132 to

549. In  [26], the authors proposed dimension reduction

using partial least squares (PLS) and classification using

logistic discrimination (LD) and quadratic discriminant

analysis (QDA). By using gene subsets with sizes between

50 and 1500, the authors obtained correct classification of

the test samples ranging from 28 to 33. In  [27], the

authors used SVMs trained and gene subsets selected in

the training set to classify samples in the test set, resultng

in the correct classification of between 30 and 32 of the 34

samples. Other SVM-based methods report zero test error

with gene subsets ranging in  size from 8 to 30 [28-30].

Table 10 compares our methods with those employed in

previous studies. The table reveals that our classification

results are superior to almost all of those obtained in  pre-

vious studies.

In  this dataset, we identified 11 genes that show good clas-

sification performance alone or in  combination with

another gene. These genes are Zyxin, MGST1, TCRA,

APLP2, CCND3, HKR-T1, KIAA0159, TOP2B, MB-1,

ARHG, and IOTA. Among these, Zyxin, CCND3, HKR-T1,

TOP2B, MB-1, and IOTA also belong to the list of the 50

informative genes identified by Golub et al. [2]; Zyxin is

highly expressed in  AML, and the rest are highly expressed

in ALL. Our rules relevant to these genes revealed that

Zyxin, MGST1, APLP2, and ARHG are upregulated in

AML, while TCRA, CCND3, HKR-T1, KIAA0159, TOP2B,

MB-1, and IOTA are upregulated in  ALL. These results

demonstrate that our rules are reasonable.

Our method identified an outstanding gene, Zyxin, by

which we classified the test set with 91.2% accuracy. The

gene is also referred to by other researchers
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[2,6,7,23,24,26,27,31-36]. Our results and those of other

related studies suggest that the expression level of Zyxin

plays an important role in distinguishing ALL from AML.

Zyxin is a focal-adhesion-associated phosphoprotein with

one domain involved in  the control of actin assembly and

three protein-protein adapter domains implicated in  the

regulation of cell growth and differentiation. Zyxin may

function as a messenger in the signal transduction path-

way that mediates adhesion-stimulated changes in gene

expression. As noted in  [36], cell spreading, proliferation,

and survival are modulated by focal adhesions linking

extracellular matrix proteins, integrins, and the cytoskele-

ton. By supporting the involvement of the microfilament

network in tumor cell behavior, several actin-binding pro-

teins, including Zyxin, a potential regulator of actin

polymerization, may play a role in oncogenesis. The gene

encoding Zyxin maps at 7q32, a chromosomal region

affected in a variety of human cancers. 7q monosomy or

partial deletion of this chromosome arm is frequently

found in myelodysplastic syndrome, acute myeloid, juve-

nile myelomonocytic, and acute lymphocytic leukemias,

as well as in breast carcinoma [37,38]. Valdes et al.

revealed that the actin  cytoskeleton-associated protein

Zyxin acts as a tumor suppressor in  Ewing tumor cells

[32]. Yagi et al. also identified Zyxin as one of 35 genes

associated with pediatric AML prognosis [31]. Taken

together, these lines of evidence suggest that Zyxin plays

an important role in  leukemia pathogenesis.

The aforementioned gene pair, MGST1 vs. TCRA, is capa-

ble of classifying the test set with zero error. Their biolog-

ical meanings are noteworthy. MGST1 is also one of the

Table 10: Compar ison of best  classificat ion accuracy for  t he Leukemia dataset  1

Methods (feature select ion + classificat ion)a #Selected genes #Cor rect ly classified samples (accuracy) Rule-based classifier

depended degree + decision rules [this work] 1 31 (91.18%) yes

2 34 (100%)

t-test, attribute reduction + decision rules [7] 1 31 (91.18%) yes

attribute reduction + k-NNs [9] 2 33 (97.06%) no

rough sets, GAs + k-NNs [10] 9 31 (91.18%) no

EPs [6] 1 31 (91.18%) yes

discretization + decision trees [11]b unknownc 31 (91.18%) yes

CBF + decision trees [24] 1 31 (91.18%) yes

TSP [14] 2 31 (91.18%) yes

RCBT [13] 10-40 31 (91.18%) yes

neighborhood analysis + weighted voting [2] 50 29 (85.29%) no

signal to noise ratios + PNNs [23] 50 34 (100%) no

MAMA [25] 132-549 34 (100%) no

PLS + LD or QDA [26] 50-1500 28-33 (82.4%-97%) no

prediction strength + SVMs [27] 25-1000 30-32 (88.2%-94.1%) no

SVMs [28-30] 8-30 34 (100%) no

aThe text before "+" states the feature selection method, while that after it states the classification method. The absence of "+" means that the same 
method was used for both feature selection and classification.
bThe decision trees are also involved in feature selection.
c"unknown" means that no related data are provided in the article.
These explanations apply to the other tables.
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three core genes screened by Banerjee et al. [10]. In [24],

the gene lies in  the first 10 genes selected by the methods

of χ2, InfoGain, ReliefF, and symmetrical uncertainty. In

[23], MGST1 belonged to the set of top 50 genes selected

by signal-to-noise metric (10-fold cross-validation tests).

In our 13 gene pairs with the highest classification per-

formance, MGST1 occurred five times. These facts demon-

strate that MGST1 is significant in  the classification of

ALL-AML. Although it has not been identified by other

algorithms, the gene TCRA is clearly important in  the

pathogenesis of leukemia [39-41].

APLP2 was one of the first 10 genes selected by Wang et al.

[24], and was identified by Huang et al. [23]. It was also

identified by Yagi et al. [31] as one of 35 genes associated

with pediatric AML prognosis. CCND3 is also listed as one

of the 50 genes selected by Huang et al. [23]. KIAA0159 is

an essential component of the human condensin complex

required for mitotic chromosome condensation. In  a brief

examination of related literature, we found that the gene

has not been identified by other algorithms. However,

past studies have indicated that nonrandom chromo-

somal translocations are characteristic of most human

hematopoietic malignancies [42]. Because KIAA0159 is

correlated with the structural maintenance of chromo-

somes, it may be associated with the pathogenesis of

leukemia. TOP2B encodes the protein that is the principal

target of the antileukemic drug etoposide [2,43,44]. MB-1

encodes the Ig-alpha protein of the B-cell antigen compo-

nent. Its dysregulation has been reported to be closely

linked to leukemia and lymphoma [45-48]. ARHG is a

member of the RAS superfamily of genes, which encode

GTP-binding proteins that act in  the pathway of signal

transduction and play a key role in the regulation of cellu-

lar functions [49].

In general, the genes identified in  the present study are all

directly or indirectly relevant to hematopoietic or cancer-

ous pathogenesis. Therefore, they are likely to play key

roles in  the pathogenesis of ALL or AML. It is possible that

they have high performance in  distinguishing ALL from

AML.

Lung Cancer dataset
In [9], the authors used rough sets to handle the same

dataset as that considered in the present study. Their best

result was 98% classification accuracy with genes of size

two. As they employed a non-rule-based classifier, k-NN,

no rule was given to explain the result. In [50], in  terms of

classification performance, the authors compared predic-

tion by collective likelihoods (PCLs), based on the con-

cept of EPs, with other classification algorithms, including

decision trees, SVMs, and k-NNs. Regarding the Lung Can-

cer dataset, they obtained classification results containing

between 1 and 27 errors. The classification accuracy of our

method is higher than that of other rule-based classifica-

tion algorithms, including PCLs and the decision trees

mentioned in [50]. The highest classification accuracies

on the dataset, using the three different decision trees

reported in  [11], were about 93%. In [13], the best result

was 98% classification accuracy. In the initial research

article on the dataset [15], the authors reported 99% clas-

sification accuracy using six genes. Table 11 compares our

results with those of other studies, revealing that our out-

comes matched or outperformed those obtained using

other methods.

We now explain in  more detail the results presented in

[15]. The article proposed to use the expression levels of a

small number of genes for the diagnosis of MPM and lung

cancer. The authors screened out eight genes with marked

differences in  average expression levels between the tumor

types in the training set. They then calculated 15 expres-

sion ratios for each sample by dividing the expression

value of each of the five genes expressed at relatively

higher levels in MPM by the expression value of each of

the three genes expressed at relatively higher levels in

ADCA. Next, they employed these ratios for the test set.

Samples with ratio values > 1 were classified as MPM, and

those with ratio values < 1 were classified as ADCA. They

achieved classification accuracies ranging from 91% to

98%. In essence, they also utilized gene pairs for classifi-

cation. Yet, when following the same protocol for training

and testing, our results are superior to theirs, in  that they

used three ratios (i.e., six genes) to reach 148 of 149 cor-

rectly classified samples, while we obtained the same

result using each of the seven gene pairs directly selected

from the training set without the LOOCV procedure. Of

note, six of the eight genes selected in  this earlier study

were also identified in the present study. The six genes are

PTGIS, CD200, TACSTD1, TTF1, ANXA8, and CALB2, the

first three of which have a 100% depended degree.

The genes selected by our method are associated primarily

with the pathogenesis of MPM or ADCA or some other

tumor. According to our rules, JUP, CD24, PRKCD,

MAPK13, TACSTD2, DKFZP564O0823 protein,

TACSTD1, CEACAM1, XBP1, TTF1, SFTPB, AGR2, ELF3,

EVI1, and CDA are highly expressed in  ADCA, while EGF,

SPTAN1, FLNC, PTGIS, FBXL7, CD200, AP2 M1, ANXA8,

HAS1, CALB2, GFPT2, KIAA0427, C1S, EIF4G3, TGM1,

Adamts3, hypothetical protein dJ465N24.2.1, and AP3S1

are highly expressed in mesothelioma. CALB2 encodes

calretinin, which is a component of several immunohisto-

chemical panels currently used in  the diagnosis of MPM

and lung cancer [15]. HAS1 is a member of gene family

HA, which has been correlated with tumor metastasis. In

[51], HAS1 was identified as a prognostic gene for mes-

othelioma. In [52], HAS1 belongs to the list of the genes

with elevated expression levels in C1 MPM tumors. We
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have one rule arising from HAS1: if g(HAS1) > 7.3, then

MPM. This rule is consistent with the results of [51,52].

ANXA8, PTGIS, and CLAB2 are also marked as more

highly expressed genes in C1 MPM tumors [52]. These

observations are supported by the following rules of the

present study: if g(ANXA8) > 130.8, then MPM; if

g(CALB2) > 490.5, then MPM; if g(PTGIS) > 193.25, then

MPM. Other genes that we chose (e.g., CD24, TACSTD1,

TACSTD2, CEACAM1, and PRKCD) are correlated with

lung carcinoma or other tumors. TTF1 is a transcription

factor that regulates the expression of multiple genes

involved in lung development. It is preferentially

expressed in  ADCAs of the lung and has been investigated

as a potential prognostic parameter in  patients with lung

cancer [53-56].

Prostate Cancer dataset
Regarding the Prostate Cancer dataset, a previous study

reported a 95% prediction rate using a gene pair [14]. The

best classification results on the dataset, based on three

different decision tree approaches (Single C4.5, Bagging

C4.5, and AdaBoost C4.5), are 67.65%, 73.53%, and

67.65%, respectively [11]. In  [13], a 97% classification

result was reported, but the employed gene numbers were

not provided. In [18], the authors built predictors using a

k-NN algorithm, and achieved 77% and 86% prediction

accuracy on the test set with 4 and 16 genes, respectively.

Table 12 summarizes the best results of classification on

the dataset.

In  the Prostate Cancer dataset, we identified 13 genes

using the LOOCV approach. Seven of the eight single

genes had relatively good classification performance, of

which five genes had established names: NRP2,

TMSB15A, PEDF, FAM107A and TGFB3. Our rules imply

that TMSB15A, also named thymosin beta15, is highly

expressed, while NRP2, PEDF, FAM107A and TGFB3 are

expressed at low levels in  tumor tissue. As revealed in [57],

thymosin beta15 levels are elevated in  human prostate

cancer and correlate positively with the Gleason tumor

grade. Thymosin beta 15 may represent a potential new

biochemical marker for the progression of human pros-

tate cancer; our rules strengthen this perspective. Previous

investigations have revealed that PEDF expression is neg-

atively correlated with tumor malignancy [58-62]; our

rules support this viewpoint. FAM107A has been consist-

ently reported to be downregulated in  human cancer

[63,64]; that conforms to our rules. In the gene pairs, our

rules indicate that KIAA0762 is downregulated, while

TUBB and RGS10 are upregulated in  tumor tissue; how-

ever, there exists insufficient evidence to directly link the

three genes with prostate cancer.

The three genes that we identified directly from the train-

ing set are hepsin (37639_at), KIAA0977 (41755_at), and

Table 11: Compar ison of best  classificat ion accuracy for  t he Lung Cancer  dataset

Methods (feature select ion + classificat ion) #Selected genes #Cor rect ly classified samples (accuracy) Rule-based classifier

depended degree + decision rules [this work] 1 145 (97.34%) yes

2 144 (96.64%)

attribute reduction + k-NNs [9] 2 146 (97.99%) no

PCLs [50] unknown 146 (97.99%) yes

C4.5 [50] 1 122 (81.88%) yes

Bagging [50] unknown 131 (87.92%) yes

Boosting [50] unknown 122 (81.88%) yes

SVMs [50] unknown 148 (99.33%) no

k-NNs [50] unknown 148 (99.33%) no

discretization + decision trees [11] unknown 139 (93.29%) yes

RCBT [13] 10-40 146 (97.99%) yes

gene expression ratios [15] 6 148 (99.33%) no
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S100A4 (38087_s_at). Hepsin performs reasonably well

in  differentiating two classes of samples, and the latter two

genes are good indicators of normal samples. Hepsin is

the human hepatoma mRNA for serine protease. Numer-

ous studies have revealed that it is closely linked to pros-

tate cancer. Hepsin is widely reported to be highly over-

expressed in more than 90% of human prostate tumors,

making it a significant marker and a target for prostate

cancer [65-72]. In [18], hepsin was identified as the first

over-expressed gene in  tumor samples and was selected as

one of 16 genes used for creating a prediction model. All

of these outcomes strongly support our rules involved in

hepsin. Another gene, KIAA0977, has also been listed as a

highly expressed gene in  tumor samples [18]. The third

gene, S100A4, was associated with cancer pathogenesis,

chromosomal rearrangements and altered expression of

which have been implicated in tumor metastasis [73-75].

In [18], S100A4 was identified as one of the highly

expressed genes in  normal samples and chosen as one

member of a 16-gene model of prediction. In  addition,

[76] noted that S100A4 protein was not expressed in

benign or malignant prostatic epithelium or in  LNCaP

and Du145 cells. Our rules related to this gene support

these previous findings. A surprising result is that many

observations have revealed that S100A4 is over-expressed

in most other tumors [77-82], yet in [76] the authors sug-

gested that the mechanism of changes in  the expression

level of S100A4 may involve methylation of the S100A4

gene.

Breast Cancer dataset
In  the Breast Cancer dataset, our best LOOCV accuracy

was 74.34%, and the highest classification accuracy in the

test set was 84.21% with one gene. In  [19], the authors

reported 83.33% LOOCV accuracy and 89.47% accuracy

in the test set using the 70-gene predictor. These predic-

tion results are moderately superior to those attained in

the present study, although using a much larger number

of genes. Likewise, Tan et al. [11] obtained a slightly better

classification outcome than that of the present study,

although they used far more genes. Table 13 lists some of

the best classification results for this dataset, as obtained

using a variety of methods.

In this dataset, we identified eight genes with relatively

high individual classification performance. Our rules

indicated that the overexpression of ATP5G3, TSPYL5, or

NPC1 means an unfavorable prognosis, while the overex-

pression of HS1119D91, Contig38726_RC, PIB5PA,

Contig51517_RC, or LOC63923 implies a favorable prog-

nosis. TSPYL5 had the best classification accuracy in our

model; it was also chosen as one of 70 prognostic marker

genes and ranked first according to the correlation coeffi-

cient with the two prognostic groups [19]. It follows that

Table 12: Comparison of best  classificat ion accuracy for  t he Prostate Cancer  dataset

Methods (feature select ion + classificat ion) #Selected genes #Cor rect ly classified samples (accuracy) Rule-based classifier

depended degree + decision rules [this work] 1 31 (91.18%) yes

2 27 (79.41%)

TSP [14] 2 32 (94.12%) yes

PCLs [50] unknown 33 (97.06%) yes

discretization + Single C4.5 [11] unknown 23 (67.65%) yes

discretization + Bagging C4.5 [11] unknown 25 (73.53%) yes

discretization + AdaBoost C4.5 [11] unknown 23 (67.65%) yes

RCBT [13] unknown 33 (97.06%) yes

SVMs [13] unknown 27 (79.41%) no

signal to noise ratios + k-NNs [18]d 4 26 (77.2%) no

16 29 (85.7%) no

dIn [18], as both raw and normalized datasets were used, two groups of prediction results were obtained. Here, we chose their results from the 
normalized dataset. Another small difference is that we obtained the dataset from the Kent Ridge Bio-medical Data Set Repository, where the 
prostate test set includes 25 tumor and 9 normal samples instead of the 27 tumor and 8 normal samples studied in [69]. To facilitate comparison, 
the correctly classified sample numbers were calculated according to the total of 34 samples.
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our gene selection approach is reasonable. In  [83], the

authors proposed a prognostic predictor of breast cancer

with multiple fuzzy neural models using the same dataset.

Surprisingly, although these methods are distinct from

those of the present study, there is an overlap of 3 genes

between the 10 highest-ranked genes they chose for pre-

diction and our 8-gene group.

Leukemia dataset 2
Although this dataset is involved in a multi-class classifi-

cation problem, we still achieved relatively good classifi-

cation outcomes. Our best prediction rate was 93.33% in

the test set and 89.47% LOOCV accuracy in  the training

set, each by one gene, compared with a 90% prediction

rate in the test set by 100 genes and 95% LOOCV accuracy

in the training set by 40 genes, as reported by Armstrong

et al. [84]. In addition, Wang et al. reported 100% LOOCV

accuracy in  all 72 samples using 26 genes; however, their

methods were not verified by an independent test set.

These outcomes are presented in Table 14.

Regarding the Leukemia dataset 2, each chosen gene

induced 3 rules with the following form: if g(x) > a, then

class 1; if b < g(x) ≤ a, then class 2; if g(x) ≤ b, then class 3.

That is, if the expression level of gene x in a sample is rel-

atively high, then the sample is assigned to class 1; if the

expression level is moderate, then the sample is assigned

to class 2; if the expression level is relatively low, then the

sample is assigned to class 3. According to the standard,

we predicted the class of every sample based on its expres-

sion value on the chosen genes. In total, we identified 21

genes with comparatively strong prediction power. Of

these genes, 36239_at (OBF-1) and 31886_at (human

placental cDNA coding for 5' nucleotidase) are also con-

tained in the best 26-gene prediction model proposed in

[85]. It is noteworthy that OBF-1 was ranked as the top of

these 26 genes, and it yields the best prediction outcome

in our methods. This finding demonstrates that our deci-

sion-rule-based classification approach is superior to the

clustering analysis-based classification approach of [83],

as we achieved a similar level of classification perform-

ance using just a single gene instead of 26. In  addition, six

of the genes identified using the present methods are

mentioned as high-class discrimination genes in [20].

These six genes are OBF-1, CD24, MLCK, KIAA0867,

SMARCA4, and cDNA wg66 h09. Indeed, our rules

induced by each of the six genes are well in  accordance

with the outcomes presented in  [20], demonstrating that

these genes are highly expressed in ALL, moderately

expressed in MLL, and expressed at a low level in  AML.

Table 13: Comparison of best  classificat ion accuracy for  t he Breast  Cancer  dataset

Methods (feature select ion + classificat ion) #Selected genes #Cor rect ly classified samples (accuracy) Rule-based classifier

α depended degree + decision rules [this work] 1 16 (84.21%) yes

TSP [14] 2 79.38%e yes

RBF [50] 67 79.38%e yes

discretization + decision trees [11] unknown 17 (89.47%) yes

correlation coefficient [19] 70 17 (89.47%) no

eLOOCV result in the total of 97 samples.

Table 14: Compar ison of best  classificat ion accuracy for  t he Leukemia dataset  2

Methods (feature select ion + classificat ion) #Selected genes #Cor rect ly classified samples (accuracy) Rule-based classifier

α depended degree + decision rules [this work] 1 14 (93.33%) yes

HykGene + k-NNs, SVMs, C4.5, NB [85] 26 100%f noi

signal to noise ratios + k-NNs [20] 40 95%g no

100 9 (90%)h

fLOOCV result in a total of 72 samples.
gLOOCV result in a total of 57 training samples.
hIn [20], only 3 of 8 AML testing samples in the dataset were mentioned. Thus, their test set contained 10 rather than 15 samples.
iExcept for C4.5, all the others are not rule-based classifiers.
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In summary, we have identified some important genes

that not only possess potent classification ability but also

are closely associated with the pathogenesis of specific or

general cancers in  every dataset. In the Leukemia dataset

1, significant genes such as Zyxin and MGST1, frequently

identified by previous researchers, were also identified in

the present study. At the same time, we selected some

genes rarely identified by other methods (e.g., TCRA,

KIAA0159, and MB-1), which have been proven to corre-

late directly or indirectly with AML-ALL class prediction.

Our results demonstrate that the genes with excellent per-

formance in AML-ALL classification are not only the

markers of hematopoietic lineage, but also related to gen-

eral cancer pathogenesis. Therefore, the genes we have

identified, which are useful for AML-ALL classification, are

also indicators of cancer pathogenesis and pharmacology.

This is consistent with the conclusion of Golub et al. [2].

In the Lung Cancer dataset, we succeeded in  identifying

highly discriminative genes (e.g., CALB2, HAS1, and

ANXA8) implicated in  the pathogenesis of MPM, ADCA,

or other tumors. In the Prostate Cancer dataset, we identi-

fied some important genes with significant biological rel-

evance, such as TMSB15A, PEDF, hepsin, KIAA0977, and

S100A4. In particular, hepsin, which has the highest

depended degree, has been reported to have significant

involvement in  the pathogenesis of prostate cancer. In  the

Breast Cancer dataset, TSPYL5 was regarded as the most

valuable prognostic marker by our methods and by the

correlation-based approach used in [19]. In  the Leukemia

dataset 2, we identified OBF-1 and others, which excel-

lently separate ALL, MLL, and AML. Overall, the majority

of genes relevant to tumors encode proteins functioning

in cell growth, motility and differentiation, apoptosis,

angiogenesis, metabolism, chromosomal rearrangement

and translocation, and immune reactions.

Discussion
Microarray-based cancerous gene classification is a partic-

ular classification problem: the quantity of features

(genes) greatly exceeds the number of instances (sam-

ples). As the majority of features are redundant for the

classification task, feature selection is of vital importance.

At the same time, the discovery of important gene markers

relevant to cancer remains a significant task. To this end,

we proposed a method of feature selection based on the

depended degree of attributes by classes, by which we

screened single or double informative genes for classifica-

tion. We built classifiers on the basis of the decision rules

arising from these genes or gene pairs. Using just a small

number of features, we gained high-quality solutions to

classification problems in  the analysis of high-dimen-

sional gene expression data.

In general, our approach has advantages over other meth-

ods. For example, our methods are based on rules. In  con-

trast to non-rule-based methods (e.g., SVMs, ANNs, GAs,

k-NNs and NB) rule-based methods are understandable

and logical, so that biologists and clinicians are more

inclined to adopt them. More importantly, as we utilize

very few genes (one or two) to construct classification

rules, the derived classifiers are quite simple and easily

understood. Hence, our rule-based method has an advan-

tage over other rule-based methods that involve more

complicated rules.

Our work is consistent with the opinion expressed in

[86,87]: simple approaches perform well in  microarray-

based cancer prediction. This opinion is supportive of the

principle of Occam's razor. It is not strange that single or

double genes can result in  accurate classification of can-

cer, as the single genes or gene pairs might be the potential

biomarkers of cancer [17]. In contrast, when complex pre-

diction models achieve highly accurate prediction rates

using a large number of genes, it is difficult to assess which

genes are the significant biomarkers of cancer. In fact,

molecular classification of cancer is a specific classifica-

tion problem, as it incorporates essential double implica-

tions: classification and identifying biomarkers of cancer.

Although accurate classification must be guaranteed, the

detection of biomarkers is also important, sometimes

even more so than accuracy; otherwise, the (accurate) clas-

sification results have only limited significance. Because

simple classification models may be advantageous in

finding important biomarkers with a high classification

accuracy, it is worthwhile applying simple prediction

approaches rather than complex methods for the molecu-

lar classification of cancer. Furthermore, it is better to uti-

lize simple rule-based classification methods because of

their interpretability.

It should be noted that because we only verified the clas-

sification accuracy using one independent test set for

every dataset, the stability of the classifier was not

assessed. That is, if the different training and test sets are

chosen, the classification results maybe vary, although not

necessarily significantly deviate from our estimates. There-

fore, the present classification accuracies only roughly

reflect the quality of our classifiers. One more unbiased

estimate should be based on the average of the results

obtained by repeating the partition of samples between

training and test set many times, which is time consuming

for our methods.

Conclusion
Our microarray-based cancer classification methods are

simple and interpretable relative to most other

approaches, since our classifiers are based on decision

rules, and the decision rules are based on single or double

genes. We demonstrated the efficacy of our methods by

their application to several well-known gene expression
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datasets. In  these datasets, our methods identified the sin-

gle genes or gene pairs that perform well in distinguishing

different classes of cancer. Moreover, a large proportion of

the genes screened by our methods may have biological

relevance to malignancy or cell type, meaning that they

can be regarded as candidate biomarkers of cancer.

Generally speaking, simple classification models are capa-

ble of giving good performance in  most classification

problems, including the molecular classification of can-

cer, if a small number of features are correctly selected

[6,12,14,88,89]. The present results lend support to this

notion. One recommended follow-up study is to combine

our methods with other established machine-learning

algorithms to address the problem of molecular classifica-

tion of cancer.
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