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RESEARCH ARTICLE Open Access

Computational analysis of expression of human
embryonic stem cell-associated signatures in tumors
Xiaosheng Wang

Abstract

Background: The cancer stem cell model has been proposed based on the linkage between human embryonic

stem cells and human cancer cells. However, the evidences supporting the cancer stem cell model remain to be

collected. In this study, we extensively examined the expression of human embryonic stem cell-associated

signatures including core genes, transcription factors, pathways and microRNAs in various cancers using the

computational biology approach.

Results: We used the class comparison analysis and survival analysis algorithms to identify differentially expressed

genes and their associated transcription factors, pathways and microRNAs among normal vs. tumor or good

prognosis vs. poor prognosis phenotypes classes based on numerous human cancer gene expression data. We

found that most of the human embryonic stem cell- associated signatures were frequently identified in the

analysis, suggesting a strong linkage between human embryonic stem cells and cancer cells.

Conclusions: The present study revealed the close linkage between the human embryonic stem cell associated

gene expression profiles and cancer-associated gene expression profiles, and therefore offered an indirect support

for the cancer stem cell theory. However, many interest issues remain to be addressed further.

Background
The development of human embryonic stem cell (hESC)

is controlled by specific signatures, including specific

transcription factors (TFs), pathways, microRNAs (miR-

NAs) and core genes. These signatures determine the

self-renewal or differentiation fate of hESCs. Cancer is

one of the developmental diseases. The initiation, prolif-

eration and metastasis of cancer are often associated with

the abnormalities of developmental signatures. Like

hESCs, cancer cells are endowed with the ability to self-

renew and proliferate indefinitely.

Based on accumulated evidence linking cancer cells to

hESCs, some researchers proposed cancer stem cell (CSC)

hypothesis [1]. A CSC is defined as “a cell within a tumor

that possesses the capacity to self-renew and to cause

the heterogeneous lineages of cancer cells that comprise

the tumor [2] “. This hypothesis suggests that a small per-

centage of hESC-like CSCs are responsible for initiating

and replenishing the tumor, and the dormant CSCs may

account for cancer metastasis, chemoresistance and

recurrence so that they become potential targets for

improved cancer therapies. One type of evidence support-

ing the CSC model is the identification of surface markers

of cancer-initiating cells (CICs; also known as cancer stem

cells) in various human tumor types. Dick et al reported

that only a subset of cells were able to transplant AML

into recipient mice [3,4]. These tumorigenic cells were

defined as CD34+CD38-, indicating a presence of CD34

proteins and a lack of CD38 proteins on their surface [5].

Dirks et al successfully isolated CSCs (CD133+ cells) from

different phenotypes of brain tumors [6,7]. The CSCs were

also identified in a list of the other tumor types including

breast tumors [8], melanoma [9], ovarian cancer [10,11],

prostate cancer [12], pancreatic cancer [13,14], sarcoma

[15] and colon cancer [16,17]. Although the CSC theory is

supported by some experimental evidences, much conten-

tion exists over whether these evidences are sufficiently

valid or merely are some artifacts [18-21].

Some other types of evidence seems to lend support to

the CSC theory, although they are not direct or absolutely

convincing. For example, hESCs share cellular and mole-

cular phenotypes with tumor cells and cancer cell lines

[22]. Human induced pluripotent stem cells (HiPSCs)
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were first derived with four transcription factors: OCT4,

SOX2, MYC and KLF4 [23] or OCT4, SOX2, NANOG,

and LIN28 [24]. All these transcription factors have been

reported to be highly expressed in various types of cancer

[25-29]. Furthermore, silencing of tumor suppressor gene

p53 significantly increased the reprogramming efficiency

of human somatic cells [30]. Activation of telomerase is in

part responsible for long lifespan of stem cells as well as

anti-apoptosis of cancer cells [13,31-34]. Cell cycle regula-

tion plays a critical role in both stem cells and cancer cells

[35-39].

The linkage between hESC-specific gene expression

profiles and cancer-specific gene expression profiles may

provide evidence in support of the CSC model. To this

end, many studies have identified hESC-associated gene

expression signatures (hESCGESs) [40-44], and several

studies have examined the expression of hESCGESs in

human cancer [45-49]. In [45], the authors provided first

clinical evidence for the implication of a “glioma stem

cell” or “self-renewal” phenotype in treatment resistance

of glioblastoma. In [46], the authors found the hESCGESs

that distinguished primary from metastatic human germ

cell tumors. In [47], the authors identified a subset of

hESC-associated transcription regulators that were highly

expressed in poorly differentiated tumors. In [48], the

authors revealed that an increased expression of some

hESCGESs identified poorly differentiated lung adenocar-

cinoma. In [49], the authors compared the expression of

pluripotency factors OCT4, SOX2, KLF4 and MYC in 40

human tumor types to that of their normal tissue coun-

terparts using publicly available gene expression data,

and found significant overexpression of at least one out

of them in 18 out of the 40 cancer types investigated.

Furthermore, they found that these genes were associated

with tumor progression or bad prognosis. All together,

these studies revealed that “stemness” gene expression

signatures were associated with tumor malignancies, and

therefore might be informative molecular predictors of

cancer therapy outcome [50].

In this study, we investigated the linkage between

hESCGESs and tumor malignancies by an extensive

examination of the expression of hESCGESs in various

human tumor types. We used 51 publicly available gene

expression datasets, which involve 23 human tumor

types [51].

Methods
Identification of human stem cell-associated gene

expression signatures

The self-renewal and differentiation of hESCs are con-

trolled by hESC-specific signal molecules in a signaling-

specific manner. Through a substantial survey of related

literatures, we collected four types of hESCGESs: genes,

pathways, TFs and miRNAs.

We collected 24 hESC-associated gene sets which

were classified into five groups (Table 1 and Additional

file 1, Table S1).

A number of developmental signal pathways, such as

Wnt, Notch, Hedgehog and Bmi-1, are necessary for

regulation of stem cell self-renewal and differentiation.

We identified 54 signal pathways as the hESC-associated

pathway signatures (Table 2).

We identified 189 key TFs involved in regulation of

hESC self-renewal and differentiation including three

core TFs OCT4, SOX2 and NANOG with essential

roles in the transcriptional control of the regulatory cir-

cuitry underlying pluripotency [43,52]. Table 2 lists 30

“critical” TFs. The complete TF list is presented in

Additional file 2, Table S2.

Recent research indicates that miRNAs have an

important role in regulating stem cell self-renewal and

differentiation [53]. We identified 114 hESC-associated

miRNAs. Table 2 lists one part of them. The complete

miRNA list is presented in Additional file 3, Table S3.

Identification of tumor-associated gene expression

signatures

We identified differentially expressed genes among nor-

mal vs. tumor or good prognosis vs. poor prognosis phe-

notypes classes using univariate F-test for unpaired

samples or t-test for paired samples at 0.05 significance

level. This procedure was implemented with the class

comparison between groups of arrays tool in BRB-Array-

Tools, an integrated package developed by Simon et al

for the visualization and statistical analysis of DNA

microarray gene expression data [54]. The software can

be freely downloaded from the website: http://linus.nci.

nih.gov/BRB-ArrayTools.html.

We identified important pathways, TFs and miRNAs by

analyzing gene sets for differential expression among pre-

defined classes. The pre-defined phenotypes classes in

the class comparison algorithm involved two types: nor-

mal vs. tumor and good prognosis vs. poor prognosis.

The latter is concerned with tumor subtypes which exhi-

bit different clinical outcome such as metastasis or not,

relapse or disease free, drug or radio therapy sensitive or

resistance etc., and different tumor progression grades.

The LS or KS permutation test and Efron-Tibshirani’s

GSA maxmean test were used to determine the signifi-

cant gene sets at 0.05 significance level. The pathways

(BioCarta) related to the significant gene sets were identi-

fied. The TFs were identified by the gene sets, in each of

which all genes were experimentally verified to be targets

of the same transcription factor. Each miRNA potentially

targeting all the genes in one of the gene sets was identi-

fied. The identification of important pathways, TFs and

miRNAs was performed with the gene set expression

class comparison tool in BRB-ArrayTools.
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In addition, we used the survival analysis tool in BRB-

ArrayTools to find genes, pathways, TFs and miRNAs

related to survival for the partial datasets which pro-

vided related data. All the executive parameters were

identical to those used in the class comparison.

We compared the identified gene sets, pathways, TFs

and miRNAs to those in hESCGESs, and found their

overlaps, respectively.

Materials

We analyzed 51 human gene expression datasets invol-

ving 23 tumor types (Table 3). For each dataset, we car-

ried out class comparison and/or survival analysis

algorithm to identify informative genes, pathways, TFs

and miRNAs. A total of 75 class comparison and survi-

val analysis were carried out (Table 4). All the refer-

ences relevant to Table 1, Table 2, Table 3 and Table 4

are presented in Additional file 4.

Results
Overlaps between hESCGESs genes and tumor-associated

genes

In the total of 75 class comparisons and survival analyses,

we identified 72 sets of differentially expressed genes

significant at 0.05 threshold level (Additional file 5, Table

S4). We analyzed the overlap between each of the 72

gene sets and each of the 24 hESC-associated gene sets.

We found that they have considerable overlaps. For

example, all the 379 genes in the hESC exp1 gene sets of

Table 1 appeared in at least one of the 72 differentially

expressed gene sets (DEGSs). Among them, 308 genes

appeared in 10 or more DEGSs, and 120 genes appeared

in 20 or more DEGSs. The most frequently overlapping

gene was MTHFD2 (methylenetetrahydrofolate dehydro-

genase (NADP+ dependent) 2, methenyltetrahydrofolate

cyclohydrolase), which occurred in one half the 72

DEGSs. The second most overlapping genes are MCM4

and MCM6 (34 overlaps), two members of the gene

family encoding the mini chromosome maintenance

complex. All the 40 genes in the hESC exp2 gene sets of

Table 1 also occurred in at least one DEGS, and 26 genes

occurred in no less than 10 DEGSs. Among them,

MYBL2, a member of the MYB family of transcription

factor genes involved in cell cycle progression, most fre-

quently occurred in the DEGSs (31 times).

Table 5 gives the number of the genes which have 10

or more overlaps and the top 10 overlapping genes in

each of the 24 hESC-associated gene sets, suggesting that

Table 1 hESC-associated gene sets

Group Gene set #Genes Description

hESC exp1 379 Overexpressed in hESCs according to 5 or more out of 20 profiling studies

hESC exp2 40 Overexpressed in hESCs according to a meta-analysis of 8 profiling studies

hESC exp3 48 Overexpressed in hESCs in at least 10 studies

hESC exp4 30 Underexpressed in hESCs in at least 6 studies

hESC exp5 189 TF genes in hESCs

hESC expressed hESC exp6 44 Highly expressed in undifferentiated hESCs

hESC exp7 994 High connectivity (≥ 500) in the global co-expression networks of hESCs

hESC exp8 22 Candidate hESC markers

hESC exp9 27 Differentially upregulated in hESCs

hESC exp10 31 The most abundant transcripts expressed in hESCs

hESC exp11 1, 000 Significantly identified in hESC lines by SAM analysis

Nanog targets 988 Genes activated by Nanog in hESCs

Oct4 targets 290 Genes activated by Oct4 in hESCs

NOS targets Sox2 targets 734 Genes activated by Sox2 in hESCs

NOS targets 179 Overlap of three above sets

NOS TFs 37 Transcription regulators in NOS targets set

NOS co-bound 353 Genes co-bound by Nanog, Oct4 and Sox2 in hESCs

Suz12 targets 1, 040 Genes bound by Suz12

Polycomb targets Eed targets 1, 066 Genes bound by Eed

H3K27 bound 1, 121 Genes bound by H3K27

PRC2 targets 654 Overlap of three above sets

Myc targets Myc targets1 230 E-box-containing genes regulated by c-Myc in cultured cell lines

Myc targets2 775 Genes commonly regulated by c-Myc and Max in a Burkitt’s lymphoma cell line

P53 targets 35 Common gene lists regulated by p53 in mouse and human
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a large proportion of the hESC-associated genes are

also related to cancer. Gene function enrichment analysis

suggests that a substantial portion of the genes listed

in Table 5 are involved in cell cycle regulation,

DNA damage repair and replication, apoptosis, develop-

ment and differentiation, cell adhesion and TF activity

(Table 6).

We carried out significance analyses of the overlapping

gene sets between each of the 72 DEGSs and each of the

24 hESC-associated gene sets based on the hypergeo-

metric test. Three heatmaps of hypergeometric p-values

are presented in Figure 1, Figure 2 and 3, which visualize

the significance of the overlap between the hESC-asso-

ciated gene sets and the DEGSs among normal vs. tumor,

good prognosis vs. poor prognosis phenotypes classes,

and survival analysis, respectively (the detailed descrip-

tion of all the datasets related to each figure is provided

in Additional file 6). These figures show that the targets

of three core hESC-associated TF OCT4, SOX2 and

NANOG have significant overlaps with most of the

DEGSs. Two gene sets targeted by MYC also shows sig-

nificant overlaps with most of the DEGSs. These results

Table 2 hESC-associated signal pathways, TFs and

miRNAs

Pathway TF miRNA

Activin TP53 miR-143

AKT MYC miR-145

ALK GATA4 miR-187

ATM SMAD1 miR-296

BMI1 ESRRB miR-301

BMP SOX2 miR-21

Cell cycle NANOG let-7a

EGF/EGFR KLF4 miR-371

ERBB2 MYB miR-372

ERK MYCN miR-373

FGF ZFX miR-367

Glycolysis STAT3 miR-302a

Hippo ZIC3 miR-302a*

IGF ZFP42 miR-302b

JAK/STAT SALL4 miR-302b*

c-KIT REST miR-302c

Lefty TCF3 miR-302c*

LIF HOXB1 miR-302d

MAPK HAND1 miR-200c

MEK/ERK POU5F1 miR-222

NF-�B SRY

NHEJ/HR a TBX5

Nodal E2F4

Notch GATA6

p53 PAX6

PRC2 TCF4

PDGF FOXD3

PI3K CNOT3

PTEN ZEB2

RAS ESX1L

RTK

Hedgehog (SHH)

Smad

Stat3

Telomerase

TGFb

VEGF

WNT

a NHEJ: non-homologous DNA end-joining; HR: homologous recombination

Table 3 Fifty-one human tumor gene expression datasets

Tumor Type # Datasets

Bladder Cancer 1

Brain Cancer 6

Breast Cancer 5

Colon Cancer 1

Cervical Cancer 1

Embryonal Cancer 1

Esophageal Cancer 1

Gastric Cancer 2

Head and Neck Cancer 3

Leukemia 3

Liver Cancer 1

Lung Cancer 2

Lymphoma 4

Medulloblastoma 1

Melanoma 2

Mesothelioma 1

Ovarian Cancer 1

Pancreatic Cancer 1

Prostate Cancer 5

Renal Cancer 4

Soft Tissue Sarcoma 2

Thyroid Cancer 1

Uterine Leiomyoma 2

Table 4 Summary of the algorithms performed for all

datasets

Algorithms #Algorithms
performed

Class
comparison

normal vs. tumor 31

good prognosis vs. poor
prognosis

38

Survival analysis 6
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suggest that key hESC-associated gene expression signa-

tures have important implications in pathogenesis of

cancer.

Overlaps between hESCGESs pathways and tumor-

associated pathways

In the total of 75 class comparison and survival analyses,

we identified 68 groups of pathways significant at 0.05

threshold level. Among the 54 hESC-associated signal

pathways signatures, 26 pathways appeared at least in

eight different groups and the other 28 pathways didn’t

appear in any group. The most frequent identified path-

way was the Cell Cycle pathway, which appeared for 57

times (84% occurrence rate), and the next one was the

MAPK pathway which was identified for 50 times (74%

occurrence rate). Table 7 lists all the 26 pathways and

their occurrence frequencies in the 68 groups of path-

ways significant in the cancer datasets. These pathways

have been proven to play important roles in both main-

tenance of hESC function and tumorigenesis.

Clearly, the Cell Cycle pathway plays an extremely

important role in regulation of the self-renewal and

Table 5 Overlaps between the 24 hESC-associated gene sets and the 72 differentially expressed gene sets

Gene sets #Genes with 10 or more overlaps b Top 10 overlapping genes

hESC exp1 308 (81%) MTHFD2, MCM4, MCM6, LGALS8, PPP2R1B, RFC4, GART, BUB1, LCK, PTPN2

hESC exp2 26 (65%) MYBL2, EPHA1, ORC2, DTYMK, PRKD3, NCAPH, ETV4, DSCC1, CDC25A, PWP2

hESC exp3 38 (79%) BUB1, DLGAP5, SLC16A1, USP9X, HSPA4, TERF1, PSIP1, PLA2G16, UGP2, BMPR1A

hESC exp4 29 (97%) SPARC, COL1A2, COL3A1, COL1A1, CD47, COL5A2, KRT18, KRT8, LUM, COL6A3

hESC exp5 135 (71%) TCF4, STAT1, GATA3, MAF, MYC, MYBL2, ILF3, SMAD4, FUBP1, GATA2

hESC exp6 28 (64%) CD9, IL6ST, PTEN, EDNRB, KIT, NR5A2, IFITM2, CRABP2, NFYC, PODXL

hESC exp7 863 (87%) GNAS, FN1, SPARC, MCM6, MCM4, TOP2A, COL1A2, COL3A1, RFC4, RAB31

hESC exp8 11 (50%) FAS, CKS1B, GJA1, NPM1, TGIF1, HMGA1, DNMT3A, ERH, SOX2, DNMT3B

hESC exp9 21 (78%) PCNA, CKS1B, FAS, TERF1, GJA1, CCNB1, NPM1, FZD7, SFRP1, HMGA1

hESC exp10 30 (97%) PGK1, BAK1, HNRNPA1, EEF1A1, PPIA, GAPDH, GJA1, TMED2, EEF1B2, NPM1

hESC exp11 749 (75%) PDE4DIP, FGFR2, CKS2, MTHFD2, SOX4, SLC2A3, STAT1, MAPK1, PSMB2, MCM4

Nanog targets 711 (72%) CALD1, FGFR2, CKS2, TNPO1, KIAA0101, SPARC, TOP2A, ARHGAP1, B2M, VCAN

Oct4 targets 211 (73%) FGFR2, TCF4, KIAA0101, TOP2A, PPP2R1B, TCF12, UBE2D3, RAB5A, HMGB2, PTPN2

Sox2 targets 542 (74%) FGFR2, TOP2A, ARHGAP1, VCAN, PPP2R1B, UBE2D3, CBX3, RAB5A, PIK3R3, H2AFX

NOS targets 132 (74%) FGFR2, TOP2A, PPP2R1B, UBE2D3, RAB5A, PTPN2, SET, FGFR1, BUB3, ADD3

NOS TFs 28 (76%) STAT3, MYST3, IFI16, MLLT10, FOXO1, PHF17, ZFP36L1, TAF12, HHEX, ZEB2

NOS co-bound 199 (56%) FGFR2, TOP2A, PPP2R1B, UBE2D3, RAB5A, PTPN2, SET, FGFR1, BUB3, BMI1

Suz12 targets 512 (49%) PDE4DIP, BCL2, GNAS, PTGER3, CD44, RAB31, CYP1B1, EPHB1, GATA3, HLF

Eed targets 510 (48%) PDE4DIP, BCL2, PTGER3, PRKCB, CD44, INPP4A, CYP1B1, EPHB1, GATA3, HLF

H3K27 bound 557 (50%) PDE4DIP, BCL2, PTGER3, PRKCB, EPHB1, GATA3, NTRK2, CD47, GPD1L, NCAM1

PRC2 targets 397 (61%) PDE4DIP, BCL2, PTGER3, EPHB1, GATA3, NTRK2, NCAM1, CACNA1D, GATA2, GPM6B

Myc targets1 204 (89%) BCL2, MCM4, TGFB3, CCND2, APC, MUC1, TCF12, ENO1, APP, CSTB

Myc targets2 645 (83%) CKS2, PPP2R1B, TCF12, UBE2D3, CDC25B, H2AFX, HLA-A, PDK3, PRKDC, TMF1

P53 targets 27 (77%) GATM, MYH11, TP53, BTG2, INPP5D, MDM2, MYB, SPARCL1, PLK4, FMO5

b The percentage of the overlapping gene number relative to the total gene number for each of the 24 hESC-associated gene sets is given in parenthesis.

Table 6 Functional categories of the genes listed in Table 5

Functional categories Representative genes

Cell cycle regulation ORC2, NCAPH, DSCC1, CDC25A, CDC25B, CKS2, CKS1B, BUB3, CCND2, CCNB1, DLGAP5

DNA repair/replication TOP2A, MCM4, MCM6, RFC4, PCNA, PPIA, HMGB2, H2AFX, PRKDC

Apoptosis FAS, BAK1, IFI16, PHF17, BTG2, PSMB2, BCL2, APC, TP53

Development/
differentiation

ETV4, FGFR1, FGFR2, VCAN, STAT3, HHEX, EPHB1, NTRK2, GPM6B, TGFB3, BMI1, SOX2, DNMT3B, SOX4

Cell adhesion VCAN, CD9, CD44, CD47, NCAM1, COL6A3, PODXL, FN1

TF activity GATA2, TMF1, STAT1, STAT3, MAF, FUBP1, MYB, NFYC, TGIF1, SOX2, ZEB2, TAF12, ZFP36L1, MLLT10, MYST3, TCF4, TCF12,
ETV4, MYBL2
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pluripotency process of hESCs [55-59]. The undifferen-

tiated hESCs have a short G1 phase, and therefore show

rapid cell cycle characteristic relative to differentiated

somatic cells. The unorthodox G1/S phase transition fea-

ture in the hESC cell cycle is associated with the deregu-

lated proliferation and differentiation blockades of tumor

cells [39,60-65]. The MAPK (Mitogen-Activated Protein

Kinase) pathway regulates both the early embryonic

development and the embryonic stem cell commitment

from early steps of the process to mature differentiated

cells [66]. The role of MAPK pathway in cancer is

prominent as cancer can be perceived as a disease of

communication between and within cells. The statistical

significance analysis also shows that both the Cell Cycle

pathway and MAPK pathway have important association

with a majority of tumor types (see Additional file 7, Fig-

ure S1, Additional file 8, Figure S2 and Additional file 9,

Figure S3).

The importance of IGF signaling pathway for mainte-

nance of hESCs has been proven [67-70]. This signaling

pathway appears to play a crucial role in cancer and can

be of potential interest in cancer therapy [71-77]. The
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ERK pathway is active in the undifferentiation status of

hESCs. Its activation is critical in maintenance of hESC

self-renewal [78-81]. On the other hand, there has been

accumulating evidence of ERK pathway (RAF-MEK-ERK

signaling cascade) in oncogenesis to make it an attractive

target for drug development [82].

Interestingly, almost all the widely-recognized hESC-

associated pathways such as SHH, WNT, PRC2, Notch,

PTEN and TGFb have important linkage with cancer (see

Table 7). The SHH (Sonic Hedgehog) signaling pathway

is one of the key regulators of human embryonic

development [83-87]. Activation of the pathway leads to

an increased risk of the development of cancerous malig-

nancies [87-94]. The WNT signaling pathway is a network

of a number of proteins acting as a critical regulator of

hESCs [43,56,59,69,79,84,85,95-103]. However, the deregu-

lation of the pathway has been closely associated with

cancer [83,86,90,94,103-114]. The PRC2 (Polycomb

Repressive Complex 2) pathway is involved in control of

the developmental regulators in hESCs [50,56,115-118].

The expression of PRC2 components is upregulated in

various cancers such as melanoma, lymphoma, and breast
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and prostate cancer. The Notch signaling pathway plays a

key role in the normal development of hESCs and many

other cell types depending on the expression level and

cellular context of the Notch receptors [84,85,101,119]. Its

deregulation potentially contributes to cancer develop-

ment in several different ways [111,120-126]. The PTEN

(PhosphaTase and Tensin Homolog) acts as a tumor sup-

pressor gene involved in regulation of the cell cycle, pre-

venting cells from growing and dividing too rapidly. This

pathway is also critical for stem cell maintenance

[59,69,83]. The TGFb (Transforming Growth Factor b)

signaling pathway is of central importance to the self

renewal of hESCs [43,59,69,79,84,85,96,98-102,115,

127,128]. This signal pathway is involved in a wide range

of cellular processes in both the adult organism and the

developing embryo. It plays a role in both tumor suppres-

sion and tumor progression depending on cellular context

[129-132].

Additional two important pathways involved in both

hESCs function and tumorigenesis are p53 and telomer-

ase pathways. They were identified for 21 and 22 times

in our 68 class comparison or survival analysis (see

Table 7). The p53 pathway can maintain the homeosta-

sis of self-renewal and differentiation of hESCs

[133-135]. Inactivation of this pathway in several cancer

types may correlates with hESC-specific signatures

[22,136,137]. Telomerase enzyme levels or activity has

shown to be highly expressed in embryonic stem cells
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[79]. On the other hand, telomerase is reactivated and

serves to maintain telomere length in most advanced

cancers [34].

Taken together, the high overlap between hESCGESs

pathways and tumor-associated pathways reveals that

there exist common mechanisms underlying cancerous

malignancies and “stemness” of hESCs.

Overlaps between hESCGESs TFs and tumor-associated TFs

We identified 73 groups of targets of TFs significant at

0.05 threshold level. Among the 189 hESC-associated

TF signatures, 42 TFs appeared at least in three different

groups and the others didn’t show in any group. The

most frequently identified TF was MYC with 56% occur-

rence rate (41 occurrences), and the next one was MYB

with 51% occurrence rate (37 occurrences). The com-

plete 42 TFs accompanying with their occurrence fre-

quencies are presented in Table 8.

From Table 8, we can see a number of “stemness” TFs

identified as informative in tumors. Evidently, MYC is

one of the most important TFs in both hESCs and

Cancer cells [22,23,44,48,49,52,56,116,138-140]. MYC

represses differentiation and maintains the self-renewal

of mouse and human pluripotent stem cells [138,141].

MYC regulatory networks may account for most of the

transcriptional similarity between embryonic stem cells

and cancer cells [139]. The statistical significance analysis

also shows that MYC plays an important role in most of

the tumor types analyzed (see Additional file 10, Figure

S4, Additional file 11, Figure S5 and Additional file 12,

Figure S6).

Another extremely important TF is POU5F1 (OCT4),

which is necessary for induction of pluripotent stem cells

from human somatic cells [23,24]. OCT4 constitutes the

core transcriptional regulatory circuitry in hESCs in com-

bination with SOX2 and NANOG essentially responsible

for the early development and propagation of undifferen-

tiated hESCs [43,44,52,56,58,59,79,84,97,116,117,119,

142,143]. OCT4 expression appears to be important in

maintaining the undifferentiated state of embryonal carci-

noma [86,144], as well as in other cancers [27,145].

Our analysis results suggest that several families of

hESC-associated TFs like MYB, E2F, PAX, SMAD,

STAT, POU, SP and GLI, are related to cancer (Table 8).

For example, three members of the TF family MYB:

MYB, MYBL1 and MYBL2, appear to be closely asso-

ciated with cancer (Table 8). In fact, a substantial number

of studies have revealed that they had important roles in

regulation of stem cell self-renewal and differentiation

[146,147], and the development of cancer [148,149]. E2F

plays a crucial role in control of the cell cycle progression

and regulating the expression of genes required for G1/S

transition [150], and therefore is important for stem cell

self-renewal and differentiation. The members of the

family E2F1, 2, 3 and E2F4 have been reported to be

associated with cancer [151]. PAX plays an essential role

in regulating cell proliferation and self-renewal, resis-

tance to apoptosis, migration of embryonic precursor

cells, and the coordination of specific differentiation pro-

grams during embryonic development [59], as well as the

development of cancer [152]. SMAD regulates cell prolif-

eration and differentiation by activating downstream

TGFß gene transcription. Its members play important

roles in hESC fate determination [98], and cancerous

pathogenesis [153]. STAT regulates cell growth, survival

and differentiation via activation by JAK (Janus kinase).

This pathway is critical for regulation of stem cell self-

renewal and differentiation [101]. Deregulation of this

pathway is frequently observed in various tumor types

[154]. POU mainly regulate the development of an organ-

ism, and are also involved in various cancers [155]. SP1

and SP3 are two members of the TF family SP (Specificity

Protein) which binds GC-rich DNA sequences. Their

roles in hESCs and cancer cells have been widely recog-

nized [26]. GLI encompasses three members: GLI1, GLI2

Table 7 Twenty-six hESC-associated pathways frequently

identified in tumors

Pathway Frequency

Cell Cycle 57

MAPK 50

IGF 31

EGF/EGFR 30

ERK 29

SHH 28

AKT 26

RAS 25

NF-�B 22

Telomerase 22

p53 21

WNT 20

PRC2 19

ALK 16

NOTCH 15

ATM 14

VEGF 14

PDGF 13

ERBB2 11

JAK/STAT 11

PI3K 11

PTEN 11

TGFb 11

MEK 10

STAT3 9

Glycolysis 8
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and GLI3, all of which mediate the Hedgehog pathway

and therefore are involved in hESC fate determination

and cancerous pathogenesis [87].

In summary, the substantial overlap between the TFs

involved in hESC fate determination and the TFs involved

in cancerous pathogenesis suggests that hESCs and cancer

cells may share essential regulatory mechanisms.

Overlaps between hESCGESs miRNAs and Tumor-

associated miRNAs

We identified 67 groups of miRNA targets significant at

0.05 threshold level. Among the 114 hESC-associated

miRNA signatures, 102 miRNAs appeared at least in eight

different groups and the other 12 miRNAs didn’t show in

any group. The most frequently identified miRNA was

miR-29c, which occurred for 34 times (51% occurrence

rate), and the next one was miR-200b which occurred for

30 times (45% occurrence rate). Table 9 lists 50 miRNAs

whose occurrence frequencies are no less than 20. The

complete 102 miRNAs accompanying with their occur-

rence frequencies are presented in Additional file 13,

Table S5.

Notably, there is a broad range of overlap between

“stemness” miRNAs and oncogenic miRNAs. Most of the

important “stemness” miRNAs are presented in Table 9 or

Table S5. The miR-302 cluster miRNAs (miR-302a, miR-

302a*, miR-302b, miR-302b*, miR-302c, miR-302c*, miR-

302d) have been shown to regulate important cellular

functions in hESCs, including cell proliferation and chro-

matin structure, and have been consistently reported to be

overexpressed in hESCs [156]. All the seven members of

this group appear in Table S5, and five of them are also

presented in Table 9, indicative of their close linkage with

cancer. Some literatures have reported the relatedness

between miRNA-302 family and tumorigenecity

[157-160]. Another group of miR-200 family miRNAs

(miR-200a, miR-200b, miR-200c, miR-141 and miR-429)

have been revealed to be hESC-specific, and upregulated

in hESCs [156,161,162]. Three of them are presented in

Table S5 and miR-200b and miR-200c are also listed in

Table 9 with relatively high frequencies (30 and 26, respec-

tively), strongly indicating their association with cancer. In

fact, this miRNA family plays an important role in cancer-

ous pathogenesis [163-165]. The miRNA-520 cluster on

chromosome 19 was highly expressed in undifferentiated

hESCs, and might be closely involved in hESC function

[156,166]. Its eight members miRNA-520a-h show in

Table S5 and six members miRNA-520a-f also show in

Table 9, suggesting that the miRNA family has tight con-

nection with cancer. Many studies have revealed the relat-

edness between its members and cancer [167-170]. The

miR-518b, miR-518c, miR-519b and miR-519c have been

consistently reported to be overexpressed in undifferen-

tiated hESCs [156,166,171,172]. Our analysis outcomes

suggest that they may be closely involved in the develop-

ment of cancer (Table 9). This finding is supported by

some studies [173,174]. In addition, the other miRNA

Table 8 Forty-two hESC-associated TFs frequently

identified in tumors

TF Frequency

MYC 41

MYB 37

SP1 33

TP53 33

E2F4 33

TFAP2A 32

E2F1 32

JUN 30

SMAD1 27

TAL1 24

NFKB1 23

STAT3 23

MYBL2 22

ETS1 21

ETS2 20

POU2F1 20

POU2F2 18

STAT1 18

WT1 18

ETV4 18

HOXA9 17

SMAD3 17

E2F2 17

SP3 16

LEF1 14

NFKB2 14

POU5F1 13

PAX6 11

STAT4 11

SMAD4 10

GLI1 10

PAX3 9

PAX2 8

MYBL1 8

PAX5 7

SMAD2 7

GLI2 6

PAX8 6

STAT2 6

GLI3 3

POU3F2 3

E2F3 3
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families shown in Table 9 like miRNA-29, 19, 15, 20

and let-7 have been revealed to be involved in both

hESC fate determination and cancerous pathogenesis

[53,96,161,175].

The statistical significance analysis shows that some

“stemness” miRNAs like miR-29 family member miR-

29a, miR-29b and miR-29c are associated with a broad

spectrum of tumor types (see Additional file 14, Figure

S7, Additional file 15, Figure S8 and Additional file 16,

Figure S9).

Taken together, a number of miRNAs play crucial roles

in both hESC fate determination and tumorigenicity.

Discussion
Although the evidence strongly supporting the CSC the-

ory remains insufficient, and the fundamental experimen-

tal evidence for CSCs based on mouse xenograft models

are controversial [21], the CSC model is attractive for it

provides reasonable explanation of the development

mechanisms underlying cancer, as well as a promise of

improved cancer therapies. Therefore, any proof in favor

of the CSC theory is valuable in the biology of cancer.

In this study, we provided an indirect evidence for the

CSC theory using the computational biology approach.

We found a strong linkage between hESCs and cancer

cells by an examination of the similarity between the

hESC-specific gene expression profiles and cancer-specific

gene expression profiles. The hESC-specific gene expres-

sion signatures including genes, pathways, TFs and miR-

NAs were generally differentially expressed among normal

vs. tumor phenotypes, or among cancer subtypes with dis-

tinct clinical outcomes. The genes important in regulation

of hESC self-renewal and differentiation such as SOX2

and MYB, were also closely involved in tumorigenicity.

The signal pathways such as the Cell Cycle, MAPK, SHH,

WNT, PRC2, Notch, PTEN and TGFb involved in the

hESC fate determination were also strongly associated

with cancer genesis, progression and prognosis. The typi-

cal hESC-specific TFs like OCT4 and c-Myc (also known

as MYC), appeared to be important in control of the

undifferentiated state of cancer cells. The miRNAs overex-

pressed in undifferentiated hESCs like miRNA-302, 200

and 520 cluster miRNAs, were closely involved in the

development of cancer.

Generally speaking, the cell cycle regulation mechan-

ism mostly underlies the commonality between hESCs

Table 9 Fifty hESC-associated miRNAs frequently

identified in tumors

miRNA Frequency

miR-29c 34

miR-200b 30

miR-19b 29

miR-29a 29

miR-29b 29

let-7a 28

miR-520f 28

miR-21 27

miR-302c 27

miR-302d 27

miR-494 27

miR-518b 27

miR-519c 27

miR-520a 27

miR-200c 26

miR-26a 26

miR-302a 26

miR-30d 26

miR-124a 25

miR-16 25

miR-19a 25

miR-302b 25

miR-374 25

miR-518c 25

miR-519b 25

miR-15a 24

miR-15b 24

miR-18a 24

miR-20b 24

miR-301 24

miR-520b 24

miR-520c 24

miR-130a 23

miR-18b 23

miR-369-3p 23

miR-520d 23

miR-520e 23

miR-103 22

miR-154 22

miR-20a 22

miR-525 22

miR-93 22

miR-17-5p 21

miR-302c* 21

miR-470 21

miR-515-5p 21

Table 9 Fifty hESC-associated miRNAs frequently identi-

fied in tumors (Continued)

miR-517c 21

miR-106a 20

miR-146b 20

miR-96 20
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and cancer cells. Differing from somatic cells, hESCs

have an abbreviated G1 phase in cell cycle, which is cri-

tical for maintenance of hESC self-renewal and pluripo-

tency. The abbreviated G1 phase is also largely

responsible for the uncontrolled proliferation of tumor

cells which escape from the programmed cell death dur-

ing the G1 phase [62]. In fact, the hESC-associated sig-

natures most frequently identified in tumors are mainly

involved in regulation of cell cycle (see Table 6, Table 7,

Table 8 and Table 9). Among them, the TF c-Myc is

the core signature connecting hESCs with cancer cells.

c-Myc binds genic and intergenic regions to regulate the

expression of thousands of genes and noncoding RNAs

throughout the genome [138]. c-Myc is involved in the

cell cycle regulation by directly regulating cell cycle reg-

ulators [44,116,138], or regulating miRNAs which inhibit

cell cycle regulators [96,138]. The role of c-Myc in link-

ing hESCs with cancer has been recognized [138,139].

Here we identified differentially expressed genes at 0.05

significance level. A more stringent significance threshold

of 0.001 would be more statistically reasonable if consider-

ing corrections of multiple hypotheses. Because the num-

bers of significant pathways, TFs and miRNAs identified

by analyses of gene sets would be small for a majority of

datasets if the significance threshold of 0.001 were used

under which the number of differentially expressed genes

were still often substantial, we selected the 0.05 signifi-

cance level for all the differentially expressed analyses in

order to keep consistency.

One limitation of this study was that the analyses were

mainly based on the computational biology approach

which needs experimental validation to corroborate these

findings. In addition, some finer analyses such as group-

ing the overlaps of gene signatures between hESCs and

tumors according to different tumor categories, separat-

ing the differentially expressed genes into the overex-

pressed and underexpressed genes etc., may contribute to

a better understanding of the similarities between hESCs

and tumor cells in gene expression profiles. Another lim-

itation of this study was that we identified tumor-asso-

ciated gene expression signatures based on whole tumor

samples which might be derived from the majority of

tumor cells, not necessarily from the minority of CSCs so

that the overlapping signatures identified between hESCs

and tumors might not be able to provide a strong support

for the CSC model. If the tumor-associated gene expres-

sion signatures were identified by comparison between

isolated CSCs versus non-CSCs fraction of the same

tumor, the same results would be more reliable in sup-

port of the CSC model. These issues could be addressed

in future research.

A further problem is the intertwined relationships

between stem cell, cancer and ageing [176]. Cancer is

actually an age-related disease as the incidence of cancer

grows exponentially with ageing. Meanwhile, ageing is

mostly caused by a decline in the replicative function of

stem cell [177], and in turn aging has effects on the func-

tion of stem cell [178]. Thus, an in-depth investigation of

the molecular mechanisms that connect stem cell, cancer

and ageing will be necessary for postponing ageing and

overcoming cancer.

Conclusions
The present results revealed the close linkage between

the hESC-specific gene expression profiles and cancer-

specific gene expression profiles, and therefore offered

an indirect support for the CSC theory. However, many

interest issues remain to be addressed further.

Availability of supporting data
The 51 human cancer gene expression datasets are

available at the following website: http://linus.nci.nih.

gov/~brb/DataArchive_New.html. All the other datasets

supporting the results of this article are included within

the article and its additional files.
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