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Abstract: One of the difÞ culties in using gene expression proÞ les to predict cancer is how to effectively select a few 
informative genes to construct accurate prediction models from thousands or ten thousands of genes. We screen highly 
discriminative genes and gene pairs to create simple prediction models involved in single genes or gene pairs on the basis 
of soft computing approach and rough set theory. Accurate cancerous prediction is obtained when we apply the simple 
prediction models for four cancerous gene expression datasets: CNS tumor, colon tumor, lung cancer and DLBCL. Some 
genes closely correlated with the pathogenesis of speciÞ c or general cancers are identiÞ ed. In contrast with other models, 
our models are simple, effective and robust. Meanwhile, our models are interpretable for they are based on decision rules. 
Our results demonstrate that very simple models may perform well on cancerous molecular prediction and important gene 
markers of cancer can be detected if the gene selection approach is chosen reasonably.

Keywords: gene expression proÞ les, cancer prediction, soft computing, rough set theory, feature selection, decision rules

Introduction
Conventional tumor diagnostic methods based on the morphological appearance of tumors are not 
always effective as misdiagnoses often occur. On the other hand, a wide variety of studies have revealed 
cancer to be a disease involving dynamic changes in the genome. Therefore, using molecular markers 
of cancers might be an alternative approach to the diagnosis of tumors. The rapid advances in gene 
expression microarray technology that enable simultaneously measuring the expression levels for tens 
of thousands of genes in a single experiment, make the detection of cancerous molecular markers 
possible.1 Since the pioneering work of Golub et al in applying gene expression monitoring by DNA 
microarray to cancer classiÞ cation,2 many investigations of using microarray technology to build cancer 
diagnosis, prognosis or prediction classiÞ ers have been conducted. In general, the major difÞ culty in 
this topic is how to effectively identify the genes pertaining to the pathogenesis of speciÞ c cancers from 
the extremely high-dimensionality gene expression data, which often contain a large amount of noise 
caused by irrelevant genes. On the other hand, compared with the measured quantities of gene expression 
levels in experiments, the numbers of samples are severely limited. That often inß uences prediction 
accuracy. In this extreme of very few observations on very many features, it is natural and perhaps 
essential to investigate feature selection and regularization methods.3 Feature selection, i.e. gene Þ ltering, 
is particularly crucial for microarray-based cancer prediction since the number of irrelevant genes for 
prediction may be huge, and as long as feature selection is performed reasonably, accurate prediction 
is achieved with even the simplest of predictive models.4

Various methods of building cancer predictors have been proposed such as Clustering, SVMs (Support 
Vector Machines), k-NNs (k-Nearest Neighbours), ANNs (ArtiÞ cial Neural Networks), GAs (Genetic 
Algorithms), Naive Bayes (NB), DTs (Decision Trees), RSs (Rough Sets), EPs (Emerging Patterns), 
et al. In this article, we explore the use of rule-based pipelines to construct cancer predictors as the 
rule-based methods are more likely to be accepted by biologists and clinicians for they are easily under-
stood. This kind of approaches like DTs,5 RSs,6 EPs7 etc. have been commonly utilized to produce 
cancer predictors by many investigators.7–14 In addition, we attempt to employ one or two genes to 
conduct cancer prediction. The same problem also has been addressed by some investigators.15,16
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Our method is based on rough set theory, 
originally proposed by Pawlak in the early 1980s,6 
which can be applied for analysis of both precise 
and imprecise data.17 In,8–11 rough set theory is 
applied for cancer classiÞ cation and prediction. 
A majority of these studies conduct feature 
selection by the attribute reduction approach, one 
core idea of rough set theory. However, to our 
knowledge, rough sets attribute reductions are 
computationally expensive, and the resultant 
reducts maybe are not unique. Moreover, the 
reducts cannot ensure high prediction performance 
because there maybe exists redundancy between 
the attributes in one reduct.18 To avoid expensive 
cost in computing attribute reductions, we select 
the features (genes) with perfect attribute depended 
degree, a concept from rough set theory, and then 
create rule classiÞ ers by the chosen genes instead 
of running attribute reductions. As it is very 
difÞ cult to Þ nd the single genes or gene pairs with 
perfect attribute depended degree in terms of the 
canonical deÞ nition, we extend the concept of 
attribute depended degree to the more ß exible soft 
computing framework. Using the extended deÞ ni-
tion of attribute depended degree, we can detect 
some single genes or gene pairs with indeed strong 
class discriminatory power while they will be 
ignored if the conventional attribute depended 
degree standard is employed. Consequently, 
although the rules derived from the detected genes 
or gene pairs might not be absolutely true, they 
are comparatively reliable and able to perform 
effective prediction.

We apply our algorithm to the four noted gene 
expression datasets: central nervous system 
(CNS) tumor, colon tumor, lung cancer, and 
diffuse large B-cell lymphoma (DLBCL). They 
are available from the Kent Ridge Bio-medical 
Data Set Repository (http://datam.i2r.a-star.edu.
sg/datasets/krbd/). We validate the efÞ cacy of our 
method by leave-one-out cross-validation 
(LOOCV), and compare our results with other 
already published research outcomes. Furthermore, 
we examine and analyze the biological relevance 
of the selected genes.

Results
CNS tumor dataset
In the dataset, we Þ rst try to Þ nd the single genes 
with high class discriminative power. When α is 
set to 0.9 or 0.85, there is no gene with α depended 

degree equal to 1 occurring in all the 60 training 
sets; when α is set to 0.8, gene U28963_at occurs 
in 59 out of the 60 training sets; when α is set to 
0.75 and 0.7, there are two and six genes occurring 
in all the 60 training sets, respectively. In every 
training set, each of the six genes results to two 
decision rules, which are used to predict the test 
sample. The Þ nal prediction estimate is the average 
of 60 test results. Table 1 shows the prediction 
results by the six genes. Subsequently, we attempt 
to seek for the gene pairs with strong class dis-
criminative ability. When α is set to 0.9, no gene 
pair is detected; when α is set to 0.85, only one 
gene pair is detected; when α is reduced to 0.8, 
eleven gene pairs are found. In general, each gene 
pair produces four decision rules. Then we apply 
the four decision rules to classify the test sample 
and the average of 60 test results is the prediction 
estimate of the gene pair. Table 2 shows the predic-
tion results by the eleven gene pairs.

Here we denote the expression level of gene G 
by g(G). When the Þ rst sample is left out as the 
test set, and the remaining samples set is trained 
by the learning algorithm, the selected gene 
U28963_at will give rise to two decision rules:

• If g(U28963_at) # 431, then Class 1;
• If g(U28963_at) .431, then Class 0.

The two rules have 81% and 84% conÞ dence, 
respectively. One can use the two rules to classify 
the test set. When another sample instead of the 
Þ rst one is left out, gene U28963_at will result to 
two similar decision rules:

• If g(U28963_at) # x, then Class 1;
• If g(U28963_at) . x, then Class 0.

x equals to 431 or is close to it. Anyway, the rules 
imply that if gene U28963_at is up-regulated in 

Table 1. 6 genes with high prediction accuracy in the 
CNS tumor dataset.

Probe ID Correctly-classiÞ ed
sample number

(accuracy)

α

U28963_at 47 (78%) 0.75

X99050_rna1_at 45 (75%) 0.75

D83542_at 46 (77%) 0.7

S71824_at 50 (83%) 0.7

U37673_at 40 (67%) 0.7

D86974_at 45 (75%) 0.7
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one CNS tumor patient, the patient will be more 
inclined to succumb to the disease. The other 
chosen genes give rise to similar form of rules.

Likewise, when the first sample is left out 
for test while the remaining samples are retained 
for training, the selected gene pair D83542_
at—S71824_at will generate four decision rules:

• if g(D83542_at) # 280.5 and g(S71824_at) # 
434, then Class 1;

• if g(D83542_at) # 280.5 and g(S71824_at) . 
434, then Class 1;

• if g(D83542_at) . 280.5 and g(S71824_at) # 
434, then Class 1;

• if g(D83542_at) . 280.5 and g(S71824_at) . 

434, then Class 0.

The four rules possess 100%, 100%, 89% and 
88% conÞ dence, respectively. They can be simpli-
Þ ed into equivalent three rules:

• if g(D83542_at) # 280.5 , then Class 1;
• if g(S71824_at) # 434, then Class 1;
• if g(D83542_at) . 280.5 and g(S71824_at) . 

434, then Class 0.

The three rules have 100%, 92% and 88% con-
Þ dence, respectively. One can employ the four or 
alternative three rules to classify the test set. When 
another sample instead of the Þ rst one is left out, 
gene pair D83542_at—S71824_at will generate 
four similar decision rules. These rules indicate 
that if both D83542_at and S71824_at are highly 
expressed in one CNS tumor patient, then the patient 
will be very likely to succumb to the disease. 

Similar rules can be derived by the other chosen 
gene pairs.

Colon tumor dataset
Using the same learning algorithm for the dataset, 
we screen the genes and gene pairs with compara-
tively high prediction performance. The results are 
presented in Table 3 and Table 4. As before, deci-
sion rules can be induced by the selected genes or 
gene pairs.

Lung cancer dataset
In the dataset, when α is set to 0.8, no any gene is 
detected; when α equals to 0.75, eight genes are 
detected; when α is reduced to 0.7, no more genes 
are found. To make the decision rules induced by 
gene more reliable, we exclude the genes with 
missing values. When α is set to 0.9, 0.85 or 0.8, 
no any gene pair is found; when α is reduced to 
0.75, eight gene pairs are detected. The results are 
presented in Table 5 and Table 6.

DLBCL dataset
In the dataset, when α is set to 0.7, there are four 
genes selected; when α increases to 0.75, no any 
gene is found. With respect to gene pairs, when α 
is set to 0.9 or 0.85, no any gene pair is found; 
when α decreases to 0.8, there are 22 gene pairs 
chosen. The results are presented in Table 7 and 
Table 8. Table 8 shows only 20 out of the 22 gene 
pairs. The other two gene pairs are omitted because 
of their overly low prediction accuracy.

Table 2. 11 gene pairs with high prediction accuracy in the CNS tumor dataset.

1st – 2nd Probe ID Correctly-classiÞ ed
sample number (accuracy)

α

D83542_at–S71824_at 54 (90%) 0.85

D31763_at–U08998_at 54 (90%) 0.8

D83542_at–X99050_rna1_at 49 (82%) 0.8

D83542_at–D86974_at 52 (87%) 0.8

L33243_at–U36448_at 52 (87%) 0.8

M73547_at–U74324_at 51 (85%) 0.8

M96739_at–U36448_at 54 (90%) 0.8

S71824_at–D86974_at 51 (85%) 0.8

U37143_at–D43682_s_at 48 (80%) 0.8

U79277_at–D43682_s_at 47 (78%) 0.8

X99050_rna1_at–D86974_at 49 (82%) 0.8
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Comparison of Prediction 
Performance
CNS tumor dataset
The dataset is dataset C mentioned in19 that is used 
to analyze the outcome of the treatment for central 
nervous system embryonal tumor patients. In this 
dataset, we gain the 83% and 90% best prediction 
accuracy using one and two genes respectively. 
In,19 Pomeroy et al use a k-NNs algorithm to con-
struct outcome predictor based on gene expression. 
The reported statistically signiÞ cant gene size for 
k-NN models ranges from 2 to 21 genes, with the 
best prediction made by an 8-gene model that made 
13/60 classiÞ cation errors. Several other prediction 
algorithms including weighted voting, SVMs, and 
IBM SPLASH are also tested in.19 In,20 Zhang et 
al propose a hybrid approach, which combines 
discernibility matrix, the Þ lter strategy and the 
wrapper method to select gene sets. Then they 

adopt the classifiers C4.5 and NaiveBayes to 
evaluate the prediction performance of the gene 
sets. Their prediction accuracy by LOOCV is 75% 
for C4.5 using 20 genes and 86.67% for Naive-
Bayes using 29 genes. In,12 Tan et al use decision 
trees (Single C4.5, Bagging C4.5, AdaBoost C4.5) 
to perform prediction tasks on cancerous microar-
ray data including the CNS tumor dataset. They 
Þ rst employ Fayyad and Irani’s21 discretization 
method to screen 74 genes for the actual learning 
process. Their highest prediction accuracy is 88% 
by tenfold cross-validation. The comparison of our 
methods with the others is summarized in Table 9. 
The table shows that our results are better than 
almost all the other compared results from previous 
studies.

Colon tumor dataset
The dataset is Þ rst studied by Alon et al.22 They 
propose two-way clustering approach that classify 
genes into functional groups and classify tissues 
based on their gene expression similarity. Since their 
original work, the dataset has been frequently 
investigated by other investigators. In this dataset, 
we reach the 84% and 90% highest prediction 
accuracy using one and two genes respectively. 
Table 10 compares the prediction results of our work 
with some other studies. The table demonstrates that 
whereas we use the least genes, our prediction 
accuracy is superior to or matches the others.

Lung cancer dataset
In this dataset, we obtain the 85% and 82% highest 
prediction accuracy using one and two genes 
respectively. With respect to this dataset, we only 
Þ nd that Zhang et al report their study results20 
apart from the original paper.23 Table 11 presents 
the comparison between our method and that 
provided in.20 Although their best prediction 
accuracy by the HFW feature selection approach 
is a little higher than ours, the numbers of the genes 
used by them far exceed ours. As for the other 
feature selection approaches including FCBF, CFS-
SF and ReliefF, the prediction performance caused 
by them is inferior to ours.

DLBCL dataset
In this dataset, we achieve the 78% and 90% best 
prediction accuracy using one and two genes 
respectively. Table 12 gives the comparison 

Table 3. 21 genes with high prediction accuracy in the 
colon tumor dataset.

GenBank 
accession 
no.

Correctly-classiÞ ed
sample number

(accuracy)

α

M63391 52 (84%) 0.8

M76378 50 (81%) 0.8

J02854 50 (81%) 0.8

M26383 52 (84%) 0.8

M76378 50 (81%) 0.75

T60155 48 (77%) 0.75

M22382 50 (81%) 0.75

X12671 49 (79%) 0.75

M76378 50 (81%) 0.75

T96873 47 (76%) 0.75

X86693 47 (76%) 0.75

J05032 50 (81%) 0.75

U25138 48 (77%) 0.75

T60778 47 (76%) 0.75

M91463 48 (77%) 0.75

R87126 51 (82%) 0.7

T51571 46 (74%) 0.7

T92451 48 (77%) 0.7

U09564 48 (77%) 0.7

R97912 45 (73%) 0.7

L41559 45 (73%) 0.7
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between our method and that provided in20 and24 
Obviously, our results dominate the others.

Analysis of Biological Relevance
CNS tumor dataset
In this dataset, we identify six genes with 
comparatively high prediction performance 
individually. The six genes are U28963_at, 
X99050_rna1_at, D83542_at, S71824_at, U37673_
at, and D86974_at. According to the decision rules 

induced by the genes, we suspect that they are all 
over-expressed in the patients who succumb to 
their disease. As expected, three out of the six 
genes are picked as the markers of survival by 
Pomeroy et al.19 The three genes are referred to as 
GPS2 (U28963_at), beta-NAP (U37673_at) and 
KIAA0220 gene (D86974_at) respectively. More-
over, beta-NAP and KIAA0220 gene are the 
members of the 8-gene model by which k-NN 
makes optimal prediction. In addition, three genes 
named Human polyposis locus (DP1 gene), NSCL1 
and VLCAD which compose the gene pairs with 
strong prediction power are also identified as 
markers of survival by Pomeroy et al.19

GPS2 encodes a protein involved in G protein-
mitogen-activated protein kinase (MAPK) signal-
ing cascades. The function of this gene may be 
signal repression. Zhang et al indicate  that GPS2 
interacts with another protein RFX4_v3 to 
modulate transactivation of genes involved in brain 
morphogenesis.25 Therefore, the dysregulation 
of GPS2 may be closely correlated with the 
pathogenesis of CNS tumor. Beta-NAP, a cerebellar 
degeneration antigen, is a neuron-speciÞ c vesicle 
coat protein.26 NSCL1 is the gene expressed 
predominantly in the developing nervous system.27 
Our rules indicate that if the gene is over-expressed, 

Table 4. 16 gene pairs with high prediction accuracy in the colon tumor-dataset.

1st – 2nd GenBank 
accession no.

Correctly-classiÞ ed sample 
number (accuracy)

α

T51571–J02854 56 (90%) 0.9

J02854–L41559 56 (90%) 0.9

M76378–M63391 52 (84%) 0.85

M63391–M76378 52 (84%) 0.85

M63391–Z49269 45 (73%) 0.85

M63391–X86693 53 (85%) 0.85

Z50753–H40095 55 (89%) 0.85

R87126–H81068 55 (89%) 0.85

X12671–J02854 56 (90%) 0.85

X12671–M26383 54 (87%) 0.85

M76378–M26383 55 (89%) 0.85

H40095–M36634 54 (87%) 0.85

R97912–J02854 55 (89%) 0.85

R97912–M26383 54 (87%) 0.85

R06601–X63629 54 (87%) 0.85

M36634–H08393 56 (90%) 0.85

Table 5. 8 genes with high prediction accuracy in the 
lung cancer dataset.

Unigene ID Correctly-classiÞ ed
sample number

(accuracy)

α

505266a 32 (82%) 0.75

Hs.95243 32 (82%) 0.75

Hs.25882 32 (82%) 0.75

Hs.275198 32 (82%) 0.75

36491a 32 (82%) 0.75

Hs.170225 33 (85%) 0.75

Hs.17258 29 (74%) 0.75

Hs.11556 31 (79%) 0.75

aThe Unigene ID is not available.
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the patients will be more likely to succumb to the 
CNS tumor. It coincides with the observation 
reported in.27

Colon tumor dataset
In this dataset, we identify 21 genes which can 
result to relatively efÞ cient prediction individually. 
Some of these genes have been proved to tightly 
link with the pathogenesis of colon tumor or other 
tumors. Desmin is identiÞ ed as one of three known 
hub cancer genes in colon cancer-speciÞ c gene 
network.28 Our rules indicate that the gene is down-
regulated in colon tumor samples. The same 
conclusion is provided in.29 The gene CRP encodes 
a member of the cysteine-rich protein (CSRP) 
family. This gene family includes a group of LIM 
domain proteins, which may be involved in 
regulatory processes important for development 
and cellular differentiation. The LIM/double zinc-
Þ nger motif found in this gene product occurs in 
proteins with critical functions in gene regulation, 
cell growth, and somatic differentiation. This gene 
has been reported to be associated with several 
cancers.30–32 MONAP belongs to angiogenesis-
related genes. Its overexpression is associated with 

the pathogenesis and progression of a variety of 
cancers.33–37 Our rules imply that gene MONAP is 
up-regulated in colon tumor samples. It is 
consistent with the established notion. Moreover, 
just as Desmin, MONAP is also identiÞ ed as one 
of three known hub cancer genes in colon cancer-
speciÞ c gene network.28 hnRNP belongs to the 
subfamily of ubiquitously expressed heteroge-
neous nuclear ribonucleoproteins which are asso-
ciated with pre-mRNAs in the nucleus and appear 
to influence pre-mRNA processing and other 
aspects of mRNA metabolism and transport. Thus 
its dysregulation may cause the occurrence of 
cancers. Hevin encodes the protein which is 
implicated in tumor cell growth, differentiation 
and metastasis, and may play the role of tumor-
suppressor.38–44 Our rules show that if Hevin is 
down-regulated in the colon tissue samples, then 
the samples are more likely from the colon tumor 
patients. It rightly defends the argument that Hevin 
is the repressor of tumors. EF1R is associated with 
several functions including translation elongation, 
actin Þ lament depolymerization, apoptosis, and 
ubiquitin-mediated protein degradation, etc. Its 
role in oncogenesis has been investigated by some 
researchers.45–49 Calgizzarin encodes the protein 
which belongs to the group of S100 proteins 
involved in the Ca2+ signaling network, and 
regulates intracellular activities such as cell growth 
and motility, cell cycle progression, transcription, 
and cell differentiation50,51 Chromosomal rear-
rangements and altered expression of this gene 
have been implicated in tumor metastasis. In,52 
calgizzarin is characterized as a proteomic marker 
of colorectal cancer due to its significant up-
regulation in colorectal carcinoma. The same 
observation is provided in.53–55 Tanaka et al detect 

Table 6. 8 gene pairs with high prediction accuracy in the lung cancer dataset.

1st – 2nd Unigene ID Correctly-classiÞ ed sample 
number (accuracy)

α

Hs.169611–Hs.285701 31 (79%) 0.75

Hs.285701–Hs.132415 29 (74%) 0.75

Hs.285701–Hs.57655 30 (77%) 0.75

Hs.57655–Hs.8595 31 (79%) 0.75

Hs.184542–Hs.58323 31 (79%) 0.75

Hs.262823–Hs.8595 31 (79%) 0.75

Hs.262480–Hs.772 32 (82%) 0.75

Hs.112193–505266a 31 (79%) 0.75

Table 7. 4 genes with high prediction accuracy in the 
DLBCL dataset.

Probe ID Correctly-classiÞ ed
sample number

(accuracy)

α

U70663_at 44 (76%) 0.7

M17863_s_at 44 (76%) 0.7

U48865_s_at 43 (74%) 0.7

U90543_at 45 (78%) 0.7
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that the expression of human calgizzarin is 
remarkably elevated in colorectal cancers compared 
with that in normal colorectal mucosa by a large 
scale random cDNA sequencing and Northern blot 
analysis.56 Our rules express the same tendency 
that calgizzarin is over-expressed in colon tumors. 
Likewise, our rules demonstrate that TPM1 is 
down-regulated in colon tumor that coincides with 
the Þ nding reported in.57 Our rules exhibit that 
PCBD1 is up-regulated in colon tumor, but very 
few literatures reports the same result. Addition-
ally, there are several genes tightly associated with 
colon tumor among the marked gene pairs. In our 
rules, if MIF (macrophage migration inhibitory 
factor) is up-regulated, then the sample tends to 
come from tumor tissue. A number of investiga-
tions have demonstrated that MIF promotes colon 
tumor and the other cancers.58–63 Thus, our rules 
conform to the documented evidence. CDH3 has 
been found to be involved in a broad spectrum of 
cancers including colorectal cancer.64–71 The gene 
is identiÞ ed as accurate prognostic indicator of 
several tumors due to its marked up-regulation in 

these tumors.66,68,71,72 Our rules show that it is 
over-expressed in colon tumor as well.

In summary, the majority of important genes 
relevant to the pathogenesis of colon tumor are 
marked by our method. The other identified 
up-regulated genes include Hsp60, Human serine 
kinase mRNA, IPL1, HYPOTHETICAL PROTEIN 
IN TRPE 3’REGION and COL11A2 while down-
regulated genes encompass MYL9, ACTIN, 
MaxiK, MGP, GLUT4, MYOSIN HEAVY CHAIN 
and HCC-1. Some of them have deÞ nite biological 
meaning while the others remain to be explored. 
Here what we want to emphasize is that the genes 
distinguishing tumor from normal tissues well 
involve not only muscle-speciÞ c ones but also 
non-muscle-speciÞ c portion. This is in agreement 
with the Þ nding reported in.22 It also reß ects the 
complexity of cancerous pathogenesis.

Lung cancer dataset
In this dataset, we identify eight genes with 
comparatively strong prediction power individually. 

Table 8. 20 gene pairs with high prediction accuracy in the DLBCL dataset.

1st – 2nd Probe ID Correctly-classiÞ ed sample 
number (accuracy)

α

AFFX-BioC-3_at–M95925_at 46 (79%) 0.8

AFFX-BioC-3_at–U70663_at 48 (83%) 0.8

AFFX-M27830_5_at – X70811_at 49 (84%) 0.8

AFFX-M27830_5_at – U46744_at 49 (84%) 0.8

AC002450_at–M95925_at 47 (81%) 0.8

AC002450_at–U48213_at 47 (81%) 0.8

AC002450_at–HG4020-HT4290_s_at 48 (83%) 0.8

M95925_at–X70811_at 46 (79%) 0.8

U23028_at–U70663_at 47 (81%) 0.8

U23028_at–X70811_at 48 (83%) 0.8

U51903_at–U70663_at 48 (83%) 0.8

U51903_at–X70811_at 47 (81%) 0.8

U66702_at–U70663_at 47 (81%) 0.8

U66702_at–HG4020-HT4290_s_at 48 (83%) 0.8

U66702_at–U90543_at 52 (90%) 0.8

U70663_at–U83908_at 47 (81%) 0.8

U70663_at–X83412_at 46 (79%) 0.8

U70663_at–X77777_s_at 47 (81%) 0.8

U70663_at–X16660_cds1_s_at 46 (79%) 0.8

U70663_at–U46744_at 47 (81%) 0.8
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Our rules reveal that the reduced expression of each 
gene is correlated with the poor prognosis of the 
cancer. Owing to Þ ve out of the eight genes have 
no annotation available in raw dataset, we only 
learn about the other three genes: TCEAL1, 
GEMIN5 and TMPO. TCEAL1, also named as p21, 
which belongs to the Cip/Kip family of cyclin 

dependent kinases, has been identiÞ ed as a gene 
whose product is tightly associated with develop-
ment and metastasis of several cancers.73–77 Direct 
and indirect evidence has proved that a decrease in 
the expression levels of the gene might enhance 
tumor formation, progression and bad prognosis. 
GEMIN5 encodes the protein which is part of a 

Table 9. Comparison of best prediction accuracy for the CNS tumor dataset.

Methods
(feature selection + classiÞ cation)b

# Selected 
genes

# Correctly-classiÞ ed 
samples (accuracy)

α depended degree + decision rules 1 50 (83%)

[this work] 2 54 (90%)

Signal to noise ratios + k-NNs19 8 47 (78%)

Signal to noise ratios + Weighted voting19 1–200 46 (77%)

Signal to noise ratios + SVMs19 150 45 (75%)

Signal to noise ratios + SPLASH19 1–200 45 (75%)

Signal to noise ratios + TrkC19 1 40 (67%)

Signal to noise ratios + Staging19 1–200 41 (68%)

Signal to noise ratios + staging, k-NNs and TrkC19 1–200 48 (80%)

Signal to noise ratios + SVM, k-NNs and TrkC19 1–200 48 (80%)

HFW + C4.520 20 45 (75%)

HFW + NaiveBayes20 29 52 (86.67%)

Discretization + Single C4.512 74c 51 (85%)d

Discretization + Bagging C4.512 74c 53 (88%)d

Discretization + AdaBoost C4.512 74c 53 (88%)d

bThe methods include two sections: feature selection methods and classiÞ cation methods. The decision trees classiÞ cation methods are 
also involved in feature selection.
c74 is the number of the genes withheld for the actual learning process instead of the number of the genes contained in the decision trees, 
which is not provided in.12

dTenfold cross-validation accuracy is provided.

Table 10. Comparison of best prediction accuracy for the colon tumor dataset.

Methods
(feature selection + classiÞ cation)

# Selected 
genes

# Correctly-classiÞ ed
samples (accuracy)

α depended degree + decision rules 1 52 (84%)

[this work] 2 56 (90%)

HykGene + k-NNs, SVMs, C4.5, NB107 3 57 (92%)

MAVE + logistic discrimination108 50 52 (84%)

Clustering and rough sets attribute reduction + k-NNs109 6 49 (79%)

Clustering and rough sets attribute reduction + NB109 6 51 (82%)

Clustering and rough sets attribute reduction + C5.0109 6 56 (90%)

MRMR + NB110 9 58 (94%)

RBF + C4.5111 4 58 (94%)

ReliefF + C4.5111 4 53 (85%)

CFS-SF + C4.5111 26 55 (89%)
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large macromolecular complex localized to both 
the cytoplasm and the nucleus that plays a role in 
the cytoplasmic assembly of small nuclear 
ribonucleoproteins (snRNPs). In,78 Lee et al suggest 
that Gemin5 overexpression inhibts tumor cell 
motility so as to may play a role of suppressing 
metastatic progression. This conforms to our rules. 
We have not found any evidence indicating that the 
expression levels of TMPO were correlated with 
prognosis of cancers. But there are investigations 
showing that the gene is deregulated in various 
human tumors.79,80

In addition, we marked eight gene pairs with 
good prediction performance. Apart from the 

non-annotated genes, the involved genes 
encompass SMAC, PFDN2, FLJ10829, LOC51646, 
FLJ10326, FLJ12438, GYS10.145 and MSH5. 
Our rules imply that the decreased expression of 
these genes indicate a poor prognosis of NSCLC 
patients- relapse or metastasis. SMAC encodes an 
inhibitor of apoptosis protein (IAP)-binding 
protein. A wide variety of investigations have 
revealed the low expression levels of SMAC 
correlate with a worse prognosis in many tumor 
types including NSCLC.81–92 At the same time, 
some researchers propose the idea of treating 
cancers by enhancing SMAC expression in tumor 
cells.83,85–87,89 MSH5 encodes a member of the 

Table 11. Comparison of best prediction accuracy for the lung cancer dataset.

Methods
(feature selection + classiÞ cation)

# Selected
genes

# Correctly-classiÞ ed
samples (accuracy)

α depended degree + decision rules 1 33 (85%)

[this work] 2 32 (82%)

HFW + C4.520 12 35 (90%)

HFW + NaiveBayes20 18 35 (90%)

FCBF + C4.520 12 31 (79%)

FCBF + NaiveBayes20 12 24 (62%)

CFS-SF + C4.520 13 26 (67%)

CFS-SF + NaiveBayes20 13 24 (62%)

ReliefF + C4.520 12 24 (62%)

ReliefF + NaiveBayes20 18 25 (64%)

Table 12. Comparison of best prediction accuracy for the DLBCL dataset.

Methods
(feature selection + classiÞ cation)

# Selected 
genes

# Correctly-classiÞ ed
samples (accuracy)

α depended degree + decision rules 1 48 (78%)

[this work] 2 52 (90%)

Signal to noise ratios + Weighted voting24 13 44 (76%)

Signal to noise ratios + k-NNs24 9 41 (71%)

Gradient descent algorithm + SVMs24 unknowne 45 (78%)

HFW + C4.520 22 44 (76%)

HFW + NaiveBayes20 19 50 (86%)

FCBF + C4.520 27 27 (47%)

FCBF + NaiveBayes20 27 31 (53%)

ReliefF + C4.520 22 25 (43%)

ReliefF + NaiveBayes20 19 31 (53%)

eNo related data is provided.
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mutS family of proteins that are involved in DNA 
mismatch repair or meiotic recombination (MMR) 
processes. It is a strong candidate for lung cancer 
susceptibility as deÞ ciency of MMR has been 
documented to have a role in lung cancer.93 Hence, 
it is quite possible that the downregulation of the 
gene results to unfavorable clinical outcome of 
tumors.

DLBCL dataset
In this dataset, we marked four genes with relatively 
excellent prediction ability individually. The four 
genes are EZF, IGF2, CEBPE and BTF1. Our rules 
indicate that elevated expression of EZF, CEBPE 
or BTF1 may cause a worse prognosis of DLBCL 
while abundant expression of IGF2 implies a better 
prognosis. In,93 IGF2 is also identiÞ ed as a positive 
indicator of DLBCL prognosis. Whereas previ-
ous investigation indicates that these genes are 
involved in cancerous pathogenesis, further 
biological insights remain to be clariÞ ed.

Some genes lying in the gene pairs we selected 
in the dataset maybe have important biological 
relevance. DBP is responsible for high, tissue-
speciÞ c expression of albumin in fully differenti-
ated hepatocytes, which is expressed by adult not 
fetal liver cells, and is quickly down-regulated in 
proliferating hepatocytes.94 Our rules indicate that 
if the gene is down-regulated in one DLBCL 
patient, then the patient is inclined to have a favor-
able prognosis. That sounds reasonable. TGM2 
encodes the protein which is the enzyme that cata-
lyzes the crosslinking of proteins and appears to 
be involved in apoptosis. Oudejans et al point out 
that differences in apoptosis resistance occurring 
between DLBCL samples link up with distinct 
clinical outcome.95 Since the abundant expression 
of TGM2 activates the induction of the apoptosis, 
the upregulation of the gene might mean an 
excellent prognosis. Our rules reß ect the tendency. 
In addition, in,96 Mishra et al suggest that TGM2 
modiÞ cation of p53 oncoprotein could be an addi-
tional mechanism whereby TGM2 could facilitate 
apoptosis. In,97 Mangala et al hold that TGM2-
induced alterations in the extracellular matrix could 
effectively inhibit the process of metastasis. In,98 

Xu et al argue that TGM2 acts as an inhibitor of 
tumor progression in combination with another 
gene. PDCD4 encodes a protein localized to the 
nucleus in proliferating cells which is thought to 
play a role in apoptosis but the speciÞ c role has not 

yet been determined. Our rules imply that decreased 
expression of the gene is associated with a good 
prognosis. It appears to contradict with some pre-
vious reports,99–103 whereas Lankat-Buttgereit et al 
point out that the function of Pdcd4 might be cell 
type speciÞ c and a role for Pdcd4 in apoptosis or 
as a tumor suppressor might be limited to certain 
cell types.104 The other identified genes like 
HRES-1, DTNA,VIPR1, BTF1, HAB1, PTPRN2, 
EIF2B, IQGAP2 etc., overall possess strong class 
discriminative power, while their biological 
mechanism indicating the clinical outcome of 
DLBCL or other tumors remain unclear.

Conclusion
Using gene expression patterns to conduct 
classiÞ cation or prediction of cancer is often faced 
with the dilemma: genes (features) far outnumber 
samples (instances), which will bring about weak 
prediction efÞ ciency or effect if the model is not 
chosen reasonably. Another concern is the inter-
pretability of the prediction model when biologists 
and clinician care for your investigation. Here we 
employ feature selection to overcome the Þ rst dif-
Þ culty and decision rules to handle the second 
trouble. We propose one way of feature selection 
on the basis of the depended degree, a concept from 
rough set theory. As the canonical deÞ nition of the 
depended degree is too stringent to perform feature 
selection well, we extend its deÞ nition under soft 
computing consideration. We deÞ ne the concept 
of α depended degree, whereby we are capable of 
screening highly discriminative features. Addition-
ally, our work is in accordance with the principle 
of Occam’s razor: when deciding among many 
models which make equivalent predictions, choose 
the simplest one. For this purpose, we only use 
single genes or gene pairs to build decision rules, 
which are used to execute prediction of cancer. 
Results demonstrate that our models work well in 
that the picked single genes and gene pairs overall 
give rise to excellent prediction, and meanwhile 
some biologically signiÞ cant genes are identiÞ ed. 
In general, our method is simpler and more inter-
pretable than most of previously proposed 
approaches, since our model is based on rules and 
our rules are created via very few genes. Moreover, 
our model is robust as we are able to tune our 
parameters to meet different datasets. Indeed, 
through comparison, we discover our method out-
performs or at least match other algorithms in 
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simplicity and efÞ cacy. It is not strange at all that 
one or two-gene models are able to result in 
accurate cancerous prediction because the single 
genes or gene pairs possibly are the biological or 
clinical indicators of some speciÞ c cancer or gen-
eral cancer. It appears that one or two gene predic-
tion models are overly simple in that the routine 
belief is that cancerous pathogenesis is involved 
in complex systems composed of multi-genes. 
Whereas our models do not violate the habitual 
notion in that we have various genes or gene pairs 
which can cause accurate prediction individually 
so as to be regarded as candidate markers of cancer. 
In contrast, some prediction models are not appli-
cable for they contain too many parameters (genes) 
so that overÞ tting happens easily. Similar idea is 
expressed in4,7,13,15,105 as well. Another advantage 
of our models is that signiÞ cant biomarkers can be 
identiÞ ed with ease thanks to the operation of few 
genes once while it is hard to assess which gene is 
more important by multi-gene models for they run 
on the basis of a group of genes.

We test our method on several gene expression 
datasets including CNS tumor, colon tumor, lung 
cancer and DLBCL. In each dataset, we identify 
several important genes with documented bio-
logical relevance to the malignancy or the cell type. 
In the CNS tumor dataset, some signiÞ cant genes 
like GPS2, beta-NAP, KIAA0220 gene, NSCL1 
etc., are identiÞ ed. In the colon tumor dataset, we 
succeed in choosing the genes highly related to 
colon tumor or other tumors. They include Desmin, 
CRP, MONAP, hnRNP, Hevin, EF1R, calgizzarin, 
TPM1, PCBD1, MIF etc., wherein calgizzarin 
has been emphasized as a proteomic marker of 
colorectal cancer.52 In the lung dataset, TCEAL1, 
GEMIN5, TMPO, SMAC, MSH5 etc. genes asso-
ciated with the pathogenesis and progression of a 
variety of cancers are marked by us. In the DLBCL 
dataset, IGF2, DBP, TGM2, PDCD4 etc., are iden-
tiÞ ed. Their close relationship with tumor occur-
rence, progression, metastasis and relapse has been 
widely explored.

Generally speaking, most of the genes associated 
with tumors encode the proteins involved in cell 
growth, motility and differentiation, apoptosis, 
angiogenesis, metabolism, chromosomal rearrange-
ment and translocation, and immune reaction. It is 
worth noting that whereas there may exist a few 
particular markers for some speciÞ c tumor, a majority 
of tumor markers might be shared by several 
tumors. In addition, it is possible that the repressor 

of some tumor acts as the promoter of another 
tumor. And it is not impossible that the enhancer of 
some tumor in one stage transforms into the inhib-
itor of the same tumor during the other stage.

Another issue concerned with molecular predic-
tion of cancer is whether the prediction perfor-
mance of one gene or gene set is proportional to 
its biological interest. We identify some genes 
which own strong prediction power while their 
biological or clinical involvements remain unobvi-
ous. Whether these genes are indeed correlated to 
the pathogenesis of cancer, or merely coincidence? 
This is an important problem, deserving further 
investigation.

In summary, our method uses very few genes 
to build rule classiÞ ers of cancer. These classiÞ ers 
can carry out comparatively accurate prediction. 
The efÞ cacy of our method has been manifested 
to be satisfactory by testing on four gene expres-
sion datasets. Our follow-up study is to examine 
our method by more microarray data, including 
multi-class datasets. In addition, we plan to design 
more powerful and robust rule classiÞ ers in con-
junction with other machine learning algorithms.

Methods and Materials
Rough sets
In reality, when we are faced with a heap of data, 
we often want to learn about them with already 
known knowledge. However, a majority of data 
cannot be precisely deÞ ned by known knowledge. 
Thus, in rough set theory, Pawlak describes ill-
deÞ ned data by designing two concepts: upper 
approximations and lower approximations, based 
on the equivalence relation, which is also referred 
to as one knowledge on the studied object set.

DeÞ nition 1 Let U be a universe of discourse, 
X ⊆ U, and R is an equivalence relation on U. U/R 
represents the set of the equivalence class of U 
induced by R. R *  X, R 

*
 
 X, br(R, X), pos(R, X) and 

neg(R, X) represent the lower approximation, upper 
approximation, boundary region, positive region and 
negative region of X on R in U, respectively, where
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If R * X = R * X, then X is called deÞ nable or the 
precise set on R; otherwise X is called indeÞ nable 
or the rough set on R.6

The data studied by rough set theory are mainly 
organized in the form of decision tables. One deci-
sion table can be represented as S U A C D= =( , ),∪  
where U is the set of samples, C the condition 
attribute set and D the decision attribute set. In the 
decision table, we deÞ ne the function Ia that maps 
a member (sample) of U to the value of the mem-
ber on the attribute a (a ∈ A), and an equivalence 
relation R(A’) induced by the attribute subset 
A’ ⊆  A as: for x, y ∈ U, xR(A’) y if and only if 
Ia(x) = Ia(y) for each a ∈ A’.

In,17 Pawlak deÞ nes a decision logic language 
(DLL) for decision table S U A C D= =( , ) ∪  as: 
each (a, v) is an atomic formula, where a ∈ A and 
v ∈ Va (set of all the values of a); if ϕ and ψ are 
formulas, then so are ¬ϕ, ϕ∧ψ, ϕ∨ψ, ϕ→ψ, and 
ϕ↔ψ. The semantics of DLL are deÞ ned through 
the model of decision tables. The satisÞ ability of 
a formula ϕ by an object x in S, denoted by x  Sϕ 
or for short x  ϕ if S is understood, is deÞ ned by 
the following conditions:

(1) x  (a, v) if and only if Ia(x) = v,

(2) x  ¬ϕ if and only if not x  ϕ,

(3) x  ϕ∧ψ if and only if x  ϕ and x  ψ,

(4) x  ϕ∨ψ if and only if x  ϕ or x  ψ,

(5) x  ϕ→ψ if and only if x  ¬ϕ∨ψ,

(6) x  ϕ↔ψ if and only if x  ϕ → ψ and x  ψ→ϕ.

We call the set mS(ϕ) = {x ∈ U | x  Sϕ} the 
meaning of formula ϕ in decision table S. mS(ϕ) 
is simply written as m(ϕ) if S is understood. On 
the other hand, we call ϕ a description of object 
set m(ϕ). Obviously, the following properties 
hold:

(a) m((a, v)) = {x ∈ U | Ia(x) = v},
(b) m(¬ϕ) = ∼m(ϕ),
(c) m(ϕ∧ψ) = m(ϕ) ∩ m(ψ),
(d) m(ϕ∨ψ) = m(ϕ) ∪ m(ψ),
(e) m(ϕ→ψ) = ∼m(ϕ) ∪ m(ψ),
(f)  m(ϕ↔ψ) = (m(ϕ) ∩ m(ψ)) ∪ (∼m(ϕ) ∩ ∼m(ψ)).

In rough set theory, the depended degree of an 
attribute subset P by an attribute subset Q is 
denoted by γ p(Q) and is deÞ ned as

 
γP Q

Q

U

P
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where |POS ( )| = | ( , ) |
/ ( )

P
Q pos P  X

X U R Q∈

∪  represents the 

size of the union of the positive region of each 
equivalence class in U/R(Q) on P in U, and U  
represents the size of U (set of samples).

If Q is the decision attribute D, and P a subset 
of condition attributes, then γ p(D) indicates the 
depended degree of the condition attribute subset 
P by the decision attribute D. It means that, to what 
degree, P can discriminate the distinct classes of D. 
Thus, γ p(D) rightly reß ects the classiÞ cation power 
of the subset P of condition attributes. The greater 
γ p(D) is, the stronger classification ability 
P inclines to possess.

Rough set theory tries to discover the simplest 
decision rules with the equivalent explaining 
power and classiÞ cation performance as more 
complicated rules. One decision rule with the form 
of “A ⇒ B” indicates that “if A, then B”, where A 
is the description of condition attributes and B the 
description of decision attributes. The conÞ dence 
of a decision rule A ⇒ B is deÞ ned as:

 confidence 
support 

support 
( )

( )

( )
,A B

A B

A
⇒ =

∧
 

where support (A) denotes the proportion of the 
samples satisfying A and support (A ∧ B) the pro-
portion of the samples satisfying A and B simulta-
neously. According to the DLL, the conÞ dence of 
a decision rule A ⇒ B is rewritten as:

 
confidence ( )

( ) ( )

( )
.A B

m A m B

m A
⇒ =

∩

 

The conÞ dence of a decision rule implies the 
reliable degree of the rule. If one decision rule has 100% 
conÞ dence, we call it the consistent decision rule.

In the previous studies of classifying cancer by 
gene expression proÞ les using rough set theory, 
the measure of depended degree is often set as the 
basis of ranking genes.9,10 However, as the 
canonical deÞ nition of depended degree is overly 
stringent, sometimes it is not able to rightly express 
the discriminatory power of features. Hence, here 
we extend the deÞ nition of depended degree under 
soft computing consideration.

DeÞ nition 2 Let U be a universe of discourse, 
X ⊆ U, 0 # α # 1 and R is an equivalence relation 
on U. pos(R, X, α) representing the α positive 
region of X on R in U, is deÞ ned as:

pos R X Y U R Y X Y(  , , ) { / | | | / | | }.α α= ∈∪ ∩ $
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Correspondingly, the α depended degree of an 
attribute subset P by an attribute subset Q, denoted 
by γ p(Q, α), is deÞ ned as:

 γ P Q
Q

U
( , ) =

|POS ( , )|

| |
α

αP  

where |POS ( , )| = | ( , ,  |
/ ( )

P
Q pos P X

X U R Q

α α
∈

∪   )  represents the 

size of the union of the α positive region of each 
equivalence class in U/R (Q) on P in U.

Obviously, the deÞ nition of α depended degree 
is a generalization of the deÞ nition of depended 
degree as when α equals to 1, both deÞ nitions are 
equivalent. We choose α depended degree instead 
of depended degree as the basis of screening 
features. Once α value is determined, we only 
choose the genes or gene pairs with 1 of γ p(D, α) 
value to build classiÞ cation (decision) rules. Sup-
pose g is one of the selected genes and U sample 
set. U/R(g) = {c1(g), c2(g), …, cn(g)} represents 
the set of the equivalence class of samples induced 
by R(g). Two samples s1 and s2 belong to the same 
equivalence class of U/R(g) if and only if they have 
the same value on g. In addition, we represent the 
set of the equivalence class of samples induced by 
R(D) as U/R(D) = {d1(D), d2(D), …, dm(D)}, where 
D is the class (decision) attribute. Two samples s1 
and s2 belong to the same equivalence class of U/
R(D) if and only if they have the same value on D. 
For each ci(g) (i = 1, 2, …, n), if there exists some 
dj(D) ( j ∈ {1, 2,…, m}), satisfying |ci(g) ∩ dj(D)|/
|ci(g)| $ α, then we generate the classiÞ cation rule: 
A(ci(g)) ⇒ B(dj(D)), where A(ci(g)) is the formula 
describing the sample set ci(g) by g value and 
B(dj(D)) is the formula describing the sample set 
dj(D) by the class value. In the case of gene pairs, 
we construct classiÞ cation rules through the same 
strategy. Here what we want to emphasize is that 
only the single genes or gene pairs chosen by all 

the leave-one-out training sets are used for building 
classiÞ cation rules.

The conÞ dences of the rules generated by our 
approach depend on α. The following theorem 
states the relationship between α and the conÞ -
dences of the induced rules.

Theorem 1 The conÞ dence of each induced 
decision rule by our way is no less than α.

Proof. For any condition attribute subset P of size 
one or two, if γ p(D, α) = 1, then P will be chosen by 
our way. Suppose the decision rule A ⇒ B is produced 
by P. Then by our way, we have m(A) ∈ U/R(P), 
m(B) ∈ U/R(D) and |m(A) ∩  m(B)|/|m(A)| $ α. As 
confidence ( ) ( ) ( ) / ( ) ,A B m A m B m A⇒ = ∩  the 
conclusion is founded.

Therefore, by tuning α value, we can not only 
control the size of the set of selected single genes 
or gene pairs, but also ensure the conÞ dence of 
derived decision rules.

For the cancer classiÞ cation problem, every 
microarray data collected can be represented as a 
decision table with the form of Table 13. In the 
microarray data decision table, there are m samples 
and n genes. Every sample is assigned to one class 
label. g(x, y) represents the expression level of gene 
y in sample x.

Dataset
CNS tumor dataset
The dataset is about patient outcome prediction for 
central nervous system embryonal tumor.19 In this 
dataset, there are 60 observations, each of which is 
described by the gene expression levels of 7129 
genes and a class attribute with two distinct 
labels—Class 1 (survivors) versus Class 0 (failures). 
Survivors are patients who are alive after treatment 
while the failures are those who succumbed to their 
disease. Among 60 patient samples, 21 are labeled 
as “Class 1” and 39 are labeled as “Class 0”.

Table 13. Microarray data decision table.

Samples Condition attributes (genes) Decision attributes (classes)

 Gene 1 Gene 2 … Gene n Class label

1 g (1, 1) g (1, 2) … g (1, n) Class (1)

2 g (2, 1) g (2, 2) … g (2, n) Class (2)

… … … … … …

… … … … … …

m g (m, 1) g (m, 2) … g (m, n) Class (m)
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Colon tumor dataset
The dataset contains 62 samples collected from 
colon-cancer patients.22 Among them, 40 tumor 
biopsies are from tumors (labeled as “negative”) 
and 22 normal (labeled as “positive”) biop-
sies are from healthy parts of the colons of the 
same patients. Each sample is described by 
2000 genes.

Lung cancer dataset
The dataset contains 39 NSCLC (Non-Small Cell 
Lung Cancer) samples, 24 of which are from 
patients with metastasis (labeled as “relapse”) 
and 15 are from the patients with disease-free 
based on both clinical and radiological testing 
(labeled as “non-relapse”).23 The total number of 
genes is 2880.

DLBCL dataset
The dataset is about patient outcome prediction 
for DLBCL.24 The total of 58 DLBCL samples are 
from 32 cured patients (labeled as ‘cured’) and 
26 refractory patients (labeled as ‘fatal’). The gene 
expression proÞ le contains 6817 genes.

Table 14 summarizes the four gene expression 
datasets.

Data preprocessing
As there exist a few missing attribute values in the 
lung cancer dataset, we Þ rst Þ ll each of them with 
the mean of all the attribute values from the same 
class of samples as the sample containing the miss-
ing value.

Because rough set theory is suitable for 
handling discrete attributes, we discretize all the 
training set decision tables. We utilize the 
entropy-based discretization method, proposed 
by Fayyad et al.21 This algorithm recursively 
applies an entropy minimization heuristic to 
discretize the continuous-valued attributes. The 
stop of the recursive step for this algorithm 
depends on the minimum description length 
(MDL) principle. We implement the discretization 
in the Weka package.106 Every continuous-valued 
attribute is discretized into a one-category, two-
category or three-category attribute. Table 15 
shows the discretized decision table for the CNS 
tumor with the Þ rst sample left out. We execute 

Table 14. Summary of the four gene expression datasets.

Dataset # Original genes Class # Samples

CNS Tumor 7129 Class 1/Class 0 60 (21/39)

Colon Tumor 2000 negative/positive 62 (40/22)

Lung Cancer 2880 relapse/non-relapse 39 (24/15)

DLBCL 6817 cured/fatal 58 (32/26)

Table 15. Discretized CNS tumor decision table with the Þ rst sample left out.

Samples Condition attributes (genes)f Decision attributes (classes)

 Gene 1 … Gene 11 … Gene 18 … Gene 7129 Class label

1 ‘All’ … ‘(-inf-187]’ … ‘(−330-inf]’ … ‘All’ Class 1

2 ‘All’ … ‘(-inf-187]’ … ‘(−330-inf]’ … ‘All’ Class 1

… … … … … … … … …

20 ‘All’ … ‘(-inf-187]’ … ‘(−330-inf]’ … ‘All’ Class 1

21 ‘All’ … ‘(-inf-187]’ … ‘(−330-inf]’ … ‘All’ Class 0

22 ‘All’ … ‘(187-inf]’ … ‘(−330-inf]’ … ‘All’ Class 0

… … … … … … … … …

58 ‘All’ … ‘(-inf-187]’ … ‘(-inf−330]’ … ‘All’ Class 0

59 ‘All’ … ‘(-inf-187]’ … ‘(−330-inf]’ … ‘All’ Class 0

f‘All’ represents that one gene has the same value in all samples; ‘(-inf-x]’ represents ‘#x’; ‘(x-inf]’ represents ‘.x’.
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our algorithm for the feature selection and 
decision rule induction using this kind of tables.

Validation
We employ leave-one-out cross-validation approach. 
For the dataset containing n samples, each sample 
is left out in turn, and the learning algorithm is 
trained on all the remaining n-1 samples. Then the 
training result is tested on the left-out sample. The 
Þ nal estimate is the average of n test results.
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