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Long-acting antituberculous therapeutic nanoparticles
target macrophage endosomes

Benson J. Edagwa,*

Dongwei Guo," Pavan Puligujja,* Han Chen,* JoEllyn McMillan,*

Xinming Liu,* Howard E. Gendelman,*' and Prabagaran Narayanasamy*

*Department of Pharmacology and Experimental Neuroscience, and "Department of Pharmaceutical
Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA; and *Center for
Biotechnology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA

ABSTRACT Eradication of Mycobacterium tuberculosis
(MTB) infection requires daily administration of com-
binations of rifampin (RIF), isoniazid [isonicotinylhy-
drazine (INH)], pyrazinamide, and ethambutol, among
other drug therapies. To facilitate and optimize MTB
therapeutic selections, a mononuclear phagocyte (MP;
monocyte, macrophage, and dendritic cell)-targeted
drug delivery strategy was developed. Long-acting nano-
formulations of RIF and an INH derivative, pentenyl-
INH (INHP), were prepared, and their physicochemi-
cal properties were evaluated. This included the
evaluation of MP particle uptake and retention, cell
v1ab1]1ty, and antimicrobial efficacy. Drug levels reached 6
pg/10° cells in human monocyte-derived macrophages
(MDMs) for nanoparticle treatments compared with 0.1
pg/10° cells for native drugs. High RIF and INHP
levels were retained in MDM for >15 d following
nanoparticle loading. Rapid loss of native drugs was
observed in cells and culture fluids within 24 h. Antimi-
crobial activities were determined against Mycobacte-
rium smegmatis (M. smegmatis). Coadministration of
nanoformulated RIF and INHP provided a 6-fold in-
crease in therapeutic efficacy compared with equivalent
concentrations of native drugs. Notably, nanoformu-
lated RIF and INHP were found to be localized in
recycling and late MDM endosomal compartments.
These were the same compartments that contained the
pathogen. Our results demonstrate the potential of
antimicrobial nanomedicines to simplify MTB drug
regimens.—Edagwa, B. J., Guo, D., Puligujja, P., Chen,
H., McMillan, J., Liu, X., Gendelman, H. E., Narayana-
samy, P. Long-acting antituberculous therapeutic nano-
particles target macrophage endosomes. FASEB J. 28,
5071-5082 (2014). www.fasebj.org

Abbreviations: CFU, colonyforming unit; DCM, dichloro-
methane; DLS, dynamic light scattering; DMEM, Dulbecco’s
modified Eagle’s medium; HIV, human immunodeficiency vi-
rus; INH, isonicotinylhydrazine (isoniazid); INHP, pentenyl-
INH; MCSF, macrophage colony stimulating factor; MDM,
monocyte-derived macrophage; MTB, Mycobacterium tuberculosis;
MTT, 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bro-
mide; ND, native drug; NP, nanoparticle; PBS, phosphate-
buffered saline; PDI, polydispersity index; PLGA, poly(D,L-
lactidecoglycolide) acid; PVA, polyvinyl alcohol; RIF, rifampin;
SDS, sodium dodecyl sulfate; SEM, scanning electron micros-
copy
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Key Words: Mycobacterium tuberculosis + Mycobacterium smeg-
matis « immunoisolation + MDM - subcellular trafficking

MycoBactERIUM TUBERCULOSIS (MTB) is an immediate pub-
lic health menace. This is heralded by its ease of
transmission, delay in diagnosis, communicability, ther-
apeutic adherence, and resistance. Infection is sped by
comorbid states such as nutritional deficiencies and
human immunodeficiency virus (HIV) infection (1, 2).
Disease morbidity and mortality remain common and
significant (3, 4). Indeed, the numbers of infected
people worldwide now exceed 14 million (5). The
routine use of directly observed antimicrobial therapy
while ensuring microbial eradication is cumbersome
(6). Source case-patient investigations (7), effective
treatment regimens (8, 9), and development of novel
drugs (10-13) are certainly of immediate need.

The mechanisms of MTB persistence provide clues
toward what is needed to improve treatment and pre-
ventive outcomes (14). MTB transmitted by infectious
aerosols are ingested and replicate within endosomes
of alveolar macrophages (AMs) and then spread the
organism to adjoining lymph nodes (15-17). AM
phagosomes harbor MTB but fail to eliminate the
organism. Rapid cell fusion leads to multinucleated
giant cell formation and an inability of the host to affect
innate antibactericidal responses (18). Indeed, the
mycobacterium manages the endocytic pathway for its
own survival (19, 20). Phagosome maturation is pre-
vented by MTB through its abilities to disrupt phagoly-
sosomal fusion events (20-23). Consequently, MTB
remains dormant for long time periods, measured in
years, during which time it is sequestered in macro-
phage granulomas (24). Microbial latency is termi-
nated during stressful events such as malnutrition,
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immune deficiencies, or coinfections with viral, bacte-
rial, or parasitic agents (25, 26). These serve to enhance
mycobacterial growth and its inevitable dissemination
(27, 28).

Currently available drugs used to treat MTB require
long treatment intervals without interruption. This
ensures that the mycobacterium is targeted and antimi-
crobial activities are sustained (29). Others have asked
whether elimination of the microbe can be facilitated
(30). We reasoned that the use of drug targeting to
mononuclear phagocytes could facilitate cellular and
subcellular drug delivery to sites of active microbial
replication and as such would improve therapeutic
outcomes (31, 32). To this end, we designed a drug
nanocarrier system of rifampin (RIF) and isoniazid
[isonicotinylhydrazine (INH)], two commonly used
anti-MTB drugs that would bring them to subcellular
sites where the pathogen resides (33, 34). The hydro-
philic nature of INH restricts intracellular drug bio-
availability, as the drug is poorly encapsulated into
polymer-based nanodelivery systems. We posit that this
can be overcome by the synthesis of a hydrophobic INH
derivative, pentenyl-INH (INHP), which improves na-
noencapsulation into nanoparticles (NPs). Here we
demonstrate that antituberculous NPs can colocalize in
identical subcellular organelles to improve the thera-
peutic index and drug efficacy. These results were
shown using human monocyte-derived macrophages
(MDMs) as the target cell for Mycobacterium smegmatis
infection. Overall, our results demonstrate that specific
drug delivery schemes can improve outcomes for my-
cobacterial infection and as such have real translational
potential for human disease.

MATERIALS AND METHODS
Materials

RIF; INH; trans2-pentenal; fluoresceinamine isomer 1; poly-
(p,1-lactide-coglycolide) acid (PLGA) terminated, lactide:
glycolide 50:50; and Float-A-Lyser G2 were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Pooled human serum
was purchased from Innovative Biologics (Herndon, VA,
USA). Macrophage colony stimulating factor (MCSF) was
prepared from culture fluids recovered from 5/9m «3-18
cells [CRL-10154; American Type Culture Collection
(ATCC), Manassas, VA, USA] cultured in ATCC complete
growth medium (35). Rabbit anti-human antibodies to Rab 5,
7, 11, and 14 and Alexa Fluor 488 goat anti-rabbit IgG were
purchased from Santa Cruz Biotechnology (Dallas, TX, USA).
Protein A/G mix magnetic beads were purchased from
Millipore (Billerica, MA, USA).

Synthesis of INHP

Trans-2-pentenal was reacted with INH in ethanol at refluxing
temperature for 2 h, followed by concentration to half
volume. Ether was added to the mixture and kept overnight
for precipitation and then filtered and dried to obtain INHP,
as described previously (36). 'H-NMR was recorded on a
Varian Unity/Inova-500 NB (500 MHz; Varian Medical Sys-
tems Inc., Palo Alto, CA, USA). Chemical shifts are reported
in parts per million (ppm) downfield from TMS, using
residual CDCl, (7.27 ppm) as an internal standard. Data are
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reported as follows: chemical shift, multiplicity (s, singlet; d,
doublet; t, triplet; q, quartet; dd, doublet of doublet; m,
multiplet; and br, broad), coupling constants and integration.
'"H-NMR: & (ppm) 12.0 (1H, brs), 9.02 (2H, br d, J=5), 8.32
(1H, d, /=9), 8.03 (2H, br d, /=5), 6.56 (2H, m), 2.49 (2H,
m), and 1.30 (3H, t, J=7.5).

Preparation and characterization of the nanoformulations

PLGA NPs containing either RIF or INHP were prepared by
double emulsification using sonication. Briefly, PLGA was
dissolved in HPLC-grade dichloromethane (DCM). The drug
was then added to the DCM/PLGA solution and mixed to
obtain complete dissolution. This solution was added to 1%
polyvinyl alcohol (PVA) cooled in an ice bath and sonicated
using an ultrasonic processor (Cole Parmer, Vernon Hills, IL,
USA) at 20% amplitude for 10 min. Particle size, polydisper-
sity index (PDI), and surface charge ({ potential) were
determined by dynamic light scattering (DLS) using a
Malvern Zetasizer Nano Series Nano-ZS (Malvern Instru-
ments, Inc., Westborough, MA, USA). The suspension was
mixed overnight at room temperature to evaporate DCM and
then collected after 24 h and centrifuged stepwise to 8000 gat
5°C for 20 min. After the supernatant was decanted, the pellet
was washed twice in 25 ml of deionized water by centrifuga-
tion at 8000 g for 20 min. The particle size was determined by
DLS, and drug concentrations were determined by reversed-
phase high-performance liquid chromatography (HPLC)
with UV/Vis detection (37, 38).

Scanning electron microscopy (SEM)

SEM of the NPs was carried out as described previously (39)
using a Hitachi S4700 Field-Emission Scanning Electron
Microscope (Hitachi High Technologies America, Inc.,
Schaumburg, IL, USA).

Synthesis of fluorescent RIF and INHP NPs

Fluorescein-labeled PLGA NPs were prepared as described
previously (40). Briefly, PLGA was dissolved in DCM, followed
by the addition of N,N'-dicyclohexylcarbodiimide and A
hydroxysuccinimide (NHS) and stirred overnight at room
temperature. The urea byproduct was removed by filtration,
and the activated ester was used in the next step without
further purification. Fluoresceinamine in DMSO was added
to activated NHS ester in DCM and stirred in the dark
overnight at room temperature. DCM was then evaporated,
and the product was precipitated using distilled water. The
dye-labeled polymer was purified by repeated dissolution in
acetone and precipitation from ethanol and then lyophilized.
Dye-labeled PLGA was combined in a 3:1 ratio with nonla-
beled PLGA to manufacture dye-labeled NPs as described
above.

Monocyte isolation and culture

Human monocytes were obtained by leukapheresis from
HIV-1, HIV-2, and hepatitis B seronegative donors and puri-
fied by countercurrent centrifugal elutriation (41). Mono-
cytes were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% heatinactivated human
serum, 1% glutamine, 50 pg/ml gentamicin, 10 pg/ml, and
1000 U/ml MCSF at a cell density of 1 X 10° cells/ml at 37°C
in a 5% CO, humidified atmosphere (42). After 7 d, MDMs
were used for drug pharmacokinetics and antimicrobial as-
says.

EDAGWA ET AL.



MDM uptake and retention of NPs and native drugs (NDs)
were determined as described previously (43). Briefly, MDMs
were incubated with a range of drug concentrations, and cell
uptake determined over a 24 h period. Adherent MDMs were
washed 3 times with phosphate-buffered saline (PBS) and
scraped into 1 ml PBS. Cells were pelleted by centrifugation at
1000 g for 8 min at 4°C. The cell pellets were resuspended in
200 pl of HPLC-grade methanol, sonicated, and centrifuged
at 20,000 gfor 10 min at 4°C. The methanol extract was stored
at —80°C until drug analysis. For cell drug retention studies,
MDMs were exposed to drug for 24 h and washed 3 times with
PBS and fresh DMEM without drug was added. MDMs were
cultured for an additional 15 d with half medium exchanges
every other day. On d 1, 5, 10, and 15 following NP treatment,
MDMs were collected and methanol extracts prepared. The
cell extract samples were stored at —80°C until drug analysis
by HPLC.

Drug quantitation

INH, INHP, and RIF were quantitated by previously pub-
lished methods (34, 35). Briefly lyophilized NPs dissolved in
methanol or methanol cell extracts were injected (20 wl) in
duplicate onto a Waters Breeze HPLC system (Waters, Inc.,
Milford, MA, USA) equipped with a Waters Symmetry C18
column (250 X 4.6 mm X 5 pum) fitted with a C18 guard
cartridge. RIF was eluted using a mobile phase of acetoni-
trile/26 mM potassium phosphate, pH 2.6 (45:55) at a flow
rate of 1.0 ml/min and detected at 254 nm. INH and INHP
were eluted using a mobile phase of methanol/7 mM sodium
phosphate, pH 3.5 (42.5:57.5) containing 0.05% tetramethyl-
ammonium chloride at a flow rate of 1.0 ml/min and
detected at 254 nm. Drug levels were quantitated by compar-
ison of peak areas to standard curves of free drugs (0.025-100
ig/ml) in methanol.

Cytotoxicity

Cell viability was determined by the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay as de-
scribed previously (39). Briefly, MDMs were treated with
either individual drugs or combinations at concentrations of
200, 300, or 400 uM for 24 h. The cells were washed with PBS
and MTT solution (5 mg/ml) was added; the cells were
incubated for 30 min at 37°C, then washed with PBS. DMSO
was added and incubated for 15 min at room temperature.
Absorbance at 490 nm was quantitated using a SpectraMax
M3 microplate reader (Molecular Devices, Sunnyvale, CA,
USA).

Measurement of antimicrobial activity

After drug treatment for 24 h, MDMs were washed 3 times
with PBS and then given fresh medium without drug. Atd 1,
5, 10, and 15 following drug treatment, the MDMs were
infected with M. smegmatis (multiplicity of infection = 1).
Following 1 h of infection, cells were washed with PBS to
remove extracellular mycobacteria, and fresh medium was
added. After 24 h, the cells were washed twice with PBS and
scraped into 1 ml PBS. Both cell extract and media samples
were stored at —80°C until analysis for mycobacterial infec-
tion. Mpycobacterium infection was determined by counting
colony-forming units (CFU) as described previously (44).
Briefly, the cell suspension was treated with 0.25% sodium
dodecyl sulfate (SDS) and diluted 100 times. The diluted
samples were plated on 1.5% agar and incubated at 37°C for
3 d, and the number of CFU counted.

Subcellular particle localization

For confocal imaging, monocytes were cultured on a 4-well
Lab-Tek IT CC2 chamber slide (Nalge Nunc International,
Penfield, NY, USA) at a density of 0.5 X 10° cells/well in the
presence of 10% human serum and MCSF for 7 d. The cells
were treated with 300 wM of fluorescein-labeled RIF or INHP
NPs for 8 h at 37°C, washed 3 times with PBS, fixed with 4%
PFA for 30 min, permeabilized, and blocked with 0.1% Triton
and 5% bovine serum albumin in PBS and then quenched
with 50 mM NH,CI for 15 min. The cells were then washed
with 0.1% Triton X-100 and incubated with (1:50) Rab 5, Rab
7,Rab 11, and Rab 14 primary antibodies for 1 h at 37°C. The
cells were then washed and incubated with the secondary
antibody conjugated to Alexa Fluor 488 for 45 min at 37°C.
ProLong Gold antifade reagent with DAPI (Molecular
Probes-Life Technologies, Grand Island, NY, USA) was
added and slides were cover slipped and imaged with a Zeiss
LSM 510 microscope (Carl Zeiss, Inc., Thornwood, NY, USA).

Immunoisolation of subcellular compartments

Immunoisolation of NP-containing endocytic compartments
was performed as described previously (45). Briefly, MDMs
(45X10° cells) were treated with 300 pM RIF or INHP
nanoformulations for 8 h. MDMs were washed with PBS to
remove unincorporated NPs and scraped into homogeniza-
tion buffer [10 mM HEPES-KOH, pH 7.2; 250 mM sucrose; 1
mM EDTA; and 1 mM Mg(OAc),]. The cells were disrupted
by 15 strokes using a Dounce homogenizer. Nuclei and
unbroken cells were removed by centrifugation at 400 gfor 10
min at 4°C. Protein A/G paramagnetic beads (20 pl of slurry)
conjugated to Rab 5, Rab 7, Rab 11, or Rab 14 antibodies were
incubated with the supernatants for 24 h at 4°C. The endo-
cytic compartments were collected using a magnetic separa-
tor (Invitrogen-Life Technologies, Grand Island, NY, USA)
and drug content of the compartments was determined by
HPLC. Binding specificity was tested by exposing the beads to
the cell lysates. For mycobacterium quantification, MDMs
were exposed to M. smegmatis alone for 1 h and processed as
described for the nanoformulations with modifications.
Briefly, after incubation of the endosomal compartments with
the beads for 24 h, the beads were separated and the
compartments washed with sterile PBS. The compartments
were then diluted with sterile PBS containing 10% human
serum, sonicated for 2 s, treated with 0.25% SDS, vortexed for
30 s, and directly plated onto 1.5% agar plates. CFUs were
counted after 3 d of incubation at 37°C in a 5% CO,
humidified atmosphere.

Statistical analyses

Data analyses were carried out using Prism (GraphPad Soft-
ware, Inc., La Jolla, CA, USA). Significant differences in
cytotoxicity response were determined by l-way ANOVA
followed by Bonferroni’s multiple comparisons test.

RESULTS

Synthesis and characterization of INHP

INH is a hydrophilic drug, limiting intracellular uptake
and encapsulation into PLGA-based particles. This ul-
timately restricts drug bioavailability, resulting in fail-
ure to attain desired therapeutic levels in the body. To
improve on nanoencapsulation efficiency of INH, a
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Figure 1. Synthesis of INHP, NP morphology, and comparison between NP and ND uptake and retention in MDM. A) Schematic
of derivatization of INHP from INH. B) HPLC chromatograms of INH, INHP, and INHP after cell extraction. C, I) SEM images
of INHP (C) and RIF () NPs. D, G) MDM uptake of 300 uM INHP (D) or RIF (G) NPs or NDs over 24 h. £, H) MDM retention
of INHP (E) or RIF (H) over 15 d after treatment with 300 wM NPs or NDs. Data for cell uptake and retention are expressed
as averages * SEM of n = 3 replicates.

more hydrophobic derivative, INHP, was prepared by = Characterization of RIF and INHP NPs

Schiff base formation (Fig. 1A4). Analysis of INH and

INHP by HPLC demonstrated intracellular cleavage of ~ PLGA nanoformulations of RIF and INHP were pre-
the derivatizing promoiety to generate the parent drug  pared by sonication and characterized by DLS and
(Fig. 1B). In vitro efficacy of INH and INHP NDs against ~ SEM. RIF- and INHP-PLGA NPs were found to be
M. smegmatis revealed similar activity for both. similar in size and charge. The size and charge of RIF
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Figure 2. Antimicrobial activity of RIF and INHP NPs. A) Concentration-dependent uptake of RIF NP and ND. B, C)
Antimicrobial activity of 300 uM RIF (B) and INHP (C) NPs and NDs. MDMs were infected with M. smegmatis at d 1, 5, and 10
following drug treatment. Data are expressed as averages = sEM of n = 3 replicates.

NPs were 219 = 7 nm and —28.5 * 3.4 mV, respec-
tively, while INHP particles were 162 * 3 nm in size
with a charge of —23 * 2.8 mV. Both particles exhib-
ited a narrow PDI (0.11*+0.1 for RIF and 0.089%0.01
for INHP particles), indicating uniformity in size. The
morphologies of both RIF and INHP NPs were roughly
spherical, as determined by SEM (Fig. 1C, F). Drug
loading for RIF and INHP within the PLGA NPs was
found to be 10 and 5%, respectively. In contrast, the
ND INH achieved a drug loading of =1%. At concen-
trations of 300 wM, both RIF and INHP nanoformula-
tions did not result in cell toxicity as determined by the
MTT assay (data not shown).

MDM uptake and retention of nanoformulated drugs

Uptake and retention of nanoformulated drugs were
compared with that of NDs in MDM. As illustrated in
Fig. 1D, G, cell uptake of nanoformulated drugs was
3-fold higher for INHP and 10-fold higher for RIF than
uptake of NDs. The nanoformulations were retained in
the cells for up to 15 d (Fig. 1E, H) with drug levels of
0.2 ;,l,g/IO6 cells for INHP and 0.1 ;,Lg/lO6 cells for RIF
at d 15; in contrast, the NDs were not detectable after
the first 24 h. To determine the RIF concentration that
would provide maximum cell uptake, we treated MDM
with 200 to 400 wM nanoformulated RIF. As shown in Fig.
24, treatment with 300 and 400 uM provided similar cell
drug levels. At 2, 4, and 8 h, MDM uptake of 300 and 400
M RIF NPs was 2-fold higher than that for 200 wM.

Antimicrobial activities of the nanoformulations

Comparison of antimicrobial efficacy of the NDs and
nanoformulations was assessed in MDM infected with
M. smegmatis. Following a 24 h exposure of MDM to
either NDs or nanoformulations of RIF or INHP, cells
were infected with M. smegmatis from 1 to 10 d later,
and the number of CFUs was determined. NDs demon-
strated minimal antimicrobial effects at any time point
(Fig. 2B, C). However, nanoformulations of RIF and
INHP exhibited superior antimicrobial activity to NDs
at 1 and 5 d after drug loading. The antimicrobial
activities of INHP and RIF nanoformulations on d 1
and 5 were 1.6fold (d 1) and 1.34fold (d 5) greater than
that of the respective NDs. Antimicrobial efficacies of

ANTITUBERCULOSIS NANOPARTICLES AND MACROPHAGE ENDOSOMES

the nanoformulated drugs disappeared by d 10 after
drug loading.

To assess whether combination therapy would im-
prove antimicrobial activity, MDMs were treated with
various concentrations of RIF/INHP combinations of
either nanoformulations or NDs before M. smegmatis
exposure. We evaluated the effect of individual drug
concentration on mycobacterium suppression by vary-
ing the concentration of each drug used in combina-
tion for both NDs and the nanoformulations (Fig. 3).
Comparison of mycobacterium suppression profiles for
the nanoformulations and NDs followed a similar
trend. Combined RIF/INHP at 300/300 uM exhibited
the most sustained antimicrobial efficacy and enhanced
antimicrobial activity for both NDs (Fig. 3A) and nano-
formulations (Fig. 3B) compared with individual drugs
(Fig. 2B, C). Of significance, the 300/300 uM RIF/
INHP nanoformulations suppressed mycobacterial rep-
lication over a 10 d period. The antimicrobial activity
on d 1 and 5 after drug loading for the RIF/INHP
nanoformulations was 3- and 5-fold greater than for
native RIF/INHP. In the 300/200 uM RIF/INHP treat-
ments the differences in the activity against mycobacte-
rial replication was up to 4-fold higher in the nanofor-
mulation arm when compared with NDs on d 1 and 5
after drug loading. Treatment of MDM with 200/300
pM RIF/INHP resulted in a 2-fold difference in anti-
microbial efficacy between the nanoformuations and
the NDs. For NDs a concentration of 200 pM of either
drug in the combination suppressed mycobacterial
infection 1.3- to 1.7-fold on d 1 after drug loading but
was diminished by d 5. For nanoformulated drug
combinations, a combination of 300/300 pM RIF/
INHP provided 4.5- to 5-fold suppression of mycobac-
terial growth on d 1 and 5 after drug loading, while the
200/300 pwM RIF/INHP combination provided only
1.1- to 1.540old suppression. Of significance, no myco-
bacterium suppression was observed for either NDs or
the nanoformulations when infection occurred on d 10
after drug loading if the concentration of either drug in
the combination was reduced to 200 nM.

Confocal microscopy

To determine the subcellular localization of the nano-
formulations, MDMs treated with fluorescein-labeled
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replicates.

INHP and RIF NPs for 8 h were probed with antibodies
to Rab 5 (early), 7 (late), 11 (slow recycling) and 14
(fast recycling) endosomal compartments. Colocalization of
NPs and Rab compartments was determined by confocal
microscopy. Confocal imaging showed both INHP (Fig. 4)
and RIF (Fig. 5) NP distribution throughout the cytoplasm,
colocalizing with late (Rab 7) and recycling (Rab 11 and 14)
endosomal compartments.

Subcellular distributions of NPs and the
mycobacterium

The trafficking of the nanoformulations through endo-
somal compartments was compared with subcellular
sites of mycobacterial replication. Endosomal compart-
ments from drug-loaded and infected MDMs were
immunoisolated using magnetic beads coated with an-
tibodies to Rab 5, 7, 11, and 14 compartments (46).
Drug and mycobacterium levels were determined in
each compartment. As shown in Fig. 6, the RIF and
INHP NPs were distributed mainly to late endosomal
(Rab 7) and recycling endosomal (Rab 11 and Rab 14)
compartments (Fig. 6B, C, respectively). Similarly, my-
cobacteria were found in all the endosomal compart-
ments (Fig. 6D), with the majority in Rab 7 (late) and
Rab 14 (fast recycling) endosomes. These data demon-
strate that the drug NPs traffic to the same subcellular
compartments where the mycobacterium replicates
(Fig. 6B-D).

DISCUSSION

A fundamental limitation in the treatment of MTB is
the long duration of therapy required for infection
cure. This has been complicated by multidrug-resis-
tant MTB strains unresponsive to traditional therapy.
The recalcitrance of MTB to therapy is likely a result
of its achieving a dormant state in the host. Since
virtually all classes of antibiotics require bacterial
replication for their action, the nonreplicating MTB
is thought to render it phenotypically resistant to
bactericidal antibiotics. MTB drug discovery efforts

5076  Vol. 28 December 2014

The FASEB Journal - www.fasebj.org

have been guided by the notion that MTB achieves a
latent state as the result of specific interactions with
the host, particularly residence in tuberculous gran-
ulomas (47). This belief increases the imperative to
understand and overcome MTB-specific mechanisms
facilitating its dormancy.

Understanding the trafficking pathways of myco-
bacteria and antimicrobial therapies inside the cell is
essential to developing ideal drug delivery systems.
This would ensure targeted drug deliveries to myco-
bacterium reservoirs, reduction in the duration of
therapeutic treatment, and a decline in systemic
toxicities. Earlier important studies on mycobacte-
rium trafficking pathways reported in literature have
focused on the identification of mechanisms by
which mycobacteria evade degradation by host mac-
rophages (20, 23, 26, 48, 49). Despite these reports,
much is unknown about which endosomes contain
the pathogens and the anti-MTB therapy. This
formed a sound basis for this work aimed at investi-
gating on the subcellular distribution of the antitu-
berculous NPs and M. smegmatis in MDM for quanti-
fication and antimicrobial activities.

At the outset of this work, we manufactured PLGA
NPs encapsulating RIF and INHP antituberculous
agents. Even though PLGA NPs have previously been
shown to exhibit relatively low entrapment efficiency, their
small spherical particle size, high surface charge, and
low PDI are known to increase bioavailability of many
drugs. PLGA has also been extensively used in for-
mulations because of its biocompatibility and biode-
gradability (50). Formulating RIF is highly desirable
to overcome the adverse side effects associated with
systemic distribution (43, 51, 52). We manufactured
PLGA NPs loaded with RIF by sonication. Drug
loading for these NPs was ~10% and the acceptable
particle size of 219 nm was slightly larger than that of
INHP NPs, perhaps due to the difference in loading
capacities of the nanocarriers. The high payloads
would improve the efficiency of drug delivery. When
compared with RIF NDs at the same concentration,
MDMs demonstrated preferential uptake for nano-
formulations as supported by significant enhance-
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Figure 4. Subcellular localization of INHP NPs. MDMs were treated with 300 uM dye-labeled INHP NPs for 8 h. Cells were fixed
with 4% PFA and probed with antibodies to Rab 5 (A), Rab 7 (B), Rab 11 (C), or Rab 14 (D). Primary antibodies were detected

with Alexa Fluor 488-labeled secondary antibody. Nanoparticles are shown in red, cell compartments in green, nuclei in blue,

and overlay of the compartment and particle in yellow.

ment of drug content of over 10-fold, increasing the
chances of maintaining therapeutic concentrations
inside the cell. We hoped that this could be of
advantage during antimicrobial efficacy studies. Sim-
ilarly, the retention behavior of RIF NPs was charac-
terized by an initial rapid drop in the amount of
detectable drug, followed by a slower and sustained
decrease over 15 d. In contrast, native RIF was
released from MDMs within 24 h.

Having prepared and characterized RIF PLGA NPs,
our next goal was to manufacture INHP PLGA NPs.

ANTITUBERCULOSIS NANOPARTICLES AND MACROPHAGE ENDOSOMES

Derivatization of INH to INHP was guided by reported
procedures that have demonstrated that hydrophobic
analogs of this drug improve nanoencapsulation into
various excipients (53). As reported earlier (36), INHP
was prepared by derivatization of INH with trans2-
pentenal and confirmed by NMR. Antimicrobial re-
sponse and MTT-based assay of both INH and INHP
free drugs indicated that the 2 NDs were of the same
activity. Neither of the two drugs elicited cell toxicity at
300 wM concentration. However, this derivatization
significantly improved INHP drug loading within the
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Figure 5. Subcellular localization of RIF NPs. MDMs were treated with 300 pM dye-labeled RIF NPs for 8 h. Cells were fixed with
PFA and probed with antibodies to Rab 5 (A), Rab 7 (B), Rab 11 (C), or Rab 14 (D). Primary antibodies were detected with Alexa
Fluor 488-labeled secondary antibody. Nanoparticles are shown in red, cell compartments in green, nuclei in blue, and overlay

of the compartment and particle in yellow.

PLGA NPs to 5%. In contrast, encapsulation of the
highly hydrophilic INH into PLGA NPs achieved drug
payloads of <1%. As reported in literature, this physical
interaction could be explained by the lipophilic nature
of INH derivatives, characterized by high partition
coefficient values of ~3.2 (36, 54).

SEM images revealed that RIF- and INHP-PLGA NPs
are roughly spherical in shape with smooth surfaces.
These morphologies have previously been observed for
other PLGA NPs. The NPs had a PDI < 0.11, indicating
no aggregation of particles. Lack of aggregation was
further supported by high negative {-potential values
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that would give rise to charge repulsion between the
particles, thereby promoting even distribution. Previ-
ous studies in our laboratory have shown that MDM
have high preference for particles with a stronger
charge (55). High NP uptake by MDM would ensure
sufficient drug levels inside the cell where the patho-
gens replicate.

The size of the manufactured INHP NPs was found to
be 162 nm, which makes them ideal for prolonged
circulation in the body (55-58). In addition to en-
hanced uptake by MDM, INHP NPs were retained
inside the cell for >15 d. This sustained retention
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Figure 6. A) Schematic diagram of immunoisolation of NPs and M. smegmatis-containing endosomes. MDMs were treated with
NPs or M. smegmatis side by side. MDMs were then washed in PBS and ruptured in homogenization buffer. Nuclei and unbroken
cells were removed by centrifugation. Protein A/G paramagnetic beads conjugated to antibodies were incubated with the
supernatants, and the beads containing endosomal compartments were washed and collected on a magnetic separator. Drug
content of each compartment was determined by HPLC after sonication. For mycobacterium quantification, the compartments
were diluted with sterile PBS (containing 10% human serum), treated with 0.25% SDS, and loaded onto agar plates for CFU
counting. B-D) Following immunoisolation, RIF (B), INHP (C), and M. smegmatis (D) were quantitated in subcellular endosomal
compartments by HPLC or CFU counting. E) Schematic diagram of intracellular pathways of NPs and M. smegmatis. RIF and
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Nanoparticles and mycobacteria are then either sorted into late endosomes (Rab 7) for release as secretory lysosome or into fast
recycling (Rabl4) or slow recycling (Rab 11) endosomes for eventual extracellular release.

profile would ensure improvements in the frequency of
dosing. It should be noted that both INH and INHP are
prodrugs. Given that the mode of action and metabolites
derived from INH have been contentious since its discov-
ery (59, 60), some of the earlier reports utilized dialysis to
evaluate release profiles of the drug from NPs (61). We
decided to study uptake and retention kinetics in MDM
since dialysis is dictated by particle size, thereby overlook-
ing intracellular processes. After MDM treatment, both
INH and INHP displayed the same retention times on

ANTITUBERCULOSIS NANOPARTICLES AND MACROPHAGE ENDOSOMES

analysis by reversed phase HPLC (Fig. 1B). The similarity
in retention times for the native INH and INHP NPs was
only evident following extraction of the drugs from MDM
(Fig. 1B). It is worth noting that INH was derivatized to
INHP through aliphatic Schiff base formation. Aliphatic
Schiff bases are known to break easily under slightly acidic
or basic conditions; it is therefore possible that the analog
reverted to the stable parent INH on extraction from the
cell. It is also likely that conversion of INHP to INH could
have occurred inside the cell (36).
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Uptake of RIF PLGA NPs was evaluated at various drug
concentrations to determine the drug concentration that
would give maximum uptake without cytotoxicity. MDM
uptake of the RIF NPs was maximal at 300 uM. Although
uptake and retention kinetics of the nanoformulations
was superior to NDs, we could not rationalize this obser-
vation to antimicrobial activity since sufficient drug levels
are required in the endosomal compartments where
mycobacteria grow. We therefore decided to conduct in
vitro efficacy studies of the nanoformulations against M.
smegmatis relative to the NDs.

The concentration dependency of antimicrobial ac-
tivity was assessed to determine the minimum dose that
would give maximum benefit. Additionally, the data
generated would give insights on the dosing frequency
at various drug concentrations. MDMs were exposed to
drug before infection with M. smegmatis, and efficacy
was determined 3 d after infection. Antimicrobial activ-
ity was improved when INHP and RIF were used in
combination rather than individually. It is well estab-
lished that the most effective TB therapy is comprised
of a multidrug combination of INH, RIF, PZA, or
ethambutol (8). As shown on Fig. 3, the activity of the
300/300 wM nanoformulation ratio resulted in signifi-
cantly greater suppression of M. smegmatis when com-
pared with the equivalent concentration ratio of NDs.
The enhanced efficacy was most notable when cells
were infected 10 d after drug treatment, with NDs
exhibiting no antimicrobial efficacy against the fast-
growing M. smegmatis, while nanoformulated drugs
suppressed mycobacterial growth by ~50%. These dif-
ferences can be explained in terms of the ability of the
nanoformulations to improve drug uptake and reten-
tion by MDM, ensuring that there is sufficient drug
concentration over an extended period of time to
suppress mycobacterial replication. Antimicrobial effi-
cacy of 300/200 uM or 200/300 uM RIF/INHP against
M. smegmatis also demonstrated that the nanoformula-
tions were therapeutically superior to NDs. Of interest
the efficacy of the nanoformulated drug combination
was greatly increased when the concentration of both
drugs was kept at 300 wM. Drug concentration ratios <
200 uM were not effective at inhibiting mycobacterial
replication (data not shown). These observations
clearly indicate that efficacy against mycobacterial rep-
lication is significantly enhanced when nanoformula-
tions of the two frontline drugs are used in combina-
tion. RIF and INH have different mechanisms of
bactericidal activity, and this could explain the im-
proved activity when both drugs are used together.

For any antimicrobial agent to offer maximum ther-
apeutic benefit, the delivery system should efficiently
translocate the drug to intracellular compartments
where the pathogens reside and replicate. Delivery and
release of antituberculous agents into the granulomas
have the potential to subdue MTB, which can survive
and multiply within human macrophages. Therefore,
understanding how the drug and pathogen interact at
the subcellular level forms a platform for better man-
agement of TB. To account for the antimicrobial
efficacy results, we performed confocal microscopy to
evaluate endocytic distribution of the NPs with early
(Rab 5), late (Rab 7), and recycling (Rab 11 and Rab
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14) endosomes. The NP distribution in all the compart-
ments colocalized in large measure, but not exclusively,
with Rab 11 and Rab 7 as compared with early endo-
somes (Rab 5). These results indicated that the nano-
formulations were protected, at least in part, inside
recycling endosomal compartments. These observa-
tions confirmed that indeed MDM take up and protect
the nanoformulations for sustained drug retention.
This is reinforced by recent data from our laboratory
demonstrating that antiretroviral NPs residing in Rab 7
late endosome compartments can be sustained inside
the cells by down-regulation of lysosomes normally
designed as clearance mechansims (data not shown).
Nanoformulation protection inside the recycling endo-
some could offer a possible explanation for the ob-
served sustained antimicrobial activity associated with
the PLGA nanoformulations. To further substantiate
confocal results, we investigated the interaction of the
NPs and mycobacteria at the subcellular level in paral-
lel through immunoisolation of the endosomes using
protein paramagnetic beads conjugated to Rab5, Rab 7,
Rab 11, and Rab 14, following drug treatment or
infection with M. smegmatis. The drug content and
mycobacteria in each cell compartment were quanti-
fied by HPLC analysis and CFU counting, respectively.
Consistent with the confocal microscopy data, drug
quantification revealed higher drug levels associated
with recycling and late endosomes. Interestingly, the
subcellular distribution of M. smegmatis was similar to
that of drug, with more CFU associated with late
endosomes (Rab 7). Interaction of the nanoformula-
tions and mycobacteria in these endosomal compart-
ments can account for the enhanced antimicrobial
activity of the nanoformulated drugs. These data pro-
vide detailed parallel endocytic trafficking pathways for
the nanoformulated antituberculous drugs and myco-
bacteria. These findings are important for developing
formulations to eradicate tuberculosis and other intra-
cellular infections.

CONCLUSIONS

In summary, novel NPs encasing RIF and INHP antitu-
berculous therapies were successfully synthesized. Our
study demonstrates that PLGA NPs encapsulating RIF
and INHP, a chemically modified isoniazid derivative,
improve drug uptake, retention, and antimicrobial
efficacy in MDM when compared with the NDs. These
promising in witro results suggest that NP macrophage
targeting has great potential to deliver drugs into the
subcellular compartments where the pathogens repli-
cate. Our confocal and endocytic trafficking data reveal
that M. smegmatis and the drug nanoformulations inter-
act at the subcellular level thereby enhancing the
antimicrobial effect. It should therefore be noted that a
macrophage-nanocarrier drug delivery approach is a
promising system that would improve outcomes in
tuberculosis therapy.
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