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The self-assembly and aggregation of amyloid protein are associated with several 

neurodegenerative diseases. The evidence indicates that the oligomeric intermediates, 

formed prior to the final fibrillary product, are the primary culprits of neurotoxicity. 

Although tremendous efforts have been dedicated for the characterization of structures, 

dynamics and toxic-related hallmarks of the oligomers, to date, yet the mechanism of 

such assembly from disordered monomers and their structure remain elusive. 

In this dissertation, I focused on understanding the dimerization process of 

amyloid proteins and peptides of different sizes and I combined experimental studies with 

high-power computer simulations. The AFM force spectroscopy experiments showed that 

within dimers misfolded states of peptides were characterized by a lifetime as large as ∼1 

s. Compared with the conformational dynamics of monomers, dimerization stabilized the 

misfolded states by many orders of magnitude. To characterize structure of the dimers, 

the all-atom Molecular Dynamics (MD) simulations were employed.  These MD 

simulations indeed revealed the stabilization of dimers when they form antiparallel of β-

sheet conformation. The hydrogen bonds, salt bridges, and weakly polar interactions 

further stabilized the dimer structure. The simulations led to several structures, so to 

distinguish between them and identify the one that was observed in the experiment, a 

novel computational approach termed Monte Carlo Pulling (MCP) was developed. The 
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key property of this approach is the ability to simulate the AFM force spectroscopy 

experiment at conditions identical ones used in the experiment enabling us to identify the 

appropriate computational model of the dimer by direct comparison with the AFM 

experiment. A comparison of experimental results with the computational data for two 

amyloid peptides allowed us for the first time to identify the dimers analyzed in the 

experiment and characterize their structure. These studies demonstrated that although 

hydrogen bonds were the major contributors to dimer dissociation, the aromatic-aromatic 

interaction also contributed to the dimer rupture process. Entirely unexpected results were 

obtained in the application of this combined approach to characterization of dimers 

formed by full-size A42 dimers. The dimers were stabilized primarily by interactions 

within the central hydrophobic regions and C-terminal region with a contribution from 

local hydrogen bonding. The dimers were dynamic as evidenced by the existence of a set 

of conformations and computational analyses of the dimer dissociation process. Although 

A42 protein formed stable dimers, but their structure was entirely different from the 

ones reported for the A42 protein in fibrils. In fact a set of structures was identified and 

we hypothesize that different structures can be nuclei for the A42 assembly in different 

morphologies. To characterize dimerization of such large amyloid protein as -Synuclein 

(-Syn) (140 residues), a novel combined approach was utilized. The structure and 

dynamics of the dimers was characterized by high-speed AFM and Monte Carlo 

modeling was used to characterize the protein structure. These studies showed that the 

hydrophobic region of -Syn facilitated the formation of compact structures. Surprisingly, 

the dynamics of one -Syn dimers shared a number of similar features with the 

dissociation process in A42 simulations.  
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Altogether, our results revealed structure of transiently existing dimeric forms of 

amyloid proteins. Given the fact that the dimers are the very first oligomers of amyloids, 

this novel information is indispensable drug design activity and development of novel 

therapeutic tools for early diagnostic of AD and PD and opens prospects for 

understanding molecular mechanisms of early onset of AD and PD and development of 

the preventive means for these devastating diseases.  
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Chapter 1 

INTRODUCTION 

 

The aberrant self-assembly of amyloid protein is implicated in several fatal 

neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease 

(PD), Huntington’s disease (HD) [1, 2]. In the case of AD, the protein is the amyloid β 

(A) protein, in PD it is α-Synuclein (α-Syn) and in HD it is huntingtin protein 

containing poly-L-glutamine (Poly-Q) tracts and in this case the protein aggregation 

depends on the number of glutamine residues. These diseases have a tremendous impact 

on human health; for instance, it has been appraised that AD alone could affect 

approximately 5 million people in the US in 2015 (Figure 1.1A), while in 2050 the 

number of AD patients will exceed 13 million based on the current trend [3]. The annual 

costs of care of Americans who suffer from AD and other dementias are extremely high 

(~$226 billion in 2015 and ~$1.1 trillion in 2050) as shown in Figure 1.1B. Unfortunately, 

there is currently no cure for this kind of diseases. The major reason for this is that the 

mechanism of self-assembly of amyloid proteins remains elusive, resulting in a lack of 

efficient approaches that can be utilized for inhibition of the self-assembly. Therefore, the 

understanding of how the amyloid aggregates assembly and cause the disease is critical 

for the curing, prevention and eradication of these diseases.  Recent data has shown that 

oligomers rather than large aggregates, such as fibrils widely studied so far, have 

neurotoxic effects but very little is known about their structure and assembly. In this 

chapter, we will review the progress of research of amyloid aggregation in regard to their 



2 
 

 

structures, interaction patterns, dynamics, and kinetics, as well as approaches known to 

alleviate the neurotoxicity of amyloid aggregations. 
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Figure 1.1.  The estimated of number of Americans with Alzheimer’s disease (A) and the 

annual costs of care (B) from 2015 to 2050. The source of this data is ref. [3].  
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1.1 Molecular basis of amyloid assembly 

1.1.1 Amyloid fibril 

Generally, the self-assembly process takes place from the natively disordered 

monomeric state of these amyloid proteins through a transient oligomeric state (Figure 

1.2) to highly ordered fibrillar aggregates termed as amyloid fibrils. These amyloid fibrils 

are the major component of amyloid plaques and Lewy bodies, which are the hallmarks 

of AD and PD, respectively. Given their structural stability, these fibrils have been well 

characterized structurally by traditional approaches, such as NMR [4-11], X-ray 

crystallography [12, 13], AFM [14-18] and EM [11, 14, 19]. Based on these studies, the 

model with a cross  pattern, in which the -strands are perpendicular to the long axis of 

fibril, has been proposed. The parallel orientation is prevalent in the consecutive 

monomers with an intermolecular distance of ~ 4.8 Å, thus indicating that the parallel 

orientation is prevalent in the consecutive monomers [13, 20]. However, the orientation 

of the -sheet is sequence dependent and may vary from parallel to anti-parallel manners 

[21]. Meanwhile, the morphology of fibrils is environment dependent, so the fibrils with 

various overall geometries, such as a U-shape [9], S-shape [4], or triangular shape [22, 

23], can allow for even more complex structures to be assembled [24]. Although the 

majority of structural studies were carried out with assemblies obtained in vitro, a 

structurally similar sample has been extracted from brain tissues [25], thereby suggesting 

that amyloid aggregates exist in the brain. Not dependent on the fibril’s shape, hydrogen 

bonds formed between adjacent monomers are a general structural feature with 

electrostatic and hydrophobic interactions also crucial for the thermal and mechanical 

stability of the fibril. Given the dramatic difference seen in the structure of monomers in 
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their free state as opposed to in fibrils, it can be assumed that monomers undergo 

structural transitions during assembly into aggregates; a process that has been confirmed 

in Molecular Dynamics (MD) simulations termed “dock-lock” mechanism [26-32].  
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Figure 1.2. The schematic diagram of the self-assembly process for A proteins (adapted 

from Ref. [33]) 
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1.1.2 Amyloid oligomer 

Unlike fibrils, the structures of amyloid oligomers are unknown. Various 

morphologies have been suggested, including a spherical shape, hollow core oligomer 

and protofibril structure [34-38]. Prior to forming the final aggregation product, the 

monomers are assembled in oligomeric intermediates; a nucleated polymerization 

hypothesis has been proposed to explain the formation of such intermediates [39-46]. 

According to this hypothesis, the monomers undergo several structural transitions [47] to 

form a critical oligomeric nucleus followed by the formation of a protofibril, finally 

resulting fibril formation. Experimentally, Congo red or ThT fluorophores can be utilized 

to monitor the kinetics of amyloid aggregation and fibril growth; but more importantly, 

this intensive experimental data proved that amyloid oligomers, including dimers [48, 49] 

rather than fibrils, are mostly neurotoxic [50-55]. This suggested that the amyloid’s 

secondary structure in oligomers is different from that for fibrils, with the aggregation 

pathway also considerably different [56]. This assumption is further supported by 

characterization of oligomers by use of spectroscopic techniques [54, 57, 58] which 

showed that changes occur at early aggregation states; however, yet to be found is the 

extensive formation of -structures. Until now, the neurotoxic oligomers have been 

accepted as adopting an anti-parallel -sheet structure with different patterns [55, 59-62]. 

Nevertheless, due to transient and heterogeneous nature of amyloid protein together with 

being prone to rapid aggregation, it is still unrealistic to isolate specific aggregation 

species for their structural studies. A photo cross-linking methodology developed in ref. 

[52], allowed the authors to isolate individual oligomers for their structural 

characterization with Circular Dichroism (CD), but effect of the photo cross-linking 
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procedure on the oligomer’s native structure is a big concern. Consequently, the question 

about how the amyloid structures are different in oligomers of different kinds and what 

amyloid structures are responsible for the neurotoxicity remained unclear. As discussed 

below, several hypothesis exist suggesting the toxicity of the oligomeric state. 

 

1.2 Plausible mechanism of toxicity induced by amyloid oligomer  

It was proposed that the cytotoxicity of extracellular amyloid oligomers is 

membrane-related [63, 64]. Indeed, it has been found that amyloid proteins have the 

potential to interact with the neuronal cell membrane [63, 64].  When accumulating on 

the cell membrane, the amyloid proteins can form pore like oligomers [65, 66]; 

subsequently, these pore like structures can serve as a “channel” to change the 

homeostasis of calcium or other ions [67], thereby accelerating the degenerative 

processes. Another study pointed out that the cytotoxicity of amyloid oligomers derived 

from the elevated membrane conductance of lipid bilayer rather than from the formation 

of nano-pores [38]. A prevalent perspective on this mechanism considers that the binding 

of extracellular amyloid oligomers to the neuronal cell surface exerts the effect on a 

number of receptors, thus resulting in synaptic dysfunction and neurodegeneration [68-

70]. In addition to the impairment from extracellular amyloid oligomers, there are studies 

which suggest that intracellular amyloid protein does exist in neuronal cell [71], so the 

intracellular oligomers can induce the cell death as well [70]. The accumulation of 

intracellular amyloid protein is governed by cellular proteins; however, the formation and 

toxicity mechanism of these intracellular amyloid oligomers is still not well understood. 
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It is proposed that the oligomers are potent to inhibit proteasome activity in vitro, causing 

subsequent cell death [70, 72]. 

1.3 The inhibition strategies of the self-assembly and the toxicity 

Although, the mechanism of the self-assembly of amyloid proteins is not clear, 

several inhibition strategies have been applied. One possible way to prevent the self-

assembly is to prevent the production of amyloid protein monomers. For example, in AD 

case the monomeric A is produced via sequentially cleaved  and  secretases on the 

amyloid precursor protein (APP) which is then released from the cell membrane [73-75]. 

With this in mind, intervention of  and  secretases activities may be beneficial to 

prevent further assembly. Another strategy is to design an inhibitor to break the -sheet, 

which is the predominant conformation in fibrils. Usually, the self-recognition motif, for 

instance the KLVFF region of A protein [76] and 113-120 region of large amyloid 

protein−prion protein [77], are exploited as -sheet breakers; these breakers can either 

bind to the monomers or attach to the end of fibrils to prevent the elongation. A 

significant downside to this method is that the enzymes always have the other functions, 

thus limiting their specificity. Meanwhile, the role that the monomers play in vivo are 

also still not well understood. One suggested functional role of the -Syn protein is 

attributed to the regulation of dopamine neurotransmission [78]. Because of this, 

inhibition of enzymes and deletion of amyloid monomers may give rise to undesirable 

side-effects.  

The oligomers, as described in section 1.2, display elevated neurotoxicity, 

compared to the amyloid fibril. Therefore, they can also be used as a potent target for 

drug design. In fact, conformation dependent antibodies and chaperones have been used 
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to alleviate the toxicity of oligomeric species [79]. The amyloid monomers are 

unstructured or partially folded [80-82] which then poses the question of how the self-

assembly and conformational transition occur at the intermediate oligomer state (Figure 

1.3). The self-assembly is a kinetic process during which oligomers of various sizes are 

formed, so understanding the self-assembly process requires experimental methods 

capable of characterizing these transient species in the aggregation reaction. Developing 

two methods that address this is the major goal of this dissertation as described in detail 

below. 
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Figure 1.3. Model of 20 copies of partial folded A40 in aqueous solution (PDB ID: 

2LFM, adapted from ref. [82]).  The blue regions indicate folded regions with blue 

presenting -helices, cyan is random coil and yellow, -turns. 
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1.4 The approaches exploited for Amyloid protein monomer interaction 

1.4.1 AFM based approaches 

AFM, conceived by Binnig and Rohrer [83], is a powerful tool for the 

morphological study of protein misfolding and aggregation [14-18]. A major limiting 

factor in the use of conventional AFM is the scan which is much too slow to capture the 

structural transition of biological samples. In order to overcome this issue, a recently 

developed approach called high-speed AFM (HS-AFM) is capable of acquiring images at 

tremendous rate, thereby allowing for videos of the structural transitions; additionally 

HS-AFM has been proven suitable for exploring various biological systems (detailed 

description in the review [84]) and it has been successfully used in the visualization of 

the dynamics of myosin V [85], F1–ATPase [86], nucleosomes [87] and intrinsically 

disordered proteins (IDP) [88, 89]. There are number of key advantages associated with 

the use of HS-AFM [84]: (1) The high scan rate; rates of 16 frames per second (fps) have 

been reported, which is about 1000 times faster than possible with a conventional AFM. 

(2) The interaction between the tip and sample is minimized (the force <100 pN is 

applied), and their interaction is also shortened as a result of the high oscillation 

frequency (~1.6 MHz). (3) The tips are sharpened giving them a radius of curvature as 

small as ~ 1 nm which allows for nanometer range resolution while imaging in aqueous 

solution. Together, these characteristics allow for the analysis of the self-assembly 

process of amyloid proteins in a manor never before possible.  

In addition to imaging, the AFM can be used in the analysis of the mechanical 

properties (Young’s modulus) of amyloid aggregates [17, 90-92]. The mature fibril 

exhibits remarkable mechanical properties as is evident by Young’s modulus value of 2.2 
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GPa. The rigidities are mainly from the intermolecular hydrogen bond networks [17]. For 

comparison, the Young’s modulus of A42 oligomers is 1.5 GPa, which is smaller than 

the result from fibrils [91].  

We have recently developed a technique for probing amyloid dimers based on 

measuring the interaction of amyloid monomers using AFM force spectroscopy [93-101]. 

In this approach, monomers were end-immobilized on both the AFM tip and the surface, 

and the interaction between them was then measured by approaching the tip to the surface, 

to allow the dimers to form, and the subsequent retraction step, which allowed us to 

measure the rupture force required to dissociate the dimer. The application of this 

methodology to amyloid proteins has allowed us not only to measure the strength of 

interaction between the monomers in the dimeric species, but also to evaluate the lifetime 

of each of the formed dimers [94-97, 102].  The lifetime values were found to be in the 

range of seconds, suggesting that dimerization undergoes a structural transition from 

unstructured monomers to stable complexes [94-97, 102]. Additionally, the contour 

length derived from AFM force spectroscopy experiments, provides valuble information 

on the location of interacting segments within the dimers [97-99, 103-105]. 

 

1.4.2 Computer Simulations 

The AFM based force spectroscopy method is critical to these studies but it lacks 

the capacity to structurally characterize Computational approaches including MD and 

MC simulations have been used to predict the structure and dynamics information of 

amyloid protein, thus complimenting the AFM studies well. An example of the power of 

these computational approaches is that the MD or MC simulations have been used to gain 
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the structural information of A dimers [106-111]. Taking advantage of discrete MD 

(DMD) simulation, Urbanc, B. et al. found A42 dimers are populated by the planar 

conformations according to characteristics of -stands orientations [106]. Later, utilizing 

MC simulations, Mitternacht, and co-workers proved that dimers with an intermolecular 

-sheet are relatively rare [107]. Instead, the intramolecular antiparallel -sheet, rather 

than the architecture of intermolecular parallel -sheet in fibrils, is the main secondary 

structural component. Zhu et al. identified dimers consisting of high content of -helix 

and the structures containing parallel as well as antiparallel -sheet [111]. The replica 

exchange MD (REMD) method, an efficient method to enhance the exploration of all the 

possible conformational space of protein, has also been used to predict the A42 

dimerization [109]. Together these results of A42 structure demonstrated that the dimers 

are mixtures of intermolecular antiparallel -sheet and -helix structures. A difficulty of 

the MD simulations is that they require validation along with other factors such as the 

dependence of the results on the initial structure, force field, solvent model and the need 

of long simulation time. Even in case of A42 protein, the tremendous number of atoms 

complicates direct simulation of the dimer, so the current data is limited to short time 

scale conventional all-atom MD simulations in explicit solvent. Barz and Urbanc also 

pointed out that it is impossible to glean the full description of entire conformational 

ensembles of A dimers due to their intrinsically disordered nature [108].  

In regards to the validation of simulated models, comparing of AFM force 

spectroscopy results with MD simulation is considered as a useful approach [112-116]. In 

Steered Molecular Dynamics (SMD) simulations, an external force is applied to classic 
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molecular dynamics (MD) simulations which allows for the modeling of AFM pulling 

experiments. A major problem with this approach is that SMD is typically performed at 

pulling rates of 5 nm/ns, which are 10
7
 times higher than those used in typical AFM 

experiments [102, 117], thereby complicating a direct comparison between in silico data 

and the experimental results [118]. In a recent publication, high-speed AFM 

instrumentation used in experimental conditions approached the SMD temporal range 

[119], but the approach is still at the development stage and the pulling speed range is 

well above the experimentally relevant conditions.  

Recently, the all-atom Monte Carlo Pulling (MCP) approach was described which 

allowed for modeling at rates comparable to regular AFM pulling experiments (pulling 

rate ~300 nm/s) [120]. The authors were able to directly compare their results with AFM 

experiments for the characterization the intramolecular interaction strength within A and 

-Syn monomers, respectively. Based on these recent advances, we developed a 

validation approach enabling us to select the most appropriate model form a set of 

simulations (ref. [121], see also chapter 3).   

In this dissertation, we combined the AFM approaches with the computer 

simulations to elucidate the mechanism of dimerization for the different length of 

amyloid peptides and proteins. The works are outlined as follows: 

Chapter 2 is from the published manuscript in The Journal of Physical Chemistry 

B titled “Molecular Mechanism of Misfolding and Aggregation of Aβ(13–23)”. The 

paper described the self-assembly of short fragment of Aβ via the combination of AFM 

force spectroscopy and MD simulations. 
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Chapter 3 is from the published manuscript in Biophysical Journal titled “The 

Structure of Misfolded Amyloidogenic Dimers: Computational Analysis of Force 

Spectroscopy Data”. In this paper, a novel MC pulling (MC) simulation approach has 

been developed to validate the simulated structure of Amyloid peptides by comparing to 

the experimental data. 

Chapter 4 is a submitted manuscript of my work. In this chapter, long time-scale 

MD simulations via specialized supercomputer Anton as well as accelerated MD were 

applied to predict the dimerization of full-length A42. The application of MCP approach 

allowed us to identify models of A42 dimers and describe their dynamics.  

Chapter 5 describes recent data on analysis of structural dynamics of -Syn using 

HS-AFM and computational modeling. The paper is in preparation. 

Chapter 6 is the conclusion of all works. 
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Chapter 2 

MOLECULAR MECHANISM OF SELF-ASSEMBLY OF A(13-23) 

2.1. INTRODUCTION 

 

As described in chapter 1, the self-assembly of an Amyloid protein from 

disordered monomer to amyloid fibril is associated with several neurodegenerative 

diseases.  We have developed the AFM-based force spectroscopy method to measure 

amyloid protein monomer interactions, which is the initial step of such self-assembly. 

Based on our force spectroscopy data, we propose that the formation of dimers is the key 

step in the initiation of aggregation with the dimers acting as building blocks for the 

protein aggregation process. To date, the mechanism underlying the formation of dimers 

and their structure in misfolded transient states remains unclear. 

To address these questions, we combined AFM force spectroscopy and MD 

simulations to characterize the misfolding and aggregation process for the A peptide. 

We selected the 13-23 segment (HHQKLVFFAED) of A since it contains the region A 

(16−20), which is known to be crucial for A fibril formation and because it mediates the 

strongest A-A binding [1, 2]. The N-terminal His13 was replaced with Cys for use as 

an anchor in the site specific immobilization of the peptide; this derivative will be 

hereby referred to as A(13-23). From AFM experiments it is evident that the peptide 

spontaneously forms amyloid fibrils. DFS analysis shows that the peptide dimers are 

stable with a lifetime of ∼1 s. The MD simulations revealed that the peptide contains a -
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turn/bend segment that refolds to a -sheet conformation when two monomers approach 

and form a stable dimer structure in an antiparallel orientation. SMD simulation was 

applied to analyze the rupture process for the dimer. The results demonstrate that the 

individual peptide chains under the applied force undergo structural transition, which is 

accompanied by the sharp rupture of the dimer. A molecular mechanism is proposed for 

the protein misfolding and aggregation. 

2.2. METHODS 

 

2.2.1. Sample Preparation for AFM Force Spectroscopy 

Peptide immobilization on tips and mica sheets was done as described in refs [3, 

4]. Briefly, silicon nitride (Si3N4) AFM tips (Bruker, MODEL: MSNL) were cleaned in 

98% ethanol (EtOH) and then irradiated by UV for 30 min. The AFM tips were next 

immersed into 167 M Maleimide Silatrane (MAS) aqueous solution for 30 min followed 

by thorough rinsing with deionized water. For covalent attachment of the peptide to MAS 

functionalized tips, 19 nM peptide in pH 7.0 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES, Sigma-Aldrich Inc.) buffer was reacted with 0.25 

mM Tris(2-carboxyethyl)phosphine (TCEP; Hampton Research Inc.) hydrochloride for 

10 min, and the MAS functionalized tips were immersed into this solution for 1 

h. Following the immersion, tips were rinsed with a pH 7.0 buffer (100 mM HEPES-

sodium hydroxide) and unreacted maleimide was blocked by treatment with 10 mM -

mercaptoethanol for 10 min at room temperature. The functionalized probes were washed 

with pH 7.0 HEPES buffer and stored in the same buffer until use; typically, the storage 
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time was less than 24 h. Mica sheets (Asheville-Schoonmaker Mica Co., Newport News, 

VA) were cut into ~1.5 cm × 1.5 cm plates and the freshly cleaved mica surfaces were 

treated with 167 M Aminopropyl Silatrane (APS) for 30 min followed by a reaction 

with 167 M maleimidepolyethylene glycol-succinimidyl valerate (MAL-PEG-SVA; 3.4 

kDa Laysan Bio Inc, Arab, AL) in dimethyl sulfoxide (DMSO; Sigma-Aldrich Inc.) for 3 

h. The mica plates were then rinsed repetitively with DMSO and then Deionized water 

(18.2 M, 0.22 m pore size filter, APS Water Services Corp., Van Nuys, CA) 

to remove un-bound MAL-PEG-SVA, samples were dried with a gentile stream of argon 

gas. The peptide preparation and subsequent steps were the same as just described for the 

AFM tips. Prepared mica plates were stored in pH 7.0 HEPES buffer until use; the 

storage time was typically less than 24 h.  

2.2.2. AFM Imaging 

The A(13-23) stock solution (3.74 mM) in DMSO was diluted to a concentration 

100 M in pH 5 buffer (a mixture of 1 mM Na2HPO4 and 0.94 mM citric acid) and 

incubated at 37 °C for one day. The 10 L aliquots were placed on freshly cleaved mica 

and the sample was allowed to adhere to the surface for 5 min. The unbound sample was 

rinsed with 100 L of double-distilled water three times, dried with a gentile stream 

of argon gas, and stored in a vacuum oven at 25 °C overnight (~12 h)  for complete 

dehydration. The images were acquired with a Multimode AFM equipped with a 

Nanoscope IIId controller (Veeco Inc., Santa Barbara, CA, USA) operating in 

tapping mode at ambient conditions. A silicon tip with a spring constant at 40 N/m was 

used (Veeco Inc., Santa Barbara, CA, USA).  



40 
 

 

2.2.3. Molecular Dynamics (MD) Simulations.  

2.2.3.1. Simulations of Monomer Structures.  

The MD simulations were performed using the GROMACS 4.5.4 package [5] by 

modifications of previous methods [6, 7] and using the OPLS-AA/L force field [8]. Three 

initial structures of Ac-[Cys13]A(13-23)-NH2 for the simulations were derived using 

experimental A structures from the protein data bank (PDB) [9]. The structure with 

PDB ID 1HZ3 [10] was used for simulation I (simI); that with PDB ID 1Z0Q [11] was 

used for simulation II (simII); and the solid state NMR structure of A(1-40) by Petkova 

and associates [12] was used for simulation III (simIII). The N-acetyl and amide capping 

groups were added to the N and C-terminus, respectively, in order to preserve the 

electronic structure of the backbone as in the full length A. Peptides were solvated with 

1200, 1520, and 5070 TIP4P water molecules [13] for simI, simII, and simIII, 

respectively, in a truncated octahedron so that the minimal distance of the peptide from 

edge of the octahedron was a minimum of 1 nm. Charged side chains of peptides were 

neutralized by replacing water molecules with Na
+
 for Asp and Glu and Cl

−
 for Lys 

residues at the positions of the first atoms with the most favorable electrostatic 

potential. Systems were subjected to 1000 steps steepest descent energy minimization and 

then to 100 ps NVT, constant number of molecules, volume, and temperature (300 K) 

simulation so that the position of the peptide was constrained at the center of 

the octahedron with a force constant of 1000 kJ mol
−1

. The three different initial starting 

structures were subsequently subjected to 200.2 ns NPT constant pressure (1 bar) and 

constant temperature (300 K) simulation. The following parameters were used for the 
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simulations: integration step was 2 fs, and snapshots of trajectories were saved at every 

20 ps; the non-bonded interactions list was updated following every 10 steps; the LINCS 

algorithm [14] was used to constrain all bonds to their correct length, with a warning 

angle of 30°; the peptide and solvent with ions were coupled to separate temperature 

baths with a relaxation constant of 0.1 ps; and the peptide and solvent with ions were 

coupled separately to constant pressure using Berendsen scaling [15] with a relaxation 

constant of 1.0 ps and 4.5 × 10
−5 

bar
−1

 isothermal compressibility. Coulomb 

interactions were calculated using a twin-range cutoff with reaction-field correction 

methods. The dielectric constant of the system was set to 78.0 beyond 1.4 nm. The short-

range cutoff was 0.9 nm. For the calculations of van der Waals interactions, the short-

range and long-range cutoffs were 0.9 and 1.4 nm, respectively, and dispersion correction 

was applied.  

2.2.3.2. Analysis of Trajectories 

The first 0.2 ns of the trajectory was considered as an equilibration period and 

was omitted from the analysis. The secondary structures explored during the simulations 

by Ac-[Cys13]A(13-23)-NH2 were analyzed using the defined secondary structure of 

proteins (DSSP) method [16]. The  and  torsional angles for each residue 

were determined using the g_rama utility of GROMACS. The R 2.14.0 program [17] and 

in-house written R-script (Appendix 2.1) were used for data processing and drawing the 

Ramachandran plot following the methodology of Lovell and associates [18]. The 

number of intramolecular hydrogen bonds was determined by using the g_hbond utility 

of GROMACS. The root-mean-square deviation (RMSD) of backbone atoms and the 

radius of gyration (Rg) of the peptide chain was determined by the g_rms and g_gyrate 
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utilities of GROMACS, respectively. Trajectories were submitted to cluster analysis by 

the GROMOS method of clustering [19] using a backbone RMSD cutoff of 0.1 nm. To 

determine if the peptide explores similar conformational space during simI, simII, and 

simIII, trajectories were compared by using essential dynamics analysis and calculating 

pairwise root-mean-square inner product (RMSIP) of eigenvector of trajectories [20]. 

Covariance matrix was calculated using the g_covar command of GROMACS, the 

eigenvectors corresponding to the 10 highest eigenvalues were used to calculate the 

RMSIP. The RMSIP was calculated using equation for entire systems and individual 

monomers:   

𝑅𝑀𝑆𝐼𝑃 =  (
1

10
∑ ∑(𝜂 ∙ 𝜈)2

𝑗=1

10

𝑖=1

10

)

1 2⁄

 

where i and j are the eigenvectors of two independent simulations. The R script 

example of the RMSIP calculation is placed in appendix 2.2. 

2.2.3.3. Simulation of the Dimer Structure.  

The dimer structure of the peptide in parallel arrangement was made from the 

central structure of the largest cluster of simIII so that the x, y, and z distances between 

the two chains were 1.5, 0.5, and 0.1 nm, respectively. The individual chains were 

assigned as chains A and B. The dimer was solvated in a truncated octahedron with 3239 

TIP4P water molecules so that the minimal distance of the peptide from the edge of 

the octahedron was a minimum of 1 nm. Four Na
+
 and two Cl

−
 ions were added to the 

systems to neutralize charges by replacing water molecules with Na
+
 for Asp and Glu and 

Cl
−
 for Lys residues at the positions of the first atoms with the most favorable 
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electrostatic potential. The system was subjected to 1000 steps steepest descent energy 

minimization and then to 100 ps NVT simulation at 300 K so that the position of 

the dimer was constrained at the center of the octahedron with a force constant of 1000 kJ 

mol
−1

. The system was then submitted to a 400.2 ns NPT simulation at 1 bar pressure and 

a temperature of 300 K. The rest of the parameters were the same as those used in 

monomer simulations.  

To test whether applying different force fields would affect the stability of the 

dimer, the starting structure for the SMD simulation was submitted to 400 ns and 1.1 µs 

MD simulations using the OPLS-AA/L [8] and the Amber ff99sb*-ILDN [21] force 

fields, respectively. For the simulation using the Amber ff99sb*-ILDN force field, the 

dimer structure was solvated in a truncated octahedron with 3092 TIP3P water molecules 

so that the minimal distance of the peptide from the edge of the octahedron was 1 nm. 

The long-range electrostatic interaction was calculated using the PME method with a 

cutoff distance of 0.9 nm and Fourier spacing 0.15 nm. The rest of the 

simulation parameters were the same as for the dimer simulation. For the simulation 

using the OPLS-AA/L force field, the parameters were the same as those used for the 

dimer simulation.  

2.2.3.4. Analysis of the Trajectory of Dimer Simulation.  

The DSSP analysis, inter-chain hydrogen bond determinations, and the radius of 

gyration calculation were performed as described for the monomer simulations above. 

Inter-chain salt bridges were determined using a trajectory analysis tool of the 

VMD package [22]. To determine the parallel or antiparallel orientation of the chains, the 
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distance between the center of mass of Cys13 of chain A (COM13A) and center of mass 

of Cys13 of chain B (COM13B) was calculated using the g_dist command 

of GROMACS. The first 200 ns trajectory and the last 50 ns of trajectory were submitted 

to cluster analysis using the GROMOS method of clustering [19] and a backbone RMSD 

cutoff of 0.1 nm. The angle and distance between the plains of the aromatic side chains of 

Phe were calculated to determine whether aromatic-aromatic (Ar-Ar) interactions exist 

between two residues. The plane of the Phe side chain ring was defined by CD1, CD2, 

and CZ atoms. The distance between two rings was the distance between the centers of 

mass of the aromatic side chain rings of Phe residues. Ar-Ar interactions were assumed 

when the distance was less than 0.7 nm and the angle between them was greater than or 

equal to 33° and less than or equal to 150° [23]. The aromatic−backbone (Ar-

bb) interactions were determined by calculating the angle and distance between the plane 

of the aromatic ring of Phe and either the C-H vector or N-H vector of any other 

residue [24]. The aromatic-CH (Ar-CH) interactions were determined by calculating the 

angle and distance between the plane of the aromatic ring of Phe and the C-H vector.  

When the Amber ff99sb*-ILDN force field was used, the trajectories were 

analyzed using the DSSP method [16] and the GROMOS method of clustering [19]. For 

clustering without N- and C-terminal residues, a backbone RMSD cutoff of 0.3 nm was 

used. The distance between the center of mass of Cys13 of chain A (COM13A) and a 

center of mass of Cys13 of chain B (COM13B) was calculated.  

2.2.3.5. Steered Molecular Dynamics (SMD) Simulations.  
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The central structure of the largest cluster from the first 200 ns and the last 50 ns 

of the dimer simulation were used for steered molecular dynamics (SMD) simulations. 

Dimer structure was solvated in a cubic box of 6.555 nm × 4.376 nm × 18 nm with 16766 

TIP4-P water molecules. Four Na
+
 ions and two Cl

−
 ions were added to the systems to 

neutralize charges by replacing water molecules with Na
+
 for Asp and Glu, and Cl

−
 for 

Lys residues at the positions of the first atoms with the most favorable electrostatic 

potential. NPT MD (100 ps) simulation was performed at 300 K with the Berendsen 

method for temperature and pressure coupling, and the position of the dimer was 

constrained at the center of the box with a force constant of 1000 kJ mol
−1

. During SMD 

simulations, the position of COM13B of the dimer was fixed, and the COM13A was 

attached to a harmonic spring with a spring constant of 1000 kJ mol
−1

 nm
−2

 and pulled 

along the z-axis at a rate of 5 nm/ns with a simulation time of 1.4 ns. The final 

distance between COM13A and COM13B was 7.865 nm. The peptide and solvent with 

ions were separately coupled to a 1 bar Parrinello-Rahman barostat [25, 26] and a 300 K 

Nose-Hoover thermostat [27, 28]. The long-range electrostatic interaction was calculated 

using the PME method with a cutoff distance of 0.9 nm and Fourier spacing of 0.12 nm. 

The rest of the parameters were the same as those described above.  

2.2.3.6. Umbrella Sampling Simulations.  

Umbrella sampling simulations [29-31] were used to determine the free energy of 

binding (ΔGbindA,B) of chain A to B. From the trajectory of the 5 nm/ns SMD simulation, 

along the z-axis, 31 snapshots were taken as starting configurations for umbrella 

sampling simulations. In these snapshots, the distance between COM13A and COM13B 

( reaction coordinate) was increased by 0.25 nm stepwise. Each of the umbrella 
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windows was simulated for 20 ns. A 1000 kJ mol
−1

 nm
−2

 umbrella potential was imposed 

in each window. The peptide and solvent with ions were separately coupled to a 1 bar 

Parrinello-Rahman barostat and a 300 K Nose-Hoover thermostat. The long-range 

electrostatic interaction was calculated using the PME method with a 0.9 nm cutoff 

distance and 0.12 nm Fourier spacing. The rest of the parameters were the same as those 

previously described. The weighted histogram analysis method (WHAM) [32-34] was 

used to determine the one-dimensional potential of mean force (PMF) curve. The value of 

ΔGbind was taken as the difference between the highest and lowest values of the PMF 

curve.  

2.2.3.7. Software 

Structure manipulations, data analyses, and visualization were done using the 

analysis suite of the GROMACS [5], the VMD [22] and YASARA (www. yasara.org) 

packages. 

2.3. RESULTS  

 

2.3.1. Misfolding and aggregation of A13-23): Single molecule AFM studies 

To test the ability of A(13-23) to form amyloid fibrils, a solution of the peptide 

(100 M) was prepared for self-aggregation at 37 °C. Aliquots of the solution were 

analyzed with AFM. Figure 2.1 shows a typical image for a sample incubated for 24 h. 

The sample prepared under these conditions contains primarily fibrils of different lengths 
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but rather uniform heights. Thus, A(13-23) is capable of spontaneous self-assembly into 

amyloid fibrils.  

 

 

Figure 2.1. Characterization of A(13-23) fibrils by AFM. A(13-23) (100 M) was 

incubated for 24 h at 37 °C, and the fibrils were imaged by AFM. The mean height of the 

fibril was 0.65 ± 0.05 nm. The white scale bar is 200 nm. 
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To characterize the interactions present during the initial stage of the self-

assembly process, we applied an AFM force spectroscopy approach in which the peptide 

molecules are immobilized on both the AFM tip and on the mica surface (Figure 2.2A). 

The immobilization was at the N-terminal Cys residues via long flexible polymeric 

tethers which helped to facilitate proper orientation of the peptides at the approach stage. 

The flexible tether with a Gauss-distributed random coil conformation allows the tethered 

peptides to find the optimal orientation. The ends of the tether move independently 

from each other, thus eliminating potential restriction of the mobility of the peptide 

attached at one end of the tether relative to the other, attached to the surface. The ability 

of the peptide to form a dimer was characterized by measuring the strength of the 

interpeptide interaction in multiple approach−retraction cycles (see review in ref [35] and 

references therein). A typical force curve illustrating the rupture event, indicated with an 

arrow, is shown in Figure 2.2B. The extension of the tether is approximated by the worm-

like chain model [35] shown in the figure as a black line. The ΔF value in this figure 

corresponds to the force required for rupture of the peptide dimer to occur. The probing 

was performed over various positions on the AFM substrate, and the results of such 

multiple measurements are assembled as a histogram as shown in Figure 2.2B. 

The distribution has a single peak suggesting a single molecule detection of interpeptide 

interactions, and thus, the strength of the interactions in dimers formed by the peptides at 

the approach step is measured.  
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Figure 2.2. Single molecular force spectroscopy. (A) Schematics of the experimental 

setup. The peptide was immobilized on AFM tips and mica surfaces through N-terminal 

cysteine. Bifunctional PEG (about 77 PEG repeats long linker) was used to attach the 

peptides to the mica surface. MAS (5 repeats of PEG, short linker) was utilized 

to connect peptides to AFM tips. (B) Typical force curve illustrating the rupture event 

force curves (gray line) recorded at pH 6 with 500 nm/s pulling rate; the black line is 

from the worm-like chain model fitting [35]. The insert shows the distribution of rupture 

force (bar) and fitting results with probability function (line). The mean value of force 

was 48.62 ± 8.38 pN. (C) DFS analysis for (13-23) acquired at pH 2. Forces obtained 

from different pulling rates are plotted against logarithmic apparent loading rates (ALR). 

Seven ALR values were used to generate the plot. Each data point is an average of 

three independent experiments. The data set was approximated by the Bell-Evans model 

as described in ref [36]. The intercept on the x-axis was used for the calculation of the 

off-rate constant producing the lifetime value of 1.06 ± 0.95 s. The large variance of this 

value is due to a logarithmic dependence of the off-rate constant value on 

the experimentally determined intercept value. 
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To characterize the stability of A(13-23) dimers, the dynamic force spectroscopy 

(DFS) method was applied. In this approach, the probing is performed at different 

apparent loading rates (10
3
 pN s

−1
 − 10

5
 pN s

−1
), and after the extrapolation of the data to 

the zero pulling rate, the off-rate constant is determined (see ref [35] and references 

therein). The results of the DFS analysis for A(13-23) are shown in Figure 2.2C. The 

experimental data fitted to a straight line and the intercept value for this plot provides the 

value for the off-rate constant 0.94 ± 0.84 s
−1

. A similar approach applied to A40 

peptide and α-Syn produced lifetime values for in the same range, suggesting that 

this incredibly long lifetime for transient dimers is a general phenomenon for amyloid 

proteins [35, 36].  

2.3.2. MD Simulations: The Structure of Monomer.  

Conformational properties of A(13-23) both in monomeric and dimeric forms 

were studied by MD simulations. First, the structural dynamics of the peptide in 

monomeric form was studied using three different initial structures (Figure 2.3A). 

Initial structures for I, II, and III are essentially random meander, α- helix, and fully 

extended -sheet conformation, respectively. Regardless of the different conformations 

from initial structures, central structures (Figure 2.3B) of the largest cluster of structures 

from the 200 ns trajectories are rather similar (Figure 2.4). Intramolecular interactions, 

such as hydrogen bonds (yellow dotted lines) between His14-Leu17 and Gln15-Val18 in 

structure III, are formed to stabilize a -turn structure (Figure 2.3B).  

The similarities between the conformational spaces that the peptide explores in 

the three independent simulations are further supported by the high RMSIP values for the 
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first 10 eigenvectors of simulations I−III (Table 2.1). The DSSP analysis [16] (Figure 2.5) 

reveals that the peptide structure is flexible and assumes various conformations, but 

in each trajectory, a similar conformational space is explored as shown by the 

Ramachandran plots (Figure 2.6). The Radius of gyration (Rg) and root-mean-

square deviation (RMSD) (Figure 2.7 and 2.8, respectively) indicate that the peptide has 

flexible conformations and follows a different folding−unfolding path. Rg (Figure 2.7) 

demonstrates that geometrically compact structures with average Rg ≈ 0.62 nm are 

formed during each simulation. The mean RMSD value for simI and simII is ∼0.4 nm, 

while it is ∼0.8 nm for simIII (Figure 2.8). The high RMSD values show that the peptide 

assumes substantially different conformations from those of the initial structures.  

Overall, the MD simulations show that the structure of A(13-23) is flexible in 

aqueous solution in its monomeric form, and residues 4-9 are in the turn/bend 

conformation. Regardless of the different initial configurations, all the structures 

eventually converge to a conformation in which residues 4-9 form a turn. Furthermore, 

during simulations, the peptide did not adopt a fully extended -sheet type conformation.  
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Figure 2.3. Initial and central structures of MD simulations of monomer structures I−III. 

(A) Tube representations of the backbone of the initial structures I−III for the three 

independent MD simulations. (B) The central structure of the largest cluster of the 

simulations. Random meander is cyan; -helix is dark blue; 310-helix is yellow; turn is 

green; and H-bonds are indicated by yellow dotted lines. N and C indicate N- and C-

termini, respectively. 
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Figure 2.4. Overlaid representative C trace structure of the largest cluster of simulation 

I, II and III. Blue, simulation I; Red, simulation II; Green, simulation III. 
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Table 2.1. RMIP value of the 10 largest eigenvectors between three simulations 

 0-50 ns 50-100 ns  100-150 ns 150-200 ns 

I-II pair  0.7589  0.7363  0.7248  0.6656  

II-III pair  0.7698 0.7702  0.7973  0.7212  

I-III pair  0.7859 0.7757  0.7835  0.7509  

 

  



55 
 

 

 

Figure 2.5. DSSP analysis of the trajectories of simulations I-III of Ac-[Cys13]A(13-

23)-NH2. (A) simI. (B) simII. (C) simIII. Random meander is white, β-bridge is black, -

bend is green, -turn is yellow, -helix blue and 310-helix is gray.  
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Figure 2.6. Ramachandran plot for simulations I-III. (A-C) are from simI, simII and 

simIII, respectively. The dark regions indicate the conformation explored during 

simulations. -helix and -sheet conformations are labeled. Gray line indicates allowed 

(99.95% contour level) and black line indicates favored (98% contour level) regions of 

conformational space [18].  
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Figure 2.7. The radius of gyration (Rg) of the peptide in simulations I-III. (A-C) are from 

simI, simII and simIII, respectively. 

 

 

Figure 2.8. The RMSD of the backbone of atoms in simulations I-III. (A-C) are from 

simI, simII and simIII, respectively. 
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2.3.3. MD Simulation of the Structure of Dimer 

Next, we considered how the conformation of the peptide changes when it 

interacts with another peptide chain. We selected the central structure of the largest 

cluster of simIII (Figure 2.3B) and placed monomers A and B in a parallel arrangement 

so that the minimal distance between the two chains was ≥ 1.5 nm. To follow the relative 

orientation of the two monomers, the distance between COM13A and COM13B was 

plotted for the 400 ns MD simulation (Figure 2.9). During the initial 50 ns period, the 

distance fluctuates at 1.5 nm, and the peptide chains retain their initial 

conformations (structures 1 and 2 in Figure 2.9A). Between 50 and 200 ns, the two Cys 

residues approach, and the distance between COM13A and COM13B fluctuates at 0.5 nm. 

The secondary structure of the two chains resembles that of the initial (structure 1 in 

Figure 2.9A) and is more stable than it was during the simulations of the monomer 

(Figures 2.5 and 2.10). Between 200 and 300 ns, the two monomers move apart, and their 

orientation changes to antiparallel (structures 4 and 5 in Figure 2.9A). After 350 ns, 

this rearrangement results in the formation of a stable antiparallel - sheet conformation 

(structures 6 in Figure 2.9A). The structural transition of the dimer is further 

demonstrated during the synchronous change of the distance between COM13A and 

COM13B by a sudden increase and decrease of the radius of gyration (Figure 2.11). 

Changes in intermolecular interactions closely follow the structural transitions, and the 

formation of an antiparallel -sheet conformation results in the lowest interaction energy 

state (Figure 2.9B). The central backbone structure of the largest cluster of the last 50 ns 

of the MD simulation is shown in Figure 2.9C. The intermolecular interactions of 
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monomers were therefor seen to trigger conformational changes within the individual 

peptide chain, which led to the formation of the antiparallel -sheet structure.  

The MD results provide insight into the interactions that stabilize the structure of 

the dimer. During the first 200 ns of the simulation, the monomers within the dimer are 

held together by hydrophobic interactions, by hydrogen bonds between Phe19 of 

monomer A and Gln15 of monomer B, between the two Cys residues (Figure 2.12), and 

by the aromatic−aromatic (Ar-Ar) interaction between Phe19 of monomer A and Phe20 

of monomer B (Figure 2.13A). After 320 ns, the antiparallel -sheet conformation is 

found to be formed and stabilized by four hydrogen bonds between residues His14 of 

monomer A and Phe19 of monomer B, and between Lys16 of monomer A and Leu17 of 

monomer B (Figure 2.9C). Additional stabilization is provided by salt bridges between 

Lys16 of monomer A and Asp23 of monomer B, between His14 of monomer A 

and Glu22 of monomer B, an aromatic−backbone (Ar-bb) interaction between Phe19 of 

monomer B and the backbone of His14 and Gln15 of monomer A (data not shown), and 

an aromatic-CH (Ar-CH) interaction between Phe19 of monomer B and CH groups of 

His14 of monomer A (Figure 2.13B). The change from Ar-Ar interaction to Ar-CH 

interaction coincides with the switching of the orientations of monomers from parallel to 

antiparallel (Figure 2.9 and Figure 2.13).  
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Figure 2.9. Evolution of the distance between the center of mass of Cys13 of chain A and 

the center of mass of Cys13 of chain B during the 400 ns MD simulation of the dimer 

structure. Snapshots of the dimer backbone structures from the trajectory are placed 

inside the plot. (A) 1, 0 ns; 2, 20 ns; 3, 97.9 ns; 4, 221 ns; 5, 300 ns; 6, 359 ns. Backbone 

conformation of the peptide chain is as follows: cyan is random meander; yellow is 310-

helix; green is -turn/bend; red arrow is -sheet; and H-bonds are yellow dotted lines. N 

and C indicate the N-and C-termini, respectively. (B) Intermolecular interactions 

(Eint) during the 400 ns MD simulation of the dimer structure. The gray line shows Eint at 

every 10 ps, and the black line is the running average at 5 ns intervals. (C) Antiparallel 

backbone structure of the central structure of the largest cluster of the last 50 ns of the 

MD simulation. In chain A, the backbone carbon atoms are in green. H-bonds are yellow 

dotted lines. N and C indicate the N-and C-termini, respectively. 
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Figure 2.10. DSSP analysis of 400 ns trajectory of the dimer simulation. Bottom panel, 

chain A; top panel, chain B. White is coil, black is bridge, green is bend, yellow is -turn, 

blue is -helix, gray is 310 helix and red is -sheet. The two chains are separated by a 

light gray ribbon. 

 

 

Figure 2.11. The radius of gyration (Rg) of the dimer during the 400 ns simulation.  
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Figure 2.12. Number of hydrogen bonds during MD simulation of the dimer structure. 

The inserted structure shows H-bonds between the two Cys residues and between the 

amide H of Phe19 of chain A and the side chain of Gln15 of chain B. 
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Figure 2.13. The weakly polar interactions during MD simulation of the dimer structure. 

(A) the distance of Phe19 of chain A and Phe20 of chain B. (B) the distance between 

CH of His14 of chain A and Phe19 of chain B. On the left side of the figure are 

snapshots from the trajectory which illustrate these interactions. 
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2.3.4. Steered MD Simulation of the Force-Induced Rupture of the Dimer.  

To analyze the stability of the structure of the dimer, we used SMD simulation to 

examine the force-induced dissociation of the dimer. The dimer was pulled apart 

by applying external forces to the center of mass of Cys13 of monomer A at a constant 

rate 5 nm/ns (Figure 2.14A). This led to the clear rupture event characterized by the force 

curves (Figure 2.14B and C). The force−distance curve (Figure 2.14C) shows that the 

rupture event occurred at the 2.6 nm distance between the center of mass of the two Cys 

residues, corresponding to a force of ∼1000 pN.  

Figure 2.15 shows the force-induced dissociation pathways of the dimer. The 

initial segment of the force curve prior to the rupture event (0 ns−0.48 ns, 0−2.6 nm in 

Figure 2.14B and C) corresponds to the change in orientation of the dimer (models 1 to 3 

in Figure 2.15A) and the loss of interpeptide H-bonds (Figure 2.15B). The major peak of 

the force curve in Figure 2.14 corresponds to the cooperative rupture of H-bonds in the 

time scale between 0.48 and 0.49 ns (models 2 to 4 in Figure 2.15A). From that point, 

chains of both monomers A and B slide past each other along the direction of the applied 

force. At 0.54 ns (model 6 in Figure 2.15C; 3.1 nm distance between the center of mass 

of the Cys residues in Figure 2.14C), the salt bridge between His14 of monomer A and 

Glu22 of monomer B ruptures (data not shown). However, the salt bridge between Lys16 

of monomer A and Asp23 of monomer B exists for much longer and is essentially the last 

interpeptide interaction to break. Models in Figure 2.6C illustrate this process and the 

time dependent changes in the distance between the centers of mass of NH 3
+
 of Lys16 

of monomer A and COO
−
 of Asp23 of monomer B (Figure 2.15D). Figure 2.15E and F 

show the time-dependent variation of the dimer structure with a focus on the aromatic 
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interactions. Snapshots of various structures along the force curve are shown in Figure 

2.15E, and the graph illustrating the increase in the distance between the CH group of 

His14 of monomer A and the center of the phenyl ring of Phe19 of monomer B is shown 

in Figure 2.15F. The rupture of this interaction corresponds to the minor peak seen 

between 0.6 and 0.7 ns on the force curve (Figure 2.14B).  

In an additional SMD simulation, the dimer was the central structure of the largest 

cluster from the first 200 ns of the trajectory (structure 3 in Figure 2.9A). In this dimer, 

the chains have -turn/bend conformations in a parallel orientation (Figure 2.16A). The 

force curve (Figure 2.16B) did not show a single characteristic rupture event. This further 

indicates that in AFM experiments the dimer is in antiparallel -sheet conformation.  
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Figure 2.14. Force curves acquired at 5 nm/ns pulling rate from SMD simulation. (A) 

Pulling the center of mass of Cys13 of monomer A (COM13A) along the z-axis. The 

central structure of the largest cluster of the last 50 ns of the MD simulation of the dimer 

is in a rectangular box. For clarity, the water molecules are not shown. The dimension of 

the box is 6.555 nm × 4.376 nm × 18 nm. The pulling direction is indicated by a dashed 

arrow. Backbone conformation of the peptide chain is as follows: cyan is random 

meander; green is β-turn/bend; and red arrow is -sheet. Numbers inside the force curve 

panels indicate the time (B) and distance (C) locations of the characteristic peaks. Arrows 

and numbers on panel B indicate the snapshots in Figure 2.15. 
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Figure 2.15. Force-induced dissociation pathway of the dimer structure during SMD 

simulation (5 nm/ns pulling rate). The snapshots of dimer structure are from 1, 0.2 ns; 2, 

0.48 ns; 3, 0.49 ns; 4, 0.5 ns; 5, 0.54 ns; 6, 0.6 ns; 7, 0.7 ns; 8, 0.9 ns; and 9, 1.2 ns of the 

SMD trajectory. The numbers correspond to the position numbers shown in Figure 2.5B. 

(A) H-bond breaking. The red arrow indicates β-sheet structure, and H-bonds are yellow 

dotted lines. N and C indicate the N- and C-terminal ends, respectively. (B) Changes in 

the number of interchain H-bonds. (C) Force induced dissociation of the interchain salt 

bridge between Lys16 of chain A and Asp23 of chain B. (D) Distance between the 

center-of-masses of NH3
+
 of Lys16 of chain A and COO

−
 of Asp23 of chain B groups. 

(E) Weakly polar interaction between the side chain of Phe19 of chain B and side chain 

of His14 of chain A. (F) Distance between the CβH group of His14 of chain A and the 

center of the phenyl ring of Phe19 of chain B.  
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Figure 2.16. Force-induced dissociation pathway of the dimer structure of the central 

structure of the most populated cluster during the first 200 ns of the simulation of 

structure of the dimer during SMD simulation (5 nm/ns pulling rate). (A) The snapshots 

of dimer structure are from 1, 0 ns; 2, 0.2 ns; 3, 0.6 ns; 4, 1.4 ns of the SMD trajectory. 

Cyan indicates random meander; green represents -turn and H-bonds are yellow dotted 

lines. N and C indicate the N- and C-terminal ends, respectively. (B) Force curves 

acquired from SMD simulation.   
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2.3.5. Energetics of the Dimer Rupture: Umbrella Sampling Simulations 

We used umbrella sampling simulations [29-31] to determine the one-dimensional 

Potential of Mean Force (PMF) curve along the  reaction coordinate and to calculate the 

free energy of binding (ΔGbindA,B) between monomers (Figure 2.17). The umbrella 

histograms and PMF curve (Figure 2.17) were obtained using the method of Weighted 

Histogram Analysis (WHAM) [32-34]. At a large distance between COM13A and 

COM13B ( > 5 nm), the PMF curve is flat, and it was selected as the zero reference 

point. At the 2.6 nm ≤  ≤ 2.9 nm region, the PMF curve is flat, and it corresponds to the 

main rupture event (see Figure 2.14B and C). Therefore, the main rupture is accompanied 

by ΔG
1

bindA,B = −49.52 kJ/mol, and the subsequent dimer dissociation has ΔG
2

bindA,B = 

−35.93 kJ/mol changes. ΔG
1

bindA,B corresponds to the breaking of H-bonds and the salt 

bridge between His14 of monomer A and Glu22 of monomer B, whereas ΔG
2

bindA,B is the 

free energy change associated with the breaking of weakly polar interactions and a salt 

bridge between Lys16 of monomer A and Asp23 of monomer B. Overall, a ΔGbindA,B of 

−85.45 kJ/mol suggests that the interaction between the monomers in the dimer is strong. 

The uneven distribution of the umbrella histograms at 2.0 nm ≤  ≤ 3.0 nm indicates that 

during the SMD simulation, before and after the major rupture peak, the number 

of interchain interactions in neighboring umbrella windows vary substantially and change 

quickly; therefore, the probability of configuration exchange between the windows is low. 
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Figure 2.17. WHAM analysis of the umbrella sampling simulation. (a) Converged 

umbrella histograms of 31 configurations, each derived from 20 ns simulation. (b) 

Potential of mean force (PMF). ΔG
1
bindA,B corresponds to H-bonds and salt bridge 

breaking, and ΔG
2
bindA,B is associated with the breaking of weakly polar interactions 

and a salt bridge. 
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2.4. DISCUSSION 

 

In our recent model of amyloid aggregation, the misfolded state of amyloid 

proteins, including A-peptides, is stabilized by the formation of dimers [35, 36]. The 

model supported by AFM force spectroscopy studies demonstrates that the dimers 

are characterized by lifetimes as large as seconds. However, the structure and mechanism 

of formation of misfolded dimers remained unclear. In this work, we showed that 

isolated monomers have characteristic conformational features that differ from those in 

aggregated or fibril states. However, substantial changes in the peptide structure were 

observed when the two monomers interacted to form a dimer. The formation of 

an antiparallel -sheet was detected after a series of conformational transitions within 

each monomer (Figure 2.9). The dimer is only stable when the two monomers are in 

antiparallel orientation. SMD simulation showed that individual peptide chains under the 

applied force undergo a structural transition that is accompanied by sharp rupture of the 

dimer; this is in agreement with AFM experiments.  

2.4.1. Structure and Dynamics of the Peptide.  

On the basis of earlier MD simulations, the conformations of short A fragments 

were considered to be in random coil [37, 38] or polyproline II structures [39, 40]. For 

A(1-28), it was shown that residues 13-21 have a high propensity for α-

helical conformations in the monomeric state [41]. During our monomer simulations, 

A(13-23) was initially assumed to have a 310-helix conformation at residues 14-17 

which then converted to -turn/ bend and random meander conformations. Since the 
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sequence of the peptide here is shorter than that in the work of Rojas and associates [41], 

a stable helical conformation is not expected but rather a flexible structure that 

interconverts between different conformational types. The three different initial 

conformations for the peptide were selected from known experimental amyloid  

structures, and over time, all three converged to similar conformations. In the antiparallel 

-sheet structure, the N-terminal Cys residue neither formed any 

intramolecular interactions nor participated in the formation of any secondary structures 

and, therefore, was an appropriate anchoring group for the AFM experiments.  

During REMD simulations of the structure of A(16-22) dimer by Gnanakaran 

and associates, six different low energy structures occurred between 275 and 510 K [40]. 

The individual chains did not prefer any particular secondary structure, and both parallel 

and antiparallel orientations occurred. In our dimer simulation, the conformations of the 

monomers and the structures of the dimer were initially similar to those observed by 

Gnanakaran and associates [40]. As the simulation proceeded the dimer assumed a 

stable antiparallel -sheet structure after several structural transitions. Furthermore, 

during two additional long-time simulations of the dimer structure, using two different 

force fields, a stable antiparallel -sheet structure was also observed (Figures 2.18-20). 

The stability could be due to the longer chain length and to the presence of His14, 

which was shown to be important for aggregation [42]. Here, we showed that His14 

forms an interchain weakly polar Ar-CH interaction that stabilizes the dimer (Figures 

2.15E, F and 2.13B). The aggregation of A(16-22) was studied in trimer form using 

relatively short (10 ns) MD  simulations [37]. The stable association of the chains 

was accompanied by a conformational transition of the individual chains from a -turn to 
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-strand structure. The oligomer did not have the antiparallel -sheet structure, most 

likely due to the short simulation time. Nguyen and associates, using 50 ns REMD 

simulations [43], showed that the free energy landscape of the dimer of A(16-22) is 

complex and that only 25% of the total population have the antiparallel -sheet structure, 

which is again most likely due to the short length of the peptide. REMD simulations of 

dimerization of A(11-25) at three different pH values revealed a dynamic interplay 

between hydrophobic, electrostatic, and solvation intertactions [44]. At pH 8.4, the 

free energy landscape for the peptide is complex, although most of the low energy 

structures are in antiparallel -sheet conformation. Here, we also observed that the dimer 

has dynamic structure but can form stable antiparallel -sheet conformation.  
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Figure 2.18. MD simulation using the OPLS-AA/L force field. (A) DSSP analysis of 

the trajectory. Bottom panel, chain A; top panel, chain B. White is coil, black is bridge, 

green is bend, yellow is -turn, blue is α-helix, gray is 310 helix and red is -sheet. The 

two chains are separated by a light gray ribbon. (B) Representative structure of the largest 

cluster. The snapshot is taken from the trajectory at 114.2 ns. Backbone conformation of 

the peptide chains is as follows: cyan is random meander; green is -turn/bend, red arrow 

is -sheet and H-bonds are yellow dotted lines. 
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Figure 2.19. MD simulation using Amber-ff99sb*-ILDN force field (A) DSSP analysis 

of the trajectory. Bottom panel, chain A; top panel, chain B. White is coil, black is bridge, 

green is bend, yellow is -turn, blue is -helix, gray is 310 helix and red is -sheet. The 

two chains are separated by a light gray ribbon. (B) Representative structure of the largest 

cluster. The snapshot is taken from the trajectory at 1003.7 ns. Backbone conformation of 

the peptide chains is as follows: cyan is random meander, red arrow is -sheet and H-

bonds are yellow dotted lines.  
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Figure 2.20. (A) The distance between the center of mass of Cys13 of chain A and the 

center of mass of Cys13 of chain B in during the 1.1 s MD simulation of the dimer 

structure using Amberff99sb*-ILDN force field. Snapshots from the trajectory are placed 

inside the plot. 1, 200 ns; 2, 480 ns; 3, 510 ns; b, 750 ns; 5, 1000 ns; 6, 1003.7 ns. Cyan is 

random meander; yellow is turn; red arrow is -sheet. N and C indicate the N-and C-

termini, respectively. (B) Number of hydrogen bonds during MD simulation of the dimer 

structure using Amber-ff99sb*-ILDN force field.   
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The dimer has dynamic structure and typically 4 to 5 H-bonds are present during 

simulations. Nevertheless, after the antiparallel -sheet structure was formed, it was not 

disrupted until the end of the simulation. Furthermore, the ionization state of the side 

chains was set as at pH 7, and only the Lys residues were protonated. Subsequently, the 

dimer was further stabilized by ionic interaction between Lys16 of chain A and Asp23 of 

chain B. Weakly polar interactions could substantially stabilize the polypeptide structure 

because their strength can be as strong as that of H-bonds [45-49]. Here, we observed the 

Ar-bb interaction between Phe19 of chain B and the backbone of the His14-Gln15 of 

chain A and an Ar-CH interaction between Phe19 of chain B and CH groups of His14 of 

chain A. These interactions clearly contributed to the stabilization of the antiparallel -

sheet structure of the dimer.  

2.4.2. Stability of the Dimer 

The stability of preformed A dimers and fibrils was studied by pulling the center 

of mass of one chain and keeping the rest of the complex constrained [50, 51]. Here, we 

used a different approach to closely mimic the experimental AFM procedure. Residue 13 

of the peptide was replaced with Cys, and only the position of Cys13 of chain B was 

constrained, while Cys13 of chain A was pulled and the rest of the peptide chains were 

flexible. Subsequently, the main force-peak of SMD simulation, where the antiparallel -

sheet breaks up, corresponds to the rupture peak in force spectroscopy (compare Figures 

2.2 and 2.5). If the structure was not an antiparallel -sheet, the force curve from the 

SMD simulation would be different from that from force spectroscopy. When a pulling 

simulation was performed on a dimer with -turn and random meander structures (Figure 
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2.16), the force curve was at the noise level of the SMD simulation of the antiparallel -

sheet structure clearly indicating that during AFM experiments, the antiparallel -sheet 

dimer dissociates.  

Our umbrella sampling simulations further indicate that the peptide forms a stable 

dimer that dissociates in two steps by showing a plateau on the free energy curve at a 

ΔG
1

bindA,B of −49.52 kJ/mol (Figure 2.17). A similar transient plateau was observed by 

Mothana and associates [50], although they overestimated the value of ΔGbind by 

its calculation from only a single MD simulation. The large value of the overall free 

energy of binding (ΔGbindA,B = −85.45 kJ/mol) indicates that a stable dimer is formed. 

This is further supported by the AFM experimental off-rate constant of 0.94 ± 0.84 s
−1

 for 

the lifetime of the dimer. The data clearly indicate that oligomerization of A is initiated 

by the formation of stable dimers.  

2.4.3. Molecular Model for A Aggregation.  

MD simulations of the process of A peptides showed that monomers can adjust 

their conformation following docking to the prestructured oligomer [38, 41], and this 

process leads to elongation of the oligomer that eventually may lead to the formation 

of protofibrils. The mechanism of the formation of oligomers, however, remains unclear. 

Our studies fill this gap and lead to a model for the oligomerization. The AFM force 

spectroscopy data demonstrate that as the monomers approach the dimers are formed. 

The contact time is in the range of seconds. Since MD simulations show that the time for 

the formation of stable dimers is much shorter, ∼300 ns, the experimental 

conditions provide sufficient time for the formation of dimers during the AFM force 



79 
 

 

spectroscopy. The peptides in the dimer form antiparallel -sheet conformation, and this 

conformation is similar to the conformation in fibrils of A(14-23) [52], suggesting that 

the process of formation of dimers modeled here is the first step in the aggregation of the 

peptide.  

Previously we proposed that the fibrils are assembled from dimers [35]. The 

evidence for this model was the long lifetime of dimers. Recent experimental data for the 

kinetics of oligomerization of A peptides agree with this model [53, 54]. The assembly 

of monomers into dimers observed in this study and the docking of monomers to the 

preassembled oligomers [55-57] occur in nanoseconds, suggesting that the finding of 

partners is the time-limiting step of the oligomerization process. The -sheet structure of 

the dimer found in our MD simulations on average has four hydrogen bonds. This is 

in agreement with the solid state NMR structure of A(14-23) fibers [52]. In additional 

simulations (Figure 2.20A,B), a longer -sheet structure was formed and stabilized by on 

average seven hydrogen bonds. However, for A peptides it is possible that the -sheet 

structure in the same region of residues with four to seven hydrogen bonds is transient 

and gradually can be transformed into longer -sheet structures. If this does not happen 

within the A dimer, the formation of higher order oligomers can stimulate 

this conformational transition. Furthermore, the monomers in A(1-40) and A(1-42) 

fibers are in parallel orientation [12, 58], but the orientation in dimers or higher order of 

oligomers remains to be determined. On the basis of our present data and recent 

publications [59-63] it is possible that A dimers are in antiparallel orientation and 
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subsequent docking of monomers to dimers triggers an overall chain reorientation leading 

to fiber formation.  

Overall, in this study, AFM and MD simulations are synergistically used to 

characterize the mechanism of misfolding and dimer formation of A(13-23). Dynamic 

force spectroscopy analysis showed that the dimeric complex formed by the peptide 

is stable and dissociates typically in seconds. During MD simulations, isolated monomers 

gradually adopted characteristic conformational states forming a native ensemble that 

differed significantly from those in dimers or fiber state. When two monomers formed a 

dimer, their structure changed substantially and adopted an antiparallel -sheet 

conformation. Conformational spaces of the monomers become restricted due to 

interchain interactions including hydrogen bonds, salt bridges, and weakly polar 

interactions of side chains. Under the applied force, the dimer as during the AFM 

experiments dissociated in a cooperative manner. Thus, misfolding of the A peptide 

proceeds via a loss of conformational flexibility and formation of stable dimers 

suggesting their key role in A aggregation process.   
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APPENDIX 2.1. The R script example Ramachandran plot 

#The original code is from 

http://www2.warwick.ac.uk/fac/sci/moac/students/peter_cock/r/density/#sm.density 

#It can convert scatter points from Ramachandran calculation to contour plot 

#Modified by Yuliang Zhang,  

#Nov, 30, 2011, UNMC 

#=============== 

#GEENRIC DATA 

#=============== 

test.data = read.table("test.agr", header=FALSE, comment.char = "@",sep = "")#input 

raw data to data 

test.data[1:38,]#check whether rama data is correct 

summary(test.data) 

 

library(MASS) 

generic.density <- kde2d(test.data[,1], test.data[,2], n=361, lims=c(-180,180,-180,180), 

h=c(25,25))#function from MASS package 

summary(generic.density) 

sum(generic.density$z) 

max <- max(generic.density$z)#check max value 

min <- min(generic.density$z)#check min value 

generic.total <- sum(generic.density$z) 

#Lovel et al. divided their plots into three regions using 99.8% (allowed) and 98% 

(favoured) levels (for the glycine, proline and pre-proline plots) or 99.95% (allowed) and 

98% (favored) levels for the generic case.------Lovell, S.C. et al. Proteins: Structure, 

Function, and Bioinformatics 50, 437-450 (2003). 

100*sum(generic.density$z[generic.density$z > 0.0000001942]) / generic.total#to define 

the edge where data is from 99.95% of total data. 

100*sum(generic.density$z[generic.density$z > 0.000011326]) / generic.total#to define 

the edge where data is from 98% of total data. 

#100*sum(generic.density$z[generic.density$z > 0.00001788]) / generic.total 

postscript("test.eps", horizontal=FALSE, onefile=FALSE, paper = "special", height=3, 

width=3.3, pointsize=8) 

#================= 

#For plot image with color bar 

layout(matrix(data=c(1,2), nrow=1, ncol=2), widths=c(4,1),heights=c(1,1)) 

ColorRamp <- gray((30:0)/30) 

ColorLevels <- seq(min, max, length=length(ColorRamp)) 

par(mar = c(6,5,2,2)) 

#================= 

#par(mar = c(5, 5, 1, 1)+.1) 

x<-generic.density$x 

y<-generic.density$y 

image(x,y,z=generic.density$z,xlab="",ylab="",col=gray((30:0)/30),axes=FALSE) 
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contour(generic.density,asp=1,lwd=2,levels=c(0,0.0000001942,0.000011326),col=c('#FF

FFFF','#999999','#000000'),drawlabels=FALSE,axes=FALSE,add=TRUE) 

#,col=c('#FFFFFF','#999999','#666666','#333333','#000000')) 

#major tick 

axis(1, at = seq(-180, 180, by = 60),font=2,lwd=2,cex.axis=1.5,labels=FALSE) 

axis(2, at = seq(-180, 180, by = 60),font=2,lwd=2,cex.axis=1.5,las = 1) 

lablist.x<-as.vector(c(-180,-120,-60,0,60,120,180)) 

text(x = seq(-180, 180, by=60), par("usr")[2] - 370, labels = lablist.x, srt = 0, pos = 1, xpd 

= TRUE,font=2,cex=1.5) 

#minor tick 

axis(1, at = seq(-180, 180, by = 30),font=2,labels=FALSE,lwd=2,tck=-.02) 

axis(2, at = seq(-180, 180, by = 30),font=2,labels=FALSE,lwd=2,tck=-.02) 

box(lwd=2) 

title(xlab=expression(paste(phi, " / Degrees")),ylab=expression(paste(psi, " / 

Degrees")),font=2,cex.lab=2,mgp=c(3.35,1,0)) 

#abline(h=0,v=0,font=2,lwd=2,col="gray") 

 

#========= 

#Plot color bar 

par(mar = c(6,0,2,4),font = 2) 

image(1, ColorLevels, matrix(data=ColorLevels, 

ncol=length(ColorLevels),nrow=1),col=ColorRamp,xlab="",ylab="",xaxt="n", las = 

1,axes=FALSE,labels=FALSE) 

axis(4, at = seq(min, max, by = max/5),font=2,lwd=2,cex.axis=1,las = 1) 

box(lwd=2) 

#========== 

dev.off() 

gc() 
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APPENDIX 2.2. The R script example for RMSIP calculation 

#This script is used to calculate RMSIP from the first 10 eigenvectors. 

#Jan, 14, 2012, Yuliang Zhang in UNMC, OMAHA. 

#At first, we must comment the lines at the end of each *.g96 file using @ character. 

 

#RMSIP of SimI and SimII(0-50NS) 

#================================================== 

a <- paste("a_0-50_eigenvec", 2:11,".g96", sep="")#Generate the dataset including 

filename from simulation I 

b <- paste("b_0-50_eigenvec", 2:11,".g96", sep="")#Generate the dataset including 

filename from simulation II 

ab=c()# Creat matrix for cumulation of the sum of xyz data from 1 to 10 eigenvector. 

for (i in 1:10){ 

  AA <- scan(a[i],skip=4,nlines=35)# Load raw data from simulation I, skip 4 character 

lines and read 35 lines data as a vector. 

  dim(AA)=c(3,35)#Change dimention of vector to(3,35) 

  A1 <- t(AA)#Build matrix like raw data with (35,3) dimention 

  for (j in 1:10){ 

    BB <- scan(b[j],skip=4,nlines=35)#Load raw data from simulation II, skip 4 character 

lines and read 35 lines data as a vector. 

    dim(BB)=c(3,35)#Change dimention of vector to(3,35) 

    B1 <- t(BB)#Build matrix like raw data with (35,3) dimention 

    sumxyz <- sum(A1[,1]*B1[,1])+sum(A1[,2]*B1[,2])+sum(A1[,3]*B1[,3])#The inner 

product of each dataset. We can use crossprod(A1,B1) to calculate them. 

    ab <- c(ab,sumxyz)#Append data to variable ab 

  } 

} 

"I-II(0-50NS)" 

sqrt(crossprod(ab,ab)/10)#The RMSIP of first 10 eigenvectors 

rm(a) 

rm(b) 

rm(A) 

rm(B) 

rm(sumxyz) 
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Chapter 3 

VALIDATING THE STRUCTURE OF THE AMYLOIDOGENIC 

PROTEIN DIMERS WITH MONTE CARLO PULLING 

SIMULATION 

3.1. INTRODUCTION 

 

In the previous chapter, we provided detailed structural information as well as the 

interactions of short A sequence (A14-23)) via the combination of AFM based single 

molecular force spectroscopy and steered Molecular Dynamics (SMD) simulations [1]. 

However, a major problem with this approach is that SMD is typically performed at 

pulling rates of 5 nm/ns, which are 10
7
 times higher than those used under typical 

experimental conditions [1, 2]. This makes performing a direct comparison between in 

silico data and the experimental results difficult [3]. In a recent publication, high-speed 

AFM instrumentation was used in experimental conditions approaching the SMD 

temporal range [4], however this methodology is not well developed at this time.  In a 

different approach, all-atom Monte Carlo Pulling (MCP) was described which enabled 

slowing down the pulling rates during simulations to rates comparable with regular AFM 

pulling experiments (pulling rate ~300 nm/s) [5]. The authors were able to directly 

compare their results with AFM experiments for amyloid β and α-synuclein monomers.  

In this chapter, we further develop the MCP approach, thereby enabling us to 

model AFM pulling experiments that measured intrapeptide and interpeptide interactions. 

The titin 91 (formerly, I27) and ubiquitin proteins were chosen to verify the feasibility of 
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our novel approach. For the amyloid system, two peptides Sup35(6-13) ([Q6C]Sup35(6-

13) containing sequence, CGNNQQNY) and A(13-23) ([H13C]A(13-23) containing 

sequence, CHQKLVFFAED) were selected and termed as A peptide and Sup35 peptide, 

respectively. MCP analysis of AFM probing experiments for these peptides demonstrates 

that both peptides in the AFM experiments form transient misfolded dimers with an 

antiparallel orientation of the monomers’ -sheet. The monomers are arranged in an out-

of-register pattern with an overall length of interacting segments of five residues. The 

MCP approach also enabled us to follow the rupture process and to characterize the 

contribution of different interactions to dimer stability. 

3.2. METHODS 

3.2.1. Initial Structure 

The structure of I27 (PDB ID: 1TIT) and ubiquitin (PDB ID: 1UBQ) were taken 

from the Protein Data Bank (PDB) [6], and the PROFASI (Protein Folding and 

Aggregation Simulator) [7] software package was used to find the lowest energy 

structures through energy minimization. The structure for the in-register A dimer was 

also generated using the same method.  

Two short peptides, A peptide and Sup35 peptide, as defined above, were 

studied. The structure of the A dimer was taken from our previous publication [1], 

described in Chapter 2 and shown in Figure 3.1A. The A dimer with an in-register  

sheet in Figure 3.1B was generated by the PROFASI package [7]. Briefly, two monomer 

sequences were given to PROFASI to generate a random dimer conformation and then 

underwent 10
7
 MC steps to obtain the low energy dimer structure with in-register 
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antiparallel -sheet. The structures of the Sup35 dimers (both the out-of-register  sheet 

and the in-register  sheet) were obtained from Replica Exchange MD (REMD) 

simulations and are shown in Figure 3.1C, D. The REMD simulations were performed 

using the GROMACS 4.5.5 package [8], with modifications used in previous methods 

[1], and with the AMBER-ff99SB-ILDN force field [9]. The detailed simulation 

procedure is as follows: 

The following parameters were used in the simulations: the integration time was 2 

fs; the non-bonded interaction list was updated after every 10 steps; the LINCS [10] 

algorithm was used for all bonds to correct the length; the peptide and  solvent, including 

ions, were coupled separately to a temperature  bath with a 0.1 ps relaxation constant; 

constant pressure was achieved using  Berendsen scaling [11] with a 1.0 ps relaxation 

constant and a 4.5 ×10
 −5 

 bar 
−1

  isothermal compressibility; van der Waals interactions were 

switched off between 0.7 and 0.9 nm; Particle Mesh Ewald (PME), with a 1.0 nm cutoff, 

was used to deal with Coulomb interactions.  

The two Sup35 monomers with random coil conformations were solvated in a 

dodecahedron box with 2398 TIP3P water molecules. The distance between the peptides 

and edges of the box was 1 nm. The distance between the center of mass (COM) of two 

monomers was 1.5 nm. Seven Na
+
 and seven Cl

−
 were added to neutralize the charges, 

and the final salt concentration was adjusted to 150 mM NaCl. The systems were 

submitted to 1000 steps steepest descent energy minimization, and then to constant 

number of molecules, and volume and temperature (NVT) simulation, while the positions 

of the peptides were constrained to the center of the box with a force constant of 1000 kJ 

mol
-1

. Then, 25 replicas (non-interacting copies) were submitted to Replica Exchange 
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Molecular Dynamics (REMD) simulation in parallel at temperatures ranging from 300K 

to 400 K. The following set of temperatures, generated through 

http://folding.bmc.uu.se/remd/, were used: 300.00, 303.58, 307.20, 310.85, 314.53, 

318.26, 322.01, 325.80, 329.63, 333.50, 337.40, 341.34, 345.32, 349.34, 353.40, 357.49, 

361.63, 365.81, 370.02, 374.28, 378.57, 382.92, 387.30, 391.72, 396.19. After a certain 

time, the neighboring replicas were selected randomly and exchanged with the 

probability of approximately 0.2, based on the Metropolis criterion: 

        P(i → j) = min {1, exp[(βj − βi)(Ej − Ei) ]}                                 (1) 

where Ei and Ej are the potential energy of the i
th

 and  j
th

 replicas, i=1/kBTi, j=1/kBTj, kB 

is the Boltzmann constant, and T is the absolute temperature. After a 140 ns simulation, 

the last 100 ns trajectory at the 300 K was used for analysis.  To avoid artifacts from 

combining internal and overall motion and to acquire a meaningful free energy 

landscape, Principal Component analysis of backbone dihedrals (dPCA) was used to 

generate the representative structures [12]. The following equation was used for the free 

energy calculations: 

                   ∆G(V1, V2) = −kBT[Ln P(V1, V2) − Pmax)]                              (2) 

where V1 and V2 are the first and second largest Principal Components; P(V1,V2) 

indicates the distribution obtained from the histogram of REMD data, Pmax is the 

maximum of distribution, which is subtracted to make sure the ΔG=0 for the lowest free 

energy minimum. kB is the Boltzmann constant, and T is the absolute temperature.  The 

Fortran program for the dPCA analysis was provided by Dr. Yuguang Mu. The 

representative structures associated with two energy minima on the free energy landscape 

were identified, one was an out-of-register antiparallel -sheet dimer and the second was 
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an in-register antiparallel -sheet dimer (Figure 3.2). These two structures were chosen as 

representative structures for the MCP simulations. 

  



100 
 

 

 

Figure 3.1. The initial structures for MC pulling (MCP) simulations. (A) The out-of-

register A dimer structure obtained in our previous study [1], with an antiparallel 

orientation of the monomers, was chosen for the MCP simulation. (B) The in-register A 

dimer generated in this work by using PROFASI software. The antiparallel out-of-register 

(C) and in-register (D) Sup 35 dimers correspond to structures with the lowest energy 

minima in the REMD simulations. The stick structures correspond to the backbones of 

the two monomers, and the dot lines represent hydrogen bonds. The balls indicate the C 

atoms for the N terminal residues of the monomers, where the pulling force was applied.  
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Figure 3.2. The energy landscape profiles for the Sup35 dimers obtained with the Replica 

Exchange Molecular Dynamics (REMD) simulations. The snapshots of the two major 

minima are indicated to the right of the energy landscape profile. The red arrows in the 

models indicate -strands, cyan tubes are the random coils, and dot lines are hydrogen 

bonds.  
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3.2.2. Monte Carlo Pulling (MCP) simulation 

The modified MCP simulations were implemented using the PROFASI package 

[7] with the implicit water model and the all-atom FF08 force field [5, 7]. In the 

PROFASI software package, bond lengths, bond angles, and peptide torsion angles are 

assumed to be fixed. The interaction potential consists of the following four terms: 

 

                                         E = Eloc +  Eev + Ehb + Ehp                                          (3) 

The Eloc term is the backbone potential from the adjacent peptide units along the chain; 

Eev represents a 1/r
12

 repulsion between a pair of atoms; Ehb and Ehp indicate the hydrogen 

binding energy and hydrophobic energy, respectively. 

Recently, the atomic level MCP simulation with respect to a constant pulling rate 

was proposed [5]. A virtual spring is attached to the two C of the N and C terminal 

residues, and the spring pulls the two atoms along a vector between them during the 

pulling simulation. The energy change of the spring is provided by the E2Espring 

function (the virtual spring attached on the two C of the N and C terminal residues) in 

the PROFASI package and calculated using the following equation: 

 Etot = E(x) +  
k

2
[L0 + vt − L(x)]2                                     (4)     

where E(x) is the energy in the absence of an external force, t is MC step time, and k is 

the spring constant of the probe. L0 represents the distance between the C atoms of Cys 

at the N termini from the initial conformation. L(x) is the distance between C atoms of 

Cys during MC pulling, and x denotes a protein conformation. When v = 0.1 fm per MC 

step, the value is equivalent to 600 nm/s. 
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However, the E2Espring function parameter only calculates the distance along a 

vector of the N and C terminal residues, which is not suitable for the simulation of 

intermolecular interactions of AFM probing experiments [1]. Therefore, we modified the 

E2Espring to the A2Aspring function (the virtual spring is attached onto the two C of 

any pairwise residues from different chains, appendix 3.1) by introducing two parameters 

into the program, Pulling Group 1 and Pulling Group 2, to recognize the specific atoms. 

In this Chapter, we used the C atoms of the cysteines at the N termini as Pulling Group 

1 and Pulling Group 2, respectively. The distance between two C atoms of any pairwise 

residues from different chains was calculated by the Atomdistance function in PROFASI 

instead of the end-to-end distance between two C atoms of the N and C terminal 

residues.  The temperatures used for the amyloidogenic protein simulation were 300 K, 

288 K, and 266 K. The parameters for each case are listed in Table 3.1.  
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Table 3.1. The dimers rupture characteristics obtained from the MCP simulations 

performed at different temperatures. 

Protein 
Temp. 

(Kelvin) 

Spring 

constant 

(pN/nm) 

v (nm/s) 

No. of 

rupture 

events 

No. of 

simulations 

1TIT 300 100 
1000 

600 

162 

140 

200 

200 

1UBQ 300 40 300 199 200 

A
a
 

 

300 

288 

266 

30 500 

586 

256 

315 

1000 

400 

400 

A
b
 

 

300 

288 

266 

30 500 

397 

393 

196 

400 

400 

200 

Sup35
a
 

 

300
c
 

288 

266 

40 & 60 

40 

40 

300 

318 

196 

372 

1400 

400 

400 

Sup35
b
 

300
c
 

288 

266 

40 & 60 

40 

40 

300 

991 

344 

397 

1400 

400 

400 

v - pulling rate converted from fm per MC step 

1TIT - titin 

1UBQ - ubiquitin 

a
Simulations from the out-of-register structure of A and Sup35 peptides. 

b
Simulations from the in-register structure of A and Sup35 peptides. 

c
Combined data obtained with two spring constant values (40 and 60 pN/nm) as used in 

experiments.  
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3.2.3. Data analysis 

Several hundred simulations were performed and the rupture events were 

assembled in Table 3.1. The force curves were smoothed by Matlab 2013a via smooth 

function (MathWorks Inc., Natick, MA, USA). The rupture peak was defined by the force 

value > 20 pN, and the position of the peak was identified by the minimum derivative 

value of the smoothed force curve. Rupture force distributions for each structure were 

compared to experimental values and were fitted by probability density function (PDF) 

[13, 14]. The equation of PDF is as follows: 

𝑝(𝐹) =
𝑘𝑜𝑓𝑓

𝑣𝐹
𝑒𝑥𝑝 (

𝐹

𝐹‡ −
𝑘𝑜𝑓𝑓𝐹‡

𝑣𝐹
(𝑒𝐹/𝐹‡

− 1))    (5) 

where, koff is the dissociation rate of protein complex at zero force. vF is the loading rate. 

F represents rupture force. F
‡ 

= kBT/x
‡
. kB is the Boltzmann constant. T is the absolute 

temperature. x
‡
 is the distance of equilibrate state to transition state. 

The majority of simulations were fitted by bimodal PDF indicating the existence 

of transient states in the dimers, but the results from the in-register dimers at low 

temperatures were fitted by monomodal PDF. The Kolmogorov-Smirnov nonparametric 

test (SPSS 20.0; IBM Corp, Armonk, NY, USA) was used to determine statistical 

significance between the force distribution differences. The fractions of dissociated 

dimers for both peptides, for in-register and out-of-register conformations, were obtained 

by dividing the number of simulations with non-rupture events by the total number of 

simulations. All of the line plots were produced by Igor Pro. 6.3.4 (WaveMetrics, Lake 

Oswego, OR, USA); the snapshots were generated by YASARA (www.yasara.org).  
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3.3. RESULTS 

3.3.1. Monte Carlo Pulling (MCP) approach 

The all-atom MCP method was described in [5] to unravel the intramolecular 

structure of proteins by pulling apart the N and C terminal residues. We modified this 

approach for AFM probing experiments in which the dimer, formed by two monomers 

immobilized to the AFM tip and the substrate, is pulled apart. With these modifications 

we are able to apply pulling forces to any pair of C atoms. The approach was validated 

using experimental data for the commonly used systems – titin I91 (formerly, I27) and 

ubiquitin proteins. Under an applied force each repeated unit of the I91 protein unravels 

in a step-wise pattern. In the experiment, using a pulling rate of 600 nm/s [15, 16], each 

segment of I91 protein ruptures cooperatively, producing a rupture force value of 200 ± 

26 pN. Similar experimental studies for ubiquitin performed in [17] resulted in a rupture 

force value of 203 ± 35 pN. 

We used our MCP approach to model the pulling process of one unit of I91 using 

the available PDB structure (PDB ID: 1TIT [18]). A typical force curve for the rupture of 

this I91 unit is shown in Figure 3.3A.  The mean rupture force values are 184 ± 37 pN (n 

= 140) at a pulling rate of 600 nm/s, and 203 ± 33 pN (n = 162) at a pulling rate of 1 

m/s. The experimental value 200 ± 26 pN obtained at a pulling rate of 600 nm/s [15, 16] 

is very close to both theoretical values. Recent in silico results obtained with the coarse-

grained model at a pulling rate of 600 nm/s produced the rupture force value 204 ± 30 pN 

[19], which is matches closely with our retults. Similarly, we modeled ubiquitin rupture 

by using the PDB structure (PDB ID: 1UBQ [20]). The results obtained at the pulling rate 

of 400 nm/s are shown in Figure 3.3B. The maximum rupture force 208 ± 51 pN (n = 
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199) is very close to the experimental value,  203 ± 35 pN, in ref. [15] and the in silico 

value, 230 ± 34 pN, obtained in [17]. Therefore, our MCP approach produces rupture 

force results that are in agreement with experimental data. 
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Figure 3.3. Typical force curves for unraveling I91 domains and ubiquitin. (A) The 

initial structure of I91 is taken from the PDB website (PDB ID: 1TIT). The snapshot just 

before rupture is on the right. The rupture force is 200 pN followed by the breakage of 

the -strands of A’-G, as shown on the right. (B) The unfolding of ubiquitin (PDB ID: 

1UBQ). The snapshot before the maximum rupture is seen on the right. The rupture event 

occurs at the breakage of the -strands I and V, as shown on the right side of the force 

curve. In the schematics of the structures, the arrows indicate -strands, the tubes are 

random coils of different types, and the ribbon represents -helix. 
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3.3.2. Structural features of A and Sup35 peptides 

We used our MCP approach to analyze the dimers formed by two amyloidogenic 

peptides, A and Sup35. Both peptides were probed in SMFS experiments during which 

each monomer was tethered to the AFM tip and substrate surface via terminal Cys 

residues. The dimers’ dissociation was characterized by sharp rupture events with forces 

in the range of 100 pN [1, 21]. Therefore, in order to closely mimic the AFM 

experimental conditions during the MCP simulations, Cys residues were added to the N 

termini of the peptides and the pulling force was applied at C atoms of these Cys 

residues.  

In the computer simulations, four different conformers, shown in Figure 3.1, were 

chosen as the initial structures for the MCP analyses. For the A dimer, the structure 

generated from our previous publication [1] was selected. For this structure, shown in 

Figure 3.1A, the two monomers adopt an out-of-register antiparallel β-sheet conformation 

stabilized by four backbone hydrogen bonds. H-bonds are formed between residues 

His14 of monomer A and Phe19 of monomer B, and between Lys16 of monomer A and 

Leu17 of monomer B. Salt bridges and aromatic interactions are also involved in 

stabilizing the Adimer structure [1]. Another structure for the A dimer was the in-

register antiparallel β-sheet conformation (Figure 3.1B) generated using the PROFASI 

software (see methods section). 

The selected structures of Sup35 peptide are shown in Figure 3.1C and D. These 

two dimer structures were found by the REMD simulation (see methods section). The 

monomers in the dimer are oriented in an antiparallel fashion with out-of-register or in-

register arrangements (Figure 3.1C, D, respectively). Five backbone hydrogen bonds 
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from the Asn and Gln residues participate in the formation of the out-of-register dimer in 

Figure 3.1C, while 7 backbone hydrogen bonds stabilize the in-register dimer structure 

(Figure 3.1D). Two C atoms from the Cys residues, indicated with the balls, were 

chosen as the pulling force application points.  

 

3.3.3. MCP pulling of A dimers 

A representative MCP force curve obtained for the A dimer in the out-of-register 

conformation is shown in Figure 3.4A. The structure of the dimer prior to the rupture is 

shown above the force curve. The simulations were carried out at the pulling rate of 500 

nm/s, which is close to the experimental pulling rate. Figure 3.4A shows that the dimer 

undergoes a sharp transition with a rupture force value of 60 pN. Similar simulations 

were performed for 586 pulling events, and the distribution of the rupture forces is shown 

in Fig. 3 B. The force distribution is asymmetrical (skewed to the right) with the 

geometric mean value of 46 ± 1 pN ± the standard error of geometric mean, as described 

in [22]. Similar simulations for the in-register conformation of the A dimer produced 

larger forces, as shown in Figure 3.4C. The histogram built for the set of 397 simulation 

runs is shown in Figure 3.4D.  The distribution is broad with a geometric mean value of 

178 ± 3 pN that is three fold of the value obtained for the out-of-register conformation. 

The experimental value of 53 ± 2 pN (Figure 3.4E) obtained at the same pulling rate [1] 

is considerably closer to the computational data for the out-of-register model (46 ± 1 pN). 

The difference between the experimental results and the simulated value for the out-of-

register model is only ~10% which can be explained by a number of minor factors such 

as exact ionic conditions, and experimental errors in the force calibration. In our previous 
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analysis of the rupture of the out-of-register A dimers with the use of the SMD 

approach, a rupter value more more than 10 times greater was obtained [1]; This was due 

to the use of a pulling rate of 5 nm/ns, which is 10
7
 times greater than pulling rates used 

in MCP simulations and the experiment. 
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Figure 3.4. The rupture force curves and distributions of A peptide at 300 K. (A) A 

typical force curve for the rupture of the out-of-register dimer. The snapshot of the dimer 

structure prior to the rupture is above the force curve. (B) The rupture force distribution 

for the force induced dissociation of the out-of-register dimer. (C) Typical force curve for 

the dissociation of the in-register dimer. The snapshot of the dimer structure before the 

rupture is above the force curve. In A and C, the distance on the x-axis of the force plots 

corresponds to the distances between the C atoms of the N-terminal Cys residues. The 

arrows indicate -strands, the tubes are random coils, and the dotted lines are hydrogen 

bonds. (D) Rupture force distribution for the in-register dimer.  The force distribution 

histograms are approximated with probability density functions (PDF). The bimodal 

approximation fits the histograms. Individual PDF distributions made with dotted lines 

essentially coincide with the overall distributions shown with solid lines. (E) The 

reconstructed rupture force distribution from experimental results for A dimer. The solid 

(B and D) and dashed lines (B) indicate the individual fits with probability density 

function (PDF), which donate the overall fits in Fig 3.4. In E, the black solid line 

represents the unimodal fit with the PDF.  
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The MCP simulations revealed that three classes of out-of-register A dimers 

exist, differing in their rupture processes (Figure 3.5). The parameters used for the 

characterization of different structures are rupture forces values, number of hydrogen 

bonds, and -sheet content. Class I structures are defined as having a rupture force value 

> 20 pN, a number of hydrogen bonds ≥ 0, and a -sheet content of 0.  Class II structures 

have a rupture force value > 20 pN, hydrogen bond numbers ranging from 1 to 5, and a -

sheet content of > 0. Class III is similar to Class II, but contains a number of hydrogen 

bonds > 5.  In class I dimers (Figure 3.5A), the  structure dissociates before approaching 

the maximum rupture force, leading to the formation of a non- structure stabilized by 

aromatic-aromatic (Ar-Ar) interactions of four Phe residues as seen in Figure 3.5A. Its 

dissociation, averaged over 386 events, produces a mean rupture force of 32 ± 1 pN 

(Figure 3.4B, fist peak). Class I dimers are the most representative population of the 

rupture events in the MCP simulations. In Class II (Figure 3.5B), the out-of-register 

structure retains a few hydrogen bonds prior to reaching the maximum force, and Ar-Ar 

interactions contribute to the structural stability of the dimer. In class III dimers (Figure 

3.5C), the out-of-register structure undergoes a conformational transition to structures 

containing relatively high -sheet content from 70% residues, with some conformations 

forming in-register dimers. The conformational transitions occurred due to a relatively 

low pulling rate (500 nm/s) and the fast rate of -sheet formation, which is in the 

microsecond time scale [23]. These conformational transitions of the structure with 

different  content can occur during the pulling of in-register dimers as well. This model 

explains the broad distribution for the in-register dimer pulling results (Figure 3.4D). Due 

to the fast rate of the conformational transitions, dimers with fewer numbers of hydrogen 
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bonds are formed and dissociations occur at low forces.  The forces from Class II and III 

structures contribute to the asymmetry of the overall force distributions. Although there is 

a significant difference between the simulation of out-of-register dimers and experimental 

conditions (p < 0.01), class I and II rupture conformations correspond to the rupture force 

values that are close to experimental rupture force values (Figure 3.4E). This finding 

suggests that a combination of these two types of structures is probed with the 

experiment. 
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Figure 3.5. Modeling of the rupture process for three classes of structures for the out-of-

register A dimer. The simulation was performed at 300 K. (A) The Class I structure is 

characterized by the transient formation of dimers stabilized by aromatic-aromatic (Ar-

Ar) interactions. (B) The Class II structure contains hydrogen bonding and Ar-Ar 

interactions. (C) The Class III structure is rearranged from the initial structure to form 

more hydrogen bonds. The arrows indicate -strands, the tubes are random coils, the stick 

structures represent Phe residues and the dotted lines are hydrogen bonds. 
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3.3.4. MCP pulling of Sup35 dimers 

Next, we used the MCP simulation method to characterize the rupture process of 

Sup35 dimers. Analysis of the REMD simulation data generated two structures (Figure 

3.1C, D). The typical rupture profiles obtained using the MCP approach and experimental 

method are shown in Fig. 5. The distribution for the rupture forces for the out-of-register 

Sup35 dimer shown in the Figure 3.6A results in a rupture force of 33 ± 1 pN (n = 318). 

The rupture profile for the out-of-register Sup35 dimer data shows that there is 

tremendous fluctuation in the dimer structure (Figure 3.6A, inset). While five hydrogen 

bonds remain stable (Figure 3.7A), the two extra dangling hydrogen bonds between Tyr 

of one monomer and Gly of the other monomer are unstable prior to the rupture event. 

According to Figure 3.7B, which shows the residue position fluctuations, the terminal 

Cys residues are floppy and characterized by a relatively large Root Mean Square 

Fluctuation (RMSF) value (> 0.3 nm).  

A similar analysis was performed for the in-register dimer (Figure 3.7C, D); a 

representative force curve is shown in Figure 3.6B inset. Based on 991 rupture events 

(the distribution is shown in Figure 3.6B), the rupture force was determined to be 58 ± 1 

pN. The in-register dimer has 7 hydrogen bonds that remain intact until the end of the 

rupture process. Furthermore, unlike the out-of-register dimers, the number of hydrogen 

bonds in the in-register dimers remains constant before the rupture starts (Figure 3.7C), 

and there are no dangling hydrogen bonds. Additionally, the RMSF value of residues is 

relatively low (< 0.3 nm; Figure 3.7D), suggesting that the swing residues and the 

dangling hydrogen bonds in the out-of-register dimer are responsible for its reduced 

conformational stability. Similar to the results for the A dimer structures, the out-of-



117 
 

 

register dimer with low -sheet content constitutes the most representative species, 

suggesting that these structures were probed in the majority of the force probing 

experiments. 

The force distribution of experimental data assembled in Figure 3.6C has a peak 

value 42 ± 2 pN that is significantly less of the value 58 ± 1 pN for the simulation of the 

in-register dimer (p < 0.01), but closer to 33 ± 1 pN obtained for the simulation for the 

out-of-register dimer. The comparison between these values is summarized by the bar 

histogram in Figure 3.8. Next, we fitted the force distributions in Figure 3.6 with bimodal 

PDF functions. Such an approximation shows that the experimental data (main peak at 33 

pN, shoulder peak at 55 pN) correlate well with the theoretical data for the out-of-register 

model (main peak at 32 pN and shoulder peak at 50 pN). At the same time, the in-register 

model has a minor first peak at 40 pN and the major second peak at 92 pN. These 

comparisons are summarized in Table 3.2, and Figure 3.8. This comparative analysis 

suggests that the out-of-register Sup35 dimer is the predominant structure probing by 

SMFS experiment.  

The elevated dynamics observed for Sup35 dimers is in agreement with the 

computational analyses described in ref. [24], which analyzed the dynamics of the Sup35 

crystallographic hexamer structure [25]. These simulations showed that the 

crystallographic hexamer is not stable and dissociates in the course of the simulation 

process, suggesting that additional interactions within a large ensemble of the peptide 

units are responsible for ensemble stabilization.  
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Figure 3.6. The rupture force distributions for Sup35 dimers at 300 K. (A) Theoretical 

data for the dissociation of the out-of-register dimer. (B) Theoretical data for the 

dissociation of the in-register dimer. (C) The experimental results for the rupture force 

distribution for Sup35 dimer at pulling rate of 300 nm/s. Note that the distance in the 

force curve show in C (inset) includes the length of stretching polymer tether used for the 

peptide immobilization [21]. The solid lines indicate the overall fits approximation with 

the bimodal PDF and the dotted lines represent individual PDF fits. The insets are the 

representative force curves. The models of structures are shown above the force curves in 

the insets. The red arrows indicate -strands, the tubes are the random coils, and the 

dotted lines are hydrogen bonds. The distance in the graphs corresponds to the distances 

between the C atoms of the N-terminal Cys residues (black lines in the insets of A and 

C). 
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Figure 3.7. The results of the MCP simulation at 300 K for the pulling of Sup35 peptide 

with the out-of-register (A, B) and in-register (C, D) arrangements of the polypeptide 

chains. The number of hydrogen bonds within the main chain of the dimers during the 

pulling is calculated by using g_bonds from the Gromacs package (black lines in A and 

C). The graphs (B and D) are the root-mean-square fluctuation (RMSF) of the C atoms 

for each residue calculated by g_rmsf from the Gromacs package.  
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Figure 3.8. The statistical analysis of Sup35 dimer at 300 K. The difference of the 

pairwise datasets is estimated by the Kolmogorov-Smirnov test. A statistically significant 

difference corresponding to p < 0.01 is indicated with the asterisk. The data is shown as 

the geometric mean ± standard error of geometric mean. The white bar is the 

experimental data. The gray and black bars correspond to the simulations for the out-of-

register and the in-register arrangements of the dimers, respectively.  
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Table 3.2. The peaks from PDF fit of the distributions for Sup 35 dimers. 

 Main Peak (pN) 
Shoulder peak 

(pN) 
F (pN) 

Sup35
a
 32 50 18 

Sup35
b
 40 92 52 

Experiment 33 55 22 

F is the interval between main peak and shoulder peak.
 

a
Simulations from the out-of-register structure. 

b
Simulations from the in-register structure.  
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3.3.5. Temperature dependence of stabilities of Sup35 and A dimers 

The increased mobility of the terminal residues identified in the comparative 

structural studies of the dimers under pulling stress indicates differences in the dimers’ 

stabilities. In order to evaluate the thermodynamic stabilities of both types of Sup35 and 

A dimers, we performed MCP simulations for the four structures at temperatures 288 K 

and 266 K. The force histograms for A and Sup35 peptides are assembled in Figure 3.9 

and Figure 3.10, respectively. There is a trend towards higher forces as the temperature 

decreases, suggesting that thermal fluctuations destabilize the dimers in the force 

probing. This assumption was confirmed by the analysis in which the fractions of 

dissociated dimers for both peptides, adopting in-register and out-of-register 

conformations, were determined from the ratio of the number of simulations with non-

rupture events to the total number of simulations. The rupture events are shown in Table 

3.1 and plotted in Fig. 11. They demonstrate that the dissociation fraction increases with 

temperature, but the association varies depending on the type of peptide and its 

conformation. The dependence on temperature is less steep for in-register conformations 

than for its out-of-register conformations, and the in-register A dimer is not dependent 

on the temperatures used in this analysis (Figure 3.11A). This suggests that the in-register 

structure is stable with respect to the out-of-register structure. The temperature 

dependence for the out-of-register Sup35 peptide is the steepest (Figure 3.11B), 

suggesting that the dimer in this conformation is very dynamic. 

The higher stability of the out-of-register A dimer compared to the stability of 

the out-of-register Sup35 dimer can be explained by the elevated hydrophobicity of the 

A peptide, in particular Class I, II, and the hydrophilic feature of the Sup35 peptide.  
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Additionally, A contains three charged residues (Lys-16, Glu-22, and Asp-23) that 

interact within the dimer and contribute to dimer stability. The analysis performed in [1] 

identified the formation of salt bridges and aromatic interactions as additional stability 

factors for A dimers. 
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Figure 3.9. The rupture force distributions for A peptide at temperatures of 288 K and 

266 K. (A) and (B) are the force distributions at 288 K for out-of-register and in-register 

dimers arrangements, respectively. (C) and (D) are the force distributions at 266K for 

out-of-register and in-register dimers arrangements, respectively. The dashed lines 

represent the each unimodal PDF fit and solid lines indicate the overall fits. 
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Figure 3.10. The rupture forces distributions for Sup35 peptide for temperatures of 288 

K and 266 K. (A) and (B) are the force distributions at 288 K for out-of-register and in-

register dimers arrangements, respectively. (C) and (D) are the force distributions at 

266K for out-of-register and in-register dimers arrangements, respectively. The solid 

lines indicate the fits with bimodal PDF and the dashed lines represent the each unimodal 

PDF fit, which are overlaid by the solid lines.  
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Figure 3.11. The temperature dependence of the fraction of dissociated dimers for the A 

dimer (A) and the Sup35 dimer (B). The gray dashed lines represent the out-of-register 

dimers, and the black solid lines represent the in-register dimers. 
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3.3.6. Dynamics of Sup35 and A dimers and the aggregation process 

The MD and REMD simulations, respectively, for A and Sup35 peptides 

showed that the dimers are capable of forming out-of-register and in-register 

arrangements. However, comparison with the experimental data led to the conclusion that 

both peptides in the AFM probing experiments assemble as dimers in an out-of-register 

alignment. Given the higher stability of the in-register dimer structure than the out-of-

register structure, it would be expected that the formation with the most stable structure 

would occur in AFM probing experiments. The dimers could undergo the transition into 

the in-register conformation prior to their growth into larger oligomers. This is supported 

by the observation of rupture events with forces considerably exceeding that for the out-

of-register conformation, although the yield of these events is very low, in the range of a 

percent [1, 21].  

According to the contour plot from 2D projection of the free energy for Sup35 

produced by the REMD simulation (Figure 3.2), there are two major local energy minima 

corresponding to the most stable configurations. Therefore, it is reasonable to assume that 

out-of-register structures are kinetically trapped, and the dimer can adopt the most stable 

conformation over time after passing a barrier between the two energy minima. We 

observed previously in the MD simulations of A peptide, the formation of the in-register 

dimer configuration that began with the out-of-register conformation [1]. This transition 

required full dissociation of the dimer followed by the rearrangement of the peptide 

chains, enabling the in-register antiparallel orientation. This was observed in an extended 

MD simulation process, ~ 2 s, confirming the kinetic trapping of the out-of-register 

conformations. Therefore, the kinetically trapped out-of-register conformation can self-
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assemble and form higher order oligomers without changing the out-of-register 

conformation. Oligomers assembled with the in-register dimer should be structurally 

different. However, it is possible that the first types of oligomers can undergo structural 

transitions that form the second type of oligomers in the in-register conformation. This is 

supported by the recent publication that observed the out-of-register conformations of 2-

microglobulin hexapeptide in crystals [26]. The model of conformational transitions 

within oligomers was proposed in a study of -lactoglobulin aggregation [27].  

Although we described above the analyses for antiparallel dimers, it would be 

interesting to compare this analysis with the one for the parallel arrangement of 

monomers. We also took the parallel -sheet structure with same sequence from the two 

consecutive monomers on A fibril as control case of A dimer and performed the 

rupture simulations.  A representative force curve is shown in Figure 3.12. There are 

peaks at ~ 2 nm, ~ 4 nm and ~ 6 nm corresponding to the step-wise dimer unzipping, but 

their amplitudes are slightly above the noise level. These data are very different from 

pulling of antiparallel dimers that do have well-defined peaks (Figures 3.4 and 3.6). 
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Figure 3.12. A typical rupture force curve of the parallel A dimer with the in-register 

arrangement at 300 K. The distance in the graphs corresponds to the distances between 

the Catoms of the N-terminal Cys residues.  
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3.4. CONCLUSION 

Overall, our simulations revealed that the dimers formed by A and Sup35 have 

structural variability with different secondary structure and differences in their dynamics. 

However, we also identified some similarities in their structures. The formation of dimers 

with diverse structures can lead to different aggregation pathways and produce oligomers 

with different structures that may have physiological significance. Although we used the 

MCP approach to analyze short peptides, the application of the approach to larger 

systems is possible, as demonstrated by the analysis of titin and ubiquitin proteins. The 

development of the modified MCP computational approach opens prospects for the 

structural characterization of large protein systems probed by AFM. 
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APPENDIX 3.1. C source code of the A2Aspring function in the modified PROFASI 

software package 

/************************************************************** 

    PROFASI: Protein Folding and Aggregation Simulator, Version 1.5 

    Copyright (C) (2012)  Anders Irback and Sandipan Mohanty 

    Email: profasi@thep.lu.se 

    Home Page: http://cbbp.thep.lu.se/activities/profasi/ 

    Version control (git) : https://trac.version.fz-juelich.de/PROFASI 

 

    This program is free software; you can redistribute it and/or modify 

    it under the terms of the GNU General Public License 

    (see PROFASI/gpl.txt). 

 

    This program is distributed in the hope that it will be useful, 

    but WITHOUT ANY WARRANTY; without even the implied warranty of 

    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

GNU General Public License for more details. 

A2Aspring function is added by Yuliang Zhang with permission. 

 *************************************************************/ 

// A2Aspring function is added by Yuliang Zhang with permission, Aug, 28, 2013, 

UNMC, OMAHA. 

 

#include "A2ASpring.hh" 

#include <cmath> 

#include <fstream> 

 

using namespace std; 
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using UnivConstants::pi; 

 

namespace prf { 

 

    A2ASpring::A2ASpring() : Energy() { 

        Name("A2ASpring"); 

        R = 0; 

        k = 0; 

        a1 = 0; 

        a2 = 0; 

    } 

 

    A2ASpring::~A2ASpring() { 

    } 

 

    void A2ASpring::init() { 

        R = AtomCoordinates::dist(a1,a2); 

        initialized = true; 

    } 

 

    void A2ASpring::pull() { 

        R += pullRate; 

    } 

 

    double A2ASpring::evaluate() { 

        delv = 0; 

        double r = AtomCoordinates::dist(a1,a2); 
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        vval = 0.5 * k * (R - r)*(R - r); 

        return vval; 

    } 

 

    double A2ASpring::getForce() { 

        double r = AtomCoordinates::dist(a1,a2); 

        return k * (R - r); 

    } 

 

    double A2ASpring::deltaE(Update *updt) { 

        double eold = vval; 

        evaluate(); 

        delv = (vval - eold); 

        vval = eold; 

        return delv; 

    } 

 

    void A2ASpring::Accept(Update *updt) { 

        vval += delv; 

        pull(); 

    } 

 

    void A2ASpring::Revert(Update *updt) { 

        pull(); 

    } 

 

    void A2ASpring::rangeEstimate(double &x1, double &x2) { 



138 
 

 

        x1 = 0.0; 

        double maxLength = 2*3.6*p->Chain(0)->numAminoAcids(); 

 x2 = 0.5 * k * maxLength*maxLength; 

    } 

 

    void A2ASpring::forceRangeEstimate(double &x1, double &x2) { 

        x1 = 0.0; 

        double maxLength = 2*3.6*p->Chain(0)->numAminoAcids(); 

 x2 = k*maxLength; 

    } 

 

    void A2ASpring::saveState(std::string pullfile) { 

        std::ofstream output_file(pullfile.c_str(), ios::binary); 

        output_file.write((char*) &R, sizeof (R)); 

        output_file.close(); 

 

        prf::cout << "Stored pulling distance: " << R << "\n"; 

    } 

 

    void A2ASpring::recoverState(std::string pullfile) { 

        std::ifstream input_file(pullfile.c_str(), ios::binary); 

        input_file.read((char*) &R, sizeof (R)); 

        prf::cout << "Recovered pulling distance: " << R << "\n"; 

    } 

 

} 
 

  



139 
 

 

Chapter 4 

AMYLOID PROTEIN A42 STRUCTURE, DYNAMICS AND SELF-

ASSEMBLY IN DIMERS  

 

4.1. INTRODUCTION 

 

In Chapters 2 and 3, the goal to characterize the dimer characteristic from short 

amyloid peptide fragment has been successfully attained using the combination of AFM 

based single molecular force spectroscopy (SMFS), conventional MD (cMD) simulation 

[1] and Monte Carlo pulling (MCP) simulation [2]. However, it is still unknown whether 

the evidence from short peptide is appropriate to interpret the phenomenon in large 

system. In our setup, the MD simulation is necessary to obtain the meaningful structures. 

Due to the limitation of current computer resource, the simulation of large protein system, 

such as A42 protein, -Syn protein, is still a challenging. Fortunately, the specialized 

supercomputer—Anton—have been developed to achieve the goal of large biological 

system modeling [3, 4]. 

Here, we applied MD simulation to analyze the dimer formation of full-size A42 

protein using the most powerful supercomputer, the Anton [3, 4]. Two types of dimers 

were identified, and the structures of the monomers within the dimers were very different 

from those observed in fibrils. Validation of different dimer models using the MCP 

approach ruled out the formation of dimers with extended -structures that exist in fibrils. 

To distinguish between the dimers identified by the MD simulations, we developed 

another approach enabling us to select the most appropriate dimer type. The role of dimer 
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structures and dynamics in further aggregation processes and possible dimer 

neurotoxicity are also discussed.  

4.2. METHODS 

 

4.2.1. Monomer simulation procedure: 

To generate the initial structure of the monomers for the dimer simulation, we 

conducted conventional MD (cMD) simulation using GROMACS ver. 4.5.5 [5] using 

Amber ff99SB-ILDN force field [6] and the TIP3P water model [7]. The initial monomer 

structure (Figure 4.1A) was adopted from NMR data [8] (PDB ID: 1IYT) obtained in the 

presence of the hexafluoroisopropanol (HFIP) : water solvent ratio of 80 : 20. To mimic 

the experimental design, a Cys residue was added to the N-terminus. The index of this 

Cys residue was set to 0 to keep the original numbering of the other residues as the actual 

A42 protein. Then, the structure was solvated in a truncated octahedron box with 10620 

TIP3P water molecules. The minimum distance between the protein surface and the 

edges of the water box was 1.5 nm, so that any interactions from the structure and its own 

periodic copy, due to periodic boundary condition (PBC), are avoided. The Lys and Arg 

residues were treated at the protonation stage to mimic the neutral pH conditions,at which 

both Lys and Arg contain 1 positive charge. The nitrogen atoms at the  position of the 

His residues were protonated as well. 32 Na
+
 and 29 Cl

−
 ions were added to neutralize the 

system charges and keep the constant salt concentration of 150 mM. Other details of the 

simulations setup were described in our prior work [1]. The initial equilibration, 500 ns 

NPT — constant number, constant pressure (1 bar) and constant temperature (300 K) — 

cMD simulation was submitted to the Holland Computing Center (HCC).  After a 500 ns 
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simulation time, a cluster analysis was performed through g_cluster command in the 

GROMACS package employing the GROMOS method of clustering and root-mean 

square deviation (RMSD) for protein backbone with a 3Å cut-off value, as previously 

described [1]. Due to large structural fluctuations of residues 1–9 and 36–42, only data 

for residues 10–35 were selected for cluster analysis. 

Furthermore, we addressed secondary structure dynamics according to the method 

developed by Thirumalai’s group [9]. Briefly, if the dihedral angles from two consecutive 

residues satisfy the definition of an -helix (-80° ≤ ≤ -48° and -59°≤ ≤ -27°) and -

strand (-150° ≤ ≤ -90° and 90 ≤ ≤ 150°), the structures are considered to be  and  

conformations, respectively. The 𝛼(𝑡) =
1

∆
∫ 𝛼𝑠(𝑠)𝑑𝑠

𝑡+∆

𝑡
 and 𝛽(𝑡) =

1

∆
∫ 𝛽𝑠(𝑠)𝑑𝑠

𝑡+∆

𝑡
 are 

defined as functions of time to monitor the changes of secondary structure, where 

𝛼(𝑠) =
1

41
∑ 𝛿𝑖,𝛼

41
𝑖=1  and 𝛽(𝑠) =

1

41
∑ 𝛿𝑖,𝛽

41
𝑖=1  at t =s and the output frequency of MD 

trajectory =1 ns. When the residues adopt the  or conformations, the changes from i
th

 

residue, 𝛿𝑖,𝛼 = 1 or 𝛿𝑖,𝛽 = 1. The calculations from the first N- and C-terminal residues 

were not taking into account. Thus, the total number of residues in monomer is 41. The 

script example of relevant calculations is placed in appendix 4.1. 

4.2.2. Dimer simulation on the specialized supercomputer Anton 

For simulations on Anton, we used the Maestro-Desmond software package [10] 

to build the initial dimers, using the same force field and water model as for the monomer 

MD simulations. To enhance sampling within the finite cubic box, two dimers termed 

dimer 1 and dimer 2 were created from copies of monomers with different orientations 

from cluster 1 in Figure 4.1C: in dimer 1 the angle between the long axes of each 
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monomer was 90° and in dimer 2 a parallel orientation of monomers was built. The two 

dimers were solvated into the cubic box with the equal edges of 8.2 nm and 8.4 nm along 

with 18031 and 18397 TIP3P water molecules, respectively. The minimum distance 

between the proteins and the box edge was 1.5 nm. The initial the center of mass (COM) 

distance of two monomers was set to 4 nm. Na
+
 (56 for dimer 1 and 57 for dimer 2) and 

Cl
−
(50 for dimer 1 and 51 for dimer 2) ions were placed in the box to neutralize the 

protein charges as well as to maintain an ionic concentration of 150 mM. The protonation 

of charged residues was processed the same way as the monomer simulations. The 

viparr.py script from Maestro-Desmond package was employed to load the Amber 

ff99SB-ILDN force field and TIP3P water model and to constrain the mobility of the 

hydrogen atoms using the M-SHAKE algorithm [11]. Then, for each dimer case, the 

systems were equilibrated using 20 ns NPT cMD simulations on HCC cluster provided 

by University of Nebraska. The resulting systems from the last frame of the 20 ns 

simulations were chosen as the initial input for the 4 s cMD simulation runs on Anton. 

The input parameters were optimized by the guess_chem command available on the 

Anton machine. The multigrator scheme from Anton was used to achieve the elevated 

flexibility of the setup in the integration steps. All simulations utilized the Martyna-

Tobias-Klein (MTK) [12] and the Nosé-Hoover algorithms [13] for constant pressure of 1 

bar and constant temperature of 300 K, respectively. The unbounded interactions beyond 

9 Å were ignored and the long-range electrostatics were calculated by the particle-mesh 

Ewald (PME) algorithm [14] with 64×64×64 grids with 12 Å cut-off. The integration 

time step was 2 fs and the output frequency was 240 ps. After running 4 s cMD 

simulation on Anton, the equilibrated structures of two dimers from last 150 ns 
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trajectories were used to determine the intermolecular contacts by g_mdmat command 

from GROMACS package [5]. 

The calculation of the time-dependent secondary structure changes is the same as 

in the aforementioned monomer simulation section. Here, 𝛼(𝑠) =
1

82
∑ 𝛿𝑖,𝛼

82
𝑖=1  and 

𝛽(𝑠) =
1

82
∑ 𝛿𝑖,𝛽

82
𝑖=1  at t = s and =1.2 ns. The calculations from the first N- and C-

terminal residues were not taking into account. So, the total number of residues in dimer 

is 82. 

4.2.3. Accelerated MD (aMD) simulation 

The resulting dimer structures from the cMD simulations on Anton were selected 

to perform the A42 dimer simulation by the accelerated MD (aMD) simulation method 

on GPUs using STAMPEDE at the Texas Advanced Computing Center (TACC) [15]. 

The simulation procedures were adapted from the   description by Pierce, L.C. et. al. [16] 

and the website (URL: http://ambermd.org/tutorials/advanced/tutorial22/). Briefly, the 

500 ns aMD simulation was performed via the Amber12 Package [17]. The dimers 

structures were extracted from the last frames in the cMD simulation on Anton and all the 

hydrogen atoms were removed to avoid conflicts within the conversion from different 

MD packages. Then, the tleap command from Ambertool [17] was used to solvate, 

neutralize, and make a 150 mM NaCl concentration within the dimer systems with the 

same force field and same solvent model condition as cMD simulations described above. 

Besides proteins, the final dimer 1 system contained 11480 water molecules, 38 Na
+ 

ions 

and 32 Cl
−
 ions while the final dimer 2 system was composed of 10542 water molecules, 

36 Na
+
 and 30 Cl

−
 ions. The charged residues, Lys, Arg and His, were processed in the 
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same way as described in monomer section. Then, the output products were taken as 

input files to run 6 step cMD simulations following the online tutorial prescriptions (URL: 

http://ambermd.org/tutorials/advanced/tutorial22/) for energy minimization and system 

relaxation.  

According to the principle of aMD [16, 18], a bias (boost) potential V(r) is 

introduced to the original potential energy V(r) to raise the energy surface, which is 

nearby the minima. Using this method, the proteins are able to escape from potential 

wells, thereby enhancing of the sampling of the conformational space that is equivalent to 

the sampling of much longer time scales in cMD simulations. Bias potential is applied 

conditionally, when the V(r) is smaller than the selected threshold level E, the simulation 

will be run on the modified potential V
*
(r) = V(r)+V(r); if the V(r) is larger than E, the 

simulation will be implemented on the true potential V
*
(r) =V(r). The V(r) is defined as: 

                                          𝛥𝑉(𝑟) = {
0,                    𝑉(𝑟) ≥ 𝐸

(𝐸−𝑉(𝑟))2

𝛼+(𝐸−𝑉(𝑟))
,   𝑉(𝑟) < 𝐸

                                       (1) 

where, V(r) is the original potential energy; E is the predefined threshold for boost energy; 

and is tuning parameter that administers the depth and roughness of modified potential 

energy. The smaller  is, the less rough the modified potential energy would be. 

The dual boost approach, in which both torsional and total energies are taken into 

account [19], was utilized to explore the A42 dimerization process. Parameters for aMD 

simulation were calculated based on the last step of the cMD relaxation simulation. The 

appropriate total boost parameters (Etot and tot) and dihedral boost parameters (Edih and 

dih) were calculated according to the procedure from Pierce et al. [16] as follows: 

http://ambermd.org/tutorials/advanced/tutorial22/
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In the dimer 1 simulation, 

EthreshP: Etot= -118009 kcal mol-1 + (0.16kcal*mol
-1

 atom
-1

 * 35786 atoms) = -112283 

kcal mol
-1

 

P: tot= (0.16kcal mol
-1

 atom
-1

 * 35786 atoms) = 5726 kcal mol
-1

  

EthreshD: Edih=796 kcal mol
-1

 + (4kcal mol
-1

 residue
-1 

* 86 solute residues) = 1140 kcal 

mol
-1

  

D: dih=(1/5)*(4kcal mol
-1

 residues
-1

 * 86 solute residues) = 68.8 kcal mol
-1 

In the dimer 2 simulation, 

EthreshP: Etot= -108802 kcal mol
-1

 + (0.16kcal*mol
-1

 atom
-1

 * 32968 atoms) = -103527 

kcal mol-1  

P: tot= (0.16kcal mol
-1

 atom
-1

 * 32968 atoms) = 5275 kcal mol
-1

  

EthreshD: Edih=803 kcal mol
-1

 + (4kcal mol
-1

 residue
-1

 * 86 solute residues) = 1147 kcal 

mol
-1

  

D: dih=(1/5)*(4kcal mol
-1

 residues
-1

 * 86 solute residues) = 68.8 kcal mol
-1

 

The two dimers were submitted to STAMPEDE cluster for 500 ns NVT (constant 

Volume and constant Temperature) aMD simulation. In order to keep the temperature at 

300K, the Langevin thermostat was used with collision frequency of 5 ps
-1

. The cutoff for 

short-range non-bonded interactions was set to 12 Å. Over 500 ns aMD simulations, the 

trajectories were analyzed by dihedral Principal Component analysis of backbone (dPCA) 

[20], in which the artifacts from combining internal and overall motion are minimized, 
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were used to acquire the representative structures related to lowest energy minima in free 

energy landscape. The dihedral angles of the terminal residues are ignored. The script 

example for dihedral angle calculation can be found in appendix 4.2. The following 

equation for the free energy calculations was used: 

                 ∆G(V1, V2) = −kBT[Ln P(V1, V2) − Pmax)]                              (2) 

where V1 and V2 are the 1st and 2nd largest Principal Components; P(V1,V2) represents 

the distribution obtained from the histogram of MD data, Pmax is the maximum value of 

the distribution, which is subtracted to make sure the ΔG=0 for the lowest free energy 

minimum; and kB and T are the Boltzmann constant and the absolute temperature, 

accordingly.  The Fortran program written by Dr. Yuguang Mu was used to perform this 

analysis. 

 

4.2.4. MC pulling simulation 

The MC pulling method, via the modified PROFASI package, was the same as 

described in our previous publication [2]. Briefly, the two Cof the N-terminal Cys 

residues of each monomer were defined as the pulling groups. A virtual spring was 

attached onto each pulling group and used to stretch them along a vector during the 

pulling process. The energy dynamics of the spring were calculated by the A2A spring 

function and the total energy in the course of pulling was described by the following 

equation, 

 

      Etot = E(x) + 
k

2
[L0 + vt − L(x)]2                                     (3)     
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where E(x) indicates the energy without an external force, k and t are the spring constant 

of the virtual spring. L0 is the initial distance between two C atoms of the N-terminal 

Cys residues of each monomer. L(x) represents the real-time distance between the C 

atoms of Cys residues during pulling and x denotes a protein conformation. When v = 0.1 

fm per MC step, the value is equivalent to pulling rate of 600 nm/s. Here, v = 0.083, 

which is equivalent to pulling rate of 500 nm/s, was used for all of the MC pulling 

simulations. 

 

4.2.5. Graphic software 

The final cluster network in monomer simulations was plotted by Visone [21]. The 

figures of the contact map and the free energy landscape in the dPCA analysis were 

generated via Python2.7 [22-24]. The force curves were analyzed by Matlab 2013 

(MathWorks Inc., Natick, MA, USA) and the script example is put in appendix 4.3. All 

of the line plots, scatter plots and distributions were produced by Igor Pro. 6.3.4 

(WaveMetrics, Lake Oswego, OR, USA). The statistical significant differences between 

the force distributions were calculated using the Kolmogorov-Smirnov nonparametric test 

(SPSS 20.0; IBM Corp, Armonk, NY, USA). The dihedral angles were calculated 

through VMD software package [25], and the protein snapshots were generated by 

YASARA (www.yasara.org). 

4.3. RESULTS 

 

4.3.1. Equilibrated structures of A42 monomer  
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Prior to the simulation of A42 dimer structures, we performed MD simulations 

of A42 monomer to identify equilibrated structures of monomers. We applied this 

approach in our recent simulations of the dimer structures for A(14-23) peptide [1].  We 

have shown that the equilibrated structure of the monomer does not depend on the initial 

conformation of A(14-23) peptide.  The A42 monomer candidates were obtained by 

running 500 ns MD simulations on HCC computer using the all-atom model in TIP3P 

water as described in Methods section. The initial structure was adopted from NMR 

coordinates of the A42 monomer (Figure 4.1A, PDB ID: 1IYT) in an organic solution 

[8]. After the completion of the simulation, we performed cluster analysis to identify the 

most representative structures of A42 monomers. The classification of clusters in the 

trajectory was performed with the approach described in paper [26]  by calculating the 

root-mean-square deviation (RSMD) of backbone atoms between all pairs of structures 

with a cut-off at 0.3 nm. The results of the cluster analysis are shown in Figure 4.1B. 

Twelve clusters were identified with the 1
st
 cluster comprising 53.73% of the entire 

population. The 2
nd

 cluster is the next largest (35.61%), but this cluster can be linked to 

the 1
st
 cluster via the linker node 5. Frequent transitions are also observed between the 1

st
 

cluster and a number of other less populated clusters. For example, the 4
th

 cluster 

(probability = 0.15) and the 6
th

 cluster (probability = 0.11), display the equilibrium 

between cluster 1 and other clusters. The conformational variability is primarily defined 

by the conversion of two stable helical conformations of the initial structure 

encompassing residues Ser8-Gly25 and Lys28-Met35 to the conformers with low -helix 

and low -strand contents.   
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To structurally characterize monomer dynamics, we monitored the overall 

secondary structure changes according to the method described in [9] (details in Methods 

section). The analysis of the time-dependent contents of -helix and -structures ((t) 

and (t)) reveals that the -to- transition occurs after 200 ns (Figure 4.1C) indicating 

that  detection of such a conversion requires long simulation times. The monomer 

structure remains quite dynamic, so in the time-interval between 200 ns and 500 ns, the 

-helix and -strand contents (fractions) fluctuate rather broadly, 0.08 ± 0.05 and 0.03 ± 

0.03, respectively.  Based on the analysis of the A42 monomer conformation and 

dynamics, we selected monomers from the 1
st
 cluster to analyze the conformational 

dynamics of A42 dimers with the Anton supercomputer. 
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Figure 4.1. The A42 monomer simulation. (A) The initial structure for A42 monomer 

simulation. The coordinates of A42 monomers were taken from Protein Database Bank 

(PDB ID: 1IYT. Two helical regions are represented by blue ribbon, encompassing 

residues 8-25 and 28-38. The rest of residues are shown as cyan tube. (B) The transition 

network for A monomer. The colored nodes indicate the cluster structures based on 

the analysis of simulation trajectory. The circle sizes visually illustrate the node 

population (percentage). The snapshots of clusters are placed around the homologous 

nodes. Color-coding for the snapshots: blue indicate -helix; green tubes stand for turn 

structure; cyan tubes represent random coil and red arrow denotes -sheet. Transition 

between nodes is indicated with arrows with the width illustrating probabilities of 

transitions. The largest probability is 0.15 (black arrow). (C) Time dependent dynamics 

of secondary structures. The purple curves are from the fractions of -helix content and 

the orange ones indicate the fluctuation of the fractions of -strand content over time.  
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4.3.2. Structure of A42 dimers 

Two A42 monomers were placed at a center of mass distance (COM) of ~4 nm 

and two types of the dimers differing by their relative monomer orientations were made 

(Figure 4.2A,B). To avoid contacts of monomers within dimer at initial step of MD 

simulation in such a limited space, two arrangements of the monomers within the initial 

dimeric complex were made. In dimer 1 (Figure 4.2A), the monomers were placed in an 

orthogonal configuration relative to the long axis of the monomers, whereas in dimer 2 

(Figure 4.2B) a parallel orientation of the monomers was chosen. Two representative 

snapshots for dimers 1 and 2 are shown in Figure 4.2C and D, respectively. The 

simulation did not reveal the formation of long -structures as it was found in the fibrillar 

structures of A42 protein [27]. In the dimers, interactions between the monomers are 

limited to short stretches of the proteins, as depicted in the interaction maps for the 

dimers in Figure 4.2E, F. The primary interactions between the monomers for both types 

of dimers are within the Central Hydrophobic Cluster (CHC) region spanning from 

Leu17 to Ala21 and the C-terminal region between Ile31and Ala42 residues. Differences 

in the dimers structures were observed. Dimer 1 primarily contains hydrophobic 

interactions lacking intermolecular hydrogen bonding, while dimer 2 is stabilized by both 

hydrophobic interactions and a few intermolecular hydrogen bonds from residues on 

CHC regions. The time dependent change of the dimers secondary structure were 

calculated and the variably of -helix ((t)) and -structure ((t)) is shown in Figure 

4.3A,B for dimers 1 and 2, respectively. The graphs show that both parameters in the 

dimers initially (200 ns - 500 ns) fluctuate in the range of 50% or above, but remain 

constant after the 2 s simulation time, which is an additional evidence for reaching 
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equilibrium. However, regardless of this fact we cannot exclude the possibility that the 

dimers are trapped in local energy minima, meaning that the conformational space is not 

sufficiently sampled during the simulations.  
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Figure 4.2. The A42 dimer simulation on specialized supper computer Anton. Two 

copies of monomers from node 1 are selected to build the two initial dimers: (A) 

Schematic for assembly dimer 1 in which one monomer is rotated by 90° relative to 

another; (B) In dimer 2, two monomers are placed in the parallel orientation. (C,D) The 

snapshots of dimers corresponding to the last frames of the 4 s simulation runs. In all 

snapshots (A-D), the red and blue indicate monomer A and B, respectively. (E,F) The 

contact maps of each dimer. The colors in the contact maps represent the distance in nm 

between pairwise residues. The regions of interest are encircled with dashed lines. 
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Figure 4.3. Time-dependent dynamics of the -helix and -strand contents in dimer 1 (A) 

and dimer 2 (B) obtained from cMD simulations (Anton computer). The purple and 

orange correspond to the -helix and -strand contents variations over time. 
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To address this issue, we extended the dimer simulation using accelerated MD 

(aMD) simulation (Methods section), in which two boost energies are introduced to the 

whole system to enhance conformational sampling [18, 28, 29]. According to ref. [16], 

sampling during several hundred nanoseconds of aMD simulation is equivalent to 

sampling in the millisecond time scale for cMD simulation, suggesting that with aMD we 

should be able to extend the sampling period over several orders of magnitude. Note a 

recent application of the aMD approach to the larger A-Syn co-assembly system [30], 

thereby justifying the suitability of this approach for A42 dimer simulation.  

The results of the 500 ns aMD simulations for dimers 1 and 2 depicted as energy 

landscapes are shown in Figure  4.4A and B, respectively, in which the dihedral Principle 

Component Analysis (dPCA) was applied [20]. A series of energy minima shown in blue 

color are seen for the both dimers. Snapshots of representative structures corresponding 

to these local minima are indicated in the plots. As seen from the structures, even such an 

extended MD simulation did not lead to dimers structures with extended -sheet 

formations.  Consistent with the cMD Anton simulations, the CHC regions (Leu17-Ala21) 

and the C-terminal hydrophobic regions of two monomers participate in the dimer 

formation and maintaining the dimers stability. Notably, the extended simulation did not 

eliminate structural differences between the both dimers. Dimer 1 is stabilized by 

intermolecular -sheet structures (Figure 4.4A), whereas one monomer in dimer 2 tends 

to form an -helix structure (Figure 4.4B). Conformational analysis in which the content 

of -helixes and -strands were calculated as functions of time was performed and the 

results are shown in Figure 4.5A,B for dimers 1 and 2, respectively. A slightly higher -

strand content (~0.05 vs. ~ 0.02) was observed for dimer 1, but dimer 2 was characterized 
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by the elevated -helix content (~0.14 vs. ~0.06). The -helix content in dimer 2 is 0.14 

± 0.04, which is twice that of dimer 1, 0.06 ± 0.02 (Figure 4.5A,B). 
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Figure 4.4. The results of accelerated MD (aMD) simulation of A42 dimer 1 (A) and 

dimer 2 (B). The free energy landscapes were constructed after 500 ns aMD simulations. 

Four local energy minima (A) and threes local energy minima (B) for both dimers are 

indicated with arrows.  The corresponding snapshots are shown. In the snapshots, 

monomers A and B are colored with red and blue, respectively. 
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Figure 4.5. The time dependent changes of -helix (purple) and -strand contents 

(orange) from aMD simulations for dimer 1 (A) and dimer 2 (B).  
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4.3.3. Validation of MD simulations 

To validate the MD simulation data, we used our recently developed approach [2] 

(details in chapter 3), in which the simulated structures are ranked by comparing the 

rupture force values calculated for the simulated dimer structures with experimental 

results. The rupture process is simulated with the use of the MCP approach that allows 

the simulation of the rupture process at pulling rates similar to those used in the 

experiment. The latter is a critical issue because the rupture value depends on the pulling 

rate [1]. Seven initial configurations were chosen from the representative dimer 1 and 

dimer 2 aMD simulations (Figure 4.4) and MCP simulations for each dimer configuration, 

and MCP probing was repeated 500 times to obtain a statistically significant dataset.  

The results for MCP simulations for both dimers are shown in Figure 4.6 along 

with experimental results obtained from our paper [31]. . The data demonstrate that 

distributions for simulated dimers are very similar to the mean rupture force values of 

~50 pN and the width of the force distributions (Figure 4.6A,B) and both results are very 

close to the force distributions of the experimental data (Figure 4.6C). Additionally, 

statistical analysis with the use of Kolmogorov-Smirnov nonparametric test was 

performed (Figure 4.6D). The geometric mean force value of 57.1 ± 1 pN from 

experiment is very close to the force value for the structure in the No.1 energy minimum 

of dimer 1 (Figure 4.4A), 58.1 ± 1 pN (p = 0.346). The force value for the structure in the 

No.1 energy minima of dimer 2 is 55.3 ± 1 pN, which is slightly different from the 

experimental data (p = 0.032).  
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Figure 4.6. The histograms for rupture force distributions for simulations (A, B) and 

experiment (C). The number of force curves analyzed (n) is indicated. (D) The statistical 

analysis utilizing Kolmogorov-Smirnov nonparametric test. The * symbol indicates the 

significant difference (p<0.05). Error bars are S.E. values. 
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For structural comparison, a similar MCP analysis was performed for tA42 

protein dimers with structures taken from the fibrils. Along with the dimer structures for 

U-shaped fibrils [27], we tested the dimer structure for the recently published S-shaped 

fibrils [32] schematically shown as U-shaped and S-shaped dimers in Figure 4.7A-D, in 

which cases the N-terminal residues were added and prior to the MCP simulations, the 

equilibrated structures of dimers were obtained by regularize function in PROFASI 

software [33]. The results for the rupture force distributions are shown in Figure 4.7E,F. 

The mean values of the rupture forces were 130.4 ± 1 pN and 107.4 ± 1 pN for U-shaped 

and S-shaped dimers, respectively. Both values are significantly different from the 

experimental data (Figure 4.7G), suggesting that the probability of formation of these 

types of dimers is very low.  
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Figure 4.7. The pulling (MCP) simulation of A42 dimers from two fibrillar structures - 

U-shaped (A; PDB ID: 2BEG) and S-shaped (B; PDB ID: 2MXU). The corresponding 

structures of dimers are shown in (C) and (D). The monomers in (C) and (D) are shown 

in different colors. The rupture forces histograms are shown in (F) and (F) for U-shaped 

and S-shaped dimers, respectively. (G) The Kolmogorov-Smirnov non-parametric 

statistical analysis for the correlation between experiment and simulations. The ** 

symbols indicate that p <0.01. Error bars are S.E. values.  
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AFM force spectroscopy probing of A42 dimers and rupture force data allow the 

measurement of contour lengths that provides information regarding the interaction 

pattern of monomers [31]. The experiments revealed non-monotonous three-peak rupture 

lengths distributions suggesting that the C-terminal residues provide an important 

contribution to A42 dimer stability [31]. We simulated the interaction profiles for 

dimers 1 and 2 using the force curve analysis, similar to the one used in the experiment 

(Methods section). The results are summarized in Figures 4.8 and 4.9. In this figure, plots 

(Figure 4.8) and (Figure 4.9) are the 2D scattered plots for dimers 1 and 2, respectively. 

The rupture force values for each rupture length are shown as green dots. The 

distributions of the rupture distances obtained from this dataset are shown as red 

histogram on the top. The rupture forces distributions are shown in blue to the right of the 

scattered plots. The scattered data are grouped as evidenced by three peaks on the rupture 

length histograms (red), suggesting that there are three distinct interacting regions, 

corresponding to the rupture distances of ~4 nm, ~8 nm, and ~12 nm for both dimers 

(Figures 4.8 and 4.9). Both distributions are rather similar, although populations of the 

long-rupture events (~12 nm) are the most populated ones whereas the rupture lengths 

distributions for dimer 2 are of similar size (Figures 4.8 and 4.9). The experimental 

results in paper [31] show very similar three-peak distributions in which peak three is the 

most representative one, suggesting that dimer 1 is the best candidate for the 

experimental probing of A42 dimers.  
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Figure 4.8. The rupture patterns (A-D) of additional major structures for A42 dimer 1 in 

Figure 4.4A (structures 1-4) obtained by MCP simulations. Each rupture force and the 

corresponding rupture length are indicated with green circles.  The distributions of forces 

are shown as blue histogram and placed on the right side of the scatter plot. The rupture 

lengths distributions (red histogram) are placed at top of the plot. The black * symbols in 

A are the centroids from highest density areas of scatter points indicating the different 

pattern regions, labeled by I to III.  

  



165 
 

 

 

Figure 4.9. The rupture patterns (A-C) of additional major structures for A42 dimer 2 in 

Figure 4.4B (structures 2 and 3) obtained by MCP simulations. Each rupture force and 

the corresponding rupture length are indicated with green circles.  The distributions of 

forces are shown as blue histogram and placed on the right side of the scatter plot. The 

rupture lengths distributions (red histogram) are placed at top of the plot. The black * 

symbols in A are the centroids from highest density areas of scatter points indicating the 

different pattern regions, labeled by IV to VI.   
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We took advantages of MCP to visualize the pulling process and characterize 

rupture events corresponding to the three clusters identified in the scatter plots in Figure 

4.8A and Figure 4.9A. The analysis was performed for the rupture events circled around 

the regions defined the by maxima on the rupture length plots in Figure 4.8A and Figure 

4.9A. The results for typical events for both dimers are shown in Figure 4.10. The left 

column corresponds to the data for dimer 1 and the right column corresponds to dimer 2. 

The black lines show the force curves and snapshots of the dimer structures prior to the 

rupture are indicated above the force curves. Figure 4.10A and B illustrate the dimer 

dissociation process corresponding to the shortest rupture distance events for dimers 1 

and 2, respectively (class I events). The analysis shows that the rupture process for dimer 

1 occurs after the partial unraveling of both N-termini region (Figure 4.10A), while the 

rupture process for dimer 2 occurs as a non-symmetric unraveling of the N-termini with a 

higher extension of the monomer shown in red (Figure  4.10B).   

The asymmetry in the dissociation process is more pronounced in Type II events, 

and typical results are shown in Figure 4.10C and D for dimers 1 and 2, respectively. 

During this process, the N-terminal region gradually unfolds; therefore, the total length of 

the extended N-terminal region (Asp1–Lys16) becomes as long as ~5 nm. The rest of 

protein remains a compact globule with a diameter of ~2–3 nm. During the dissociation, 

this core remains compact and stabilized by hydrophobic interactions. The eventual 

rupture distance is ~8 nm, calculated from the combined length of the extended N-

terminal region (Asp1–Lys16; ~5 nm) and the diameter (~3 nm) of the compact cluster. 

Typically, when the asymmetric unraveling occurs, one monomer maintains the compact 
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conformation while the other monomer gradually unfolds accompanied by an increase in 

the Radius of gyration (Rg) (Figure 4.11A).  

The dimers dissociation for the longest rupture events (type III rupture processes) 

for dimers 1 and 2 are illustrated by Figure 4.10E and F, respectively. These events are 

characterized by the extension of almost the entire A42 protein starting from the N-

termini. The dimer at the end of the rupture process is stabilized by interacting 

hydrophobic segments of the C-termini.  During the dissociation process, the unfolding of 

monomers unfolding is accompanied by the gradual increase in Rg values for both 

monomers (Figure 4.11B). The total length of the dimer prior to separation is ~12 nm, 

composed of the length of two extended N-termini (10 nm) and the diameter of the 

hydrophobic cluster (~2 nm).  

  



168 
 

 

 

Figure 4.10. The typical rupture events for simulations of dimers dissociation. The force 

curves (black lines in A-F) are taken from the different pattern regions I-VI (Figure 4.8A 

and 4.9A), respectively. The snapshots corresponding to the structures prior to the 

dissociation are indicated with arrows. The monomer color-coding is the same as above. 

The colored balls represent the N-terminal residues. 
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Figure 4.11. The fluctuation of Radius of Gyration (Rg) in the course of asymmetric and 

symmetric unravelling. (A) Rg fluctuation of the typical asymmetric unravelling process. 

(B) Rg fluctuation during symmetrically unravelling the dimer. The red line is from 

monomer A and blue line is used to monitor the changes of monomer B. 
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In contrast, the dimer structures from U-shaped fibrils [27] and the new emerging 

S-shaped fibrils [34], termed as U-shaped dimer and S-shaped dimer, respectively (Figure 

4.7C,D), demonstrate distinct force-induced pathways in terms of rupture pattern analysis. 

Strikingly, for U-shaped dimer case, the majority of rupture distances are concentrated at 

approximately 10 nm (Figure 4.12A), which is explicitly different from the results from 

dimer 1 and dimer 2 simulations. Moreover, the hairpins on both monomers of the U-

shaped dimer are prone to form intermediate species in which shearing processes are 

predominant in the course of pulling. The rupture force uncovers a strong correlation with 

the length of adjacent -strand, as shown in Figure 4.12B and C, associated with the VII 

and VIII region in Figure 4.12A. In the S-shaped dimer case, the triple  motif and 

intramolecular salt bridge (Lys28-Ala42) have been observed [34]. Due to the presence 

of multiple  motifs, the rupture events are a mixture of both asymmetric and symmetric 

processes (IX, X in Figure 4.13). This complexity of structure contributes to the fact that 

multiple peaks in the rupture curves are very common (Figure 4.13B,C).  Based on the 

results from the MC pulling experiments, we conclude that the interaction strength of 

A42 dimers depend on the content as well as the pattern present in the dimer. 

Altogether, based on the force induced dissociation, the order of strength in dimers is 

experiment, dimer 1, dimer 2 < S-shaped dimer < U-shaped dimer. This discrepancy in 

forces between the U-shaped dimer and experimentally observed values also evidences 

that the early stage of A42 aggregation does not contain highly ordered high  content 

conformations. 
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Figure 4.12. The rupture pattern of U-shaped dimers. (A) The distributions of forces 

(blue) and distances (red) from each simulation are placed on the right side and top side 

with respect to scatter plots, accordingly. The black * symbols are the centroids from 

highest density areas of scatter points indicating the different pattern regions, labeled by 

letters from VII to VIII. (B,C) Two force curves are taken from VII and VIII regions, 

respectively. The snapshots at the maximum force are put at the bottom of force curve. 

The red color indicate the monomer A and blue is monomer B. The colorful balls are the 

N-terminal residues. 
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Figure 4.13. The rupture pattern of S-shaped dimers. (A) The scatter plots (green circles) 

of rupture forces versus distances from MC pulling simulations. The distributions of 

forces (blue) and distances (red) from each simulation are placed on the right side and top 

side related to scatter plots, respectively. The black * symbols are the centroids from 

highest density areas of scatter points representing the different pattern regions, termed as 

IX and X. (B,C) Two force curves from IX and X regions, respectively. In B, three 

relevant snapshots around the rupture events (1-3) are extracted and placed underneath 

the force curve. In C, the snapshots at the maximum force are put at the bottom of force 

curve. The red color indicates the monomer A and blue is monomer B. The colorful balls 

are the N-terminal residues. 
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4.4 DISCUSSION 

 

Our comprehensive computer simulation was able to produce the atomic structure 

of A42 dimers and reveal their dynamic properties. The monomers in their initial 

equilibrated states are capable of forming dimers that are stabilized primarily by 

interactions of the central hydrophobic CHC segments (Leu17 through Ala21) as well as 

the C-terminal regions without the formation of high  content structures (Figure 4.3). 

Dimer formation is accompanied by conformational changes of monomers with the 

formation of -helixes and -structures (Figure 4.1C), but these are local structural 

transitions. There is no indication to the formation of extended -structures as observed 

in A42 fibrils [27, 32]. Our findings are in agreement with the characterization of early-

stage A42 aggregates by CD and ThT fluorescence that show that the oligomers have a 

low  content [35, 36]. However, the strongest support for the simulated structures of 

dimers comes from the direct comparison of the AFM pulling results for A42 dimers 

with the simulations performed at conditions identical to the experimental ones. . 

Importantly, the comparison was made over large data sets, enabling the comparison of 

both the mean rupture forces values and the force distributions, as shown in Figure 4.6. 

Both parameters for the simulations are in a perfect coincidence with experimental results, 

providing a strong validation of the A42 dimer structures. Moreover, we performed 

pulling simulations for dimers with extended  structures that are found in fibrils [27, 32]. 

The rupture force data for these dimers (Figure 4.7) are considerably larger than 

experimental results, allowing us to rule out the possibility that A42 dimers contain 

fibril-like structures. The rupture patterns are also dramatically different from simulated 
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dimers, as shown in Figure 4.12 and 4.13. Therefore, we conclude that isolated A42 

monomers can assemble into dimers, but their structure is entirely different from the 

structure that A42 forms within fibrils. 

In fact, the dimers do not adopt well-defined structures; rather the free energy 

landscapes have sets of local minima as shown in Figure 4.4. The roughness of the free 

energy landscape suggests that the structures of A42 dimers are very dynamic; therefore, 

various stable states are probed by monomers. These states cannot be reliably 

distinguished by the rupture forces, although the minima depths vary. Due to MD sample 

volumes that restrict the relative motilities of monomers and limit sampling, two different 

orientations of the monomers were selected in the initial arrangement of the monomers. 

Given the roughness of the energy landscape and the high dynamics of the dimers, a 

transition between the two orientations was expected; however, we did not observe this 

phenomenon. This can be explained by the relatively small cube volume present in 

simulations in relation to the size of A42 that restricts the range of the translational 

mobility of the monomer. The volume is defined by the computational resources of the 

Anton computer, which was close to the limit of the computer. Although two types of 

dimers were obtained, they have major structural similarities and produce rupture forces 

with very close values in the MCP simulations. The difference between dimers 1 and 2 

was identified by comparing the rupture patterns (Figure 4.8 and 4.9). Interestingly, the 

dimer 1 rupture pattern fits better with the experimental pattern than dimer 2; therefore 

we consider dimer 1 as the most appropriate model for A42 dimers.  
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The existence of multiple energy minima on the energy landscape of the dimers 

has a number of biological implications. Aggregation of A42 and other amyloids is the 

process in which aggregates with different morphologies are formed. One model suggests 

the existence of different aggregation pathways for aggregates with different 

morphologies [37-43] with the structure specific dimers serving as origins for these 

pathways. It is widely accepted that oligomers are the most neurotoxic species of 

amyloids. This is supported by the evidence that A42 dimers are neurotoxic as well [44, 

45]. The neurotoxic effect of A42 dimers assumes that dimers interact with a multitude 

of other proteins and cellular membranes; therefore, the structural plasticity of A42 

dimers should facilitate these interactions. 

A42 dimerization has been modeled in the past [46-51],
 
and we note the 

differences between our data and prior computational analyses. In other studies, the 

various conformations, including -helix as well as anti-parallel -sheets, have been 

identified within dimers. There are two major factors explaining the differences. First, we 

assembled dimers by using equilibrated monomer structures, which was not performed in 

any of these publications.  Second, our dimers formation was performed on the long-time 

scale: ~4 s for the initial conventional MD simulation with the Anton supercomputer, 

followed by accelerated MD simulation. As a result, a total sampling equivalent to a 

millisecond simulation timescale was used to analyze A42 dimerization. 

MD simulations are widely applied to model various systems, including amyloid 

aggregates. A major concern in these modeling approaches is the validation of the 

obtained structure. Comparing simulations with experiments is typically required, but the 
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selection of the experimentally testable parameter is problematic. To validate our 

simulated structures, we used the complex stability characterized by the rupture force as a 

quantitative parameter to compare with the experimentally determined values. The key to 

our approach is the MCP method, which allows the rupture force for the dimer model to 

be obtained. Importantly, these data are simulated at conditions identical to those in AFM 

force spectroscopy experiments [2]. Additionally, we developed and analyzed another 

validation test in which a different experimental parameter of the AFM force experiment, 

the rupture pattern, is simulated and compared with the experimental value.  The 

combination of the two validation criteria allowed us to increase the stringency in the 

selection of the computational models. The proposed approach can be extended to other 

complexes that can be probed by AFM force spectroscopy experiments. 
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APPENDIX 4.1. The matlab script example for the analysis of time-dependent 

dynamics of the -strand contents 

%======================== 

%Following the method in the paper 'Reddy, G., Straub, J.E. & Thirumalai, D. Dynamics 

%of locking of peptides onto growing amyloid fibrils. Proceedings of the National 

%Academy of Sciences 106, 11948-11953 (2009).' 

%======================== 

clc;clear all; 

delete('betaintegration.txt') 

data=importdata('bcounts.txt'); 

t=data(:,1)*.01; 

probability=data(:,2)/41; 

intdata=[]; 

totalt=t(1:100:end);% using 1 ns as interval 

totalp=probability(1:100:end); 

for i=1:length(totalt)-1 

    intdata1=trapz(totalt(i:i+1),totalp(i:i+1)); 

    intdata=[intdata, intdata1]; 

end 

intdata=[0,intdata]'; 

intdata=intdata/1; 

hold on; 

plot(totalt(2:end),intdata(2:end),'r-'); 

ylim([0,0.2]) 

totaldata=[totalt intdata]; 

save('betaintegration.txt', 'totaldata', '-ASCII')  
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APPENDIX 4.2. The tcl script example for dihedral angle calculation 

# The original script was provided by Dr. Klaus Schulten’s group.  

# Modified by Yuliang, Zhang 

# Using TK console or vmd -dispdev text -e *.tcl' 

    set mol [mol new "dimer_nowater.dms" waitfor all] 

    mol addfile "nowater.dcd" molid $mol waitfor all 

    set fp [ open "phi-psi.dat" w ] 

    set fp2 [ open "phi-psi2.dat" w ] 

    set sel [ atomselect $mol "alpha" ] 

    set n [ molinfo $mol get numframes ] 

 

    for {set i 0 } { $i < $n } { incr i } { 

        $sel frame $i 

        $sel update 

        set a [ $sel num ] 

        for {set j 1 } { $j < [expr $a/2-1] } { incr j } { 

            puts -nonewline $fp [format "%.4f %.4f " [lindex [$sel get {phi psi}] $j 0] [lindex 

[$sel get {phi psi}] $j 1]] 

        } 

        puts -nonewline $fp "\n" 

    } 

     for {set i 0 } { $i < $n } { incr i } { 

        $sel frame $i 

        $sel update 

        set a [ $sel num ] 

        for {set j [expr $a/2+1] } { $j < [expr $a-1] } { incr j } { 

            puts -nonewline $fp2 [format "%.4f %.4f " [lindex [$sel get {phi psi}] $j 0] 

[lindex [$sel get {phi psi}] $j 1]] 
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        } 

        puts -nonewline $fp2 "\n" 

    } 

    $sel delete 

    close $fp 

    close $fp2 

    exit 
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APPENDIX 4.3. The matlab script example for analyzed force curves from MCP 

simulation 

%Yuliang Zhang 

%Jul,2015, UNMC, Omaha. 

function extractForce 

clc; 

clear all; 

tempName='rt-'; 

first=1; 

last=500; 

for i=first:last; 

    filename=strcat(tempName, num2str(i)); 

    total=importdata(filename); 

    force=total(:,13)*92.1; 

    d=total(:,19)./10; 

    x=total(:,14)./10; 

    y=force; 

    pt_end=find(d==max(d(d<30))); 

    x=x(1:pt_end); 

    y=y(1:pt_end); 

    yy1 = smooth(x,y,0.02,'loess'); 

    [xx,ind] = sort(x); 

    smoothyy1= yy1(50:1:end); 

    f1d=diff(smoothyy1); 

    minf1d=find(f1d==min(f1d)); 

    maxF1=max(yy1); 

    pt1=find(yy1==maxF1); 
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    pt2=find(yy1==smoothyy1(minf1d)); 

    maxyy1=max(yy1(pt2-10:pt2));%find the maximum value of smooth data with diff 

    pt=find(yy1==maxyy1); 

    maxF=mean(yy1(pt-10:pt)); 

    maxnoise=20; 

if maxF >maxnoise  

outfilename='force.txt'; 

    fidout=fopen(outfilename,'at'); 

    fseek(fidout,1,1); 

    fprintf(fidout,'%10f ',i); 

    fprintf(fidout,'%10.5f ',d(pt1)); 

    fprintf(fidout,'%10.5f ',maxF1); 

    fprintf(fidout,'%10.5f ',maxyy1); 

    fclose(fidout); 

    else; 

    maxF=[]; 

    maxBeta=[]; 

    maxHbnum=[]; 

    end; 

end; 
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Chapter 5 

REAL TIME STRUCTURAL DYNAMICS OF WILD TYPE -

SYNUCLEIN 

5.1. INTRODUCTION 

 

In previous chapters novel results on characterization of the self-assembly of 

amyloid peptides and full-size A42 protein were described. In theory, such a combined 

experimental and computational approach can be applied to any proteins, however, in 

reality MD simulation is limited by the protein size, so currently analysis of protein with 

size larger than A42 is limited to relatively short computational time and would not 

reveal the necessary dynamics information. Here we describe an alternative combined 

approach where high-speed AFM (HS-AFM) was applied to characterization of dynamics 

of dimers formed by -Syn protein (140 amino acids). The self-assembly of -Syn is 

associated with Parkinson’s disease (PD), which affects approximately millions people in 

the world [1]. The widely accepted aggregation model considers that fibrillary aggregates 

of -Syn can form intracellular Lewy bodies [2], which are the pathological hallmark 

lesions of PD and causes neurodegeneration. Recently, evidence suggests that small 

amount of -Syn can also be secreted from neuronal cells by unconventional exocytosis 

[3, 4], which may also play a crucial role in neurodegeneration, reviewed in reference [5].  

Similar to the other amyloid peptides and proteins, due to intrinsic heterogeneity, 

it is still not well understood how -Syn monomers self-assemble into high order 
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aggregates. Thus, in this chapter, we performed HS-AFM to visualize the structural 

dynamics of wild type -Syn protein in real time. The resulting AFM images were 

interpreted by appropriate computational modeling. 

5.2. METHODS 

 

5.2.1. Sample preparation from AFM imaging 

 A freshly cleaved mica substrate was glued to the glass rods and modified by 167 

M APS for 30 minutes. After rinsing with 20 µl milli-Q water and then with 20 l PBS 

buffer, pH 7.4 for three times, 30 nM of Wild-type -Syn sample in the same buffer were 

deposited on the mica surface. After 5 minutes of incubation, the surface was rinsed with 

the same buffer that was used for imaging.  

5.2.2. HS-AFM procedure 

The HS-AFM images were acquired using the HS-AFM instrument (RIBM, 

Tsukuba, Japan) developed by the Ando group. BL-AC10DS-A2 cantilevers (Olympus) 

with carbon tips obtained by electron beam deposition (EBD) method were used for 

imaging. The EBD carbon tips were grown on the top of silicon nitride AFM tips in the 

electron beam and were sharpened with the PE 2000 plasma etcher. The spring constant 

of the AFM probes was between 0.1 and 0.2 N/m, with the resonance frequency between 

400 and 1000 kHz in water. Continuous scanning over the selected area (50 nm × 50 nm) 

with the scan rate is ~ 5 frames / second was performed. The number of pixels for each 

image was 128 × 128.  
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The volume of compact structures was calculated through Femtoscan Software. 

The the stiffness between tails formed on the peptide was identified according to the 

equation described in [6-9].  

〈𝑟2(𝑙)〉2𝐷 = 4𝑝𝑙 [1 −
2𝑝

𝑙
(1 − 𝑒−𝑙/2𝑝)] (1) 

where l is the contour length between two points on the strings, r is end to end distance 

between l.  The persistence length (p) represents the stiffness of a macroscopic string 

structure.  

5.2.3. Aggregation propensity 

 The aggregation propensity was calculated using Zyggregator through the 

website (http://www-mvsoftware.ch.cam.ac.uk/index.php/zyggregator). If the value was 

above the line at 𝑍𝑎𝑔𝑔
𝑝𝑟𝑜𝑓

= 1, it was determined as the aggregation-prone regions [10]. 

5.2.4. Graphic and Modeling Software 

All the figures were plotted by Igor Pro. 6.3.4 (WaveMetrics, Lake Oswego, OR, 

USA). The snapshots were generated by VMD software [11]. The structures were 

predicted using DMD simulations provided by Dr. Dokholyan’s group and MC 

simulation in PROFASI software package. 

The MCP simulations were implemented by using the PROFASI package [12] 

with the implicit water model and an all-atom FF08 force field [12, 13]. In the PROFASI 

software package, the bond lengths, bond angles, and peptide torsion angles are assumed 

to be fixed. The interaction potential consists of the following four terms: 
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                                         E = Eloc +  Eev + Ehb + Ehp                                          (2) 

The Eloc term is the backbone potential from the adjacent peptide units along the chain; 

Eev represents a 1/r
12

 repulsion between a pair of atoms; Ehb and Ehp indicate the hydrogen 

binding energy and hydrophobic energy, respectively.  

5.3. RESULTS 

 

5.3.1. Dynamics of -synuclein monomers 

Rationale. The conventional AFM is a powerful tool to evaluate the -Syn 

structure without any need for labeling. However, several limitations are present in the 

conventional AFM experiment. The first limitation is that such experiments are 

performed for dried samples condition rather than aqueous condition, resulting in the 

deformation of samples and possible artifacts in the images obtained, especially in height 

and volume. Although the experiment can be done in aqueous solution, the scan rate is 

too low to capture the biological processes on second or milli-second time scale. Usually, 

acquiring one frame requires 5 min using conventional AFM. Moreover, the radius of tip, 

used in conventional AFM, is usually larger than 10 nm. Due to tip convolution effect, it 

is problematic to obtain high-resolution images and achieve high temporal resolution.  

To overcome these problems, HS-AFM [8, 14] was selected here. With this 

technique, the maximum scan rate that can be reached with HS AFM is 16 frames per 

second allowing one to visualize dynamics of molecules at the millisecond time frame. 

Additionally, high resolution is made possible using an Electron Beam Deposition (EBD) 
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tip with radius ranging from 0.5 to 5 nm. The EBD tip not only provides high resolution 

but also minimizes the tip-sample interaction [15]. To study protein dynamics, HS AFM 

has recently been successfully applied for the visualization of intrinsically disordered 

properties of biological samples under aqueous conditions [7, 16]. 

Dynamics of -Syn monomers elucidated with HS AFM. Samples of wild-type -

Syn in PBS buffer (pH 7.4) were deposited on mica surfaces and directly visualized by 

HS-AFM. The experimental details are described in methods section. The HS-AFM 

results show that the majority (75%) of the monomers assume compact structures (Figure 

5.1). Some of the compact structures are of globular shape (diameter, ~5 nm; height, 

~2nm) (Figure 5.1A) and remain stable over time without significant structural changes. 

Other compact structures display one tail (Figure 5.1B) or two tails (Figure 5.1C) with 

height of ~1 nm (Figure 5.1).  

We modeled the -Syn monomers structures using Monte Carlo (MC) approach. 

In this approach, all-atom description with implicit water is used for the protein modeling. 

The bond lengths and bond angles are fixed. The local potential related to electrostatic 

interaction, energy for hydrogen bonds and hydrophobic interaction are taken into 

account for the total energy calculation. Comparison with the structural models, obtained 

from MC simulations, indicate that the tails are comprised of N-C terminal residues, as 

shown in the Figure 5.1 together with HS-AFM images. A minority of monomers 

contains extended structures, occupying 25 % of total population (Figure 5.3) that we 

analyzed separately. The contour lengths of this type of monomer are varied.  To further 

emphasize the length dynamics, we selected one monomer and followed its dynamics 

analyzing the length of extended regions in different frames.  As is shown in Figure 5.4, 
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the length in the first selected frame is approximately 44.1 nm (Figure 5.4 0 s). It is 

shorter than the theoretical length (~50 nm) of -Syn, possibly due to a partially folded 

region within the peptide chain.  After 20 s, terminal parts of the monomer form compact 

structures, indicated by two peaks (height > 0.9 nm) followed by the decrease in length of 

the central part to 22.7 nm (frame 21.4 s in Figure 5.4). This structure remains stable for 

~160 s, after which the compact region is unraveled and length increases to 38.7 nm 

(Figure 5.4, frame 180.2 s). We analyzed the stiffness of extended structure using 

approach described in [6, 7]. This approach characterizes the dynamics of the polymer on 

the 2D surface. The persistence length estimated in this analysis is 28.6 nm (Figure 5.5), 

which is 2 folds higher than previously reported for the intrinsically disordered 

heterodimeric chromatin transcription (FACT) protein with capability of spontaneous 

stretching on the surface [7]. It is reasonable to assume that the interaction of the protein 

with the surface contributes to the dynamics of the monomer extension. 
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Figure 5.1. HS-AFM of wild-type -Syn monomer. Three compact monomers: the 

globular structure (A), one tail structure (B) and two tails structures (C) The scale bar is 5 

nm. Selected snapshots of -Syn are taken from Monte Carlo (MC) simulations 

corresponding to the images. 

 

Figure 5.2. The difference between compact region and tail region. The starting point is 

indicates by red circle and contour length are represented by red dashed line in the image 

and solid line in the underneath curves, respectively. The green dots are the maximum of 

peaks. 
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Figure 5.3. Selected extended monomers with different length. The snapshots of -Syn 

are taken from MC simulation and put in the relevant images. The scale bar is 5 nm. 
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Figure 5.4. The selected frames of length analysis of extended -Syn monomers.  The 

starting point is indicates by red circle and contour length are represented by red dashed 

line in the image and solid line in the underneath curves, respectively. 

 

Figure 5.5. The stiffness of extended -Syn monomer. The black dots are raw data and 

solid line is fitting curve. The persistence length is 28.6 nm. 
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The transition from compact structures to extended ones was also visualized and 

the dataset is shown in Figure 5.6a. These frames indicate the change of monomers 

conformation over time. Initially globular in shape (Figure 5.6, frame 0 s), the protein 

adopts one tail structures (Figure 5.6, frame 13.8 s) and fluctuates between globular and 

one tail structures (Figure 5.6, frames 0 s, 13.8 s, 16.8 s and 26 s). The changes are 

followed by the formation of two tails (Figure 5.6, frame 27.4 s) and the conversion 

between the globular and two tails are also observed (Figure 5.6, frames 27.4 s, 33.6 s, 

62.6 s and 100.2 s). Afterwards, extended structure with two heads (Figure 5.6, frame 

102.2 s) are formed followed by transition between the different length of extended 

structures (Figure 5.6, frames 125.6 s, 129.6 s, 130.4 s) and two tails structure. Eventually, 

the monomer adopts an extended structure (Figure 5.6, frames 133.6 s and 161.2 s).  

Furthermore, the shape of -Syn monomer in selected frame at 133.6 s (Figure 5.6, frame 

132.6 s) shows a similar dynamics for extended structure of other monomers as in Figure 

5.3A,B.   

To quantitatively describe this dynamics, we measured the time-dependent 

volume changes of compact region. The volume calculation from specific frames in the 

whole dataset of Figure 5.6, in which the compact structure can easily be distinguished, is 

shown in Figure 5.7A. Briefly, the volumes of the compact structures are ~70 nm
3
 

(Figure 5.7A, 0 s and 19.8 s). When the compact structure partially converts to the tail-

like structure, the volume drops to ~60 nm
3
 (Figure 5.7A, 62.6 s). With further 

unraveling of compact structures, the volumes drop to ~20 nm
3
 (Figure 5.7A, 97.8 s, 106 

s, 112.8 s and 161.2 s). While the tails became shorter, the volume demonstrates a slight 

increase (Figure 5.7A, 132.6 s). Similar to previous section, 200 structures containing tail 
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shapes were submitted to stiffness analysis. In Figure 5.7B, the results reveal that the 

persistence length of tails structure is 2.9 nm, which is smaller than the one from the 

other IDP proteins [7] as well as the fibrillary structures [9], suggesting that the tail is 

probably a flexible peptide chain. Conversely, on the grounds of this observation, we can 

also confirm that the structures in the other images and movies (Figure 5.1) are 

monomers, if they are similar to the ones in Figure 5.6. 
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Figure 5.6. The selected frames of the structural transition of -Syn monomer over 

scanning time. The globular structures (0 s, 16.8 s and 100.2 s), one tail structures (13.8s, 

26.0 s, 33.6 s and 125.6 s), two tails structure (27.4 s, 62.6 s, 129.6 s and 132.6 s) and two 

heads structure (102.2 s and 161.2) and extended structure (130.4 s and 133.6 s). The 

snapshots of -Syn are taken from MC simulation and put in the relevant images. The 

green color indicates the residues from 1 to 60. The blue color is the NAC region. The 

red color is residues from 96 to 140. The scale bar is 5 nm. 
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Figure 5.7. The analysis of -Syn under structural transition. (A) The volume calculation 

(black dots) and several estimated states (black lines). The images at specific time points 

are put inset of the figure and dashed circles indicate the pattern for volume analysis. (B) 

The stiffness of tail-like structure of -Syn. The black dots are raw data and solid line is 

fitting curve. The contour length and end to end distance are taken along tail-like 

structure. 
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5.3.2. Dynamics and structure of -Syn dimers 

Beside monomers, we also observed some larger oligomers including dimer, 

trimer and so forth. We characterized the dimers dynamics dividing, them in two types of 

structures. In the first type of dimer, shown in Figure 5.8, two compact monomers 

interact with each other and the entire assembly remains stable during the 3.2 s 

observation period, indicated by the consistent center distance of 7.5 nm. In another type, 

the dimers contain one monomer with compact shape and another with flexible tail, 

indicated by fluctuation of total length from ~15 nm to ~25 nm (Figure 5.9). The center 

distance of 8.4 nm is slightly larger than for the compact dimer. Interestingly, the total 

length of one monomer fluctuates dramatically. At 0s and 2.6 s from the selected frames, 

the length is approximately 10 nm. Afterwards, the monomer converts into a compact 

structure at 2.8 s. Subsequently, the long tail-like structure with length of 17 nm appears 

at 4 s.  
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Figure 5.8. HS-AFM of WT -Syn dimer (compact monomers). The Height and length 

analysis are under the frames. The snapshot from simulation result is shown in the right 

low corner in the frames at 0 s. 

  



205 
 

 

 

Figure 5.9. HS-AFM of WT -Syn dimer (one is compact, another is unstructured). The 

Height and contour length analysis are under the frames. The simulation result shows that 

one monomer looks like the tail (right low corner in the frames at 0 s).  
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5.4. DISCUSSION 

 

The comparison of HS-AFM images with MC provides insight into the structural 

dynamics of -Syn monomer as well as dimer at nano-scale. Previously the study of 3D 

structure of -Syn monomer, in the presence of micelles, suggested that residues 3-37 

and 45-92 are prone to form two helical conformations while residues 98-140 are 

unstructured [17]. In comparison, in absence of binding partners free-Syn monomer, in 

solution under physiological conditions, is considered intrinsically unstructured protein 

[18-20]. Our HS-AFM results demonstrate that the WT -Syn monomer adopts a 

compact configuration, which is different from the one in fibrils [21-23]. Similar to our 

previous chapters, it suggests that the extended -sheet pattern is not favorable at 

monomer state. It is instructive to analyze -Syn primary structure to understand the 

monomers compaction. There are three regions in -Syn monomer: region 1, 

amphipathic α-helices (with repeated KTKEGV motif) from residue 1 to 60; region 2, the 

hydrophobic and highly amyloidogenic non-A component (NAC) from residues 61 to 

95; region 3, highly enriched in acidic residues and prolines, especially from residues 

120-140 (8 negative charges) [24].  The former two regions show high aggregation 

propensities (Figure 5.10) and contain the membrane binding domains [25, 26]. 

Mutations, A30P, E46K, and A53T, important for the disease development are found in 

the first region [27-29],  altering the structure of -Syn in different ways [30]. Region 3 

participates in the protein-protein interaction. Therefore, based on the HS-AFM images 

and MC modeling, we speculate that the hydrophobic interaction facilitates the compact 

monomer formation, seen as the blue region in Figure 10. Indeed, deletion of central 
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residues from -Syn can interfere with the fibril formation [31]. The N and C terminal 

segments are incorporated into the compact structure and we speculate that the long-

range electrostatic interaction via the charged residues is responsible for this compaction 

which is supported by papers [18, 32].  
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Figure 5.10. Aggregation propensity profile of -Syn based on Zagg calculation at pH 7. 

There are three different regions of -Syn on amino acid sequence level: Green indicates 

residue 1-60, which contains repeating KTKEGV fragment; Blue is NAC region; Red is 

charged region. The dashed line at 𝑍𝑎𝑔𝑔
𝑝𝑟𝑜𝑓

= 1 is used to determine the aggregation-prone 

regions. 
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Furthermore, the remarkable conversion between compact morphology and the 

extended one have been observed in both monomer and dimer states. In particular, as 

shown in Figure 5.6 (monomer case), over long observation period (160 s) the monomer 

fluctuates between the compact, tail-like structures, and an extended conformation. So far, 

several studies have proposed to characterize the possibility of intermediate states of -

Syn proteins [23, 33, 34]. Specially, tail-like intermediate structures of -Syn have been 

suggested based on MD simulations, EM, and SAXS experiments [35, 36]. It is well 

known that tail-like structures implicate several biological functions in the intrinsically 

disordered proteins [37]. Probably, in the absence of lipids, residues within region 1 and 

region 3 (Figure 5.10) are flexible. On the other hand, the interaction from the termini is 

not as strong as the hydrophobic interaction from NAC region. Therefore, we infer that 

the unstructured monomers are prone to form intermediate stage and the frequent 

structural conversion occurs at the early stage. It is interesting that the compact structures 

are to some extent stabilized when the dimer is formed (Figure 5.9).  The structures are 

also consistent with the MC simulation, in which the dimers adopt several configurations, 

shown in the modeling structures in Figures 5.8 and 5.9. Altogether, the variety of 

monomer and dimer structures can further prove the intrinsic heterogeneity of -Syn 

protein that can explain conformational transitions in the course of the aggregation 

process and formation of highly ordered fibrillar structure. 

It is noteworthy that, depending on the interaction type, the dynamics process of 

-Syn can be accelerated or retarded in presence of substrate surface instead of in bulk 

solution. Thus, the observed behavior of -Syn might be slightly different from actual 

case, as illustrated in the previous fibril elongation studies via a “stop-and-go” 
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mechanism [38-40]. The interaction of the protein with the surface can lead to the protein 

extension retarding the -Syn fibril elongation. At the same time, other morphologies 

were observed, so the monomers can move on the surface randomly and also freely 

convert into several states (Figure 5.6). Interestingly, a few extended monomers were 

observed attaching to the surface and exhibiting low mobility (Figure 5.3).  Herein, we 

should point out that the scope of current work is not to explore all observed structures 

and conformations but to evaluate the range of -Syn dynamics.  

 In the current study, we use a weakly positively charged APS mica surface as a 

substrate for HS-AFM samples [41]. On this surface, we were able to visualize a 

structural dynamics and transitions of monomer as well as dimer (Figures 5.1 and Figure 

5.9). The use of surfaces of different types would allow us to evaluate the role of the 

surface effect on the -Syn dynamics. 
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Chapter 6 

 

CONCLUSIONS 

 

The research described above has a number of significant contributions for 

understanding the molecular mechanism of the initial self-assembly of amyloid proteins. 

One of these contributions is the deciphering of the structure and dynamics of amyloid 

dimers which are the first oligomeric species along the self-assembly pathway. The 

biomedical significance of the studies of oligomers can be seen in the fact that amyloid 

oligomers including dimers rather than fibrils are the most neurotoxic species [1-6]. 

There has been growing interest surrounding peptide self-assembly in fibrillar aggregates 

for use in the designing of biomaterials for various biomedical applications such as tissue 

regeneration. Understanding the assembly process with structural characterization of 

transient species is critical for the success of these applications. So far the structural data 

are available for amyloid proteins and peptide structure in fibrils, however the use of this 

structural information for designing oligomers is not well justified. Moreover, research 

has been done that suggests that this is not the case and that the structure of amyloids in 

oligomers can be different from that seen in fibrils [7-11].  The transient existence of 

oligomers is one of the most complicating factors surrounding these studies, presenting a 

need for non-traditional approaches. The research presented here describes the use of 

such approaches and new results emerging from these studies. 



219 
 

 

We first observed that the dimers assembly follows a path unlike that which has 

been predicted based on the amyloid structures found in fibrils.  We discovered that even 

short amyloid peptides do not assemble as a -structure array as they found in fibrils for 

A14-23) or crystals for Sup35 heptapeptide. This information was later useful in the 

designing of drugs that targeted the dimers. The computational data suggests that the 

structure of dimers is of a dynamic nature and it further allowed us to characterize the 

range of dimer conformations. The information provided by these studies proved critical 

in the characterization of the full-size A42 proteins, which was found to have no 

structural similarity in its fibril form to that of the dimeric species. This conclusion was 

confirmed by direct computational analyses of A42 protein structures in fibrils and 

validation of the simulation results by experimental AFM probing data. Given the fact 

that A42 dimers are neurotoxic species that are desirable targets for the drug design 

studies, the information we obtained for the A42 dimers is of great significance. The 

structural information of A42 dimers and their dynamics is important for the 

understanding of the A42 self-assembly process. We hypothesize that stable 

conformations of the dimer play roles of origins for different aggregation pathways and 

this hypothesis will be tested in our future studies.  

Along accomplishing this work, we developed a number of novel approaches and 

validation tests for the most significant simulated structures. Indeed, the computational 

analyses including various types of MD simulations are widely used in structural analysis 

of numerous biological systems and the question of rigorous testing of computational 

results is the most critical one. The comparison of results by MD with those found in 

experiment is the only way to truly compare the validity of the study, however the 
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transient nature of amyloid dimers made such a comparison almost impossible. An 

approach in which such characteristics of dimer stability is tangibly compared is through 

the analysis of data obtained with AFM force spectroscopy experiments. The developed 

MCP approach described in this dissertation is adjusted to the conditions of the AFM 

experiment, which allows one to validate the dimers structure based on the rupture force 

value, the major characteristic of the AFM experiment. As a result, a number of 

simulated structures were rejected and the most suitable ones were identified. Moreover, 

we extended the MCP approach using another experimental parameter, rupture length as 

additional validation criteria. As a result, the set of A42 dimers conformations was 

further narrowed. Although we applied the developed validation approach to simulations 

of dimers, there is no limit to applying it to other types of complexes probed with AFM 

force spectroscopy, so we anticipate a wider use of this technique.  

The use of High-speed AFM (HS-AFM) made the direct imaging of -synuclein 

monomers and dimers an attainable feat which proved very successful in our studies. This 

novel imaging instrumentation has a number of advantages over regular time-lapse AFM 

which made many of these findings possible. Although the -syn monomer is considered 

to be an intrinsically disordered protein, the range of structural dynamics was found to be 

very high, which was evident through the discovery of full stretching of this protein. The 

dynamics of the dimers were also found to be quite large, but less than that of the 

monomers, which falls closely in line with measurements made in AFM force 

spectroscopy experiments. The novel component of these studies is the computational 

modeling of AFM images of -syn that allowed us to identify interaction regions of the 
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protein. These studies set the foundation for more rigorous modeling which was done in 

collaboration with Dr. N. Dokholyan from UNC. 

Overall, the studies described in this thesis provid a novel understanding of the 

very early stages of assembly of A42 and a number of amyloid peptides and proteins. 

They led to the development of novel approaches and together with the obtained results 

made a foundation for the next step in elucidation of the oligomerization process. We 

believe that such studies will eventually lead to understanding of the entire self-assembly 

process and molecular mechanism of development of neurodegenerative disorders 

associated with aggregation of specific amyloid proteins. 

Prospects 

Deregulation of the self-assembly process of proteins, as well as failure of cells to 

metabolize protein aggregates, results in amyloid formation and is associated with a wide 

range of human diseases, termed protein misfolding (deposition) disorders. Such 

disorders include Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s 

disease, as well as systemic and localized amyloidosis, and transmissible 

encephalopathies. Still, a fundamental lack of knowledge on the protein self-assembly 

process impedes progress in the treatment of these diseases. Fortunately, as a result of 

studies included in this thesis, we advance the knowledge on the mechanism of amyloid 

assembly and specifically identified the structure of transient dimeric spices. Combined 

experimental and computational studies led us to model the early stages of protein 

aggregation, in which interaction between monomers is the key to the formation of 

aggregation-prone misfolded states of proteins. 
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Our long-term goal is to unravel molecular mechanisms of the self-assembly of 

proteins into the disease-prone nano-oligomers. Our ultimate goal is to translate this 

knowledge for preventive and therapeutic purposes as understanding the fundamental 

mechanisms of protein misfolding and aggregation will guide the development of 

approaches to control the aggregation process. A couple of potential avenues are 

described below.  

1. The rational strategy for drug development. Our model for dimers provides 

atomic-level details for interaction of monomers. Inhibition of these interactions will be 

therapeutic strategy aimed to prevention of the dimer formation and hence other toxic 

oligomeric species. Over past decade, the evidence has turned out several compounds can 

be considered as potential inhibitors to reduce the neurotoxicity of amyloid proteins. For 

instance, epigallocatechin-3-gallate (EGCG), a natural compound extracted from green 

tea, can directly bind to the unfolded amyloid polypeptides to inhibit the formation of 

toxic intermediates [12]. Upon the binding of EGCG, the hydrophobic interaction of 

amyloid protein substantially decreased along with reducing of  content [13, 14]. The 

synthetic compound, 1,4-naphthoquinon-2-yl-L-tryptophan (NQTrp), can also provide 

amazing inhibition of neurotoxicity towards cultured neuronal cell line and transgenic 

Alzheimer’s disease Drosophila model [15]. The computational studies also revealed that 

NQTrp tends to bind the hydrophobic regions of amyloid protein [16]. By taking 

advantage of the described approaches, the interaction strength within amyloid monomers 

in presence of these small-molecule drugs can be easily detected. With the development 

of the force field of various compounds, the interaction strength of different compounds 

can be determined via our novel validation methods as well. Additionally, with 
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comparison of the complex consisting of amyloid protein and different compounds, our 

approaches can be taken as potential screen method to rank the new compound. 

2. Elucidation the mechanism of interaction between amyloid protein and 

membrane. In current project, we proposed models for -Syn dimers. These dimers are in 

the interaction with the surface. Therefore, extension of such studies for dimers 

complexes with membrane surfaces is another potential for future studies. As described 

in Chapter 1, a plausible mechanism of neurotoxicity induced by amyloid protein is 

interaction with membrane phospholipids or receptor on cell membrane [17-21]. A 

monomeric -Syn protein tends to adopt a partially folded structure with transition from 

a random coil to -helix in the presence of membrane [22-25]. The N-terminal residues 

serve as anchors in these interactions with membranes. At the same time, the central 

region determines the membrane binding affinity whereas the C-terminal region shows 

weak binding propensity [26]. The self-assembly from monomer to dimer and to high 

order oligomers is accelerated upon the binding to membrane [27]. Although the high 

order oligomers within cell membranes have been identified by EM and MD simulations 

[28-30], the structural dynamics of -Syn protein remains unclear. Hence, combined 

computational and experimental studies will enable us to obtain the dynamics process of 

-Syn oligomer in the presence of membrane. Therefore, investigation of the interaction 

between amyloid oligomers and membrane will shed much needed light on intervening 

into this pathogenic pathway of PD and other neurodegenerative diseases.  
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