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 Parkinson’s disease (PD) is the most common neurodegenerative 

movement disorder and second most common neurodegenerative disorder. PD 

is characterized by the selective loss of dopaminergic neurons and dopamine 

neurotransmitter within the substantia nigra and termini in the striatum. 

Progressive loss of dopaminergic neurons occurs over many years in PD, and by 

the time movement disorder symptoms manifest, up to 50-70% of dopaminergic 

neurons have been lost. Several aspects of PD pathology have been described 

in detail, but a better understanding of PD progression is needed to develop 

more efficient treatments.  

 Motor symptoms associated with PD do not manifest until significant 

numbers of dopaminergic neurons are lost, suggesting compensatory 

mechanisms play a role in maintaining normal motor function. However, little is 

known about these mechanisms and the role they play in delaying PD symptom 

onset.  

 Only palliative treatment is now available for PD. This consists of 

principally of dopamine replacement therapy and L-DOPA considered the gold 



 

treatment standard. In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

model of PD, chronic administration of dopamine replacement drugs, L-DOPA or 

BL-1023 in the absence of further degeneration, resulted in improved motor 

function and consistent increases in the number of TH+ neurons in the substantia 

nigra. The increase in TH+ neurons was not associated with dopaminergic 

neurogenic activity, but rather a phenotypic shift of GAD67+ GABAergic neurons 

to express TH. These data represent a novel effect of dopamine replacement 

therapy as triggering putative compensatory mechanisms, presumably to restore 

dopamine levels in a dopamine depleted environment.  

 An interleukin-23 (IL-23) knock-out mouse strain proven to have 

significantly reduced dopaminergic neuron population was used to test motor 

control and behavior. No significant differences were observed between knock-

out and wild-type in any of the forced or unforced motor tests. These data 

suggest either insufficient dopaminergic loss to afford functional alterations or 

that compensation to the dopaminergic signaling pathway allowed for normal 

functioning. 

Taken together, compensatory mechanisms represent a novel pathway for 

PD treatment that include symptomatic benefits as well as potential regenerative 

strategies. Targeting such pathways may provide more effective therapeutics by 

avoiding the secondary toxicities of current pharmaceuticals.  
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CHAPTER ONE 

INTRODUCTION 

 

Parkinson’s disease overview 

Parkinson’s disease (PD) is a chronic progressive disease, the most common 

neurodegenerative movement disorder and second most common 

neurodegenerative disorder. Currently, there is no cure for PD, and therapies are 

purely palliative (Mosley et al., 2012). Pathologically, PD is characterized by the 

progressive loss of tyrosine hydroxylase (TH) expressing dopaminergic neurons 

in the substantia nigra pars compacta (SNpc) and striatal dopaminergic termini 

(Dauer and Przedborski, 2003). The loss of the neurotransmitter dopamine 

accounts for characteristic motor dysfunction presented in PD (Dauer and 

Przedborski, 2003). Arvid Carlsson played an instrumental role in arguing for 

dopamine’s role in controlling motor function and playing a part in PD (Rubin, 

2007; Murrin, 2012): first, large amounts of dopamine are present in the corpus 

striatum. Second, depletion of dopamine from the striatum results in hypokinesis. 

Lastly, L-DOPA administration can counteract reserpine-induced hypokinesis 

(Carlsson et al., 1957; Bertler and Rosengren, 1959a, b; Carlsson, 1959; Murrin, 

2012). Another, hallmark of PD neuropathology is the presence of Lewy bodies 

(LB); neuronal inclusions composed primarily of ubiquitin and misfolded and 

modified α-synuclein (Zhang et al., 2005). The slow, insidious nature of disease 

progression in PD determines that by the time motor disturbances first appear, 

more than 50-70% of dopaminergic neurons in the substantia nigra and 60-80% 

of striatal termini have been lost (Dauer and Przedborski, 2003). The selective 
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vulnerability of dopaminergic neurons in the substantia nigra is believed to be 

due to their sensitivity to combinations of oxidative stress, low levels of 

antioxidants, and high iron content (Chinta and Andersen, 2005). While the 

initiating factor in PD development is still unknown, several risk factors are 

proposed to play a role – age, rural residence, herbicide/pesticide exposure, high 

intake of dietary fats, heavy metal exposure, head trauma, and a history of 

neuroinflammation (Siderowf and Stern, 2003; Singh et al., 2007; Thomas, 2009; 

Mosley et al., 2012; Blesa et al., 2015). Physical symptoms manifest in the form 

of bradykinesia, resting tremor, muscular rigidity, and gait disturbances 

(Bernheimer et al., 1973; Hornykiewicz and Kish, 1987; Dauer and Przedborski, 

2003; Olanow et al., 2009).  

 In 1982, Dr. William Langston described the “The Case of the Frozen 

Addicts” (Langston et al., 1983) - young men and women who after self-

administering what was thought to be heroin, were found conscious, but unable 

to move or speak (Langston, 2014). It was later discovered that the patients had 

unknowingly administered 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP), 

a contaminant of illicit meperidine synthesis (Langston et al., 1983). The ability of 

MPTP to cause PD-like motor symptoms is due to its ability to cross the blood 

brain barrier (BBB), where it is taken up by resident glial cells of the CNS, and 

converted into the active metabolite MPP+ (Schneider, 2008). MPP+ has a 

strikingly similar molecular structure to dopamine and can therefore be 

selectively transported by the dopamine transporter. Once inside the neuron, 

MPP+ is transported by the organic cation transporter-1 (OCT1) across the 
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mitochondria membrane and reversibly binds complex I of the electron transport 

chain, interfering with ATP synthesis, depleting the neuron of energy, and 

resulting in injury and cell death. Since the discovery of MPTP and its ability to 

selectively destroy nigrostriatal dopaminergic neurons and induce PD-like 

neurodegeneration, it has become one of the most widely used animal models of 

PD (Schneider, 2008). While MPTP is able to recapitulate the loss of 

dopaminergic neurons and striatal termini and microglial activation seen in PD, it 

does not result in the formation of Lewy bodies as seen in PD patients 

(Przedborski et al., 2001; Dauer and Przedborski, 2003; Schneider, 2008). 

However, the model provides an important system in which to test new 

therapeutic strategies for dopaminergic neurodegeneration and replacement 

therapies for PD (Schneider, 2008).  

Immunity and neurodegeneration 

The barrier between the brain and peripheral immune system presents a unique 

scenario as to the mechanisms by which pathogenic agents are cleared from the 

brain. It is believed that during early PD, misfolded and modified proteins are not 

adequately cleared from the neurons and accumulate intracellularly (Thomas, 

2009; Blesa et al., 2015). Upon release from the neurons, extraneuronal modified 

self-proteins lead to breakage of or deviation from immunological tolerance 

resulting in an immune response (Mosley et al., 2012). Although the initiating 

event of PD is not known, our laboratory has shown that modification or 

aggregation of alpha synuclein (α-syn) breaks immunological tolerance and 

triggers the initial immune response. (Benner et al., 2004; Olanow et al., 2009). 



4 
 

Nitration of the self-protein, α-syn (N-α-syn), is believed to initiate an immune 

response following its release from injured or dying neurons and drainage into 

the cervical lymph nodes where it is taken up by antigen presenting cells (APCs) 

and presented to naïve T cells through major histocompatibility complex II (MHC 

II) (Benner et al., 2008; Reynolds et al., 2008; Mosley et al., 2012). The T cells 

now specific for N-α-syn circulate throughout the body and cross the BBB at sites 

of inflammatory foci where they encounter cognate antigen and induce pro-

inflammatory and neurotoxic effector functions. These perpetuate dopaminergic 

cell death either directly or through indirect mechanisms involving microglia and 

alternative states of activation (Guadagno et al., 2013).  

 The roles of the peripheral immune system in patients are supported by 

initial studies of peripheral lymphocyte populations from PD patients showing 

decreased frequencies and total numbers of CD4+ T lymphocytes compared to 

controls (Shalit et al., 1995; Richartz-Salzburger et al., 2007; Bonotis et al., 2008; 

Larbi et al., 2009). More detailed studies reporting changes in T cell populations 

in PD patients are sparse and do not reach a consensus on the specific CD4+ T 

cell populations altered in patients with PD. For instance, in one study the 

diminution of CD4+ T cell numbers in PD patients was found chiefly from 

decreased numbers of CD4+CD45RA+ naïve T cells and to a lesser extent from 

CD4+CD29+ memory subsets (Shalit et al., 1995); whereas, Stevens and 

colleagues reported decreased numbers of CD4+CD45RO+ memory T cells 

(Bonotis et al., 2008). A recent study by Saunders and colleagues showed slight, 

but significant increases in frequencies of CD4+CD45RO+ memory/effector T 
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cells with concomitant diminution of CD4+CD45RA+ resting/naïve T cell levels 

(Richartz-Salzburger et al., 2007; Saunders et al., 2012). Additionally, 

frequencies of peripheral CD4+ T cells with effector-associated phenotypes such 

as FAS+ were increased in patients, whereas those expressing α4β7 integrins 

and CD31 (PECAM1) were diminished. Notably, these changes in CD4+ T cell 

phenotypes were correlated with severity of motor function as scored by Unified 

Parkinson’s Disease Rating Scale, part III (UPDRS III). Differences in these 

immunological profiles among the few reports may range from the heterogeneity 

of disease to individual laboratory methodologies, but clearly will require further 

investigation to attain consensus profiles.  

Post-mortem studies of PD patient brain tissues showed both CD4+ T 

cells and CD8+ T cells in close proximity to dopaminergic neurons within the 

substantia nigra at levels exceeding 10-fold those found in control brains 

(Speciale et al., 2007; Brochard et al., 2009). Moreover, these increased levels of 

T cells were specific to leisoned brain areas. Microarray analysis of peripheral 

blood leukocytes and substantia nigra brain tissue showed many genes 

expressed were in common with those expressed by TH17-mediated immune 

reactions and suggested that idiopathic Parkinsonism is a TH17 dominant 

autoimmune disease (Saresella et al., 2011). However, whether T cell infiltration 

is primary or secondary to PD progression is still unclear.  

Our laboratories have substantial experience with the MPTP model, 

indicating that neuroinflammation is enhanced by the adoptive transfer of effector 

T cells, particularly those specific for N-α-syn, (Benner et al., 2004; Reynolds et 
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al., 2007; Benner et al., 2008; Reynolds et al., 2008; Reynolds et al., 2009; 

Reynolds et al., 2010). Adoptive transfer studies demonstrated that following 

MPTP-intoxication, T cells exacerbate both the level of neurodegeneration and 

neuroinflammation as well as prolong cell death and microglial activation with the 

lesion (Benner et al., 2004; Benner et al., 2008; Reynolds et al., 2008; Reynolds 

et al., 2009; Mosley et al., 2012; Kosloski et al., 2013). Recent evidence from 

clinical studies indicated that T cells with an activated or memory/effector 

phenotype are present in greater frequencies in PD patients compared to age- 

and environment-matched caregiver controls (Saunders et al., 2012). Increased 

proportions of those T cell subsets were directly correlated with diminished motor 

function and associated with diminished Treg function in PD patients (Saunders 

et al., 2012). Taken together, the detection of CD4+ and CD8+ T cells within the 

substantia nigra of mice treated with MPTP and in PD patients, the proximity of 

infiltrating T cells to MHC expressing microglia/macrophages, and CD4/CD8 

ratios of infiltrating T cells that are reversed from those expected in peripheral 

circulation (Kurkowska-Jastrzebska et al., 1999; Ozaki et al., 2000; Benner et al., 

2004; Benner et al., 2008; Brochard et al., 2009) provide strong evidence for the 

directed extravasation and migration of activated T cells to sites of inflammation 

and for the association of increased disease or lesion progression with increased 

T cell infiltration (Brochard et al., 2009). However, whether extravasation and 

migration of T cells is necessary and the mechanism(s) associated with T cell 

migration in Parkinsonism have not been adequately evaluated. 



7 
 

 A newly described T cell lineage, TH17, has shed new light on PD 

pathology. TH17 cells are characterized by their proinflammatory functions and 

the secretion of interleukin-17 (IL-17) and are thought important in defense of 

extracellular pathogens and parasites. Differentiation of TH17 cells from a naïve 

T cell is dependent on multiple cytokines including IL-6, TGF-β, and IL-23 

(Benwell and Lee, 2010). IL-23 plays a dual role in both driving the TH17 cell 

phenotype and also stabilizing TH17 cells whilst inhibiting the formation of TH1 

cells. TH17 cells were first described in the experimental autoimmune 

encephalomyelitis (EAE) model of multiple sclerosis (MS) (Rostami and Ciric, 

2013; Robinson et al., 2014; Sie et al., 2014). They have also been shown to 

play an important role in disease progression in rat models of Alzheimer’s 

disease (AD), and human amyotrophic lateral sclerosis (ALS) (Chen and 

Shannon, 2013; Rostami and Ciric, 2013; Luchtman et al., 2014; Robinson et al., 

2014; Sie et al., 2014).  

When specifically evaluating the role the adaptive immune system plays in 

PD, our laboratory and others have shown T cells specific for N-α-syn of the 

TH17 cell phenotype have an increased ability to exacerbate neurodegeneration 

compared to TH1 cells (Benner et al., 2004; Benner et al., 2008; Brochard et al., 

2009; Reynolds et al., 2010; Mosley et al., 2012) even though both cell types are 

classically defined as pro-inflammatory T cells. Unlike TH1 cells, TH17 cells rely 

on IL-23 for survival and maintenance of their phenotype (Damsker et al., 2010). 

In the absence of IL-23, TH17 cells are not long lived and are unable to carry out 
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their effector function (Langrish et al., 2005; Chen et al., 2006; Gaffen et al., 

2014).  

The discovery of TH17 cells, their detrimental effects in neurodegenerative 

diseases and their respective models, has led to the development of multiple 

therapies targeting IL-23 expressing/responsive T cells that show significant 

efficacy (Chen et al., 2006; Gaffen et al., 2014). These include phase I and II 

clinical trials in immune-mediated inflammatory diseases (Gaffen et al., 2014) 

such as psoriasis, rheumatoid arthritis, Crohn’s disease, and ankylosing 

spondylitis (Gaffen et al., 2014). In the murine model of MS, mice that are unable 

to develop antigen specific TH17 cells are resistant to disease development 

(Sutton et al., 2006). Additionally, experiments using mice that are deficient in 

expression of IL-17 or p19 (an IL-23 component), or IL-23 receptor demonstrated 

a requirement for these cytokines and receptors in various inflammatory TH17-

mediated diseases, such as EAE, psoriasis, inflammatory bowel disease, and 

collagen antibody-induced arthritis (Murphy et al., 2003; Langrish et al., 2005; 

Chan et al., 2006; Chen et al., 2006; Sherlock et al., 2012).Taken together, these 

results suggest that TH17 targeted therapy has the potential to improve therapy 

and quality of life for patients with inflammatory diseases. They also provide the 

basis for targeting TH17 cells in PD and animal models of PD.  

Dopaminergic neurons and tyrosine hydroxylase in the developing 

midbrain 

Dopaminergic neurons within the ventral midbrain make up almost 75% of all 

dopaminergic neurons in the CNS (German et al., 1983; Pakkenberg et al., 1991; 
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Blum, 1998; Wallen and Perlmann, 2003). Dopaminergic neurons in the ventral 

midbrain ultimately give rise to three clusters of neurons, termed A8, A9, and 

A10, that will develop into anatomically and functionally distinct populations. A8 

and A10 populations will ultimately develop into the retrorubral field and ventral 

tegmental area, respectively (Hegarty et al., 2013). The A9 group of neurons, 

which give rise to the those in the substantia nigra, are particularly vulnerable to 

cell death compared to the other two groups and loss of A9 dopaminergic 

neurons is a driving force behind motor deficiencies in PD (Hornykiewicz and 

Kish, 1987; Hegarty et al., 2013).  

 Innervation of dopaminergic neurons into the striatum is critical during the 

establishment of the nigrostriatal pathway due to its role in motor function and 

control (Bourdy et al., 2014; Tremblay et al., 2015). Axons from midbrain 

dopaminergic neurons, which begin to appear at embryonic day 11 in mice, are 

guided by extrinsic cues in the dorsal midbrain and repulsive cues in the caudal 

brain stem (Gates et al., 2004). Dopaminergic axons from the substantia nigra 

run via the medial forebrain bundle where they terminate in the striatum, guided 

by additional chemoattractant factors released from the striatum and 

chemorepulsion factors released from the cortex (Specht et al., 1981b, a; Gates 

et al., 2004; Zhao et al., 2004). Loss of dopaminergic neurons and their axons 

during PD progression leads to significant reductions in the levels of striatal 

dopamine, resulting in the hallmark symptoms of PD – resting tremor, muscle 

rigidity, gait abnormalities, and slowness of movement (Antony et al., 2013). 
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Therefore, re-establishment of dopaminergic axons into the striatum would 

provide a novel approach in the treatment of PD. 

 Tyrosine hydroxylase is used to identify dopaminergic neurons (Chinta 

and Andersen, 2005). TH, the rate-limiting enzyme in catecholamine synthesis, is 

responsible for the conversion of L-tyrosine into L-DOPA, the precursor to 

dopamine (Haavik and Toska, 1998). The discovery of TH, and the description in 

its role in synthesis and metabolic fate of catecholamines, is due to the work of 

Julius Axelrod (Axelrod, 1971{Rubin, 2007 #418)} and Ulf von Euler (Von Euler, 

1946b, a; Rubin, 2007) which ultimately led to the 1970 Nobel Prize in 

Physiology or Medicine with Bernard Katz (Shafrir, 1994{Rubin, 2007 #418)}. The 

physical symptoms associated with PD are largely a consequence of the death of 

TH expressing dopaminergic neurons and the ensuing decline in dopamine 

production. Early studies demonstrating the efficacious outcome of L-DOPA 

administration in combating akinesias in PD (Birkmayer and Hornykiewicz, 1961, 

1962) proved restoration of dopamine levels in PD patients could alleviate 

symptoms of disease and initiated today’s gold standard of PD treatment (Murrin, 

2012). The study of dopaminergic neurons was aided and advanced upon 

generation of a transgenic mouse line that expresses green fluorescent protein 

(GFP) under control of the rat TH promoter. Use of the TH-GFP mouse, has led 

to extensive characterization of the expression pattern of TH within the 

developing midbrain of mice. Such studies have shown that expression of TH 

begins in the early embryonic stages of development with sharp decreases in 

expression in the later stages of embryonic development. Researchers have 
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hypothesized that the decrease in TH expression coincides with the timeframe of 

lateral and rostral migration of dopaminergic neurons. The expression of TH is 

then increased in the very late stages of embryonic development and continues 

to increase into the period of postnatal development until approximately postnatal 

day 14 (p14) when the levels are similar to those seen in the adult mouse 

(Matsushita et al., 2002).  

In the TH-GFP mouse model, in addition to the expression of TH as 

indicated by expression of GFP, the intensity of GFP expression varies during 

development in the midbrain. As development progresses the number of neurons 

that express both TH and GFP increase, as does the intensity of GFP by TH 

immunoreactive neurons. This leads to the possibility that the expression pattern 

of GFP could be an indicator of not only a dopaminergic neuronal phenotype, but 

also the developmental stage of the neuron relative to the intensity of the GFP 

signal. Furthermore, the intensity of GFP expression could indicate how active 

and functional the neuron may be. In other words, a neuron expressing high GFP 

intensity may indicate a more active neuron compared to lowly expressing GFP+ 

neurons,, capable of producing more dopamine than a neuron with low GFP 

expression in the same region.  

Several theories have been proposed to explain the sharp rise in GFP 

expression between embryonic days 12 and 14, including an overlap in 

transcription factor activation. Alternatively, others have postulated that an 

increase in the stability of TH mRNA helps to regulate the level of TH expression 

(Tank et al., 2008). Still others have stated that during development, a silencer 
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gene is switched on and off and directs the increase and decrease in TH 

expression. It is thought that the level of dopamine metabolism may play a role in 

the expression of TH, and that as dopamine metabolism increases, the gene 

silencer involved in TH expression is itself silenced, leading to increased TH 

expression. This increase in dopamine metabolism occurs as dopaminergic 

neurons are closer to a more mature state and more synapses are made as a 

result (Schimmel et al., 1999; Kim et al., 2006; Calcagno et al., 2013). A better 

understanding of the regulation and expression pattern of TH during 

development will help develop therapeutics that target increased TH expression 

or activity by surviving neurons.  

GABAergic Neurons 

GABAergic neurons are an inhibitory class of neurons that utilize gamma-

aminobutyric acid (GABA) as their primary neurotransmitter. GABAergic neurons 

also referred to as medium spiny neurons and, as their name suggests, are 

medium sized compared to other neuron populations and have extensive 

dendritic projections (Nair-Roberts et al., 2008; Tepper, 2010; Brown et al., 

2012). Expression of glutamic-acid decarboxylase (GAD) is the most commonly 

used marker for GABAergic neurons. In mammals, GAD exists in two isoforms 

with molecular weights of 65 kDa (GAD65) or 67 kDa (GAD67), with neurons of 

the CNS expressing GAD67 most commonly (Soghomonian and Chesselet, 

1992; Pinal et al., 1997).  

 As a result of the developmental patterning in the embryonic midbrain, the 

midbrain is divided into dorsoventral subdivisions termed m1 – m7 which are 
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characterized by specific homeodomain transcription codes and the specific 

neuronal subtypes to which these regions give rise (Nakatani et al., 2007; Kala et 

al., 2009). GAD67 expressing GABAergic neurons originate from the m1, m2, 

m3, and m5 regions. GABAergic neurons of the midbrain show unique 

characteristics compared to GABAergic neurons in other brain regions. First, 

GABAergic neurons originate from multiple regions (m1, m2, m3, and m5) and 

show little tangential migration. This is in stark contrast to GABAergic neurons of 

the forebrain, for example, which have a propensity to migrate from their region 

of origin to their target location (Anderson et al., 1997; Tamamaki et al., 1997). 

Additionally, midbrain GABAergic neurons tend to function as projection neurons, 

whereas GABAergic neurons of the forebrain are local interneurons, controlling 

the action of other neurons in the immediate vicinity (Lahti et al., 2013).  

 Putative therapies for the treatment of PD have focused, in large part, on 

restoring the levels of dopamine within the midbrain (Haavik and Toska, 1998; 

Siderowf and Stern, 2003; Hutter-Saunders et al., 2011). Studies showing 

reduced levels of GABA and GABAA receptor density in PD patients suggest that 

GABA deficiency may be associated with dyskinesia, and therefore may a 

secondary deficit in PD patients. Within the basal ganglia of PD patients, 

GABAergic neuronal dysfunction has been described and this reduction in 

signaling may contribute to the altered motor function associated with PD. Using 

this knowledge, studies have shown that GABA therapy reduce motor asymmetry 

in rats, and that GABA receptor agonists suppress limb tremor in PD patients 

(Bartholini et al., 1987; Levy et al., 2001). Taken together, this provides strong 
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evidence for GABA therapy as a promising target to relieve motor symptoms in 

PD patients.  

Dopaminergic-GABAergic interactions   

Within the substantia nigra of mice, GABAergic neurons intermingle with 

dopaminergic neurons, making these two neuronal populations highly interactive 

and connected. Proper migration and connectivity into the substantia nigra 

depends on intact dopaminergic and GABAergic systems. Mice birth-dating 

studies showed at embryonic day 13, the ventral mesencephalon containing the 

anlages for the substantia nigra, ventral tegmental area, and retrorubral field, is 

completely devoid of GABAergic neurons, but rich in dopaminergic neurons. 

Shortly after embryonic day 17, GABAergic neurons enter to reside along with 

the dopaminergic neurons (Vasudevan et al., 2012). Furthermore, in the absence 

of complete dopaminergic architecture, GABAergic neurons fail to migrate and 

form the correct neuronal networks within the ventral mesencephalon 

(Vasudevan et al., 2012). These essential interactions within the ventral 

mesencephelon will be useful in furthering our understanding of 

neurodegenerative diseases and may provide novel insight into treatments for 

brain disorders. 

GABAergic neurons are widely co-distributed with other types of neurons 

in the midbrain, but are enriched in specific regions of the mature midbrain. 

Within the substantia nigra, populations of GABAergic neurons are intimately 

associated with dopaminergic neurons (Lahti et al., 2013). Within the ventral 

tegmental area (VTA), 20-35% of neurons are of the GABAergic lineage and are 
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thought to regulate the activity of dopaminergic neurons (Fields et al., 2007; Nair-

Roberts et al., 2008; Omelchenko and Sesack, 2009; Brown et al., 2012). The 

GABAergic neurons of the substantia nigra project to the thalamus, superior 

colliculus, and basal ganglia where they play a part in regulating voluntary 

movements (Zhou and Lee, 2011). Because of the unique and intimate 

association that GABAergic neurons in the midbrain (substantia nigra and VTA) 

share with dopaminergic neurons in this region, they are frequently referred to as 

D-GABAergic neurons (Lahti et al., 2013). Fate mapping experiments in mice 

showed the majority of D-GABAergic neurons originate outside of the midbrain, 

specifically in rhombomere 1, at approximately embryonic day 12.5 (Achim et al., 

2012) and migrate to the midbrain mid-gestation (Lahti et al., 2013). The exact 

migratory pattern of midbrain GABAergic neurons and timing of their appearance 

has yet to be described.  

In addition to identifying the origin of D-GABAergic neurons, experiments 

showed that within the substantia nigra are two developmentally different 

subgroups of D-GABAergic neurons: anterior and posterior rhombomere 1-

derived neurons, aD-GABAergic and pD-GABAergic, respectively (Lahti et al., 

2013); however their phenotypic expression as to neuronal subsets have not 

been defined. This distinction between populations of GABAergic neurons in 

adjacent regions may prove to be invaluable in future studies that attempt to 

target a specific region of GABAergic neurons for therapeutic approaches. 

Furthermore, additional studies will help to build the knowledge as to how 
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GABAergic neurons control behaviors and the behaviors in which they play a 

particularly important role.  

 Dopaminergic neurons in the nigrostriatal pathway interact with 

GABAergic neurons both at their cell body and termini regions, and loss of 

dopaminergic neurons in PD leads to dysregulation of GABAergic neurons, 

resulting in symptoms associated with PD (Chesselet and Delfs, 1996; 

Chesselet, 2002). Additional evidence on the effects of dopamine on GABAergic 

neurons comes from studies of leisoned rodents. Lesions to the nigrostriatal 

dopaminergic pathway leads to an increase in GAD immunoreactivity in the 

striatum, elevated levels of GAD67 mRNA, and increased GAD activity (Segovia 

et al., 1990; Soghomonian and Chesselet, 1992; Soghomonian et al., 1992). 

Furthermore, transplants of dopamine producing cells in the striatum reverse the 

increase in GAD activity induced by dopaminergic loss (Segovia et al., 1989). 

The presence of D1 receptors on GABAergic afferent from the striatum points to 

a facilitory effect of dopamine on GABA release in the substantia nigra through a 

D1-mediated action (Floran et al., 1990; Cameron and Williams, 1993). Taken 

together, these data suggest dopaminergic neurons exert complex modulatory 

effects along the nigrostriatal pathway and changes on GABAergic transmission 

due to effects of dopaminergic lesion play a critical role in PD symptoms (Sesak, 

2002). 

Within the striatum, dopamine concentrations appear to regulate the 

numerical density of TH+ neurons in a dose-dependent manner. Separate 

studies examining the number of TH+ neurons within the striatum showed clear 
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discrepancies between the effects of dopamine replacement therapy in the form 

of L-DOPA, one demonstrating decreases in the number of TH+ striatal neurons 

(Lloyd et al., 1975; Huot and Parent, 2007) and the other demonstrated an 

overall increase in striatal TH+ neurons (Jollivet et al., 2004; Tande et al., 2006). 

Ultimately these contradictory findings may be explained through a dual effect 

hypothesis wherein at higher levels, dopamine is proposed to act in conjunction 

with growth factors to up-regulate TH expressing neurons within the striatum 

(Huot and Parent, 2007). At lower levels, dopamine may control TH expression 

by means of a more conventional and straightforward feedback mechanism. 

Regardless, it is apparent that local dopamine concentration appears to regulate 

the numerical density of TH expressing neurons within the striatum. In the 

absence of dopamine, due to PD progression or neurotoxin-induced neuronal 

death, the increase in TH+ neurons is likely the result of a phenotypic shift of 

striatal interneurons so that they may act as a local source of dopamine, and as 

such be part of a compensatory mechanism for dopaminergic neuronal death 

(Jollivet et al., 2004; Abe et al., 2010; Busceti et al., 2012).  

The most common marker for dopaminergic neurons is TH; however TH 

expression also occurs transiently in some neurons derived from the neural crest 

(Jaeger and Joh, 1983). While cells that retain TH expression may signify the 

establishment of these cells developing into a mature dopaminergic neuron 

(Black, 1982), the following findings suggest the mere presence of TH may not 

be sufficient to determine if a neuron is dopaminergic. Several reports provide 

significant evidence that TH and GAD67 co-localize (TH+GAD67+) naturally in 
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the brain of mammals, birds, and reptiles (Kosaka et al., 1987a; Kosaka et al., 

1987b; Kosaka et al., 1988; Wulle and Wagner, 1990). While the exact number 

or percentage of neurons in mouse or primate brains that are positive for both TH 

and GAD67 expression has not yet been reported, Abe and colleagues 

successfully used double immunofluorescent labeling of neurons to show co-

expression of these two markers in neurons at postnatal day 8 (Abe et al., 2010). 

While the presence of TH+GAD67+ neurons have been demonstrated by 

multiple investigations, this neuronal population does not appear to be stable or 

long lived. However, the exact timeline for when these neurons begin to decline 

in number is an area of debate as later studies reported their existence as late as 

postnatal day 18 (p18) (Masuda et al., 2011), in stark contrast to p8 reported by 

Abe and colleagues. Regardless of the temporal appearance and disappearance 

of the neurons, there is a consensus that these neurons begin to wane during 

development and their presence in the brain of adult mice could signify a 

previously unreported phenomenon. 

Two independent studies reported seeing an increase in TH+ neurons in 

the substantia nigra following MPTP assault (Mao et al., 2001; Tande et al., 

2006), contradictory to the previously described actions of MPTP. Initially this 

increase was explained by neurogenesis from cells originating in the 

subventricular zone or progenitors within the striatal parenchyma (Bjorklund and 

Dunnett, 2007). This theory was later disproved by the studies due to a lack of 

bromodeoxyuridine (BrdU) incorporation to label newly formed cells (Mao et al., 

2001; Tande et al., 2006; Bjorklund and Dunnett, 2007). This led to the theory 
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described and tested herein that pre-existing neurons in the substantia nigra 

begin expressing TH, possibly as a compensatory mechanism for MPTP-induced 

neuronal loss and reduction in dopamine. 

GABAergic neurons immunoreactive for TH represent a unique and novel 

type of neuron that has yet to be further characterized and explained. Several 

lines of evidence suggest that these neurons exist naturally, but are normally 

eliminated by the action of extracellular dopamine between postnatal day 4 and 

postnatal day 8 (Masuda et al., 2011). The olfactory bulb is an area where this 

unique population of TH+GAD67+ neurons is especially plentiful; at least for a 

short period of time. In reptiles, it has been reported that in the glomerular layer 

and external plexiform layer/mitral cell layer approximately 91% of TH 

immunoreactive cells were also GAD67 immunoreactive (Kosaka et al., 1991), 

but this number has not been validated in rodents or primates.  

GABAergic neurons immunoreactive for TH were originally described in 

the striatum of adult monkeys (Dubach et al., 1987) and have since been 

reported in other species including rat (Tepper, 2010). The description of TH+ 

neurons within the striatum are shockingly variable, ranging from tens of 

thousands as described by Dubach et al. to only 1 neuron per section in humans 

(Huot and Parent, 2007). TH+ neurons present in the striatum are often reported 

to also be immunoreactive for the dopamine transporter (DAT), GABA, or GAD67 

suggesting that not all TH+ neurons are purely dopaminergic in nature, but rather 

could be of the GABAergic lineage (Betarbet et al., 1997; Cossette et al., 2005b; 

Cossette et al., 2005a; Mazloom and Smith, 2006; Tande et al., 2006; Huot and 
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Parent, 2007; Tepper et al., 2010). Still, some investigators find these cases 

unconvincing and argue that TH+ neurons do not naturally occur in the striatum 

of animals, but are only seen after MPTP or 6-OHDA lesion (Tepper, 2010). 

While others argue that TH+ GABAergic neurons are not present in control or 

leisoned rodent models, but only are detected in the striatum of primates 

(Dubach et al., 1987; Betarbet et al., 1997; Tepper, 2010).  

GABAergic neurons of the midbrain are a highly heterogeneous group of 

neurons in terms of their location, morphology, connections, functions, 

developmental origins, and molecular regulatory mechanism. Of specific 

importance, are the GABAergic neurons that are closely associated with 

dopaminergic neurons in the substantia nigra such as the previously mentioned 

D-GABAergic neurons. These neurons are distinct from other midbrain 

GABAergic neurons as they are derived from adjacent brain regions and under 

control of a distinct set of transcription factors (Lahti et al., 2013). Because of 

these unique properties, GABAergic neurons of the substantia nigra may be 

especially sensitive to changes in the environmental milieu, and as such, have 

the capacity to act as a source of dopamine in a dopamine-depleted 

environment. 

What remain to be described are the cellular mechanisms by which TH 

expression is being triggered in a neuronal population not known to express this 

marker under normal physiological conditions. In order to further understand the 

expression and function of TH in GABAergic neurons, we would need to 

elucidate the regulating mechanism(s). As discussed above TH can be regulated 
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by multiple mechanisms, phosphorylation playing the most prominent role. For 

example, direct phosphorylation of serine 31 by ERK1 and ERK2 will increase 

TH activity. Whereas phosphorylation of serine 19 by either mitogen-activated 

protein kinase-activated protein kinase 2 (MAPKAPK2) or calcium-calmodulin-

dependent protein kinase II (CaMKII) will increase the phosphorylation of serine 

40 ultimately resulting in an increase in TH activity. The chemical compound 

nicotine has been proposed to have an interesting role in the regulation of TH by 

phosphorylation for as long as 48 hour in vitro (Haavik and Toska, 1998; 

Bobrovskaya et al., 2007). Furthermore, there is an inverse correlation between 

smoking and developing PD, suggesting a neuroprotective action of nicotine 

(Quik, 2004).  

Another avenue by which TH expression may be suddenly triggered in 

GABAergic neurons is due to removal of inhibitory signals. Since TH is regulated 

via feedback inhibition, following dopaminergic neuronal death the feedback 

inhibition may be lifted due to the diminished dopamine levels. More research is 

needed to evaluate the phosphorylation pattern of TH in GABAergic neurons as 

well as the level of protein kinases, second messengers, TH mRNA and protein 

levels. 

Compensatory mechanisms in Parkinson’s disease 

Pathological hallmarks of PD include a significant loss of the dopaminergic 

neurons in the substantia nigra and striatal termini. However, by the time 

symptoms appear greater than 50% of dopaminergic neuronal bodies and up to 

80% of striatal termini have been lost. This suggests a physiological 



22 
 

compensation for the slow loss of dopaminergic neurons (Lloyd et al., 1975). It is 

unlikely that only one compensatory mechanism ensues during PD progression, 

but rather several mechanisms come into play during different stages of PD 

development. These compensatory mechanisms include, but are not limited to, 

increased sensitivity to dopamine, increased expression of dopamine receptors, 

and increased enzymatic activity of TH. While these compensatory mechanisms 

may delay symptom onset, they do not stop disease progression, and as 

dopaminergic neurons continue to die the compensatory mechanisms ultimately 

fail and physical symptoms appear. There is strong evidence for a striatal 

dopamine:acetylcholine imbalance in PD (Greenblatt and Shader, 1973) and it 

has been proposed that in early PD, a homeostatic dampening of striatal 

cholinergic activity maintains a normal striatal dopamine:acetylcholine balance 

(Lloyd et al., 1975). This mechanism is proposed to be active during early PD, 

but upon continued dopaminergic neuron loss, can no longer maintain the 

homoeostatic balance.  

 Dopaminergic:GABAergic interactions within the nigrostriatal pathway play 

a large role in maintaining proper signaling pathways. Normally, GABAergic 

neurons inhibit dopaminergic cell bodies in the substantia nigra, controlling the 

firing rate of the cells (Lloyd et al., 1975). During the early stages of PD, one of 

the proposed compensatory mechanisms exploits the dopaminergic:GABAergic 

interaction. Decreasing the activity of GABAergic neurons allows the surviving 

dopaminergic neurons to fire at an increased rate and maintains normal motor 

control. However, as previously stated, this compensatory mechanism cannot 
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keep up with the continuous dopaminergic cell death and will eventually be 

insufficient to overcome the severe dopamine deficit with presentation of PD 

symptoms and signs.  

 Additional compensatory mechanisms have been proposed, all with the 

endpoint of enhancing the effects of remaining dopamine in the striatum. These 

mechanisms include increased synthesis and release of dopamine by surviving 

dopaminergic neurons (Zigmond et al., 1990), increasing the number or 

sensitivity of dopamine receptors in the striatum, decreasing the turnover of 

striatal dopamine, using striatal interneurons as an alternative source for 

dopamine production, upregulation of the enzymes responsible for dopamine 

synthesis, and increased sprouting of neuron terminals by surviving 

dopaminergic neurons (Turjanski et al., 1997; Brotchie and Fitzer-Attas, 2009). 

While evidence exists that support a role for these mechanisms in the delaying of 

PD symptom onset (Brotchie and Fitzer-Attas, 2009), symptoms do ultimately 

appear indicating the mechanisms do not afford a definitive solution, but are 

merely delaying the inevitable. Gaining insight as to which compensatory 

mechanisms come into play at which stages of disease, may help to develop 

treatments that target prolonging the effectiveness of these mechanisms and 

help to delay intervention by L-DOPA and dopamine replacement therapy.  

Summary and conclusions 

Neurodevelopment of the midbrain that can adequately support proper brain 

function requires very complex and multifaceted processes that interact both at 

the temporal and spatial levels. Loss of dopaminergic neurons within the 
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substantia nigra and their striatal termini, as in PD and MPTP models of PD, 

results in deficits in motor function and control. While these physical symptoms 

can be lessened through the use of dopamine replacement therapy, it affords no 

cure for PD, and patients will most likely become refractory after long-term use. 

Interestingly, classical physical symptoms associated with PD do not become 

apparent until greater than 50% of neurons are lost within the substantia 

suggesting either that a threshold concentration of dopamine must be maintained 

or intrinsic compensatory mechanisms are in place to maintain proper function 

and control within the CNS. However, these mechanisms untimely fail as the 

levels of dopamine continue to drop with the progression of PD. With an 

extensive understanding of the homeostatic balance in the CNS, new therapies 

aimed at stopping, slowing, or even reversing disease progression will lead to 

restoration of neuron numbers and dopamine concentrations, ultimately 

improving neurologic and motor deficits seen in disorders of the CNS. We further 

posit that under pathological conditions such as neuroinflammation and 

dopaminergic neuronal loss, that mature neurons in the midbrain shift phenotype 

and as such, could serve as a source of neurons capable of producing dopamine 

and restoring proper motor control. In toto, increased dopaminergic neuron 

numbers, termini densities, and/or endogenous dopamine levels achieved either 

by neuron or dopamine replacement therapies or by targeting upregulation of 

compensatory mechanisms may provide improved therapeutic outcomes for PD 

patients.  
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CHAPTER TWO 

PHENOTYPIC SHIFT OF GABAERGIC NERUONS IN MPTP INTOXICATED 

MICE 

ABSTRACT 

We previously showed that chronic administration for 35 days of L-3,4-

dihydroxyphenylalanine (L-DOPA) or BL-1023 [an L-DOPA-gamma-aminobutyric 

acid (GABA) conjoined compound] improved locomotor function and increased 

numbers of tyrosine hydroxylase (TH) immunoreactive (TH+) neurons in the 

substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated 

mice compared to those given no drug. We therefore sought to identify whether 

the increase in TH+ neurons was a consequence of neurogenesis or rather from 

a phenotypic shift of surviving neurons in the substantia nigra. Using the 

thymidine analogue bromodeoxyuridine (BrdU), we sought to identify newly 

formed neurons after 21 days of L-DOPA or BL-1023 treatment, but were unable 

to do so. Dual immunofluorescent analysis of tissues for TH and glutamic acid 

decarboxylase-67 (GAD67), a marker for GABAergic neurons revealed that mice 

treated with either L-DOPA or BL-1023 showed significant increases in the 

numbers of TH+GAD67+ neurons in the substantia nigra compared to controls. 

These findings support the notion that numbers of GAD67+ neurons upregulate 

TH expression and effectively increase the numbers of TH+ neurons in response 

to MPTP-intoxication, loss of dopaminergic neurons, and/or chronic 

administration of dopamine-replacement drugs.  
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INTRODUCTION 

Parkinson’s disease (PD) is the most common neurodegenerative movement 

disorder and the second most common neurodegenerative disorder overall next 

to Alzheimer’s disease (AD). PD is characterized by the progressive loss of TH+ 

dopaminergic neurons in the substantia nigra and their termini in the striatum. 

The symptoms and clinical signs of PD originate from the loss of dopamine 

characteristically produced by the neurons that are progressively lost. Current 

therapeutics are primary palliative and include dopamine replacement and 

dopamine receptor agonists, which decrease in efficacy over time and can cause 

significant side effects that may become intolerable (Bjorklund and Cenci, 2010). 

Thus, therapies that slow or reverse neuronal death and disease progression, 

rather than treating symptoms, are greatly needed.  

TH is the rate-limiting enzyme in catecholamine synthesis and loss of TH+ 

neurons in PD results in a significant reduction in striatal dopamine levels. L-

DOPA is the gold standard for the treatment of PD (Agid, 1998; Agid et al., 1998) 

and works to effectively bypass TH in the dopamine synthesis pathway to  

restore striatal dopamine levels. While therapies aimed at restoration of 

dopamine levels are beneficial to patients, targeting gamma-aminobutyric acid 

(GABA) may also prove to be a valuable treatment option. In rats, GABA therapy 

was shown to reduce motor asymmetry (Mehta and Chesselet, 2005) and GABA 

receptor agonists suppress limb tremor in PD patients (Pahapill et al., 1999). 

However, the therapeutic potential of GABA is hindered by its chemical structure. 

The hydrophilic functional groups on GABA greatly limit its ability to cross the 



27 
 

blood brain barrier (BBB), thus covalently linking L-DOPA and GABA in the form 

of the drug BL-1023 effectively increases the transport of GABA across the BBB 

(Stein, 2012). 

Recent studies demonstrated that TH+ neurons in the substantia nigra 

and striatum of MPTP-intoxicated animals are increased several weeks post-

intoxication (Mao et al., 2001; Tande et al., 2006; Bjorklund and Dunnett, 2007; 

Hutter-Saunders et al., 2011). Initially the increase in TH was explained by 

neurogenesis of dopaminergic neurons. However, this theory lacks critical 

support in studies where dopaminergic neurogenesis has been examined after 

MPTP treatment (Mao et al., 2001; Tande et al., 2006; Bjorklund and Dunnett, 

2007), but has never been tested in the MPTP murine model. In light of the lack 

of substantial neurogenic activity, subsequent theories herein suggested the 

increase in TH is due to phenotypic shift or up-regulation of TH from surviving 

cells within the substantia nigra. However, the cell type responsible for increased 

TH production had not been identified. Furthermore, whether purported 

neuroprotective pharmaceuticals function via induction of TH has not been 

assessed.  

Dopaminergic neurons represent a heterogeneous group of cells localized 

to specific regions in the brain including the diencephalon, mesencephalon 

[including the substantia nigra and ventral tegmental area (VTA)], olfactory bulb, 

and retina with approximately 75-90% of the total number of brain dopaminergic 

neurons residing in the mesencephalon (Dahlstroem and Fuxe, 1964; Wallen and 

Perlmann, 2003; Chinta and Andersen, 2005; Bjorklund and Dunnett, 2007). TH 
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expression occurs only transiently in neurons derived from the neural crest 

(Jaeger and Joh, 1983) and cells that retain TH expression may signify the 

establishment of these cells developing into a mature dopaminergic neuron 

(Black, 1982). Appearance of dopaminergic neurons within the ventral neural 

tube begins between embryonic day 11 and 13 in mice. These neurons then 

migrate to locations within the substantia nigra compacta and VTA (Kawano et 

al., 1995; Matsushita et al., 2002), become post-mitotic and begin to innervate 

other brain regions (Wallen and Perlmann, 2003; Chinta and Andersen, 2005). 

Axonal processes from the dopaminergic neurons that remain within the 

substantia nigra and VTA target the striatum, with the former comprising the 

nigrostriatal dopaminergic pathway and the latter comprising the 

mesocorticolimbic dopaminergic pathways. The importance of nigrostriatal 

development is underscored as the loss of neuronal bodies and axons along the 

nigrostriatal pathway due to PD or MPTP-intoxication is thought to play a critical 

role in development of motor deficits associated with PD (Chesselet, 2002). 

Dopaminergic systems (nigrostriatal, mesolimbic, and mesocortical) 

interact with GABAergic neurons, both at their cell body and termini. Dopamine 

within the nigrostriatal pathway plays a crucial role in the regulation of GABAergic 

neurons, and a reduction in dopamine levels in PD can lead to dysregulation of 

GABAergic neurons which in turn, can contribute to PD symptomology 

(Chesselet, 2002). In the context of dopaminergic-GABAergic interactions, 

several reports provided significant evidence that the neuronal markers TH 

(dopaminergic) and GAD67 (GABAergic) co-localize naturally in the brain of 
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mammals, birds, and reptiles (Kosaka et al., 1987b; Kosaka et al., 1988; Wulle 

and Wagner, 1990; Kosaka et al., 1991), but whether a direct relationship 

between dopaminergic and GABAergic neurons exists in the substantia nigra is 

unknown (Chesselet, 2002). Previous reports showed that within the glomerular 

layer and external plexiform layer/mitral cell layer approximately 91% of TH 

immunoreactive cells were also GAD67 immunoreactive for a period of time 

(Kosaka et al., 1991). Using a TH-GFP transgenic mouse, wherein green 

fluorescent protein (GFP) transcription and expression is under control of the TH 

promoter, studies revealed that not all GFP+ neurons within the substantia nigra 

and VTA were dopaminergic, and were postulated to be of a GABA lineage 

(Matsushita et al., 2002). While evidence suggest that during development, co-

expression of both TH and GAD67 is normal, these neurons are typically 

eliminated by the action of extracellular dopamine between postnatal day 4 and 

postnatal day 8 (Busceti et al., 2012) with some studies reporting their existence 

as late as postnatal day 18 (Masuda et al., 2011). However, to date, no reports 

have been provided with definitive evidence for the co-expression of TH and 

GAD67 in mature neurons within the substantia nigra of adult animals, or that this 

phenotype is inducible.  

Expression and activity of TH within the CNS is controlled by multiple 

short- and long-term regulatory mechanisms including, but not limited to, 

dopamine concentrations (Ames et al., 1978; Busceti et al., 2012) and post-

translational modifications (Haycock and Haycock, 1991). Phosphorylation of TH 

at various serine residues within the N-terminal regulatory domain has been 
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shown to have an effect on both the activity and stability of the enzyme (Lazar et 

al., 1981; Vrana et al., 1981; Vrana and Roskoski, 1983; Kumer and Vrana, 

1996; Nakashima et al., 2013b). Findings suggest that phosphorylation of TH 

converts the enzyme to a more active state that is simultaneously less stable, as 

demonstrated by a shorter half-life compared to its non-phosphorylated 

counterpart (Gahn and Roskoski, 1995; Kumer and Vrana, 1996). In models of 

neurodegeneration, reports indicate that phosphorylation state of serine 31 

(Ser31) and serine 40 (Ser40) within the regulatory domain of TH are altered, 

presumably in an attempt to increase the activity of remaining TH and restore 

levels of endogenous dopamine (Ames et al., 1978; Vrana et al., 1981; Kumer 

and Vrana, 1996; Kumar et al., 2003; Bobrovskaya et al., 2007; Ong et al., 2012; 

Nakashima et al., 2013a; Salvatore, 2014). Whether neuroprotective 

pharmaceuticals function via induction of TH transcription or through post-

translational phosphorylation of TH to increase activity has not been thoroughly 

assessed. The latter is supported by long-term studies that showed an inverse 

correlation between cigarette smoking and the development of PD (Fratiglioni 

and Wang, 2000; Galanaud et al., 2005) whereby nicotine, a major component of 

cigarette smoke, has been shown to induce phosphorylation of TH in vitro for up 

to 48 hours (Haavik and Toska, 1998; Bobrovskaya et al., 2007). Therefore the 

potential neuroprotective role of nicotine, and possibly other drugs, could be 

through the induction of TH phosphorylation (Quik, 2004).  

Herein we hypothesize that a novel compensatory mechanism exists in 

which surviving GABAergic neurons within the substantia nigra undergo a 
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phenotypic shift and begin expressing TH as a putative mechanism to increase 

dopamine production in a dopamine-depleted environment. 

MATERIALS and METHODS 

Animals 

C57BL/6J (wild-type) mice were purchased from Jackson Laboratory. For direct 

visualization of dopaminergic neurons, mice on the C57BL/6 background 

expressing GFP driven by the TH promoter (C57BL/6.TH-GFP, or TH-GFP mice) 

were obtained from Osaka, Japan (Sawamoto et al., 2001) and bred in our 

facility. All mice were housed and maintained on a 12:12 hr light/dark cycle with 

ad libitum access to food and water and were randomly assigned to treatment 

groups. Studies were conducted in accordance with the animal care guidelines 

issued by the National Institutes of Health and approved by the Institutional 

Animal Care and Use Committee of the University of Nebraska Medical Center. 

TH-GFP mice were crossed with C57BL/6J mice and pups genotyped to identify 

mice positive for the GFP gene. Primers for each marker were custom designed 

(Table 1) using Invitrogen Primer Design, reconstituted in water to a 

concentration of 20 nM, aliquotted, and stored at -20o C. PCR cycle was as 

follows: 94o C for 3 min, 31 cycles (94o C for 30 sec, 56o C for 1 min, and 72o C 

for 1 min), 72o C for 2 min, and held at 4o C. DNA samples were loaded onto 

1.5% agarose gels and ran at 110 V for 35 minutes to obtain sufficient band 

separation. The fluorescent DNA stain GelRed was added to the agarose mixture 

to identify DNA bands at the correct molecular weight. 

Acute MPTP intoxication 
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To address the sensitivity of dopaminergic neurons in TH-GFP mice to MPTP 

induced death we directly compared the level of neuronal death as a function of 

neuronal survival observed in wild-type and TH-GFP mice when intoxicated with 

increasing levels of MPTP. Male mice, 8 - 10 weeks of age, were randomized 

into 4 treatment groups, on day 0 four subcutaneous injections (s.c.) were 

administered at 2 hour intervals per injection of either PBS (10 ml/kg) or MPTP 

(calculated for free base dose of 10, 14 or 18 mg/kg). For drug treatment studies, 

male TH-GFP mice, 8-10 weeks old, were randomized into 8 treatment groups 

and immunized with 4 s.c. injections of MPTP (18 mg/kg in a 10 ml/kg volume) or 

PBS (10 ml/kg) on day 0; each injection given at 2 hour intervals. MPTP handling 

and safety measures were in accordance with the National Institutes of Health, 

the University of Nebraska Medical Center, and prior published guidelines 

(Przedborski et al., 2001).  

Drug treatment 

MPTP-treated mice were administered daily injections for 21 days of either L-

DOPA or BL-1023. L-DOPA was reconstituted in water, pH 2.7, to a 

concentration of 28.4 mg/mL which is equimolar to the amount of L-DOPA in the 

BL-1023 compound. BL-1023 (BioLineRx, Ltd., Jerusalem, Israel) was 

reconstituted in water, pH 7, to a concentration of 40 mg/mL. Drugs were made 

fresh every 2 days. Daily intraperitoneal (i.p.) drug treatments began on day 7 

post-MPTP and continued until day 28. To detect possible neurogenic activity 

occurring as a consequence of neuronal assault and/or drug treatment, the 

thymidine analogue bromodeoxyuridine (BrdU) was added to the drinking water 
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of mice at a concentration of 1 mg/mL starting on day 7 post-MPTP. To ensure 

animals did not decrease water intake due to taste aversion, glucose was added 

to BrdU-containing water for the first 7 days. BrdU-containing water was 

protected from light and changed every 7 days until day 21 post-MPTP when 

animals returned to normal water for the remainder of the study. 

Immunohistochemistry 

Upon completion of study, 7 or 28 days post-MPTP, animals were terminally 

anesthetized with pentobarbital and perfused first with PBS at a flow rate of 10.5 

– 11.5 mL/minute for 3 minutes. Animals were then perfused with 4% 

paraformaldehyde (PFA) dissolve in PBS (pH 7.4) for 8 minutes. After perfusion, 

brains were carefully harvested and post-fixed in 4% PFA overnight, and 

cryopreserved in 30% sucrose/PBS for 48 hours. Brains were then snap-frozen 

in 2-methylbutane that had been cooled on dry ice and were embedded in 

optimum cutting temperature (OCT) compound (TissueTek, Sakura Finetek, 

Torrance, CA). Thirty µm sections collected through the midbrain. Tissue 

sections were processed free-floating in 48-well plates and neuron numbers 

quantified using stereological software (StereoInvestigator, MBF Bioscience, 

Williston, VT). 

Stereological analysis of neurons in the substantia nigra was performed 

using optical fractionator module stereology software (StereoInvestigator, MBF 

Bioscience, Williston, VT) interfaced with a Nikon Eclipse 90i fluorescence 

microscope equipped with a monochrome camera and three filter blocks.. Using 

simple random sampling (SRS) image series workflow, the region of interest 
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(ROI) containing the substantia nigra was outlined for one hemisphere of each 

tissue section at a 4x magnification. Fluorescent images of each ROI taken using 

a 40x objective with FITC, Texas red (TR), and DAPI fluorescent cubes, and 

merged Workflow parameters were defined to count approximately 20% of the 

total neuron population in the substantia nigra (counting frame size 120 x 100 

um, 245 x 240 um grid size) and Gunderson coefficient of error (C.E. m=1) was ≤ 

0.10. Estimated population size was generate by the software and multiplied by 2 

to obtain the overall population estimation for both hemispheres of the brain. 

Verification of TH-GFP animals.  

Following MPTP-intoxication, mice were terminally-anesthetized and brains were 

harvested and sectioned as previously described (Hutter-Saunders et al., 2011). 

Following sectioning, 30 μm tissue sections were processed free-floating in 48-

well plates. Tissues were incubated with one of the following primary antibodies: 

rabbit anti- TH (1:2000, Calbiochem/EMD Chemicals, Billerica, MA); rabbit anti-

glutamic acid decarboxylase 67 (GAD67) (1:500, Spring Bioscience, Pleasanton, 

CA); rabbit anti-microtubule-associated protein 2 (MAP2) (1:1000, EMD Millipore, 

Billerica, MA). Detection of TH+ neurons was carried out using both HRP and 

immunofluorescent conjugated secondary antibodies. Anti-TH stained tissues 

were incubated with either biotinylated goat anti-rabbit IgG (1:400, Vector 

Laboratories, Inc., Burlingame, CA) or Texas red (TR) conjugated donkey anti-

rabbit IgG (DyLite 594 1:1000, Jackson ImmunoReserach, West Grove, PA). 

Color development was carried out in a streptavidin-horseradish peroxidase 

(HRP) solution (ABC Elite vector kit, Vector Laboratories, Burlingame, CA) and 
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Nissl substance counter stained with thionin. Tissues stained in anti-GAD67 or 

anti-MAP2 antibodies were incubated with TR DyLight-594 donkey anti-rabbit 

IgG (1:2000, Jackson ImmunoResearch, West Grove, PA). Nuclei were 

visualized with 4',6-diamidino-2-phenylindole (DAPI) containing mounting 

medium (Vector Laboratories, Inc., Burlingame, CA). Expected outcome of wild-

type and TH-GFP mice stained with anti-TH, anti-GAD67, and anti-MAP2 

antibodies outlined in Table 2.  

Dual immunofluorescent staining.  

For simultaneous visualization of dopaminergic and GABAergic neurons in a 

single tissue, a free-floating method of immunofluorescence was used. Thirty μm 

tissue sections from drug-treated mice were incubated with sheep anti-TH 

(1:2000 EMD Millipore, Billerica, MA) followed by fluorescein isothiocyanate 

(FITC) conjugated donkey anti-sheep IgG [1:2000, DyLight 488 (FITC), Jackson 

ImmunoResearch, West Grove, PA)]. Sections were then incubated with rabbit 

anti-GAD67 (1:500, Spring Bioscience) followed by TR-conjugated donkey anti-

rabbit IgG [1:2000, DyLight 594 (Jackson ImmunoResearch, West Grove, PA). 

All antibodies were absorbed by the vendor to remove inter-species cross-

reactive antibodies.  Nuclei were visualized with DAPI-containing mounting 

medium (Vector Laboratories, Inc., Burlingame, CA). 

Staining of drug-treated TH-GFP mice.  

Upon completion of drug injections, L-DOPA or BL-1023 treated mice were 

terminally anesthetized, perfused, and brains removed. Thirty µm sections were 
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stained with rabbit anti-GAD67 (1:500, Spring Bioscience, Pleasanton, CA) 

followed by TR-conjugated donkey anti-rabbit IgG (1:2000, Jackson 

ImmunoResearch, West Grove, PA). Tissues were mounted onto slides and 

cover-slipped with DAPI containing mounting medium (Vector Laboratories, Inc., 

Burlingame, CA). Use of TH-GFP mice allowed for the detection of TH+ 

dopaminergic neurons without the need for immunofluorescent staining.  

BrdU detection.  

To detect incorporation of BrdU, tissue sections were incubated in 2 M HCl for 15 

minutes at 37o C to denature DNA (Matsuura and Suzuki, 1997) prior to 

incubation in rat anti-BrdU primary antibody (1:1000, Santa Cruz Biotechnology, 

Dallas, TX) followed by incubation in TR-conjugated donkey anti-rat IgG 

secondary antibody (1:2000, Molecular Probes, Carlsbad, CA). To serve as a 

positive control, tissue sections from the olfactory bulb, an area of known 

neurogenesis, were collected and stained in the same manner. Tissues were 

mounted onto slides and cover-slipped with Vectashield Hardset mounting 

medium (Vector Laboratories, Inc., Burlingame, CA).  

Western blot analysis 

Western blot analyses were performed to evaluate the expression level of TH 

and phosphorylated TH within the substantia nigra and striatum of treated mice. 

Using the same MPTP and drug treatment regimen described above, mice were 

sacrificed on day 28 and brains removed. The midbrain containing the substantia 

nigra and striatum was isolated separately, placed in tubes containing RNAlater 
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(Applied Biosystems, Carlsbad, CA) and held on ice. Tissue was homogenized 

and protein purified using protein and RNA isolation system (PARIS) (Life 

Technologies, Carlsbad, CA) per the manufactures instructions. Protein 

concentration in the samples was quantified using Pierce BCA Protein Assay Kit 

(Life Technologies, Carlsbad, CA) and RNA samples quantified using NanoDrop 

1000 (Fisher Scientific, Waltham, MA).  

Forty µg of total protein was resuspended in a reducing sample buffer and 

boiled for 5 minutes at 95° C, electrophoresed onto 4 – 20% PAGE gel 

(GenScript, Piscataway, NJ) and transferred to a PVDF membrane. Membranes 

were blocked with 5% BSA/TBST or 5% dry milk/TBST and subsequently probed 

with primary antibodies specific for TH (1:500, Santa Cruz Biotechnology), 

phospho-tyrosine hydroxylase serine 31 (Ser31) (1:500, Cell Signaling 

Technology, Danvers, MA), or phospho-tyrosine hydroxylase serine 40 (Ser40) 

(1:500, Cell Signaling Technology, Danvers, MA). Membranes were incubated 

with HRP-conjugated goat anti-donkey IgG (1:20,000, Santa Cruz Biotechnology, 

Dallas, TX) prior to being developed with SuperSignal West Femto substrate 

(Life Technologies, Carlsbad, CA) for 1 minute and imaged using enhanced 

chemiluminescence (FluorChem HD2, Protein Simple, San Jose, CA). HRP-

conjugated β-actin (1:5000, Sigma Aldrich, St. Louis, MO) was used as a protein 

loading control. Protein band density was determined using Image J software 

(National Institutes of Health).  

Initial experimental design included the analysis of RNA isolated from the 

substantia nigra and striatum for expression of TH and GAD67 using quantitative 



38 
 

PCR (qPCR) to further verify increases in TH with MPTP and/or drug treatment. 

However, the highly lipid concentration of the brain and small tissue volume 

collected made RNA quality and yield sub-optimal. Therefore we were not able to 

proceed with qPCR protocols. 

In vitro neuron culture 

Currently, few useful GABAergic cell lines are suitable for in vitro studies. Cell 

lines exist that express or over-express GAD65 or GAD67 or that produce GABA 

in vitro (Giordano et al., 1993; Giordano et al., 1996; Eaton et al., 1999; 

Behrstock et al., 2000; Conejero-Goldberg et al., 2000); however to date none 

have been studied in the context of increasing TH expression. The P19 

embryonic carcinoma cell line (Pinal et al., 1997), human fibroblasts, and 

neuroectodermal and insulinoma cell lines (Kono et al., 2001; Salazar et al., 

2001; Varju et al., 2002) have all been evaluated for use in GABAergic neuronal 

studies, but none have been proven to be of long-term use that will further the 

field of GABAergic studies. The majority of published studies on GABAergic 

neurons have used cell lines that require a high degree of manipulation and sub-

culturing techniques to yield consistent results (Trojanowski et al., 1997; Sanchez 

et al., 2006). Therefore a GABAergic cell line relevant to studies of 

neurodegeneration would be a very useful tool.  

AF5 cells, an immortalized rat CNS progenitor cell line, were obtained as a 

generous gift from Dr. William J. Freed (National Institute of Health, New Jersey). 

AF5 cells are a CNS-derived line immortalized with the N-terminal fragment of 

the large SV40 T antigen (Truckenmiller et al., 1998; Sanchez et al., 2006). 
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Differentiated AF5 cells significantly upregulate their expression of Pitx2 mRNA, 

the GABAergic neuron specification transcription factor. Additionally, expression 

of GAD65 and GAD67 are upregulated in differentiated AF5 cells, suggesting 

that AF5 cells have adopted a GABAergic lineage (Sanchez et al., 2006). AF5 

cells were cultured in T75 tissue culture flasks at a density of 5 x 106 in 

maintenance media [high glucose media (DMEM/F12 Glutamax) supplemented 

with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin] and incubated 

at 37° C/5% CO2. To differentiate AF5 cells into a GABAergic lineage, after 5 

days maintenance media was replaced with serum-free differentiating media 

[neural basal media (Invitrogen, Waltham, MA) supplemented with B27 serum 

free supplement (Invitrogen, Waltham, MA) and 50 µM of the anti-proliferative 

agent N6,2’O-dibutyryladenosine 3’:5’-cyclic monophosphate sodium (dbcAMP, 

Sigma, St. Louis, MA) to prevent growth of any non-neuronal cells and shown to 

aid in the differentiation of AF5 cells to a GABAergic lineage. As an additional 

study, I addressed whether AF5 cells could retain their GABAergic markers for a 

longer period of time. AF5 cells were maintained in differentiating media for 21 

days with half-media exchanges twice a week. 

 Limited availability of reliable GABAergic cell lines necessitated an 

alternative approach to study the induction of TH, and underlying mechanisms, in 

vitro. Therefore, primary neurons were isolated from the midbrain of postnatal 

mice. When isolated from mice between postnatal days 1 and 7, the neuronal 

populations isolated retain the ability to survive in culture and respond to 

conditions chosen, in this case the presence or absence of dopamine 
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replacement therapy. Brains were isolated from wild-type mice pups and 

midbrain containing the substantia nigra carefully isolated. Care was taken to 

remove any meninges surrounding brain tissue. Neural tissue was dissociated 

using a kit specifically designed for the isolation of neurons from postnatal mice 

(neural tissue dissociation kit – postnatal neurons, Miltenyi Biotec, San Diego, 

CA ). Neurons were made into single cell suspensions and plated on poly-D-

lysine coated flasks at a concentration of 1 x 106 cells/tissue flask in plating 

media: MEM, 10% filtered, head inactivated FBS, 0.45% glucose (20% w.v.), 100 

mM (1x) sodium pyruvate, 200 mM (1x) glutamine, 1x penicillin/streptomycin 

(Beaudoin et al., 2012). Cells were incubated at 37o C for 2 - 6 hours until cells 

were attached to flask at which time media was replaced with maintenance 

media: Neuralbasal media supplemented with B-27 serum-free supplement, 200 

mM (1x) glutamine, 1x penicillin/streptomycin. Cells were maintained at 37o C 

with half-media exchanges twice a week. Due to the heterogeneous population of 

neurons in the midbrain, steps were taken to deplete the number of non-

GABAergic cells in primary culture. MPP+, the active metabolite of the neurotoxin 

MPTP, is routinely added to culture resulting in the selective killing of 

dopaminergic cells (Notter et al., 1988; Radad et al., 2015). Five µM MPP+ 

(Sigma, St. Louis, MO) was added to primary neuron cultures 24 hours after cells 

were switched to maintenance media. MPP+ was maintained in media for 48 

hours.  

 Various concentrations of nicotine (positive control to induce TH 

expression), L-DOPA, and BL-1023, and pro-inflammatory cocktails were added 
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to AF5 or primary neuronal cultures for predefined periods of time prior to RNA 

isolation and quantitative PCR analysis of DNA expression for genes of interest 

(Table 4). The pro-inflammatory cytokines IFN-γ (2 ng/mL), IL-23 (10 ng/mL), and 

IL-1β (5 ng/mL) were added to cultures to address the hypothesis that the 

inflammatory response following MPTP intoxication plays a role in upregulation of 

TH expression in vivo. Preliminary tests showed an unusual effect of L-DOPA 

and BL-1023 on the culture media in that both compounds caused a significant 

color change to the culture media after 24 hours, even at very low 

concentrations. Therefore, experiments using L-DOPA or BL-1023 in culture 

were kept to time points less than 24 hours. At end-points stated in Table 3, cells 

were removed from flasks and RNA isolated to be used in quantitative PCR 

reactions as described in the following section.  

Quantitative PCR 

Cells were kept in differentiating media for 4 or 21 hours following which the cells 

were detached and lysed with 0.05% trypsin and RNA extracted using RNeasy 

mini kit (Qiagen) per manufacture’s protocol. RNA concentration was 

approximated using NanoDrop 1000 (Thermo Scientific) and reverse transcribed 

into cDNA using RT First Strand kit (Qiagen). cDNA was used in quantitative 

PCR reactions to look for the expression of astrocytic markers [glial fibrillary 

acidic protein (GFAP)], GABAergic markers (GAD67, Pitx2), dopaminergic 

markers (TH, Pitx3), and β-actin as a housekeeping gene. Primers for each 

marker were custom designed (Table 4) using Invitrogen Primer Design and 
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reconstituted in water to a concentration of 20 nM, aliquoted, and stored at -20o 

C. 

SYBR GreenSybr green (Qiagen, Valencia, CA) was used as a detection 

method to quantify the amount of cDNA present in AF5 cells and primary 

neurons cultured under various conditions. SYBR Green is used as a nucleic 

acid stain that binds in the minor groove of double-stranded DNA and emits a 

signal at 520 nm. The resulting signal intensity is measured with a real-time 

thermocycler (Eppendorf Mastercycler ep realplex) and an increase in signal 

correlates with an increase in mRNA concentration in the sample. cDNA samples 

were mixed with RT2 SYBR Green qPCR master mix and the appropriate primer 

pair (Table 4). Eppendorf Mastercycler ep realplex with ROX filter set was used 

to run samples in triplicate with the following cycle conditions: 95o C, 10 minutes; 

40 cycles of (95o C, 15 seconds; 60o C, 60 seconds); melting curve cycle. The 

number of cycles required to produce a Sybr green signal above threshold (delta-

CT values) of sample triplicates were averaged and samples that did not produce 

a signal during melting curve analysis excluded.   

Statistical analysis 

Tests were performed using Statistica (StatSoft, Inc. Tulsa, OK) or Prism 

GraphPad and data expressed as mean ± standard error of the mean (SEM). 

Statistical significance was evaluated by one-way ANOVA followed by post-hoc 

comparisons using Fisher’s LSD or Tukey’s correction.  

RESULTS 
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TH-GFP mice are not more susceptible to MPTP-intoxication 

Preliminary studies were performed to determine the practicality of using TH-

GFP mice in further MPTP studies. Because homozygosity of the GFP gene is 

lethal when under control of the chicken β-actin promoter, I verified overlapping 

expression of TH and GAD67 by comparing unstained TH-GFP mice (Figure 1A) 

to wild-type (Figure 1B) and TH-GFP (Figure 1C) mice with anti-TH antibodies 

conjugated with Texas red. A summary of the expected immunohistochemical 

and immunofluorescent stained results of wild-type and TH-GFP mice is in Table 

2. Next, I explored the possibility that TH+GFP+ neurons may be more 

susceptible to MPTP-induced death. To address that possibility, we compared 

the number of surviving dopaminergic neurons in wild-type and TH-GFP mice 

treated with MPTP or PBS. To ensure that larger doses of neurotoxin would not 

over-reach a GFP-toxic threshold, we administered small, medium, and large 

doses of MPTP (10, 14, or 18 mg/kg) or PBS (10 mL/kg). Mice were treated with 

4 s.c. injections of either PBS or MPTP at 10, 14, or 18 mg/kg in 10 mL/kg PBS. 

Seven days following MPTP intoxication, mice were sacrificed, brains removed, 

embedded in OCT, and cut into 30 μm serial sections through the substantia 

nigra. Serial sections were immunostained with primary antibodies (anti-TH, anti-

GAD67, or anti-MAP2) and probed with the appropriate biotinylated or 

fluorochrome-conjugated anti-IgG.  

No significant differences were detected in numbers of dopaminergic 

neurons between wild-type and TH-GFP mice in the PBS control group using 

immunohistochemical (Figure 2A) or immunofluorescent (Figure 2B) analysis, 
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suggesting that GFP expression is an accurate method to quantify surviving 

dopaminergic neurons. Moreover, linear regression showed that both strains 

responded similarly to MPTP dose in both the immunohistochemical and 

immunofluorescent stained tissue groups (immunohistochemical: wild-type r2 = 

0.90, p = 0.014 and TH-GFP r2 = 0.939, p = 0.007; immunofluorescent: wild-type 

r2 = 0.959, p = 0.021 and TH-GFP, r2 = 0.996, p = 0.002). Loss of dopaminergic 

neurons due to MPTP dose between wild-type or TH-GFP strains were not 

different (immunohistochemical p = 0.89; immunofluorescent p = 0.83), indicating 

that TH+GFP+ neurons are no more sensitive to MPTP than those of wild-type 

animals. No significant differences were seen in the number of MAP2+ (Figure 

2C) or GAD67+ (Figure 2D) neurons between strains of mice within treatment 

groups. 

To verify all GFP positive neurons were also positive for TH expression, 

and that all TH expressing neurons expressed GFP, we utilized stereological 

analysis to first assess the numbers of TH+, GFP+, and TH+GFP+ neurons in 

TH-GFP mice. No significant differences in the total number of TH+ or GFP+ 

neurons were detected at any MPTP dose, suggesting all GFP+ neurons are also 

TH expressing and all TH+ neurons express GFP (Figure 3A). To further verify 

that GFP expression is restricted to dopaminergic neurons, the total number of 

GAD67+ neurons were quantified and compared to the number of neurons that 

were positive for GAD67 expression and negative for GFP expression 

(GAD67+GFP-). Numbers of neurons expressing both GAD67 and GFP 

(GAD67+GFP+) averaged less than 1% of the total number of GAD67+ and 
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GFP+ neuron population (data not shown). No significant differences were seen 

between the number of GAD67+GFP- neurons and total GFP+ neurons (Figure 

3B). If GFP expression was not specific to dopaminergic neurons, we would 

expect to see differences between the numbers of total GAD67+ neurons and 

those that are GAD67+GFP-. These results show that GFP expression is 

restricted to dopaminergic neurons at day 7 post-MPTP. 

Number of MAP2+ neurons compared to TH+ plus GAD67+. 

MAP2 is a non-specific neuronal marker expressed by all neurons within the 

region being evaluated, in this case the substantia nigra. MAP2 is commonly 

used to ensure the reduction in dopaminergic neurons following MPTP 

intoxication is due to neuronal death and not merely a temporary loss of TH 

expression. Since MAP2 is expressed by all neurons, the number of MAP2+ 

neurons determined by stereological analysis should very closely match those 

numbers of TH+ neurons added to the number of GAD67+ neurons. Consistent 

differences in the number of MAP2+ neurons compared to population estimates 

of TH+ and GAD67+ neurons were summed. (Figure 4A, B). This was 

hypothesized to be due to some neurons expressing both TH and GAD67, and 

thus being included in both populations of neuron counts. This is in contrast to 

MAP2 expression when TH+ and GAD67+ neurons would be included only once 

in population estimates. The differences in neuron counts were especially 

different with higher doses of MPTP intoxication indicating neuronal assault 

causes changes to neuronal profiles not seen in PBS animals.  
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Dual immunofluorescent staining reveals co-localization of TH and GAD67 in 

neurons of the substantia nigra 

To look for induction of TH expression by GABAergic neurons following MPTP 

assault, we first assessed the extent of changes in TH+GAD67+ neuron numbers 

in the substantia nigra through two-color immunofluorescent staining. Tissues 

were isolated from MPTP-intoxicated mice sacrificed after 21 – 28 days post-

MPTP (14 or 21 days of dopamine replacement therapy injections). Stereological 

analysis showed a 7.8-fold increase in the number of TH+GAD67+ neurons 

following MPTP intoxication and L-DOPA administration compared to animals 

given only PBS. A 5.6-fold increase was seen in animals following MPTP assault 

and BL-1023 administration (Figure 5). No statistically significant change in the 

number of TH+GAD67+ neurons was seen in animals treated with MPTP only. 

Moreover, the increase in TH+GAD67+ neurons were directly correlated with the 

loss of neurons that express only GAD67 (TH-GAD67+) (r = 0.896, p = 0.0018) 

(data not shown). This suggests that after MPTP intoxication, TH expression is 

induced in surviving GABAergic neurons as a compensatory mechanism for 

dopaminergic neuronal loss resulting in a phenotypic shift of GABAergic neurons. 

This led to question whether the increase in TH by GABAergic neurons was a 

consequence of drug treatment alone or a combination of MPTP-induced lesion 

and drug treatment. Additionally, this led us to further characterize the phenotypic 

profile of substantia nigra neurons from drug-treated animals to identify the 

source of increased TH+ neurons. 
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Increase of TH+ neurons is due to a phenotypic shift of GABAergic neurons and 

not neurogenesis 

Having demonstrated TH+ neurons in the substantia nigra of TH-GFP mice are 

no more susceptible to MPTP-induced death, we next sought to evaluate the 

number of TH+GAD67+ neurons 28 days post-MPTP using TH-GFP animals as 

well as address the alternative hypothesis that the increase in TH+ neurons are a 

result of neurogenesis using BrdU. The experimental timeline is provided in 

Figure 6. Tissues from TH-GFP animals were stained with anti-GAD67 followed 

by TR-conjugated secondary antibody. Expression of GFP was used to identify 

TH+ neurons. Representative images showing TH+GAD67- (Figure 7A), TH-

GAD67+ (Figure 7B), and TH+GAD67+ (figure 7C) neurons demonstrate the co-

localization of TH and GAD67 results in yellow staining. Co-expression of TH-

driven GFP and GAD67 was detectable in neuronal populations within the 

substantia nigra following MPTP intoxication alone, drug treatment alone, or 

MPTP intoxication and drug treatment (Figure 8A, B). In contrast to the low level 

of neurons expressing TH and GAD67 in PBS-treated, treatment with L-DOPA, 

or BL-1023 alone, or MPTP + PBS increased TH+GAD67+ neurons by 3.2-, 3.8-, 

and 2.6-fold compared to PBS controls. Interestingly, MPTP + L-DOPA or MPTP 

+ BL-1023 treatment increased TH+GAD67+ neuron numbers 5.0- and 5.4-fold 

above PBS control levels and 1.9- and 2.1-fold above MPTP controls indicating 

an additive effect of neuronal insult and dopamine replacement therapy.  

 Incorporation of the thymidine analog, BrdU, is considered the gold 

standard for detection of neurogenesis in the adult mammalian brain (Arias-



48 
 

Carrion et al., 2009) which is normally limited to specific areas of the adult 

mammalian brain, specifically the hippocampus, olfactory bulb, and epithelium 

(Altman and Das, 1965; Altman, 1969). Newly synthesized DNA will incorporate 

BrdU which can be detected with an anti-BrdU antibody. Past studies of 

neuroegenesis within the substantia nigra were limited to short term 

administration of BrdU, thus due to the short in vivo half-life of BrdU in circulation, 

approximately 2 hours (Deng et al., 2010), the possibility existed that using those 

regimens, nigral-associated neurogenesis could have been underevaluated; 

particularly should neurogenic differentiation be slower than BrdU is cleared. To 

preclude that possibility, BrdU was administered in the drinking water of animals 

to detect any neurogenic activity occurring over the course of the study.  

To serve as a positive control that both BrdU administration and the 

staining protocol were appropriate for the experiment, sections containing the 

olfactory bulb (Figure 9A) and substantia nigra (Figure 9B) were stained and 

analyzed. Nuclear BrdU+ cells were found the olfactory bulb indicating the 

methodology was capable of detecting neurons derived from neurogenesis and 

thus validating the results obtained from the substantia nigra. MPTP alone or 

MPTP followed by treatment with L-DOPA or BL-1023 for 21 days did not 

significantly increase the total number of nuclear BrdU+ neurons or TH+ nuclear 

BrdU+ neurons within the substantia nigra (Figure 10). Interestingly, mice that 

exhibited the greater number of and increase in TH+GAD67+ neurons (Figure 7) 

had fewer nuclear BrdU+ neurons (Figure 10), although not at significant levels. 

Initial analysis of tissue sections stained with BrdU revealed cells that appeared 
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to be positive for BrdU staining. However, upon closer evaluation of these cells, 

BrdU incorporation was only in the cytoplasmic area (Figure 11) and is therefore 

indicative of a reparative mechanism instead of a neurogenic one (Cooper-Kuhn 

and Kuhn, 2002). Therefore, data presented here represents stereological results 

only from cells that had BrdU expression in the nuclear region. This suggests that 

the phenotypic shift of GABAergic neurons to express TH in response to L-DOPA 

or BL-1023, suppresses the normally low levels of BrdU incorporation within the 

substantia nigra. 

In vitro changes of TH mRNA and protein in response to drug 

In an attempt to explain the mechanism responsible for TH upregulation by 

GABAergic neurons two in vitro approaches were used; a transformed cell line 

(AF5) and primary neuronal cultures. Quantitative PCR analysis of mRNA from 

cells was measured for expression of GFAP, GAD67, Pitx2, Pitx3, TH, and β-

actin. Primers were designed using InVitrogen Primer Design and listed in Table 

4. Despite using multiple culture conditions (Table 3), neither in vitro method 

utilized resulted increased measurable TH expression. The lack of positive data 

points to the likelihood that upregulation of TH by GABAergic neurons is a highly 

regulated process that only occurs under a set of very specific and extraordinary 

conditions. If GABAergic neurons easily express TH, the effects could be 

detrimental to the homeostatic environment of the CNS and therefore 

upregulation of TH may be seen as a “last resort” to restore the environmental 

milieu to normal.  
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Post-translations phosphorylation is increased following MPTP and drug 

treatment 

To evaluate the changes in TH phosphorylation following dopaminergic insult, 

PBS and MPTP-intoxicated mice were administered PBS, L-DOPA or BL-1023, 

for 21 days post-MPTP and mice were sacrificed on day 28 post MPTP. Ventral 

midbrain containing the substantia nigra and striatum was isolated, 

homogenized, and protein extracted. Western blot analysis was performed for 

quantification of TH, phospho-TH (Ser31), phospho-TH (Ser40), and β-actin. 

Protein levels were normalized to β-actin and fold changes relative to PBS/PBS 

controls calculated (fold change ± SEM for n=4 mice/group).  

While no significant increases were seen in Ser40 phosphorylation with 

MPTP and drug treatment (data not shown), phosphorylation of Ser31 was 

increased compared to PBS controls in MPTP intoxicated animals who received 

L-DOPA or BL-1023 daily for 21 day by 2.47- and 7.89-fold respectively (Figure 

12A) within the substantia nigra. Drug treatment in the absence of dopaminergic 

insult did not yield any significant increases in phosphorylation of TH, suggesting 

initial insult to neurons, or decreased levels of endogenous dopamine, is 

necessary to induce the phosphorylation of TH Ser31 within the substantia nigra. 

Analysis of protein levels within the striatum showed no significant increase in the 

level of phosphorylated Ser31 (Figure 12B). Unlike the stereological results, 

Western blot analysis for TH did not show any significant increases between the 

drug or vehicle treated groups within the substantia nigra (Figure 13A) or striatum 
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(Figure 13B), presumably is due to analysis of whole brain lysate versus 

evaluation of TH on a per-cell basis. 

DISCUSSION 

Herein using dual immunofluorescent staining and TH-GFP transgenic mice, we 

showed that surviving GABAergic neurons within the substantia nigra undergo a 

phenotypic shift and begin expressing TH following neuronal assault and/or 

dopamine replacement therapy. To address the possibility that the increase in 

TH+ cells was due to an increase in neurogenic activity, the thymidine analogue 

BrdU was given over the course of 14 days. Results demonstrated a lack of 

BrdU+ neurons in the substantia nigra of animals and thus ruled out the 

possibility of newly formed TH+ neurons. Furthermore, the majority of BrdU 

incorporation was detected within the cytoplasm of cells rather than in nuclear 

DNA suggesting either a DNA reparative mechanism rather than neurogenesis or 

merely uptake and retention of BrdU in the cytoplasm (Arias-Carrion et al., 2009). 

Interestingly, the combination of MPTP followed by dopamine replacement 

therapy in the form of either L-DOPA or BL-1023 after lesion development yields 

an additive increase in numbers of GABAergic neurons that upregulate TH when 

compared to both PBS and MPTP controls. These findings are the first of their 

nature to successfully demonstrate that dopamine replacement therapy can have 

an effect on surviving GABAergic neurons within the substantia nigra of adult 

mice and provide evidence as to a putative compensatory or reparative 

mechanism to increase dopamine production in a dopamine-depleted 

environment. 
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Within the striatum, dopamine concentrations appear to regulate the 

numerical density of TH+ neurons in a dose-dependent manner. α-Methyl-p-

tyrosine, a TH inhibitor, given to animals at post-natal day 4 significantly reduces 

the concentration of dopamine within the striatum, but results in an overall 

increase in the number of TH+ neurons (Busceti et al., 2012). It was shown that 

the TH+ neurons within the striatum did not incorporate BrdU and were therefore 

not a result of neurogenesis. While not specifically addressed by Busceti and 

colleagues, the increase in TH+ neurons following α-methyl-p-tyrosine 

administration, and subsequent dopamine decrease, was proposed to be a result 

of unopposed trophic factors that have yet to be elucidated. However, the finding 

that TH+ neurons in these studies were also GAD+ implicate GABAergic neurons 

as a potential source for the increased number of TH+ neurons in these studies. 

Data provided herein supports the hypothesis that dopamine negatively regulates 

the number of TH+ neurons and a reduction in endogenous dopamine results in 

an increased survival of TH+GAD67+ neurons normally eliminated by 

extracellular dopamine (Busceti et al., 2012). Separate studies examining the 

number of TH+ neurons within the striatum showed clear discrepancies between 

the effects of dopamine replacement therapy in the form of L-DOPA; one set 

demonstrating decreases in the number of TH+ striatal neurons (Lloyd et al., 

1975; Huot et al., 2008) and another set showing an overall increase in striatal 

TH+ neurons (Lopez-Real et al., 2003; Jollivet et al., 2004; Tande et al., 2006). 

Ultimately these contradictory findings may be explained by the fact that the 

studies utilized very different doses of L-DOPA and the effects of L-DOPA effects 
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may be highly dose-dependent. Above a certain level, as with the studies 

performed by Lopez-Real and Jollivet, dopamine is proposed to act in 

conjunction with growth factors to up-regulate TH expressing neurons within the 

striatum (Huot and Parent, 2007). At lower levels, dopamine is suggested to 

control TH expression by means of conventional feedback mechanisms. These 

findings allude to the hypothesis that local dopamine concentrations regulate the 

numerical density of dopaminergic neurons in the substantia nigra and/or the 

relative density of TH termini within the striatum.  

In the absence of dopamine, due to PD progression or neurotoxin induced 

neuronal death, the increase in TH+ neurons is feasibly due to a de-repression of 

TH expression and a phenotypic shift of surviving GABAergic neurons so that 

they may act as a local source of dopamine-secreting cells. As such they would 

be part of a compensatory mechanism in response to dopaminergic neuronal 

death (Kosaka et al., 1991; Jollivet et al., 2004; Abe et al., 2010; Busceti et al., 

2012). Our studies suggest that dopamine replacement therapy, given daily for 

21 days, elevates dopamine levels beyond the inhibitory threshold for TH 

expression. It is interesting however, that dopamine replacement therapy can 

increase the number of TH+GAD67+ neurons with and without initial 

dopaminergic neuronal assault, but an increase in Ser31 phosphorylation only 

occurs in the presence of dopaminergic insult. This finding suggests that either a 

threshold level of dopamine depletion must be reached before changes in 

phosphorylation are detectable or, alternatively, increased levels of pro-

inflammatory cytokines in the MPTP-intoxicated animals (Koprich et al., 2008) 
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further increase phosphorylation of TH (Nakashima et al., 2013b). This also 

suggests that additional mechanisms, as yet unknown, are playing a role in the 

induction of TH expression by GABAergic neurons. These data also support the 

hypothesis that TH expression is regulated by multiple mechanisms which are 

highly dependent on the surrounding environmental milieu. Our results indicate 

that at the dosage given in our study, dopamine was present at concentrations 

that affected multiple TH regulatory mechanisms; one mechanism that ultimately 

led to increase expression of TH by GABAergic neurons and one resulting in 

increased phosphorylation of Ser31 within the substantia nigra. Whether these 

mechanisms represent separate pathways or are intricately associated has yet to 

be determined. 

Another regulatory mechanism is concerned with the continuous presence 

of transcription factors that are needed to maintain cellular phenotype. The loss 

or expression of one or more specific transcription factor may influence the loss 

or activation of a critical cell type necessary for the production of dopamine or 

dopaminergic function. It may be worth exploring the many different TF’s needed 

to maintain/trigger a dopaminergic phenotype and evaluate whether they are 

upregulated in GABAergic neurons. Another method of regulation may center 

around the different neuronal firing patterns associated with dopaminergic and 

GABAergic neurons and how the induction of TH expression and production of 

dopamine by GABAergic neurons may influence not only the firing patterns of 

those neurons, but also on the surrounding surviving dopaminergic neurons, 

Further characterization of the TH+GAD67+ neurons would be informative as to 
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the possibility of this phenotype aligning with any of the subtype(s) of GABAergic 

interneurons and whether those shift phenotypes in response to MPTP and/or 

dopamine replacement therapy. Because the interneuron subtypes are so distinct 

in their transcription factors and topographical organization, and are rather 

numerous, it is likely that not all subtypes may be capable of expressing TH; 

however the elucidation of specific TH-producing phenotypic subsets have yet to 

be initiated.  

Several reports have alluded to the fact that GABAergic research is 

leagues behind research into other neuronal populations within the midbrain. 

This underscores the minimum level of effort afforded to the development of a 

stable GABAergic cell line. One of the few GABAergic cell lines available, AF5 

cells, is an immortalized rat CNS progenitor cell line that is able to assume 

differentiated states with neuronal properties (Sanchez et al., 2006). While AF5 

cells can be induced into a GABAergic lineage, they did not prove to be 

beneficial in regards to evaluating the upregulation of TH mRNA by GABAergic 

neuron in vitro. Because of the heterogenetic nature of GABAergic neurons in the 

CNS, it is plausible that AF5 cells may lack essential factors that GABAergic 

neurons in the substantia nigra possess. However, still unknown are the factor(s) 

that induce GABAergic neurons to undergo this phenotypic shift in vivo in 

response to dopamine depletion and/or dopamine replacement therapy. Data 

suggesting that even subtle differences between GABAergic neurons in distinct 

brain regions have profound effects on neuron function (Tepper, 2010; Lahti et 
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al., 2013; Achim et al., 2014; Morales and Root, 2014), warrants further research 

into GABAergic neuronal phenotype, function, and plasticity.  

Extensive data suggests that post-translation phosphorylation of serine 

residues has a large effect on TH expression and activity (Vrana et al., 1981; 

Vrana and Roskoski, 1983; Gahn and Roskoski, 1995; Kumer and Vrana, 1996; 

Wallen and Perlmann, 2003; Bobrovskaya et al., 2007); however the kinase(s) 

responsible in our model remain unknown. In vitro, more than 7 protein kinase 

systems have been identified that can modulate TH phosphorylation (Kumer and 

Vrana, 1996). Not only does phosphorylation of serine residues within TH occur 

by multiple mechanisms, but reports show these mechanisms are activated 

under a number of different conditions (Lazar et al., 1981; Kumar et al., 2003; 

Bobrovskaya et al., 2007; Ong et al., 2012). This helps to explain our findings 

that suggest phosphorylation of TH is differently regulated within the substantia 

nigra and striatum in the MPTP model of PD. Specifically, our data indicates a 

compensatory mechanism to increase phosphorylation of Ser31 is present in the 

substantia nigra, but not the striatum; results that are consistent with other 

reports (Salvatore, 2014). Alternatively, prior to detectable changes to the 

phosphorylation status of serine residues in TH, a threshold level of TH loss 

might be necessary and our MPTP regimen may not have been sufficient to 

attain that level of loss. A clearer picture as to the level of kinase expression and 

activity within the midbrain and striatum following MPTP or dopamine 

replacement therapy, and whether it corresponds to an increase in dopamine 

concentrations, would provide a better understanding as to the role of 
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phosphorylated TH behind the mechanism of TH expression by GABAergic 

neurons.  

Due to multiple reports indicating that midbrain GABAergic neurons are an 

exceptionally heterogeneous subset of neurons (Floran et al., 1990; 

Soghomonian et al., 1992; Nakatani et al., 2007; Tepper, 2010; Achim et al., 

2012; Vasudevan et al., 2012; Lahti et al., 2013; Achim et al., 2014; Li et al., 

2014), I focused my efforts on isolating neurons from only this specific region to 

have the greatest chance of replicating in vivo results in vitro. Neurons were 

isolated from the midbrain from postnatal tissues and depleted of dopaminergic 

neurons with MPP+. However, this approach yielded similar results to those 

obtained with AF5 cells in that upregulation of TH mRNA was not seen ex vivo. 

Multiple concentrations of nicotine were used as positive controls due to the 

known ability of nicotine to modulate TH in vitro (Radcliffe et al., 2009; Ferrari et 

al., 2011; Suen et al., 2013). This likely may be due to a very unique phenotype 

or idiosyncratic characteristic that midbrain GABAergic neurons possess as well 

specific cues derived from the surrounding environmental milieu. The possibility 

exists that to induce TH expression by GABAergic neurons requires either one or 

more factors that include 1) a pro-inflammatory environment either due to MPTP-

induced cell death or T cell infiltration; 2) the presence of actively dying or dead 

dopaminergic neurons; or 3) a reduction in the concentration of endogenous 

dopamine in the area. Without reproducing one or more of these factors, 

induction of TH by GABAergic neurons in vitro may be difficult.  
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Taken together, we believe these findings serve to demonstrate the ability 

of dopamine replacement therapy to induce a phenotypic shift of surviving 

neurons in the MPTP model of PD. Additionally, we provide evidence that 

dopamine replacement therapy acts through a protein kinase pathway to 

increase the phosphorylation of Ser31 that corresponds to a significant increase 

in TH+ neurons within the substantia nigra. Ultimately, these findings will help 

improve PD drug development and advance drug design for the treatment of PD 

by providing novel targets to which new lines therapeutic strategies can focus. 
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Table 1. TH-GFP genotyping primers. 

 

  

Primer name Primer sequence 5’ – 3’ Product size (b.p.) 

Wild-type (forward) CAAATGTTGCTTGTCTGGTG 
200 b.p. 

Wild-type (reverse) GTCAGTCGAGTGCACAGTTT 

GFP (forward) AAGTTCATCTGCACCACCG 
475 b.p. 

GFP (reverse) TGCTCAGGTAGTGGTTGTCG 
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Table 2. Expected immunohistochemical and immunofluorescent staining results 

of wild-type and TH-GFP mice. 

 WT TH-GFP 

 Dopaminergic GABAergic Dopaminergic GABAergic 

TH IHC Brown Blue Brown Blue 

TH TR Red None Yellow None 

GAD67 TR None Red Green Red 

MAP2 TR Red Red Yellow Red 
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Table 3. Culture conditions to study induction of TH expression by AF5 cells in 

vitro. 

  

Media additive Concentration 
Duration of 

treatment (hours) 

Nicotine 
1, 10, 100 uM 24 hrs 

10, 100 uM 48 hrs 

L-DOPA 

10, 100 uM 4 hrs 

10, 100 uM 12 hrs 

10, 50, 100 uM 24 hrs 

BL-1023 

10 uM 4 hrs 

10 uM 12 hrs 

10 uM 24 hrs 

Pro-inflammatory 
cytokines  
(IFNγ, IL-23, IL-1β) 

2 ng/mL, 10 ng/mL, 5 ng/mL 4 hrs 

2 ng/mL, 10 ng/mL, 5 ng/mL 12 hrs 

2 ng/mL, 10 ng/mL, 5 ng/mL 24 hrs 
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Table 4. Quantitative PCR primer sequences. 

Primer Name Primer Sequence (5’ – 3’) 

GFAP (forward) TCAACGTTAAGCTAGCCCTGGACA 

GFAP (reverse) TCTGTACAGGAATGGTGATGCGGT 

GAD67 (forward) GCCGGGGCTGCGCTTGGCTTTG 

GAD67 (reverse) TGGGCGGTGCTTCCGGGACATGAGC 

Pitx2 (forward) CAAATGGAGAAAGCGGGAGC 

Pitx2 (reverse) ATGGATGAGATGGAGTTGGGCG 

TH (forward) TTGAAAAACTCTCCACGGTGTACT 

TH (reverse) TACGGGTCAAACTTCACAGAGAAT 

Pitx3 (forward) CTCTCTGAAGAAGAAGCAGCG 

Pitx3 (reverse) CCGAGGGCACCATGGAGGCAGC 

β-actin (forward) TGAGAGGGAAATCGTGCGTGACAT 

β-actin (reverse) ACCGCTCGTTGCCAATAGTGATGA 
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Figure 1. Representative image of wild-type and TH-GFP tissues stained with 
anti-TH and Texas red-conjugated IgG. 
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Figure 1. Staining outcome of the substantia nigra in wild-type versus TH-GFP 

mice. (A) In the absence of staining, identification of dopaminergic neurons is still 

plausible when using the TH-GFP mouse. Because GFP is under control of the 

TH promoter in these mice, expression of GFP is an indicator of a dopaminergic 

neuron. (B) In order to identify dopaminergic neurons in wild-type mice the 

tissues must first be incubated in a primary antibody specific for TH followed by 

the appropriate secondary antibody conjugated with a fluorescent fluorochrome 

(TR). To ensure GFP expressing neurons were also immunoreactive for TH, 

tissues from TH-GFP mice were incubated with anti-TH antibodies followed by 

TR- conjugated secondary IgG. The resulting dopaminergic neurons in the 

substantia nigra of TH-GFP mice were yellow due to the co-expression of TR and 

GFP. All tissue were mounted on slides and coverslipped with DAPI containing 

mounting medium to identify nuclei. All images acquired using a 4x objective and 

Nikon 90i microscope equipped with a monochrome camera and 3 filter blocks. 
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Figure 2. Dopaminergic neurons expressing GFP are not more susceptible to 

MPTP   
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Figure 2. Dopaminergic neurons expressing GFP are not more susceptible to 

MPTP. (A) Quantification of TH+ neurons using immunohistochemical analysis 

and DAB color generation in wild-type and TH-GFP mice 7 days post PBS or 

MPTP (10, 14, or 18 mg/kg). (B) Quantification of TH+ neurons using 

immunofluorescent analysis in wild-type and TH-GFP mice 7 days post PBS or 

MPTP (10, 14, or 18 mg/kg). (C) Quantification of MAP2+ neurons in wild-type 

and TH-GFP mice 7 days post PBS or MPTP (10, 14, or 18 mg/kg). (D) 

Quantification of GAD67+ neurons in wild-type and TH-GFP mice 7 days post 

PBS or MPTP (10, 14, or 18 mg/kg). Linear regression showed that both strains 

responded similarly to MPTP dose in both the immunohistochemical and 

immunofluorescent stained tissue groups: (A) wild-type r2 = 0.90, p = 0.014 and 

TH-GFP r2 = 0.939, p = 0.007; (B) wild-type r2 = 0.959, p = 0.021 and TH-GFP, r2 

= 0.996, p = 0.002. No significant differences were seen in the number of (C) 

MAP2+ or (D) GAD67+ neurons between strains of mice within treatment groups 

Data represented as mean ± SEM for n = 5 – 7 animals. 
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Figure 3. GFP expression is restricted to TH expressing dopaminergic neurons.   
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Figure 3. GFP expression is restricted to TH expressing dopaminergic neurons. 

30 μm sections from the midbrain of TH-GFP mice intoxicated with MPTP (10, 14, 

or 18 mg/kg) or PBS controls were stained with anti-GAD67 and TR-conjugated 

IgG. Sections were imaged using a Nikon 90i microscope equipped with a 

monochrome camera and 3 fluorescent filter cubes. Images were taken at 40x 

and neurons classified as (A) TH+ or GFP+ (green); (B) GAD67+/GFP- (red) and 

GAD67+ (red). (A) No significant differences in the total number of TH+ or GFP+ 

neurons were detected at any MPTP dose. (B) No significant differences were 

seen between the number of GAD67+GFP- neurons and total GFP+ neurons. 

Data presented as mean ± SEM for n = 5 – 9 animals. 
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Figure 4. MAP2+ neuron populations are consistently less than the populations of 

TH+ + GAD67+ neurons.   
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Figure 4. MAP2+ neuron populations are consistently less than the populations of 

TH+ + GAD67+ neurons. Tissue sections from mice intoxicated with increasing 

does of MPTP (10, 14, 18 mg/kg) or PBS were stained with anti-TH, anti-GAD67, 

and anti-MAP2 antibodies followed by TR-conjugated IgG. Sections were imaged 

using a Nikon 90i microscope equipped with a monochrome camera and 3 

fluorescent filter cubes. Images were taken with separate fluorescent filter cubes 

and merged into one image with a 40x objective. (A) Neurons were quantified as 

TH+, GAD67+, MAP2+ based upon the expression criteria summarized in Table 

2. Mean number of neurons were determined for 10-16 mice per group. 

Significant differences (p ≤ 0.05) in neuron numbers from mice treated with 

graded doses of MPTP compared to non-intoxicated controls (0 mg/kg) were 

denoted for each neuronal phenotype expressing  compared to; aMAP2; bTH; or cTH 

+ GAD67. Notably, no significant differences were noted in neurons expressing 

only GAD67. (B) In addition to the number of TH+, GAD67+, and MAP2+ 

neurons, the numbers of TH+ and GAD67+ neurons were summed and the 

means ± SEM determined for 10 – 16 animals per group. The numbers of 

MAP2+ neurons and the sum of the TH+ and GAD67+ neurons (TH + GAD67) 

were compared at each dose level without discernible significant differences. 

Significant differences were detected in the mean neuron number in mice treated 

with each dose of MPTP: p ≤ 0.05 compared to non-intoxicated controls  (0 mg/kg 

MPTP) within aMAP2/PBS or bTH + GAD67 neuronal phenotypes./PBS.  
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Figure 5. Dopamine replacement therapy following MPTP causes significant fold 

change in the number of TH by GABAergic neurons. 
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Figure 5. Dopamine replacement therapy following MPTP causes significant fold 

change in the number of TH by GABAergic neurons. Sections were imaged using 

a Nikon 90i microscope equipped with a monochrome camera and 3 fluorescent 

filter cubes. Images were taken with separate fluorescent filter cubes and merged 

into one image with a 40x objective. Fold changes of TH+GAD67- or 

TH+GAD67+ neurons within the substantia nigra of drug treated animals. Mean ± 

SEM determined for 5-7 mice per group and P ≤ 0.05 compared to neuron 

numbers from controls treated with aPBS at day 0 and days 7-34 (PBS) or 

bMPTP on day 0 and PBS on days 7-34 (MPTP/PBS).  
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Figure 6. Experimental timeline to assess upregulation of TH expression by GABAergic neurons. The ability of 

MPTP-intoxication and/or dopamine replacement therapy was assessed using the MPTP mouse model of PD. On 

day 0 mice were intoxicated with 4 doses of MPTP and 7 days later daily i.p. injections of dopamine replacement 

therapy began (L-DOPA or BL-1023) or PBS. Concurrently, BrdU was administered via the drinking water for the 

first 14 days of treatment. Dopamine replacement therapy continued until day 28 post-MPTP (21 days of injections) 

at which time mice were sacrificed and numbers of TH+ and GAD67+ neurons quantified using stereological 

analysis. 
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Figure 7. TH and GAD67 co-localize in neurons.  
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Figure 7. TH and GAD67 co-localize in neurons of the midbrain of mice. 

Representative image of (A) TH+ dopaminergic neurons (green) (B) GAD67+ 

(red) and (C) TH+GAD67+ neurons. 30 µm sections were collected through the 

midbrain of TH-GFP mice and stained with anti-GAD67 primary antibodies 

followed by a Texas red-conjugated secondary IgG. Nuclei were stained using 

DAPI containing mounting medium. Sections were imaged using a Nikon 90i 

microscope equipped with a monochrome camera and 3 fluorescent filter cubes. 

Images were taken with separate fluorescent filter cubes and merged into one 

image with a 40x objective.   
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Figure 8. Dopamine replacement therapy increases number of TH+ GABAergic 

neurons with and without neuronal lesion. 
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Figure 8. Dopamine replacement therapy increases number of TH+ GABAergic 

neurons with and without neuronal lesion. Sections were imaged using a Nikon 

90i microscope equipped with a monochrome camera and 3 fluorescent filter 

cubes. Images were taken with separate fluorescent filter cubes and merged into 

one image with a 40x objective. (A) Quantification of TH+GAD67- and 

TH+GAD67+ neurons from TH-GFP animals following 21 days of PBS, L-DOPA, 

or BL-1023 injection. Numbers of neurons were determined by stereological 

analysis by sampling approximately 20% of the neuronal population and 

achieving a coefficient of error (C.E.) of less than 0.10 (10%). Means ± SEM 

were determined for 7-8 mice per group, and P ≤ 0.05 compared to mice treated 

with aPBS on day 0 and days 7-27 (PBS/PBS) or bMPTP on day 0 and PBS on 

days 7-27 (MPTP/PBS) (B) Fold changes in TH+GAD67- and TH+GAD67+ 

neuron populations were calculated relative to PBS/PBS control animals. Means 

of fold changes ± SEM were calculated for 7-8 mice per group, and significant 

differences determined wherein P ≤ 0.05 from mice treated with  aPBS on days 0 

and 7-27 (PBS/PBS); bPBS on day 0 and L-DOPA on days 7-27 (PBS/L-DOPA); 

cPBS on day 0 and BL-1023 on days 7-27 (PBS/BL-1023); or  dMPTP on day 0 

and PBS on days 7-27(MPTP/PBS).  
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Figure 9. BrdU incorporation (red) was detected in the olfactory bulbs (A), but not 

the SN (B) of mice following 14 days of continuous BrdU administration.  
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Figure 9. BrdU incorporation was detected in the olfactory bulbs, but not the SN 

of mice following 14 days of continuous BrdU administration. To assess 

neurogenic activity of TH-GFP mice, BrdU was administered for 14 days in the 

drinking water at 1 mg/mL starting at day 7 post-MPTP (time of drug initiation). 

To avoid taste aversion, glucose was added to the water and mice were 

observed to ensure normal drinking. Tissues known to contain neurogenic cells, 

such as (A) olfactory bulbs served as positive controls for incorporation of BrdU 

and were compared to tissues sections containing the (B) substantia nigra. 

Sections, 30 μm thick, were stained with rat anti-BrdU primary antibodies 

following denaturation of DNA with 2M HCl for 15 minutes and TR-conjugated 

secondary IgG. Sections were imaged using a Nikon 90i microscope equipped 

with a monochrome camera and 3 fluorescent filter cubes. Images were taken 

with separate fluorescent filter cubes and merged into one image with a 4x 

objective. 
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Figure 10. Quantification of BrdU+ cells in numbers of the substantia nigra.  The 

increase in TH+GAD67+ neurons are not associated with increased 

neurogenesis   
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Figure 10. Increase in TH+GAD67+ neurons does not appear to be a 

consequence of neurogenesis. Quantification of BrdU+ neurons as determined 

by stereological analysis. Sections, 30 μm thick, were stained with rat anti-BrdU 

primary antibodies following denaturation of DNA with 2M HCl for 15 minutes and 

TR-conjugated secondary IgG. Sections were imaged using a Nikon 90i 

microscope equipped with a monochrome camera and 3 fluorescent filter cubes. 

Images were taken with separate fluorescent filter cubes and merged into one 

image with a 40x objective. Number of TH+, Nuclear BrdU+, and TH+Nuclear 

BrdU+ neurons were determined by stereological analysis by sampling 

approximately 20% of the neuronal population and achieving a coefficient of error 

(C.E.) of less than 0.10 (10%). Mean neuron numbers ± SEM were determined 

for 7 - 8 mice per group, and P ≤ 0.05 compared to control mice treated with 

aPBS on days 0 and 7-27 (PBS/PBS).  
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Figure 11. BrdU incorporation in the cytoplasmic region of neuron in the 

substantia nigra.  
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Figure 11. BrdU incorporation in the cytoplasmic region of neuron in the 

substantia nigra. Representative image showing cytoplasmic incorporation of 

BrdU (white box). Tissue sections, 30 μm thick, were stained with rat anti-BrdU 

primary antibodies following denaturation of DNA with 2M HCl for 15 minutes and 

TR-conjugated secondary IgG. Sections were imaged using a Nikon 90i 

microscope equipped with a monochrome camera and 3 fluorescent filter cubes. 

Images were taken with separate fluorescent filter cubes and merged into one 

Image with a image with a 40x objective.
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Figure 12. Phosphorylation of TH at serine 31 is increased by dopamine 

replacement therapy following MPTP intoxication. 
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Figure 12. Phosphorylation of TH at serine 31 is increased by dopamine 

replacement therapy following MPTP intoxication. Western blot analysis of 

protein levels within the ventral midbrain containing the substantia nigra or 

striatum was isolated, homogenized, and protein extracted following 21 days of 

PBS, BL-1023, or L-DOPA administration and 28 days post-MPTP to assess 

changes to TH phosphorylation. (A) Fold changes of phosphorylation of ser31 

within the substantia nigra and (B) striatum. Protein levels were normalized to β-

actin and fold changes relative to PBS/PBS controls calculated. Mean fold 

change ± SEM were calculated for 4 mice per group.   
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Figure 13. TH protein concentration is not significantly altered with MPTP and/or 

drug treatment   
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Figure 13. Phosphorylation of TH at serine 31 is increased by dopamine 

replacement therapy following MPTP intoxication. Western blot analysis of 

protein levels within the ventral midbrain containing the substantia nigra or 

striatum was isolated, homogenized, and protein extracted following 21 days of 

PBS, BL-1023, or L-DOPA administration and 28 days post-MPTP to assess 

changes to TH phosphorylation. (A) Fold changes of TH within the substantia 

nigra and (B) striatum. Protein levels were normalized to β-actin and fold 

changes relative to PBS/PBS controls calculated. Mean fold change ± SEM were 

determined for 4 mice per group). 
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CHAPTER THREE 

Neuronal and behavioral analysis of p19 deficient mice 

ABSTRACT 

Behavioral and motor characteristics were evaluated in mice deficient in one or 

both copies of the IL-23p19 chain, the unique subunit of the proinflammatory 

cytokine IL-23. This genotype leads to an absence of CD4+ TH17 cells in 

circulation. Such mice were shown to have a significantly reduced number of 

dopaminergic neurons in the substantia nigra compared to wild-type controls. 

The dopaminergic termini in the striatum were also aberrant, however only in the 

homozygote p19 knockout mice. Furthermore, p19 knockout mice showed no 

difference in the sensitivity to MPTP-induced lesion. Behavioral and motor 

characterization of p19 knockout mice using multiple forced and unforced tests 

ultimately showed that knockout mice, despite their significantly reduced neuron 

numbers exhibited few behaviors or abilities in motor functions compared to wild 

type control mice.  
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INTRODUCTION 

Multiple lines of evidence have pointed to the detrimental role of TH17 cell 

in PD and the MPTP mouse model of PD (Benner et al., 2008; Reynolds et al., 

2010; Gaffen et al., 2014; Sie et al., 2014). The findings that TH17 rely on IL-23 

for survival suggested IL-23 as a promising therapeutic target in immunological 

diseases driven by aberrant TH17 cell responses. IL-23 itself is a heterodimer 

composed of a p40 and p19 subunit. While p40 is a common subunit with IL-12, 

p19 is unique to IL-23. This led to the development of a mouse model wherein 

the 4 exon coding region of p19 has been replaced with GFP, effectively 

preventing transcription of p19. These animals display no overt phenotype and 

the unaffected p40 subunit is available for normal generation of IL-12 and 

humoral responses (Ghilardi et al., 2004). Based on findings that adoptive 

transfer of TH17 cells exacerbate MPTP lesion, the loss of TH17 cells was 

hypothesized to result in the lack of neurodegenerative exacerbation and 

possible neuroprotection in MPTP-intoxicated mice (Reynolds et al., 2010).  

Pro-inflammatory cytokines such as those secreted by TH1, TH17, and 

activated mononuclear phagocytes typically serve as major players in 

inflammatory responses and clearance of pathogens, but they also play an 

important role in neurogenesis and proper neuronal patterning. Neurogenesis 

refers to the process of generating new neurons from neural stem cells (Emsley 

et al., 2005) and consists of multiple steps including proliferation, differentiation 

into the correct neuronal lineage, and integration into the proper brain region to 

form functional neuronal circuitry (Ming and Song, 2005; Kim et al., 2015). 
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Recently, a collective of evidence suggests that neurogenesis is affected by the 

dysregulation of cytokines, chemokines, and neurotransmitters (Whitney et al., 

2009). For example, during the early period of development pro-inflammatory 

cytokines may exert detrimental effects on the brain (Kim et al., 2015), but during 

mild acute inflammation, inflammatory cytokines can stimulate neurogenesis 

(Whitney et al., 2009). Tumor necrosis factor-α (TNF-α) is one of the major pro-

inflammatory cytokines that plays a role in neurogenesis; either supporting or 

suppressing it depending on the type of TNF receptor it binds (Arnett et al., 2001; 

Dybedal et al., 2001; Ben-Hur et al., 2003; Monje et al., 2003; Chen et al., 2004; 

Iosif et al., 2006; Keohane et al., 2010). A broader picture of the interplay 

between PD, neuroinflammation, cytokines, and neurogenesis would vastly 

improve our understanding of the chronic nature of PD and aid the development 

of therapeutic modalities aimed at restoring neuronal numbers. In PD, clinical 

symptoms do not present until a significant number of dopaminergic neurons 

have been lost, therefore knowing the cytokines and levels needed to support 

neurogenesis would benefit the design of neuroprotective or neuroregenerative 

efforts before disease progresses to later stages.  

To restore normal motor function and control in PD patients, appropriate 

animal models will be essential to test behavior and demonstrate improvements 

in behavior following treatment. Several forced and unforced motor tests have 

been extensively used and described in mice models of PD. Many of these tests 

have been found to be of little utility due in part to the lack of sensitivity, but also 

due to the relative small lesions induced in most animal models. Our laboratory 
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has previously implemented several of these tests and successfully 

demonstrated differences between drug-treated and controls following MPTP-

intoxication (Hutter-Saunders et al., 2011). Due to the results that successfully 

demonstrated motor impairments following MPTP-intoxication, any improvements 

seen in this test can be confidently reported to be a consequence of disease 

intervention and possible restoration of striatal dopamine levels. These animal-

based behavioral tests will help create the foundation on which human therapies 

will be built that target restoring proper motor control in PD. Herein, we evaluate 

the involvement of IL-23, a cytokine known to be critical in TH17 development, in 

dopaminergic neurodevelopment and the extent that Mendelian genotypes affect 

behavioral phenotypes.    

MATERIALS and METHODS 

Animals 

IL-23p19 deficient (p19-/-) mice were obtained from Genetech (San Francisco, 

CA) and wild-type (WT) C57BL/6J mice were obtained from Jackson 

Laboratories (Bar Harber, ME). Animals were housed and bred in our animal 

facilities, and maintained on a 12:12 hr light/dark cycle with ad libitum access to 

food and water. The study was conducted in accordance with the animal care 

guidelines issued by the National Institutes of Health and approved by the 

Institutional Animal Care and Use Committee of the University of Nebraska 

Medical Center. Generation of p19+/- mice were generated by crossing female 

p19-/- homozygous knockout mice and C57BL/6J males. F1 offspring were then 

genotyped to ensure all were heterozygous p19 knockout. Male and female F1 
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p19+/- heterozygous animals were then crossed, the resulting litters genotyped, 

and assigned to p19+/+ WT, p19+/- heterozygotes, and p19-/- homozygotes.  

Genotyping  

Genotyping was carried out to correctly identify wild-type, heterozygous, and 

homozygous knockout animals. DNA was isolated from ear tissue using DNesy 

Blood and Tissue kit (Qiagen, Valencia, CA). For routine genotyping, a PCR-

based method with a common antisense primer, wild-type specific and knockout 

specific sense primers. Primers for each marker were custom designed (Table 1) 

using Invitrogen Primer Design and re-constituted in water to a concentration of 

20 nM, aliquotted, and stored at -20° C. The primer triplet amplifies a 210-bp 

fragment for the wild-type allele and a 289-bp fragment for the knockout allele. 

PCR was conducted in a thermocycler using the following conditions: 1 cycle of 

94°C, 60 s; 35 cycles of 94°C, 30 s; 58°C, 30 s; 72°C, 60 s; 1 cycle of 72°C, 7 

min; and held at 4° C. DNA samples were loaded onto 3% agarose gels and ran 

at 110 V for 35 minutes to obtain sufficient band separation. The fluorescent DNA 

stain GelRed (Biotium, Inc., Hayward, CA) was added to the agarose mixture to 

identify DNA bands at the correct molecular weight.  

Acute MPTP intoxication 

To address sensitivity of dopaminergic neurons among the 3 different genotypes 

under neurodegenerative conditions, we compared the level of neuronal survival 

to MPTP-intoxication in p19 WT, heterozygous, and homozygous mice. Mice 

received 4 subcutaneous (s.c.) injections of MPTP-HCL (18 mg/kg free base in a 
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volume of 10 ml/kg) in PBS or PBS (10 mL/kg); each injection administered every 

2 hours. MPTP handling and safety measures were in accordance with the 

National Institutes of Health, the University of Nebraska Medical Center, and 

prior published guidelines (Przedborski et al., 2001).  

Immunohistochemistry 

Seven days after MPTP or PBS administration, mice were terminally 

anesthetized, transcardially perfused with PBS followed by 4% paraformaldehyde 

(PFA) in PBS. Brains were harvested and post-fixed in 4% PFA overnight, 

cryoprotected in 30% sucrose/PBS for 48 hours, snap frozen in 2-methylbutane, 

embedded in OCT compound, and 30 µm sections collected through the 

midbrain. Tissue sections were processed free-floating in 48-well plates. 

Sections containing the substantia nigra were immunostained with sheep anti-TH 

primary antibody (1:2000, EMD Millipore, Billerica, MA) and FITC conjugated 

donkey anti-sheep IgG (1:1000, Vector laboratories, Burlingame, CA). Tissue 

sections were mounted onto slides, cover-slipped with DAPI containing mounting 

medium (Vector laboratories, Burlingame, CA), and neuronal numbers quantified 

using stereological software (StereoInvestigator, MBF Bioscience, Williston, VT). 

Tissue sections containing the striatum were immunostained with rabbit anti-TH 

(1:1000, Cal-Biochem/EMD Millipore, Billerica MA) primary antibody and HRP-

conjugated goat anti-rabbit IgG (1:400 Vector laboratories, Burlingame, CA), and 

visualized with diaminobenzidine (DAB). Relative striatal density was quantified 

using ImageJ software (National Institute of Health). 
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Stereological analysis of neurons in the substantia nigra was performed 

using optical fractionator module stereology software (StereoInvestigator, MBF 

Bioscience, Williston, VT) interfaced with a Nikon Eclipse 90i fluorescence 

microscope equipped with a monochrome camera and three fluorescence filter 

blocks. Using simple random sampling (SRS) image series workflow for every 4th 

serial section, the region of interest (ROI) containing the substantia nigra was 

outlined for one hemisphere of each tissue section at a 4x magnification. 

Fluorescent images of each ROI were taken using a 40x objective with FITC and 

DAPI fluorescent cubes, and merged. Workflow parameters were defined to 

count approximately 20% of the total neuron population in the substantia nigra 

(counting frame size 120 x 100 um, 245 x 240 um grid size) and Gunderson 

coefficient of error (C.E. m=1) was ≤ 0.10. Estimated population size was 

generated by the software and multiplied by 2 to achieve an overall population 

estimation for both hemispheres of the brain. 

Behavioral testing 

Natural behavior and movement were measured using the home cage monitoring 

system, open field test, and analysis of syntactic grooming. Forced motor 

function was measured using both constant speed rotarod and accelerating 

rotarod methods and adhesive removal test. 

Home cage monitoring (HCM) 

Existing behavioral assays typically examine behavior over a limited time and 

focus on a single behavioral domain (Tecott and Nestler, 2004; de Visser et al., 
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2006). Furthermore, these behaviors tested under forced conditions may differ 

from the behavior of animals acting freely in their home cage leading to results 

that may not accurately reflect behavior. Using a unique home cage monitoring 

(HCM) system allow for simultaneous measure of patterns of feeding, drinking, 

activity, and movement in individually housed animals so as to elucidate complex 

organization of diverse behaviors exhibited by mice (Goulding et al., 2008). 

Mouse position was determined by the force and torques acting on the system 

strain gauges; feeding events were detected by a photobeam across the food 

hopper, and drinking events were detected by a capacitive lick sensor. Validation 

studies show agreement between mouse position and drinking events measured 

by the system compared with video-based observation (Parkison et al., 2012) . 

Baseline mouse day-to-day behavior was measured using a custom-

designed HCM that measures behaviors with 1 ms temporal and 0.5 cm spatial 

resolution. Thirty-two mice (10 p19+/+ wild-type, 12 p19+/- heterozygous, and10 

p19-/- homozygous) 8-10 weeks of age, were acclimated for 5 days and 

observed for 16 days. All data was sampled at 1 kHz, and written to disk using a 

real-time computer (to prevent potential skipped data points). All mouse data 

underwent rigorous quality control to eliminate known spurious points (arising 

from blocked photobeams or sipper tubes, sudden changes in cage center of 

mass, etc.), followed by a data classification workflow to determine mouse active 

and inactive states, mouse bouts of feeding, drinking, and movement, and 

differences in circadian variation (Goulding et al., 2008). 

Constant speed and accelerating rotarod  
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A pilot study was conducted to first determine the appropriate speed at which to 

test the motor function of wild-type and knockout mice. The apparatus was fitted 

with a 7-cm diameter rod and was interfaced with automatic timing 

instrumentation (Rotamex, Columbus Instruments, Inc., Columbus, OH). A 

preliminary study was performed to determine the appropriate rotational speed(s) 

at which to test mice so that differences in motor control between wild-type and 

knockout mice could be detected, if present. To do this, mice were acclimated 

and trained to perform on the rotarod using an accelerating method (0 – 16 rpm) 

for 5 minutes x4 daily sessions on 3 consecutive days. On the 4th and 5th days 

animals were tested at constant speeds of 6, 8, 10, 12, 14, and 16 rpm for runs 

with a maximum run time of 90 sections. Latency to fall was recorded for each 

animal and averaged for the 3 runs calculated. 

Preliminary experiments indicated two speeds at which rotarod testing had 

the potential to show differences between strains of mice, 14 and 16 rpm. 

Following 3 days of acclimation to the apparatus using an accelerating method (0 

– 16 rpm) for 5 minutes x4 daily sessions, experimental animals (p19+/+ wild-

type, p19+/- heterozygous, and p19-/- homozygous knockout animals) were 

tested at constant speeds of 14 and 16 rpm for 3 runs with a maximum run time 

of 90 seconds. Latency to fall was recorded for each animal. Due to previous 

reports suggesting the accelerating rotarod may be more sensitive to motor 

function differences than traditional constant speed rotarod (Keshet et al., 2007), 

on the 5th day, the animals were evaluated for their ability to perform on an 

accelerating rotarod model. The accelerating rotarod differs from the constant 
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speed in that the apparatus increases in speed at a constant rate over a defined 

period of time. Mice were placed on the stationary rod and tested for their ability 

to stay on the apparatus as it increased in speed from 0 rpm to 18 rpm over the 

course of 5 minutes. Animals were tested for 3 runs with a maximum time of 5 

minutes. Latency to fall was recorded for each animal and averages calculated.  

Open field activity testing 

Evaluation of normal activity and behaviors were evaluated using an automated 

open field activity system (Tru Scan 2.0, Coulbourn Instruments, Whitehall, PA, 

USA) to measure different types of unforced movements over the course of 20 

minutes. Activities evaluated included total movements within the floor and 

vertical (i.e. rearing) planes, move and rest time, total distance covered, 

stereotypic behaviors (i.e. grooming), zone time (center vs. margin). Movements 

of each mouse were automatically recorded and measured by recording breaks 

in photo beams spaced 2.4 cm apart and span floor and vertical planes. The area 

measured 40.64 cm x 40.64 cm x 40.64 cm and was kept in a quiet and 

undisturbed area whilst recording mouse behaviors. Per the manufacturer, 

stereotypic movements are repetitive movements that start and return to the 

original position in less than 2 seconds with at least 3 such movements occurring 

prior to the event being considered a stereotypic episode. OFAT distinguishes 

between two types of stereotypic behaviors, movements that changes less than ± 

0.999 bean spaces are denoted type 1, and movements that change less than ± 

1.499 bean spaces are denoted type 2.  

Syntactic grooming evaluation 
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Syntactic grooming consists of serially-ordered movements of four phases 

(elliptical strokes, unilateral strokes, bilateral strokes, and flank licking) and 

together is considered a form of stereotypic behavior. The chain of grooming 

events occurs in a frequency that is over 13,000x greater than could be expected 

by chance (Berridge et al., 1987). Due to the nature of the grooming chains, the 

OFAT arena and software cannot distinguish syntactic versus non-syntactic 

grooming. The chain of movements that distinguish syntactic grooming are 

controlled by neurons in the striatum and a depletion of dopamine should 

interrupt syntactic grooming. Each of the movements in the syntactic grooming 

chain can occur alone, or out of order, but the individual movements are similarly 

dependent on dopamine (Aldridge and Berridge, 1998; Aldridge et al., 2004). 

Male wild-type, heterozygous, and homozygous knockout mice (n = 7 – 8) were 

videotaped in their home cage and visually scored for complete syntactic 

grooming sequences over the course of 10 minutes in a blinded fashion (Hutter-

Saunders et al., 2011). Numbers of incomplete grooming events, either an 

incomplete grooming cycle or grooming movement that occurred alone, were 

recorded.  

Adhesive removal test 

Sensitive and reliable behavioral test are critical in testing the therapeutic efficacy 

and potential disease-modifying therapies in preclinical trials for PD (Peghini et 

al., 1990). The ability of an animal to remove an adhesive dot from the snout 

requires fine control of the forepaws. Published data supports the use of the 

adhesive removal test as a method to detect sensorimotor function differences in 
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newer strains of mice. In Pitx3-aphakia mice, wherein nigrostriatal dopamine 

neurons are significantly reduced, the adhesive removal test successfully 

showed a significantly increased time to remove the adhesive dot compared to 

wild-type controls (Peghini et al., 1990). To evaluate differences in the ability of 

knockout and wild-type animals to perform this task, we used a small adhesive 

dot (8-mm) and placed it on the snout of the animal using forceps. The animal 

was then placed in a clean cage and the time to remove the sticker recorded. 

Each trial run was conducted 3 times per animal.  

Statistical analysis 

All tests were performed using Statistica (StatSoft, Inc. Tulsa, OK) and data 

expressed as mean ± standard error of the mean (SEM). Statistical significance 

was evaluated by one-way ANOVA followed by post-hoc comparisons using 

Tukey’s comparison or Fisher’s LSD. 

RESULTS 

Stereological analysis of naïve mice 

To assess the effects that p19 deficiencies on nigrostriatal dopaminergic neuron 

populations, we assessed the number of TH+ neurons in the substantia nigra and 

terminal densities in the striatum for p19+/+ wild-type, p19+/- heterozygous, and 

p19-/- homozygous knockout mice at 7 – 8 weeks of age. Stereological 

evaluation of dopaminergic neurons of naïve mice revealed significant 

differences in the number of TH+ neurons between wild-type, heterozygous 

knockout, and homozygous knockout mice, (8905 ± 692, 3724 ± 291 and 4003 ± 
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437 respectively) (Figure 1A). Unlike neuronal bodies in the substantia nigra, 

wild-type mice did not show a significant difference in the striatal dopaminergic 

density compared to heterozygous knockout mice (29.5 ± 3.1 and 36.5 ± 2.3 

respectively, Figure 1B). However, striatal density in p19-/- homozygous 

knockout mice (16.9 ± 3.5) was significantly reduced compared to both wild-type 

and heterozygous mice.  

MPTP intoxication 

To assess whether dopaminergic neurons were more sensitive to 

neurodegenerative processes, we treated the 3 strains of mice with the 

neurotoxin MPTP which induces death of dopaminergic neurons along the 

nigrostriatal pathway. Previous studies showed that T cell-mediated immunity 

plays a piviotol role in exacerbating and attenuating neuronal death (Kurkowska-

Jastrzebska et al., 1999; Benner et al., 2004; Reynolds et al., 2007; Benner et 

al., 2008; Reynolds et al., 2008; Schneider, 2008; Reynolds et al., 2009; 

Reynolds et al., 2010; Mosley et al., 2012). Particularly noteworthy was that 

TH17 and to a lesser degree TH1 cells exacerbate neuroinflammation and 

subsequent neurodegeneration. Therefore, we sought to determine if animals 

lacking the p19 subunit of IL-23 would be protected from MPTP-induced cell 

death. At 7 days post-MPTP or PBS treatment, the numbers of surviving TH+ 

neurons in the substantia nigra were quantified using stereological software. The 

number of surviving TH+ neurons in wild-type mice injected with PBS (7765 ± 

538) was significantly higher compared to PBS injected p19+/- heterozygous 

knockout (4204 ± 197) and p19-/- homozygous knockout (2544 ± 223) mice 
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(Figure 2A). Among all three genotypes, MPTP-intoxication yielded significant 

reduction in the numbers of surviving TH+ neurons compared to the respective 

genotype treated PBS control animals. At 7 days post-MPTP intoxication all 

animals exhibited similar reduction in the percentage of TH+ neurons lost within 

the substantia nigra (56% for wild-type, 53% for heterozygous, mice, and 58% for 

homozygous knockout mice; p = 0.7804) (Figure 2B). Similar to numbers of nigral 

neurons, the relative striatal densities of control mice were correlated with the 

three genotypes of p19 (p19+/+ wild-type, 77 ± 1.4; p19+/- heterozygous, 69 ± 

2.5; and p19-/- homozygous, 46 ± 2.4) (Figure 2C). However, the percentages of 

lost striatal densities in MPTP-intoxicated mice among all genotypes were not 

significantly different compared to PBS controls (wild-type 41%; heterozygous 

51%, and homozygous knockout 45%; p = 0.214) (Figure 2D).  

Home cage monitoring 

Home cage monitoring of mice for 14 days allows for constant monitoring of 

animals and provides information about their habitual behaviors. Using sensitive 

and cost-effective home cage monitoring systems that utilize force and torque 

measurements to determine behavior bouts such as feeding and drinking as well 

as temporal inactive versus active behaviors. Behaviors of mice were 

categorized as inactive (black), active but not in forward locomotion (red), 

forward locomotion (green), drinking (blue), and food (orange) (Figure 3 A-C). 

Percentage of a 24-hour cycle spent in each category was calculated for p19+/+ 

wild-type (Figure 3A), p19+/- heterozygous (Figure 3B) and p19-/- homozygous 

mice (Figure 3C). Time percentages were calculated for each 24-hour period and 



102 
 

averaged over the course of the observational period (16 days). While no 

significant differences were detected in any of these behavioral categories 

between strains of mice, wild-type mice consistently spent lesser time eating and 

more time in forward locomotion compared to heterozygous and homozygous 

knockout strains of mice.  

 Activities of mice greatly differ between light and dark cycles with the most 

active periods being during dark cycles. Therefore, I sought to evaluate whether 

or not differences in behaviors would become apparent when directly comparing 

light and dark cycle time budgets (Figure 4). In a similar manner to the 24-hour 

time budget analysis, mice were observed and behaviors categorized for p19+/+ 

wild-type (Figure 4A and B), p19+/- heterozygous (Figure 4C and D), and p19-/-

homozygous knockout (Figure 3E and F) mice with time being broken down into 

the dark cycle (Figure 4A, C, and E) and light cycle (Figure 4B, D, and F). Similar 

to the 24-hour time budget results (Figure 3), no significant differences were 

detected in any of these behavioral categories between strains of mice. However 

a proclivity of wild-type mice to feed less and exhibit forward locomotion more 

compared to knockout mice was demonstrated.  

Because of the consistent finding that wild-type mice show differences in 

percentage of the time spent in locomotion, despite reaching a significance of p ≤ 

0.05, this behavior was further analyzed (Figure 5). Upon completion of the 16-

day study, averages were calculated for the percentage of each hour spent in 

locomotion over the course of a 24-hour period for each animal. The hourly 

averages for each strain of mice were calculated and plotted against averages of 
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other strains. Figure 5A wild-type (green) versus heterozygous knockout (red); 

Figure 5B wild-type (green) versus homozygous knockout (red); Figure 5C 

heterozygous knockout (green) versus homozygous knockout (red). The plots 

were each divided (dashed bars) into light and dark cycles with X-axis values of 6 

– 12 and 24 – 30 representing light cycle and 12 – 24 representing dark cycles. 

Expectedly, all mice were more active during the dark cycle compared to light. 

While significant differences were detected in the amount of time heterozygous 

mice spend in locomotion during the dark cycle compared to wild-type (Figure 

5A), other behaviors involving locomotion were not significantly different, and 

therefore, locomotor behaviors could not be confidently reported as being 

different in heterozygous mice. No significant differences were detected between 

wild-type and homozygous knockout (Figure 5B) or homozygous and 

heterozygous knockout (Figure 5C).  

OFAT 

Automated open field activity testing (OFAT) allows for measurement of multiple 

unforced movements such as total distance travelled over the course of the 

observation period, average speed of movements, time spent in areas of the 

arena, and rearing and stereotypic behaviors. Animals with neurological 

impairments may not move normally or explore the arena in a similar manner to 

wild-type animals. Therefore, we chose to evaluate wild-type and p19 deficient 

animals over the course of 20 minutes and identify differences in these 

measurements.  
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Comparisons of movement are shown in Figure 6. The following type of 

movements were measured for wild-type, heterozygous, and homozygous 

knockout mice and evaluated for statistical significance: total floor plane move 

time (seconds) (Figure 6A); total floor plane rest time (seconds) (Figure 6B); total 

floor plane movements (Figure 6C); total floor plane distance travelled (cm) 

(Figure 6D); mean floor plane velocity (Figure 6E); average distance travelled 

(cm) per movement (Figure 6F); total number of jumps (Figure 6G); mean 

number counter-clockwise turns (Figure 6H); mean number clockwise turns 

(Figure 6I). We did not find any significant differences in these types of 

movement in wild-type mice or mice deficient in one or two p19 genes.  

Comparisons of stereotypic movements are shown in Figure 7. 

Stereotypic-1 (Figure 7A, B, and C) and stereotypic-2 (Figure 7D, E, and F) 

movements were observed over the course of 20 minutes for wild-type, 

heterozygous, and homozygous knockout mice. Stereotypic events included total 

number stereotypic-1 moves (Figure 7A); total number stereotypic-1 episodes 

(Figure 7B); total stereotypic-1 time (seconds) (Figure 7C); total number 

stereotypic-2 moves (Figure 7D); total number stereotypic-2 episodes (Figure 

7E); total stereotypic-2 time (seconds) (Figure 7F). No significant differences 

were observed between p19+/+, p19+/-, or p19-/- mice. 

Comparisons of zone time are shown in Figure 8. The OFAT arena is 

sectioned into a center and margin portion. Time budgeted in these two areas 

were calculated as total margin distance covered (cm) (Figure 8A); total time 

spend in arena margin (seconds) (Figure 8B); total arena center distance 
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covered (cm) (Figure 8C); total time spend in arena center (seconds) (Figure 

8D); total number of arena center entries (Figure 8E); percentage of time spent in 

area center (Figure 8F); and percentage of time spent in arena margin (Figure 

8G). No significant differences were observed between wild-type mice or either 

strain deficient in one or two p19 genes.  

Comparisons of vertical plane movements (rearings) are shown in Figure 

9. Beam breaks were used to detect movements in the vertical plane and 

categorized as: total number vertical plane entries (Figure 9A); total number 

vertical plane moves (Figure 9B); total time spent in vertical plane (seconds) 

(Figure 9C); and total vertical plane distance travelled (cm) (Figure 9D). No 

significant differences were observed between wild-type and p19 knockout mice.  

Comparisons between p19+/+ wild-type, p19+/- heterozygous, and p19-/- 

homozygous knockout mice in a plethora different activities (total movements 

within the floor and vertical, planes, move and rest time, total distance covered, 

stereotypic behaviors, zone time) showed no significant differences between 

strains of mice.  

Rotarod 

The rotarod is a widely used motor function test in mice and can be used in the 

traditional constant speed mode or an accelerating mode. Initial studies aimed at 

determining a constant speed at which differences between strains of mice 

become apparent, demonstrated 14 and 16 rpms were best suited to testing wild-

type and p19 knockout mice (Figure 10). No significant differences in the latency 
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to fall between strains of mice were found when tested at 14 rpm (p = 0.274) 

(Figure 11A), at 16 rpm (p = 0.525) (Figure 11B), or at 0-18 rpm accelerating 

rotarod (p = 0.573) (Figure 11C). Average latency to fall for 3 trials were 64 ± 

10.6 sec, 44 ± 8.4 sec, and 230 ± 12.7 sec for wild-type mice; 48 ± 10.5 sec, 36 ± 

6.9 sec, and 211 ± 16.9 sec for heterozygous mice; and 69 ± 6.9 sec, 48 ± 7.1 

sec, and 229 ± 12.8 sec for homozygous knockout mice at 14 rpm, 16 rpm, and 

accelerating respectively. 

Adhesive removal test 

The ability of an animal to remove an adhesive dot from the tip of their nose 

requires fine motor control of the forepaws. Altered neuronal numbers or 

pathways involved in motor control could therefore lead to differences in the 

ability of animals to complete the task. To evaluate this, a small adhesive dot was 

carefully placed on the nose of the mouse and the mouse placed in an empty 

cage. The latency to successfully remove the sticker was recorded and repeated 

for a total of 3 trials (Figure 12A). Interestingly, homozygous knockout animals 

exhibited the smallest mean latency to remove the adhesive dot (4.1 ± 1.1 sec) 

which was significantly faster than mean time for wild-type mice (7.5 ± 0.61 sec) 

(p < 0.01), but not the mean for heterozygous mice (5.4 ± 0.85 sec). No 

significant difference was detected in the mean latency to remove the adhesive 

dot between wild-type and heterozygous animals, though the trends were 

relatively strong (p = 0.068). Evaluation of each of the 3 individual runs 

demonstrated that all animals became faster at removing the adhesive dot with 
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each subsequent trial, but latency to remove the sticker was not different 

between strains at the same trial run (Figure 12B).  

Syntactic grooming 

Grooming patterns of mice have been well-studied and shown to occur in a 

predictable pattern. Dopamine levels in the basal ganglia play a role in controlling 

this grooming pattern, and therefore, altered dopaminergic neurons and reduced 

dopamine production in knockout animals could lead to differences in the number 

of completed grooming cycles (Berridge et al., 1987; Taylor et al., 2010; Hutter-

Saunders et al., 2011). Animals were recorded for 10 minutes in their home cage 

and the number of complete and incomplete grooming cycles recorded in a 

blinded fashion. No significant differences were seen between genotypes in the 

mean number of complete grooming cycles (wild-type: 2.25 ± 0.90; 

heterozygous: 0.29 ± 0.29; homozygous knockout: 0.89 ± 0.35) or incomplete 

grooming cycles (wild-type: 1.5 ± 0.33; heterozygous: 2.9 ± 0.67; homozygous 

knockout: 2.9 ± 0.68) (Figure 13). While no significant differences were detected 

between any of the genotypes, clear trends were evident that the loss of p19 

gene and dopaminergic neurons were associated with fewer complete and 

greater interrupted grooming cycles.      

DISCUSSION 

Extensive data exists that support the hypothesis implicating the immune system 

in PD progression as well as in the MPTP-mouse model of PD. Studies from our 

own laboratory have shown that antigen specific TH17 cells are especially potent 
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in their ability to exacerbate MPTP-induced dopaminergic neuronal lesions within 

the nigrostriatal axis (Benner et al., 2004; Benner et al., 2008; Reynolds et al., 

2010). This effect is not seen to such an extent with TH1 cells even though both 

are classically considered pro-inflammatory immune cells. However, other cells in 

the T cell lineage, regulatory T cells (Tregs), have the ability to mitigate MPTP-

induced lesions and significantly reduce dopaminergic cell loss (Reynolds et al., 

2010).  

 Evidence suggests that inflammatory processes and the CD4+ T cells 

responsible for these responses show a degree of plasticity. Therefore in mice 

lacking fully functional TH17 cells, other CD4+ T cells may take over the usual 

TH17 cell role and carry exacerbation of the inflammatory process. This would 

provide an explanation as to why p19 knockout mice afford no obvious 

neuroprotection against MPTP-intoxication, even though they lack the ability to 

induce TH17 cells. the other explanation is that TH17 cells may not be induced 

until the lesion or diseae develops into a chronic state. These findings will help in 

the development of therapeutic approaches to treating neuroinflammatory 

diseases by shedding light on the complex and multifaceted aspect of the 

disease. The balance between pro- and anti-inflammatory cells must be altered 

in a way that keeps neuroinflammation to a minimum, but does not deplete the 

immune system completely and leave the CNS vulnerable to other pathogenic 

entities. Data from p19 knockout mice indicates that monotherapy targeting only 

TH17 cells may not reduce neuroinflammation to a level whereby disease 

progression and neurodegeneration are slowed or stopped. However, 
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immunomodulatory agents that target multiple immune cells may prove to be 

beneficial and should be further investigated.  

 The physical symptoms associated with PD generally do not appear until 

greater than 50% of dopaminergic neurons in the substantia nigra have been 

lost. The number of existing dopaminergic neurons in the substantia nigra 

compared to the number of neurons needed helps to explain why PD symptoms 

do not appear until late in the disease process, and provides an example of 

“safeguards” set up in the CNS to maintain normal processes. However below a 

certain level, the surviving dopaminergic neurons are thought no longer able to 

produce enough dopamine to fully support normal functions. Therefore, we 

hypothesized that p19 knockout mice, newly found to have significantly reduced 

numbers of dopaminergic neurons in the substantia nigra, would have similar 

motor and behavioral deficiencies.  

 Using multiple motor and behavior tests proven to demonstrate motor 

dysfunction in other models of nigrostriatal damage, including the MPTP model, 

motor behavior deficits were found to be few in p19 knockout mice. These tests 

included forced motor tests (rotarod), normal behavior observations (home cage 

monitoring, open field activity testing, syntactic grooming), and fine motor skills 

(adhesive dot removal). Previous studies in the MPTP model have been able to 

successfully demonstrate motor or behavior deficits with far less severe 

substantia nigra neuron and striatal termini loss (Hutter-Saunders et al., 2011; 

Bove and Perier, 2012); therefore we are confident that the appropriate tests and 

conditions were utilized in this study. Home cage monitoring (HCM), which 
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observed animals over the course of 16 days in an undisturbed environment, was 

the most wide-ranging and sensitive test carried out, and would have therefore 

detected any abnormal behaviors in knockout mice compared to controls. Thus, 

unexpected results of finding no significant differences using the HCM system in 

any behaviors (movement, locomotion, feeding, drinking) proves that knockout 

mice are fully functional and are indistinguishable from wild-type mice in terms of 

unforced behavior and movement. 

 While not specifically validated by this study, we posit that the number of 

dopaminergic neurons in p19 knockout mice is significantly reduced from the 

time of birth, rather than a gradual decline in neuron numbers as the animal 

ages. This points to a role of p19 or IL-23 in the early stages of neuronal 

patterning. Taking cues from findings in Pitx3 knockout mice (ak/ak), which also 

display significant reductions in substantia nigra dopaminergic neurons number 

(Vasudevan et al., 2012), it is possible that dopaminergic neurons in p19 

knockout mice are unable to reach their final destination and fully differentiate 

into a dopaminergic phenotype. The hypothesis that neuron numbers are 

reduced from before birth, would help to explain why p19 knockout mice showed 

no significant differences in the behavioral tests performed. As in the ak/ak 

mouse model, which show no behavior abnormalities despite significantly 

reduced dopaminergic neuron numbers (Vasudevan et al., 2012), p19 knockout 

mice are hypothesized to utilize the same compensatory mechanisms to function 

in a manner that is indistinguishable from wild-type mice. The data presented 

herein is consistent with other reports, showing that preserved motor function is 
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associated with residual dopamine and that the behavioral and motor 

consequences of decreased dopaminergic neuron number are dependent on 

whether neurons are lost pre- or post-natally (Golden et al., 2013). Whereas 

substantial lesions to the substantia nigra in adult mice result in significant and 

measurable deficits in motor function, mice born with fewer dopaminergic 

neurons show no measurable deficits.  

The time of lesion development may also play a crucial role on the 

behavioral outcome can possibly be explained through multiple mechanisms. 

First, additional mechanisms of plasticity may be induced when damage occurs 

in developing animals (Golden et al., 2013). Reduced excitation of the indirect 

dopamine pathway, through a reduction in glutamatergic excitation or reduction 

of GABA release, can help to alleviate PD symptoms (Stephens et al., 2005; Day 

et al., 2006; Brotchie and Fitzer-Attas, 2009). Secondly, the decreased level of 

dopamine in knockout mice from birth could result in a hypersensitivity of the 

neurons in the striatum to dopamine (Hussong, 2014). Alternatively, the number 

of dopamine receptors in the striatum could be increased compared to wild-type 

mice. As such, even small amounts of dopamine in the area would be able to 

sufficiently control motor functions. Third, the intrinsic regulatory property of TH, 

i.e., that it can be regulated by dopamine itself, suggests that in the absence of 

normal levels of dopamine, the activity of TH can be upregulated resulting in the 

increased production of dopamine by remaining neurons (Zigmond et al., 1984).  

The use of animal models has led to multiple advances in our 

understanding of diseases and how to best treat them. However, it is important to 
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understand that all animal models have limitations and may not be a perfect 

model to study human diseases. Two common rodent models to study PD use 

the neurotoxins MPTP or 6-hydroxy dopamine (6-OHDA); each having their own 

advantages and disadvantages. Therefore, new animal models for studying PD 

are necessary. Data from these studies could lead to the use of p19 knockout 

mice in future studies of neurodegeneration. Due to the inherent characteristics 

of p19 knockout mice to present a significant reduction in the number of 

dopaminergic neurons and termini in the nigrostriatal pathway, these mice could 

be useful for potential methods to increase the levels of striatal dopamine. This 

may prove to be advantageous over traditional MPTP or 6-OHDA models 

wherein the initial reduction along the nigrostriatal pathway is achieved with 

chemical compounds or neurotoxins. The novel finding regarding the neuron 

numbers in p19 knockout mice suggests multiple uses for p19 knockout mice 

reaching beyond our laboratory.  

The results from this study will help to further our understanding of 

interactions between the brain and immune system and how these two work in 

synergy to establish proper neuronal pattering and connections. Results showing 

that mice lacking the distinct p19 subunit of IL-23 have significantly reduced 

numbers of dopaminergic neurons in the substantia nigra and striatal density 

provides insight into a previously undescribed relationship between IL-23 and 

dopaminergic neurodevelopment. Even more importantly however, is the finding 

that mice are able to function normally despite their significantly reduced 

nigrostriatal pathway. This points to possible compensatory mechanism(s) that 
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allow proper neuronal signaling with minimal amounts of dopamine. Using these 

findings we can better develop therapeutic strategies for neurodegenerative 

diseases during the early stages of disease and help maintain or regain normal 

motor function (Hussong, 2014). 
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Table 1. p19 knockout and wild-type genotyping primers. 

  

Primer name Primer sequence 5’ – 3’ 
Product 

size 

Common reverse GCCTGGGCTCACTTTTTCTG N/A 

Wild-type specific (forward) GCGTGAAGGGAAGGACACC 210 b.p. 

Knock-out specific (forward) AGGGGGAGGATTGGGAAGAC 289 b.p. 
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Figure 1. Quantification of TH+ cells in substantia nigra and density of striatal 
termini.  
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Figure 1. Quantification of TH+ cells and striatal termini. Number of TH+ neurons 

in the substantia nigra of naïve wild-type and p19 deficient mice. Naive mice 

were terminally anesthetized, transcardially perfused with PBS, fixed with 4% 

paraformaldehyde, and brains removed and processed for 

immunohistochemistry. Brains were sectioned through the midbrain containing 

the substantia nigra and striatum. Substantia nigra sections were immunostained 

with sheep anti-tyrosine hydroxylase and FITC-conjugated donkey anti-sheep 

IgG. Neuron numbers were quantified by stereological analysis (Stereo 

Investigator, MBF Bioscience). Striatal sections were immunostained with sheep 

anti-tyrosine hydroxylase and biotinylated goat anti-sheep IgG. Relative striatal 

densitometry was quantified using ImageJ. Means ± SEM of total numbers of 

surviving neurons or striatal density was determined for 6-8 mice per group and 

analyzed by one way ANOVA and Fisher’s LSD post-hoc test with. Each group is 

compared to aB6.IL-23 p19 (+/+) and bB6.IL-23 p19 (+/-).  
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Figure 2. Neuronal quantification and striatal density in PBS and MPTP-

intoxicated mice.  
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 Figure 2. Neuronal quantification and striatal density in PBS and MPTP-

intoxicated mice. Animals were intoxicated with four injections of PBS or MPTP-

HCL (18 mg/kg free base). Seven days post-MPTP, mice were terminally 

anesthetized, transcardially perfused with PBS, fixed with 4% paraformaldehyde, 

and brains removed and processed for immunohistochemistry. (A) Quantification 

of surviving TH+ dopaminergic numbers within the midbrain of PBS and MPTP-

intoxicated B6.Il-23 p19 (+/+) and B6.IL-23 p19 (-/-); (B) Calculation in the 

percentage of neuronal loss following MPTP-intoxication in B6.Il-23 p19 (+/+) and 

B6.IL-23 p19 (-/-) mice. Neuron numbers were quantified by stereological 

analysis (Stereo Investigator, MBF Bioscience) and data presented as means ± 

SEM of total numbers of surviving neurons or striatal density was determined for 

7-8 mice per group and analyzed by one way ANOVA and Tukey’s post-hoc test. 

Each group is compared to aPBS-B6.IL-23 p19 (+/+); bMPTP-B6.IL-23 p19 (+/+); 

cPBS-B6.IL-23 p19 (+/-); dPBS-B6.IL-23 p19 (-/-) with p < 0.05 indicating 

statistical significance. 

(C) Relative TH striatal density of PBS and MPTP-intoxicated mice (B6.IL-23 p19 

(+/+); B6.IL-23 p19 (+/-); and B6.IL-23 p19 (-/-). (D) Calculation of percent 

reduction in striatal density following MPTP compared to PBS control. Striatal 

densitometry was quantified using ImageJ. Means ± SEM of total numbers of 

surviving neurons or striatal density was determined for 7-8 mice per group and 

analyzed by one way ANOVA and Fisher’s LSD post-hoc test. Each group is 

compared to aPBS-B6.IL-23 p19 (+/+) and bMPTP-B6.IL-23 p19 (+/+).cPBS-
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B6.IL-23 p19 (+/-); dMPTP-B6.IL-23 p19 (+/-); ePBS-B6.IL-23 p19 (-/-) with p < 

0.05 indicating statistical significance. 

  



120 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Categorization of behaviors in a 24-hour time period.
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Figure 3 Categorization of behaviors in a 24-hour period. Following 5 days of 

acclimation, mice were placed singly in cages to monitor precise temporal and 

spatial measurement of mouse home cage behavior (including movement, 

feeding, and drinking). Behaviors were monitored continuously for 16 days 

followed by robust statistical evaluation. (A) Wild-type p19 +/+; (B) heterozygous 

p19 knockout; and (C) homozygous knockout p19 mice underwent 24-hour 

monitoring. Behaviors were analyzed and categorized as inactive (black); active 

(not forward locomotion, red); forward locomotion (green); time spent at water 

(blue); time spent at food (orange). N = 10 – 12 animals per group.  

 
 
 

 

 

 

 

 

 

 

 

  

  



122 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Time budgets in 12-hour light and dark cycles.   
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Figure 4. Categorization of behaviors in a 12-hour light and dark cycles. 

Behaviors during (A, C, D) 12-hour dark cycle and (B, D, F) light cycles were 

monitored and analyzed for (A, B) wild-type p19 (+/+); (C, D) heterozygous p19 

knockout mice; and (E, F) homozygous knockout mice. Behaviors were 

categorized as the following: inactive (black); active (not forward locomotion, 

red); forward locomotion (green); time spent at water (blue); time spent at food 

(orange) and percentage of each 12 hours cycle spend in that behavior 

calculated. N = 10 – 12 animals per group 
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Figure 5.Differences in locomotion time between strains of mice during 12-hour 
periods.  
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Figure 5. Differences in locomotion time between strains of mice between 12-

hour light and dark cycles. Comparisons between (A) B6.IL-23 p19 (+/+) (green) 

and B6.IL-23 p19 (+/-) (red); (B) B6.IL-23 p19 (+/+) (green) and B6.IL-23 p19 (-/-) 

(red); and (C) B6.IL-23 p19 (-/-) (green) and B6.IL-23 p19 (+/-) (red). Data 

expressed as means ± SEM for n = 10 – 12 animals per group with percent 

locomotion (Y-axis) plotted against hour (X-axis) with hours 6 – 12 and 24 – 30 

representing the light cycle and 12 – 24 representing dark cycle. *p ≤ 0.05 
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Figure 6 (continued on pages 45 and 46)…  
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Figure 6 (continued on page 46)…  
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Figure 6 Open field activity testing (movements).  
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Figure 6. Analysis of movements observed during open field activity testing. 

Analysis of general activity and natural behaviors were assessed using an 

automated open field activity system (Tru Scan 2.0, Coulbourn Instruments, 

Whitehall, PA, USA) to measure different types of movement recorded over a 20-

min observation period for each animal. Types of movement, classified as X-Y 

coordinate changes in the floor plane, were measured and broken down into the 

following categories: (A) total floor plane move time; (B) total floor plane rest 

time; (C) total floor plane movements; (D) total floor plane distance travelled; (E) 

mean floor plane velocity; (F) average distance traveled per movement; (G) total 

number of jumps; (H) mean number counter-clockwise turns; and (I) mean 

number clockwise turns. Means ± SEM were determined for 10 – 12 animals per 

group and analyzed by one way ANOVA and Tukey’s post-hoc test.  
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Figure 7 (continued on page 49)…   
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Figure 7. Analysis of stereotypic movements observed during open field activity 

testing. 
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Figure 7. Analysis of stereotypic movements observed during open field activity 

testing. Stereotypic movement is described as repetitive behaviors that do not 

contribute to large location changes progressively further from the starting point. 

Stereotypic movements are further defined as type-1 (plus or minus 0.999 bean 

spaces) and type-2 (plus or minus 1.499 beam spaces). Movement is considered 

stereotypic when movement is made in the X-Y dimensions and back to the 

original starting point that do not exceed 2 seconds apart. Three such 

movements must be made before a stereotypy episode starts. When the subject 

moves outside of the region of qualified coordinates, or fails to move within them 

for 2 seconds, the stereotypy episode breaks. OFAT data was categorized as (A) 

total number stereotypic-1 movements; (B) total number stereotypic-1 episodes; 

(C) total stereotypic-1 time; (D) total number stereotypic-2 moves; (E) total 

number stereotypic-2 episodes; (F) total stereotypic-2 time. Means ± SEM were 

determined for 10 – 12 animals per group and analyzed by one way ANOVA and 

Tukey’s post-hoc test. 
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Figure 8 (continued on page 52)…  
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Figure 8 (continued on page 53)…  
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Figure 8. Analysis of zone time during open field activity testing.  
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Figure 8. Analysis of zone time observed during open field activity testing. Time 

spent in distinct areas of the open field arena was observed and recorded, 

specifically the time that was spent in the margin of the arena (within a 2.5-beam 

margin of the walls) and center of the arena (region that is more than 2.5-beam 

spaces away from the arena walls) and the distance that was covered in these 

two areas of the arena. (A) Total distance travelled in the area margin; (B) total 

time spent in arena margins; (C) total center distance travelled; (D) total time 

spend in area center); (E) total number of area center entries; (F) percentage of 

time spent in arena center; (G) percentage of time spent in arena margins. Data 

expressed as means ± SEM were determined for 10 – 12 animals per group and 

analyzed by one way ANOVA and Tukey’s post-hoc test. 
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Figure 9 (continued on page 56)…  
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Figure 9. Analysis of vertical plane movements observed during open field 

activity testing. 
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Figure 9. Analysis of vertical plane movements observed during open field 

activity testing. In addition to movements along the floor plane, movements in the 

vertical plane are also observed and measured. These include (A) the total 

number of vertical plane entries; (B) total number vertical plan movements; (C) 

total time spent in the vertical plane; and (D) the total distance traveled in the 

vertical plane. Means ± SEM were determined for 10 – 12 animals per group and 

analyzed by one way ANOVA and Tukey’s post-hoc test. 
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Figure 10. Pilot study of latency to fall in wild-type and p19 knockout mice.   
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Figure 10. Pilot study of latency to fall in wild-type and p19 knockout mice. . 

Preliminary rotarod speed testing. Animals were habituated to the rotarod using 

the accelerating setting (6 - 16 rpm) over the course of 5 minutes. Mice were 

habituated 4 times a day for 3 consecutive days. On day 4, mice were tested for 

their ability to remain on the rotarod at a constant speed. Animals were 6, 8, 10, 

12, 14, and 16 rpm. Three trials were performed at each of the speed and latency 

to fall recorded for each animal with a maximum run time of 90 seconds. 

Averages for the 3 runs at each speed were calculated. Results expressed as 

average latency to fall ± SEM for n = 7 – 8 animals.  
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Figure 11. Evaluation of forced behavior using two rotarod methods. 
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Figure 11. Evaluation of forced behavior using two rotarod methods. Animals 

were habituated on an accelerating rotarod (6 – 16 rpm) for 5 minutes x 3 trials 

on 4 consecutive days. Following habituation, animals were placed on the 

rotarod at a constant speed of (A) 14 or (B) 16 rpm for a maximum of 90 seconds 

x 3 trials. Latency to fall was recorded and trials were averaged. (C) For the 

accelerating rotarod test, animals were tested for a maximum of 5 minutes on a 

rotarod accelerating from 0 – 18 rpm for 3 trials. Latency to fall was recorded and 

trials averaged. Means ± SEM were determined for 10 – 12 animals per group 

and analyzed by one way ANOVA and Tukey’s post-hoc test.  

  
  



144 
 

 
 
 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Evaluation of fine motor skill using adhesive removal test 
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Figure 12. Evaluation of fine motor skills using adhesive removal test. Analysis of 

fine motor skills was performed by evaluating latency for animals to remove a 

small adhesive dot from the tip of their nose. Adhesive dots were carefully placed 

on the nose of the animals and the animal was placed in a clean cage. Latency 

to successfully remove the dot was timed for three separate trials. Means ± SEM 

for 7 animals per group were calculated and analyzed by one way ANOVA and 

Tukeys post-hoc test. (A) 3-trial average latency to remove sticker. (B) Latency to 

remove sticker for each of the 3 trials. Means ± SEM were determined for 10 – 

12 animals per group and analyzed by one way ANOVA and Tukey’s post-hoc 

test. 
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Figure 13. Syntactic grooming in wild-type and p19 knockout mice  
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Figure 13. Syntactic grooming in wild-type and p19 knockout mice. Each mouse 

was videotaped by an observer for 10 minutes in their home cage. Numbers of 

complete and incomplete grooming cycles were counted in a blinded fashion. 

Data presented as means ± SEM were determined for n = 7 - 8 animals per 

group and analyzed by one way ANOVA and Tukey’s post-hoc test.   
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CHAPTER FOUR 

TARGETING CELLULAR MIGRATION AS A NOVEL TREATMENT FOR 

PARKINSON’S DISEASE 

ABSTRCT 

Infiltration of CD4+ T cells in the substantia nigra has been described in post 

mortem tissues from Parkinson’s disease (PD) patients and these findings were 

later replicated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

mouse model of PD. While halting infiltration of CD4+ T cells has proven 

beneficial in other neurodegenerative disease, it has yet to be adequately tested 

or utilized in PD and PD models. Using therapies targeting CD4+ T cell adhesion 

molecules we aimed to block the infiltration of antigen-specific T cells into the 

brain of MPTP-intoxicated mice and elicit dopaminergic neuroprotection. We 

conclude that monotherapy did not elicit significant neuroprotection given at the 

dose and times chosen.  

INTRODUCTION 

The brain was once thought to be an immune privileged site and not subject to 

the same immune surveillance as in other areas of the body. This theory was first 

disproven using the experimental autoimmune encephalomyelitis (EAE) model of 

multiple sclerosis (MS) wherein injections of radioactively labeled 

encephaliotgenic T cell blasts were found within the brain parenchyma after 6 

hours (Engelhardt, 2010). Since then studies have worked to understand to 

understand how the immune system can play a role in several 
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neurodegenerative diseases including MS, amyotrophic lateral sclerosis (ALS), 

Alzheimer’s disease (AD) and PD. Data from post-mortem studies provided the 

first evidence for neuroinflammatory processes in PD. In these studies both 

CD4+ and CD8+ T cells were found in close proximity to dopaminergic neurons 

in PD brains as well as MPTP-intoxicated mice at levels exceeding 10-fold those 

found in brains of healthy controls (Speciale et al., 2007; Brochard et al., 2009; 

Saunders et al., 2012).  

In order for peripheral immune cells to remain in the brain they must be 

antigen specific and encounter their antigen of interest. Within the substantia 

nigra of PD patients, nitration of α-syn (N-α-syn) leads to accumulation within 

Lewy bodies (McCormack et al., 2012) . Upon examination of the microglial 

phenotype induced by nitrated and aggregated α-syn, it was shown that the 

modified protein induces a neurotoxic inflammatory phenotype that accelerates 

the death of dopaminergic neurons (Bassotti et al., 2000; Zhang et al., 2005; 

Zhou et al., 2005; Thomas et al., 2007; Reynolds et al., 2008). This suggests 

aggregated α-syn or N-α-syn, when released from dying neurons, may stimulate 

resident brain microglia resulting in their sustained activation (Benner et al., 

2008). This theory was confirmed in vitro showing N-α-syn can activate microglia 

causing them to secrete inflammatory proteins (Reynolds et al., 2009). 

Compounding evidence specifically examining effects of N-α-syn in mouse 

models of PD have shown the presence of N-α-syn in draining cervical lymph 

nodes that in turn “educate” peripheral leukocytes. Furthering the interest in N-α-

syn and its effects on neurodegeneration came from findings that showed 
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adoptive transfer of N-α-syn specific T cells exacerbated MPTP-induced 

dopaminergic cell death (Benner et al., 2008). These studies show that N-α-syn 

specific T cells accelerate neuronal death by activating microglia and promoting 

the release of neurotoxic cytokines. Taken together, these studies make a strong 

case implicating N-α-syn as a contributing factor to neuroinflammation in PD.  

While the brain is not completely devoid of immune cells, entry of 

peripheral immune cells into the brain is tightly controlled and regulated. 

Expression of correct cell adhesion molecules (CAMs) on peripheral immune 

cells and brain endothelial cells is absolutely essential for extravasation from 

circulation into the brain (Figure 1). An additional level of regulation is provided 

by the unique profile of CAMs upregulated in response to different antigens and 

disease states. For example, the ability to transfer EAE using myelin basic 

protein (MBP) T cells was dependent on glycosylation of PSGL-1, the binding 

ligand for the CAM P-selectin (Deshpande et al., 2006). In human MS patients, 

the number of circulating CD4+ T cells expressing high levels of PSGL-1 was 

shown to be increased, indicating these cells have an enhanced ability to interact 

with brain endothelial cells (Bahbouhi et al., 2009; Engelhardt, 2010). Therefore, 

therapies that are aimed at modifying cellular migration and targeting specific 

CAMs may prove to be very beneficial in neurodegenerative diseases including 

PD.  

Research looking at infiltration of circulating lymphocytes across ECs has 

proven that the expression of CAMs and cell adhesion ligands changes following 

antigen activation and/or cytokine release. These changes typically precede 
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disease initiation and work to either increase or decrease the binding affinity of 

circulating lymphocytes to target endothelium. Therefore, release of N-α-syn 

could be the initiating factor that leads to changes in CAM expression on 

peripheral immune cells and leads to their enhanced ability to cross the BBB and 

exacerbate dopaminergic neurodegeneration.  

Unlike MS, the CAM(s) and CAM ligands involved in T cell infiltration in 

PD and PD models have not yet been identified. Studies have shown that the T 

cell subset of major interest in the MPTP-model are CD4+ TH17 cells (Benner et 

al., 2004; Reynolds et al., 2007; Reynolds et al., 2009; Reynolds et al., 2010; 

Mosley et al., 2012). The more prominent ability of TH17 cells to exacerbate 

neurodegeneration in MPTP-models may, in part, be explained by the CAM 

expression on these cells. A recent study identified melanoma cell adhesion 

molecule [MCAM (CD146)] expressed on TH17 cells and its ligand, laminin 411, 

expressed within the vascular endothelial basement membrane (Flanagan et al., 

2012), which does not appear to be expressed by TH1 cells. Anti-MCAM 

antibodies inhibited the in vitro interaction of MCAM and laminin 411, and 

administration of anti-MCAM antibodies to recipient mice prior to adoptive 

transfer of encephalitogenic TH17 cells reduced TH17 cell infiltration and 

ameliorated disease in EAE. These data suggested that MCAM expression, if 

highly restricted to TH17 cells and this may provide insight into the role of the 

adaptive immune system in PD progression as well as other TH17-driven 

immune reactions. Thus, the goal of the current study was to evaluate whether 
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blocking MCAM could provide a level of protection against MPTP and adoptive 

transfer of N-α-syn specific T cells.  

MATERIALS AND METHODS 

Animals 

Adult male C57BL/6J and B6.Cg-Tg (CAG-DsRed.MST) (DsRed) mice were 

purchased from Jackson Laboratories (Bar Harbor, ME). Mice 6 – 10 weeks of 

age were housed and maintained on a 12:12 hr light/dark cycle with ad libitum 

access to food and water and were randomly assigned to treatment groups. The 

study was conducted in accordance with the animal care guidelines issued by the 

National Institutes of Health and approved by the Institutional Animal Care and 

Use Committee of the University of Nebraska Medical Center.  

N-4ySyn immunization 

DsRed mice that possess red fluorescent protein (RFP) expression under control 

of the chicken β-actin promoter were used as donor mice. DsRed mice were 

immunized with N-4ySyn (10 µg) emulsified Freund’s complete adjuvant (CFA) 

containing 1mg/mL Mycobacterium tuberculosis. Immunized animals were 

boosted 2 weeks later with N-4ySyn emulsified in Freund’s incomplete adjuvant 

(IFA). 5 days after boost, splenocytes were isolated and resuspended as a single 

cell suspension in Hank’s balanced salt solution (HBSS) to be used in adoptive 

transfer. 

Acute MPTP intoxication and adoptive transfer 



153 
 

Mice received 4 subcutaneous (s.c.) injections of MPTP-HCL (18 mg/kg free 

base in a volume of 10 ml/kg) or PBS (10 mL/kg) every 2 hours for 4 doses. 

Twelve hours after the last MPTP dose, 30 x 106 donor cells from N-4ySyn 

immunized animals were adoptively transferred via tail vein injection. MPTP 

handling and safety measures were in accordance with the National Institutes of 

Health, the University of Nebraska Medical Center, and prior published 

guidelines (Przedborski et al., 2001).  

Blocking T cell infiltration 

Studies done by our lab have previously shown that adoptive transfer of TH1 or 

TH17-polarized T cells can exacerbate MPTP-induced neuronal lesion. 

Therefore, blockage of T cell infiltration into the CNS could lead to a level of 

neuroprotection or reduction in MPTP-induced neuroinflammation. Using the 

sphingosine-1-phosphage inhibitor, fingolimod, prevents peripheral immune cells 

from exiting secondary lymph organs, effectively reducing the number of 

circulating immune cells. Therefore, we chose to evaluate the efficacy of 

fingolimod to prevent or reduce T cell infiltration into the midbrain of MPTP-

intoxicated mice and quantify surviving dopaminergic neurons. Twenty-four hours 

prior to the first MPTP injection and adoptive transfer, groups of animals were 

treated with either 1 mg/kg fingolimod (MPTP/fing/AT) or 10 mg/kg anti-MCAM 

antibody (MPTP/anti-MCAM/AT). Daily injections with anti-MCAM or fingolimod 

continued until the end of the study. To serve as controls, one group of MPTP-

intoxicated mice received 10 mg/kg rat isotype control antibody 

(MPTP/Isotype/AT) and one group received no additional treatment (MPTP/AT). 
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Immunohistochemistry and stereological analysis 

7 days post-MPTP or PBS administration, mice were terminally anesthetized, 

transcardially perfused with PBS followed by 4% paraformaldehyde (PFA) in 

PBS. Brains were harvested and post fixed in PFA overnight, cryoprotected in 

30% sucrose in PBS for 48 hours, snap frozen in 2-methylbutane, embedded in 

OCT compound, and 30 µm sections collected through the midbrain. Tissue 

sections were processed free-floating in 48-well plates. Tissues were 

immunostained with rabbit anti-TH (1:2000 CalBiochem/EMD Millipore, Billerica, 

MA) and HRP-conjugated goat anti-rabbit IgG (1:400, Vector laboratories, 

Burlingame, CA), and visualized with diaminobenzidine (DAB). Tissues were 

mounted on slides and counterstained for Nissl substance using thionin. Neurons 

expressing TH and nissl (TH+Nissl+) were considered dopaminergic and 

quantified by stereological analysis (StereoInvestigator, MBF Bioscience, 

Williston, VT). Additional sets of tissues were mounted on slides and 

coverslipped with Vectashield mounting medium for fluorescent tissues (Vector 

laboratories, Burlingame, CA) to be evaluated for the expression of infiltrating 

cells from DsRed donor mice. 

Stereological analysis of neurons in the substantia nigra was performed 

using optical fractionator module stereology software (StereoInvestigator, MBF 

Bioscience, Williston, VT) interfaced with a Nikon Eclipse 90i fluorescence 

microscope equipped with a bright camera. Using simple random sampling 

(SRS) image series workflow, the region of interest (ROI) containing the 

substantia nigra was outlined for one hemisphere of each tissue section at a 4x 
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magnification. Images of each ROI taken using a 40x were taken at random, 

equally spaced intervals. Workflow parameters were defined to count 

approximately 20% of the total neuron population in the substantia nigra 

(counting frame size 120 x 100 um, 245 x 240 um grid size) and Gunderson 

coefficient of error (C.E. m=1) was ≤ 0.01. Estimated population size was 

generate by the software and multiplied by 2 to get an overall population 

estimation for both hemispheres of the brain. 

Flow cytometric analysis 

Prior to perfusion, a small volume of whole blood was collected from mice (PBS, 

MPTP/AT, and MPTP/Fing/AT) and held in EDTA coated tubes. Red blood cells 

(RBCs) were lysed and cells incubated with FITC-conjugated anti-CD4+ 

antibodies. Cells were then fixed and submitted to the University of Nebraska 

Center flow cytometric core facility. Using forward scatter (FSC) and side scatter 

(SSC) lymphocyte populations were first gated from the total cell population. 

Using the quadrant gate CD4+ and DsRed+ cells were isolated to identify single 

and double positive cells. Percentages of CD4+, DsRed+, and CD4+/DsRed+ 

cells was calculated based on the parental population.  

Statistical analysis 

All tests were performed using Statistica (StatSoft, Inc. Tulsa, OK) and data 

expressed as mean ± standard error of the mean (SEM). Statistical significance 

was evaluated by one-way ANOVA followed by post-hoc comparisons using 

Fisher’s LSD.  
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RESULTS 

Blocking MCAM provides partial neuroprotection against N-4ySyn-specific 

splenocytes following MPTP 

TH17 cells have been shown to play a role in exacerbating dopaminergic 

neurodegeneration. Therefore specific targeting of TH17 using an antibody 

specific to MCAM was utilized in the MPTP/adoptive transfer model of PD. 

Splenocytes isolated from donor mice immunized with the antigen N-4ySyn were 

adoptively transferred into recipient mice 12 hours after the last MPTP dose. To 

determine the effects blocking TH17 cell infiltration would have we administered 

an antibody specific for MCAM to beginning 24-hours pre-MPTP and continuing 

until day 7 post-MPTP, wherein the number of surviving neurons were 

quantified.. Additionally, a group of animals were administered fingolimod, a 

sphingosine-1 phosphate inhibitor known to sequester T cells within secondary 

lymphoid organs (Mehling et al., 2008; Mehling et al., 2010; Slavin and Zamvil, 

2010; Sheridan and Dev, 2014). Mice that received anti-MCAM therapy showed 

a slight increase in the number of surviving dopaminergic neurons compared to 

those mice treated with MPTP/AT or MPTP/Isotype/AT (Figure 2).  

Fingolimod did not decrease number of CD4+ cells in circulation 

Fingolimod is a sphingosine-1 phosphate inhibitor that is an approved drug for 

the treatment of MS. By sequestering lymphocytes in lymph nodes, the cells are 

unable to circulate and infiltrate the brain where they would elicit a response. By 

administering fingolimod to MPTP-intoxicated animals that received donor cells 



157 
 

from N-4ySyn immunized animals, we hypothesized that the MPTP-intoxicated 

animals would be protected from MPTP-induced neurodegeneration in a similar 

manner to mice receiving anti-MCAM therapy. However, we did not show any 

neuroprotection in the fingolimod group, but rather we saw increased 

neurodegeneration compared to mice who received anti-MCAM (Figure 2). 

 Whole blood was collected from PBS and MPTP-intoxicated animals who 

received adoptively transferred cells and lymphocytes stained with anti-CD4 

antibodies. Adoptively transferred cells were isolated from N-4ySyn-immunized 

DsRed donor mice so that donor antigen-specific cells could be easily detected in 

the circulation and CNS of MPTP-intoxicated mice. Using forward and side 

scatter flow cytometric data, CD4+ lymphocytes populations were gated based 

upon parent lymphocyte populations (Figure 3A) and DsRed expression (Figure 

3B). CD4+DsRed+ cells were calculated based upon the parental lymphocyte 

population (Figure 3C). Unexpectedly, an increased percent of CD4+ cells were 

found in circulation in fingolimod treated animals compared to PBS controls, 

however it did not reach statistical significance. The percentage of DsRed+ 

(donor cells) in circulation was marginally decreased in fingolimod treated mice 

compared to controls, but not to the level of statistical significance (Figure 3B). 

Similarly, slight differences were seen in the percentage CD4+DsRed+ in 

animals that received fingolimod compared to those who did not (Figure 3C).  

Donor cells were not detectable in the substantia nigra of MPTP-intoxicated 

recipient mice 
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In this study we chose to us DsRed mice as the source of adoptively transferred 

N-4ySyn splenocytes. DsRed mice expressed RFP under control of the β-actin 

promoter so all their cells express RFP. By using these mice we would be able to 

identify and quantitate infiltrating splenocytes in the substantia nigra of MPTP-

intoxicated mice. Following processing of tissues and mounting on slides, tissues 

were analyzed under fluorescent microscopy. In this study we were unable to 

identify any cells within the substantia nigra that expressed RFP.  

DISCUSSION 

The lack of significant neuroprotection afforded with anti-MCAM therapy in this 

study could be due to a number of factors. First, administration of the MCAM 

antibody may have been needed at times other than 1 hour prior to adoptive 

transfer or the antibody may have needed to be given at a greater concentration 

to effectively inhibit MCAM binding. Secondly, a relatively low percentage of 

adoptively transferred cells expressed MCAM prior to adoptive transfer and this 

would have reduced, even further, the chance of anti-MCAM antibodies finding 

its target within the entire circulation. Third, because we did not activate 

splenocytes from donor mice prior to AT, the cells may not have upregulated 

MCAM expression as they would have if stimulated with N-4ySyn or anti-CD3. 

Lastly, T cells extravasation from the circulation is not dependent on only one 

CAM but rather a multiple CAMs that act in redundant and synergistic 

mechanisms. This leads to the possibility that MCAM may be playing a minor role 

in the infiltration of TH17 cells following MPTP lesion or, alternatively, other 

subsets of CAMs may be compensating for the blockage of MCAM and allowing 
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for CD4+ T cells to enter the. Interestingly, animals that received fingolimod 

treatment following MPTP and AT had significantly fewer surviving dopaminergic 

neurons suggesting the sequestration of all T cells in lymphoid organs is 

particularly detrimental. This explanation is in agreement with other findings that 

show CD4+ regulatory T cells provide a level of protection against MPTP-lesion 

and blocking all CD4+ T cells is a therapeutic approach that should be avoided 

but rather a variety of CAMs should be administered to block only the CAMs that 

play a large role in cell extravasation. 

Fingolimod is an approved drug for the treatment of relapsing/remitting MS 

and works by preventing lymphocytes from leaving the lymph nodes and 

returning to circulation. We hypothesized that administering fingolimod in the 

MPTP-mouse model of PD would work in much the same way and sequester 

lymphocytes in the lymph nodes, thus reducing the number of lymphocytes in 

circulation. Administration of fingolimod at 1 mg/mL staring 1 day prior to MPTP-

intoxication and continuing until day 7 did not result in reduced number of 

circulating lymph nodes as measured by flow cytometric analysis. Fingolimod has 

been proven to sequester T cells in secondary lymph organs, effectively reducing 

the number of T cells in circulation. In the study discussed here, we were unable 

to validate these results in the MPTP mouse model of PD. We expected that in 

MPTP-intoxicated mice that received cells from donor mice, there were be a 

reduced number of T cells in the blood of mice that also received fingolimod to 

those that did not. These unexpected results could be a result of inappropriate 
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fingolimod dosage or time of administration or a result of the collection process 

used when obtaining a sample of blood from the animals. 

The lack of red donor cells within the substantia nigra of MPTP/AT control 

mice does not in itself prove cells never crossed the BBB and infiltrated into the 

substantia nigra but rather can be explained by several mechanisms. First, 

MPTP induces peak neuroinflammation and rate of neuronal death by 48 hours, 

both of which are typically resolved by 4 days post-treatment (Jackson-Lewis et 

al., 1995; Kurkowska-Jastrzebska et al., 1999; Jackson-Lewis and Przedborski, 

2007). Therefore at 7 days post-MPTP, when the tissues were harvested, donor 

CD4+ T cells that infiltrated into the substantia nigra could have migrated back 

out of the substantia nigra or undergone cell death. Secondly, the number of cells 

adoptively transferred, 30 x 10^6, could have been too low for a large enough 

number of cells to successfully cross the BBB and be visible with the microscopy 

method utilized in our study. Lastly, the stability and intensity of RFP on CD4+ T 

cells was not specifically addressed in this study and it is plausible that RFP 

expression was lost or significantly reduced so as these cells were no longer 

distinguishable by the presence of RFP.  

In conclusion, we demonstrated that a dose of 10 mg/kg of anti-MCAM 

therapy alone is not sufficient to elicit neuroprotection in the MPTP-mouse model. 

While our results were not as expected, it does not rule out that a combination 

therapy that includes anti-MCAM as well as other CAM blocking agents would 

not be protective. The tests described herein should provide a foundation for 
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which additional studies could be performed aimed at blocking T cell entry to the 

substantia nigra and provide a level of neuroprotection to dopaminergic neurons.  
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Figure1. Migration of activated T cells into brain. Peripherally, naïve T cells (N) 

encounter APC that present peptides from aberrant, misfolded, or aggregated 

proteins associated with neuroinflammatory processes. Upon presentation of 

antigen and delivery of appropriate co-stimulatory signals by APC, naïve T cells 

recognizing the antigen/MHC complex via the TCR become activated (A) leading 

to upregulation of CAMs on the T cell surface. These receptors and ligands 

include, but are not limited to, integrins, MCAM, and PSGL-1. Similarly, at sites of 

neuronal injury and neuroinflammation, danger signals, pro-inflammatory 

cytokines, and chemokines induce upregulation of endothelial associated CAMs 

on the basolateral side of the blood brain barrier. Following upregulation of 

CAMs, activated T cells (such as pro-inflammatory, anti-inflammatory or 

regulatory T cells) enter the vasculature and begin the process of extravasation 

via either a trans- or para-cellular route. This migratory process occurs in a step-
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wise manner beginning with T cells loosely tethering to endothelial cells via the 

binding of T cell ligands to selectins, such as E-selectin and other CAMs, such as 

VCAM, ICAM, and laminin 411 on the luminal side of the endothelial cells. Loose 

tethering allows the cell to roll along the luminal side of the endothelium and 

interact with CAMs, pulling it closer to the endothelial cell layer to eventual 

capture. Upon clustering of receptors and ligands on T cell and endothelial cell 

surfaces, the T cell begins “crawling” across the endothelial surface until 

reaching an endothelial cell junction, which signals the initiation of extravasation. 

Transmigration proceeds, via a chemotactic gradient allowing antigen-specific T 

cells entrance to the brain. Once in the parenchyma, activated T cells recognize 

antigen presented by MHC, initiating the efferent response program of the T cells 

to deliver either effector or regulatory function that supports the respective 

neurodegenerative or neuroprotective outcome. 
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Figure 2. Blocking MCAM following N-4YSyn-specific splenocyte transfers elicits 

partial neuroprotection 
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Figure 2. Blocking MCAM following N-4YSyn-specific splenocyte transfers elicits 

partial neuroprotection. N-4YSyn-specific Teffs were adoptively transferred into 

MPTP-intoxicated mice. Appropriate controls included MPTP-only mice, MPTP + 

adoptive transfer, MPTP + adoptive transfer + isotype control. Antibody and 

fingolimod treatments began the day before adoptive transfer and continued until 

the end of study. One group was treated with only PBS (PBS), and served as 

total neuron control. Brains were sectioned through the midbrain, immunostained 

with rabbit anti-TH and HRP-conjugated goat anti rabbit IgG, and visualized with 

DAB. Total numbers of surviving dopaminergic neurons (TH+) in the SN were 

quantified by stereological analysis (Stereo Investigator, MBF Bioscience). 

Means ± SEMs of total numbers of surviving dopaminergic neurons were 

determined from 5–8 mice per treatment group and were compared by one way 

ANOVA and Fisher’s LSD post-hoc test.  
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Figure 3. Flow cytometric analysis of blood from animals with and without 
fingolimod treatment. 
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Figure 3 Flow cytometric analysis of blood from animals with and without 

fingolimod treatment. Seven days post-MPTP, blood samples were collect from 

mice who received adoptive transfer of DsRed N-4ySyn specific splenocytes with 

and without fingolimod or anti-MCAM antibodies as well as no-treatment controls. 

Red blood cells were lysed with ACK lysis buffer and remaining cells were 

stained with FITC-conjugated anti-CD4+ antibodies. Single cell suspensions 

were submitted to the University of Nebraska Medical Center flow cytometric 

core facility for expression of DsRed and FITC. Flow cytometric data was first 

gated on the parental lymphocyte population based on forward and side scatter. 

The parental population was then gated on (A) FITC (CD4+) and (B) DsRed (N-

4ySyn adoptively transferred) and percentages of CD4+DsRed+ calculated (C). 

Values represented as mean ± SEM for n = 4 mice/group.  
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CONCLUSIONS 

 

From the data presented above, it is obvious that many safeguards are in place 

to protect and maintain normal neuronal signaling. This includes the possession 

of an excess number of dopaminergic neurons which allow maintenance of 

normal motor and behavior functions in the event that a significant number of 

dopaminergic neurons are lost. Secondly, a short time after ablation of 

dopaminergic neurons, surviving non-dopaminergic neurons undergo a 

phenotypic shift which is hypothesized to compensate for the loss of neurons and 

allow normal levels of dopamine signaling. Third, from a decreased number of 

dopaminergic neurons, surviving neurons can possibly express double the 

number of termini as a normal neuron, presumably to preserve adequate 

signaling in the striatum.  

Unlike GABAergic neurons in other areas of the CNS (Achim et al., 2012; 

Achim et al., 2014) molecular cues that midbrain GABAergic neurons rely on are 

poorly understood and described. This extends to their migration patterns and 

temporal appearance, as well as transcriptional regulation of these processes 

(Achim et al., 2012). Throughout the CNS, dopaminergic neurons are known to 

have a direct effect on GABAergic neurons; negatively regulating TH expression 

by GABAergic neurons and positively regulating GABAergic neuron migration 

and establishment. As shown in chapter 2, these neurons, previously believed to 

represent distinct and non-overlapping populations, exhibit some plasticity upon 

injury with MPTP. This opens new possibilities for PD therapy. For example, as 

an alternative to restoring dopamine levels using dopamine replacement therapy 
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with drugs such as L-DOPA, other strategies could instead target GABAergic 

neurons in the vicinity to induce TH expression and synthesize dopamine. These 

neurons would then comprise a novel population in the adult midbrain; namely 

functional TH+GAD67+ neurons. Determining the conditions and factors 

necessary to trigger phenotypic and/or functional changes in GABAergic neurons 

would greatly aid in the development of novel therapies for PD. 

 An increase in phosphorylated serine residues within the regulatory 

domain of TH was demonstrated in this study and has been well described by 

others. The lingering question is whether the increased phosphorylated Ser31 is 

on TH expressed on the surviving dopaminergic neurons or if it is a consequence 

of TH expression in the newly described TH+GAD67+ neurons. If the latter, then 

that suggests an additional mechanism by which dopamine synthesis could be 

increased in an otherwise dopamine-depleted environment. Because 

phosphorylation controls both the expression and activity of TH, it is plausible 

that TH produced by both the dopaminergic and GABAergic neurons is being 

phosphorylated to provide the best opportunity to increase dopamine synthesis.  

 In addition to the TH expression in neurons, cytokines involved in 

neuroinflammation have been proven to play a role in the migration, 

differentiation, and survival of neurons (Whitney et al., 2009; Kim et al., 2015). 

The severity and duration of neuroinflammation, as well as the profile of 

inflammatory molecules involved in neuroinflammation has a profound effect on 

the neurogenic or neurodestructive outcome (Whitney et al., 2009). Extensive 

studies have shown that inflammation and cytokines affect neurogenesis in 
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neurodegenerative diseases in a positive and negative manner (Arnett et al., 

2001; Dybedal et al., 2001; Ben-Hur et al., 2003; Ming and Song, 2005; Iosif et 

al., 2006; Whitney et al., 2009; Keohane et al., 2010; Kim et al., 2015). However, 

current literature does not adequately address the role that IL-23 or TH17-

associated cytokines play in dopaminergic neurogenesis, survival, or migration. 

Data presented herein in p19 knockout mice, suggests that IL-23 plays a role in 

the establishment of normal numbers of dopaminergic neurons in the substantia 

nigra, but whether that role lies in neurogenic, migration, integration, or survival 

processes remains enigmatic. One possible mechanism explaining the 

significantly reduced number of dopaminergic neurons in p19 knockout mice 

draws on findings that show cytokines play a role in the expression of CAMs on 

cellular surfaces. CAMs play an important role in neuronal development, aiding in 

migration from sites of neurogenesis to their final target location as well as 

ensuring permanent residence in the area. In mice lacking p19 and IL-23, the 

expression of adhesion molecules on dopaminergic neurons is plausibly 

insufficient to allow integration into the midbrain due to inadequate cytokine 

levels. Neurons without the proper expression pattern of CAMs on their surface 

fail to take permanent residence in the substantia nigra and innervate into the 

striatum and signaling along the IL-23/IL-17 axis has been shown to regulate 

migration of cells (Kawano et al., 1995; Blum, 1998; Mehler and Kessler, 1998).  

In contrast to homozygous p19-/- knockout mice, heterozygous p19+/- 

mice have normal densities of dopaminergic termini within the striatum. The 

normal striatal density, despite the significant reduction in neuronal bodies within 
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the substantia nigra, suggests that each dopaminergic neuron in the substantia 

nigra possesses roughly double the number of termini that innervate into the 

striatum. I posit that alterations in cytokine profiles between heterozygous and 

homozygous knockout mice are, in part, responsible for this finding. 

Heterozygous mice presumably have some level of functional TH17 cells and 

therefore are capable of secreting TH17 associated cytokines. If cytokine levels 

are responsible for the development or migration of neurons versus sprouting of 

neurons, higher amounts of cytokines present in heterozygous knockout mice 

may result in the establishment of proper striatal innervation regardless of the 

number of cell bodies present (Mehler and Kessler, 1998). Homozygous 

knockout mice lacking all TH17 cells also lack the cytokine signals needed for 

neuronal establishment of the substantia nigra and innervation into the striatum.  

 Cell replacement therapy is an area of research that is gaining popularity 

as a method to restore both the numbers of dopaminergic neurons in the 

substantia nigra as well as the amount of dopamine available in the striatum 

without the use of pharmaceuticals. The first steps toward clinical utilization of 

cell replacement therapy have been taken using transplantation of human fetal 

midbrain tissue. These studies have provided proof of concept for cell 

replacement therapy being well-tolerated in PD (Lindvall and Bjorklund, 2004; 

Drouin-Ouellet and Barker, 2012; Thomsen et al., 2014), and human midbrain 

dopaminergic neurons have been successfully generated from multiple cell types 

in vitro including by lineage reprogramming (Caiazzo et al., 2011; Kim et al., 

2011; Pfisterer et al., 2011; Arenas et al., 2015). However, major impediments 
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with neuronal replacement strategies are the non-autonomous development of 

Lewy bodies in transplanted neurons and the susceptibility and eventual loss of 

the Lewy body-containing neurons. Another interesting strategy could achieve 

successful reprogramming of surviving cells in the substantia nigra which would 

lead to monumental advances in the treatment of PD. In order for this to occur, a 

full picture of the essential mechanisms that control dopaminergic neuron 

development is needed to enable the application to generation of functional 

dopaminergic neurons from other neuronal lineages, such as those along the TH-

inducible GABAergic lineage. In order for neuron reprogramming to be 

efficacious in PD treatment, newly formed dopaminergic neurons must meet a 

number of criteria (Arenas et al., 2015). First, the neurons must acquire a stable 

mature dopaminergic phenotype. Second, neurons must re-innervate into only 

the striatum and no other off-target locations. Third, they must synthesize and 

release dopamine and exhibit appropriate firing patterns associated with 

dopaminergic neurons. Fourth, reprogramming of cells into a dopaminergic 

lineage must result in improvements in physical symptoms associated with PD. 

Lastly, the newly transplanted or reprogrammed neurons must remain resistant 

to Lewy body development and induced susceptibility to injury and degenerative 

processes. Along those same strategies, if utilized together an interesting 

question arises as to whether too much dopamine production by transplanted 

neurons and reprogrammed neurons would produce untoward outcomes such as 

dyskinesias in the PD patient.    



173 
 

The data showing significantly decreased numbers of dopaminergic 

neurons in p19 knockout leads to the question as to whether this is a 

consequence of abnormal neurogenesis, neuronal migration, neuronal 

differentiation, or survival of terminally differentiated neurons. To date, over 50 

genetic mutations and mutant mice have been described that lead to effects on 

dopaminergic neuron development and survival (Hegarty et al., 2013). Using 

findings from these modes in combination with my data will help to pinpoint 

factors required for normal midbrain development. This would have direct clinical 

applications by targeting newly identified factors with the goal of restoring neuron 

numbers by mobilizing dopaminergic neurons from neurogenic areas to areas of 

neurodegeneration.  

If we can delineate the mechanism(s) to increase neuronal migration, 

multiple benefits over traditional cell replacement therapy would be gained. 

Clinical trials evaluating the efficacy of fetal stem cell transplantation into the 

striatum of PD patients failed to show significant improvements to patients 

compared to those who underwent sham surgery. In addition to the technical 

difficulty of this therapy, fetal stem cell transplantation carries multiple ethical 

issues (Chinta and Andersen, 2005). As an alternative to fetal stem cell 

transplantation and the associated issues, information collected from my studies 

regarding how neuronal phenotypes are controlled could help develop 

techniques to enable stem cells or non-dopaminergic neurons from PD patient’s 

own bodies to be induced and become dopaminergic neurons. These neurons 

can then be triggered to migrate to areas of neurodegeneration and effectively 



174 
 

restore the number of dopaminergic neurons in the substantia nigra. This will 

treat not only the physical symptoms of the disease, but possibly reverse the 

disease itself. If dopaminergic neurons can be replaced by one’s own cells at a 

rate equal to the rate of neuronal loss, the neuronal population can be 

maintained resulting in alleviation or disappearance of physical symptoms. 

Based upon original findings from our laboratory showing a detrimental 

effect of TH17 cells in the MPTP mouse model of PD (Benner et al., 2004; 

Reynolds et al., 2010), we hypothesized knockout of TH17 cells in a transgenic 

mouse would result in neuroprotection from MPTP induced cell death. However, 

this hypothesis was disproven due to the finding that p19 knockout mice show 

the same sensitivity to MPTP within the substantia nigra and striatum compared 

to wild-type mice (chapter 4). Expanding on data described above (chapter 3) 

wherein pro-inflammatory cytokines were implicated in controlling neuronal 

migration (Arnett et al., 2001; Dybedal et al., 2001; Ben-Hur et al., 2003; Monje et 

al., 2003; Chen et al., 2004; Iosif et al., 2006; Whitney et al., 2009; Keohane et 

al., 2010; Kim et al., 2015), I posit that  by blocking TH17 cells with the use of 

anti-MCAM or fingolimod, the previously undescribed beneficial effects of pro-

inflammatory cytokines were unknowingly blocked. This conclusion is supported 

by data in chapter 3 (figures 5 and 8). These figures demonstrate that in MPTP 

intoxicated mice, even in the absence of dopamine replacement therapy, the 

numbers of TH+GAD67+ neurons are significantly increased. This suggests that 

in the absence of continued neurodegeneration, pro-inflammatory cytokines elicit 
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a novel compensatory mechanism to upregulate the expression of TH by 

GABAergic neurons. 

These results propose three compensatory mechanisms in the MPTP 

mouse model of PD in response to a reduction in striatal dopamine levels. First, I 

demonstrated a phenotypic shift of GABAergic neurons in the substantia nigra 

following MPTP-intoxication. The number of GABAergic neurons that undergo 

this phenotypic shift and begin expressing TH increases with the addition of 

dopamine replacement therapy in MPTP-lessoned mice. This leads to a potential 

increase in the production of dopamine by increasing expression of the rate-

limiting enzyme involved in dopamine synthesis. Secondly, using p19 deficient 

mice, I showed that a significant reduction of dopaminergic neurons does not 

result in measurable behavior or motor deficits compared to wild-type mice. This 

could be for a number of reasons: slower removal of dopamine, increased 

hypersensitivity of dopamine receptors, or increases in the number of dopamine 

producing striatal interneurons (Brotchie and Fitzer-Attas, 2009). The finding that 

heterozygous p19+/- mice show no reduction in striatal density compared to wild-

type mice, but the number of dopaminergic neurons in the substantia nigra is 

roughly half of that found in a wild-type, points to a compensatory mechanism 

that results in increased synaptogenesis or sprouting of new terminals by 

surviving dopaminergic neurons (Rosenblad et al., 1998; Backman et al., 2006; 

Brotchie and Fitzer-Attas, 2009). Lastly, I presented data showing a lack of 

dopaminergic neuroprotection with the TH17 blocking agent, MCAM or 

sphingosine-1 phosphate inhibitor fingolimod – contradictory to the original 
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hypothesis. This finding points to a novel effect of pro-inflammatory in which TH 

expression by surviving neurons is dependent on resolution of 

neurodegeneration and presence of pro-inflammatory cytokines.  

Herein, I have presented data showing novel avenues by which to 

approach the treatment of PD and other neurodegenerative diseases. First, I 

presented the novel finding that GABAergic neurons in the substantia nigra 

undergo a phenotypic shift in response to dopaminergic neurodegeneration or 

dopamine replacement therapy, in the form of L-DOPA or BL-1023, and begin 

expressing TH. This phenotypic shift was seen with and without initial MPTP-

induced lesion, but the greatest increase in TH+ GABAergic neurons was in 

leisoned animals treated with drug. Showing the initial increase in TH+ neurons 

was not due to neurogenesis, proved GABAergic neurons in the substantia nigra 

show a degree of plasticity in their neuronal phenotype. This finding can be 

applied to future PD treatments aimed at increasing dopamine synthesis and 

restoration of dopamine levels in the striatum without the need for dopamine 

replacement therapy. Secondly, I presented data that showed significantly fewer 

dopaminergic cells are required to control motor function and behavior in p19 

knockout animals compared to wild-type. It is hypothesized that the reduced 

number of dopaminergic neurons and dopamine levels in knockout animals 

results in increased sensitivity of dopamine receptors or an upregulation in the 

number of dopamine receptors themselves. This is especially relevant to PD, as 

the same reduction in dopaminergic neurons is seen in patients. Understanding 

how knockout animals are able to function normally, despite their significantly 
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affected neuronal profile, could lead to more efficacious therapies for the 

treatment of neurodegenerative disorders. Using the p19 knockout mouse will 

help us to better understand how the CNS can function with lower levels of 

dopaminergic neurons and dopamine with any consequent neuronal signaling 

modifications.  

The fact that PD symptom onset does not begin until the disease has 

substantially progressed and a majority of dopaminergic neurons in the 

substantia nigra have been lost, leads to the hypothesis that multiple 

compensatory mechanisms are involved to maintain normal CNS function. It is 

likely the numerous compensatory mechanisms are activated at different stages 

of disease, and understanding the sequence of action will vastly improve clinical 

treatment of disease. The potential for significant improvement in the lives of PD 

patients is the rationale for continuing research into these areas. However, as 

previously stated, PD symptoms do not begin until well into disease progression, 

so a first step would be to identify a biomarker that could identify the very early 

stages of PD, and treat accordingly. One such proposed biomarker is the 

balanced neurochemical index of the ratio of nigrostriatal pathway traffic versus 

dopamine stores (Goldstein, 2013). As disease progresses, it is hypothesized 

that different compensatory mechanisms are initiated as a method to maintain 

normal dopaminergic function. Each compensatory mechanism results in 

different neurochemical profiles in the cerebrospinal fluid that theoretically can be 

detected in clinical tests. By tracking compensatory activation in presymptomatic 

individuals, the best treatment plan could be established to attenuate or prevent 
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further dopaminergic cell death (Goldstein, 2013). Using data from findings 

presented in this report will help to reveal some of these compensatory 

mechanisms and aid in developing the most efficacious treatment plans for 

patients at different stages of PD progression.  
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