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Follicular lymphoma (FL) is the second most common lymphoma in the United States. 

Although it is generally an indolent lymphoma, FL is not curable, and, in about 30% of patients, 

the FL undergoes transformation into an aggressive lymphoma (tFL) with marked worsening of 

prognosis. To identify mutations preferentially present in tFL, we performed whole exome 

sequencing (WES) on paired FL and tFL arising in the same patients and developed a mutational 

analysis pipeline. After we identified potentially important genes that have been found to be 

mutated in our paired FL and tFL study, we constructed a custom capture platform including 

these genes as well as other genes known to be mutated in B-cell lymphomas. We were able to 

use this focused sequencing platform to analyze additional samples at greater sequencing depth. 

Clonal architecture and evolution can be readily identified; however, the DNA samples were 

fragmented using restriction enzymes, which compromised duplicate analysis.  We developed a 

new approach with a statistical model to solve the problems. Samples from uninvolved tissue of 

the same patients are commonly used to distinguish germline variants from somatic mutations; 

however, the germline DNA was often not available for our samples. , We designed a filtering 

based method to limit the number of germline variants that would be mistakenly called somatic 

mutations and validated this approach using a dataset with paired normal samples. We also 

introduced a novel idea based on machine learning to predict somatic mutations from paired FL 

and tFL samples without healthy tissue. Five machine learning algorithms were tested in 
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datasets with known somatic mutations, and their performance was evaluated by statistical 

measures. The results indicated somatic mutations can be reliably predicted. In order to provide 

complementary information, we integrated our mutation data with copy number abnormality 

data and found genes more frequently mutated in tFL cases. The recurrently mutated genes are 

often involved in epigenetic regulation, the JAK-STAT or the NF-κB pathway, immune 

surveillance, and cell cycle regulation, or are transcription factors involved in B cell development. 

As no entirely tFL specific mutations are found, the transformation event needs to cooperate 

with pre-existing alterations and future studies will focus on identifying cooperative mutations 

for FL transformation.  
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A. Lymphoma biology 

Lymphomas are tumors derived from lymphatic cells. Lymphomas have many subtypes, with 

the two main categories being Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). NHL 

contains approximately 90% of lymphomas, and the majority of NHL is derived from B-

lymphocytes at various stages of B cell differentiation (Table 1-1). A small percentage is derived 

from T-lymphocytes, and rarely from natural killer (NK) cells and dendritic cells1. The tumor 

behavior varies significantly, from indolent, e.g. Follicular Lymphoma (FL), to aggressive, e.g. 

Diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL). According to Revised 

European-American Lymphoma (REAL), DLBCL (31%) and FL (22%) are the two most common 

lymphoid neoplasms in the United States and Western Europe2. 

 

Table 1-1. WHO classification of mature B-cell neoplasms1. 
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A.1. Structure of the lymphoid system 

The lymphoid system plays a vital role in defense against pathogens from viruses to 

parasites.  It is comprised of lymphoid tissue and recirculating lymphocytes. 

Lymphoid tissue has two major forms, central (primary) lymphoid tissue and peripheral 

(secondary) lymphoid tissue (Figure 1-1). The bone marrow and thymus are the two organs of 

the central lymphoid system. They are the sites of B and T cell maturation respectively. The 

matured B and T cells express different antigen receptors and migrate into the peripheral 

lymphoid tissue to defend against pathogens invading the body. Cellular and humoral immune 

responses take place in the peripheral lymphoid tissue, which includes spleen, bone marrow, 

tonsil, mucosa-associated lymphoid tissues and lymph nodes. The spleen responds 

predominantly to blood-borne antigens. The bone marrow is both a central and a peripheral 

lymphoid organ because it gives rise to B and NK cells. The tonsil and mucosa-associated 

lymphoid tissues react to antigens entering via the surface mucosal barriers.  Lymph nodes 

mount immune responses to antigens or antigen presenting cells (APCs) entering through the 

afferent lymph vessel. Lymph nodes are major sites of B, T and other immune cells and provide 

sites for interaction of the lymphocytes, APCs and other cells. Lymph nodes are composed of 

three major areas, the cortex, paracortex and medulla (Figure 1-2). The cortex contains primarily 

B cells, some of which aggregate in primary follicles. When an immune response occurs, the 

follicles develop a central area, with large proliferating cells, termed a germinal center (GC). The 

paracortex contains primarily T cells and many antigen presenting cells. The medulla contains 

both T and B cells and many plasma cells and scavenger phagocytic cells.  Lymphocytes and 

antigens enter the cortex through the afferent lymphatic vessel and filter down through the 

paracortex and into medulla before leaving the lymph node via the efferent lymphatic vessel 

and moving on. 
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Figure 1-1. Major lymphoid organs and tissue.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-2. Schematic structure of the lymph node. 
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A.2. B cell differentiation 

B cell differentiation in the central and peripheral lymphoid tissues involves epigenetic and gene 

expression changes. In general, B cell differentiation and migration occur through multiple 

stages, associated with changes in the immunoglobulin (Ig) gene loci, expression of cytokine and 

receptors and Ig protein (Table 1-2, Figure 1-3). A cluster of genes encoding the Ig heavy chain is 

located on chromosome 14. It includes a series of variable (V) genes, joining (J) genes, diversity 

(D) genes and C genes. Clusters of genes encoding the B cell receptor light chains are located on 

chromosome 2 and chromosome 22, respectively. Each cluster includes a series of V genes, J 

genes and one or more C genes, and only one of the light chains is used to construct the Ig 

molecule. DNA rearrangement generates a diverse array of antigen-specific molecules by 

shuffling, cutting and recombining individual V, D, and J segments into a heavy chain and similar 

recombination of individual V and J segments for the light chain immunoglobulin molecule. Two 

heavy chain and two light chain molecules transcribed from the rearranged IgH and IgL (Ig kappa 

and Ig lambda ) of a cell will be assembled into a full immunoglobulin molecule to attack one 

particular antigen without attacking the body itself during the B cell differentiation3. The first 

stage of differentiation starts when the hematopoietic stem cells in the bone marrow receive 

signals from bone marrow stromal cells and begin B cell development. The second stage is the 

CD34+ progenitor B cells express some B cell characteristic markers and initiate IgH 

rearrangement. The Ig gene recombination is initiated by the recombination-activating gene 1 

(RAG1)-recombination-activating gene 2 (RAG2) protein complex (Figure 1-4). At the third stage, 

the progenitor B cells differentiate into precursor B cells. The early precursor B cells involve the 

recombination of the D and J segments of the IgH. The late precursor B cells involve the 

rearrangement of the V segment to previous recombined DJ segments. This stage results in the 

complete rearrangement of the IgH gene. IgL rearrangement takes place only after the IgH gene 



6 
 

arrangement. It occurs in a similar manner to the rearrangement of IgH. In contrast to the IgH, 

the IgL does not possess D segment. Therefore, it only takes one step to form a V J segments. At 

the fourth stage, the precursor B cells differentiate into immature B cells. The light chain 

arrangement results in the expression of an IgM protein on the cell surface. At this stage, the 

immature B cells haven’t encountered any antigen yet and they are also unable to initiate an 

immune response to foreign antigens. At the fifth stage, the immature B cells leave the bone 

marrow and migrate to peripheral lymphoid tissues. With the expression of IgM and IgD 

together, the immature B cells give rise to mature naïve B cells. The mature naïve B cells have 

the capability of responding to antigen.  At the sixth stage, some of the mature naïve B cells 

encounter antigens and transform to extrafollicular B blasts, and later to short-lived plasma cells 

or primed B cells. Other mature naïve B cells form primary follicles. The primed B cells migrate 

into primary follicles with cognate T-cells and differentiate into centroblasts (CBs) with rapid 

proliferation. In this stage, somatic hypermutation occurs and provides additional variation that 

may improve the antibody responses to antigens as advantageous mutations lead to increasing 

affinity to antigen. The whole process is called affinity maturation. CBs may move to the light 

zone of the GC and become centrocytes (CC).  CC with advantageous mutations survive and 

differentiate into long-lived plasma cells or memory B cells. At the seventh stage, the memory B 

cells with IgM protein migrate to marginal zone. CC can undergo further DNA rearrangement to 

change the class of the Ig through isotype switching. Long-lived plasma cells with IgG, IgA and 

IgE predominantly stay in the bone marrow. As a result of B cell development, naïve mature B 

cells, GC B cells, memory B cells and long-lived plasma cells are the four major forms of mature B 

cells. FL s are at the developmental stage of GC B cells.  
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Table 1-2. B cell development and the corresponding lymphoma2. 

 

 

Figure 1-3. Events in B cell development2. 
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Figure 1-4. RAG protein involvement in the rearrangement of immunoglobulin gene segments4. 
RAG protein complexes are illustrated as light purple and light orange colored domes even 
though all RAG protein complexes are identical. This complex breaks double-stranded DNA 
between the B cell receptor coding segments and recombination signal sequences during the 
process of VDJ recombination. A ubiquitously expressed set of non-homologous end joining 
proteins repairs and joins the cleaved DNA ends afterwards. 

  

A.3. FL 

FL, the second most common histologic subtype of NHL in North America, arises from the 

proliferation of malignant germinal center B cells (Table 1-2). Despite the fact that FL is generally 

slow-growing, it is still not curable and it becomes less sensitive to chemotherapy when relapse 

happens. Up to 90% of FL cases have a translocation between chromosomes 14 and 18 leading 

to the overexpression of BCL2 in germinal center B cells (Figure 1-4). The BCL2 gene is normally 

found on chromosome 18q21, and the translocation moves the gene near to the 

immunoglobulin heavy chain enhancer element on chromosome 14. t(14;18) is the classical 
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cytogenetic aberration in FL, but there are other translocations of chromosome 18, such as 

t(2;18) or t(18;22), which juxtapose BCL2 to the loci of the IgL chain (κ or λ), which also result in 

BCL2 overexpression5,6. However, the translocation alone is insufficient for the establishment of 

FL but it provides a survival advantage for the cell in the germinal center microenvironment, 

where the cell can accumulate additional abnormalities. Clearly, these secondary events are 

necessary to contribute to disease progression.  

A.4. Transformed follicular lymphoma (tFL) 

FL can transform into an aggressive lymphoma with poor prognosis. There are two main 

types of tFL, DLBCL and Burkitt-like lymphoma (BLL). DLBCL is the most frequent tFL; gene 

expression profiling studies have demonstrated that DLBCL consists of two major distinct 

molecular subtypes, germinal center B-cell like (GCB) DLBCL and activated B-cell like (ABC) 

DLBCL. GCB DLBCL arises from normal germinal center B cells whereas ABC DLBCL arises from 

postgerminal center (Post GC) B cells and has significant lower overall survival rate than GCB 

DLBCL. BLL is currently known as unclassifiable B cell lymphoma with features that are between 

DLBCL and BL.  

In most cases, tFL emerges from the FL clone by acquiring additional abnormalities that give 

it a growth advantage and make it more aggressive and able to grow without the GC 

microenvironment. In a few instances, however, the DLBCL appears to arise from the emergence 

of an unrelated second lymphoma. It is very important to identify the transformation because it 

represents a change in the biology of the disease and in the patient’s clinical course. After FL 

transformation, the patient has a more rapidly progressing disease and short survival, commonly 

less than 2 years. Occasionally, tFL is found at the presentation of the lymphoma and this type of 
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tFL may be biologically distinct from the usual type that arise later in the course of a FL and has 

better prognosis7. 

B. Genetic abnormalities 

B.1. Genetic abnormalities that contribute to the development of FL 

The t(14;18) is considered as the first hit in FL development (Figure 1-5). It causes 

dysregulation of tumor cell apoptosis, but it is not sufficient to result in clinical disease. 

Therefore lymphomagenesis requires a number of additional genetic and cytogenetic events. 

These later events change the biological and clinical behavior of the clone, and finally generating 

the FL. Aberrant BCL2 overexpression allows the survival of the abnormal GCB cells in the GC 

microenvironment where continuous somatic hypermutation or recombination activity in class 

switch increase the instability of the genome and probability of second hits that promote the 

formation of FL. A number of secondary chromosomal alterations have been reported, for 

example, the most common alterations are the partial trisomies of chromosomes 1q, 7, 8 and 

18q, and 1p and 6q deletion. Deletion in 6q usually follows by the deletion of 1q5. Some genetic 

abnormalities are associated with late disease or transformation8,9. In rare case, the histologic 

progression of FL involves MYC rearrangements10. 

BCL6 translocation is also common in FL and can occur in cases with or without the classical 

BCL2 rearrangement. Constitutive overexpression of BCL6 may be an important mechanism is 

the pathogenesis of FL11,12. 

With next generation sequencing (NGS), many mutations have also been recently identified 

in multiple studies (Figure 1-5), for example, KMT2D (MLL2), EZH2, and CREBBP are often 

mutated in early FL8,13-16. 
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Figure 1-5. Model of B cell NHL histogenesis and pathogenesis2.  

 

B.2. Genetic and cytogenetic abnormalities that drive transformation 

DLBCL is considered de novo if it develops in the absence of a precursor malignancy such as 

FL. In contrast, when a person is diagnosed with DLBCL but he previously or concurrently had FL 

diagnosis, then it may represent a tFL. If the DLBCL and the FL share a common precursor, they 

should share many of the copy number abnormalities (CNAs) and mutations, thus supporting 

the idea that they are clonally related and not independent tumors. FL is usually indolent, but 40% 

of patients will develop tFL with poor prognosis. There must be secondary genetic and 

cytogenetic abnormalities that drive the transition from an indolent to an aggressive stage. 

Identification of these abnormalities that drive transformation is critical for a better 

understanding of the progression and evolution of tFL. 
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To date, studies of the genetic abnormalities in de novo DLBCL have revealed a large 

number of findings, for example: chromosome alterations affect 3q27 recurrently in DLBCL. This 

region includes BCL6, a transcriptional repressor that belongs to the family of transcription 

factors containing zinc-fingers and is required for GC formation and B cell immune response. 25% 

of GCB DLBCL cases have chromosomal rearrangements of BCL2. It is possible that some such 

cases may actually represent transformation of a clinically inapparent FL.  

Current concepts describe the transformation as the result of heterogeneous genetic and 

cytogenetic abnormalities. The genetic abnormalities in transformation have been represented 

in four models8. The four models are grouped into 2 categories, linear evolution from FL and 

divergent evolution from a preclinical progenitor. In fact, transformation is all linear. The 

divergent model is a sampling artifact because the tumor sampled does not contain the direct 

precursor of the transformed tumor. However, the precursor clone for the transformed tumor 

may be a minor subclone at the time of sampling and it is very informative to identify these 

subclones in the study of clonal evolution in transformation.  

Multiple studies suggest several discrete mechanisms are involved in driving transformation 

from FL. These mechanisms include TP53 mutations9 and deletions, inactivation of p16 and 

dysregulation of MYC17.  

DLBCL molecular subtypes have been reported to have different oncogenic pathways. SPIB 

gain or amplification, deletion of CDKN2A tumor suppressor locus and trisomy 3 happen more 

commonly in ABC DLBCL whereas amplification of mir-17-92 and loss of the tumor suppressor 

PTEN are only recurrent in GCB DLBCL18. Similarly, mutations affecting the NF-kB pathways are 

much more prevalent in the ABC subtype.  It would be highly interesting to compare the copy 

number variation (CNV) and mutation profiles of tFL with these DLCBL subtypes. 
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C. CNV analysis   

CNV refers to gain or loss of chromosomal regions in the genome. CNV regions vary from 

kilobase range change to gain or loss of entire chromosomes. Most CNV is stable and heritable. 

CNV can cause disease, affect gene expression level and change phenotype. CNV analysis can be 

used to detect chromosomal abnormalities that contribute to lymphoma. 

C.1. CNV general technology 

Techniques to identify cytogenetic aberrations have changed drastically in the past decade. 

Fluorescent in situ hybridization (FISH), comparative genomic hybridization (CGH) and array 

comparative genomic hybridization (aCGH) are three technologies that have been widely used in 

molecular cytogenetics. FISH is based on the capability of a fluorescent–labeled single stranded 

DNA to hybridize to its complementary DNA sequence19. FISH is often used to identify 

chromosomal rearrangement including translocations, inversions, etc. but CNVs can also be 

detected. CGH is designed for CNV detection. It can efficiently compare two genomic DNA 

samples by competitive hybridization to normal metaphases19. Normal genomic DNA serves as 

the standard for comparison of the test DNA. Compared to standard FISH, which can only test 

one or several genes at a time, CGH is able to detect gains or losses genome wide. aCGH utilizes 

the same principles as traditional CGH but has tremendously higher resolution. Hybridizing is 

performed on a high density DNA array format and able to detect small CNVs in the genome20. 

C.2. Single-nucleotide polymorphism array analysis procedure 

In our previous study, DNA from FL and tFL tumors was hybridized to high-resolution 

GeneChip Human Mapping 250K Nsp single-nucleotide polymorphism (SNP) arrays. In contrast 

to aCGH, which uses competitive hybridization of fragmented tumor DNA and control DNA 

labeled with different fluorophores to a microarray platform to detect CNAs, SNP array contains 
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oligonucleotide probes that interrogate both copy number (CN) and SNP sites. Therefore, SNP 

arrays are able to detect both DNA CN and SNP-based genotypes at submegabase resolution, 

including loss of heterozygosity (LOH), and uniparental disomy21. 

A circular binary segmentation algorithm22 was used to analyze the resulting data. This 

algorithm segmented chromosomes into similar log2 ratios and connected the change point to 

the locations of regions with aberrant DNA copy numbers. Therefore, it identified regions of CN 

gain or loss. Minimal common regions (MCRs) were determined for recurrent CNAs (rCNAs) in all 

samples.  

D. NGS analysis 

NGS, also known as high throughput sequencing or massively parallel sequencing, has 

dramatically changed the way scientists extract genetic information from biological systems 

(Table 1-3). These technologies help us to develop great insight into the abnormalities affecting 

the genome, transcriptome and epigenome through DNA sequencing of genomic DNA, cDNA 

and bisulfite treated DNA with cheaper cost. NGS allows us to discover point mutations as well 

as structural alterations such as indels, inversion and translocations that contribute to diseases. 

Sequencing of the transcriptome provides us the capability to identify changes of gene 

expression, alternative splicing, gene fusions, mutations and non-coding RNA species. 

Sequencing after Bisulfite treatment can be used to determine the global cytosine methylation 

status of DNA. 
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Table 1-3. Multilevel high throughput NGS23. 

 

D.1. NGS: general technology 

There are multiple platforms for performing NGS and the Illumina platform is one of the most 

commonly used technologies. It has been reported to have high sensitivity and reliability in DNA 

mutation detection. It is a sequencing method based on engineered polymerases and reversible 

terminator bases. Under the catalysis of the polymerase, the DNA templates are copied base by 

base using the deoxyribonucleotide triphosphates which are fluorescently-labeled and reversibly 

terminated. During each cycle, the fluorescence signal is captured by a build-in camera at the 

point of incorporation and the nucleotides are identified. After that, the fluorescence label and 

the blocking group are removed allowing the addition of the next bases. The critical difference 

NGS extends this process across millions of DNA fragments in a massively parallel fashion 

instead of sequencing a single DNA fragment.  
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D.2 Whole exome sequencing (WES) analysis procedure 

WGS sequences all DNA sequences in an organism’s genome, and has more uniform quality 

for the identification of variants as well as large insertions and deletions and other structural 

alterations.  On the other hand, WES is an efficient strategy to selectively sequence the exome. 

The exome include all regions in genes that are translated into protein including also splice 

junctions and some regions important in regulating transcription. Since the exome constitutes 

only about 1% of the human genome, WES is more cost efficient and less computationally 

intensive than WGS. Sequencing depth can generally be higher.   

E. Custom capture panel 

To obtain mutations preferentially present in FL and tFL, we performed WES on paired FL 

and tFL arising in the same patients and developed a mutational analysis pipeline. Even if the 

cost of sequencing decreases a lot, it is still expensive to sequence a large number of samples. It 

is also time-consuming to analyze the huge amount of data, especially since the mutated genes 

that contribute to the disease are limited in number. Therefore, once we identified potentially 

important genes that are mutated from WES studies, a focused sequencing platform to analyze 

genes of interest can be constructed. This platform can analyze a large number of samples at 

greater sequencing depth and less cost to identify transformation associated mutations and 

their possible cooperation in the transformation process.  

F. Application of genetic abnormality analysis in cancer research  

Gains and losses of CN can range in size from thousands to millions of bases. For large CNAs, 

it can be difficult to determine which genes contribute to cancer.  It is possible that multiple 

genes in these regions are contributing.  Examining GEP and mutations may help to identify the 

target genes in these regions.  
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NGS provides a great opportunity to exam the genetic mutations at a genome-wide level. 

We are able to go through the mutations in coding regions and splice sites, and have a view of 

the mutational landscape of FL and tFL, and figure out the alterations that cause transformation. 

We incorporate CNV data into mutation studies so that the combination of the two approaches 

can provide a comprehensive view of genetic abnormality. The integrated data help us to 

identify the abnormalities associated with transformation of FL and characterize the progression 

of FL. 

G. Overview of this dissertation 

The motivation of the study is to identify genetic changes that would provide important 

insight into the mechanisms of FL tumorigenesis and transformation; however, there are a 

number of obstacles. One obstacle is the shortage of matching normal samples in FL research. 

The normal sample is currently the only way to confidently filter out all germline variants but it 

is difficult for researchers to collect normal samples in the FL field. Another difficulty is the 

limited number of cryopreserved or fresh tumor samples available for analysis.  There are also 

computational challenges to overcome such as removal of passenger mutations and duplicate 

analysis. 

In this study, we applied a variety of statistical methods to improve the performance of the 

analysis. We introduced a binomial distribution based statistical model to estimate duplicate 

ratio in custom capture panel that uses restriction enzymes to capture the genes of interest. 

Instead of applying typical log-rank in survival analysis, advanced test statistics with different 

weights were provided based on abnormalities that occur in the early or late stage of FL 

development. We developed a variety of mutation detection pipelines for different NGS 

platforms and sample combinations. We applied a two-step filtering method to identify somatic 
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mutations based on the biological features of FL to provide potential driver mutations that 

contribute to the disease. We also proposed a novel computational model using the machine 

learning concept to distinguish the germline variants from somatic mutations without 

corresponding normal samples in sequencing analysis.  

The rest of this dissertation is organized as follows. In chapter 2, we introduce the pipelines 

on which the methods were built and evaluated. We also describe the samples to which our 

methods were applied and the datasets in which our methods were validated. In chapter 3, we 

report the initial results and validation results of the methods applied in the analysis. In chapter 

4, we associate the CN abnormalities with our mutation data, integrate our mutation data with 

other two datasets, combine the studies with other biological analysis, and generate more 

comprehensive understanding of FL initiation and progression. In chapter 5, we describe the 

future study in identifying epigenetic alterations, contributions of mutations in regulatory region 

and non-coding regions, functional study of the individual mutated genes in FL and 

transformation, extending our current pipelines to FFPE samples, and improving features 

applied in machine learning models. In chapter 6, we summarize how the pipelines and 

approaches designed in this thesis significantly improve the data analysis, provide reliable 

results, and detect novel abnormalities in FL and tFL research.  
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A. WES and data analysis 

A.1. WES dataset 

We obtained 12 paired FL and tFL frozen tissue samples from the same patients before and 

after transformation. The samples were provided by the University of Nebraska Medical Center 

(UNMC), Lymphoma/Leukemia Molecular Profiling Project (LLMPP), or Aarhus University 

Hospital. This study was approved by the UNMC institutional review board.  

A.1.1. Sample and patient materials 

The time between the FL diagnosis and transformation varied from 1 year to 9 years. The tFL 

samples were all diagnosed as DLBCL by a panel of LLMPP hematopathologists. Our previous 

gene expression profiling (GEP) analysis had classified the tFL samples as activated B-cell (ABC)-

like, unclassifiable (UC), or germinal center B-cell (GCB)-like tFL. The clonal relationship between 

the biopsies was confirmed by comparing the genetic profile based on clinical data, SNP array 

and/or sequencing to confirm that there was close similarity between pairs. When BCL2 status 

was unknown, BCL2 rearrangement was assessed by PCR to determine if the frequency of 

t(14;18) positivity expected for an FL dataset was observed in the tFL dataset. We did PCR with 

primer that prime in 3 places where the break point often occurs, major breakpoint region, 

minor cluster region and intermediate cluster region (Table 2-1). 



21 
 

 

Table 2-1. Sample and patient information for WES. 

 

A.1.2. Library preparation 

Library preparation was performed according to the manufacturer’s protocol using 

Illumina’s TruSeq DNA sample prep kits. Exome capture was performed according to the 

manufacturer's protocol using either Illumina's TruSeq exome enrichment kit (11 paired samples) 

or Agilent's SureSelect exome enrichment kit (1 paired sample). 1 µg of DNA per sample was 

used for capture, and the equivalent of 1 to 3 samples was sequenced per lane on an Illumina 

HiSeq2000 or HiSeq2500 sequencer.  

To prepare the samples using the Illumina’s TruSeq exome enrichment kit, DNA was sheared 

into 100-300 base-pair long fragments using a Covaris sonicator. After fragmentation, ends were 

repaired, A-overhangs were added at the 3'-end of the DNA fragment, and adaptors were 

ligated to both ends of the DNA fragments. These DNA fragments were then denatured into 

single-stranded DNA and hybridized to biotin-labeled DNA probes (Truseq) or biotin-labeled RNA 
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probes (SureSelect) specific for the targeted regions. After enrichment using streptavidin beads, 

the enriched DNA fragments were eluted from the solution. After amplification, the DNA 

molecules were ready for cluster generation and subsequent sequencing. 

A.2. Pipeline for calling variants in WES 

As shown in Figure 2-1, the pipeline is as follows: After sequencing, the raw read quality was 

first evaluated by FastQC (v0.10.1), and then mapped to human reference genome hg19 using 

the Burrows-Wheeler Aligner (BWA) (0.7.5a-r405). Genome Analysis Toolkit (GATK) (v3.1-1-

g07a4bf8) was used for local realignment and base quality recalibration. Duplicate marking was 

done with Picard (v1.115). Variant calling was performed with VarScan2 (v2.3.6). Basic filtering, 

including base quality, total read depth, read depth supporting the reference sequence, read 

depth supporting the variant sequence, forward read depth supporting variant and reverse read 

depth supporting variant, was applied to filter out unreliable variants. The variants were then 

annotated using ANNOVAR24. We filtered out known germline variants (single-nucleotide 

polymorphisms [SNPs] and indel polymorphisms) based on dbSNP138 and only selected 

mutations that were nonsynonymous, stop gain, stop loss, insertion or deletion in the coding 

region or splice sites. Since we have paired FL and tFL samples, we categorized our mutations 

into three types: FL-unique mutations indicated mutations only detected in the FL sample not 

the paired tFL sample; tFL-unique mutations indicated mutations only detected in the tFL 

sample not the paired FL sample; and shared mutations indicated mutations detected in both 

paired FL and tFL samples. 



23 
 

 

Figure 2-1. Pipeline designed for WES with paired sample. 

 

A.3. WES performance analysis 

In order to evaluate the performance of WES, we applied sequence performance analysis 

(Figure 2-2) to check the total number of reads used for the alignment, the number of reads that 

were successfully mapped to the reference, the number of aligned reads that were mated with 

their paired reads, the fraction of duplicates in the sequenced reads, the regions in the 

reference that were aligned by the reads, the depth of each position in the aligned region, and 

the coverage and depth of coding regions and splice sites. 
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Figure 2-2. Pipeline designed for WES performance evaluation. 

 

A.4. Pipeline validation 

Sanger sequencing is an accurate analysis method for variants validation when the variant 

frequency presents at 20% or greater in the samples. We applied Sanger sequencing to validate 

50 variants to confirm the reliability of the WES pipeline. 

B. Custom capture panel sequencing and data analysis 

B.1. Custom capture panel dataset 

Samples included in the custom capture panel pipeline were all frozen tissues including 7 

pairs of FL and tFL samples, 4 triplets with a tFL and two FL samples, and 15 single tFL samples. 

The 7 pairs of FL and tFL samples were obtained at FL diagnosis and at later transformation 
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diagnosis.3 out of these 7 pairs of FL and tFL samples were performed by WES earlier and 

resequenced for the performance comparison. The 4 sample triplets were obtained along with 

the disease progression. The samples were provided by the UNMC, the LLMPP, or Aarhus 

University Hospital. This study was approved by the UNMC institutional review board. 

B.1.1 Sample and patient materials 

The time between the FL diagnosis and transformation varied from less than 1 year to 7 

years. The tFL samples were diagnosed as DLBCL by a panel of LLMPP hematopathologists. Our 

earlier GEP analysis had assigned the tFL samples as ABC-like, UC and GCB-like. When BCL2 

status was unknown, BCL2 rearrangement was assessed by PCR to determine if the frequency of 

t(14;18) positivity expected for an FL dataset was observed in the tFL dataset. We did PCR with 

primer that prime in 3 places where the break point often occurs, major breakpoint region, 

minor cluster region and intermediate cluster region (Table 2-2). 
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Table 2-2. Sample and patient information for custom panel sequencing. 

 

B.1.2. Custom capture panel design 

The potentially interesting genes that were included in the custom capture panel were 

selected based on the preliminary analysis of some of our WES analysis and previously published 

lymphoma sequencing studies. The custom capture panel allows us to sequence genes of 

interest in a large number of samples at greater sequencing depth. We expected the custom 

capture panel to allow us to evaluate clonal architecture and evolution. The criteria for selection 

included: 

1. B-cell expressed genes25 that were recurrently mutated in the 11 initial WES cases, 

2. Classic cancer genes (http://cancer.sanger.ac.uk/cancergenome/projects/classic),  
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3. Genes frequently mutated in lymphomas according to the Catalog of Somatic Mutations in 

Cancer (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/) or  

4. Genes recurrently mutated in previously published B-cell lymphoma sequencing studies8,26-29. 

496 genes potentially involved in the FL and tFL disease process were included in the custom 

panel (Table 2-3).  

ABCA7 4 CDT1 3 FCGBP 3 JAK3 2 NPR2 3 SGK1 3 

ABCB1 3 CELSR1 3 FGFR1 1 KANSL2 3 NRAS 3 SHKBP1 3 

ABL1 4 CENPE 3 FGFR4 3 KDM2B 3 NTN3 3 SHPRH 3 

ACACB 3 CEP350 3 FLNC 3 KIAA0100 3 NUMA1 3 SIDT2 4 

ACSF3 4 CHD2 3 FLYWCH1 1 KIAA0430 3 NUP98 4 SIN3A 3 

ACSS1 3 CHD3 3 FNDC3B 3 KIAA1109 3 NVL 3 SMAD4 2 

ACTB 3 CHD8 4 FOLH1 3 KIAA1211 3 ODF2 3 SMARCA4 2 

ACTG1 3 CHTF18 3 FOXO1 5 KIAA1551 3 OFD1 2 SMARCB1 2 

ACVR1B 2 CIC 3 FOXO4 3 KIF1B 1 OGT 4 SMG7 3 

ADAMTS18 3 CIITA 5 FRG1B 1 KIF4A 3 P2RY8 4 SNRNP200 3 

ADRBK1 3 CLASP1 3 FRYL 3 KLF2 2 PABPC1 1 SNX19 3 

AFF1 4 CLEC16A 3 FTCD 3 KLHL6 4 PACS1 3 SOCS1 4 

AFF4 3 CLSTN3 3 FTH1 2 KMT2A 5 PALD1 3 SPEN 4 

AKAP13 3 CLUH 3 FUBP1 5 KMT2C 6 PASD1 2 SPG11 3 

AKAP8 2 CNOT1 5 GAK 3 KMT2D 7 PASK 3 SPTBN1 3 

AKAP9 4 CNOT3 3 GAS7 3 KMT2E 3 PAX5 2 SPTBN5 5 

AKT1 1 COL7A1 3 GATA2 1 KNTC1 3 PAXIP1 3 SRSF2 1 

ALMS1 3 CREB3L2 3 GATA3 1 KPNA5 3 PBRM1 6 STAT3 5 

ANKLE2 3 CREBBP 9 GCN1L1 4 KRAS 4 PCBP1 1 STAT6 4 

ANKRD12 3 CRTC1 3 GGA1 3 KTN1 3 PDCD11 1 STK11 1 

ANKRD17 3 CRTC2 0 GIGYF2 4 LAMP1 3 PDE4DIP 3 STK4 4 

ANXA1 3 CSNK1D 3 GNA11 2 LCP1 3 PDS5B 4 SYK 4 

APC 5 CSRP2BP 3 GNA13 4 LILRB1 3 PGAP2 1 SYNE1 8 

ARHGAP30 3 CTBP2 1 GNAS 1 LRBA 4 PHF3 3 TAF1 4 

ARHGEF12 3 CTCF 3 GOLGA3 3 LRCH4 3 PHF6 3 TAGLN 3 

ARHGEF2 4 CTNNA1 1 GOLGA4 3 LRP10 4 PHKA2 3 TARSL2 3 

ARID1A 4 CTNNB1 3 GPR82 3 LRRC7 2 PHRF1 3 TBL1XR1 4 

ARID1B 3 CUL7 4 GRB2 2 LRRK1 5 PICALM 3 TBP 2 

ARRDC2 3 CXCR5 3 GSE1 3 MACF1 3 PIK3CA 3 TCF3 4 

ASPM 3 CYLD 4 GTPBP8 3 MALT1 3 PIK3R1 5 TDG 2 

ASXL1 4 CYP1A2 1 GTSE1 2 MAP2K4 1 PIM1 6 TET2 4 

ATAD3B 3 DARS2 3 GYS1 3 MAPK1 1 PKD1 3 TIGAR 3 
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ATF7IP 3 DAXX 1 HCK 3 MBTPS1 3 PLCG2 4 TINF2 2 

ATM 4 DAZAP1 3 HDAC7 3 MCTP2 3 PLEKHA5 3 TMC8 3 

ATP10A 3 DDX3X 4 HEATR5B 3 MDN1 4 PMS1 3 TMEM30A 5 

ATRX 5 DDX56 4 HELZ 3 MED12 4 POU2F2 1 TNFAIP2 3 

AXIN1 1 DENND5A 3 HERC1 2 MED26 3 PPP2R1A 2 TNFAIP3 6 

B2M 6 DEPDC5 3 HIST1H1B 3 MEF2B 5 PPP2R3C 3 TNFRSF14 6 

BAP1 1 DGKZ 3 HIST1H1C 5 MEN1 2 PPP2R5A 1 TNK2 3 

BAZ2A 3 DHX15 4 HIST1H1D 7 MET 2 PRDM1 3 TOPBP1 3 

BBS10 3 DIAPH1 1 HIST1H1E 4 METTL9 3 PRDM15 2 TP53 9 

BBX 3 DIP2A 3 HIST1H2AC 4 MGA 3 PRKAR1A 1 TPR 3 

BCL10 7 DMD 4 HIST1H2AG 3 MIA3 3 PRKDC 5 TRAF3 4 

BCL11A 5 DMXL1 3 HIST1H2BC 5 MICAL3 3 PRMT6 3 TRIP11 4 

BCL2 7 DNM2 5 HIST1H2BG 2 MKI67 3 PTCH1 3 TSC2 4 

BCL2L10 1 DNMBP 3 HIST1H3B 1 MLH1 2 PTEN 6 TSC22D1 2 

BCL6 5 DNMT3A 2 HIST1H3H 3 MLLT10 5 PTPN11 2 TSPAN32 1 

BCLAF1 1 DOCK11 3 HIVEP2 3 MON2 3 PTPRH 3 TTC27 3 

BCOR 4 DOT1L 3 HIVEP3 3 MS4A1 3 PUM1 3 U2AF1 1 

BCR 5 DPF2 3 HLA-A 2 MSH2 3 PXDN 3 U2AF2 4 

BIRC6 4 DPYD 3 HLA-B 2 MSH6 4 RAPGEF1 4 UBAP2 4 

BLM 3 DTX1 3 HLA-C 2 MST1 4 RAPGEF2 3 UBC 3 

BOD1L1 3 DYNC1H1 3 HLA-DMB 2 MTG2 3 RASGEF1A 1 UBE2A 2 

BRAF 3 DZIP3 3 HMGB1 1 MTR 3 RB1 4 UBR4 4 

BRCA1 3 EBF1 4 HNF1A 1 MUC4 4 RBM15 3 UBR5 3 

BRCA2 5 EDEM3 3 HPS3 3 MUM1 3 RBM39 3 UPF1 3 

BRD2 3 EGFR 4 HPS5 3 MYBL2 3 RBMX 3 UPF2 3 

BRD4 4 EGLN1 3 HRAS 2 MYC 5 REV1 3 USP10 3 

BRD8 3 EIF4A2 3 HSPA8 3 MYD88 7 REV3L 1 USP19 3 

BTAF1 3 ELP2 2 HTT 3 MYH11 3 RFTN1 5 USP34 3 

BTBD3 3 EML4 4 HUWE1 4 MYH9 3 RFX7 4 VHL 2 

BTG1 4 EP300 7 HVCN1 3 MYO18A 2 RFXAP 3 VPS13C 3 

BTG2 4 EP400 3 ICE1 3 MYO1G 2 RGS12 3 WDR76 4 

BUB1B 4 EPHA7 3 ID3 1 MYRIP 3 RHOH 1 WDR90 1 

CALR 1 ERAP1 1 IDH1 4 NBAS 3 RLTPR 3 WHAMM 1 

CAMTA1 4 ERICH1 3 IDH2 1 NBEAL2 3 RNF103 3 WHSC1L1 3 

CARD11 8 ERMARD 3 IFI16 3 NCOR1 3 RNF213 7 WRN 3 

CARS 4 ETS1 2 IGF1R 3 NCOR2 2 RNF40 3 XPO1 4 

CASC5 4 EWSR1 3 IGFN1 2 NF1 4 ROBO1 4 YY1AP1 2 

CBL 2 EXOC4 3 IGLL5 2 NF2 1 ROCK2 3 ZC3H18 3 

CCDC94 3 EXOSC6 1 IKZF1 2 NFE2L2 2 RPN2 3 ZMYM3 4 

CCND3 6 EZH2 7 IKZF3 5 NFKB2 4 RRP1B 3 ZNF142 3 

CCNH 3 FAM186A 1 IL7R 2 NFKBIA 3 RTTN 3 ZNF500 3 
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CD22 3 FANCA 4 INO80 4 NIN 4 RUNX1 3 ZNF521 6 

CD36 7 FANCD2 3 INPP5D 3 NISCH 3 S1PR2 3 ZNF600 3 

CD58 5 FANCE 3 INTS10 3 NKAP 3 SAMD9 3 ZNF608 3 

CD70 3 FANCF 3 IQGAP1 3 NOA1 1 SCAPER 3 ZNF708 3 

CD74 5 FAS 4 IRF4 4 NOC2L 3 SEC23IP 3 ZNF830 1 

CD79B 7 FASN 4 IRF8 4 NONO 3 SENP6 4 ZNF85 1 

CDAN1 3 FBLN2 3 ITPKB 3 NOTCH1 6 SETD2 3 ZRSR2 1 

CDC73 2 FBXO11 3 ITPR2 4 NOTCH2 3 SETDB1 4 ZWILCH 1 

CDH1 2 FBXO31 2 JAK1 2 NPIPB15 1 SF3A2 3 

  CDKN2A 3 FBXW7 6 JAK2 2 NPM1 1 SF3B1 5 

  
Table 2-3. Genes selected in custom capture. Note: The number indicates the recurrence of 
each gene was reported by different resources. 

B.1.3. Library preparation 

Agilent’s Haloplex custom gene enrichment panel was designed using Agilent’s SureDesign 

software. 200 ng of DNA per sample was used for capture, and 10-12 samples were sequenced 

per lane.  

To prepare the samples, we first used restriction enzymes to fragment the DNA samples. 

After DNA denaturation, the biotinylated HaloPlex probes guided the targeted fragments to 

form circular DNA molecules. These biotinylated HaloPlex probes were specifically designed to 

hybridize to both ends of the fragmented DNA samples. Sample barcodes were incorporated in 

the DNA sample at the same time. Afterwards, magnetic streptavidin beads were used to 

retrieve perfectly hybridized DNA fragments. The circular DNA molecules were then closed by 

ligation and amplified by PCR. After amplification, the DNA molecules were ready for sequencing. 

B.2. Pipeline for calling variants in custom capture panel sequencing 

Since we had cases with either one, two, or three samples, the pipelines were designed 

slightly differently (Figure 2-3, Figure 2-4 and Figure 2-5). In general, after sequencing, the raw 

read quality was first evaluated by FastQC (v0.10.1), and then the raw reads were mapped to 

human reference genome hg19 using BWA (0.7.5a-r405). GATK (v3.1-1-g07a4bf8) was used for 
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local realignment and base quality recalibration. Variant calling was performed with VarScan2 

(v2.3.6). Basic filtering was performed as described above for the WES samples. The variants 

were then annotated using ANNOVAR24. We filtered out known germline variants (SNPs and 

indel polymorphisms) based on dbSNP138 and only selected mutations that were 

nonsynonymous, stop gain, stop loss, insertion or deletion in the coding region or splice sites. 

Since we had sample pairs and triplets, we categorized our mutations into three types: FL-

unique; tFL-unique; and shared mutations as described above for the WES samples. 

 

Figure 2-3. Pipeline designed for custom capture panel with paired sample. 
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Figure 2-4. Pipeline designed for custom capture panel with single sample. 

 

 

 

Figure 2-5. Pipeline designed for custom capture panel with tripled sample. 
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B.3. Custom capture panel performance analysis 

We applied custom capture panel performance analysis (Figure 2-6) to check the total 

number of reads used for alignment, the number of reads that were mapped to the reference 

and the number of aligned reads that were mated with their paired reads.  

 

Figure 2-6. Custom capture panel evaluation pipeline. 

 

B.4. Pipeline validation 

We selected 3 samples that were previously sequenced by WES and applied custom capture 

panel sequencing to them again to evaluate the performance of the custom capture panel.  

We made two mutation lists from the 3 samples: one for WES, and the other one for custom 

capture panel sequencing. The mutations were chosen in the regions covered by both WES and 

custom capture panel sequencing. The overlap of the two mutation lists, the variant frequency, 

mutation depth, and overall coverage were compared in the 3 samples. The previous Sanger 
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sequencing results that we did in the 3 paired overlap samples were used again to validate the 

mutations detection accuracy in the custom capture panel sequencing. KARPAS422 is a cell line 

with known mutations. We sequenced the cell line by custom capture panel and checked if it 

detected the known mutations in the cell line. 

C. Binomial distribution model for estimating the duplicate ratio 

The restriction enzyme based custom capture panels select genes at exactly same start and 

end positions. Because of this, the well-known duplicates marking program Picard cannot 

identify duplicates. This duplicate generation is due to the amplification by PCR causing multiple 

reads to be derived from a single initial molecule. We designed a binomial distribution statistical 

model to estimate the duplicate ratio (the average number of reads per initial molecule). The 

model is based on the variant frequency of heterozygous germline variants being approximately 

50% and the p-values from the statistical test for each heterozygous germline variant should be 

uniformly distributed. 

C.1. Data preprocess 

After basic filtering, the variants have balanced reads supporting alternative alleles and 

good base quality. We then used dbSNP to annotate the heterozygous germline variants by 

using our own scripts instead of annotation programs as we were only interested in 

heterozygous germline variants. We also checked the distribution of the variant frequency, total 

read number and the number of reads supporting the alternative allele to avoid bias or outliers 

that might potentially affect the estimation. 

C.2. Estimating the duplicate ratio 

For each sample, we generated the p-values for each heterozygous germline variant based 

on the binomial test with 50% probability of success. We only used the p-values between 0.1 
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and 0.9. The reason that we did not use p-values <0.1 is that sequencing errors introduced many 

apparent variants with low variant frequencies that fortuitously matched dbSNP, the p-values 

close to zero were overrepresented and rejected the null hypothesis (probability to get reads 

supporting one allele is 50%). The reason we didn’t use p-values >0.9 is the majority of total 

reads are assigned equally in heterozygous germline variants so that the p-values were close to 

1 and did not reject the null hypothesis. We then selected an alpha value which makes the slope 

of the regression model fitting the frequencies of the p-values to the p-value close to 0. The 

alpha value is the estimated PCR-duplicate ratio that can adjust the slope of the linear 

regression model to the uniformly distributed pattern.  

C.3. Model validation 

We simulated a dataset based on the real total number of reads in our samples and assigned 

a duplicate ratio equal to 1, 2 and 4 to confirm the patterns of the p-values from the binomial 

test. If there are no duplicates, most of the hypotheses will not be rejected; the majority of the 

total reads are assigned equally; therefore, there should be a big peak on the far right of the 

histogram of p-values; and the rest of the p-values are uniformly distributed. If there are PCR-

generated duplicates, most of the hypotheses will be rejected; a majority of total reads are 

assigned unequally; and p-values close to zero should be overrepresented. As there is a bigger 

PCR-duplicate ratio, the peak close to zero is expected to be more exaggerated. We also did 

10,000,000 simulations based on a real number of reads from all of our samples with duplicate 

ratio equal to 1 to confirm the binomial distribution model. We should see the trend be flat 

except the p-values close to 1, which confirms that the p-values from the binomial test will be 

uniformly distributed if there are no duplicates. 
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D. Filtering method for removing germline variants 

The variants called by either the WES or custom capture panel sequencing pipelines include 

two groups, germline variants and somatic mutations. Germline variants are heritable variations 

that are present in the germ cells and can pass to all cells in the body of the progeny. In contrast, 

somatic mutations are not inherited from a parent and cannot be transmitted to offspring. The 

conventional mutation analysis requires paired normal and tumor samples to distinguish 

germline variants from somatic mutations. The general idea is that the variants that are 

detected in both normal and tumor samples are germline variants, and conversely, the variants 

that are only found in the tumor sample are considered somatic mutations. We were interested 

in detecting somatic mutations that drove transformation, but our samples lacked 

corresponding normal samples to filter out germline variants that were absent from dbSNP, 

which are predominantly SNPs present at very low population frequency (private SNPs). A 

filtering based method was used to filter out germline variants and keep the somatic mutations. 

The filtering method is based on the biological understanding of FL. The mutations that drive 

transformation or contribute to FL often: occur recurrently; associate with critical CNAs and 

oncogenes; have an impact on amino acid structure and function of protein. Because FL is a B 

cell lymphoma, the mutated genes have to be expressed in B cell to be able to play roles in FL 

development. Datasets from reliable organizations provide comprehensive information to help 

filter out false positive mutations. As examples, there are common errors that may occur in 

sequencing technology or variants that are reported in dbSNP. 

D.1. Databases collection 

Multiple databases were collected or constructed to help sort out germline variants and 

somatic mutations. The databases are listed as following: 
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1. List of genes expressed in B cell. Genes that were expressed in B cells based on our previous 

GEP analysis and whole transcriptome sequencing data from lymphoma cell25. Genes were 

considered not significantly expressed in B-cells if their maximum FPKM value was less than 1 of 

5 naïve B-cell samples, 4 germinal center B-cell samples, and 5 DLBCL samples that include both 

GCB and ABC subtypes. For a few genes not included in this dataset, our Affymetrix dataset of 

normal B-cell and DLBCL samples was used to determine expression and a maximum log2 value 

of 8.5 was set as the threshold of expression; 

2. Sanger cancer gene list (http://cancer.sanger.ac.uk/cancergenome/projects/classic); 

3. Cosmic cancer gene list (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/); 

4. List of apparent recurrent mutations in 13 normal samples. Mutations that were detected in 

normal samples were considered as private SNPs or sequencing artifacts; 

5. List of mutated genes from previous published lymphoma sequencing studies8,26-29; 

6. dbSNP138; 

7. Annotation databases from ANNOVAR (http://annovar.openbioinformatics.org/en/); 

8. Paralog gene list (http://massgenomics.org/2013/06/ngs-false-positives.html). The paralog 

gene list is used to avoid 2 types of false positive variants. One is from genes that are physically 

large so that they tend to accumulate a lot of mutations. The other is from the misalignment to 

a paralog, in which case the reads supporting the variant allele were originally from another part 

of the genome. 

D.2. Data preprocessing 

Each database we used in the filtering method has its own specific format. Some databases 

include extremely comprehensive formats. We extracted the information and parsed it to a 
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simple version so that we can easily apply it to future interaction. We also preprocessed the 

format of our variant list in order to connect it to various databases. 

D.3. Germline variant filtering  

To obtain a confident somatic variant list, a filtering process was applied. This pipeline 

generated a mutation list with two tiers of confidence and one rescued tier. First, variants were 

excluded if they met specified criteria from the following: 

1. Existed in the dbSNP database (dbSNP138) with same orientation; 

2. Synonymous mutations; 

3. Found in a set of 13 unrelated normal samples as SNPs or artifacts; 

4. Shared by samples from six or more cases or 50% of total samples unless they are from a gene 

known to have frequent mutations at the site (such as EZH2);  

5. Found other variants in closely neighboring positions; 

6. Mutations in intergenic regions, introns, and 5’ or 3’ untranslated regions (UTR); 

7. Genes previously reported as frequently showing false positive mutations 

(http://massgenomics.org/2013/06/ngs-false-positives.html). 

Second, the remaining variants were considered as candidate somatic mutations (CSMs). 

Mutations were included in our list only if they met specified criteria from the following: 

1. Not being found in all samples from the same patient and cannot be explained by copy 

number (CN) abnormality; 

2. Previously identified in a B-cell lymphoma genome; 

3. Being a truncating mutation; 
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4. Previously identified in a non-B-cell-lymphoma cancer genome; 

5. Identified in a gene from the Cancer Gene census list; 

6. Having a reduced variant frequency which cannot be explained by CN abnormality. 

Based on these 6 criteria above, the reported variants were classified into two tiers. 

Mutations satisfying one of the first three conditions, or two of the other three conditions were 

classified as high-confidence Tier 1 mutations; mutations that met only condition 6 were 

classified as less confident Tier 2 mutations. Because we used very strict filtering criteria to try 

to ensure that we did not include germline variants (private SNPs) in our mutation data, we may 

have filtered out some true mutations. To avoid underestimation of prevalence of important 

genes, other CSMs in B-cell expressed, recurrently mutated genes assigned to Tier 1 and 2 lists 

were rescued and designated Tier R. All the other mutations were considered as likely germline 

variants, and were thus excluded from the following analysis. 

D.4. Filtering method validation 

To validate the performance of the pipeline for filtering out germline variants, we applied 

the pipeline to a published FL sequencing dataset. This dataset has FL, tFL and normal samples 

from the same patient so that we can use the normal samples for filtering. 6 WGS samples with 

matched FL, tFL and normal samples were downloaded from a published paper9. We generated 

two somatic mutation lists. One somatic mutation list was generated using our WES pipeline 

(Figure 2-1) and did not utilize the matched normal data. The other somatic mutation list was 

generated using the standard somatic calling pipeline VarScan2 taking into account the normal 

data. This somatic mutation list did not include germline variants. We then compared the two 

somatic mutation lists at each criterion and validated the filtering method. 
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E. Machine learning model for removing germline variants 

Predictive modeling is a concept of building a trained model that learns certain features 

from a training dataset and then applying the trained model to make predictions from other 

datasets. Typically, there are two main categories of predictive modeling. One is able to predict 

continuous outcomes and is based on the relationships between attributes and trends. This is 

called a regression model. The other one is capable of predicting discrete outcomes and is based 

on grouping the attributes. This is called pattern classification which can be divided into two 

types: supervised and unsupervised learning. Supervised learning uses the known discrete 

outcomes in the training dataset to train the model. In unsupervised learning the outcomes in 

the training dataset are not known, therefore, the program tries to find unknown information 

from the attributes in the dataset. In our study, we used supervised learning modeling to predict 

germline variants in pairs of FL and tFL samples without normal samples.  

E.1. Dataset preprocessing 

We collected two published sequencing datasets9 that have FL, tFL and normal samples from 

the same patients so that we can use one as the training dataset and the other one for the 

testing dataset. We first applied a standard somatic calling pipeline using VarScan2 and 

generated variants. The variants were classified into germline variant and somatic mutation 

groups by comparing with their corresponding normal samples. We then annotated the variants 

with well-known prediction scores by ANNOVAR24. The variants were variant call format, which 

packs information in couple columns. We parsed the information into a more organized and 

convenient format for the models to do the training and testing. The parsed format separated 

the packed information into individual columns, reorganized the columns, and only kept the 

information we need for next steps. 
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E.2. Model training 

We applied 5 robust machine learning algorithms to our training dataset. These were SVM, 

recursive partitioning (RP), Breiman and Cutler’s random forests (RF) for classification and 

regression, classification and regression tree (TR) and feed-forward neural networks (NNET). We 

used R (statistical language) package e1071, rpart, randomForest, tree, and nnet for each of the 

respective models listed. The features that we used for training were the variant frequency of 

the FL sample, variant frequency of the corresponding tFL samples, dbSNP, and SIFT score. SIFT 

score is a score that can predict amino acid changes that affect protein function; the smaller the 

score is, the more deleterious the variant. We applied two sets of features. One set is called a 

basic feature set; it includes variant frequency for FL, variant frequency for tFL, and dbSNP. All 

our variants have the information for the basic feature set. Therefore, all of them were included 

in the training dataset. The other set is called a complex feature set, this set added the SIFT 

score as the extra feature. SIFT fails to provide a score for a very small number of the variants in 

the datasets. The machine learning algorithms do not work with missing data; therefore, we 

only used the mutations that have SIFT score information for our complex feature set. We 

trained all the 5 models with two feature sets in Okosun’s dataset and tested them in 

Pasqualucci’s dataset with statistical measures individually. ROCR30 is another R package for 

evaluating the performance of classifiers. We used it to evaluate the performance of our models. 

We used 5 different R packages, each of them has its own design. Therefore, when we applied 

the statistical measures to the tested models, we made 5 different scripts to retrieve 

information required by the calculation.  
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E.3. Model selection and validation 

We applied the 5 different models to the two published datasets. The statistical values, 

sensitivity, specificity, area under the receiver operating characteristic (ROC) curve (AUC), and 

false discover rate (FDR), were calculated for each model based on its performance in the 

testing dataset. We also applied the trained models to one of our own sequencing samples. 

These samples had the best coverage and depth. As we mentioned earlier, our own sequencing 

data does not have corresponding normal samples to remove germline variants, but we applied 

a filtering based method to effectively remove most of the germline variants. Therefore, the 

somatic mutations predicted by the machine learning models should have decent overlap with 

the results generated by our filtering based method. The best machine model was selected by 

considering all the statistical results. 

F. Data integration for downstream analysis 

To have a more comprehensive view of the genomic alterations and to use the CNV data to 

assist the analysis of mutation data, we integrated our mutation data with our previous 

corresponding CNV data and other two sequencing data to investigate the genetic landscape of 

the disease. 

F.1. Integration of mutation and CNA datasets 

Integration of the mutation data with CNA data can provide complementary information for 

us to examine their association with FL transformation. In our CNV analysis, a circular binary 

segmentation algorithm was applied to segment chromosomes into regions of similar CN log2 

ratio. It translated noisy intensity measurements into regions of equal CN log2 ratios and 

connected the change point to the locations of regions with aberrant DNA CNs and thereby 

identified regions of CN gain and loss. Each chromosome in each sample was divided into many 
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segments with similar CN. These segment files were used to assign the CN for each mutation in 

our analysis. We also identified mutated genes that were included in the regions of each rCNA 

for data interaction. 

F.2. Integration of mutation datasets  

In order to enhance the investigation of the genetic events that drive the transition from FL 

to tFL, we integrated other two published mutation datasets and identified recurrent mutations.  

For each dataset, we first retrieved the mutations with their original sample name, mutation 

positions, variants, mutation types, and gene names. Then we classified each mutation as FL-

unique, tFL-unique or shared. All the 3 datasets were then combined into a comprehensive 

matrix. In this matrix, the rows included all the gene names that had been detected in any of the 

3 datasets, the columns included all the paired samples that had been used for mutation 

detection. Additionally, 5 columns were added: FL-unique mutation frequency, tFL-unique 

mutation frequency, shared mutation frequency, genes expressed in B cell, and genes selected 

in our custom capture panel. For each sample and each gene, mutation types were annotated; 

some of them had more than one type. We classified them as genes with only shared mutation, 

genes with only FL-unique mutation, genes with both FL-unique and shared mutations, genes 

with tFL-unique mutation, genes with both shared and tFL-unique mutations, genes with both 

FL-unique and tFL-unique mutation, genes with FL-unique, shared and tFL-unique mutations, 

and genes with CNV. We tallied the frequencies for sorting the mutations conveniently. We also 

identified mutations that were involved in potentially important domains and pathways from 

the combined dataset. We also identified mutations that were detected in FL samples at low 

levels but had increased variant frequency in the tFL for clonal analysis.  
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G. Survival analysis 

Most standard statistical models require a normal distribution and cannot be applied in 

survival analysis because the time to the event occurrence is rarely normally distributed and we 

often lack follow-up information on the patients. For an example of the latter, logistic regression 

can study how risk factors are associated with disease or affect the time to the disease, but 

patients may drop out of the study or fail to develop a disease before the end of the study. All 

these realities make logistic regression unfit for survival analysis. The Kaplan-Meier (KM) 

method uses information from the dropout patients, rather than simply throwing it away, to 

estimate the survival probability at a given time.  

The log-rank test is a widely used hypothesis test in survival analysis. It is applied to 

compare the survival distributions of two groups of patients. One group includes patients with a 

factor, and the other group includes patients without the factor. After the test, we can come up 

with a conclusion about whether the two groups (with and without the factor) have identical 

survival functions. The log-rank test works well when the factor has the exact same weight or 

influence at each observed event time. The majority of the situations in the biological field are, 

however such that the characteristics of the factors do not always have exactly the same impact 

during the disease development. For example, loss on 9p21.3 occurring early in FL 

development31 has more influence on patients’ early overall survival. If we use a log-rank test, 

we will easily miss the biological abnormality information that can improve the analysis. 

Therefore, in our study, we designed a survival analysis that associated an understanding of how 

the abnormalities contribute to FL development and provided a more accurate and 

comprehensive test.  
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Statistical Analysis System (SAS), a professional software suite for statistical analysis that is 

flexible to select the test that matches the biological property, is convenient to navigate to 

different analysis parts, and facilitates the display and retrieval of integrated information, was 

applied to our survival analysis. 

G.1. Dataset description 

The samples that were used for the survival analysis were obtained from the LLMPP or the 

UNMC Pathology/Oncology Database. This study was approved by the UNMC institutional 

review board and conducted in accordance with the declaration of Helsinki. Diagnoses were 

confirmed by a panel of LLMPP hematopathologists.  

We originally performed CN analysis using the high-resolution GeneChip Human Mapping 

250K Nsp SNP array (Affymetrix) on 225 FL and 84 tFL samples. After preliminary analysis, 198 FL 

and 79 tFL samples had sufficient quality and were kept for rCNA identification. The method for 

rCNA identification was described in a previous published paper31. In general, the raw CEL files 

were imported into Genotyping Console 4.1 software (Affymetrix) generating SNP genotypes 

and probe-intensity log2 ratios (relative to 48 normal controls provided by Affymetrix). A 

DNAcopy R package from Bioconductor was applied to segment probe values and estimate CN. 

The recurrent abnormalities, represented as rCNAs, were then identified.  

We had clinical data for 149 FL cases and 21 tFL cases. These tFL samples were defined as 

DLBCL that occurred in patients diagnosed with FL. Since we had a very small number of tFL with 

clinical data, we only applied the survival analysis to FL cases. 

G.2. Applying KM method 

In survival analysis, the time variable was survival time, and the event was death. Censoring 

is the key analytical problem in survival analysis; it occurs when we have the individual true 
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survival time interval, but it is unknown most of time. Most survival time intervals are right-

censored, because the survival time has been cut off before the true survival time, in other 

words, the observed survival time is shorter than the true survival time. Our goal is to use the 

right-censored observed survival time in FL patients to suggest the true survival time. The KM 

method was applied to estimate the survival probability at a given time. We made use of a risk 

set at a given time. By risk set, we mean the information we have on the individuals who have 

survived at that given time. We also used the information we have on censored people up to the 

time of censorship instead of discarding the information. The KM survival curves were plotted to 

interpret the survival data.  

We examine CNVs as factors that potentially influence the patients’ survival time. We used 

them to divide the clinical data into two groups for future survival comparison. For each group, 

we applied the KM method to the FL clinical data. The number of censored patients, deceased 

patients and living patients were all calculated at the time point that patients either dropped or 

deceased in the study. A survival curve was generated by the KM method for each group for 

future survival curves comparison. 

G.3. Applying log-rank test 

The log-rank test is the most popular method for testing whether two KM curves are 

statistically equivalent. The null hypothesis is that there is no overall difference between the 

two survival curves. In our study, the null hypothesis was that there is no overall difference 

between the group with the abnormality and the group without the abnormality. Under this null 

hypothesis, the log-rank test used a chi-square distribution to test a statistic with one degree of 

freedom. The categories of the outcomes were defined by each of the ordered failure times for 

the entire set of data and the statistics used the categories of the outcomes to calculate the 
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observed cell counts versus expected cell. The expected cell count (Equation 2-1 and Equation 2-

2) was the proportion of the number of patients in one group out of the total patients in both 

compared groups at risk at time j (Equation 2-3) multiplied by the total number of deaths at 

time j in both groups (Equation 2-4). The log-rank test statistic (Equation 2-5) divided the square 

of the sum of the observed counts (𝑚𝑖𝑗) minus expected counts (𝑒𝑖𝑗) over all failure times for 

either one of the two comparing groups by the variance of the sum of the observed counts 

minus expected counts over all failure times for either one of the two comparing groups. A p-

value for the log-rank test was determined from the chi-square distribution tables. We used the 

p-value to conclude whether or not this abnormality affects the survival. 

Equation 2-1: 𝑒1𝑗 = (
𝑛1𝑗

𝑛1𝑗+𝑛2𝑗
) × (𝑚1𝑗 + 𝑚2𝑗) expected cell count for group 1 at jth failure  

Equation 2-2: 𝑒2𝑗 = (
𝑛2𝑗

𝑛1𝑗+𝑛2𝑗
) × (𝑚1𝑗 + 𝑚2𝑗) expected cell count for group 2 at jth failure  

Equation 2-3: 𝑛𝑖𝑗/(𝑛1𝑗 + 𝑛2𝑗 ) proportion of patients at jth failure, i=1, 2 represents the group 

number 

Equation 2-4: (𝑚1 𝑗 + 𝑚2 𝑗) the total number of deaths at jth failure, 1 and 2 represent the 

group 1 and group 2 

Equation 2-5: 
(∑  (𝑚𝑖𝑗−𝑒𝑖𝑗)𝑗 )2

𝑣𝑎𝑟(∑  (𝑚𝑖𝑗−𝑒𝑖𝑗)𝑗 )
 i=1, 2 represents the group number, j is the order of failure time 

G.4. Applying alternatives to the log-rank test 

To test the null hypothesis that two survival curves are statistically equivalent, there are 

several alternatives to the log-rank test as shown in Table 2-4. The main difference in the 

methods is the weights at the jth failure time in test statistic (Equation 2-6). The log-rank test 

uses the summed observed minus expected failures in each group to form the test statistic. This 
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simple sum gives the same weight to each failure time when combing observed minus expected 

failures in each group. In contrast, the alternative tests apply different weights at the jth failure 

time. Take the Wilcoxon test as an example. It places more emphasis on the information at the 

beginning of the survival curve where the number at risk is large allowing early failures to 

receive more weight than later failures. This type of weighting is often used if a factor related to 

survival has stronger effect in the earlier phase and tends to be less effective over time. 

Therefore, if the CN abnormality occurs in the early stage of FL, the Wilcoxon test will be a 

better choice than the log-rank test. Similarly, the Tarone-Ware test weights the early failure 

time more heavily, but the weight is between log-rank and Wilcoxon. Prentice32 illustrated that 

the Tarone-Ware test is always superior to either the log-rank test or Wilcoxon test. The Peto 

test weights the jth failure time by the survival estimate�̂�(𝑡𝑗); it gives more weight for the 

earlier survival time as well. The Fleming-Harrington test has the most flexibility in terms of the 

choice of weights in the test. We can choose the values for parameters p and q. For example, if 

p=1 and q=0, then 𝑤(𝑡) = �̂�(𝑡𝑗−1)𝑃[1 − �̂�(𝑡𝑗−1)]0 = �̂�((𝑡𝑗−1) giving more weight for the earlier 

survival times when �̂�(𝑡𝑗−1) is close to one. In contrast, if p=0 and q=1, then 𝑤(𝑡) =

�̂�(𝑡𝑗−1)0[1 − �̂�(𝑡𝑗−1)]1 = 1 − �̂�((𝑡𝑗−1), I giving more weight for the later survival times when 

�̂�(𝑡𝑗−1). If p=0 and q=0, then 𝑤(𝑡) = �̂�(𝑡𝑗−1)0[1 − �̂�(𝑡𝑗−1)]0 = 1; thus, it reduces to the log-

rank test. Selecting the appropriate weighted test according to the property of the abnormality 

can provide more accurate analysis. 



48 
 

 

Table 2-4. Weights in alternative test statistics. 

Equation 2-6: test statistic= 
(∑ 𝑤(𝑡𝑗)(𝑚𝑖𝑗−𝑒𝑖𝑗)𝑗 )2

𝑣𝑎𝑟(∑ 𝑤(𝑡𝑗)(𝑚𝑖𝑗−𝑒𝑖𝑗)𝑗 )
 i=1,2 represents the group number, j is the 

order of failure time, 𝑤(𝑡𝑗) weight at jth failure time. 

From our previous study, we had the average number of abnormalities associated with each 

rCNAs calculated to model the progression of rCNAs with FL development31. We can estimate 

the temporal order of the rCNA in the disease from this calculation. According to the published 

study, samples with abnormalities that occur in the early stage of FL are expected to have 

generally a low number of abnormalities, whereas samples with abnormalities that occur late in 

the disease are expected to have a high number of abnormalities. Therefore, early rCNAs would 

be expected to have a lower average number of other abnormalities and we should select a test 

statistic that puts more weight for the earlier survival time. In contrast, test statistics that put 

more weight on the later survival time could be applied to rCNAs that tended to occur late. 

G.5. Applying survival analysis by SAS 

The SAS programming language is specifically designed for statistical analysis. It can also 

retrieve and manipulate data from various sources. We applied the KM method and the 

alternative tests by using SAS and generated a comprehensive result including survival estimates 
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in different failure times with the survival standard error, number of failure patients and 

number of risk patients, summary statistics for our time variable, a summary of censoring, 

survival curves with confident intervals, marked time and survival probability of censored 

patients, and multiple weighted alternative tests. 
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A. WES analysis 

A.1. Introduction  

To identify the genetic changes that drive the transformation and contribute to its biological 

and clinical behavior, we sequenced 12 pairs of FL and tFL cases and applied a WES pipeline 

specifically designed for paired FL and tFL samples to identify mutations in the dataset. We then 

evaluated the performance of the WES by calculating the mapping condition, percentage of 

duplicates, coverage, and depth in annotated coding regions and splice sites of the samples. To 

confirm the reliability and capability of the WES mutation detection pipeline, Sanger sequencing 

was applied to validate the accuracy of the variant identification. 

A.2. Sequencing performance  

There were 12 pairs of FL and tFL samples sequenced by WES.  In general, the WES had very 

good performance (Table 3-1). Most of the reads were pair mapped (range: 96.23%-98.85%, SD: 

0.69%, Figure 3-1). The average percentage of duplicates was 34.41% (range: 19.44%-56.91%, 

SD: 11.57%, Figure 3-2). The average depth of bases at coding regions was 90 (range: 30-199, SD: 

37, Figure 3-3). The average depth of bases at splice sites was 73 (range: 26-180, SD: 32, Figure 

3-6). The average coverage of coding regions was 94.44% (range: 90.96%-99.67%, SD: 2.09%, 

Figure 3-4). The average coverage of coding region with at least 10 reads was 87.64% (range: 

75.71%-94.85%, SD: 5.34%, Figure 3-4). The average coverage of splice sites was 96.81% (range: 

94.50%-99.85%, SD: 1.36%, Figure 3-4). 
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Cases Total Reads  Duplicates %Duplicates 
Pair-
Mapped 
Reads  

Pair-Mapped 
Bases  

FL-1 237,590,222 74,826,008 31.49% 233,505,162 23,584,021,362 

tFL-1 266,693,964 71,921,285 26.97% 256,652,884 25,921,941,284 

FL-2 167,722,410 95,443,258 56.91% 163,370,368 16,500,407,168 

tFL-2 151,505,060 81,911,778 54.07% 147,515,422 14,899,057,622 

FL-3 173,523,760 71,057,500 40.95% 170,494,962 17,219,991,162 

tFL-3 102,426,766 48,077,593 46.94% 100,197,678 10,119,965,478 

FL-4 78,691,960 38,993,802 49.55% 76,703,946 7,747,098,546 

tFL-4 160,164,134 68,724,439 42.91% 157,400,100 15,897,410,100 

FL-5 95,405,906 42,166,753 44.20% 93,430,749 9,436,505,649 

tFL-5 112,526,146 57,537,049 51.13% 110,389,686 11,149,358,286 

FL-6 140,051,736 49,327,829 35.22% 137,578,938 13,895,472,738 

tFL-6 76,965,874 26,150,440 33.98% 74,417,132 7,516,130,332 

FL-8 138,771,418 45,034,843 32.45% 136,867,478 13,823,615,278 

tFL-8 161,157,660 48,874,483 30.33% 158,777,402 16,036,517,602 

FL-9 153,123,582 30,802,959 20.12% 151,108,590 15,261,967,590 

tFL-9 145,388,704 28,812,740 19.82% 143,571,681 14,500,739,781 

FL-10 145,153,806 29,265,025 20.16% 143,360,954 14,479,456,354 

tFL-10 106,939,220 22,798,673 21.32% 105,289,995 10,634,289,495 

FL-11 141,973,378 27,596,351 19.44% 140,231,461 14,163,377,561 

tFL-11 125,551,362 26,238,424 20.90% 123,869,734 12,510,843,134 

FL-12 172,894,910 54,648,179 31.61% 170,898,776 17,260,776,376 

tFL-12 182,211,848 58,432,593 32.07% 180,015,195 18,181,534,695 

FL-22 144,067,832 45,448,865 31.55% 141,669,627 14,308,632,327 

tFL-22 144,306,904 45,991,619 31.87% 142,075,691 14,349,644,791 

max 266,693,964 95,443,258 56.91% 256,652,884 25,921,941,284 

min 76,965,874 22,798,673 19.44% 74,417,132 7,516,130,332 

mean 146,867,023 49,586,770 34.41% 144,141,400 14,558,281,446 

median 144,730,355 47,034,606 31.97% 142,718,323 14,414,550,573 

SD 43560873 19772323 11.57% 42352468 4277599295 

Cases 
CDS 
covered 

CDS 10X 
covered 

CDS average 
DP 

Splice 
covered 

Splice average 
DP 

FL-1 98.74% 94.85% 199 99.31% 180 

tFL-1 99.67% 94.04% 155 99.85% 138 

FL-2 93.30% 82.78% 79 95.55% 65 

tFL-2 93.58% 83.47% 75 96.03% 61 

FL-3 93.80% 88.25% 92 96.70% 77 
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tFL-3 92.40% 81.74% 45 95.45% 39 

FL-4 90.96% 75.71% 30 94.71% 26 

tFL-4 93.74% 86.92% 75 96.34% 64 

FL-5 92.11% 79.83% 44 95.26% 37 

tFL-5 93.22% 83.81% 47 95.95% 41 

FL-6 93.30% 86.50% 86 95.93% 73 

tFL-6 91.40% 78.70% 43 94.50% 37 

FL-8 92.73% 84.63% 86 95.78% 69 

tFL-8 92.67% 84.88% 96 95.80% 76 

FL-9 95.67% 92.11% 112 97.75% 87 

tFL-9 95.44% 91.36% 95 97.67% 74 

FL-10 95.79% 92.38% 123 97.84% 95 

tFL-10 95.38% 90.89% 83 97.31% 64 

FL-11 95.72% 92.11% 109 97.80% 86 

tFL-11 95.70% 91.37% 92 97.70% 73 

FL-12 95.59% 92.25% 107 97.64% 78 

tFL-12 95.26% 92.10% 108 97.52% 79 

FL-22 95.09% 91.35% 95 97.46% 70 

tFL-22 95.21% 91.30% 94 97.51% 70 

max 99.67% 94.85% 199 99.85% 180 

min 90.96% 75.71% 30 94.50% 26 

mean 94.44% 87.64% 90 96.81% 73 

median 94.44% 89.57% 92 97.00% 72 

SD 2.09% 5.34% 37 1.36% 32 

 

Table 3-1. General statistical information of 12 pairs of FL and tFL WES sequenced samples. 
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Figure 3-1. Numbers of reads in 12 pairs of FL and tFL WES sequenced samples. 

 

 

 

Figure 3-2. Percentage of duplicates in 12 pairs of FL and tFL WES sequenced samples. 
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Figure 3-3. Read depth at coding regions and splice sites for 12 pairs of FL and tFL WES 
sequenced samples. 

 

 

 
 

Figure 3-4. Coverage of coding regions and splice sites in pairs of FL and tFL WES sequenced 
samples. 
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A.3. Validation of the WES mutation detection pipeline  

Sanger sequencing was applied to evaluate the capability of variant identification in the WES 

pipeline. 50 variants were selected from a confident variant list in Table 3-2. 47 out of 47 

variants were confirmed, and the primers in the other 3 variants did not work.  

Gene 
aa. 
change 

Chr Pos Ref Var Case Type 
Confirmed 
by sanger? 

ADCY9 C->S chr16 4164141 A T 5-tFL snp YES 

ANKRD12 S->T chr18 9255822 T A 5-tFL snp YES 

CLSTN3 A->V chr12 7287964 C T 5-tFL snp YES 

HMGN5 T->R chrX 80371830 G C 5-tFL snp YES 

IL4R Y->N chr16 27363936 T A 5-tFL snp YES 

LTBP1 P->R chr2 33623527 C G 5-tFL snp YES 

OR13H1 - chrX 130678922 G -A 5-tFL indel YES 

PTGES V->M chr9 132502006 C T 5-tFL snp YES 

ROBO1 L->F chr3 78987869 T A 5-tFL snp YES 

SDK1 D->A chr7 4011182 A C 5-tFL snp YES 

TP53 D->V chr17 7577598 T A 5-tFL snp YES 

TP53 M->V chr17 7577545 T C 5-tFL snp YES 

ZNF302 V->L chr19 35175831 G C 5-tFL snp YES 

ZNF594 K->R chr17 5085165 T C 5-tFL snp YES 

CDH23 N->H chr10 73544792 A C 6-tFL snp YES 

FUBP1 K->E chr1 78435630 T C 6-tFL snp YES 

GRIP1 D->H chr12 66786109 C G 6-tFL snp YES 

MYST1 H->Q chr16 31142184 C G 6-tFL snp YES 

SLC7A14 W->L chr3 170218933 C A 6-tFL snp YES 

SPEN - chr1 16256410 C +A 6-tFL indel YES 

TATDN3 Q->P chr1 212977991 A C 6-tFL snp YES 

TNFAIP3 Q->E chr6 138200146 C G 6-tFL snp YES 

ABCA12 - chr2 215901791 T A 9-tFL snp YES 

AKAP13 - chr15 86123376 A 
-
CCACAG 

9-tFL indel YES 

BCL9L G->D chr11 118779065 C T 9-tFL snp YES 

CDH7 T->M chr18 63547760 C T 9-tFL snp YES 

LOC643677 Q->H chr13 103393996 C A 9-tFL snp YES 

PGLYRP3 V->A chr1 153274966 A G 9-tFL snp YES 

PIK3R1 P->T chr5 67576825 C A 9-tFL snp YES 

SLITRK5 D->E chr13 88330325 C A 9-tFL snp YES 

SPATA20 G->R chr17 48628075 G C 9-tFL snp YES 

WNT3A V->G chr1 228210442 T G 9-tFL snp YES 

TBP - chr6 170871046 A - 7- indel YES 
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CAGCAG
CAG 

tFL* 

RRAGC I->F chr1 39322649 A G 6-FL snp YES 

RRAGC I->F chr1 39322649 A G 6-tFL snp YES 

RRAGC I->F chr1 39322697 T A 8-FL snp YES 

RRAGC I->F chr1 39322697 T A 8-tFL snp YES 

TPR R->Q chr1 186291702 C T 4-tFL snp YES 

SLC35F5 I->T chr2 114493380 A G 4-tFL snp YES 

SLC35F5 A->T chr2 114493426 C T 4-tFL snp YES 

MIR142 V->A chr17 56408621 A G 4-tFL snp YES 

MIR142 V->A chr17 56408621 A G 8-FL snp YES 

MIR142 V->A chr17 56408621 A G 8-tFL snp YES 

MIR142 S->G chr17 56408625 T C 9-tFL snp YES 

MIR142 V->A chr17 56408657 A G 11-FL snp YES 

MIR142 V->A chr17 56408657 A G 
11-
tFL 

snp YES 

TMSB4X - chrX 12994363 A G 4-tFL snp YES 

DDX3X R->S chrX 41205842 C A 6-tFL snp 
primer 
failed 

MGAT4B S->T chr5 179226060 C G 6-tFL snp 
primer 
failed 

MYO16 - chr13 109704824 G T 9-tFL snp 
primer 
failed 

Table 3-2. Sanger sequencing validation in of 50 variants found in WES sequenced samples. 
Note: * sample removed from the final analysis.  

 

A.4. Mutations identified by WES  

We identified a total of 1191 mutations (in 666 different genes) in the 12 paired WES 

dataset (Table 3-3). 838 mutations (in 363 different genes) were detected in both paired FL and 

tFL samples (shared mutations). 446 out of the 838 mutations were in genes expressed in B cells 

(in 187 different genes). 114 were in the confident final list (28 different genes). 90 (89 different 

genes) were only detected in FL samples (FL-unique mutations). 51 out of the 90 mutations 

were in genes expressed in B cells (50 different genes). 13 were in the confident final list (12 

different genes). 263 (249 different genes) were only detected in tFL samples (tFL-unique 

mutations). 135 out of the 263 mutations were in genes expressed in B cells (121 different 
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genes), 31 were in the confident final list (23 different genes). The recurrent mutations 

identified in our dataset were highly concordant with previously published sequencing reports, 

affirming the effectiveness of our analysis pipeline. 

Type 
Sequence 
type 

Total 
T1+T2+TR
+express 

T1 T2 TR 
T1+express
+recurrent 

T1+T2+TR+
express+re
current 

share WES 838 446 178 252 16 98 114 

FL-unique WES 90 51 46 5 0 13 13 

tFL-unique WES 263 135 119 15 1 27 31 

 sum 1191 632 343 272 17 138 158 

Table 3-3. Number of mutations detected by WES in different mutation types and filtering. 

 

A.5. Discussion 

We were particularly interested in mutations that contributed to transformation. Therefore, 

we separated the mutations into FL-unique mutations, tFL-unique mutations, and shared 

mutations so that we can assess if some of them occurred more frequently in one of the groups. 

If the mutations occur more often in the tFL-unique group, we considered them to be more 

likely to be related to transformation. Similarly, if the mutations occur more often in the FL-

unique group, we considered them to be more likely contributing to FL development. When we 

had sequenced a decent number of samples, we noticed that several mutations of a gene can be 

found in one sample. For example, BCL2 mutations were detected as a FL-unique mutation and 

also a shared mutation in the exactly same sample but at different positions. This could indicate 

mutations of both alleles of BCL2 or there were subclones harboring different mutations. These 

mutations were very carefully noted for further integration.  
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B. Custom capture panel analysis 

B.1. Introduction 

We sequenced 7 pairs of FL and tFL samples, 4 triples of two FL samples and a tFL sample, 

and 15 single tFL samples, and applied various pipelines to analyze the sequencing data as 

described above. To confirm the reliability and capability of the custom capture panel mutation 

detection, we compared the variants detected using the custom capture panel with the variants 

detected by WES on three paired samples analyzed by both approaches. We also checked the 

known mutations in a sequenced cell line. After the mutation detection pipelines and custom 

capture panel were proved to be effective, a simulation was applied to the data from the 

reliable variants to confirm the approach for estimating the duplicate ratio (the average number 

of reads per initial molecule). We then estimated the duplicate ratio in samples sequenced by 

custom capture panel.  

B.2. Sequencing performance 

A total of 43 samples (3 paired samples were also sequenced by WES) were sequenced using 

the custom capture panel.  In general, the custom capture panel had very good performance 

(Table 3-4). Most of the reads were pair mapped (range: 82.41%-91.21%, SD: 1.94%, Figure 3-5). 

The average depth at coding regions was 982 (range: 491-1515, SD: 224, Figure 3-6) and the 

average depth at splice sites was 849 (range: 426-1317, SD: 194, Figure 3-6), both of which are 

much deeper than WES. The average coverage at coding regions was 95.31% (range: 88.25%-

99.77%, SD: 1.45%, Figure 3-7), and the average coverage at splice sites was 89.60% (range: 

83.16%-90.13%, SD: 1.01%, Figure 3-7). 
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Cases 
Total 
Reads  

Pair-
Mapped 
Reads  

Pair-Mapped 
Bases  

%Pair-
Mapp
ed 
Reads 

CDS 
ave 
DP 

Spli
ce 
ave 
DP 

CDS 
cov 

Splice 
cov 

FL-3 32,115,446 29,290,422 2,958,332,622 
91.20
% 

786 683 
95.43
% 

89.82
% 

tFL-3 31,611,696 28,753,286 2,904,081,886 
90.96
% 

757 655 
95.43
% 

89.91
% 

FL-5 39,545,852 35,684,534 3,604,137,934 
90.24
% 

1237 830 
99.77
% 

90.06
% 

tFL-5 42,809,742 38,735,308 3,912,266,108 
90.48
% 

975 853 
95.76
% 

90.13
% 

tFL-15 33,735,752 30,695,784 3,100,274,184 
90.99
% 

814 708 
95.56
% 

89.94
% 

tFL-16 40,419,724 36,422,198 3,678,641,998 
90.11
% 

930 813 
95.66
% 

90.09
% 

tFL-17 38,825,300 34,737,906 3,508,528,506 
89.47
% 

932 839 
88.25
% 

83.16
% 

tFL-18 33,919,492 30,732,778 3,104,010,578 
90.61
% 

843 724 
95.37
% 

89.92
% 

tFL-19 37,800,608 34,477,870 3,482,264,870 
91.21
% 

994 813 
99.70
% 

89.75
% 

tFL-20 42,563,636 38,736,302 3,912,366,502 
91.01
% 

1048 915 
95.35
% 

89.86
% 

tFL-21 31,746,862 28,752,256 2,903,977,856 
90.57
% 

773 680 
95.34
% 

89.87
% 

KARPA
S-422 

40,802,670 36,187,510 3,654,938,510 
88.69
% 

952 841 
95.50
% 

89.92
% 

FL-23-1 38,999,680 35,230,592 3,558,289,792 
90.34
% 

1000 837 
95.52
% 

89.90
% 

FL-23-2 40,960,006 36,782,770 3,715,059,770 
89.80
% 

1017 858 
95.33
% 

89.83
% 

tFL-23 36,783,674 33,217,988 3,355,016,788 
90.31
% 

941 799 
95.37
% 

89.86
% 

FL-24-1 25,211,878 22,258,334 2,248,091,734 
88.29
% 

603 536 
95.00
% 

89.66
% 

FL-24-2 36,757,574 32,288,728 3,261,161,528 
87.84
% 

873 778 
95.18
% 

89.73
% 

tFL-24 42,562,004 37,436,676 3,781,104,276 
87.96
% 

1012 885 
95.40
% 

89.92
% 

FL-25-1 32,177,034 28,231,026 2,851,333,626 
87.74
% 

784 660 
95.21
% 

89.70
% 

FL-25-2 29,521,614 24,330,136 2,457,343,736 
82.41
% 

605 529 
95.59
% 

89.99
% 

tFL-25 39,425,936 32,595,856 3,292,181,456 
82.68
% 

750 667 
95.70
% 

89.97
% 

FL-26-1 30,333,532 26,278,374 2,654,115,774 86.63 708 605 95.23 89.82
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% % % 

FL-26-2 32,761,944 28,522,064 2,880,728,464 
87.06
% 

821 690 
95.29
% 

89.79
% 

tFL-26 37,275,886 32,372,154 3,269,587,554 
86.84
% 

880 753 
95.42
% 

89.94
% 

FL-27 47,299,092 42,250,582 4,267,308,782 
89.33
% 

1146 
102
1 

95.25
% 

89.59
% 

tFL-27 51,565,566 46,014,100 4,647,424,100 
89.23
% 

1214 
108
6 

95.24
% 

89.65
% 

FL-28 44,351,228 40,003,606 4,040,364,206 
90.20
% 

1049 930 
95.09
% 

89.54
% 

tFL-28 46,206,520 40,649,858 4,105,635,658 
87.97
% 

1131 986 
95.21
% 

89.58
% 

FL-29 48,257,298 42,504,248 4,292,929,048 
88.08
% 

1216 
104
4 

95.13
% 

89.63
% 

tFL-29 28,674,836 25,401,852 2,565,587,052 
88.59
% 

700 613 
94.99
% 

89.48
% 

FL-30 51,330,246 45,304,466 4,575,751,066 
88.26
% 

1266 
110
9 

95.18
% 

89.57
% 

tFL-30 40,658,460 36,030,640 3,639,094,640 
88.62
% 

1003 869 
95.06
% 

89.44
% 

FL-31 33,138,820 29,408,576 2,970,266,176 
88.74
% 

818 709 
95.03
% 

89.52
% 

tFL-31 20,070,002 17,797,300 1,797,527,300 
88.68
% 

491 426 
94.85
% 

89.38
% 

tFL-32 54,421,832 46,090,264 4,655,116,664 
84.69
% 

1301 
111
9 

95.00
% 

89.53
% 

tFL-33 39,634,324 35,351,892 3,570,541,092 
89.20
% 

978 848 
95.01
% 

89.59
% 

tFL-34 53,733,670 48,043,530 4,852,396,530 
89.41
% 

1319 
115
9 

95.22
% 

89.61
% 

tFL-35 52,127,122 46,398,420 4,686,240,420 
89.01
% 

1314 
113
4 

95.21
% 

89.72
% 

tFL-36 61,553,502 54,997,112 5,554,708,312 
89.35
% 

1515 
131
7 

95.19
% 

89.69
% 

tFL-37 48,163,280 43,010,422 4,344,052,622 
89.30
% 

1192 
102
6 

95.19
% 

89.71
% 

tFL-38 50,147,304 45,078,500 4,552,928,500 
89.89
% 

1208 
106
1 

95.25
% 

89.68
% 

tFL-39 43,741,788 38,832,258 3,922,058,058 
88.78
% 

1056 946 
95.09
% 

89.57
% 

tFL-40 52,922,576 47,175,804 4,764,756,204 
89.14
% 

1281 
114
2 

95.18
% 

89.72
% 

max 61,553,502 54,997,112 5,554,708,312 
91.21
% 

1515 
131
7 

99.77
% 

90.13
% 

min 20,070,002 17,797,300 1,797,527,300 
82.41
% 

491 426 
88.25
% 

83.16
% 
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mean 40,384,312 35,883,170 3,624,200,156 
88.84
% 

982 849 
95.31
% 

89.60
% 

media
n 

39,939,521 35,724,863 3,608,211,163 
89.17
% 

979 840 
95.23
% 

89.72
% 

SD 8,677,316 7,751,512 782,902,664 1.94% 224 194 
1.45
% 1.01% 

Table 3-4. General statistical information for custom capture panel sequenced samples.  

 

 

Figure 3-5. Numbers of reads in 43 FL/tFL custom capture panel sequenced samples. 

 

 

Figure 3-6. Depth of coverage for coding regions and splice sites in 43 FL/tFL custom capture 
panel sequenced samples. 
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Figure 3-7. Coverage of coding regions and splice sites in 43 FL/tFL custom capture panel 
sequenced samples.  

 

B.3. Custom capture panel mutation detection pipelines validation 

We sequenced 3 of the paired cases for which we had WES data. After that we determined 

the number of overlapping variants with sufficient depth in both platforms. We confirmed that 

more than 98% of the variants that were detected by WES were successfully detected in the 

custom capture panel in all 3 paired cases (Table 3-5). We also reported all the known mutations 

in KARPAS-422. We then calculated the depth for mutations (mutations in Tier 1 and 2 in Table 

3-6) found in both platforms and compared their variant frequency. We confirmed that the 

mutation depth in custom capture panel was much deeper than WES and the majority of variant 

frequencies between the two platforms were similar (Table 3-6).  

 

 



64 
 

 Case 
Variants Found in 
WES 

Sufficient Custom Depth Validated Validate Rate 

FL-3 109,803 2,788 2,742 98.40% 

tFL-3 98,423 2,522 2,485 98.50% 

FL-5 96,326 2,544 2,492 98.00% 

tFL-5 99,221 2,789 2,742 98.30% 

FL-10 112,456 2,898 2,845 98.20% 

tFL-10 104,922 2,703 2,650 98.00% 

Total 621,151 16,244 15,956 

Table 3-5. Variant overlap for 3 paired cases sequenced by both WES and custom capture 
panel. Sufficient custom depth indicates that the mutations found in WES also had sufficient 
depth in custom capture panel for comparison. 

 

Case 
Chromosome| 
Position |Altered-
Base 

Gene 
 
 

WES data Custom-seq data 

Var 
Read 
Depth 

Total 
Read 
Depth 

Var 
Freq 

Var 
Read 
Depth 

Total 
Read 
Depth 

Var 
Freq 

FL-10 chr14|23345905|C LRP10 40 96 42% 547 1765 31% 

FL-10 chr1|85736474|T BCL10 125 193 65% 17 245 7% 

FL-3 chr1|110882568|G RBM15 12 21 57% 35 160 22% 

FL-5 chrX|41200829|C DDX3X 11 31 36% 35 81 43% 

tFL-10 chr4|40245479|A RHOH 72 146 49% 1740 3550 49% 

tFL-10 chr16|3786704|G CREBBP 24 29 83% 347 456 76% 

tFL-10 chr6|157528317|A ARID1B 46 89 52% 628 1653 38% 

tFL-10 chr3|187449624|A BCL6 20 58 35% 440 1047 42% 

tFL-10 
chr12|49433524|-
CT 

KMT2D(
MLL2) 

50 62 81% 203 244 83% 

tFL-10 chr17|80209332|A CSNK1D 57 153 37% 522 1213 43% 

tFL-10 chr13|31037742|A HMGB1 57 136 42% 44 295 15% 

tFL-10 chr21|44521518|A U2AF1 38 102 37% 28 172 16% 

tFL-3 chr17|62007128|T CD79B 6 30 20% 447 2236 20% 

tFL-3 chr4|3134324|A HTT 15 61 25% 60 334 18% 

tFL-3 chr15|42035019|A MGA 21 39 54% 101 146 69% 

tFL-5 chr16|3807881|A CREBBP 18 34 53% 658 1646 40% 

tFL-5 chr12|49438694|T 
KMT2D(
MLL2) 

17 32 53% 683 1484 46% 

tFL-5 chr12|49418731|A 
KMT2D(
MLL2) 

17 43 40% 546 1162 47% 

tFL-5 chr7|148508728|T EZH2 20 43 47% 317 857 37% 

tFL-5 chr17|7577598|A TP53 14 25 56% 3 28 11% 

tFL-5 chr12|7287964|T CLSTN3 26 60 43% 1021 2430 42% 

tFL-5 chr16|3808033|G CREBBP 6 18 33% 451 1074 42% 
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tFL-5 chr16|3807917|C CREBBP 25 47 53% 999 2379 42% 

tFL-5 chr12|57493137|C STAT6 50 57 88% 654 909 72% 

tFL-5 chr17|78269544|C RNF213 13 26 50% 297 874 34% 

tFL-5 chr16|3808046|G CREBBP 7 16 44% 451 1074 42% 

tFL-5 chr16|85936784|G IRF8 18 32 56% 328 820 40% 

tFL-5 chrX|39923127|G BCOR 9 19 47% 259 740 35% 

tFL-5 chr3|78987869|A ROBO1 24 52 46% 609 1449 42% 

tFL-5 chr16|3808030|C CREBBP 6 19 32% 451 1074 42% 

tFL-5 chr12|57493818|C STAT6 51 60 85% 836 1114 75% 

tFL-5 chr17|7577545|C TP53 14 37 38% 5 6 83% 

Table 3-6. Comparison of depth in genes found mutated by WES and custom gene sequencing. 

 

B.4. Mutations identified by the custom capture panel  

We identified a total of 484 mutations (134 different genes) in the custom capture panel 

dataset (Table 3-7). 169 were detected in single samples (74 different genes) and 80 were in the 

confident final list (42 different genes). 156 (in 61 different genes) were detected in both paired 

FL and tFL samples (shared mutations) and 66 were in the confident final list (27 different genes). 

19 (in 17 different genes) were only detected in FL samples (FL-unique mutations) and 8 were in 

the confident final list (8 different genes). 140 (in 84 different genes) were only detected in tFL 

samples (tFL-unique mutations) and 68 were in the confident final list (40 different genes).  
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Type 
Sequence 
type 

Total 
T1+T2+TR
+express 

T1+
expr
ess 

T2+
expr
ess 

TR+e
xpres
s 

T1+expre
ss+recurr
ent 

T1+T2+TR+e
xpress+recu
rrent 

single custom 169 157 91 40 26 80 129 

share custom 156 143 94 40 9 66 95 

FL- 
unique 

custom 
19 17 14 2 1 8 10 

tFL- 
unique 

custom 
140 130 98 27 5 68 88 

 sum 484 447 297 109 41 222 322 

Table 3-7. Number of mutations detected by custom capture panel in different mutation types 
and filtering. 

 

B.5. Validation of a binomial distribution model  

Because most of our tumor samples have a considerable admixture of normal cells, the true 

variant frequency for somatic mutations is expected to be less than 0.5, but the frequency for 

germline variants should equal 0.5. Thus, we wanted to be able to use a proportion test to 

determine the likelihood that a fraction of variant counts was significantly different from 0.5. 

We performed the proportion test on the data from the custom platform on heterozygous 

germline variants (SNPs). For almost all heterozygous germline variants, approximately 50% of 

reads should support each allele. Using dbSNP, a compendium of germline variants we can 

extract heterozygous SNPs from the variants called using the mutation analysis pipeline. 

Unfortunately, when we performed the proportion test on these known SNPs, many more than 

expected showed a significant difference from 0.5. One possible explanation is that multiple 

reads were derived from a single initial molecule due to the PCR step; the average number of 

reads per initial molecule was designated “the duplicate ratio.”  If there are no duplicates 

(duplicate ratio =1), p-values from the binomial test for each heterozygous germline variant will 

be uniformly distributed, and the slope of the regression model fitting the frequencies of the p-
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values to the p-value will be close to 0; however, if there are PCR-generated duplicate reads, p-

values close to zero will be overrepresented. We designed a binomial distribution statistical 

model to estimate the duplicate ratio. We estimated the duplicate ratio based on the slope of 

the linear regression model of p-values generated from binomial tests and frequencies of the p-

values.  

To validate the model, we extracted all the heterozygous germline variants from the 

mutation detection pipelines and did the duplicate ratio simulation based on the extracted real 

total reads to display the patterns of p-values and frequencies of the p-values with and without 

duplicates. Figure 3-8 displayed the patterns of no duplicates, duplicate ratio equal to 2 and 

duplicate ratio equal to 4. The number of total reads applied in Figure 3-8 was randomly 

selected from the real total reads of all the samples (range, 100-1200). According to the 

rationale for the binomial distribution model, if there are no duplicates, most of the null 

hypotheses, the probability that a read supports one allele is 0.5, will not be rejected, and the 

majority of total reads are assigned equally. That is why there was a big peak on the far right, 

whereas the rest of p-values were uniformly distributed in Figure 3-8 (No duplicates). If there 

are PCR-generated duplicates, most of the hypotheses will be rejected, implying that at the 

majority of sites, the total reads are assigned unequally, and p-values close to zero will be 

overrepresented. That is why there was a big peak on the left as displayed in Figure 3-8 

(duplicate*2 and duplicate*4). As the PCR-duplicate ratio increases, the peak close to zero 

becomes more exaggerated; therefore, when the PCR-duplicate ratio was 2, the frequency of p-

values close to 0 was a little bit over 1500 and it increased to over 3000 when the PCR-duplicate 

ratio reached 4 in Figure 3-8. From the results of the 10,000,000 simulations we did based on a 

real number of reads from all of our samples with duplicate ratio equal to 1, we can see the 

trend of the histogram was flat except the p-values close to 1 in Figure 3-9 as we expected, 
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which confirmed that the p-values from binomial test will be uniformly distributed if there are 

no duplicates. 

  

Figure 3-8. Patterns of different duplicate ratio. 

 

 

Figure 3-9. Pattern when the duplicate ratio is equal to 1. 
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B.6. Duplicate ratio estimation 

We applied the Binomial distribution model and estimated the duplicate ratio for all the 

samples sequenced using the custom capture panel (Table 3-8). The average duplicate ratio was 

3.3. We then adjusted the reads in the 3 paired cases for which we had WES data and custom 

capture panel with predicted duplicate ratio. With a few exceptions, the read depth in the data 

from the custom capture panel was still much deeper than from WES in genes found mutated in 

both platforms (Table 3-9). 

Case  
Duplicate 
ratio 

Case  
Duplicate 
ratio 

Case  
Duplicate 
ratio 

Case15 2.76 Case25FL2 2.28 Case31tFL 2.36 

Case16 2.98 Case25tFL 2.62 Case32 3.8 

Case17 3 Case26FL1 2.92 Case33 3.8 

Case18 2.2 Case26FL2 2.62 Case34 2.96 

Case19 2.26 Case26tFL 1.75 Case35 2.7 

Case20 2.879 Case27FL 12 Case38 2.96 

Case21 2.92 Case27tFL 2.82 Case39 3.2 

Case23FL1 2.78 Case28FL 4.8 Case3FLcustom 2.24 

Case23FL2 2.7 Case28tFL 6.7 Case3tFLcustom 2.4 

Case23tFL 2.3 Case29FL 3.26 Case40 13 

Case24FL1 2.28 Case29tFL 2 Case5FLcustom 2.74 

Case24FL2 2.76 Case10FLcustom 2.94 Case5tFLcustom 2.56 

Case24tFL 2.24 Case10tFLcustom 2.7 CaseKARPAS422 2.9 

Case25FL1 2.46 Case31FL 2.56   

Table 3-8. Estimated duplicate ratio in all samples sequenced by custom capture panels. 
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Case 

Chromosome| 
Position 

|Altered-Base 
 
 

WES Custom 
Adjusted 
custom 

Var 
Read 
Depth 

Total 
Read 
Depth 

Var 
Freq 

Var 
Read 
Depth 

Total 
Read 
Depth 

Var 
Freq 

Var 
Read 
Depth 

Total 
Read 
Depth 

FL-10 
chr14|23345905
|C 

40 96 42% 547 1765 31% 186 600 

FL-10 
chr1|85736474|
T 

125 193 65% 17 245 7% 6 83 

FL-3 
chr1|110882568
|G 

12 21 57% 35 160 22% 16 71 

FL-5 
chrX|41200829|
C 

11 31 36% 35 81 43% 13 30 

tFL-
10 

chr4|40245479|
A 

72 146 49% 1740 3550 49% 644 1315 

tFL-
10 

chr16|3786704|
G 

24 29 83% 347 456 76% 129 169 

tFL-
10 

chr6|157528317
|A 

46 89 52% 628 1653 38% 233 612 

tFL-
10 

chr3|187449624
|A 

20 58 35% 440 1047 42% 163 388 

tFL-
10 

chr12|49433524
|-CT 

50 62 81% 203 244 83% 75 90 

tFL-
10 

chr17|80209332
|A 

57 153 37% 522 1213 43% 193 449 

tFL-
10 

chr13|31037742
|A 

57 136 42% 44 295 15% 16 109 

tFL-
10 

chr21|44521518
|A 

38 102 37% 28 172 16% 10 64 

tFL-3 
chr17|62007128
|T 

6 30 20% 447 2236 20% 186 932 

tFL-3 chr4|3134324|A 15 61 25% 60 334 18% 25 139 

tFL-3 
chr15|42035019
|A 

21 39 54% 101 146 69% 42 61 

tFL-5 
chr16|3807881|
A 

18 34 53% 658 1646 40% 257 643 

tFL-5 
chr12|49438694
|T 

17 32 53% 683 1484 46% 267 580 

tFL-5 
chr12|49418731
|A 

17 43 40% 546 1162 47% 213 454 

tFL-5 
chr7|148508728
|T 

20 43 47% 317 857 37% 124 335 

tFL-5 
chr17|7577598|
A 

14 25 56% 3 28 11% 1 11 

tFL-5 
chr12|7287964|
T 

26 60 43% 1021 2430 42% 399 949 
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tFL-5 
chr16|3808033|
G 

6 18 33% 451 1074 42% 176 420 

tFL-5 
chr16|3807917|
C 

25 47 53% 999 2379 42% 390 929 

tFL-5 
chr12|57493137
|C 

50 57 88% 654 909 72% 255 355 

tFL-5 
chr17|78269544
|C 

13 26 50% 297 874 34% 116 341 

tFL-5 
chr16|3808046|
G 

7 16 44% 451 1074 42% 176 420 

tFL-5 
chr16|85936784
|G 

18 32 56% 328 820 40% 128 320 

tFL-5 
chrX|39923127|
G 

9 19 47% 259 740 35% 101 289 

tFL-5 
chr3|78987869|
A 

24 52 46% 609 1449 42% 238 566 

tFL-5 
chr16|3808030|
C 

6 19 32% 451 1074 42% 176 420 

tFL-5 
chr12|57493818
|C 

51 60 85% 836 1114 75% 327 435 

tFL-5 
chr17|7577545|
C 

14 37 38% 5 6 83% 2 2 

Table 3-9. Comparison of read depth in genes found mutated by WES and custom gene 
sequencing after duplicate ratio adjustment. 

 

B.7. Discussion 

We observed the depth in 2 mutations detected by custom capture was not as good as WES 

and the 2 mutations were very close to each other. These errors are probably due to the poor 

design of that specific region. The average duplicate ratio was 3.3, but there are four samples 

with a much larger estimated duplicate ratio than others. It is probably because the tumor 

genome in these four samples has CNAs that have a large fraction of the dbSNP SNPs, which are 

truly not equal to 0.5, these dbSNP SNPS would interfere with the approach used. 
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C. Somatic mutation filtering 

C.1. Introduction 

In order to remove germline variants from our mutation list, we applied different layers of 

filtering with a number of reliable datasets. We also validated our somatic mutation filters in 

samples with corresponding normal samples to ensure that our filtering method can exclude 

most germline variants from our list of likely somatic mutations. We set up two tiers of 

mutations, listed according to stringency. 

C.2. Positive and negative filtering validation 

We applied the filtering to a dataset that had paired FL and tFL samples with normal 

samples from the same patients. In Table 3-10, we listed the number of germline variants and 

somatic mutations in different layers of filtering. In negative filtering, we first removed 

synonymous mutations and mutations detected in intergenic and intronic regions, and 5’ and 3’ 

UTRs. The total number of mutations after this step was 51,685. Then dbSNP filtered out a 

majority of variants and left 4655 variants including 4038 germline variants and 617 somatic 

mutations. Mutations that are very close to each other were considered false positives and were 

removed; this step left 1390 mutations in the list including 877 germline variants and 513 

somatic mutations. The paralog gene database removed 141 apparent mutations and left 1249 

mutations for the next step. Mutations found in other unrelated normal samples were 

considered private SNPs or artifacts. This resulted in 1183 mutations remaining in the study 

including 709 germline variants and 474 somatic mutations. After this step, we checked the 

recurrence of these remaining mutations and removed the ones that had high frequency. In 

general, negative filtering removed 51199 variants and kept 943 variants with 485 germline 

variants and 458 mutations. The proportion of germline variants decreased in Figure 3-10. The 
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positive filtering filtered out 457 mutations and kept 486 mutations including 98 germline 

variants and 388 somatic mutations. Since mutations can fall in different categories among the 

positive filtering criteria, we made Table 3-11, Table 3-12 and Table 3-13 to give a specific look 

at the distribution of germline variants and somatic mutations, we also made Figure 3-11 to 

display the portion of germline variants and somatic mutations in different categories. The FDR 

of the filter set is 20.2%.  

 Total Germline Somatic 

non-protein-changing 51685 - - 

dbSNP 4655 4038 617 

Adjacent 1390 877 513 

paralog genes 1249 758 491 

Normal samples 1183 709 474 

Too Many Positive 943 485 458 

Positive Filtering 486 98 388 

Table 3-10. Evaluation of the somatic filters performance of the negative and positive filtering. 

 

 

Figure 3-10. Proportions of germline variants and somatic mutations at different stages of 
negative and positive filtering. 
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Categories 388 true somatic mutations identified by   

Intra-Case-Specific 30 

Intra-Case-Specific, Cancer-Gene 1 

Intra-Case-Specific, Loss-Of-Function, Reduced-VAF 5 

Intra-Case-Specific, Loss-Of-Function, Reduced-VAF, Cancer-Gene 1 

Intra-Case-Specific, Reduced-VAF 107 

Intra-Case-Specific, Reduced-VAF, Cancer-Gene 5 

Intra-Case-Specific, Reported-Site 1 

Intra-Case-Specific, Reported-Site, Cancer-Gene 2 

Intra-Case-Specific, Reported-Site, Loss-Of-Function, Cancer-Gene 1 

Intra-Case-Specific, Reported-Site, Reduced-VAF 4 

Loss-Of-Function, Cancer-Gene 3 

Loss-Of-Function, Reduced-VAF 31 

Loss-Of-Function, Reduced-VAF, Cancer-Gene 4 

Reduced-VAF 145 

Reduced-VAF, Cancer-Gene 15 

Reported-Site, Cancer-Gene 1 

Reported-Site, Loss-Of-Function 4 

Reported-Site, Loss-Of-Function, Cancer-Gene 1 

Reported-Site, Loss-Of-Function, Reduced-VAF 4 

Reported-Site, Loss-Of-Function, Reduced-VAF, Cancer-Gene 1 

Reported-Site, Reduced-VAF 16 

Reported-Site, Reduced-VAF, Cancer-Gene 6 

Table 3-11. True positive somatic mutations in positive filtering. 

 

Categories 98 false mutations belonged to   

Intra-Case-Specific, Reported-Site, Reduced-VAF 1 

Loss-Of-Function, Reduced-VAF 4 

Reduced-VAF 76 

Reduced-VAF, Cancer-Gene 2 

Reported-Site, Cancer-Gene 2 

Reported-Site, Reduced-VAF 12 

Reported-Site, Reduced-VAF, Cancer-Gene 1 

Table 3-12. False positive somatic mutations in positive filtering. 
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 Germline Somatic 

Intra-Case-Specific 1 157 

Reported-Site 16 41 

Reduced-VAF 96 344 

Loss-Of-Function 4 55 

Cancer-Gene 5 41 

Table 3-13. Evaluation of the performance of the somatic filters in positive filtering. 

 

 

Figure 3-11. Proportions of germline and somatic variants among different categories of 
positive filtering. 

 

C.3. Discussion 

We applied very strict filters to avoid mistakenly including germline variants in our reliable 

somatic mutation list. These strict rules might be too strict and let some real somatic mutations 

slip away. For example, some real somatic mutations might not fall into negative filtering but 

also not have enough strong positive signals to pass the positive filter either. For such mutations, 

we added one more rescue rule, that is, the variants that did not pass the positive filter but 
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were in genes recurrently mutated in other samples were considered potential somatic 

mutations and were not removed. 

D. Somatic mutation prediction by machine learning methods 

D.1. Introduction 

We applied various machine learning methods to two published datasets8,9 (Pasqualucci 

dataset and Okosun dataset) to provide straightforward predictions of somatic mutations 

instead of filtering by layers. Sensitivity, specificity, FDR (Table 3-14) and AUC were used to 

evaluate the performance. We also applied the trained models to our dataset and checked the 

consistence with our filtering based method. RF turned out to have had the best performance in 

general. 

 

Table 3-14. 2X2 contingency table to calculate sensitivity, specificity and FDR. TN indicates true 
negative, FN indicates false negative, FP indicates false positive, TP indicates true positive, and 
FDR indicates false discover rate. 

 

D.2. Machine learning validation 

We downloaded two published datasets which have pairs of FL and tFL with corresponding 

normal samples. We used one dataset as training data, and the other as testing data with two 

sets of different features to predict somatic mutations. We assigned one set of features with 

basic information and the other set with more complex information. We calculated 4 statistical 
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measures to evaluate the performance of the models. Sensitivity measures the proportion of 

successfully detected true somatic mutations out of all true somatic mutations. Specificity 

measures the proportion of successfully detected true germline variants out of all true germline 

variants. FDR measures the proportion of false predicted somatic mutations out of all predicted 

somatic mutations. AUC measures the area under the ROC curve. 0.90 to 1 is considered to be 

excellent; 0.8 to 0.9 is considered to be good; 0.7 to 0.8 is considered to be fair; 0.6 to 0.7 is 

considered to be poor; and 0.5 to 0.6 is considered failure. In general, all the models had very 

decent statistical measures (Table 3-15, Table 3-16): the specificity and AUC were excellent. The 

sensitivity and the FDR varied among the different models. Complex features were slightly 

better than basic features. Taking all of the measures into consideration, RF had the best 

performance; it had much lower FDR and very similar in sensitivity to the others. We also 

applied the trained models to our own dataset and checked the overlap with the filtering based 

method. The majority of the predicted somatic mutations were detected by positive and 

negative filtering method, which confirmed the machine learning model to be very robust. 
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Table 3-15. Performance of machine learning models with basic features. SVM indicates 
support vector machine, rp indicates recursive partitioning, rf indicates random forest, nnet 
indicates neural networks, AUC indicates area under curve, FDR indicates false discover rate, TN 
indicates true negative, FN indicates false negative, FP indicates false positive, and TP indicates 
true positive. 

 

 
 

Table 3-16. Performance of machine models with complex features. SVM indicates support 
vector machine, rp indicates recursive partitioning, rf indicates random forest, nnet indicates 
neural networks, AUC indicates area under curve, FDR indicates false discover rate, TN indicates 
true negative, FN indicates false negative, FP indicates false positive, and TP indicates true 
positive. Note: * one spot was removed because the training dataset does not have it covered. 
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D.3. Discussion 

SIFT score is the feature we added in the set of complex features. It predicts amino acid 

changes that affect protein function33. If a variant is a somatic mutation that contributes to the 

disease, SIFT should be more likely to predict it to be deleterious. Conversely, germline variants 

that exist in a normal sample are more likely to be functionally neutral with a benign prediction 

from SIFT. Therefore, SIFT score should be able to provide very useful information to improve 

the training models. From the results, we did see the models that were trained with complex 

features performed better than those trained only with basic features. SIFT does not assign a 

score to all the variants; therefore, we had to filter out those that do not have a SIFT score in the 

training data. This limited the size of the training data, which may explain why the complex 

feature did not improve the statistical measures a lot. We do not have normal samples in our 

own dataset, but our somatic mutation filtering is very reliable. The overlap of the two 

independent methods is strong evidence indicating that the machine learning model has the 

capability to predict somatic mutations. It also confirms our filtering method. 

E. CNA and patient outcome 

E.1. Introduction 

FL is indolent with about 8 to 10 years survival time. However, tFL progresses more rapidly 

with shorter survival, commonly less than two years. Therefore it is very important for us to 

accurately identify abnormalities that are associated with survival so that we can monitor the 

patients more closely and provide better treatment plans. Compared to standard survival 

analysis, our advanced survival analysis provided alternative tests that were able to put weight 

in different stages of the survival curve and chose the most accurate test based on the character 

of each individual rCNA.  
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E.2. Survival analysis for patients with different rCNAs 

In our previous study, we used a CNV analysis pipeline on high-resolution SNP array 

processed samples to identify abnormalities that contribute to FL transformation. For each rCNA, 

the average number of rCNAs present in cases with that rCNAs was calculated to model the 

progression of rCNAs in FL evolution. Abnormalities that occur in the early stage of FL are 

expected to have higher frequency and be found preferentially in tumors that have a lower 

average number of other abnormalities, whereas abnormalities that occur late in the disease are 

expected to be found preferentially in tumors that have a high average number of other 

abnormalities. 

In our survival analysis, we first inferred the temporal order of the rCNAs based on the 

average abnormality numbers in Figure 3-1231. For example, loss on 9p21.3 (rCNA402) and 

6q13-q15 (rCNA341) occurred early in FL development. We then put the weight in different 

stages of the survival curve based on the biological characters of the rCNAs to test the 

difference between the two overall survival curves.  
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Figure 3-12. Number of abnormalities associated with rCNAs31.  The av.abnl indicates the 
average numbers of abnormalities with a specific CNA. 

Our survival analysis generated pdf format output with convenient bookmarks (Figure 3-13). 

The results included survival estimation at different time points with the corresponding number 

of failures, the number of remaining patients in the study and number of censored patients, p-

values for all alternative tests, survival curves for the two compared groups (with and without 

the abnormality) with 95% confidence intervals and censored patients at different time points 

within the survival curves (Figure 3-14). For example, we had 5 patients who had rCNA402 

(Table 3-18). 4 of them died at different time points (0.734, 0.767, 1.792 and 9.949). One of 
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them was lost to follow-up at 5.8940. The probability that a patient is alive past time=0 is 100%; 

the probability that a patient is alive past time=0.734 (268 days) is 80%; and the probability that 

a patient is alive past time=0.7670 (280 days) is 60%, when it comes to time=9.949 (3631 days), 

the probability that a patient is alive is 0%. If we do not take the biological property into 

consideration and just use the log-rank test, the log-rank statistic is 5.5652 and the 

corresponding p-value is 0.0183 (Table 3-19) indicating that the null hypothesis (all survival 

curves are the same) should be rejected. We can therefore conclude that groups with and 

without rCNA402 have significantly different KM survival curves and that rCNA402 is associated 

with poor outcome in FL. However, according to the calculated average numbers of 

abnormalities (Figure 3-12), rCNA402 occurs quite early (8.3 in Figure 3-12) in the FL 

development; therefore, the Wilcoxon test is a much more appropriate test for rCNA402, which 

puts more weight on the earlier survival curve, and the p-value (0.0080) from Wilcoxon test 

shows a much more significant difference between groups with and without rCNA402 (Table 3-

19) than the p-value (0.0183) from log-rank test. We are also 95% confident that the entire 

survivor function fell within upper curve and lower curve as figure 3-3 shows. We applied the 

survival analysis to other rCNAs that appear to occur in the early stage of FL as the previous 

study mentioned, and showed that rCNA304 (p-value<0.0001 by Tarone-Ware test), rCNA341 

(p-value =0.05 by Tarone-Ware test), rCNA1013 (p-value =0.0457 by Tarone-Ware test) and 

rCNA818 (p-value=0.0469 by Tarone-Ware test) are associated with poor  survival for the 

patients (Figure 3-14 and Table 3-19).  



83 
 

 
 

Figure 3-13. pdf format output with bookmark. 

 

 

Table 3-17. Survival estimation at different time points in rCNA402.  
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                     rCNA402 (early)                                                     rCNA304    
 
 

 
                         rCNA341 (early)                                                  rCNA1013 (early) 
 
 

 
                           rCNA818 (late) 

Figure 3-14. Survival curves of rCNA402, rCNA304, rCNA341, rCNA1013 and rCNA818.  
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                     rCNA402 (early)                                                        rCNA304    
 
 

 
                     rCNA341 (early)                                                      rCNA1013 (early) 
 
 

 
                       rCNA818 (late) 

Table 3-18. Tests in rCNA402, rCNA304, rCNA341, rCNA1013 and rCNA818. 
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E.3. Discussion 

We collected a decent number of clinical samples but some of the abnormality groups had a 

very small number of patients. It could cause a large standard error or a situation where one or 

two patients’ failure makes a noticeable difference between the groups being compared.  

There are multiple tests for abnormalities occurring in the early stage of the disease, and 

each of them is slightly different. Compared to the log-rank test, the Wilcoxon test puts the 

most weight in the earlier phase of the disease. The Tarone-Ware test is more moderate, and 

the weight is between a log-rank test and the Wilcoxon test on the earlier phase. One study 

group proved that the Tarone-Ware test is better than both the log-rank test and Wilcoxon test, 

so if the rCNAs do not indicate that abnormalities occur in a very early stage, we chose Tarone-

ware test instead of other tests. We can also take all the p-values from the tests into 

consideration. The Fleming-Harrington test can be applied to both abnormalities occurring in 

the early or late stage depending on the parameters. It is a very flexible method, but there are a 

large number of combinations for the parameters. How the parameters are assigned can also 

make a difference. 
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A. Somatic mutation integration 

We integrated somatic mutations that were identified in WES and custom capture 

sequencing using strict positive and negative filtering and selected recurrently mutated genes in 

the combined WES and custom capture panel dataset. 50 recurrently mutated genes were 

identified in the combined dataset. The genes most frequently mutated in tFL included KMT2D 

(MLL2), CREBBP, BCL2, EZH2, MEF2B, and TNFRSF14 as noted in Figure 4-1. We also identified 

recurrent shared mutations, FL-unique mutations and tFL-unique mutations from WES and 

custom capture sequencing each individually for FL transformation and subclone analysis (Table 

4-1 and Appendix A). Mutations detected in single tFL samples (without a corresponding FL 

sample) also contributed to FL transformation analysis (Table 4-1 and Appendix A). 
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Figure 4-1. Genes found to be recurrently mutated in tFLs. Only genes with at least one Tier 1 
mutation found in a tFL/FL pair were selected. Its distribution in other situations is also shown 
with different colors representing different statuses of the individual cases. Blocks with 1 color 
indicate that one mutation was observed. Similarly, blocks with 2 colors indicate that more than 
one status was observed. Genes are also noted by copy number gain or loss in the tFL cases. 
Copy number data are not available for case 8, 22, and 31. Tier R mutations were “rescued” 
from the stringent filtering criteria associated with Tier 1 and Tier 2 mutations. 
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Class T1+T2+TR Genes 

FL-unique 2 KMT2D(MLL2), BCL2 

tFL-unique 10 
KMT2D(MLL2), CREBBP, BCL2, EZH2, CARD11, CCND3, SOCS1, TP53, 
KMT2C(MLL3), MYD88 

shared 16 
KMT2D(MLL2), CREBBP, BCL2, EZH2, MEF2B, TNFRSF14, CCND3, 
SOCS1, IRF8, HIST1H1D, ARID1A, BIRC6, MGA, MIR142, C10orf12, 
RRAGC 

single 22 
KMT2D(MLL2), CREBBP, BCL2, EZH2, MEF2B, TNFRSF14, CARD11, 
CCND3, HIST1H1E, SOCS1, TAF1, CD79B, IRF8, PIM1, EP300, 
HIST1H1C, KMT2C(MLL3), RNF213, STAT3, DTX1, HIST1H2AM, IL7R 

Table 4-1. Recurrent somatic mutations identified in WES and custom capture sequencing. 
Genes from Tier R are labeled in green. 

 

B. Somatic mutations within regions of rCNAs  

Using our previous CNA data, we identified the CN for the recurrent mutations (Appendix B) 

and listed the mutations within rCNAs in FL and tFL samples (Appendix C). The integration of 

mutation data with CNA data provided complementary information to investigate the role of 

genetic alterations in tumor initiation and progression. In Figure 4-1, genes with CNA were 

denoted as G (CN=3, CN gain), L (CN=1, CN loss), GG (CN>3, CN amplification) and LL (CN<1, 

double loss).  

TNFRSF14 is a likely driver gene in one of the most frequent rCNAs in FL and tFL (loss of 

1p36.33-p36.31, rCNA122 in Table 4-2). It was mutated in 20% (7/35) of cases. One of the 

mutations was a FL-unique mutation in a paired case (chr1|2493172|A in FL-6). This case also 

had a CN loss (CN=1) affecting the gene. Two of the mutations were shared mutations 

(chr1|2493112|C in case 5 and chr1|2493111|A in case 10). One of the two shared mutations 

was associated with a CN loss (case 5, CN=1). The rest of the mutations were all found in 
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unpaired single tFL cases. One of the single tFL cases (chr1|2492063|-C in tFL-35) had a CN loss 

(CN=1) affecting TNFRSF14. Thus, homozygous loss of wild-type TNFRSF14 is a relatively 

frequent event in FL and tFL. 

CARD11 is an important oncogenic gene with frequent CN gain. It was mutated in 17% (6/35) 

of cases. Two of the mutations were tFL-unique mutations (chr7|2979495|G in tFL-2 and 

chr7|2979501|G in tFL-23). Both of the tFL-unique mutations had a CN amplification (CN=4 in 

tFL-2 and CN=3 in tFL-23) affecting the locus. The other cases with mutations were all unpaired 

single tFL cases. Two of the single tFL cases (chr7|2984163|T in tFL-15, chr7|2979466|G in tFL-

15, and chr7|2977614|A in tFL-34) had CN gain (CN=3) affecting CARD11. The CARD11 locus is 

affected by gains in 24% of FL samples and 39% of tFL samples in our previous studies. All the 

evidence suggests that CARD11 may be activated by both CN gain and mutation, and coordinate 

the activation of the NF-κB pathway. 

HIST1H1E is another important oncogenic gene with frequent copy number gain34. It was 

mutated in 17% (6/35) of cases. Two out of three paired cases had tFL-unique mutations 

(chr6|26156911|A in tFL-20 and chr6|26156797|T in tFL-23). One of the two tFL-unique 

mutations also had a CN gain (CN=3). The other 3 cases of the 6 were all unpaired single tFL 

cases. Two (chr6|26156947|G in tFL-37 and chr6|26157271|G in tFL-38) out of the three single 

tFL cases also had CN gain (CN=3). The evidence suggests that HIST1H1E may be affected by 

both CN gain and mutation. 

EZH2 is a known mutated gene in FL and tFL. It inhibits genes responsible for suppressing 

tumor development, and blocking EZH2 activity may slow tumor growth. It was mutated in 46% 

(16/35) of cases. Most of the mutations were the two highly recurrent mutations 

(chr7|148508727|A and chr7|148508728|T) reported by other groups as well. Two mutations 
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were found in the same tFL case (chr7|148508745|C and chr7|148508763|A in tFL-34). One 

mutation was a tFL-unique mutation (chr7|148506437|A in tFL-11). These mutations were often 

shared FL/tFL mutations or found in single tFL samples with CN gains affecting the EZH2 gene. 

The EZH2 locus is involved in an rCNA that was affected by gains in 24% of FL samples and 39% 

of tFL samples in our previous studies (rCNA799 in Table 4-2). The CN gain and mutations in 

EZH2 could enhance histone methylation at H3K27 and turn off genes inhibiting cell proliferation 

and differentiation. 

Our previous study identified several recurrent losses where the likely driver genes were 

identified. In our previous study, we identified a region of homozygous loss on 6q that occurred 

in 10% of tFLs and included only TNFAIP3 (rCNA37 in Table 4-2). Forty three percent (15/35) of 

our samples had copy losses including this gene (Figure 4-1). Three mutations were found in 

TNFAIP3: one unpaired tFL mutation (tFL-21, chr6|138200194|G), one tFL-unique mutation 

(chr6|138192455|T in tFL-31), and a shared mutation (chr6|138200146|G in case 6) with a copy 

loss in its FL sample (Table 4-2). All the evidence suggests that TNFAIP3 may be inactivated by 

both CN loss and mutation. A larger heterozygous rCNA on 6q occurring in 10% of tFLs (rCNA340 

in Table 4-2) includes 102 genes including SGK1, and a recurrent mutation of the kinase SGK1 

(chr6|134495706|G in FL-27 and chr6|134495724|C in tFL-28) occurred in two paired samples. 

Thirty four percent (12/35) of our samples had copy losses of this gene (Figure 4-1). CREBBP is 

the second most frequently mutated gene in our study. Mutation occurred in 54% (19/35) of our 

cases. Most of the mutations in CREBBP were shared FL/tFL mutations; the rest of the mutations 

were detected in single, unpaired tFL samples. One case had a shared CREBBP mutation and a 

CNL affecting CREBBP in the tFL. A small loss on chr16 (in 5% of tFLs in rCNA564 in Table 4-2) 

encompasses CREBBP and 7 other genes, and is likely driven by CREBBP.  
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TP53 was recurrently mutated in tFLs with 14% (5/35) of cases in our sequencing study. A 

17p loss occurs in 9% of FLs and 18% of tFLs (rCNA593 in Table 4-2). One case had heterozygous 

CN loss affecting TP53 in both FL and tFL samples in our previous study, but the mutations were 

only detected in tFL samples. We had one mutation in an unpaired tFL sample 

(chr17|7578286|G in tFL-32) and four tFL-unique mutations (chr17|7577545|C and 

chr17|7577598|A in tFL-5, chr17|7577097|A in tFL-22, chr17|7578265|G in tFL-27, 

chr17|7576571|C and chr17|7577093|G in tFL-29). One tFL-unique mutation had a CN loss 

(CN=1) affecting TP53. It is probable that the TP53 expression is reduced by CN loss earlier in the 

disease, and the mutations occur later, as they were only found in tFLs. 

rCNA CNA band Type 
Freq 
in FLs 

Freq 
in tFLs 

Numbers 
of gene 
in rCNA 

Mutated Genes in 
Our Cases 

122 1p36.33-p36.31- Loss 25% 24% 51 TNFRSF14,  

343 6p22.2-p21.33- Loss 1% 1% 173 

HIST1H3A, HIST1H3B, 
HIST1H1C, HIST1H1E, 
HIST1H2BG, 
HIST1H1D, PRSS16, 
ZNF184, HIST1H2AM, 
ZKSCAN3, PPP1R10,  

799 7q+ Amp or Gain 24% 39% 739 

CD36, CACNA2D1, 
PCLO, ZNF804B, 
AKAP9, CYP51A1, 
RELN, CCDC136, 
PLXNA4, EZH2, MLL3,  

1191 18q+ (x2) Amp 5% 6% 242 

ESCO1, DSC1, EPG5, 
LOXHD1, CTIF, WDR7, 
PHLPP1, BCL2, 
CCDC102B, NETO1,  

37 6q23.3- (x2) dbLoss 6% 10% 1 TNFAIP3,  

340 6q23.2-q25.1- Loss 6% 10% 102 SGK1, TNFAIP3,  

564 16p13.3- Loss 3% 5% 8 CREBBP,  

593 17p- Loss 9% 18% 431 
ZNF594, TP53, PER1, 
ZNF18, CDRT1, 
NCOR1, C17orf51,  

Table 4-2. Mutations identified in rCNAs.  rCNAs refer to the abnormalities which were 
identified and described in Bouska et al, 2013. Red color indicates mutated genes. 
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C. Somatic mutations acquired during transformation of FL  

We analyzed paired samples to identify genes that are likely to contribute to transformation. 

The genes that are mutated preferentially in the tFL samples are considered likely drivers of the 

indolent FL into aggressive tFL. TP53 (Table 4-3) and USH2A were the only two recurrent tFL-

unique mutations that were found exclusively in our 12 paired WES samples. USH2A is probably 

not expressed in B cells based on our previous GEP analysis. To identify more somatic mutations 

acquired during transformation, we expanded the analysis to FL and tFL sample pairs sequenced 

using the custom capture panel and detected 2 additional genes that were recurrently mutated 

only in tFL samples. These two genes were CARD11 and KMT2C (MLL3). CARD11 was mutated in 

17% (6/35) of cases and also affected by CN gain (Table 4-3). KMT2C (MLL3) was mutated in 11% 

(4/35) of cases (Table 4-3). Two of the mutations were tFL-unique mutations 

(chr7|151873463|A in tFL-27 and chr7|152027794|-C in tFL-29). The other mutations were all 

found in unpaired single tFL cases. One single tFL sample had two mutations 

(chr7|151860157|G and chr7|151868408|T in tFL-19); the other single tFL sample had a 

mutation (chr7|151891609|G in tFL-33) and also had a CN gain (CN=3) affecting KMT2C (MLL3). 

We also identified a set of genes with tFL-unique mutations in 2 or more cases, including EZH2, 

CCND3 (Table 4-3), and MYD88 (Table 4-3). These mutations were not exclusive to tFL, and some 

of the mutations are actually known to occur early in the development of FL, but it is possible 

they can also be late mutations that cooperate with other mutations in transformation or 

mutations that are present in the subclones that transformed later. Comparing each gene to all 

the others, three of the 50 genes in Figure 4-1 showed a significant difference in the fraction of 

tFL-mutated paired cases that had a tFL-unique mutation. TP53 showed a significant increase 

(p= 0.024, two-sided Fisher's exact test), consistent with its importance in transformation. In 
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contrast, MLL2 and CREBBP showed a significant decrease (p=0.045 each), consistent with 

mutations in these genes being usually early events in FL. 

10 out of 20 paired cases had EZH2 mutations, all of which occurred in the SET domain. In 4 

of the cases (tFL-4, tFL-6, tFL-22 and tFL-29), the mutations were only present in the tFL sample. 

In 5 cases (cases 1, 5, 24, 25 and 28), the mutation was shared with the FL biopsy, and in 1 case 

(case 11) the mutation was detected at very low VAF (<4%) in the FL biopsy and became clonal 

in the tFL biopsy. 

Sample 
ID 

Chr|Pos|VarAllele Gene MutType 
Var 
Freq 

CN 

tFL-5 chr17|7577545|C TP53 nonsynonymous 0.378 2 

tFL-5-cus chr17|7577545|C TP53 nonsynonymous 0.833 NA 

tFL-5 chr17|7577598|A TP53 nonsynonymous 0.56 2 

tFL-5-cus chr17|7577598|A TP53 nonsynonymous 0.107 NA 

tFL-22 chr17|7577097|A TP53 nonsynonymous 0.176 NA 

tFL-27 chr17|7578265|G TP53 nonsynonymous 0.63 1 

tFL-29 chr17|7576571|C TP53 stopgain 0.469 2 

tFL-29 chr17|7577093|G TP53 nonsynonymous 0.511 2 

tFL-32 chr17|7578286|G TP53 nonsynonymous 0.371 2 

tFL-2 chr7|2979495|G CARD11 nonsynonymous 0.303 4 

tFL-15 chr7|2984163|T CARD11 nonsynonymous 0.47 3 

tFL-15 chr7|2979466|C CARD11 nonsynonymous 0.46 3 

tFL-19 chr7|2977613|T CARD11 nonsynonymous 0.32 2 

tFL-19 chr7|2979486|G CARD11 nonsynonymous 0.4 2 

tFL-23 chr7|2979501|G CARD11 nonsynonymous 0.13 3 

tFL-34 chr7|2977614|A CARD11 nonsynonymous 0.28 3 

tFL-40 chr7|2985468|T CARD11 nonsynonymous 0.41 2 

tFL-19 chr7|151860157|G KMT2C(MLL3) nonsynonymous 0.25 2 

tFL-19 chr7|151868408|T KMT2C(MLL3) nonsynonymous 0.341 2 

tFL-27 chr7|151873463|A KMT2C(MLL3) nonsynonymous 0.39 2 

tFL-29 chr7|152027794|-C KMT2C(MLL3) frameshift_deletion 0.34 2 

tFL-33 chr7|151891609|G KMT2C(MLL3) nonsynonymous 0.37 3 

tFL-12 chr6|41903688|G CCND3 nonsynonymous 0.437 2 

FL-12 chr6|41903688|T CCND3 nonsynonymous 0.31 2 

tFL-21 chr6|41903731|A CCND3 stopgain 0.099 2 

tFL-22 chr6|41903755|A CCND3 stopgain 0.25 NA 
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tFL-39 chr6|41903710|G CCND3 nonsynonymous 0.44 2 

FL-12 chr3|38182641|C MYD88 missense 0.401 2 

tFL-12 chr3|38182641|C MYD88 missense 0.833 2 

tFL-19 chr3|38182641|C MYD88 missense 0.81 2 

tFL-22 chr3|38182025|T MYD88 nonsynonymous 0.143 NA 

tFL-23 chr3|38182032|G MYD88 nonsynonymous 0.19 2 

Table 4-3. Mutations in TP53, CARD11, KMT2C (MLL3), CCND3, and MYD88.  

 

D. Genes mutated in ABC-like vs. GCB-like lymphomas 

We classified tFL as ABC-like, UC, or GCB-like based on the gene expression signatures using 

in our previous study. The classification information was available for 32 out of 35 samples. 

Unexpectedly, a substantial number of tFL cases are classified as the ABC type instead of GCB 

type. CD79B was mutated in 14% of cases (5/35), more frequently in ABC-like (4/10=40%) than 

in GCB-like tFL (1/21=5%) (p=0.0274, Fisher’s exact test in Table 4-4), consistent with findings in 

de novo DLBCL35. Interestingly, the mutations were clustered in the immunoreceptor tyrosine-

based activation motif (ITAM) domain.  

The NF-κB pathway plays an important role of ABC-like tFL. Therefore, we investigated the 

mutations that can activate this pathway in our data. CARD11 (6/35), MYD88 (4/35, 1 is a shared 

mutation), TNFAIP3 (3/35), and BCL10 (1/35) were found mutated (Table 4-5). CARD11 is 

affected by CN gains in FL (24%) and tFL (39%) (Table 4-6), and it also had CN gain in two 

sequenced samples which had tFL-unique mutations (CN=3 in tFL-2 and tFL-23). TNFAIP3 is 

affected by CN losses in FL (26%) and tFL (34%) (Table 4-6). CARD11 mutations (Table 4-5) 

occurred within or adjacent to the coiled-coil domain (CCD) in our case. These mutations likely 

disrupt binding of the CCD to the inhibitory domain (ID), allowing CARD11 to assume its active 

conformation even without phosphorylation, and consequently activating NF-κB in the absence 

of BCR engagement36,37. BCL10 mutation (R58Q) occurred in its CARD domain near the acidic 
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patch that binds to the basic patch of the CARD 11 CARD domain, and three acidic residues (E50, 

E53, and E54) were identified as important for binding38. The R58Q mutation substitutes a 

glutamine for the basic arginine, which could increase binding to CARD11 by increasing the net 

negative charge. The MYD88 was mutated in 11% (4/35, 1 case doesn’t have GEP data) of cases 

(Table 4-5), more commonly in the ABC-like (2/10) than in the GCB-like tFL (1/21). All of the 

mutations were in the Toll/interleukin-1 homology domain (TIR), including two cases with the 

most frequent mutation, L265P39.  

BCL2, KMT2D (MLL2), EZH2 and SOCS1 were mutated more frequently in GCB-like tFL (Table 

4-4) in our study. Of note, BCL2 and SOCS1 were only mutated in GCB-like tFLs, consistent with 

what has been reported in DLBCL8,40. 

Gene 
all mut 

freq 
(n=35) 

FL mut 
freq 

(n=20) 

tFL mut 
freq 

(n=35) 

tFL only 
mut freq 
(n=20)* 

ABC tFL 
mut freq 

(n=10) 

GCB tFL 
mut freq 

(n=21) 

p-values of 
ABC vs GCB 

tFL mutations 

BCL2 49% 45% 40% 5% 0% 48% 0.012 

CD79B 14% 10% 14% 0% 40% 5% 0.027 

IL7R 9% 5% 9% 0% 20% 0% 0.097 

HTT 6% 10% 6% 0% 20% 0% 0.097 

KMT2D(MLL2) 69% 65% 69% 5% 50% 81% 0.105 

EZH2 46% 30% 46% 20% 20% 52% 0.129 

SOCS1 17% 10% 17% 5% 0% 29% 0.141 

MYD88 11% 5% 11% 10% 20% 5% 0.237 

KLHL6 6% 5% 6% 5% 10% 0% 0.323 

AKAP13 3% 0% 3% 5% 10% 0% 0.323 

ANXA1 3% 0% 3% 5% 10% 0% 0.323 

ARID1B 3% 5% 3% 0% 10% 0% 0.323 

BCL10 3% 5% 3% 0% 10% 0% 0.323 

BCL11A 3% 0% 3% 5% 10% 0% 0.323 

BCL6 3% 5% 3% 0% 10% 0% 0.323 

CD58 3% 0% 3% 0% 10% 0% 0.323 

CSNK1D 3% 0% 3% 5% 10% 0% 0.323 

FTH1 3% 0% 3% 0% 10% 0% 0.323 

HELZ 3% 5% 3% 0% 10% 0% 0.323 

HMGB1 3% 5% 3% 0% 10% 0% 0.323 

HPS5 3% 5% 3% 0% 10% 0% 0.323 
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MIA3 3% 5% 3% 0% 10% 0% 0.323 

NOTCH2 3% 0% 3% 0% 10% 0% 0.323 

PHF6 3% 5% 3% 0% 10% 0% 0.323 

PRDM1 3% 0% 3% 0% 10% 0% 0.323 

RAPGEF2 3% 0% 3% 5% 10% 0% 0.323 

RHOH 3% 5% 3% 0% 10% 0% 0.323 

SETD2 3% 5% 3% 0% 10% 0% 0.323 

TBL1XR1 3% 0% 3% 5% 10% 0% 0.323 

TET2 3% 0% 3% 0% 10% 0% 0.323 

TINF2 3% 0% 3% 5% 10% 0% 0.323 

U2AF1 3% 5% 3% 0% 10% 0% 0.323 

UBAP2 3% 0% 3% 5% 10% 0% 0.323 

ZNF142 3% 0% 3% 0% 10% 0% 0.323 

TNFRSF14 20% 15% 17% 0% 30% 14% 0.358 

DMD 9% 5% 9% 0% 0% 14% 0.533 

ETS1 9% 5% 9% 5% 0% 14% 0.533 

TAF1 17% 5% 17% 5% 20% 10% 0.577 

EP300 11% 0% 11% 0% 20% 10% 0.577 

RNF213 11% 5% 11% 5% 20% 10% 0.577 

MEF2B 20% 15% 20% 5% 10% 24% 0.634 

Table 4-4. P-values of ABC vs GCB tFL mutations. *Only calculated the frequencies in paired 
cases. 
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Sample ID Chr|Pos|VarAllele Gene CN 

FL-10 chr1|85736474|T BCL10 2 

FL-10-cus chr1|85736474|T BCL10 2 

tFL-10-cus chr1|85736474|T BCL10 4 

tFL-2 chr7|2979495|G CARD11 4 

tFL-15 chr7|2984163|T CARD11 3 

tFL-15 chr7|2979466|C CARD11 3 

tFL-19 chr7|2977613|T CARD11 2 

tFL-19 chr7|2979486|G CARD11 2 

tFL-23 chr7|2979501|G CARD11 3 

tFL-34 chr7|2977614|A CARD11 3 

tFL-40 chr7|2985468|T CARD11 2 

FL-3 chr17|62007128|T CD79B 2 

FL-3-cus chr17|62007128|T CD79B NA 

tFL-3 chr17|62007128|T CD79B 2 

tFL-3-cus chr17|62007128|T CD79B NA 

tFL-8 chr17|62006836|T CD79B NA 

FL-8 chr17|62007129|T CD79B NA 

tFL-19 chr17|62006798|C CD79B 2 

tFL-21 chr17|62006799|C CD79B 2 

tFL-38 chr17|62007480|C CD79B 2 

FL-12 chr3|38182641|C MYD88 2 

tFL-12 chr3|38182641|C MYD88 2 

tFL-19 chr3|38182641|C MYD88 2 

tFL-22 chr3|38182025|T MYD88 NA 

tFL-23 chr3|38182032|G MYD88 2 

FL-6 chr6|138200146|G TNFAIP3 0 

tFL-6 chr6|138200146|G TNFAIP3 2 

tFL-21 chr6|138200194|G TNFAIP3 2 

tFL-31 chr6|138192455|T TNFAIP3 NA 

Table 4-5. Genes mutated in NF-κB pathway. The first Sample ID column indicates the samples 
in which the mutations were detected, the Chromosome| Position |Altered-Base column 
indicates the coordinates of the mutations, the Gene column indicates the genes of the 
mutations, the CN column indicates the CN estimated in this gene from our previous study, NA is 
noted if we don’t have the CN information. 
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Gene Samples 
%  
Loss/double 
Loss 

% 
Double 
Loss 

% 
Gain/Amplification 

% 
Amplification 

CARD11 
FL (n=198) 0.000 0.000 0.242 0.030 

tFL (n=79) 0.025 0.000 0.392 0.089 

TNFAIP3 
FL (n=198) 0.263 0.056 0.000 0.000 

tFL (n=79) 0.342 0.101 0.000 0.000 

Table 4-6. Frequency of CNAs affecting CARD11 and TNFAIP3 based on previously published 
data. 

 

E. Mutations affecting miRNA 

MicroRNAs are short non-coding RNAs that are involved in post-transcriptional regulation of 

gene expression. They affect both the stability and translation of mRNAs. The seed sequence is 

an essential region for the binding of the miRNA to the target mRNA. There are 422 microRNAs 

targeted by illumina’s TruSeq exome enrichment kit. We used the BED file provided by Illumina, 

which has details on all of the target microRNAs regions, and calculated the coverage and depth 

of all the microRNAs in all our WES samples to confirm the microRNA capture performance. The 

average coverage and depth for all microRNAs in all samples is 96.70% and 80 respectively. 

The only micro-RNA found to be mutated was miR-142, listed in Table 4-7. MiR-142 is a 

hematopoietic-specific micro RNA precursor whose 3p and 5p arms are both functional and 

expressed at similar levels41. MiR-142 was mutated in 3 of 12 tFL cases, two of which were 

shared with the corresponding FL and one was a tFL-unique mutation. Interestingly, all the 

mutations were located in the seed sequences (nucleotides 2-8) in Figure 4-2.  The mutation 

(chr17|56408621|G) that was identified in 2 cases and affects miR-142-3p, was also detected in 

DLBCL by another group42. The other shared mutation affecting miR-142-5p is a new finding. 
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SampleID Chr|Pos|VarAllele Gene VarFreq 

tFL-4 chr17|56408621|G MIR142 0.19 

FL-8 chr17|56408621|G MIR142 0.448 

tFL-8 chr17|56408621|G MIR142 0.471 

FL-11 chr17|56408657|G MIR142 0.086 

tFL-11 chr17|56408657|G MIR142 0.207 

Table 4-7. Mutations in miR-142. The first column (Sample ID) indicates the samples in which 
the mutations were detected, the second column (Chromosome| Position |Altered-Base) 
indicates the coordinates of the mutations, the third column (Gene) indicates the genes affected, 
the fourth column (Var Freq) indicates the variant frequencies of the mutations. 

 

Figure 4-2. Domains/regions affected by mutations for miR-142. 

F. Recurrently mutated genes in 3 datasets  

To increase our analytical power and to gain a more comprehensive view of the genes that 

likely drive transformation, we combined our data with two published datasets for further 

analysis (Figure 4-3). We identified additional genes that tend to be associated with 

transformation, including MYC, EBF1, IRF4, RPN1, SOCS1, SYNE1, SGK1, PIM1, EP300, BMP7, 

ETS1, SARDH, TAF1, FBXO11 and HIST1H1E summarized in Table 4-8 below. 

MYC had a tFL-unique mutation in only 1 of our samples but 4 samples in other datasets. 

EBF1 had 4 tFL-unique mutations (2 FL-unique mutations) in 4 samples in other datasets. IRF4 

had 3 tFL-unique mutations in 3 samples in another dataset. RPN1 had a tFL-unique mutation in 

only 1 of our samples and 2 samples in another dataset. SOCS1 had tFL-unique mutations in 2 of 

our samples (2 shared mutations) and 2 samples in other datasets. SYNE1 had a tFL-unique 
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mutation in only 1 of our samples (1 FL-unique mutation) and 2 samples in another dataset. 

SGK1 had a tFL-unique mutation in only 1 of our samples (1 FL-unique mutation) and 2 samples 

in another dataset. PIM1 had 4 tFL-unique mutations in 4 samples in another dataset (2 shared 

mutations). EP300 had 2 tFL-unique mutations in 2 samples in another dataset (1 shared 

mutaiton). BMP7 had 2 tFL-unique mutations in 2 samples in another dataset (1 shared 

mutaiton). ETS1 and TAF1 both had a tFL-unique mutation in 1 of our samples (1 shared 

mutation) and 1 sample in another dataset. SARDH had 2 tFL-unique mutations in 2 samples in 

another dataset. FBX011 had 2 tFL-unique mutations 2 samples in other datasets. HIST1H1E had 

1 tFL-unique mutation in 1 of our samples (1 shared mutation) and 3 samples in other datasets. 

Overall, the recurrent mutations (Figure 4-3) identified in our dataset were highly 

concordant (92%) with the other two datasets.  
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Figure 4-3. tFL-unique mutated genes found in more than two cases in 3 combined datasets. 
The data was summarized from a combine set of 42 FL and tFL paired samples. Only genes 
expressed in B cells are shown. Genes in bold were selected in custom capture panel. The color 
of each block represents the mutation type of the corresponding genes and cases. 
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Table 4-8. Additional genes that tend to be associated with transformation in combined 
datasets. 

 

G. Pathway analysis 

In addition to the NF-κB pathway described in ABC-like DLBCL, our previous CN analysis 

study revealed that the rCNAs affect in B-cell transcription factors, cell cycle regulation, and 

immune surveillance pathways in the transformation of FL.  

Similarly, we found that mutations also commonly target genes involved in these same 

pathways (Table 4-9). For example, several regions with small deletions or amplifications were 

likely driven by B-cell transcription factors. Recurrent mutations affecting B-cell transcription 

factors were also identified, including mutation of MEF2B. Four of the cases harbored previously 

described MEF2B mutations43 that block association with the co-repressor CABIN1, increasing 

transcriptional activity (3 cases, D83V; 1 case E73K; Figure 4-4). 

We applied David Bioinformatics Resources 6.7 to identify pathways significantly enriched 

for mutations in our tFL WES mutations. Table 4-9 shows BIOCARTA and KEGG pathways 
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enriched in our list of mutations. The top 3 enriched pathways involved B-cell receptor signaling, 

IL-7 signaling, and JAK-STAT activation.  

The Switch/Sucrose non-fermentable (SWI/SNF) is a nucleosome remodeling complex 

involved in chromatin remodeling. It is capable of altering the position of nucleosomes along 

DNA. In tFL, SWI/SNF members appear to be targets of both mutation and copy loss. ARID1A is 

mutated in 9% of tFL cases (3/35 in Table 4-10) and 15% of tFL cases (5/32) have a CNA affecting 

ARID1A including a small recurrent CN loss that encompassed ARID1A at 5% frequency (Table 4-

11). Additionally, 1/35 tFLs had an ARID1B mutation and 1/12 cases had ARID4B and ARID5B 

mutation (Table 4-10). A small, rare, recurrent CNA affected ARID1B, but almost 23% of tFLs had 

a larger loss on chr6 that included ARID1B (Table 4-11). In addition to SWI/SNF family members, 

many genes involved in chromatin organization and modification were mutated in our cases 

(Figure 4-3), as was also observed by others. EZH2 and MLL3 mutations were described above. 

We also identified frequent CNAs and mutations affecting genes that regulate B-cell 

migration and AKT/mTOR pathway activation. This pathway has recently been shown to be 

mutated in DLBCL and cell lines26,27,44,45 . Figure 4-5 depicts the pathway with S1P interacting 

with its receptors. S1PR2 (a G-protein-coupled receptor) signals through GNA13 (G-protein), 

which interacts with ARHGEF1 (a RHO guanine-nucleotide exchange factor) and RHOA. 

Interruption of this pathway promotes migration of B-cells out of the GC and activation of AKT. 

All three genes were mutated in our dataset (Table 4-12).  The effect of S1P signaling through 

S1PR1 is the opposite of S1PR2 signaling, and CD69 interacts with and inhibits S1PR1. No 

mutation in CD69 or S1PR1 was detected by us or others, but analysis of our CNA data indicated 

CNL involving CD69 in 7.6% of tFLs (Table 4-11), which could partially reduce the normal 

inhibitory influence on S1PR1. Indeed, copy loss affecting S1PR2, GNA13, ARHGEF1, P2RY8, 

and/or CXCR4 loci occurs more frequently in tFL compared to FL (21.5% vs 7.5% in Table 4-13). 
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There was a single case that had 3 separate FL-tFL shared mutations in ARHGEF1. A second case 

had a shared mutation in GNA13. Additionally, the Pasqualucci dataset identified GNA13 

mutations in 3 cases (2 tFL-unique mutations and 1 FL-unique mutation in Figure 4-3).   

AKT pathway activation can be enhanced by concurrently activating mutations affecting the 

mTOR pathway. Two cases harbored a shared FL-tFL mutation affecting conserved residues 

within the switch 1 region of RRAGC (Table 4-12), and other two studies identified mutations in 

3 cases (2 FL-unique mutations and 1 shared mutation in Table 4-14) affecting the same region. 

Additional genes that affect the PI3K/AKT/mTOR pathway were mutated in our dataset including 

TSC2, PIK3R1, and PTEN (Table 4-12). 

Category Term PValue Genes FDR (%) 

KEGG 
hsa04662:B cell 
receptor signaling 
pathway 

0.003698 
CARD11, CD19, FCGR2B, 
LILRB3, PPP3R1, CD79B, 
PIK3R1 

4.112991 

BIOCARTA 
h_il7Pathway:IL-7 
Signal Transduction 

0.011012 
NMI, BCL2, CREBBP, 
IL2RG 

12.26147 

KEGG 
hsa04630:Jak-STAT 
signaling pathway 

0.012082 
STAT6, IL2RA, CCND3, 
IL4R, CREBBP, IL2RG, PRL, 
PIK3R1, STAT2 

12.87195 

BIOCARTA 
h_pmlPathway:Regulat
ion of transcriptional 
activity by PML 

0.013431 CREBBP, TP53, RARA, RB1 14.76345 

BIOCARTA 

h_rarrxrPathway:Nucle
ar receptors 
coordinate the 
activities of chromatin 
remodeling complexes 
and coactivators to 
facilitate initiation of 
transcription in 
carcinoma cells 

0.013431 
NCOA2, RARA, NCOR2, 
POLR2A 

14.76345 

BIOCARTA 

h_telPathway:Telomer
es, Telomerase, 
Cellular Aging, and  
Immortality 

0.02238 BCL2, TP53, RB1, POLR2A 23.46293 

KEGG 
hsa05222:Small cell 
lung cancer 

0.026054 
BCL2, TP53, RB1, PTEN, 
PIK3R1, TRAF3 

25.86317 
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BIOCARTA 

h_pcafpathway:The 
information-processing 
pathway at the IFN-
beta enhancer 

0.02906 HMGB1, CREBBP, POLR2A 29.41808 

KEGG 
hsa05340:Primary 
immunodeficiency 

0.032244 
CD19, TAP1, IL2RG, 
RFXAP 

31.03271 

KEGG 
hsa05215:Prostate 
cancer 

0.032409 
BCL2, CREBBP, TP53, RB1, 
PTEN, PIK3R1 

31.16593 

KEGG hsa05214:Glioma 0.036878 
TP53, CAMK2B, RB1, 
PTEN, PIK3R1 

34.68509 

BIOCARTA 

h_carm-
erPathway:CARM1 and 
Regulation of the 
Estrogen Receptor 

0.053205 
CREBBP, SPEN, NCOR2, 
POLR2A 

47.58013 

BIOCARTA 
h_il4Pathway:IL 4 
signaling pathway 

0.053409 STAT6, IL4R, IL2RG 47.71387 

BIOCARTA 

h_egfr_smrtePathway:
Map Kinase 
Inactivation of SMRT 
Corepressor 

0.053409 MAP3K1, RARA, NCOR2 47.71387 

Table 4-9. Mutated genes classified in KEGG/BIOCARTA pathways. 

 

 

 

Figure 4-4. Domains/regions affected by mutations for MEF2B. 
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Sample ID Chr|Pos|VarAllele Gene MutType 
Var 
Freq 

CN 

FL-2 chr1|27106915|T ARID1A stopgain 0.055 NA 

tFL-2 chr1|27106915|T ARID1A stopgain 0.232 2 

FL-3-cus chr1|27023162|G ARID1A nonsynonymous 0.073 NA 

tFL-3-cus chr1|27023162|G ARID1A nonsynonymous 0.042 NA 

FL-27 chr1|27089478|T ARID1A stopgain_ 0.141 2 

tFL-27 chr1|27089478|T ARID1A stopgain 0.451 2 

FL-6 chr10|63759897|A ARID5B nonsynonymous 0.519 2 

tFL-6 chr10|63759897|A ARID5B nonsynonymous 0.222 2 

FL-6 chr10|63759918|G ARID5B nonsynonymous 0.494 2 

tFL-6 chr10|63759918|G ARID5B nonsynonymous 0.258 2 

FL-10 chr6|157528317|A ARID1B stopgain 0.413 2 

FL-10-cus chr6|157528317|A ARID1B stopgain 0.34 2 

tFL-10 chr6|157528317|A ARID1B stopgain 0.517 2 

tFL-10-cus chr6|157528317|A ARID1B stopgain 0.38 2 

FL-22 chr1|235420509|C ARID4B nonsynonymous 0.357 NA 

tFL-22 chr1|235420509|C ARID4B nonsynonymous 0.27 NA 

Table 4-10. Mutations in ARID1A, ARID1B, ARID4B and ARID5B. 

 

Gene Samples 
%  
Loss/double 
Loss 

% 
Double 
Loss 

% 
Gain/Amplification 

% 
Amplification 

ARID1A 
FL (n=198) 0.096 0.000 0.005 0.000 

tFL (n=79) 0.152 0.000 0.000 0.000 

ARID1B 
FL (n=198) 0.162 0.000 0.000 0.000 

tFL (n=79) 0.228 0.013 0.000 0.000 

CD69 
FL (n=198) 0.015 0.005 0.157 0.025 

tFL (n=79) 0.076 0.000 0.152 0.013 

Table 4-11. Frequency of CNAs affecting ARID1A, ARID1B and CD69 based on previously 
published data. 
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Figure 4-5. Abnormalities of the S1PR1 and S1PR2 pathway are associated with FL 
transformation. Black arrows and bar-headed lines indicate activation or inhibition, respectively; 
dotted lines indicate an indirect effect. Different color and shape of border lines were used to 
mark the types of mutations or copy changes observed in our case series (n=35), within which, 
80% of the cases carry at least one of the genetic abnormalities.  
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Sample 
ID 

Chr|Pos|VarAllele Gene MutType 
Var 
Freq 

CN 

tFL-22 chr19|10334805|T S1PR2 stopgain 0.223 NA 

FL-22 chr19|42398308|A ARHGEF1 nonsynonymous 0.31 NA 

tFL-22 chr19|42398308|A ARHGEF1 nonsynonymous 0.25 NA 

FL-22 chr19|42398565|+A ARHGEF1 frameshift_insertion 0.353 NA 

tFL-22 chr19|42398565|+A ARHGEF1 frameshift_insertion 0.202 NA 

FL-22 chr19|42406962|A ARHGEF1 nonsynonymous 0.3 NA 

tFL-22 chr19|42406962|A ARHGEF1 nonsynonymous 0.333 NA 

FL-29 chr17|63010412|T GNA13 nonsynonymous 0.199 2 

tFL-29 chr17|63010412|T GNA13 nonsynonymous 0.43 2 

FL-6 chr1|39322649|G RRAGC nonsynonymous 0.278 2 

tFL-6 chr1|39322649|G RRAGC nonsynonymous 0.234 2 

FL-8 chr1|39322697|A RRAGC nonsynonymous 0.34 NA 

tFL-8 chr1|39322697|A RRAGC nonsynonymous 0.446 NA 

tFL-4 chr10|89624275|T PTEN stopgain 0.333 1 

tFL-24 chr16|2104347|A TSC2 nonsynonymous 0.23 2 

tFL-9 chr5|67576825|A PIK3R1 nonsynonymous 0.318 2 

tFL-16 chr5|67591106|G PIK3R1 nonsynonymous 0.1 2 

Table 4-12. Mutations in S1PR2 pathway and PI3K/AKT/mTOR pathway genes.  

 

Samples %  Loss/double Loss % Gain/Amplification 

FL (n=198) 0.076 0.359 

tFL (n=79) 0.215 0.405 

Table 4-13. Frequency of CNAs affecting any of the following genes:GNA13, ARHGEF1, 
P2RY8,S1PR2, and/or CXCR4 on previously published data. 
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Sample 
Gene 
Symbol  

Chromosome 
Genomic 
position 

ref|variant 
Mutation 
type 

Data 
resource 

S4_FL RRAGC chr1 39322646 C|T missense Oko 

S4_tFL RRAGC chr1 39322646 C|T missense Oko 

S7_FL3 RRAGC chr1 39322723 G|T missense Oko 

23 RRAGC chr1 39322649 A|G missense Pas 

Table 4-14. Mutations in RRAGC in other sequencing studies. The first column (Sample ID) 
indicates the samples that the mutations were detected, the second column (Gene Symbol) 
indicates the genes of the mutations, the third column (Chromosome) indicates the 
chromosome of the mutations, the fourth column (Genomic position) indicates the position of 
the mutations, the fifth column (ref|variant) indicates the reference and variant of the 
mutations, the sixth column (Mutation type) indicates the mutation types, the seventh column 
(Data resource) indicates the datasets of the mutations were detected. 

 

H. Domains and regions affected by mutations 

B-cell receptor (BCR) signaling complex includes both CD79 and surface immunoglobulin. 

CD79 generates a signal when BCR recognize antigens. CD79B is one of the two distinct chains of 

CD79 and it has an ITAM, which is a conserved sequence of 4 amino acids. The ITAM plays an 

important role in signal transduction.  We detected 6 mutations in CD79B. One mutation was in 

the IG-like V-type domain. Three mutations were between the transmembrane domain and 

ITAM domain. 2 tFL-unique mutations were within ITAM domain. The other two studies also 

found 2 shared mutations in the ITAM domain. Figure 4-6 shows all the mutations. 

After antigen stimulation in normal B cells, the BCR sends signal to activate the NF-κB 

pathway, which among other effects promotes survival. CARD11 is a signaling scaffold protein 

that forms a complex with BCL10 and MALT1, which leads to K63-ubiquitination of MALT1 and 

eventually to the activation of the IKK complex, which activates the NF-κB pathway. We 

detected 8 mutations in CARD11 (Table 4-3). 2 of them were tFL-unique mutations, the rest 6 

were found in single tFL samples. The other two studies also found 4 shared mutations and 1 

tFL-unique mutation (Figure 4-3). 9 out of 12 mutations were within the coiled-coil domain, 3 of 
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them were within the caspase activation and recruitment domain (CARD), and no mutations 

were found in the inhibitory domain, PDZ domain, SRC homology 3 domain (SH3) or guanylate 

kinase-like domain (Figure 4-7). 

RRAGC is a protein that is encoded by the RRAGC gene. This protein is a monomeric guanine 

nucleotide-binding protein and forms a heterodimer with RRAGA or RRAGB. It is primarily 

localized in the cytoplasm. When RRAGC binds GTP or GDP, it acts as a switch for downstream 

pathways. As we mentioned in the previous section, we detected 2 shared mutations in our 

study (Table 4-12). 3 shared mutations and 1 FL-unique mutations were detected in the other 

two datasets (Table 4-14). All of the mutations were within P-loop containing nucleoside 

triphosphate hydrolase domain as depicted in Figure 4-8.  

 

 

Figure 4-6. Domains/regions affected by mutations for CD79B. The mutations from our case 
series have black outline, while those from the other two published datasets have gray outline. 
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Figure 4-7. Domains/regions affected by mutations for CARD11. The mutations from our case 
series have black outline, while those from the other two published datasets have gray outline. 

 

 

 

Figure 4-8. Domains/regions affected by mutations for RRAGC. Sites of GTP binding are noted. 
The mutations from our case series have black outline, while those from the other two 
published datasets have gray outline. 

 

I. Subclonal mutations 

Mutations present in small subclones in FL and which later became dominant clones in 

corresponding tFL may help to drive the transformation process. We investigated all our FL and 

tFL paired samples and revealed a number of genes in which the VAF increased in the tFL (Table 

4-15). Several of the genes that were identified as subclonal in the FL such as CARD11, CD79B, 

EZH2, FOXO1, HIST1H1E, and MYD88 are recurrently mutated in our dataset and likely 

important for disease progression. S1PR2, which is involved in germinal center B-cell 
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confinement46 was also detected at low VAF in the FL sample but emerged as clonal in the 

transformed sample. 

Sample 
ID  

# 
Variant 
Reads 

# 
Total 
Reads 

%VAF 
% 
Tumor 
content 

% 
Adjusted 
VAF 

CN chr|pos|var Gene 

FL-8 1 144 0.69% 88% 0.79% NA 
chr2|191064806|G C2orf88 

tFL-8 42 146 28.77% 79% 36.51% NA 

FL-8 1 116 0.86% 88% 0.98% NA 
chr1|220379264|G RAB3GAP2 

tFL-8 50 174 28.74% 79% 36.47% NA 

FL-23-1 6 614 1.00% 84% 1.19% 3 
chr7|2979501|G CARD11 

tFL-23 108 829 13.00% 26% 49.43% 3 

FL-23-2 7 711 0.99% 84% 1.18% NA 
chr7|2979501|G CARD11 

tFL-23 108 829 13.00% 26% 49.43% 3 

FL-23-1 12 1194 0.99% 84% 1.18% 3 
chr6|26156797|T HIST1H1E 

tFL-23 116 1052 10.99% 26% 41.79% 3 

FL-23-2 11 1161 0.99% 84% 1.18% NA 
chr6|26156797|T HIST1H1E 

tFL-23 116 1052 10.99% 26% 41.79% 3 

tFL-10 2 180 1.11% 90% 1.24% 5 
chr1|85736474|T BCL10 

FL-10 125 193 64.77% 81% 79.67% NA 

tFL-24 9 910 0.98% 77% 1.27% 2 
chr5|138260327|C CTNNA1 

FL-24-1 111 464 24.03% 92% 26.09% 2 

tFL-24 9 910 0.98% 77% 1.27% 2 
chr5|138260327|C CTNNA1 

FL-24-2 128 532 23.99% 92% 26.05% NA 

tFL-9 1 87 1.15% 84% 1.37% 1 
chr22|24530363|G CABIN1 

FL-9 23 150 15.33% 24% 64.14% 2 

FL-8 2 156 1.28% 88% 1.46% NA 
chr6|121562671|A TBC1D32 

tFL-8 43 152 28.29% 79% 35.90% NA 

FL-8 1 74 1.35% 88% 1.54% NA 
chr5|96507052|C RIOK2 

tFL-8 18 64 28.13% 79% 35.70% NA 

FL-11 1 131 0.76% 49% 1.54% 2 
chr7|148506437|A EZH2 

tFL-11 18 95 18.95% 27% 69.41% 2 

FL-22 1 109 0.92% 58% 1.59% NA 
chr1|233515277|G KIAA1804 

tFL-22 15 90 16.67% 43% 39.13% NA 

FL-11 1 121 0.83% 49% 1.69% 2 
chr5|79354080|A THBS4 

tFL-11 30 99 30.30% 27% 110.99% 2 

FL-22 2 150 1.33% 58% 2.29% NA 
chr19|10334805|T S1PR2 

tFL-22 29 130 22.31% 43% 52.37% NA 

FL-28 2 216 0.97% 36% 2.68% NA chr13|41240279|A FOXO1 
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tFL-28 27 182 14.98% 37% 40.38% 2 

FL-22 1 64 1.56% 58% 2.69% NA 
chr3|38182025|T MYD88 

tFL-22 7 49 14.29% 43% 33.54% NA 

FL-11 1 70 1.43% 49% 2.91% 2 
chr1|186036995|T HMCN1 

tFL-11 16 78 20.51% 27% 75.13% 2 

FL-11 1 69 1.45% 49% 2.95% 2 
chr1|178861391|T RALGPS2 

tFL-11 8 73 10.96% 27% 40.15% 2 

FL-11 2 119 1.68% 49% 3.41% 2 
chrX|53631710|C HUWE1 

tFL-11 16 85 18.82% 27% 68.94% 1 

FL-2 1 106 0.94% 26% 3.56% NA 
chr2|97370071|C FER1L5 

tFL-2 24 95 25.26% 32% 78.45% 2 

FL-9 1 113 0.88% 24% 3.68% 4 
chr18|47801358|T MBD1 

tFL-9 56 223 25.11% 84% 30.00% 6 

FL-3 2 167 1.20% 32% 3.79% 2 
chr8|139732980|C COL22A1 

tFL-3 8 65 12.31% 43% 28.56% 2 

FL-2 1 85 1.18% 26% 4.47% NA 
chr4|90035447|T TIGD2 

tFL-2 6 59 10.17% 32% 31.58% 1 

FL-11 2 85 2.35% 49% 4.78% 3 
chr18|66721328|A CCDC102B 

tFL-11 12 109 11.01% 27% 40.33% 7 

tFL-31 3 108 3.14% 58% 5.41% NA 
chr18|60985880|A BCL2 

FL-31 27 151 17.88% 32% 55.53% NA 

tFL-22 2 85 2.35% 43% 5.52% NA 
chr13|111372118|A ING1 

FL-22 13 77 16.88% 58% 29.10% NA 

FL-11 4 110 3.64% 49% 7.40% 2 
chr13|39262875|T FREM2 

tFL-11 21 85 24.71% 27% 90.51% 2 

FL-2 3 127 2.36% 26% 8.94% NA 
chr7|117431643|T CTTNBP2 

tFL-2 14 114 12.28% 32% 38.14% 4 

FL-3 2 53 3.77% 32% 11.89% 2 
chr19|38834308|T CATSPERG 

tFL-3 5 19 26.32% 43% 61.07% 2 

FL-2 6 191 3.14% 26% 11.89% NA 
chr2|210745783|G UNC80 

tFL-2 31 147 21.09% 32% 65.50% 2 

FL-3 3 67 4.48% 32% 14.13% 2 
chr17|62007128|T CD79B 

tFL-3 6 30 20.00% 43% 46.40% 2 

FL-2 2 53 3.77% 26% 14.28% NA 
chr10|53458823|A CSTF2T 

tFL-2 11 55 20.00% 32% 62.11% 0 

Table 4-15: Mutations present in subclones with increase VAF in tFL. Red indicates subclones, 
green indicates major clones. 

 



116 
 

J. Discussion 

The goal of our study is to understand which genetic events drive the indolent FL to 

aggressive tFL, so that we can identify which patients are in a high-risk group, determine the 

best treatment plan, and target the promising abnormalities for therapies. We performed WES 

on 12 paired FL and tFL samples and used a custom capture panel on 23 additional cases with 

deep sequencing. We identified recurrently mutated genes and pathways from the sequencing 

study, and integrated CNA information from our previous study. 

Our integrated data strongly suggests that the activation of NF-κB pathway is critically 

important for the transformation of some FL cases. We have identified ABC-like and GCB-like tFL 

as likely to be associated with certain genetic abnormalities.  For example, CARD11, MYD88, and 

TNFAIP3 are more frequently mutated in de novo ABC-DLBCL and are associated with NF-κB 

pathway activation. They are expected to have a similar influence on tFL. The corresponding 

CNA data indicated that some of the mutations cooperate with CNAs to generate homozygous 

alterations that amplify their functional consequences. Other studies reported that the ABC-like 

and GCB-like divergence may be present already at the FL stage; however, there is no evidence 

that the ABC-like FL is more likely to undergo transformation or have worse survival but the 

number of cases studied is low. 

Our pathway analysis found that the commonly targeted genes in transformation encode B-

cell transcription factors and proteins involved in cell cycle regulation, immune surveillance, JAK-

STAT activation, and the p53 pathway. These pathways highly overlap with the pathways we 

previously identified in CNAs.  

One of the characteristics of tFL is the loss of GC confinement. We detected mutations or CN 

losses in S1PR2, GNA13, ARHGEF1, P2RY8, CXCR4, and CD69. These genes are involved in the 
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S1PR1 and S1PR2 pathway, which is associated with FL transformation. The inactivation of the 

S1PR2 pathway or activation of the S1PR1 pathway promotes migration of B-cells out of the GC 

and activation of the AKT pathway. This may be a critical event in the change from a follicular to 

a diffuse state in the process of transformation.  

The activation of the AKT pathway likely provides a survival signal for the B-cells that move 

out of the GC and hence lose the supportive microenvironment of the GC. The concomitant 

activation of the mTOR pathway may enhance the effect of AKT activation. We identified 

mutations in several genes that are involved in mTOR pathway activation. RRAGC 

heterodimerizes with RRAGA or RRAGB and can recruit mTORC1 through RAPTOR to the 

lysosomal membrane, where mTORC1 can be activated by RHEB. Activity of the heterodimer is 

higher when GDP is bound to RRAGC. The switch 1 region of the RRAGC yeast ortholog Gtr2p 

undergoes a conformation change depending upon GTP or GDP binding; thus, mutations of this 

region may affect RRAGC activity and hence mTORC1 activation. TSC2 is a GTPase-activating 

protein (GAP) that inhibits mTORC1 activation by promoting the conversion of RHEB-GTP to 

RHEB-GDP. Additional genes that were mutated in PI3K/AKT/mTOR signaling pathway included 

PIK3R1, INPP5F and PTEN.. 

There are several mutated genes involved in the JAK-STAT pathway. The mutations in SOCS1 

(Figure 4-9) and STAT647 have been reported by other studies. STAT3 is another mutated gene 

that has not been discussed. We identified 4 mutations in STAT3, they all affected amino acids 

that are resolved within the STAT3 crystal structure. The K658N substitution within the SH2 

domain is identical to an activating mutation previously identified by other studies. According to 

the gain of function characteristic of this mutation, we would expect the tumor to shift toward 

ABC-tFL and our GEP data indicate that this case is unclassifiable. Another K340T substitution 

may act in an opposite way: it likely represents a loss of function mutation and may interfere 
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with binding to the target sequence. Because the mutant protein retains the ability to dimerize, 

it likely will have a dominant-negative effect. This mutation was found in a GCB-like tFL as it may 

act to block further differentiation. 

 

                

Figure 4-9. Domains/regions affected by mutations for SOCS1. 

 

Chromatin structure deregulation and disruption is important in the pathogenesis of FL and 

many mutations affecting chromatin modifiers have been identified. SWI/SNF family members, 

which are involved in chromatin remodeling, are often mutated in a variety of cancers. In our 

study, ARID1A and ARID1B were recurrently mutated and also identified in CN loss in tFL. 

Additional genes were mutated that affect chromatin organization and modification. For 

example, mutations in CREBBP and MLL2, which were highly recurrent, are likely to occur as 

early events in FL. in contrast. EZH2, another frequently mutated gene, which is mutated almost 

twice as frequently in tFL compared to FL, may tend to appear later in the disease and may 

promote transformation.  There is evidence of a positive feedback loop between EZH2 and MYC, 

via a micro-RNA network, and increase in MYC was largely confined to tFLs. The availability of 

specific inhibitors for EZH2 makes it a promising target for tFL treatment. 

MiR-142 mutation is a unique finding in the study. The mutations were detected within the 

seed sequence in 3 out of 12 tFL samples. We applied TargetScan 5.2 to mir-142 to identify 
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possible targets; it showed differences in the predicted targets between mutant and WT. All the 

mutations are expected to alter complementarity to target genes. CYLD, a negative regulator of 

NF-κB, was listed as a top predicted target for mutant mir-142-5p by TargetScan, and this 

mutation is a novel finding. One shared mutation affecting mir-142-3p is exactly the same as the 

one reported by another group42. They found that this mutation results in both gain and loss of 

function. Novel targets sites for the mutant miR in the ZEB2 3’ UTR may lead to its down-

regulation.  

There were only a few mutations appearing uniquely in tFLs. Therefore, the transformation 

likely occurs due to a combination of several genetic changes that cooperate together to push 

the FL to the transformation. A larger dataset is required to determine which combinations are 

important in transformation. 
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When an immune response occurs, B cells migrate within follicles and develop a germinal 

center with large proliferating cells. This event initiates massive clonal expansion, somatic 

hypermutation and class switch recombination. These events increase genomic instability and 

predispose GCB-cells to the development of lymphoma. Our sequencing study has 

demonstrated the genetic abnormalities that contribute to FL and tFL. While cancer has been 

viewed as the result of progressive accumulation of genetic and epigenetic abnormalities, it is 

known that B cell differentiation is regulated through the expression of transcription factors 

along with epigenetic modulation in the germinal center.  In our study, we have identified 

multiple mutated genes that may contribute to epigenetic alterations. For example, in EZH2 

(encoding a histone-lysine N-methyltransferase), the mutation usually occurs at only one 

position and is a gain-of-function mutation that enhances histone methylation at histone H3K27, 

an inhibitory mark. Mutation of MLL2 (lymphoid leukemia 2) was detected as loss–of-function 

and decreases histone methylation at histone H3K4, an activating mark. Certain genes can be 

turned off by both enhanced histone H3K27 methylation and decreased H3K4 methylation, 

including genes inhibiting cell proliferation and differentiation. TET2 (Tet methylcytosine 

dioxygenase 2) can convert 5-methylcytosine to 5-hydroxymethylcytosine and lead to eventually 

to DNA demethylation. All the information suggests that aberrant DNA methylation occurs 

simultaneously with genetic abnormalities in FL and tFL development. Aberrant DNA 

methylation in the right context of the genes, can lead to gene silencing, e.g. hypermethylation 

of CpG islands of DNA sequence in tumor cells could result in the silencing of tumor suppressors. 

Within the context of chromatin, gene activation or inactivation is highly dependent on the 

methylation in the tail lysine residues of histone proteins. Therefore, there is an interaction 

between DNA methylation and histone modification. These modifications follow different 

chemical reactions and have different groups of enzymes involved, but changes in one may 



122 
 

impact changes in the other. Histone modifications are actually more complex and include 

acetylation, phosphorylation, and ubiquitylation. In future studies, we can apply reduced 

representation bisulfite sequencing (RRBS) analysis to investigate genome-scale alterations in 

DNA methylation. We can also apply chromatin immunoprecipitation sequencing (ChIP-seq) 

for global analysis of histone modifications. ChIP-sequencing could help identify the genes 

affected by the mutation in histone modifying genes.  By correlating the results with our 

previous gene expression data, we can identify genes that are down-regulated by aberrant DNA 

methylation or chromatin modification and the pathways involved.  If we integrate our gene 

expression data, CNV data, epigenetic and somatic mutation data, we should be able to provide 

an illuminating insight into the genome, transcriptome, and epigenome of FL and tFL, 

demonstrate connections and interaction among them, and identify the mechanisms relevant to 

FL and tFL development. 

NGS has provided an opportunity to fully describe the spectrum of mutations that 

contribute to diseases. The majority of sequencing studies are focused on somatic mutations 

that are located in coding regions of the genome and on distinguishing driver mutations from 

passenger mutations among these somatic mutations. It is a very efficient strategy. In our study, 

we first concentrated on protein-coding regions, and then selected recurrently mutated genes 

for further analysis. However, we and others have noticed that most somatic mutations are 

actually located in non-coding regions which are often excluded from WES analysis, but may still 

play a role in the disease process. For example, mutation of the regulatory region of the TERT 

gene has been found in malignant melanoma and may be important in its pathogenesis. RNA 

has traditionally been considered as a messenger between DNA and protein but, recent studies 

indicate that RNA is involved in the regulation of genome organization and gene expression.  

Additionally, mRNA splice sites, UTR regulation elements, promoters, transcription factor (TF) 
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binding sites, enhancers and noncoding RNAs (ncRNAs) could be functionally important in the 

non-coding regions.  Among the non-coding regions, the majority of the genomes are actually 

transcribed into ncRNAs that include several families of small RNAs such as the microRNA family 

and the Piwi family of RNAs. More interestingly, there are long ncRNAs (lncRNAs) that appear to 

control various levels of gene expression and potentially are involved in human disease. It has 

been reported that lncRNA functions as the interface between DNA and specific chromatin 

remodeling activities. For example, the expression level of the lncRNA HOTAIR is used to predict 

metastasis and survival in breast cancer48. The increasing expression of the same lncRNA in 

epithelial cancer cells has also been reported to induce Polycomb repressive complex 2 (PRC2) 

and lead to alter histone H3K27 methylation and increase cancer invasiveness and metastasis48. 

As another example, lncRNAs recruit Polycomb group (PcG) complexes to target genes and 

regulate the activity of PcG protein49. lncRNA regulation is likely dependent on direct 

interactions with PcG proteins such as EZH2, SUZ12, and CBX . MALAT1 is another ncRNA whose 

expression is also associated with metastasis and affects survival in lung cancer50. All these 

studies suggest that lncRNAs participate in epigenome alterations and that they may play a vital 

role in disease. According to the ample evidence for important roles of ncRNA, we can extend 

our current study to non-coding regions especially ncRNAs and explore the abnormalities that 

might contribute to FL and tFL.  

WTS can be used for the analysis of ncRNA alone but a global analysis of non-coding regions 

would require WGS and the availability of corresponding normal DNA is critical. We will also 

have to develop a pipeline that is specifically designed for mutation identification in non-coding 

regions and for the analysis of large structural alteration. Instead of detecting nonsynonymous 

variants, we would focus on variants within ncRNAs, enhancers, and mRNA promoters and TF 

binding site. It has been reported that variants identified in TF binding site are related to cancer 
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progression51,52. We can also look into is how mutations in regulatory regions of the genome 

might play a role in the FL and tFL development. For example, the structural alteration and 

mutations in the first exon-intron region of BCL6 are common in B-cell lymphoma53. This less 

than 3 kb region has been shown to contain negative regulatory elements, and the first intron is 

found to be commonly deleted in B-cell lymphoma as a result of chromosomal rearrangements.  

Our current study is concentrated on recurrently mutated genes in coding regions, according to 

the above evidence, we can extend our study to mutations in regulatory regions that can 

downregulate transcription of important genes. 

miRNA s are  another potential target for investigation. Variants in miRNA sequence could 

alter binding specificity, therefore leading to the alterations of expression and translation of 

target mRNA54. We have found mutations in only one miRNA but a more extensive study is 

needed to assess the importance of miRNA mutation in FL/tFL. Similarly, mutations of critical 

miRNA binding sites on important genes should also be evaluated.  

Chromatin open or active regions are considered most likely to contain key regulatory 

elements55. Therefore, these regions can be potential targets for investigation as well. Since 

there may not be clear and uniform information about these regions, particularly in the cell type 

of interest, the challenge during pipeline design can be that the variants within these regions are 

more difficult to annotate and interpret than the variants within amino acid coding regions. The 

other challenge might be in locating databases to use. Since non-coding regions are not as well-

studied as coding regions, we probably will need to collect different databases from various 

resources and reformat them into a convenient format to apply to the pipeline. 

KMT2D(MLL2), CREBBP, BCL2, EZH2, MEF2B, TNFRSF14, CARD11 and CCND3 are the top 

recurrent genes in our study. Although none of them is unique to the transformation, the 
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functional study of these mutants could provide insight on how they contribute to the tumor 

development. 

In our sequencing study, the very limited number of frozen or fresh tissue samples has been 

a limitation. However, there are much larger numbers of formalin-fixed paraffin-embedded 

(FFPE) samples in tissue banks, and they are often well-characterized with histological, 

immunophenotypical and follow-up clinical data. We have set up robust pipelines for mutation 

detection in frozen/fresh samples and for reliable downstream analysis. We would like to apply 

them to FFPE samples. As it is commonly known that the DNA may be highly fragmented in FFPE 

samples and errors can introduced into sequencing due to formalin fixation, the challenge will 

be to improve the quality of DNA from FFPET and to remove the artifacts introduced by formalin 

fixation.  

For the experimental part, there are many available methods designed specifically for FFPE 

samples. For example, the QIAamp DNA FFPE Tissue Kit uses special lysis conditions to overcome 

inhibitory effects caused by formalin crosslinking of nucleic acids while releasing DNA from 

tissue sections. Another possible method for FFPE samples would be water-soluble bifunctional 

catalysts, which can enhance the removal and decrosslinking of adducts from RNA and DNA 

bases56. Also, our laboratory has developed a modified Qiagen protocol for extracting DNA from 

FFPE samples resulting in higher yield of high quality DNA.  

For the analysis part, we would like to add additional filtering steps to remove artifacts in our 

current pipelines.  Because there are many publications57,58 about common artifacts in FFPE 

samples, we should be able to apply their methods or adjust their methods to estimate the 

threshold VAF at which a variant can be trusted not to be artifactual. Our current pipeline will be 

robust enough to detect the majority of real variants. Our main focus will be on how to detect 
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true low frequency variants. We assume the artifacts tend to occur at certain locations instead 

of randomly57. In order to detect the hidden patterns, we will investigate the difference 

between the reliable artifacts and variants around their neighboring region, for example, the 

proportion of certain sequences, and the frequency of same variants. Statistical methods will be 

applied to measure the differences. 

In our machine learning prediction study, the SIFT score in the complex feature set 

improved the training model and provided noticeably better prediction. However, SIFT score 

cannot predict every single variant (SIFT can predict most of the variants and have the best AUC 

score compared to other related programs59), therefore, we sacrificed some of our training 

dataset, which might impair the performance of the training model. Also, we cannot predict the 

variants that do not have a SIFT score in the testing dataset or real dataset. To address this 

limitation, we would like to assign comparable scores to the variants that SIFT score is unable to 

predict based on its own theory. The rationale33 applied to SIFT score prediction is based on 

whether an amino acid substitution affects the protein structure. If the substituted amino acid 

doesn’t have a similar property, it tends to be predicted as deleterious. For example, if a 

position located in the regions contain only hydrophobic amino acids, the SIFT score would 

assume this position can only contain amino acids with a hydrophobic character. Therefore, if 

the amino acid changes to any other one with hydrophilic character, this change would tend to 

be predicted as deleterious. In contrast, if this amino acid changes to any other one with a 

hydrophobic character, the mutation would tend to be predicted as tolerated. SIFT score also 

presumes that the important amino acids are highly conserved, so if the amino acid changes at a 

very conserved position, the position would tend to be predicted as deleterious. We would like 

to apply the similar idea in assigning comparable scores to the variants that cannot be predicted 

by their SIFT score. For example, if the variant is a nonsense mutation and it results in a 
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truncated, incomplete, nonfunctional protein product, the consequence is similar or even worse 

than if the amino acid substitution occurs in a conserved region, and it would be assigned as 

deleterious. Conversely, if the variant is a missense mutation and the amino acid changes to 

another amino acid with a similar character, it would be assigned as benign. This concept was 

also taken into consideration in our filtering method to remove germline variants. 

In this machine learning prediction study, we selected the features that are strongly 

associated with the characters of somatic mutations to ensure the model gets trained with the 

most useful information. We would like to add more features to improve the model in the 

future. There are more features annotated by ANNOVAR that we can include in the model. The 

challenge is that not all of the features provide useful information for somatic mutation 

prediction; instead, some of them might even degrade the model. The solution is that when we 

consider adding a feature, we first understand the theory behind the feature, the connection 

between the new feature and somatic mutation, then the distribution of the new feature to 

avoid biasing the data, and most importantly, we will test the new features in the model to 

confirm the performance.  We would like to use forward selection, which tests the addition of 

each new feature that improves the model the most and repeat this process until none improve 

the model.  

We have identified recurrently mutated genes and important pathways that are affected by 

mutations and CNAs but there are no mutations or CNAs that were completely unique to tFL. It 

is quite clear that the transformation is the result of the transformation event in combination of 

certain existing genetic events. We need to have a larger dataset to figure out the genetic 

combinations that can cause transformation. We are going to use our custom capture panel and 

the pipelines we applied to it to extend the study. 
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In our study, we designed multiple reliable pipelines to identify mutations from samples 

sequenced by WES and by a custom capture approach and evaluated the sequencing 

performance in each sample.  

All the pipelines include the following: read quality control for all raw reads from the 

sequencers, read mapping against reference genome (alignment), mapping performance 

evaluation, duplicate ratio adjustment, variants calling, variant quality evaluation, variant depth 

evaluation, gene-related annotation, and database-related annotation. Each of these pipelines 

was constructed for use on particular sequencing types (WES vs. custom capture) and sample 

types (single vs. pairs vs. triplets) to make sure it takes full consideration of its corresponding 

features and expectations. All the variant calling pipelines were validated by Sanger sequencing 

to confirm their performance. Samples performed by two different sequencing platforms were 

carefully investigated to validate and compare their performance. 

In custom capture panel sequencing, the method we employed used restriction enzymes to 

fragment DNA samples.  A novel, statistically-based method was applied to estimate the 

duplicate ratio in samples with identical sequence reads that are generated by restriction 

enzymes. Simulation was performed for evaluation. This duplicate ratio estimation method 

enhances the statistical accuracy of variant frequency estimates and their changes from FL to tFL 

during clonal evolution. 

An innovative two-way filtering based method was applied to retrieve somatic mutations 

from samples without corresponding normal samples. It is ideal to have healthy tissue from the 

same patient so that we can exclude germline variants from somatic mutations, but such tissue 

is not always available. Our layer by layer filtering approach was designed based on the 

biological character of the disease and the mutations and employed multiple reliable databases 
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to select reliable somatic mutations that may contribute to the disease. We classified the 

variants into two tiers of confidence. To validate our method, we applied it to a dataset which 

has corresponding normal samples without using the data from the normal samples. Then we 

compared the filtered results with the true somatic mutations identified from the full set of data. 

The validation proves our method is reliable and can filter out most of germline variants with 

20.2% FDR. 

We are the first to introduce a machine learning approach in predicting somatic mutations 

from samples without corresponding normal samples. Five different robust machine learning 

models were trained on one dataset (training dataset) with known germline variants. Two 

different sets of features were applied during training. Then the trained models were applied to 

another dataset (testing dataset) also with corresponding normal samples. The prediction 

performance was evaluated by a set of statistical measures based on the comparison of 

predicted results and true results. Random forest turned out to be the best model for germline 

variants prediction based on a comprehensive consideration.  

We also designed an advanced survival analysis for CNV data. Compared to commonly used 

analysis, this advanced approach put different emphasis on survival curves based on the 

biological understanding of each CNA and brings more statistical power to the comparison test. 

The comprehensive output provides more flexibility for reviewers to retrieve information.  

By integrating the information on mutation and CNAs, we have identified recurrently 

mutated genes and important pathways that may contribute to FL and to its transformation. We 

have found recurrent mutations of miR-142, which is a novel finding in FL and tFL studies. We 

also detected a number of mutations that appear to be more prevalent in tFL. The genes most 

frequently mutated in tFL included TP53, KMT2D (MLL2), CREBBP, EZH2, BCL2, miR-142, and 
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MEF2B. Many recurrently mutated genes are involved in important pathways, such as 

epigenetic regulation, the JAK-STAT or the NF-κB pathways, immune surveillance, and cell cycle 

regulation. Some other recurrently mutated genes are transcription factors involved in B-cell 

development. An especially interesting pathway is the S1P-activated pathway, which likely 

regulates lymphoma cell migration and survival outside of follicles during transformation. We 

detected mutations and CNAs along this pathway. We found few genes that were mutated only 

in tFL samples; therefore, it must be a combination of different genetic and epigenetic events 

that cooperate to drive an indolent FL to an aggressive tFL. A larger dataset and statistical 

analysis will be required to sort out the necessary combination of abnormalities required for 

transformation. The custom capture panel and analytical and experimental methods we have 

developed for frozen as well as FFPET will allow us to study a large set of patient samples to 

further our understanding of cooperativity of mutants and mechanisms of transformation. 
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APPEDIX A: RECURRENT SOMATIC MUTATIONS IDENTIFIED IN WES AND CUSTOM CAPTURE 

PANEL SEQUENCING 

Sample 
ID 

Chromosome| Position 
|Altered-Base 

Gene Mutation Type 
Var 
Freq 

Class Platform 

FL-2 chr1|27106915|T ARID1A stopgain 6% shared WES 

tFL-2 chr1|27106915|T ARID1A stopgain 23% shared WES 

FL-1 chr18|60985508|T BCL2 missense 19% shared WES 

tFL-1 chr18|60985508|T BCL2 missense 35% shared WES 

FL-22 chr18|60985814|C BCL2 missense 12% shared WES 

tFL-22 chr18|60985814|C BCL2 missense 17% shared WES 

FL-6 chr18|60985889|A BCL2 missense 27% shared WES 

tFL-6 chr18|60985889|A BCL2 missense 27% shared WES 

FL-22 chr2|32693596|T BIRC6 stopgain 29% shared WES 

tFL-22 chr2|32693596|T BIRC6 stopgain 30% shared WES 

FL-6 chr17|65908884|-ACT BPTF 
non-frameshift 
deletion 

35% shared WES 

tFL-6 chr17|65908884|-ACT BPTF 
non-frameshift 
deletion 

40% shared WES 

FL-4 chr10|98742885|T C10orf12 stopgain 5% shared WES 

tFL-4 chr10|98742885|T C10orf12 stopgain 49% shared WES 

FL-11 chr10|98743591|A C10orf12 stopgain 8% shared WES 

tFL-11 chr10|98743591|A C10orf12 stopgain  26% shared WES 

FL-1 chr6|41903707|A CCND3 missense 46% shared WES 

tFL-1 chr6|41903707|A CCND3 missense 50% shared WES 

FL-3 chr17|62007128|T CD79B splicing 5% shared WES 

tFL-3 chr17|62007128|T CD79B splicing 20% shared WES 

FL-10 chr16|3786704|G CREBBP missense 48% shared WES 

tFL-10 chr16|3786704|G CREBBP missense 83% shared WES 

FL-22 chr16|3786706|G CREBBP missense 32% shared WES 

tFL-22 chr16|3786706|G CREBBP missense 26% shared WES 

FL-6 chr16|3786739|G CREBBP missense 31% shared WES 

tFL-6 chr16|3786739|G CREBBP missense 33% shared WES 

FL-12 chr16|3788605|G CREBBP missense 41% shared WES 

tFL-12 chr16|3788605|G CREBBP missense 51% shared WES 

FL-11 chr16|3788618|A CREBBP missense 20% shared WES 

tFL-11 chr16|3788618|A CREBBP missense 37% shared WES 

FL-12 chr16|3795311|-A CREBBP frameshift deletion 36% shared WES 

tFL-12 chr16|3795311|-A CREBBP frameshift deletion 49% shared WES 
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FL-5 chr16|3807881|A CREBBP stopgain 23% shared WES 

tFL-5 chr16|3807881|A CREBBP stopgain 53% shared WES 

FL-5 chr16|3807917|C CREBBP missense 21% shared WES 

tFL-5 chr16|3807917|C CREBBP missense 53% shared WES 

FL-5 chr16|3808030|C CREBBP missense 43% shared WES 

tFL-5 chr16|3808030|C CREBBP missense 32% shared WES 

FL-5 chr16|3808033|G CREBBP missense 41% shared WES 

tFL-5 chr16|3808033|G CREBBP missense 33% shared WES 

FL-5 chr16|3808046|G CREBBP missense 33% shared WES 

tFL-5 chr16|3808046|G CREBBP missense 44% shared WES 

FL-8 chr16|3828175|C CREBBP stopgain 45% shared WES 

tFL-8 chr16|3828175|C CREBBP stopgain 39% shared WES 

FL-8 chr16|3860683|T CREBBP missense 51% shared WES 

tFL-8 chr16|3860683|T CREBBP missense 40% shared WES 

FL-1 chrX|31854912|C DMD missense 23% shared WES 

tFL-1 chrX|31854912|C DMD missense 40% shared WES 

FL-6 chr1|184692957|T EDEM3 missense 33% shared WES 

tFL-6 chr1|184692957|T EDEM3 missense 24% shared WES 

FL-22 chr6|74229068|A EEF1A1 missense 29% shared WES 

tFL-22 chr6|74229068|A EEF1A1 missense 26% shared WES 

tFL-4 chr7|148508727|A EZH2 missense 23% shared WES 

tFL-6 chr7|148508727|A EZH2 missense 44% shared WES 

FL-1 chr7|148508728|T EZH2 missense 20% shared WES 

tFL-1 chr7|148508728|T EZH2 missense 42% shared WES 

FL-5 chr7|148508728|T EZH2 missense 26% shared WES 

tFL-5 chr7|148508728|T EZH2 missense 47% shared WES 

FL-9 chr11|18327713|T HPS5 missense 10% shared WES 

tFL-9 chr11|18327713|T HPS5 missense 37% shared WES 

FL-3 chr4|3134324|A HTT missense 14% shared WES 

tFL-3 chr4|3134324|A HTT missense 25% shared WES 

FL-5 chr16|85936784|G IRF8 missense 32% shared WES 

tFL-5 chr16|85936784|G IRF8 missense 56% shared WES 

FL-22 chr3|183210327|C KLHL6 missense 39% shared WES 

tFL-22 chr3|183210327|C KLHL6 missense 13% shared WES 

FL-5 chr12|49418731|A KMT2D(MLL2) splicing 32% shared WES 

tFL-5 chr12|49418731|A KMT2D(MLL2) splicing 40% shared WES 

FL-12 chr12|49426001|-C KMT2D(MLL2) frameshift deletion 44% shared WES 

tFL-12 chr12|49426001|-C KMT2D(MLL2) frameshift deletion 45% shared WES 
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FL-6 chr12|49427255|A KMT2D(MLL2) stopgain 52% shared WES 

tFL-6 chr12|49427255|A KMT2D(MLL2) stopgain 36% shared WES 

FL-2 chr12|49431070|C KMT2D(MLL2) missense 6% shared WES 

tFL-2 chr12|49431070|C KMT2D(MLL2) missense 27% shared WES 

FL-8 chr12|49431800|-G KMT2D(MLL2) frameshift deletion 55% shared WES 

tFL-8 chr12|49431800|-G KMT2D(MLL2) frameshift deletion 40% shared WES 

FL-6 chr12|49432396|A KMT2D(MLL2) stopgain 37% shared WES 

tFL-6 chr12|49432396|A KMT2D(MLL2) stopgain 31% shared WES 

FL-1 chr12|49433220|A KMT2D(MLL2) stopgain 56% shared WES 

tFL-1 chr12|49433220|A KMT2D(MLL2) stopgain 95% shared WES 

FL-10 chr12|49433524|-CT KMT2D(MLL2) frameshift deletion 76% shared WES 

tFL-10 chr12|49433524|-CT KMT2D(MLL2) frameshift deletion 81% shared WES 

FL-5 chr12|49438694|T KMT2D(MLL2) stopgain 49% shared WES 

tFL-5 chr12|49438694|T KMT2D(MLL2) stopgain 53% shared WES 

FL-3 chr15|42035019|A MGA missense 59% shared WES 

tFL-3 chr15|42035019|A MGA missense 54% shared WES 

FL-8 chr17|56408621|G MIR142 - 45% shared WES 

tFL-8 chr17|56408621|G MIR142 - 47% shared WES 

FL-11 chr17|56408657|G MIR142 - 9% shared WES 

tFL-11 chr17|56408657|G MIR142 - 21% shared WES 

FL-12 chr3|38182641|C MYD88 missense 40% shared WES 

tFL-12 chr3|38182641|C MYD88 missense 83% shared WES 

FL-6 chr1|39322649|G RRAGC missense 28% shared WES 

tFL-6 chr1|39322649|G RRAGC missense 23% shared WES 

FL-8 chr1|39322697|A RRAGC missense 34% shared WES 

tFL-8 chr1|39322697|A RRAGC missense 45% shared WES 

FL-3 chr20|48500446|A SLC9A8 missense 24% shared WES 

tFL-3 chr20|48500446|A SLC9A8 missense 22% shared WES 

FL-1 chr18|60985760|T BCL2 missense 5% 
FL-
unique 

WES 

FL-8 chr18|60985880|A BCL2 missense 24% 
FL-
unique 

WES 

FL-12 chr6|41903688|T CCND3 missense 31% 
FL-
unique 

WES 

FL-8 chr17|62007129|T CD79B splicing 45% 
FL-
unique 

WES 

FL-5 chrX|41200829|C DDX3X missense 36% 
FL-
unique 

WES 

FL-11 chr7|148508728|T EZH2 missense 3% 
FL-
unique 

WES 

FL-8 chr6|26056530|C HIST1H1C missense 34% 
FL-
unique 

WES 
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FL-8 chr6|26234591|G HIST1H1D missense 46% 
FL-
unique 

WES 

FL-12 chr17|16012098|T NCOR1 splicing 56% 
FL-
unique 

WES 

FL-8 chr21|43256276|C PRDM15 missense 31% 
FL-
unique 

WES 

FL-3 chr1|110882568|G RBM15 missense 57% 
FL-
unique 

WES 

FL-12 chr13|37394096|G RFXAP splicing 49% 
FL-
unique 

WES 

FL-6 chr1|2493172|A TNFRSF14 stopgain 67% 
FL-
unique 

WES 

tFL-4 chr18|60985405|G BCL2 missense 24% 
tFL-
unique 

WES 

tFL-4 chr18|60985411|C BCL2 missense 18% 
tFL-
unique 

WES 

tFL-2 chr7|2979495|G CARD11 missense 30% 
tFL-
unique 

WES 

tFL-12 chr6|41903688|G CCND3 missense 44% 
tFL-
unique 

WES 

tFL-8 chr6|41903710|G CCND3 missense 13% 
tFL-
unique 

WES 

tFL-22 chr6|41903755|A CCND3 stopgain 25% 
tFL-
unique 

WES 

tFL-8 chr17|62006836|T CD79B splicing 52% 
tFL-
unique 

WES 

tFL-2 chr16|3786206|C CREBBP splicing 33% 
tFL-
unique 

WES 

tFL-6 chrX|41205842|A DDX3X missense 43% 
tFL-
unique 

WES 

tFL-8 chr6|74228924|T EEF1A1 missense 37% 
tFL-
unique 

WES 

tFL-4 chr11|128391823|A ETS1 missense 41% 
tFL-
unique 

WES 

tFL-11 chr7|148506437|A EZH2 missense 19% 
tFL-
unique 

WES 

tFL-22 chr7|148508728|T EZH2 missense 30% 
tFL-
unique 

WES 

tFL-9 chr3|183273154|C KLHL6 stopgain 37% 
tFL-
unique 

WES 

tFL-4 chr12|49435906|-T KMT2D(MLL2) frameshift deletion 21% 
tFL-
unique 

WES 

tFL-4 chr12|49443750|-T KMT2D(MLL2) frameshift deletion 49% 
tFL-
unique 

WES 

tFL-22 chr3|38182025|T MYD88 missense 14% 
tFL-
unique 

WES 

tFL-9 chr5|67576825|A PIK3R1 missense 32% 
tFL-
unique 

WES 

tFL-2 chr21|43256634|C PRDM15 missense 11% 
tFL-
unique 

WES 
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tFL-2 chr1|110883003|T RBM15 missense 15% 
tFL-
unique 

WES 

tFL-5 chr17|78269544|C RNF213 missense 50% 
tFL-
unique 

WES 

tFL-6 chr20|48467300|-T SLC9A8 frameshift deletion 21% 
tFL-
unique 

WES 

tFL-6 chr1|16256410|+A SPEN frameshift insertion 37% 
tFL-
unique 

WES 

tFL-1 chr6|152456309|C SYNE1 missense 50% 
tFL-
unique 

WES 

tFL-22 chr17|7577097|A TP53 missense 18% 
tFL-
unique 

WES 

tFL-5 chr17|7577545|C TP53 missense 38% 
tFL-
unique 

WES 

tFL-5 chr17|7577598|A TP53 missense 56% 
tFL-
unique 

WES 

tFL-15 chr7|2984163|T CARD11 nonsynonymous 47% single custom 

tFL-15 chr7|148508728|G EZH2 nonsynonymous 46% single custom 

tFL-15 chr12|49433790|-G KMT2D(MLL2) frameshift_deletion 25% single custom 

tFL-15 chr16|3788617|T CREBBP nonsynonymous 33% single custom 

tFL-15 chr16|85942671|C IRF8 nonsynonymous 18% single custom 

tFL-15 chr17|40475318|G STAT3 nonsynonymous 29% single custom 

tFL-15 chr18|60985724|C BCL2 nonsynonymous 22% single custom 

tFL-15 chr19|11143994|A SMARCA4 nonsynonymous 30% single custom 

tFL-15 chr19|19260045|A MEF2B nonsynonymous 30% single custom 

tFL-16 chr5|67591106|G PIK3R1 nonsynonymous 10% single custom 

tFL-16 chr6|37138763|G PIM1 nonsynonymous 28% single custom 

tFL-16 chr12|49427447|A KMT2D(MLL2) stopgain 39% single custom 

tFL-19 chr3|38182641|C MYD88 missense 81% single custom 

tFL-19 chr5|35857093|A IL7R nonsynonymous 23% single custom 

tFL-19 chr6|37138423|C PIM1 nonsynonymous 36% single custom 

tFL-19 chr7|2977613|T CARD11 nonsynonymous 32% single custom 

tFL-19 chr12|49425693|-C KMT2D(MLL2) frameshift_deletion 54% single custom 

tFL-19 chr17|62006798|C CD79B nonsynonymous 44% single custom 

tFL-20 chr7|148508727|A EZH2 nonsynonymous 19% single custom 

tFL-20 chr12|49415846|A KMT2D(MLL2) stopgain 44% single custom 

tFL-20 chr12|49435698|G KMT2D(MLL2) splicing 43% single custom 

tFL-20 chr16|11349287|T SOCS1 nonsynonymous 38% single custom 

tFL-20 chr16|89857858|T FANCA nonsynonymous 33% single custom 

tFL-20 chr22|41556727|A EP300 splicing 49% single custom 

tFL-31 chr1|16265861|G SPEN nonsynonymous 37% single custom 

tFL-31 chr6|26056305|C HIST1H1C nonsynonymous 30% single custom 
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tFL-31 chr6|138192455|T TNFAIP3 stopgain 39% single custom 

tFL-31 chr12|49446429|T KMT2D(MLL2) stopgain 29% single custom 

tFL-31 chr13|41240211|A FOXO1 nonsynonymous 27% single custom 

tFL-31 chr16|3788618|A CREBBP nonsynonymous 38% single custom 

tFL-31 chr17|16046921|C NCOR1 nonsynonymous 31% single custom 

tFL-31 chr18|60985760|T BCL2 nonsynonymous 6% single custom 

tFL-31 chr18|60985880|A BCL2 nonsynonymous 3% single custom 

tFL-31 chrX|70613191|A TAF1 nonsynonymous 58% single custom 

tFL-32 chr1|2492152|G TNFRSF14 nonsynonymous 11% single custom 

tFL-32 chr5|35867526|G IL7R nonsynonymous 56% single custom 

tFL-32 chr17|7578286|G TP53 nonsynonymous 37% single custom 

tFL-32 chr17|40477033|C STAT3 nonsynonymous 36% single custom 

tFL-33 chr7|148508728|T EZH2 nonsynonymous 20% single custom 

tFL-33 chr17|40474427|G STAT3 nonsynonymous 20% single custom 

tFL-33 chr18|60985301|G BCL2 nonsynonymous 25% single custom 

tFL-33 chr18|60985626|T BCL2 nonsynonymous 19% single custom 

tFL-34 chr1|2488138|A TNFRSF14 stopgain 43% single custom 

tFL-34 chr4|153244046|G FBXW7 nonsynonymous 22% single custom 

tFL-34 chr7|2977614|A CARD11 nonsynonymous 28% single custom 

tFL-34 chr7|148508727|A EZH2 nonsynonymous 14% single custom 

tFL-34 chr7|148508745|C EZH2 nonsynonymous 14% single custom 

tFL-34 chr7|148508763|A EZH2 nonsynonymous 17% single custom 

tFL-34 chr12|49415647|T KMT2D(MLL2) stopgain 17% single custom 

tFL-34 chr12|49425098|A KMT2D(MLL2) stopgain 25% single custom 

tFL-34 chr16|3790421|T CREBBP nonsynonymous 20% single custom 

tFL-35 chr1|2492063|-C TNFRSF14 frameshift_deletion 78% single custom 

tFL-35 chr6|26234923|T HIST1H1D nonsynonymous 42% single custom 

tFL-35 chr7|148508727|G EZH2 nonsynonymous 36% single custom 

tFL-35 chr12|49432738|A KMT2D(MLL2) stopgain 87% single custom 

tFL-35 chr16|3790421|T CREBBP nonsynonymous 86% single custom 

tFL-36 chr6|27860754|C HIST1H2AM stopgain 15% single custom 

tFL-36 chr12|49425446|-CT KMT2D(MLL2) frameshift_deletion 43% single custom 

tFL-36 chr18|60985896|T BCL2 nonsynonymous 22% single custom 

tFL-37 chr7|148508728|T EZH2 nonsynonymous 27% single custom 

tFL-37 chr12|49431667|A KMT2D(MLL2) stopgain 47% single custom 

tFL-37 chr12|49434187|+T KMT2D(MLL2) frameshift_insertion 39% single custom 

tFL-37 chr16|3820888|+GTGCA CREBBP frameshift_insertion 45% single custom 

tFL-37 chr16|11348901|C SOCS1 nonsynonymous 24% single custom 
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tFL-37 chr18|60985286|T BCL2 nonsynonymous 24% single custom 

tFL-37 chr18|60985884|C BCL2 nonsynonymous 32% single custom 

tFL-37 chr19|19260045|A MEF2B nonsynonymous 53% single custom 

tFL-38 chr6|37138355|T PIM1 nonsynonymous 38% single custom 

tFL-38 chr12|49424074|T KMT2D(MLL2) nonsynonymous 16% single custom 

tFL-38 chr12|49435294|A KMT2D(MLL2) stopgain 76% single custom 

tFL-38 chr17|62007480|C CD79B nonsynonymous 36% single custom 

tFL-39 chr6|37139111|T PIM1 nonsynonymous 27% single custom 

tFL-39 chr6|41903710|G CCND3 nonsynonymous 44% single custom 

tFL-39 chr12|49435479|A KMT2D(MLL2) stopgain 34% single custom 

tFL-39 chr16|3788657|G CREBBP nonsynonymous 31% single custom 

tFL-40 chr1|155920754|A ARHGEF2 stopgain 49% single custom 

tFL-40 chr7|2985468|T CARD11 nonsynonymous 41% single custom 

tFL-40 chr15|45003764|A B2M stopgain 60% single custom 

tFL-40 chr18|60795973|A BCL2 nonsynonymous 37% single custom 

tFL-40 chr22|41566522|G EP300 nonsynonymous 20% single custom 

FL-3-
cus 

chr1|27023162|G ARID1A nonsynonymous 7% shared custom 

FL-3-
cus 

chr1|110882568|G RBM15 nonsynonymous 16% shared custom 

FL-3-
cus 

chr17|62007128|T CD79B splicing 14% shared custom 

FL-5-
cus 

chr7|148508728|T EZH2 nonsynonymous 32% shared custom 

FL-5-
cus 

chr12|49418731|A KMT2D(MLL2) splicing 40% shared custom 

FL-5-
cus 

chr12|49438694|T KMT2D(MLL2) stopgain 34% shared custom 

FL-5-
cus 

chr16|3807881|A CREBBP stopgain 37% shared custom 

FL-5-
cus 

chr16|3807917|C CREBBP nonsynonymous 39% shared custom 

FL-5-
cus 

chr16|3808030|C CREBBP nonsynonymous 38% shared custom 

FL-5-
cus 

chr16|3808033|G CREBBP nonsynonymous 38% shared custom 

FL-5-
cus 

chr16|3808046|G CREBBP nonsynonymous 38% shared custom 

FL-5-
cus 

chr16|11349099|C SOCS1 nonsynonymous 36% shared custom 

FL-5-
cus 

chr16|85936784|G IRF8 nonsynonymous 38% shared custom 

FL-30 chr12|49433524|-CT KMT2D(MLL2) frameshift_deletion 54% shared custom 

FL-30 chr16|3786704|G CREBBP nonsynonymous 35% shared custom 
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FL-23-1 chr16|3789578|A CREBBP splicing 40% shared custom 

FL-23-2 chr16|3789578|A CREBBP splicing 18% shared custom 

FL-24-1 chr6|90402481|G MDN1 nonsynonymous 23% shared custom 

FL-24-1 chr7|148508728|G EZH2 nonsynonymous 40% shared custom 

FL-24-2 chr7|148508728|G EZH2 nonsynonymous 38% shared custom 

FL-24-1 chr16|3788618|A CREBBP nonsynonymous 76% shared custom 

FL-24-2 chr16|3788618|A CREBBP nonsynonymous 79% shared custom 

tFL-24 chr16|3788618|A CREBBP nonsynonymous 66% shared custom 

FL-25-1 chr7|148508727|A EZH2 nonsynonymous 18% shared custom 

FL-25-2 chr7|148508727|A EZH2 nonsynonymous 10% shared custom 

tFL-25 chr7|148508727|A EZH2 nonsynonymous 10% shared custom 

FL-25-1 chr12|49428448|A KMT2D(MLL2) stopgain 61% shared custom 

FL-25-2 chr12|49428448|A KMT2D(MLL2) stopgain 66% shared custom 

FL-25-1 chr12|113496211|G DTX1 nonsynonymous 27% shared custom 

FL-25-2 chr12|113496211|G DTX1 nonsynonymous 31% shared custom 

FL-25-1 chr15|45003779|C B2M nonsynonymous 17% shared custom 

FL-25-2 chr15|45003779|C B2M nonsynonymous 26% shared custom 

FL-25-1 chr16|3900873|A CREBBP stopgain 21% shared custom 

FL-25-2 chr16|3900873|A CREBBP stopgain 31% shared custom 

FL-25-1 chr16|11349320|A SOCS1 stopgain 23% shared custom 

FL-25-2 chr16|11349320|A SOCS1 stopgain 33% shared custom 

FL-25-1 chr19|19257600|C MEF2B stopgain 28% shared custom 

FL-25-2 chr19|19257600|C MEF2B stopgain 29% shared custom 

FL-25-1 chr19|19260045|A MEF2B nonsynonymous 33% shared custom 

FL-25-2 chr19|19260045|A MEF2B nonsynonymous 35% shared custom 

FL-26-1 chr11|128332397|C ETS1 stopgain 27% shared custom 

FL-26-2 chr11|128332397|C ETS1 stopgain 22% shared custom 

FL-26-1 chr12|49426598|A KMT2D(MLL2) stopgain 23% shared custom 

FL-26-2 chr12|49426598|A KMT2D(MLL2) stopgain 24% shared custom 

FL-26-1 chr12|49433902|-AG KMT2D(MLL2) frameshift_deletion 53% shared custom 

FL-26-2 chr12|49433902|-AG KMT2D(MLL2) frameshift_deletion 47% shared custom 

FL-26-1 chr16|3781333|T CREBBP nonsynonymous 31% shared custom 

FL-26-2 chr16|3781333|T CREBBP nonsynonymous 34% shared custom 

FL-26-1 chr16|3831211|+C CREBBP frameshift_insertion 23% shared custom 

FL-26-1 chr18|60985883|T BCL2 nonsynonymous 26% shared custom 

FL-27 chr1|27089478|T ARID1A stopgain 14% shared custom 

FL-27 chr12|49424062|T KMT2D(MLL2) splicing 23% shared custom 

FL-27 chr16|3788618|A CREBBP nonsynonymous 21% shared custom 
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tFL-27 chr16|3788618|A CREBBP nonsynonymous 79% shared custom 

FL-27 chr18|60985760|T BCL2 nonsynonymous 26% shared custom 

tFL-27 chr18|60985760|T BCL2 nonsynonymous 41% shared custom 

FL-28 chr4|153332538|A FBXW7 nonsynonymous 14% shared custom 

FL-28 chr7|148508727|A EZH2 nonsynonymous 12% shared custom 

tFL-28 chr7|148508727|A EZH2 nonsynonymous 18% shared custom 

FL-29 chr18|60985529|G BCL2 nonsynonymous 13% shared custom 

FL-29 chr19|19260045|G MEF2B nonsynonymous 62% shared custom 

FL-31 chr1|16265861|G SPEN nonsynonymous 20% shared custom 

FL-31 chr12|49446429|T KMT2D(MLL2) stopgain 19% shared custom 

FL-31 chr13|41240211|A FOXO1 nonsynonymous 18% shared custom 

FL-31 chr16|3788618|A CREBBP nonsynonymous 14% shared custom 

FL-31 chr18|60985880|A BCL2 nonsynonymous 18% shared custom 

FL-5-
cus 

chrX|41200829|C DDX3X nonsynonymous 43% 
FL-
unique 

custom 

FL-24-2 chr6|90402481|G MDN1 nonsynonymous 22% 
FL-
unique 

custom 

FL-26-2 chr18|60985883|T BCL2 nonsynonymous 25% 
FL-
unique 

custom 

FL-27 chr6|134495706|G SGK1 nonsynonymous 15% 
FL-
unique 

custom 

FL-27 chr12|49427261|A KMT2D(MLL2) stopgain 14% 
FL-
unique 

custom 

FL-28 chr18|60985815|G BCL2 nonsynonymous 18% 
FL-
unique 

custom 

FL-29 chr12|49418462|C KMT2D(MLL2) stopgain 24% 
FL-
unique 

custom 

FL-31 chr12|92538182|T BTG1 nonsynonymous 11% 
FL-
unique 

custom 

tFL-3-
cus 

chr1|27023162|G ARID1A nonsynonymous 4% 
tFL-
unique 

custom 

tFL-3-
cus 

chr1|110882568|G RBM15 nonsynonymous 22% 
tFL-
unique 

custom 

tFL-3-
cus 

chr17|62007128|T CD79B splicing 20% 
tFL-
unique 

custom 

tFL-5-
cus 

chr7|148508728|T EZH2 nonsynonymous 37% 
tFL-
unique 

custom 

tFL-5-
cus 

chr12|49418731|A KMT2D(MLL2) splicing 47% 
tFL-
unique 

custom 

tFL-5-
cus 

chr12|49438694|T KMT2D(MLL2) stopgain 46% 
tFL-
unique 

custom 

tFL-5-
cus 

chr16|3807881|A CREBBP stopgain 40% 
tFL-
unique 

custom 

tFL-5-
cus 

chr16|3807917|C CREBBP nonsynonymous 42% 
tFL-
unique 

custom 

tFL-5- chr16|3808030|C CREBBP nonsynonymous 42% tFL- custom 
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cus unique 

tFL-5-
cus 

chr16|3808033|G CREBBP nonsynonymous 42% 
tFL-
unique 

custom 

tFL-5-
cus 

chr16|3808046|G CREBBP nonsynonymous 42% 
tFL-
unique 

custom 

tFL-5-
cus 

chr16|11349099|C SOCS1 nonsynonymous 40% 
tFL-
unique 

custom 

tFL-5-
cus 

chr16|85936784|G IRF8 nonsynonymous 40% 
tFL-
unique 

custom 

tFL-5-
cus 

chr17|7577545|C TP53 nonsynonymous 83% 
tFL-
unique 

custom 

tFL-5-
cus 

chr17|7577598|A TP53 nonsynonymous 11% 
tFL-
unique 

custom 

tFL-5-
cus 

chr17|78269544|C RNF213 nonsynonymous 34% 
tFL-
unique 

custom 

tFL-30 chr12|49433524|-CT KMT2D(MLL2) frameshift_deletion 83% 
tFL-
unique 

custom 

tFL-30 chr16|3786704|G CREBBP nonsynonymous 76% 
tFL-
unique 

custom 

tFL-23 chr3|38182032|G MYD88 nonsynonymous 19% 
tFL-
unique 

custom 

tFL-23 chr7|2979501|G CARD11 nonsynonymous 13% 
tFL-
unique 

custom 

tFL-23 chr16|3786704|T CREBBP nonsynonymous 15% 
tFL-
unique 

custom 

tFL-23 chr16|3789578|A CREBBP splicing 12% 
tFL-
unique 

custom 

tFL-24 chr7|148508728|G EZH2 nonsynonymous 33% 
tFL-
unique 

custom 

tFL-24 chr17|40485721|G STAT3 nonsynonymous 31% 
tFL-
unique 

custom 

tFL-25 chr12|49428448|A KMT2D(MLL2) stopgain 53% 
tFL-
unique 

custom 

tFL-25 chr12|113496211|G DTX1 nonsynonymous 26% 
tFL-
unique 

custom 

tFL-25 chr15|45003779|C B2M nonsynonymous 23% 
tFL-
unique 

custom 

tFL-25 chr16|3900873|A CREBBP stopgain 25% 
tFL-
unique 

custom 

tFL-25 chr16|11349320|A SOCS1 stopgain 26% 
tFL-
unique 

custom 

tFL-25 chr16|11349333|A SOCS1 nonsynonymous 26% 
tFL-
unique 

custom 

tFL-25 chr19|19257600|C MEF2B stopgain 23% 
tFL-
unique 

custom 

tFL-25 chr19|19260045|A MEF2B nonsynonymous 21% 
tFL-
unique 

custom 

tFL-26 chr11|128332397|C ETS1 stopgain 37% 
tFL-
unique 

custom 

tFL-26 chr12|49426598|A KMT2D(MLL2) stopgain 42% tFL- custom 
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unique 

tFL-26 chr12|49433902|-AG KMT2D(MLL2) frameshift_deletion 47% 
tFL-
unique 

custom 

tFL-26 chr16|3781333|T CREBBP nonsynonymous 40% 
tFL-
unique 

custom 

tFL-26 chr16|3831211|+C CREBBP frameshift_insertion 30% 
tFL-
unique 

custom 

tFL-26 chr16|11348935|T SOCS1 nonsynonymous 42% 
tFL-
unique 

custom 

tFL-26 chr19|19257993|A MEF2B splicing 81% 
tFL-
unique 

custom 

tFL-27 chr1|27089478|T ARID1A stopgain 45% 
tFL-
unique 

custom 

tFL-27 chr6|90453359|T MDN1 stopgain 36% 
tFL-
unique 

custom 

tFL-27 chr7|151873463|A KMT2C(MLL3) nonsynonymous 39% 
tFL-
unique 

custom 

tFL-27 chr12|49424062|T KMT2D(MLL2) splicing 32% 
tFL-
unique 

custom 

tFL-27 chr17|7578265|G TP53 nonsynonymous 63% 
tFL-
unique 

custom 

tFL-27 chr18|60985722|T BCL2 nonsynonymous 39% 
tFL-
unique 

custom 

tFL-28 chr2|73677838|G ALMS1 nonsynonymous 17% 
tFL-
unique 

custom 

tFL-28 chr4|153332538|A FBXW7 nonsynonymous 15% 
tFL-
unique 

custom 

tFL-28 chr6|134495724|C SGK1 nonsynonymous 13% 
tFL-
unique 

custom 

tFL-28 chr12|92539226|C BTG1 nonsynonymous 12% 
tFL-
unique 

custom 

tFL-28 chr13|41240279|A FOXO1 nonsynonymous 15% 
tFL-
unique 

custom 

tFL-29 chr7|148508727|A EZH2 nonsynonymous 28% 
tFL-
unique 

custom 

tFL-29 chr7|152027794|-C KMT2C(MLL3) frameshift_deletion 34% 
tFL-
unique 

custom 

tFL-29 chr12|49420082|A KMT2D(MLL2) nonsynonymous 50% 
tFL-
unique 

custom 

tFL-29 chr12|49420132|A KMT2D(MLL2) nonsynonymous 41% 
tFL-
unique 

custom 

tFL-29 chr17|7576571|C TP53 stopgain 47% 
tFL-
unique 

custom 

tFL-29 chr17|7577093|G TP53 nonsynonymous 51% 
tFL-
unique 

custom 

tFL-29 chr18|60985529|G BCL2 nonsynonymous 33% 
tFL-
unique 

custom 

tFL-29 chr19|19260045|G MEF2B nonsynonymous 97% 
tFL-
unique 

custom 

tFL-31 chr1|16265861|G SPEN nonsynonymous 37% tFL- custom 
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unique 

tFL-31 chr6|26056305|C HIST1H1C nonsynonymous 30% 
tFL-
unique 

custom 

tFL-31 chr6|138192455|T TNFAIP3 stopgain 39% 
tFL-
unique 

custom 

tFL-31 chr12|49446429|T KMT2D(MLL2) stopgain 29% 
tFL-
unique 

custom 

tFL-31 chr13|41240211|A FOXO1 nonsynonymous 27% 
tFL-
unique 

custom 

tFL-31 chr16|3788618|A CREBBP nonsynonymous 38% 
tFL-
unique 

custom 

tFL-31 chr17|16046921|C NCOR1 nonsynonymous 31% 
tFL-
unique 

custom 

tFL-31 chr18|60985760|T BCL2 nonsynonymous 6% 
tFL-
unique 

custom 

tFL-31 chr18|60985880|A BCL2 nonsynonymous 3% 
tFL-
unique 

custom 

tFL-31 chrX|70613191|A TAF1 nonsynonymous 58% 
tFL-
unique 

custom 

The first column (Sample ID) indicates the samples in which the mutations were detected. The 
second column (Chromosome| Position |Altered-Base) indicates the coordinates of the 
mutations. The third column indicates the genes altered by the mutations. The fourth column 
indicates the mutation type. The fifth column (Var Freq) indicates the variant frequencies of the 
mutations. The sixth column indicates the classes of the mutations. The last column indicates 
the platform used to detect the mutations. 
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APPENDIX B: INTEGRATED MUTATION AND CN INFORMATIN FOR TNFRSF14, CARD11, 

HIST1H1E, EZH2, KMT2D (MLL2), BCL2, TNFAIP3, SGK1, CREBBP, and TP53 

Sample ID Chr|Pos|VarAllele Gene MutType 
Var 
Freq 

CN 

FL-5 chr1|2493112|C TNFRSF14 nonsynonymous 0.667 NA 

FL-5-cus chr1|2493112|C TNFRSF14 nonsynonymous 0.81 NA 

tFL-5 chr1|2493112|C TNFRSF14 nonsynonymous 1 1 

tFL-5-cus chr1|2493112|C TNFRSF14 nonsynonymous 0.881 1 

FL-6 chr1|2493172|A TNFRSF14 stopgain 0.667 1 

FL-10 chr1|2493111|A TNFRSF14 splicing 0.409 2 

FL-10-cus chr1|2493111|A TNFRSF14 splicing 0.48 2 

tFL-10 chr1|2493111|A TNFRSF14 splicing 0.474 2 

tFL-10-cus chr1|2493111|A TNFRSF14 splicing 0.55 2 

tFL-15 chr1|2489802|A TNFRSF14 nonsynonymous 0.629 2 

tFL-32 chr1|2492152|G TNFRSF14 nonsynonymous 0.11 2 

tFL-34 chr1|2488138|A TNFRSF14 stopgain 0.431 2 

tFL-35 chr1|2492063|-C TNFRSF14 frameshift_deletion 0.78 1 

tFL-2 chr7|2979495|G CARD11 nonsynonymous 0.303 4 

tFL-15 chr7|2984163|T CARD11 nonsynonymous 0.47 3 

tFL-15 chr7|2979466|C CARD11 nonsynonymous 0.46 3 

tFL-19 chr7|2977613|T CARD11 nonsynonymous 0.32 2 

tFL-19 chr7|2979486|G CARD11 nonsynonymous 0.4 2 

tFL-23 chr7|2979501|G CARD11 nonsynonymous 0.13 3 

tFL-34 chr7|2977614|A CARD11 nonsynonymous 0.28 3 

tFL-40 chr7|2985468|T CARD11 nonsynonymous 0.41 2 

tFL-19 chr6|26156958|T HIST1H1E nonsynonymous 0.33 2 

tFL-19 chr6|26156976|C HIST1H1E nonsynonymous 0.32 2 

tFL-20 chr6|26156911|A HIST1H1E nonsynonymous 0.41 2 

tFL-23 chr6|26156797|T HIST1H1E nonsynonymous 0.11 3 

FL-25-1 chr6|26156787|C HIST1H1E nonsynonymous 0.2 2 

FL-25-2 chr6|26156787|C HIST1H1E nonsynonymous 0.301 NA 

tFL-25 chr6|26156787|C HIST1H1E nonsynonymous 0.24 2 

tFL-37 chr6|26156947|G HIST1H1E nonsynonymous 0.22 3 

tFL-38 chr6|26157271|G HIST1H1E nonsynonymous 0.3 3 

FL-1 chr7|148508728|T EZH2 nonsynonymous 0.204 2 

tFL-1 chr7|148508728|T EZH2 nonsynonymous 0.422 2 

tFL-4 chr7|148508727|A EZH2 nonsynonymous 0.228 3 

FL-5 chr7|148508728|T EZH2 nonsynonymous 0.262 NA 

FL-5-cus chr7|148508728|T EZH2 nonsynonymous 0.321 NA 

tFL-5 chr7|148508728|T EZH2 nonsynonymous 0.465 2 
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tFL-5-cus chr7|148508728|T EZH2 nonsynonymous 0.37 NA 

tFL-6 chr7|148508727|A EZH2 nonsynonymous 0.441 2 

tFL-11 chr7|148506437|A EZH2 nonsynonymous 0.189 2 

FL-11 chr7|148508728|T EZH2 nonsynonymous 0.034 2 

tFL-15 chr7|148508728|G EZH2 nonsynonymous 0.46 3 

tFL-20 chr7|148508727|A EZH2 nonsynonymous 0.19 3 

tFL-22 chr7|148508728|T EZH2 nonsynonymous 0.3 NA 

FL-24-1 chr7|148508728|G EZH2 nonsynonymous 0.4 2 

FL-24-2 chr7|148508728|G EZH2 nonsynonymous 0.38 NA 

tFL-24 chr7|148508728|G EZH2 nonsynonymous 0.331 2 

FL-25-1 chr7|148508727|A EZH2 nonsynonymous 0.18 3 

FL-25-2 chr7|148508727|A EZH2 nonsynonymous 0.1 NA 

tFL-25 chr7|148508727|A EZH2 nonsynonymous 0.1 3 

FL-28 chr7|148508727|A EZH2 nonsynonymous 0.12 NA 

tFL-28 chr7|148508727|A EZH2 nonsynonymous 0.18 3 

tFL-29 chr7|148508727|A EZH2 nonsynonymous 0.28 2 

tFL-33 chr7|148508728|T EZH2 nonsynonymous 0.2 3 

tFL-34 chr7|148508727|A EZH2 nonsynonymous 0.14 3 

tFL-34 chr7|148508745|C EZH2 nonsynonymous 0.14 3 

tFL-34 chr7|148508763|A EZH2 nonsynonymous 0.17 3 

tFL-35 chr7|148508727|G EZH2 nonsynonymous 0.36 2 

tFL-37 chr7|148508728|T EZH2 nonsynonymous 0.27 3 

FL-1 chr12|49433220|A KMT2D(MLL2) stopgain 0.559 2 

tFL-1 chr12|49433220|A KMT2D(MLL2) stopgain 0.951 2 

FL-2 chr12|49431070|C KMT2D(MLL2) nonsynonymous 0.062 NA 

tFL-2 chr12|49431070|C KMT2D(MLL2) nonsynonymous 0.271 2 

tFL-4 chr12|49435906|-T KMT2D(MLL2) frameshift_deletion 0.21 3 

tFL-4 chr12|49443750|-T KMT2D(MLL2) frameshift_deletion 0.493 3 

FL-5 chr12|49418731|A KMT2D(MLL2) splicing 0.317 NA 

FL-5-cus chr12|49418731|A KMT2D(MLL2) splicing 0.4 NA 

tFL-5 chr12|49418731|A KMT2D(MLL2) splicing 0.395 2 

tFL-5-cus chr12|49418731|A KMT2D(MLL2) splicing 0.47 NA 

FL-5 chr12|49438694|T KMT2D(MLL2) stopgain 0.486 NA 

FL-5-cus chr12|49438694|T KMT2D(MLL2) stopgain 0.34 NA 

tFL-5 chr12|49438694|T KMT2D(MLL2) stopgain 0.531 2 

tFL-5-cus chr12|49438694|T KMT2D(MLL2) stopgain 0.46 NA 

FL-6 chr12|49427255|A KMT2D(MLL2) stopgain 0.521 2 

tFL-6 chr12|49427255|A KMT2D(MLL2) stopgain 0.364 2 

FL-6 chr12|49432396|A KMT2D(MLL2) stopgain 0.367 2 

tFL-6 chr12|49432396|A KMT2D(MLL2) stopgain 0.308 2 

FL-8 chr12|49431800|-G KMT2D(MLL2) frameshift_deletion 0.545 NA 
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tFL-8 chr12|49431800|-G KMT2D(MLL2) frameshift_deletion 0.395 NA 

FL-9 chr12|49433087|T KMT2D(MLL2) nonsynonymous 0.504 2 

tFL-9 chr12|49433087|T KMT2D(MLL2) nonsynonymous 0.427 2 

FL-10 chr12|49433524|-CT KMT2D(MLL2) frameshift_deletion 0.764 2 

FL-30 chr12|49433524|-CT KMT2D(MLL2) frameshift_deletion 0.54 2 

tFL-10 chr12|49433524|-CT KMT2D(MLL2) frameshift_deletion 0.806 2 

tFL-30 chr12|49433524|-CT KMT2D(MLL2) frameshift_deletion 0.832 2 

FL-12 chr12|49426001|-C KMT2D(MLL2) frameshift_deletion 0.438 2 

tFL-12 chr12|49426001|-C KMT2D(MLL2) frameshift_deletion 0.449 2 

tFL-15 chr12|49433790|-G KMT2D(MLL2) frameshift_deletion 0.25 3 

tFL-16 chr12|49427447|A KMT2D(MLL2) stopgain 0.39 2 

tFL-19 chr12|49425693|-C KMT2D(MLL2) frameshift_deletion 0.54 2 

tFL-20 chr12|49415846|A KMT2D(MLL2) stopgain 0.44 2 

tFL-20 chr12|49435698|G KMT2D(MLL2) splicing 0.43 2 

FL-25-1 chr12|49428448|A KMT2D(MLL2) stopgain 0.61 2 

FL-25-2 chr12|49428448|A KMT2D(MLL2) stopgain 0.66 NA 

tFL-25 chr12|49428448|A KMT2D(MLL2) stopgain 0.53 2 

FL-26-1 chr12|49426598|A KMT2D(MLL2) stopgain 0.231 NA 

FL-26-2 chr12|49426598|A KMT2D(MLL2) stopgain 0.239 3 

tFL-26 chr12|49426598|A KMT2D(MLL2) stopgain 0.421 2 

FL-26-1 chr12|49433902|-AG KMT2D(MLL2) frameshift_deletion 0.531 NA 

FL-26-2 chr12|49433902|-AG KMT2D(MLL2) frameshift_deletion 0.47 3 

tFL-26 chr12|49433902|-AG KMT2D(MLL2) frameshift_deletion 0.47 2 

FL-27 chr12|49424062|T KMT2D(MLL2) splicing 0.23 2 

tFL-27 chr12|49424062|T KMT2D(MLL2) splicing 0.32 2 

FL-27 chr12|49427261|A KMT2D(MLL2) stopgain 0.14 2 

FL-29 chr12|49418462|C KMT2D(MLL2) stopgain 0.24 2 

tFL-29 chr12|49420082|A KMT2D(MLL2) nonsynonymous 0.501 2 

tFL-29 chr12|49420132|A KMT2D(MLL2) nonsynonymous 0.409 2 

FL-31 chr12|49446429|T KMT2D(MLL2) stopgain 0.19 NA 

tFL-31 chr12|49446429|T KMT2D(MLL2) stopgain 0.29 NA 

tFL-34 chr12|49415647|T KMT2D(MLL2) stopgain 0.17 2 

tFL-34 chr12|49425098|A KMT2D(MLL2) stopgain 0.25 2 

tFL-35 chr12|49432738|A KMT2D(MLL2) stopgain 0.87 2 

tFL-36 chr12|49425446|-CT KMT2D(MLL2) frameshift_deletion 0.43 2 

tFL-37 chr12|49431667|A KMT2D(MLL2) stopgain 0.47 2 

tFL-37 chr12|49434187|+T KMT2D(MLL2) frameshift_insertion 0.39 2 

tFL-38 chr12|49424074|T KMT2D(MLL2) nonsynonymous 0.16 4 

tFL-38 chr12|49435294|A KMT2D(MLL2) stopgain 0.76 4 

tFL-39 chr12|49435479|A KMT2D(MLL2) stopgain 0.34 3 

tFL-39 chr12|49435750|A KMT2D(MLL2) nonsynonymous 0.51 3 
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tFL-39 chr12|49435765|C KMT2D(MLL2) nonsynonymous 0.51 3 

FL-1 chr18|60985508|T BCL2 nonsynonymous 0.192 3 

tFL-1 chr18|60985508|T BCL2 nonsynonymous 0.353 3 

FL-1 chr18|60985760|T BCL2 nonsynonymous 0.05 3 

tFL-4 chr18|60985405|G BCL2 nonsynonymous 0.237 2 

tFL-4 chr18|60985411|C BCL2 nonsynonymous 0.179 2 

FL-6 chr18|60985889|A BCL2 nonsynonymous 0.267 2 

tFL-6 chr18|60985889|A BCL2 nonsynonymous 0.271 2 

FL-8 chr18|60985880|A BCL2 nonsynonymous 0.244 NA 

tFL-15 chr18|60985724|C BCL2 nonsynonymous 0.219 2 

tFL-20 chr18|60985443|G BCL2 nonsynonymous 0.42 2 

FL-22 chr18|60985814|C BCL2 nonsynonymous 0.121 NA 

tFL-22 chr18|60985814|C BCL2 nonsynonymous 0.169 NA 

FL-26-1 chr18|60985883|T BCL2 nonsynonymous 0.261 NA 

FL-26-2 chr18|60985883|T BCL2 nonsynonymous 0.251 2 

tFL-27 chr18|60985722|T BCL2 nonsynonymous 0.388 2 

FL-27 chr18|60985760|T BCL2 nonsynonymous 0.259 2 

tFL-27 chr18|60985760|T BCL2 nonsynonymous 0.411 2 

FL-28 chr18|60985815|G BCL2 nonsynonymous 0.181 NA 

FL-29 chr18|60985529|G BCL2 nonsynonymous 0.13 2 

tFL-29 chr18|60985529|G BCL2 nonsynonymous 0.331 2 

tFL-31 chr18|60985760|T BCL2 nonsynonymous 0.06 NA 

FL-31 chr18|60985880|A BCL2 nonsynonymous 0.179 NA 

tFL-31 chr18|60985880|A BCL2 nonsynonymous 0.031 NA 

tFL-33 chr18|60985301|G BCL2 nonsynonymous 0.25 2 

tFL-33 chr18|60985626|T BCL2 nonsynonymous 0.19 2 

tFL-36 chr18|60985896|T BCL2 nonsynonymous 0.22 2 

tFL-37 chr18|60985286|T BCL2 nonsynonymous 0.239 4 

tFL-37 chr18|60985884|C BCL2 nonsynonymous 0.32 4 

tFL-38 chr18|60985308|T BCL2 nonsynonymous 0.459 2 

tFL-40 chr18|60795973|A BCL2 nonsynonymous 0.37 2 

tFL-40 chr18|60985798|T BCL2 nonsynonymous 0.42 2 

FL-6 chr6|138200146|G TNFAIP3 nonsynonymous 0.471 0 

tFL-6 chr6|138200146|G TNFAIP3 nonsynonymous 0.542 2 

tFL-21 chr6|138200194|G TNFAIP3 nonsynonymous 0.141 2 

tFL-31 chr6|138192455|T TNFAIP3 stopgain 0.391 NA 

FL-27 chr6|134495706|G SGK1 nonsynonymous 0.15 1 

tFL-28 chr6|134495724|C SGK1 nonsynonymous 0.129 2 

tFL-2 chr16|3786206|C CREBBP splicing 0.33 2 

FL-5 chr16|3807881|A CREBBP stopgain 0.233 NA 

FL-5-cus chr16|3807881|A CREBBP stopgain 0.37 NA 
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tFL-5 chr16|3807881|A CREBBP stopgain 0.529 2 

tFL-5-cus chr16|3807881|A CREBBP stopgain 0.4 NA 

FL-5 chr16|3807917|C CREBBP nonsynonymous 0.213 NA 

FL-5-cus chr16|3807917|C CREBBP nonsynonymous 0.39 NA 

tFL-5 chr16|3807917|C CREBBP nonsynonymous 0.532 2 

tFL-5-cus chr16|3807917|C CREBBP nonsynonymous 0.42 NA 

FL-5 chr16|3808030|C CREBBP nonsynonymous 0.433 NA 

FL-5-cus chr16|3808030|C CREBBP nonsynonymous 0.38 NA 

tFL-5 chr16|3808030|C CREBBP nonsynonymous 0.316 2 

tFL-5-cus chr16|3808030|C CREBBP nonsynonymous 0.42 NA 

FL-5 chr16|3808033|G CREBBP nonsynonymous 0.414 NA 

FL-5-cus chr16|3808033|G CREBBP nonsynonymous 0.38 NA 

tFL-5 chr16|3808033|G CREBBP nonsynonymous 0.333 2 

tFL-5-cus chr16|3808033|G CREBBP nonsynonymous 0.42 NA 

FL-5 chr16|3808046|G CREBBP nonsynonymous 0.333 NA 

FL-5-cus chr16|3808046|G CREBBP nonsynonymous 0.38 NA 

tFL-5 chr16|3808046|G CREBBP nonsynonymous 0.438 2 

tFL-5-cus chr16|3808046|G CREBBP nonsynonymous 0.42 NA 

FL-6 chr16|3786739|G CREBBP nonsynonymous 0.306 2 

tFL-6 chr16|3786739|G CREBBP nonsynonymous 0.333 2 

FL-8 chr16|3828175|C CREBBP stopgain 0.449 NA 

tFL-8 chr16|3828175|C CREBBP stopgain 0.393 NA 

FL-8 chr16|3860683|T CREBBP nonsynonymous 0.512 NA 

tFL-8 chr16|3860683|T CREBBP nonsynonymous 0.396 NA 

FL-10 chr16|3786704|G CREBBP nonsynonymous 0.481 2 

FL-30 chr16|3786704|G CREBBP nonsynonymous 0.35 2 

tFL-10 chr16|3786704|G CREBBP nonsynonymous 0.828 1 

tFL-30 chr16|3786704|G CREBBP nonsynonymous 0.761 1 

FL-11 chr16|3788618|A CREBBP nonsynonymous 0.197 2 

tFL-11 chr16|3788618|A CREBBP nonsynonymous 0.373 2 

FL-12 chr16|3788605|G CREBBP nonsynonymous 0.413 2 

tFL-12 chr16|3788605|G CREBBP nonsynonymous 0.51 2 

FL-12 chr16|3795311|-A CREBBP frameshift_deletion 0.355 2 

tFL-12 chr16|3795311|-A CREBBP frameshift_deletion 0.49 2 

tFL-15 chr16|3788617|T CREBBP nonsynonymous 0.328 2 

FL-22 chr16|3786706|G CREBBP nonsynonymous 0.317 NA 

tFL-22 chr16|3786706|G CREBBP nonsynonymous 0.262 NA 

tFL-23 chr16|3786704|T CREBBP nonsynonymous 0.15 2 

FL-23-1 chr16|3789578|A CREBBP splicing 0.4 2 

FL-23-2 chr16|3789578|A CREBBP splicing 0.18 NA 

tFL-23 chr16|3789578|A CREBBP splicing 0.12 2 
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FL-24-1 chr16|3788618|A CREBBP nonsynonymous 0.761 2 

FL-24-2 chr16|3788618|A CREBBP nonsynonymous 0.789 NA 

tFL-24 chr16|3788618|A CREBBP nonsynonymous 0.661 2 

FL-25-1 chr16|3900873|A CREBBP stopgain 0.21 2 

FL-25-2 chr16|3900873|A CREBBP stopgain 0.31 NA 

tFL-25 chr16|3900873|A CREBBP stopgain 0.25 2 

FL-26-1 chr16|3781333|T CREBBP nonsynonymous 0.31 NA 

FL-26-2 chr16|3781333|T CREBBP nonsynonymous 0.34 2 

tFL-26 chr16|3781333|T CREBBP nonsynonymous 0.4 2 

FL-26-1 chr16|3831211|+C CREBBP frameshift_insertion 0.23 NA 

tFL-26 chr16|3831211|+C CREBBP frameshift_insertion 0.3 2 

FL-27 chr16|3788618|A CREBBP nonsynonymous 0.209 2 

tFL-27 chr16|3788618|A CREBBP nonsynonymous 0.791 2 

FL-31 chr16|3788618|A CREBBP nonsynonymous 0.141 NA 

tFL-31 chr16|3788618|A CREBBP nonsynonymous 0.377 NA 

tFL-34 chr16|3790421|T CREBBP nonsynonymous 0.2 2 

tFL-35 chr16|3790421|T CREBBP nonsynonymous 0.86 2 

tFL-37 chr16|3820888|+GTGCA CREBBP frameshift_insertion 0.45 2 

tFL-39 chr16|3788657|G CREBBP nonsynonymous 0.311 2 

tFL-5 chr17|7577545|C TP53 nonsynonymous 0.378 2 

tFL-5-cus chr17|7577545|C TP53 nonsynonymous 0.833 NA 

tFL-5 chr17|7577598|A TP53 nonsynonymous 0.56 2 

tFL-5-cus chr17|7577598|A TP53 nonsynonymous 0.107 NA 

tFL-22 chr17|7577097|A TP53 nonsynonymous 0.176 NA 

tFL-27 chr17|7578265|G TP53 nonsynonymous 0.63 1 

tFL-29 chr17|7576571|C TP53 stopgain 0.469 2 

tFL-29 chr17|7577093|G TP53 nonsynonymous 0.511 2 

tFL-32 chr17|7578286|G TP53 nonsynonymous 0.371 2 

The first column (Sample ID) indicates the sample in which the mutations were detected. The 
second column (Chromosome| Position |Altered-Base) indicates the coordinates of the 
mutation. The third column indicates the gene altered by the mutation. The fourth column 
indicates the mutation type. The fifth column indicates the variant frequency of the mutation. 
The sixth column indicates the CN estimated for this gene from our previous study; note that all 
CN>3 are shown as 4. NA is noted if we do not have the CN information. 
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APPENDIX C: MUTATIONS IDENTIFIED IN REGIONS OF COPY NUMBER ABNROMALITIES 

rCNA CNAband 
Frequency 

in FLs 
Frequency 

in FLs 
Recurrently mutated genes in our 
cases 

964 18q+ 35% 41%  BCL2 

965 18+ 31% 32%  BCL2 

122 
1p36.33-
p36.31- 

25% 24%  TNFRSF14 

799 7q+ 24% 39%  EZH2, MLL3 

798 7p+ 23% 38%  CARD11 

1012 Xq+ 23% 24%  TAF1 

1011 Xp+ 21% 23%  DMD, DDX3X, HUWE1 

800 7+ 21% 37%  CARD11, EZH2, MLL3 

1013 X+ 20% 19%  DMD, DDX3X, HUWE1, TAF1 

688 1q+ 16% 28%  ARHGEF2, EDEM3 

442 10q23.1-q25.1- 15% 14%  C10orf12 

953 17q+ 15% 13%  STAT3, MIR142, CD79B, BPTF, RNF213 

339 6q- 14% 15% 
 EEF1A1, MDN1, PRDM1, SGK1, 
TNFAIP3, SYNE1 

785 6p+ 14% 18% 
 HIST1H1C, HIST1H1E, HIST1H1D, 
HIST1H2AM, PIM1, CCND3, CUL7 

880 12q+ 13% 20%  MLL2, BTG1, DTX1 

993 21q+ 12% 20%  PRDM15 

711 2p+ 12% 8%  BIRC6, SPTBN1, ALMS1 

762 5p+ 12% 11%  IL7R 

994 21+ 12% 18%  PRDM15 

881 12+ 11% 15%  MLL2, BTG1, DTX1 

593 17p- 9% 18%  TP53, NCOR1 

882 12q12-q13.13+ 9% 10%  MLL2 

763 5q+ 9% 10%  PIK3R1 

304 6q23.3-q24.1- 8% 13%  TNFAIP3 

713 2+ 8% 5%  BIRC6, SPTBN1, ALMS1 

764 5+ 8% 8%  IL7R, PIK3R1 

585 17p13.3-p13.1- 7% 15%  TP53 

341 6q13-q15- 7% 6%  EEF1A1, MDN1 

856 11p+ 7% 16%  HPS5 

37 6q23.3- (x2) 6% 10%  TNFAIP3 

340 6q23.2-q25.1- 6% 10%  SGK1, TNFAIP3 

153 
1p36.33-
p36.12- 

6% 8%  TNFRSF14, SPEN 

857 11q+ 6% 15%  ETS1 

1191 18q+ (x2) 5% 6%  BCL2 
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935 16p+ 5% 8%  CREBBP, SOCS1 

124 1p36.11-p35.3- 5% 5%  ARID1A 

936 16q+ 5% 9%  IRF8, FANCA 

989 20q+ 5% 8%  TM9SF4, SLC9A8 

990 20+ 5% 8%  TM9SF4, SLC9A8 

422 10q24.1- 4% 11%  C10orf12 

543 15q21.1- 4% 11%  B2M 

444 11q24.3- 4% 3%  ETS1 

858 11+ 4% 13%  HPS5, ETS1 

937 16+ 4% 6%  CREBBP, SOCS1, IRF8, FANCA 

974 19p+ 4% 3%  DAZAP1, SMARCA4, MEF2B 

342 6q16.3-q22.33- 4% 4%  PRDM1 

1087 7q+ (x2) 4% 1%  EZH2, MLL3 

839 10q+ 4% 4%  C10orf12 

840 10+ 4% 4%  C10orf12 

976 19+ 4% 3%  DAZAP1, SMARCA4, MEF2B 

714 2p16.3-p14+ 3% 5%  SPTBN1 

769 6p21.2-p21.1+ 3% 1%  CCND3, CUL7 

1014 Xp21.1-p11.1+ 3% 5%  DDX3X, HUWE1 

1078 6p+ (x2) 3% 1% 
 HIST1H1C, HIST1H1E, HIST1H1D, 
HIST1H2AM, PIM1, CCND3, CUL7 

1227 Xq+ (x2) 3% 4%  TAF1 

558 15q- 3% 13%  MGA, B2M 

665 Xp- 3% 4%  DMD, DDX3X, HUWE1 

666 Xq- 3% 5%  TAF1 

733 3q+ 3% 10%  KLHL6 

564 16p13.3- 3% 5%  CREBBP 

787 7p22.3-p21.3+ 3% 8%  CARD11 

966 
18q21.2-
q21.33+ 

3% 4%  BCL2 

1002 22q+ 3% 1%  IGLL5, EP300 

1027 1q+ (x2) 3% 3%  ARHGEF2, EDEM3 

1086 7p+ (x2) 3% 6%  CARD11 

1192 18+ (x2) 3% 0%  BCL2 

1226 Xp+ (x2) 3% 5%  DMD, DDX3X, HUWE1 

605 18q21.33-q23- 3% 4%  BCL2 

667 X- 3% 4%  DMD, DDX3X, HUWE1, TAF1 

732 3p+ 3% 8%  MYD88 

734 3+ 3% 6%  MYD88, KLHL6 

952 17p+ 3% 3%  TP53, NCOR1 

954 17+ 3% 3% 
 TP53, NCOR1, STAT3, MIR142, CD79B, 
BPTF, RNF213 
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312 6q21- 2% 5%  PRDM1 

1088 7+ (x2) 2% 1%  CARD11, EZH2, MLL3 

1143 12q+ (x2) 2% 0%  MLL2, BTG1, DTX1 

1228 X+ (x2) 2% 3%  DMD, DDX3X, HUWE1, TAF1 

515 13q- 2% 3%  RFXAP, FOXO1 

687 1p+ 2% 1% 
 TNFRSF14, SPEN, ARID1A, RRAGC, 
RBM15 

689 1+ 2% 1% TNFRSF14 

735 3q26.1-q29+ 2% 3%  KLHL6 

898 13q+ 2% 5%  RFXAP, FOXO1 

1042 2p21-p14+ (x2) 2% 1%  SPTBN1 

1122 11p+ (x2) 2% 1%  HPS5 

1144 12+ (x2) 2% 0%  MLL2, BTG1, DTX1 

1203 21q+ (x2) 2% 1%  PRDM15 

1204 21+ (x2) 2% 0%  PRDM15 

561 15q11.2-q21.1- 2% 0%  MGA, B2M 

583 16q- 2% 4%  IRF8, FANCA 

668 Xp22.33-p21.1- 2% 1%  DMD 

801 7p22.3-p21.1+ 2% 1%  CARD11 

919 15q+ 2% 5%  MGA, B2M 

946 17p12-p11.2+ 2% 1%  NCOR1 

968 19p13.3+ 2% 3%  DAZAP1 

1065 5p+ (x2) 1% 3%  IL7R 

1075 
6p21.32-p12.2+ 
(x2) 

1% 0%  PIM1, CCND3, CUL7 

1182 
17p12-p11.2+ 
(x2) 

1% 0%  NCOR1 

119 Xp- (x2) 1% 0%  DMD, DDX3X, HUWE1 

1215 
Xp11.22-q11.1+ 
(x2) 

1% 3%  HUWE1 

1223 Xp11.4+ (x2) 1% 0%  DDX3X 

1229 
Xp11.23-q11.1+ 
(x2) 

1% 1%  HUWE1 

152 1p- 1% 5% 
 TNFRSF14, SPEN, ARID1A, RRAGC, 
RBM15 

223 3q27.1- 1% 1%  KLHL6 

269 4p- 1% 9%  HTT 

343 6p22.2-p21.33- 1% 1% 
 HIST1H1C, HIST1H1E, HIST1H1D, 
HIST1H2AM 

470 11q23.3-q25- 1% 3%  ETS1 

581 16q24.1-q24.3- 1% 0%  FANCA 

653 22q- 1% 1%  IGLL5, EP300 

765 5p11-q13.3+ 1% 0%  PIK3R1 
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854 11q24.3+ 1% 0%  ETS1 

872 12q13.12+ 1% 3%  MLL2 

955 17q22-q24.1+ 1% 1%  MIR142, CD79B 

1007 Xp21.2-p21.1+ 1% 3%  DMD 

1022 
1p36.33-
p36.32+ (x2) 

1% 1%  TNFRSF14 

1066 5q+ (x2) 1% 0%  PIK3R1 

1067 5+ (x2) 1% 0%  IL7R, PIK3R1 

1082 
7p22.3-p22.1+ 
(x2) 

1% 1%  CARD11 

1089 
7p22.3-p21.1+ 
(x2) 

1% 3%  CARD11 

1138 
12q13.12-
q13.13+ (x2) 

1% 1%  MLL2 

1173 16p+ (x2) 1% 0%  CREBBP, SOCS1 

1174 16q+ (x2) 1% 0%  IRF8, FANCA 

1175 16+ (x2) 1% 0%  CREBBP, SOCS1, IRF8, FANCA 

1185 17q+ (x2) 1% 0%  STAT3, MIR142, CD79B, BPTF, RNF213 

120 Xq- (x2) 1% 0%  TAF1 

121 X- (x2) 1% 0%  DMD, DDX3X, HUWE1, TAF1 

154 1p21.1-p12- 1% 5%  RBM15 

155 1q21.1-q23.3- 1% 1%  ARHGEF2 

236 3p- 1% 1%  MYD88 

270 4q- 1% 8%  FBXW7 

271 4- 1% 8%  HTT, FBXW7 

332 6p21.1- 1% 1%  CCND3 

333 6p21.1-p12.3- 1% 1%  CUL7 

469 11q- 1% 0%  ETS1 

493 
12q23.3-
q24.31- 

1% 1%  DTX1 

557 15q15.1-q15.3- 1% 1%  MGA 

562 15q13.1-q22.2- 1% 1%  MGA, B2M 

582 16p- 1% 0%  CREBBP, SOCS1 

619 19p- 1% 1%  DAZAP1, SMARCA4, MEF2B 

621 19- 1% 0%  DAZAP1, SMARCA4, MEF2B 

951 17q22-q24.2+ 1% 1%  CD79B 

985 20q13.13+ 1% 1%  SLC9A8 

100 17p- (x2) 0% 1%  TP53, NCOR1 

1051 3p+ (x2) 0% 1%  MYD88 

1052 3q+ (x2) 0% 1%  KLHL6 

1053 3+ (x2) 0% 1%  MYD88, KLHL6 

1079 
6p25.3-p21.33+ 
(x2) 

0% 3% 
 HIST1H1C, HIST1H1E, HIST1H1D, 
HIST1H2AM 
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108 19p- (x2) 0% 1%  DAZAP1, SMARCA4, MEF2B 

193 2p- 0% 1%  BIRC6, SPTBN1, ALMS1 

237 3q- 0% 3%  KLHL6 

238 3- 0% 1%  MYD88, KLHL6 

274 4p16.3-p15.2- 0% 3%  HTT 

441 10q- 0% 1%  C10orf12 

594 17q- 0% 3%  STAT3, MIR142, CD79B, BPTF, RNF213 

595 17- 0% 3% 
 TP53, NCOR1, STAT3, MIR142, CD79B, 
BPTF, RNF213 

637 20q- 0% 1%  TM9SF4, SLC9A8 

752 4p+ 0% 1%  HTT 

753 4q+ 0% 1%  FBXW7 

754 4+ 0% 1%  HTT, FBXW7 

805 7q33-q36.3+ 0% 3%  EZH2, MLL3 

895 13q13.2-q13.3+ 0% 3%  RFXAP 
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