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ABSTRACT 

INTERACTION BETWEEN ANGIOTENSIN II AND BDNF IN 

MODULATING SYMPATHETIC NERVE ACTIVITY: 

Bryan K. Becker, Ph.D. 

University of Nebraska Medical Center, 2015 

Supervisor: Irving H. Zucker, Ph.D. 

Over activation of the sympathetic nervous system is prevalent in many forms of 

cardiovascular disease such as chronic heart failure (CHF) and hypertension. Although increased 

neuronal renin-angiotensin system activity in presympathetic neurons has been well implicated in 

mediating this sympatho-excitation, many of the neuronal effects of angiotensin II (Ang II) 

signaling remain poorly understood. One particular mechanism of Ang II-mediated increases in 

presympathetic neuronal activity is through reductions in voltage-gated K+ currents. Another 

pathway that has profound effects on neuronal K+ currents and that has been previously implicated 

in Ang II-signaling is brain-derived neurotrophic factor (BDNF) activity through its receptor 

tyrosine kinase B (TrkB). Therefore, we hypothesized that BDNF/TrkB signaling is an important 

mediator of the neuronal effects of Ang II in modulating voltage-gated K+ currents and autonomic 

dysfunction in cardiovascular disease states such as CHF and hypertension. We employed cell 

culture and whole-animal models to explore this hypothesis and utilized electrophysiological, 

molecular, and in vivo physiological techniques. Patch-clamp studies demonstrated that BDNF is 

involved in Ang II-induced reductions to K+ currents. Further in-vivo experiments found that 

overexpression of Kv4.3 into the rostral ventrolateral medulla attenuates the increase in 

sympathetic nerve activity of rats post-myocardial infarction. Baroreflex dysfunction is common 

in CHF, and desensitization of central neuronal areas such as the nucleus tractus solitarius (NTS) 

can mediate this dysfunction. We therefore hypothesized that changes in BDNF/TrkB signaling in 

the NTS mediated baroreflex dysfunction in CHF. Blocking TrkB with ANA-12 in the NTS blunted 

baroreflex sensitivity in sham rats but had little effect on the already blunted baroreflex sensitivity 

of CHF rats. TrkB expression was reduced in CHF rats, implicating reduced BDNF/TrkB signaling 
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in the NTS as a mechanism for reduced baroreflex sensitivity during CHF. In a final set of 

experiments we explored the connection between Ang II and BDNF in vivo. Central administration 

of Ang II increased mean arterial pressure and induced sympatho-excitation, both of which were 

attenuated by coinfusion of ANA-12. Overall, these data implicate BDNF as an important factor in 

mediating the neuronal effects of Ang II on K+ currents, hemodynamics, baroreflex sensitivity, and 

sympathetic nerve activity.  
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Cardiovascular Disease 

Cardiovascular diseases are the leading cause of mortality and morbidity worldwide and as 

such pose a large health and economic burden (Kearney et al., 2005). Although death rates from 

all cardiovascular disease fell by 31% from 2000 to 2010, cardiovascular disease is still responsible 

for approximately 1 in every 3 deaths in the United States (Go et al., 2013). This equates to over 

2150 deaths per day. As cardiovascular diseases are diverse and stem from a large number of 

etiologies, treatment options are likewise widely diverse, often with limited effectiveness. Many 

current treatment options address secondary symptoms in hopes of ameliorating the end-organ 

damage associated with declining cardiovascular function. Therefore both basic and clinical 

research endeavors target the underlying causative and translational factors in cardiovascular 

disease in the hopes of better understanding the mechanisms involved in the pathophysiology of 

cardiovascular disease. 

Although the entire class of cardiovascular diseases comprises a large number of differing 

pathologies including genetic cardiomyopathies, vascular dysfunction, stroke, and arrhythmias to 

name only a few, chronic heart failure (CHF) and hypertension are the two most common forms of 

cardiovascular disease. Heart failure and hypertension share a number of similar 

pathophysiological mechanisms. Patients with hypertension are at a much higher risk for 

developing heart failure or stroke, and the growing incidence of hypertension predicts a future with 

a growing number of patients with heart failure and cardiovascular comorbidities. 
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Chronic Heart Failure 

Chronic heart failure is the leading cause of mortality in the United States and many 

developed nations (Go et al., 2013). Simply stated, CHF is a decrease in the pumping efficiency of 

the heart resulting from a variety of etiologies be it by dilation due to pressure overload in 

hypertension, myocardial infarction caused by atherosclerotic blockage of a coronary artery, or 

diabetic cardiomyopathy. The decrease in pumping efficiency leads to reduced cardiac output and 

initiates a series of compensatory mechanisms with the intent of preserving arterial pressure and 

tissue perfusion. These compensatory mechanisms involve increased renin-angiotensin system 

(RAS) activity, changes to the autonomic nervous system, and cardiomyocyte remodeling (Zucker 

et al., 2012). Although often successful in preserving cardiac function in the short term, as the 

underlying causes are not addressed (e.g. myocardial infarction), over time these compensatory 

mechanisms themselves can result in further damage to cardiomyocytes. This further damage 

begets more compensatory action and a vicious, positive-feedback cycle of heart failure emerges 

(Figure 1). As this detrimental cycle continues, the compensatory ability, or reserve capacity, of 

the heart diminishes. Often a reduced cardiac reserve is only noticed during exercise, when the 

heart is put under acute stress that causes it to reach the limits of its compensated reserve capacity. 

This decreased exercise capacity is generally referred to as exercise intolerance and exercise is 

often used in the clinic to diagnose CHF. When damage and remodeling exceed the reserve capacity 

of the heart, decompensated CHF emerges (Hall, 2011).  

A number of clinically useful categories for classifying CHF have been developed, and the 

most common is the New York Heart Association (NYHA) classification system, which ranges 

from class I (least severe/symptomatic) to class IV (most severe with significant symptomatic 

presentation, i.e. decompensated). Treatment options vary for each classification and range from 

recommended exercise and dietary changes to high dose diuretics, RAS inhibitors and 

sympatholytics, or in severe cases require the need for cardiac transplantation. Some of these 
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treatment strategies will be discussed below as they relate to targeting the compensatory 

components of the vicious cycle of CHF. However, as many treatment options target the end-organ 

effects and symptoms of this progressive cycle, investigation into the initiating causative factors is 

needed in order to elucidate important pathways for future therapeutic targets. 
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Figure 1– The vicious cycle of chronic heart failure. 

Schematic representation of the progression of chronic heart failure. Decreases in cardiac output evoke 

neurohumoral compensatory mechanisms including increased sympathetic nervous system activity and 

renin-angiotensin system activation. This places further strain on the myocardium leading to further 

declines in function and a perpetuation of the cycle. 
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Hypertension 

One of the most significant risk factors for the development of CHF or other causes of 

death is hypertension (Stevens, 2009). In the United States, one out of every three adults has 

hypertension (Go et al., 2013). Hypertension is currently defined as systolic blood pressure (SBP) 

≥ 140 mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg and prehypertension as SBP of 120-

139 mmHg or DBP of 80-89 mmHg (Rosendorff et al., 2015). Hypertension can contribute to the 

development of coronary artery disease; a major initiating cause for the development of CHF. Each 

20 mmHg increase in SBP doubles the risk for fatal coronary events. Age has also been 

demonstrated to increase the risk for developing both hypertension, associated acute coronary 

events, and CHF. As of 2004, 73% of patients presenting with acute decompensated CHF exhibited 

hypertension, making it the most common comorbidity associated with CHF (Adams Kirkwood F 

et al., 2005).  

Although there are many causes of secondary hypertension such as renal artery stenosis, 

diabetes, and obesity, a well-defined etiology for primary or essential hypertension remains elusive. 

A number of experimental models and indications within the hypertensive population suggest that 

there is a neurological component to the development of many forms of hypertension through 

increased activity of the sympathetic nervous system. The RAS has also been demonstrated to be 

critical in mediating hypertension with experimental evidence indicating an important role for the 

central nervous system RAS in promoting sympatho-excitation (Young & Davisson, 2015).  
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Renin-Angiotensin System 

Common in many forms of hypertension and CHF are activation of the RAS. For the 

purposes of this dissertation, the brain RAS is of primary importance. The primary effector peptide 

of the RAS is angiotensin II (Ang II) which is cleaved from angiotensin I by angiotensin converting 

enzyme (ACE). Ang II is known to mediate cellular effects through binding to its G-protein 

coupled, angiotensin type 1 receptor (AT1R) and the angiotensin type 2 receptor (AT2R). 

Metabolites of Ang II, such as Ang 1-7, have been shown to bind to other receptors such as the 

Mas receptor (Young et al., 1986; Xiao et al., 2011, 2013). AT1R is generally thought to mediate 

the central processes leading to sympatho-excitation (Zimmerman, 2002; Zimmerman et al., 2004; 

Gao et al., 2004, 2008; Yin et al., 2010; Haack et al., 2012) and baroreflex dysfunction (Gao et al., 

2005b; Wang et al., 2007). The AT2R and the Mas receptor comprise the so-called protective arm 

of central RAS signaling (Gao et al., 2008, 2014; Yang et al., 2011; Xiao et al., 2011; Zucker et 

al., 2012; Unger et al., 2015). Pharmacological inhibitors of RAS are often used in treating CHF 

and hypertension. ACE-inhibitors such as captopril (Franzosi & Santoro, 1998) and angiotensin 

receptor blockers such losartan (Farsang, 2011) have been indicated for the treatment of 

hypertension and CHF. 

It has generally been thought that elevated levels of circulating Ang II in CHF and 

hypertension do not have direct access to central areas of cardiovascular control as the peptide is 

too large to adequately pass the blood brain barrier. Recent evidence has questioned this assumption 

by demonstrating both increased blood brain barrier permeability due to Ang II (Faraco & Iadecola, 

2013) and by observing labeled Ang II extravasation into many areas of the hypothalamus and 

brainstem that are involved in cardiovascular control previously thought to be inaccessible to 

circulating Ang II (Biancardi et al., 2013). Along with increased blood brain permeability, areas of 

the central nervous system lacking a robust blood brain barrier, such as the circumventricular 

organs, pose particular interest in central Ang II regulation due to their ability to detect circulating 
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factors (Mangiapane & Simpson, 1980; Zimmerman et al., 2004; Latchford et al., 2005; Ferguson, 

2009). 

In addition to the role of circulating Ang II influencing central neuronal network activity, 

the brain itself has been demonstrated to fully express its own endogenous RAS (Grobe et al., 

2008). This neuronal-derived RAS suggests that the RAS is acting in a different physiological 

manner than its traditional actions in the periphery and implicates RAS activity, particularly Ang 

II signaling, in altering neuronal activity as a neurotransmitter, neuromodulator, or some 

combination thereof. To this end, much of the work by us and others has focused on the neuronal 

actions of the central RAS and its role in mediating sympatho-excitation. 
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Sympatho-excitation 

Chronic heart failure and many forms of hypertension are characterized by excessive 

sympathetic nerve activity (Guyenet, 2006; Zucker et al., 2012). This increase in sympathetic 

outflow has multiple effects on innervated visceral organs. Cardiac sympathetic nerves releasing 

norepinephrine and acting on adrenergic receptors in the myocardium increase Ca2+ signaling and 

thus increase inotropic parameters of the heart along with an increase in heart rate thus increasing 

myocardial oxygen demand. The use of β1-adrenergic blockers such as metoprolol is often used to 

decrease cardiac sympathetic tone reducing heart rate and metabolic demand. Renal sympathetic 

nerve activity results in afferent arteriolar constriction decreasing glomerular filtration rate, induces 

sodium and water reabsorption, and stimulates renin release thus increasing RAS activity (Hall, 

2011). Vascular sympathetic tone induces vasoconstriction, resulting in a robust increase in 

vascular resistance and increased blood pressure. 

Increased sympathetic tone is correlated with increasing NYHA CHF class as there is 

increased bursting of muscle sympathetic nerves with increasing severity of CHF (Ferguson et al., 

1990). Sympatho-excitation is also a negative predictor of survival in that patients with an elevated 

plasma norepinephrine concentration experienced greater mortality rates compared to those with 

lower plasma norepinephrine concentrations (Davies et al., 2000). Understanding the central 

mechanisms underlying this increase in sympathetic tone is an important goal for the future 

management of cardiovascular diseases. 
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Central Autonomic Control Centers 

The central neuronal populations that contribute to cardiovascular and sympathetic control 

are distributed throughout the brain in the forebrain, hypothalamus, and brainstem. In brief, the 

network can be summarized into a number of circuits one of which incorporates the baroreflex arc 

in which peripheral baroreceptor afferent neurons terminate in the nucleus tractus solitarius (NTS). 

Excitatory projections (e.g. glutamatergic) extend to the caudal ventrolateral medulla (CVLM) in 

which a mode switch occurs and inhibitory neurons (e.g. GABAergic) project to the rostral 

ventrolateral medulla (RVLM). The RVLM has direct projections to the intermediolateral (IML) 

column of the spinal cord (Oshima et al., 2006; Yue et al., 2014) connecting it to sympathetic 

preganglionic neurons and ultimately end organ sympathetic nerves (Figure A1). The RVLM is 

therefore under robust baroreflex control and is also an important mediator of total vasomotor tone. 

Ablation or pharmacological inhibition of the RVLM removes nearly all vasomotor tone 

(Schreihofer et al., 2000).  

As mentioned above, circumventricular organs such as the subfornical organ (SFO) and 

osmosensitive neurons in areas like the median preoptic nucleus (mnPO) can sense circulating 

factors. These centers have projections to nuclei in the hypothalamus such as the paraventricular 

nucleus (PVN). Paraventricular neurons also have direct projections to sympathetic preganglionic 

neurons and to the RVLM. Neurons in the NTS responding to atrial volume receptors suppress 

PVN activity through GABAergic interneurons. This provides a negative feedback loop for the 

osmosensitive pathway as an increased dipsogenic response to high osmolarity is limited by atrial 

stretch from the increase in volume following the increased thirst. The PVN therefore plays a key 

role in mediating forebrain osmosensitive and circulating Ang II sensitive areas of the SFO with 

input from the NTS. Activity of the PVN can either directly influence vasomotor tone through 

connections with sympathetic preganglionic neurons or through the RVLM (Guyenet, 2006). 
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These and other important autonomic centers have been well studied in the area of 

autonomic control of blood pressure and sympathetic nerve activity in the settings of CHF and 

hypertension and will be discussed further in the subsequent chapters of this dissertation. A 

simplified schematic of these central areas of cardiovascular control is provided in Figure 2.  
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Figure 2 - Simplified schematic of the central cardiovascular control centers of the rat brain. 

In the setting of chronic heart failure or hypertension baroreceptor dysfunction leads to decreased afferent 

activity to the NTS. This removes the tonic suppression of RVLM activity from the CVLM and results 

in increased sympathetic outflow to end organs. Furthermore, central angiotensin II signaling throughout 

the control centers, and particularly in the SFO and other circumventricular organs increases sympathetic 

outflow through the PVN and RVLM. 

 

AP = area postrema; NTS = nucleus tractus solitarius; CVLM = caudoventrolateral medulla; RVLM = 

rostroventrolateral medulla; PVN = paraventricular nucleus; SFO = subfornical organ; mnPO = median 

preoptic nucleus; IML = intermediolateral column of the spinal cord. 
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Potassium Currents and Neuronal Activity 

Changes in potassium currents are integral to the mechanism by which Ang II alters 

neuronal activity, and of particular interest are voltage-gated K+ (Kv) currents. Peak, transient 

inactivating currents (IA) in neurons are conducted by Kv channel proteins Kv1.4, Kv3.3-4, and 

Kv4.1-4 (Kim & Hoffman, 2007). IA was first observed and described by Hagiwara et al. (1961) 

and was given the name IA by Connor and Stevens (1971). IA is present in many tissues such as 

myocardium, smooth muscle, lung, and neurons (Birnbaum et al., 2004). In the central nervous 

system, Kv4.x isoforms tend to be the predominately expressed channel proteins responsible for 

conduction of IA. Kv4.2 and Kv4.3 are highly expressed throughout the brain and Kv4.1 is more 

limited to granule cells of the olfactory bulb (Serôdio & Rudy, 1998). In hippocampal CA1 neurons, 

IA (mainly conducted by Kv4.2) is an important regulator of neuronal excitability and synaptic 

plasticity involved in long-term potentiation (LTP) (Birnbaum et al., 2004) through its regulation 

of action potential (AP) threshold, initiation, repolarization, and AP width (Kim et al., 2005; Chen 

et al., 2006; Nerbonne et al., 2008; Carrasquillo et al., 2012; Kim & Hoffman, 2012). In fact, much 

of the work on IA has been investigated in CA1 neurons of the hippocampus and has greatly 

enhanced our understanding of the physiological mechanisms by which IA alters neuronal activity 

and synaptic plasticity. Overexpression of Kv4.2, which increases IA, reduced the synaptic 

expression of NMDA receptors and prevented LTP  Conversely, reducing IA increases NMDA 

receptor synaptic availability and increased LTP (Kim et al., 2007; Jung et al., 2008) demonstrating 

IA to be a negative regulator of neuronal excitability by altering glutamatergic neurotransmission 

and LTP synaptic plasticity. Beyond the subthreshold, AP limiting actions of IA, suprathreshold 

activity reshapes the AP causing it to be narrower and more robust with longer duration after-

hyperpolarization potentials (AHPs), which together reduce AP frequency (Kim et al., 2005). In 

summary, studies, particularly on Kv4.2 in CA1 neurons, of the hippocampus suggest a role for IA 

in reducing neuronal excitability and LTP-driven synaptic plasticity. 
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The distribution of Kv4.x protein expression in autonomic centers of the medulla and brain 

stem appears to be mixed between Kv4.2 and Kv4.3 depending on the particular nucleus in question 

(Serôdio & Rudy, 1998). Paraventricular neurons appear to have a predominance of Kv1.4 and 

Kv4.3 with little to no Kv4.2 (Sonner & Stern, 2007), and the RVLM has been shown to express 

Kv4.3 (Gao et al., 2010; Wu et al., 2012). In PVN projecting neurons, IA exhibits remarkably 

similar electrophysiological characteristics to the hippocampus in that inhibition of IA alters AHPs 

and AP width to increase AP frequency although it has no effect on AP threshold (Sonner & Stern, 

2007). 

As IA comprises a critical component in regulating neuronal activity and 

electrophysiological characteristics, it stands to reason that alterations to IA may contribute to the 

pathology of various neurological disease states. In fact, IA has been implicated in various forms of 

epilepsy (Fransén & Tigerholm, 2010; Lerche et al., 2013) and pain hypersensitivity (Chien et al., 

2007; Cao et al., 2010). Recent attention has been given to IA in mediating the sympatho-excitation 

associated with CHF and hypertension. In RVLM projecting PVN neurons, neuronal activity is 

increased from a reduction in IA (Sonner et al., 2008), and a decreased expression of Kv4.3 along 

with reduced IA was observed in the RVLM of rats with CHF (Gao et al., 2010). Contributing to IA 

dysfunction in these disease states is the involvement of the RAS. Ang II signaling through AT1R 

reduces Kv4.3 expression and IA in vitro (Gao et al., 2010), reduces IA in neonatal rat hypothalamic 

and brain stem neurons (Wang et al., 1997),  and reduces IA and steady state K+ currents in vitro 

via mitochondria-produced superoxide. Conversely, the protective arm of the RAS, AT2R and Mas 

receptor signaling, increase IA and total K+ current densities (Kang et al., 1992, 1993; Yang et al., 

2011). Although the involvement of the RAS in modulating IA is becoming more established, the 

particular signaling mechanisms and mediators of long-term changes are not well defined. 
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Neurotrophic Factors and Neuronal Activity 

Classically, the role of neurotrophic factors has been understood to aid neuronal 

development and dendritic sprouting (Levi-Montalcini et al., 1954; Cohen & Levi-Montalcini, 

1960; Levi-Montalcini & Calissano, 1979); however, recent attention has been focused on 

elucidating the role of neurotrophic factors in neuronal network patterning and neuronal sensitivity 

by facilitating actions such as LTP and altering ion channel function (Rose et al., 2004; Blum & 

Konnerth, 2005; Minichiello, 2009; Park et al., 2014). Due to the ability of neurotrophins to 

modulate neuronal synaptic plasticity, LTP, and ion channel function, they offer a potential 

mechanism for the modulation of autonomic neuronal pathways in promoting sympatho-excitation 

in CHF and hypertension. 

Neurotrophins consist of a small family of secreted peptides including nerve growth factor 

(NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-

4). Central nervous system distribution of these factors is varied. NGF is primarily localized in 

areas of the hippocampus, olfactory bulb, and cortex (Shelton & Reichardt, 1986) and expression 

can be induced in the hypothalamus and brainstem by the antimitotic drug colchicine (Ceccatelli et 

al., 1991). Neurotrophin-3 expression is limited to hippocampal neurons and cerebellar granule 

cells (Maisonpierre et al., 1990; Ceccatelli et al., 1991). Neurotrophin-4 appears to be expressed 

throughout the rat brain (Timmusk et al., 1993). The central nervous system expresses high levels 

of BDNF. Conner et al. (1997) characterized the expression level of BDNF protein throughout the 

rat brain. They found high expression levels in the SFO, parvocellular hypothalamic PVN neurons, 

NTS, and area postrema. RVLM expression was not reported. The high expression levels of BDNF 

in these autonomic control centers suggests that it may play an important role in modulation of 

autonomic neuronal activity and synaptic plasticity. Importantly, BDNF has been previously 

implicated in autonomic pathway dysfunction (Mattson & Wan, 2008; Martin et al., 2009).  
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BDNF signaling through receptor tyrosine kinase B (TrkB) can function as both a 

neurotransmitter and neuromodulator and can thus act both acutely and chronically to alter neuronal 

firing and neuronal sensitivity to synaptic input (Rose et al., 2004). BDNF/TrkB signaling ability 

to potentiate synapses and increase glutamatergic signaling and excitatory ion channel activity has 

been well investigated in the hippocampus (Minichiello, 2009). BDNF/TrkB signaling elicits 

several long-term neuromodulatory actions as well as immediate, rapid signaling that affects 

neuronal activity. BDNF rapidly enhances vesicular neurotransmitter release from excitatory 

neurons (Shinoda et al., 2014) in the hippocampus. TrkB phosphorylation of NMDA receptors 

increases their open probability (Levine et al., 1998), and BDNF/TrkB signaling results in rapid 

opening of TrpC channels (Li et al., 1999), Nav1.9 channels (Blum et al., 2002), and Ca2+ influx 

(Rose et al., 2003). In peripheral dorsal root ganglion neurons involved in diabetic neuropathy, 

endogenous BDNF signaling was found to mediate increased neuronal sensitivity through 

reductions in IA and total K+ currents (Cao et al., 2010). Preliminary observations from our 

laboratory have observed increased firing rate and decreased AP threshold in dorsal root ganglion 

neurons following incubation with BDNF (Wang HJ, unpublished observations). 

The RAS may also play a role in mediating the expression levels of BDNF and contribute 

to BDNF/TrkB signaling. In rat and human adrenocortical cells Ang II induces BDNF expression 

via an AT1R mechanism (Szekeres et al., 2010) and intracisternal Ang II induces robust BDNF 

expression in RVLM neurons (Chan et al., 2010). Our preliminary experiments also suggested an 

increase in BDNF in the brainstem of mice following subcutaneous Ang II (Figure A2A) and 

increased BDNF in the PVN of rats with CHF (Figure A2B). Paradoxically, one report found that 

in SHR rats whole brain expression of BDNF increased after AT1R antagonism. The authors also 

reported increased BDNF expression in human cerebromicrovascular endothelial cells after 

treatment with Ang II and AT1R blockade with candesartan, implicating AT2R in the mechanism 

of BDNF expression (Alhusban et al., 2013). These reports all implicate a connection between the 
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RAS and BDNF expression; however, the precise mechanisms and receptors involved remain 

poorly defined.  

Furthermore, BDNF/TrkB signaling and AT1R signaling share a number of commonalities 

(Salim et al., 2011). Both involve activation of the same kinases such as mitogen-activated protein 

kinase/extracellular signal-regulated kinase (MAPK/ERK) (York et al., 1998; Chan et al., 2005, 

2007; Park & Poo, 2012; Xiao et al., 2013) and Ca2+/calmodulin kinase (CaMK) (Sun et al., 2003; 

Caldeira et al., 2007; Minichiello, 2009). Interestingly, Kv4.2 has been demonstrated to be a 

substrate for MAPK/ERK (Adams et al., 2000), and CamKII-MAPK pathway destabilizes Kv4.3 

mRNA (Zhou et al., 2012) further supporting the ability of downstream signaling pathways of 

BDNF/TrkB and AT1R to modulate IA. Both AT1R and BDNF/TrkB pathways also utilize cyclic 

adenosyl monophosphate-responsive element-binding protein (CREB) transcriptional control 

(Ginty et al., 1994; Gaiddon et al., 1996; Mitra et al., 2010; Chan et al., 2010). These commonalities 

in signaling and the increased expression of BDNF following Ang II, point toward an exciting and 

novel area of research for investigating the role BDNF and the RAS play in mediating neuronal 

sensitivity and potentiation of sympatho-excitation during cardiovascular disease states. 
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Objectives of the Dissertation 

The mechanisms and factors involved in the Ang II-mediated reduction in neuronal K+ 

currents leading to the development of sympatho-excitation in cardiovascular diseases such as CHF 

and hypertension are not fully known. BDNF/TrkB signaling poses a potential mechanism for 

potentiation of presympathetic neuronal activity in the central nervous system. Therefore, we 

hypothesized that BDNF/TrkB signaling is an important mediator of the neuronal effects of 

Ang II in modulating voltage-gated K+ currents and autonomic dysfunction in cardiovascular 

disease states such as CHF and hypertension. 

Specifically, the objectives set forth in this dissertation are as follows: 

1. To evaluate the in vivo contribution of Kv4.3 in the RVLM to sympathetic nervous system 

activity. 

2. To determine if BDNF/TrkB signaling is involved in Ang II-mediated reductions of K+ 

currents. 

3. To investigate the potential contribution of BDNF/TrkB signaling to autonomic dysfunction in 

a rat model of CHF. 

4. To investigate the involvement of BDNF/TrkB in mediating sympatho-excitation caused by 

central Ang II signaling. 

Each objective will be presented in the following chapters with each study containing a 

brief introduction, detailed methods, results and brief discussion of major findings. A final 

comprehensive discussion will follow providing a cohesive overview of the major findings and 

implications of the dissertation. A schematic of the objectives is presented in Figure 3. 
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Figure 3 - Schematic diagram of the objectives of the dissertation. 

Objective (Obj) #1 will evaluate the in vivo contribution of Kv4.3 in the RVLM to sympathetic nervous 

system activity. 

 

Obj #2 will determine if BDNF/TrkB signaling is involved in Ang II-mediated reductions of K+ 

currents. 

 

Obj #3 will investigate the potential contribution of BDNF/TrkB signaling to autonomic dysfunction in 

a rat model of CHF. 

 

Obj #4 will investigate the involvement of BDNF/TrkB in mediating sympatho-excitation caused by 

central Ang II signaling. 
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CHAPTER I: OVEREXPRESSION OF Kv4.3 IN 

RVLM OF RATS POST-MYOCARDIAL 

INFARCTION REDUCES SYMPATHETIC TONE 
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INTRODUCTION 

As mentioned in the preceding section, the expression and activity of the voltage-gated K+ 

channel, Kv4.3, is decreased in the RVLM of rats with CHF (Gao et al., 2010). Because a 

suppression of these IA-type channels results in a sensitized and more excitable neuronal state 

(Sonner & Stern, 2007; Sonner et al., 2008), the decreased availability and function of this channel 

indicates a potential mechanism by which increased sympathetic activity may occur. However, it 

remains to be seen what role these channels play in the RVLM of the intact, conscious rat in the 

CHF state, or if the availability of these channels in RVLM neurons directly mediates sympathetic 

tone. 

In a recent study, Geraldes et al. (2014) overexpressed the potassium channel Kir2.1 in the 

RVLM of spontaneously hypertensive rats (SHR). This channel was selected by the authors due to 

its ability to decrease neuronal activity and was thus used to demonstrate the importance of tonic 

RVLM neuronal tone in maintenance of the hypertensive state of the SHR. Overexpression of 

Kir2.1 reduced MAP and the low frequency component of systolic pressure in SHRs, indicating a 

reduction in sympathetic tone following depression of RVLM neuronal activity. This study 

provides further rationale for investigations into potassium channel activity in the RVLM during 

sympatho-excitatory disease states such as hypertension and CHF. Although, because of the 

selection of the Kir2.1 channel simply due to its ability to suppress neuronal activity, and the lack 

of evidence implicating the channel in the RVLM during cardiovascular diseases, the basic research 

implications of the study are limited.  

We therefore aimed to investigate the role of Kv4.3 in RVLM neurons during disease states 

such as CHF based, in part, on our previous evidence. We hypothesized that overexpression of 

Kv4.3 in the RVLM of rats with CHF attenuates the increased sympathetic tone associated 

with CHF. 
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METHODS 

Animal Preparation 

For these experiments a total of 19 male Sprague-Dawley rats of approximately 200 g were 

used. These experiments were approved by the Institutional Animal Care and Use Committee of 

the University of Nebraska Medical Center and were carried out under the guidelines of the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals. An overview of 

the experimental paradigm and timeline is provided in Figure 4. 

Model of CHF 

CHF was produced by left coronary artery ligation as described in previous studies 

(Fishbein et al., 1978; Pfeffer et al., 1979; Wang et al., 2008, 2010b, 2010a). Briefly, the rat was 

ventilated at a rate of 60 breaths/min with 3% isoflurane as a left thoracotomy was performed 

through the fifth intercostal space, the pericardium was opened, the heart was exteriorized, and the 

left anterior descending coronary artery was ligated with 6-0 prolene suture. Successful infarction 

of the left ventricle (LV) was confirmed by blanching of the myocardium at the time of ligation. 

Sham animals were subjected to thoracotomy but the coronary artery was not ligated. 

In all animals 4 weeks post-myocardial infarction (post-MI) or sham surgery cardiac 

function was measured by echocardiography (VEVO 770, Visual Sonics, Inc.) as previously 

described. Animals with an ejection fraction (EF) of less than 45% were included into the post-MI 

group while those possessing EF greater than 60% were considered sham.  

Telemetry Implantation 

Following echocardiography and group designation, rats were implanted with telemetry 

units for recording of conscious, freely moving blood pressure as described previously (Gao et al., 

2014). In brief, animals were anesthetized with 2-4% isoflurane via inhalation. The left femoral 

artery was dissected and a DSI telemetry unit (TA11PA-40) catheter was inserted and advanced 
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into the abdominal aorta. The telemetry unit was placed in a pocket formed under the abdominal 

skin and tied in place. Rats were allowed to recover for 7 days before the initiation of any further 

experiments. 

 

  

Figure 4 – Experimental schematic of timeline for adKv4.3 overexpression. 
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Conscious Telemetry Recordings 

Following one week recovery from telemetry implantation, freely-moving blood pressure 

traces were recorded between the hours of 11 am to 3 pm using AD Instruments LabChart (v. 7) 

software with a sampling rate of 1 kHz (Bhatia et al., 2010). Quiet periods of 1.5 hr duration without 

excessive movement artifacts were extracted from the total recordings and used for analysis. Mean 

arterial pressure (MAP) and heart rate (HR) were extracted from the telemetry pulse wave. Heart 

rate variability (HRV) measurements were analyzed by the HRV plugin in LabChart extracted from 

the pulse wave after passing through a 45 Hz low-pass filter. Normal to normal intervals were 

triggered by the maximal derivative of the pulse wave as this best correlates the pulse wave 

variability to HRV analysis (Pellegrino et al., 2014). Standard deviation of normal to normal 

(SDNN), root mean squared of the successive differences (RMSSD), normalized low frequency 

(LF) (0.07 – 0.6 Hz), normalized high frequency (HF) (0.6-3.0 Hz), and the LF/HF ratio were 

calculated using LabChart software.  

Bilateral RVLM Injections of Adenoviral Particles 

Following baseline hemodynamic measurements, rats were placed into a stereotaxic 

apparatus and the dorsal surface of the skull was exposed. Bregma and Lambda were identified and 

the skull was positioned so that it was in the same horizontal plane. Small holes were formed 

through the skull using an 18 gauge needle bilaterally at 3.0 mm posterior to lambda and 2.3 mm 

lateral to the midline. The tip of a 500 nL Hamilton syringe was inserted 10.0 mm below the surface 

of the skull. 250 nL/side of adenovirus 5 containing Kv4.3 driven by a synapsin-1 promoter 

(adKv4.3) of 4x1010 pfu/ml or eGFP driven by a synapsin-1 promoter (adGFP) of 3x1010 pfu/ml 

was injected over the course of 5 min per side after which the syringe was withdrawn. The skin 

was sutured and the animal was recovered. Both viral constructs were made by the University of 

Iowa Gene Transfer Vector Core. 
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Acute Experimental Set-up and RSNA Recording 

For the acute, terminal experiments, rats were anesthetized with urethane (800 mg/kg ip) 

and α-chloralose (40 mg/kg ip). The trachea was cannulated, and the rat was paralyzed with 

pancuronium bromide (1 mg/kg iv, 0.1 mg/kg thereafter as needed) and ventilated artificially with 

room air supplemented with 100% oxygen. A Millar catheter (SPR 524; size, 3.5-Fr; Millar 

Instruments, Houston, TX) was advanced through the right carotid artery into the LV to determine 

LV end-diastolic pressure (LVEDP). The transducer was then pulled back into the aorta and left in 

place to record arterial pressure. HR was derived from the arterial pressure pulse with a PowerLab 

model 16S (ADInstruments, Colorado Springs, CO) using LabChart software. The right jugular 

vein was cannulated for intravenous injections. Supplemental doses of α-chloralose (20 mg/kg, iv) 

were administered to maintain an appropriate level of anesthesia. Body temperature was maintained 

at ∼37°C with an animal temperature controller (ATC1000; World Precision Instruments). 

Renal sympathetic nerve activity (RSNA) was recorded as previously described (Wang et 

al., 2014). Generally, the left kidney, renal artery, and nerves were exposed through a left 

retroperitoneal flank incision. Sympathetic nerves running on or beside the renal artery were 

identified. The renal nerve was cut distally to avoid recording afferent activity. The renal 

sympathetic nerves were placed on a pair of platinum-iridium recording electrodes and then were 

covered with a fast-setting silicone (Kwik-Sil; World Precision Instruments). Nerve activity was 

amplified (×10000) and filtered (bandwidth: 100 to 3000 Hz) using a Grass P55C preamplifier. The 

nerve signal was monitored on an oscilloscope (model 121 N; Tektronix, Beaverton, OR). The 

signal from the oscilloscope was displayed on a computer where it was rectified, integrated, 

sampled (1 kHz), and converted to a digital signal by the PowerLab data acquisition system. 

Maximal nerve activity was observed shortly after euthanasia, and the background noise for 

sympathetic nerve activity was recorded 15-20 min after the rat was euthanized. Respective noise 

levels were subtracted from the nerve recording data before percentage changes from baseline were 
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calculated. Integrated RSNA was normalized as 100% baseline during the control period (Wang et 

al., 2007, 2014). Nerve activity was normalized for each individual rat by setting the maximal 

activity to 100% and subtracting out the noise floor from the integrated signal. Resting/control 

activity was then described as a % of max as described previously (Wang et al., 2010b). 

Construction of Arterial Baroreflex Curves  

Baroreflex curves were generated by measuring the HR and RSNA responses to decreases 

and increases in arterial pressure by intravenous administration of sodium nitroprusside (25 µg) 

followed by phenylephrine (10 µg) as previously described (Wang et al., 2014). The RSNA 

response was normalized as a percent of baseline. A sigmoid logistic function was fit to the data 

using a nonlinear regression program (SigmaPlot version 8.0). Four parameters were derived from 

the following equation: %RSNA or HR = A/1 + exp[B(MAP − C)]} + D, where A is the RSNA or 

HR range, B is the slope coefficient, C is the pressure at the midpoint of the range (BP50), and D 

is minimum RSNA or HR. The peak slope [or maximum gain (Gainmax)] was determined by taking 

the first derivative of the baroreflex curve described by the equation (Kent et al., 1972). 

Western Blotting and Immunofluorescence 

Brains were rapidly dissected from animals following euthanasia, quickly frozen on dry 

ice, and stored in -80 ºC. Brains were sectioned by cryostat and RVLM containing punches were 

taken bilaterally at coordinates 2.5-3.0 rostral to the area postrema, 1.8-2.0 lateral to the midline, 

and 3.0-3.4 dorsal to the ventral surface of the brainstem according to the Palkovits technique 

(Palkovits M, 1983) as described previously (Haack et al., 2012). Punches were homogenized by 

sonication in RIPA buffer supplemented with protease inhibitor cocktail (P8340, Sigma-Aldrich), 

centrifuged at 250,000 rpm for 30 min, and supernatants collected. Total protein was estimated by 

a Pierce BCA protein assay kit (Rockford, IL). A total of 25 µg (approximately 25 μl) of protein 

was boiled for 5 min in an equal volume of 4% SDS sample buffer and was loaded into a 10% SDS-

PAGE gel, and ran at 100 V for approximately 1 h on a Bio-Rad mini-gel electrophoresis apparatus 
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(Hercules, CA). The protein was then transferred to a nitrocellulose membrane (Li-Cor, Lincoln, 

NE) at 50 V for 90 min. Membranes were then blocked in Li-Cor blocking solution (Lincoln, NE) 

for 1 h. Membranes were incubated overnight at 4 °C in PBS with primary antibodies to Kv4.3 

(1:2000; ab123347) (AbCam, Cambridge, MA) and alpha-tubulin (1:5000; sc-10D8) (SantaCruz 

Biotechnologies, CA), and incubated with Li-Cor secondary infrared-labeled antibodies (IRDye 

680LT 926-68022 at 1:10000 and IRDye 800CW 926-32214 at 1:5000) for 1 h at room temperature 

in PBS with 1% SDS. Bands were visualized using a Li-Cor Odyssey system and analyzed using 

Li-Cor Image Studio software. 

In a subset of animals from both adGFP and adKv4.3 groups, rats were fixed by transcardial 

perfusion of ice-cold PBS followed by ice-cold 4% paraformaldehyde (PFA). Brains were post-

fixed in 4% PFA for 48 h and dehydrated in 30% sucrose. Coronal sections were made through the 

RVLM by cryostat and mounted on slides. Sections were incubated with primary antibody to Kv4.3 

(1:200) overnight, washed, and incubated with secondary antibody (1:200) (AlexaFluor 568; 

A11036) for 2 h before coverslips were mounted with FluoroMount mounting solution, and slices 

were visualized under a florescent microscope. 

Statistics 

All parameters were analyzed via a one-way ANOVA followed by a Tukey’s post-hoc test. 

A P < 0.05 was considered statistically significant. Statistical analysis was done using SigmaPlot 

11.0 (Systat Software) or SPSS (IBM).  
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RESULTS 

Model of CHF 

In the current study, rats were grouped into post-MI or sham by means of 

echocardiographic measurements, and hemodynamic parameters characteristic of post-MI were 

evaluated at the time of the acute, terminal experiments followed by confirmation of the presence 

of an infarcted heart. These parameters are contained in Table 1. Although all parameters associated 

with CHF (cardiac hypertrophy, wet lung weight, LVEDP) were elevated in the post-MI vs Sham 

group, many of these parameters did not reach statistical significance nor did they reach levels 

characteristic of our previous studies involving infarcted CHF rats. As we therefore cannot classify 

the post-MI rats as CHF, we refer to the grouping as post-MI based upon echocardiographic 

parameters and the presence of infarct. 
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post-MI + 

adGFP 

post-MI + 

adKv4.3 

Sham + 

adGFP 

Sham + 

adKv4.3 

n 5 6 4 4 

Body weight (g) 389 ± 24.5 420 ± 19.4 405 ± 24.9 400 ±   9.4 

Heart weight (g) 1.54 ± 0.11 1.63 ± 0.12 1.27 ± 0.06 1.36 ± 0.05 

H/BW (g/kg) 4.10 ± 0.52 3.86 ± 0.16 3.17 ± 0.20 3.39 ± 0.10 

H/TL (g/cm) 0.31 ± 0.03 0.28 ± 0.02 0.29 ± 0.01 0.23 ± 0.01 

WL (g) 2.42 ± 0.31 2.07 ± 0.20 1.76 ± 0.09 1.81 ± 0.11 

EF (%) 40 ± 7.2* 37 ± 4.2* 69 ± 8.2 64 ± 7.3 

LVEDP (mmHg) 7.04 ± 1.88 6.38 ± 0.86 3.89 ± 0.61 3.29 ± 0.62 

Max dP/dT (mmHg/s) 6411 ± 671 5967 ± 665 4810 ± 626 5068 ± 561 

Min dP/dT (mmHg/s) -5832 ± 948 -4813 ± 326 -5013 ± 555 -4936 ± 978 

Tau (ms) 15.6 ± 1.4 21.8 ± 1.6 17.9 ± 2.1 17.8 ± 2.8 

Contractility Index (1/s) 77.7 ± 6.3 77.7 ± 2.7 88.6 ± 8.9 93.1 ± 11.0 

IRP Average dP/dT 

(mmHg/s) 
-3130 ± 239 -2817 ± 175 -2656 ± 391 -2500 ± 453 

Pressure Time Index 

(mmHg.s) 
8.2 ± 0.5 8.6 ± 0.7 6.2 ± 0.6 5.8 ± 1.2 

H/BW = heart weight/body weight; H/TL = heart weight/tibia length; WL = wet lung weight; EF = ejection fraction; 

LVEDP = Left ventricular end diastolic pressure; IRP = isovolumetric relaxation period; *P < 0.05 vs. Sham+GFP 

 

  

Table 1 – Hemodynamic, echocardiographic, and weight parameters 
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Kv4.3 Levels in the RVLM of Rats Post-MI 

In RVLM containing punches of post-MI animals, Kv4.3 expression appeared to be 

reduced compared to sham controls. Through adenoviral transfection of synapsin-driven Kv4.3, the 

expression levels of Kv4.3 protein was restored to sham levels. Immunofluorescence staining 

demonstrated expression of GFP in adGFP transfected neurons and Kv4.3 in adKv4.3 transfected 

neurons of the RVLM (Figure 5). 
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Figure 5 – Adenoviral overexpression of Kv4.3 restores Kv4.3 in RVLM of rats post-MI 

Representative Western blot of Kv4.3 protein expression in RVLM punches and mean data quantifying 

expression level (n = 2/group). Representative immunofluorescence images of adGFP (top) and adKv4.3 

(bottom) demonstrating neuronal transfection of target protein. 
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Hemodynamic Parameters of Rats Post-MI Improved by adKv4.3 

Following adKv4.3, rats with post-MI exhibited lower MAP as measured by telemetry 

(Figure 6A). Rats post-MI displayed elevated HR as compared to sham controls (Figure 6B), and 

this elevation was attenuated by overexpression of Kv4.3 in the RVLM. SDNN was also improved 

following adKv4.3 as seen in the representative plots from one post-MI + adKv4.3 rat in Figure 7 

and mean group data in Figure 8. No significant differences were observed between groups in 

RMSSD or LF/HF ratio (Figure 9). 
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Figure 6 - adKv4.3 improves conscious hemodynamic parameters in rats 

post-MI  

MAP and HR are reduced in CHF animals transfected with adKv4.3 as measured 

via telemetry. One-way ANOVA; *, P<0.05 vs. Sham+adGFP; †, P<0.05 vs. 

CHF+adGFP; n = 4-6/group. 
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Figure 7 - Representative HRV plots from one rat before and after adKv4.3 

Representative Poincare plot (top) and tachogram (bottom) for the same rat subject before (left) and after 

(right) RVLM injection of adKv4.3. HRV is improved as seen by the increased distribution of RR (NN) 

and RR+1 (Next RR) in the Poincare plot and increased variability demonstrated in the tachogram. 
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Figure 8 - Mean SDNN data from adGFP and adKv4.3 rats. 

SDNN measured via telemetry in conscious rats. *, P<0.05 vs. Sham+adGFP; †, P<0.05 vs. 

CHF+adGFP; n = 4-6/group. 
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Figure 9 - RMSSD and LF/HF ratios are unchanged between groups. 

RMSSD (top) and LF/HF (bottom) as recorded via telemetry in conscious rats. n = 4-6/group. 
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adKv4.3 Improves Baroreflex Parameters of Rats Post-MI 

In the acute anesthetized preparation, adKv4.3 tended to increase baroreflex range and 

significantly increased max gain in post-MI rats injected with adKv4.3 vs. adGFP in regards to both 

the HR and RSNA responses to changes in MAP (Figure 10). 
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Figure 10 - Baroreflex function is improved in rats post-MI with adKv4.3 

Representative tracings (top) and composite baroreflex curves (bottom) demonstrating improved HR and 

RSNA baroreflex responses in rats post-MI with adKv4.3 in RVLM.  
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adKv4.3 Attenuates the Increased RSNA Post-MI 

Post-MI rats displayed an elevated RSNA expressed as a % of maximum activity relative 

to sham controls (Figure 12), and overexpression of Kv4.3 in the RVLM resulted in an attenuated 

RSNA in post-MI rats relative to adGFP controls (Figure 11 and Figure 12).  
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Figure 11 - Representative traces of RSNA from rats post-MI 

Demonstration of calculation of baseline RSNA as expressed as a % of max activity elicited following 

euthanasia and subtraction of noise floor. Faster traces are provided in lower panels. RSNA from rats 

post-MI transfected with either adGFP (left) or adKv4.3 (right). 
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Figure 12 - Mean data of RSNA from sham and post-MI rats with adGFP or adKv4.3 

One-way ANOVA; *P<0.05 vs. Sham+adGFP; †P<0.05 vs. CHF+adGFP; n = 4-6/group. 
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DISCUSSION 

Major Findings of Current Study 

The current study provides further evidence in favor of reduced Kv4.3 expression in the 

RVLM of rats post-MI (Figure 5) (Gao et al., 2010) and extends those findings to demonstrate the 

physiological importance of these channels in reducing sympathetic tone. A decrease in the 

availability and activity of these channels could promote a sympatho-excitatory state as observed 

during post-MI, and overexpression of the channels in the RVLM attenuates this sympatho-

excitation. 

Conscious Parameters Following adKv4.3 

The findings that overexpression of Kv4.3 reduced MAP are interesting in that MAP was 

not increased in post-MI rats in this current study. Furthermore, adKv4.3 did not reduce MAP in 

sham groups relative to adGFP. As CHF is inherently a disease characterized by a reduction in 

cardiac output and associated with increases in sympathetic tone, MAP may not be a relevant 

marker for pathological progression post-MI, particularly at the 4-6 week post-MI period evaluated 

in the current study. Because LVEDP also trended toward an increase, but did not reach 

significance, the animals studied herein may have been progressing toward congestive heart failure 

but were likely still able to remain compensated. Thus, MAP was maintained and unaltered in this 

group of animals. However, as we withdrew the excess sympathetic tone by overexpression of 

Kv4.3, MAP fell because of the likely reduction in vasomotor sympathetic tone. 

HR was reduced following adKv4.3 (Figure 6), and along with this reduction, markers of 

HRV were also improved relative to post-MI + adGFP (Figure 8). In the time domain analysis of 

HRV, SDNN was increased following adKv4.3 in post-MI rats (Figure 8) indicating either a 

withdrawal of sympathetic tone or an increase in vagal tone. As RMSSD is reflective of rapid, 

vagal-mediated variations in R-R interval (Stein et al., 1994; DeGiorgio et al., 2011) and remains 
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unchanged across our experimental groups, we conclude that the improved HRV following 

adKv4.3 is due to a direct decrease in sympathetic tone and not an improvement in vagal tone. 

Anesthetized Parameters Following adKv4.3 

In the anesthetized preparation, observations further demonstrated the ability of adKv4.3 

in the RVLM to attenuate sympathetic tone. First, through direct measurements of sympathetic tone 

by recording RSNA, we observed attenuated sympathetic activity following adKv4.3 in post-MI 

rats. This further strengthens the observations from conscious rats indicating sympathetic 

withdrawal following restoration of Kv4.3 expression in the RVLM.  

Second, we observed a trend toward improved baroreflex function in post-MI rats treated 

with adKv4.3. Baroreflex sensitivity is decreased in CHF (Goldstein et al., 1975; Wang et al., 2004; 

Zucker et al., 2009; Kar et al., 2011) and correlates with increased rates of mortality (Schwartz et 

al., 1988; La Rovere et al., 1998). The progression of baroreflex desensitization is complex and 

consists of both peripheral alterations to baroreceptor afferent input and central neuronal network 

dysregulation (Gnecchi Ruscone et al., 1987; Gao et al., 2005a; Wang et al., 2008). Many of the 

central mechanisms for baroreceptor desensitization remain unknown although evidence indicates 

a role for the renin-angiotensin system in mediating this dysfunction through increases in 

sympathetic outflow  (Gao et al., 2005a; Wang et al., 2008; Zucker et al., 2009). As the RVLM is 

one of the final presympathetic integration centers of the brainstem and directly projects to the 

outflow tract of the spinal cord, elevated RVLM neuronal tone will suppress baroreflex function 

independent of input from higher order baroreflex centers such as the NTS. Decreasing the neuronal 

activity of the RVLM by restoring levels of Kv4.3 can improve the baroreflex by directly reducing 

sympathetic outflow. 

Limitations and Perspectives of Current Study 

The major limitation of the current study is the use of moderately infarcted, less severe 

CHF rats. This major limitation impacts our ability to make any strong conclusions regarding the 
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expression levels of Kv4.3 and the sympatho-excitatory effects post-MI and adenoviral 

transfection. As Table 1 shows, the rats used in the current study, although possessing a 

significantly reduced EF, do not have significantly elevated heart mass, lung edema, or LVEDP. 

Failing to have significant differences between groups outside of echocardiographic parameters 

may severely underestimate the pathophysiological mechanisms at play in these groups of 

experiments.  Nonetheless, these moderate CHF rats appear to have reduced Kv4.3 expression 

levels in RVLM and display elevated RSNA which are both improved by adKv4.3. Complication 

may arise from these moderately infarcted rats as we are likely to be underestimating the effect of 

adKv4.3. Future work in confirmed instances of CHF or following central Ang II manipulation will 

be invaluable to further elucidate the contribution of decreased Kv4.3 expression in the RVLM to 

increased sympathetic tone. 

Although interesting for understanding the basic mechanisms of the development of 

sympatho-excitation during CHF, adenoviral transfection may not be a viable therapeutic approach 

for treatment of patients with CHF or associated dysautonomia. The current study lends further 

credence to the observation of the importance in Kv4.3 channels in the RVLM in suppressing 

sympathetic tone and provides rationale for exploration of treatment options aimed at maintaining 

or restoring levels of voltage-gated K+ channels in areas such as the RVLM. Further work is needed 

to investigate the molecular mechanisms at play in initiating the reduced levels of Kv4.3, and such 

is presented in the subsequent chapters of this dissertation. 



*The material presented in this chapter was previously published: Becker BK, Wang H, Tian C, 

Zucker IH. BDNF contributes to angiotensin II-mediated reductions in peak voltage-gated K+ 

current in cultured CATH.a cells. Physiol. Rep. 3: 1–8, 2015. 
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ANGIOTENSIN II-MEDIATED REDUCTIONS IN 

PEAK VOLTAGE-GATED K+ CURRENTS IN 

CULTURED CATH.A CELLS*  
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INTRODUCTION 

As discussed earlier in this dissertation, increased circulating levels of angiotensin II (Ang 

II) during the progression of CHF have been shown to contribute to sympatho-excitation  (Guyenet, 

2006; Zucker et al., 2009). Elevated circulating Ang II may activate brainstem neurons in pre-

sympathetic control areas, such as the RVLM, by initiating disruption of the blood brain barrier  

(Biancardi et al., 2013) or stimulating circumventricular neurons such as in the SFO  (Zimmerman, 

2002; Zimmerman et al., 2004). Furthermore, increased activity of a local brain RAS in areas such 

as the RVLM may promote the development of increased sympathetic outflow.  For instance, Gao 

et al. (2008) have shown an increase in AT1R expression in the RVLM of animals with 

experimental CHF. Therefore, therapies that interrupt sympathetic nervous system activity or 

inhibit Ang II signaling have been widely utilized to slow the development of CHF. However, it is 

not completely clear how Ang II increases neuronal activity. 

One way in which Ang II may increase sympathetic outflow is by increasing the sensitivity 

and excitability of pre-sympathetic neurons through suppression of voltage-gated K+ channels that 

conduct the voltage-sensitive, rapidly inactivating current, IA. Acutely, Ang II inhibits IA by 

increasing cellular levels of superoxide anion  (Yin et al., 2010). As discussed more fully above, in 

the RVLM of experimental models of CHF, there is reduced expression of the channel Kv4.3, that 

has been demonstrated in the RVLM of experimental models of CHF  (Gao et al., 2010). This 

protein contributes to the generation of IA (Sonner & Stern, 2007; Carrasquillo et al., 2012) and 

work in the preceding chapter indicates that restoring levels of Kv4.3 in the RVLM mitigate the 

increased sympatho-excitation during CHF. 

How Ang II elicits long-term reductions in Kv channel expression and IA amplitude is not 

well understood, and whether other factors are involved has been incompletely investigated. In this 

regard, BDNF signaling has been shown to modulate IA in a manner similar to that of Ang II  

(Youssoufian & Walmsley, 2007; Cao et al., 2010), and BDNF-induced increases in neuronal 
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excitability have been extensively investigated  (Huang & Reichardt, 2003; Minichiello, 2009). 

Furthermore, Ang II has been demonstrated to increase the expression of BDNF in neurons and 

other tissues  (Szekeres et al., 2010; Chan et al., 2010). To our knowledge, no studies have 

investigated the interaction of Ang II and BDNF in modulating IA and neuronal excitability. 

Therefore, we hypothesized that the Ang II-mediated reduction in voltage-gated K+ currents 

is due, in part, to BDNF signaling. To test this hypothesis, we measured IA in CATH.a cells treated 

with Ang II or BDNF. We also investigated the contribution of Ang II and BDNF on the p38 MAPK 

axis, which is an important component of both Ang II and BDNF signaling  (Katoh-Semba et al., 

2009; Xiao et al., 2013).   
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METHODS 

Chemicals 

Ang II, losartan, and SB-203580 (a MAPK inhibitor) were purchased from Sigma-Aldrich 

(St. Louis, MO). Human recombinant BDNF, rabbit polyclonal antibody for BDNF (H-117), and 

mouse monoclonal alpha-tubulin antibody (10D8) were purchased from Santa Cruz Biotechnology 

Inc. (Santa Cruz, CA). All chemicals and compounds for electrophysiological solutions were 

purchased from Sigma-Aldrich unless otherwise stated. 

Cell Culture 

CATH.a cells were purchased from American Type Culture Collection (Manassas, VA), 

grown in RPMI 1640 medium supplemented with 8% horse serum, 4% fetal bovine serum, and 1% 

penicillin/streptomycin obtained from Gibco (Life Technologies, Grand Island, NY), and 

maintained in a humidified incubator at 37 °C with 5% CO2. Cells were differentiated by incubating 

them in serum-free RPMI medium for 48-72 h as has been described previously  (Qi et al., 1997; 

Mitra et al., 2010). Differentiated CATH.a cells were then treated with the designated agent 

dissolved in PBS and incubated in serum-free medium for the specified time period after which 

they were collected for Western blot analysis or electrophysiology. CATH.a cells are a central 

nervous system catecholaminergic cell line derived from a tumor in the locus coerelius of a 

transgenic SV40 T antigen mouse (Suri et al., 1993; Qi et al., 1997). The line expresses many ion 

channels similarly to neurons, synaptophysin, tyrosine hydroxylase/norepinephrine, and 

components of the RAS (Yin et al., 2010; Mitra et al., 2010; Yang et al., 2011; Xiao et al., 2013) 

making them a suitable model for the study of ion channel dysfunction following Ang II treatment. 

Electrophysiology 

Electrophysiological recordings were conducted similar to those previously reported from 

our laboratory and others  (Gao et al., 2010; Yin et al., 2010). In brief, medium from the polystyrene 
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dish with differentiated CATH.a cells was aspirated, the cells were washed with PBS, and 

extracellular electrophysiology solution was added to the dish. The extracellular solution contained 

(in mM): 140 NaCl, 5.4 KCl, 0.5 MgCl2, 5.5 HEPES, 11 glucose, and 10 sucrose. It was buffered 

to pH of 7.4 with NaOH and 0.5 µM tetrodotoxin was added in order to block TTX-sensitive, 

voltage-gated Na+ channels. Patch pipettes were pulled using a P-97 Flaming/Brown micropipette 

puller (Sutter Instruments, Novato, CA), fire polished to a final resistance of 2-4 MΩ, and filled 

with solution containing (in mM): 105 potassium-aspartate, 20 KCl, 10 EGTA, 5 Mg-ATP, 10 

HEPES, and 25 glucose, adjusted to pH 7.2 with KOH. K+ currents were recorded by an Axopatch 

200B amplifier and digitized using a Digidata 1440A interface (Molecular Devices, Sunnydale, 

CA). Data collection and analysis were done using pCLAMP 10 software (Molecular Devices). 

Whole-cell membrane capacitance was determined by canceling the capacitive current evoked by 

a 10-mV voltage step. Currents were not leak subtracted, and signals were filtered at 5 kHz and 

sampled at 10 kHz. Cells were held at -60 mV or -80 mV and 400-ms duration voltage steps were 

applied in 10-mV increments to +80 or +110 mV.  

 Peak current amplitude (pA) representing IA, time to peak current (ms), time of activation 

(τact; ms) or decay (τdecay; ms), and the maximum slope during activation or decay were measured 

at each voltage-step after the total trace had been normalized by the whole-cell membrane 

capacitance using analysis functions in pCLAMP software.  

Western Blotting 

After treatment, CATH.a cells were scraped from polystyrene culture dishes and 

immediately placed in ice-cold RIPA buffer supplemented with protease inhibitor cocktail (P8340, 

Sigma-Aldrich) and phosphatase inhibitor cocktail (P5726, Sigma-Aldrich). Cells were 

homogenized by sonication and total protein concentration was estimated by a Pierce BCA protein 

assay kit (Rockford, IL). A total of 20 µg (approximately 20 μl) of protein was boiled for 5 min in 

an equal volume of 4% SDS sample buffer and was loaded into a 7.5 or 12% SDS-PAGE gel, and 
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ran at 100 V for approximately 1 h on a Bio-Rad mini-gel electrophoresis apparatus (Hercules, 

CA). The protein was then transferred to a nitrocellulose membrane (Li-Cor, Lincoln, NE) at 50 V 

for 90 min. Membranes were then blocked in a 1:1 solution of Li-Cor blocking solution (Lincoln, 

NE) and PBS for 1 h. Membranes were then incubated overnight at 4 °C in PBS with primary 

antibodies to BDNF (1:2000) and alpha-tubulin (1:5000), and incubated with Li-Cor secondary 

infrared-labeled antibodies (IRDye 680LT 926-68022 at 1:10000 and IRDye 800CW 926-32214 at 

1:5000) for 1 h at room temperature in PBS with 1% SDS. Bands were visualized using a Li-Cor 

Odyssey system and analyzed using Li-Cor Odyssey software. 

Statistics 

All data are expressed as mean ± SEM. One-way analysis of variance was used to compare 

group differences between Western blot data with Tukey’s post-hoc analysis. A repeated measures 

one-way analysis of variance was used to determine treatment interactions in electrophysiological 

I-V measurements. SigmaPlot 11.0 (Systat Software Inc., San Jose, CA) and SPSS (IBM, Armonk, 

NY) were used to complete statistical analysis. A p value of < .05 was used to determine statistical 

significance. 



51 

 

 

RESULTS 

Ang II Increases BDNF Expression 

Following treatment of CATH.a cells with 100 nM Ang II for 2 or 6 h, both pro-BDNF and 

BDNF expression increased relative to non-treated controls as measured by Western blot. We failed 

to observe an increase in the relative expression levels of TrkB following Ang II treatment at either 

2 or 6 h (Figure 13D). 
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Figure 13 - Expression of BDNF, pro-BDNF, and TrkB following Ang II treatment 

Representative blots (C) and relative expression levels of BDNF (A), pro-BDNF (B), and TrkB (D) 

following treatment of CATH.a cells with 100 nM Ang II for 2 or 6 h. *, P < 0.05 vs. Control treatment, 

n = 5-8/group. 
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BDNF Reduces IA 

To investigate whether BDNF affects IA in CATH.a cells, patch-clamp experiments were 

performed. Previous reports have demonstrated reductions in voltage-gated K+ currents following 

50 ng/ml of BDNF after 2-4 h  (Cao et al., 2010, 2012). Treatment of neurons with 50 ng/ml of 

BDNF for 2 h reduced mean IA by 65% during a voltage-step to +70 mV (Figure 14). Because this 

effect was similar to the previously reported reduction of IA due to Ang II treatment  (Gao et al., 

2010), and because Ang II has also been shown to rapidly suppress voltage-gated K+ current  (Yin 

et al., 2010), we explored whether an acute treatment with BDNF would produce a similar effect 

to that of acute application of Ang II. However, peak current was not altered after superfusion of 

CATH.a cells with 50 ng/ml BDNF for 10 min (Figure 15). 
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Figure 14 - BDNF decreases peak K+ current in CATH.a cells 

Representative traces (A) and mean I-V plots of peak K+ current density (B) in CATH.a 

cells treated with 50 ng/ml BDNF for 2 h. **, P < 0.01 interaction between groups as 

measured by RM-ANOVA. 
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Figure 15 - Acute BDNF treatment has no effect on K+ currents. 

Representative traces (A) and mean I-V plots of peak K+ current density (B) and steady-state K+ current 

density (D) in CATH.a cells following 10 minutes superfusion of 50 ng/mL BDNF and washout. Time 

to peak current displayed in (C). n = 6 
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BDNF is Involved in the Ang II-Induced Reduction of IA 

Based upon the ability of BDNF to reduce IA, we investigated the involvement of BDNF 

in the Ang II-induced reduction of IA. Inhibition of endogenous BDNF signaling by pretreatment 

with an anti-BDNF antibody attenuated the reduction in peak current following incubation with 

Ang II (Figure 16). In order to determine if anti-BDNF antibody had any independent effects on 

K+ current, CATH.a cells were incubated with anti-BDNF antibody alone. Peak current was not 

altered by incubation of neurons with anti-BDNF antibody alone relative to control (116.0 ± 10.7 

pA/pF at +80 mV voltage step,, n = 7, P = .74 between groups).  

Because BDNF or Ang II can independently reduce IA, and because BDNF signaling is 

involved in the mediation of the Ang II-induced reduction in IA, we investigated whether Ang II 

signaling is involved in the BDNF-induced suppression of IA. Cells were pretreated with 100 nM 

losartan, an AT1R blocker, for 30 min prior to 50 ng/ml BDNF incubation for 2 h. IA was not altered 

in losartan-treated neurons (Figure 17). 
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Figure 16 - Inhibiting BDNF/TrkB attenuates Ang II-mediated suppression of peak K+ current 

Representative traces and mean I-V plots of peak K+ current density of CATH.a cells incubated with 100 

nM Ang II for 6 h or pretreated with 50 ng/ml anti-BDNF antibody for 30 min prior to Ang II. **, P < 

0.01 group interaction vs. Control and ##, P < .01 vs. Ang II group interaction as measured by RM-

ANOVA. 
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Figure 17 - AT1R is not involved in BDNF-mediated suppression of K+ currents. 

Representative traces (A) and mean I-V plot of peak K+ current (B) in CATH.a cells treated with 50 

ng/mL BDNF with or without pretreatment with 100 nM losartan (Los). n = 5/group 
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Involvement of p38 MAPK in the BDNF-Induced Reduction of IA 

Previous results have demonstrated the involvement of p38 MAPK in Ang II-mediated 

reductions in IA and downregulation of Kv4.3 protein  (Gao et al., 2010). To determine if p38 

MAPK is involved in the BDNF-induced reduction of IA, patch-clamp experiments were performed 

after treating CATH.a cells for 2 h with 50 ng/ml with or without pretreatment of the p38 MAPK 

inhibitor SB-203580 (100 nM) for 30 min. Inhibiting p38 MAPK completely prevented the 

reduction in IA following BDNF (Figure 18). 

Time to peak current was measured following 50 ng/ml BDNF treatment for 2 h with or 

without 30-min pretreatment with 100 nM SB-203580. Time to peak current during the voltage-

step to +80 mV was not changed following BDNF treatment (66.8 ± 21.9 ms, P = 0.4, n = 8) relative 

to control (46.9 ± 17.4 ms, n = 8). Likewise, time to peak current was not changed by BDNF after 

cells were pretreated with SB-203580 (41.4 ± 9.0 ms, P =0 .79, n = 10) relative to BDNF. 

Next, to evaluate whether BDNF affects kinetic properties of IA, various time-related 

parameters were calculated following incubation of CATH.a cells with 50 ng/ml BDNF for 2 h 

with or without 30-min pretreatment of 100nM SB-203580. BDNF treatment increased mean τact 

by 52 ms relative to control (Table 2). The τact was not attenuated by pretreatment with SB-203580 

(P = .97 relative to BDNF alone). The other kinetic parameters measured (τdecay, maximum rise 

slope, and maximum decay slope) were not affected by BDNF or SB-203580 (Table 2).  
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Figure 18 - p38 MAPK is involved in BDNF-mediated supression of K+ currents. 

Representative traces (A), mean I-V plots of peak K+ current density (B), time to peak current (C) and 

Activation/Inactivation plot (D) in CATH.a cells incubated with 50 ng/ml BDNF for 2 h or pretreated 

with 100 nM SB-203580 (SB) for 30 min prior to BDNF. *, P < 0.05 group interaction between BDNF 

and SB+BDNF as measured by RM-ANOVA. n = 8-10/group 
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Treatment 
τact 

(ms) 
P 

τdecay 

(ms) 
P 

Max Rise 

Slope 

(pA/ms) 

P 

Max Decay 

Slope 

(pA/ms) 

P N 

Control 5.5  ±  4.2  
48.5 ± 

16.3 
 31.9 ± 7.1  -31.0 ± 6.3  8 

BDNF 
58.0 ± 

15.3 

0.00

1 
17.0 ±  5.0 

0.1

6 
25.8 ± 3.9 0.96 -23.3 ± 3.5 0.33 8 

SB + BDNF 
55.3 ± 

18.0 
0.04 32.4 ±  9.6 

0.6

5 
39.6 ± 3.6 0.09 -35.6 ± 3.5 0.53 10 

Note: P values are relative to Control group. τ = time of activation (act) or decay. 

Table 2 - Effects of BDNF with or without p38 MAPK inhibition on kinetic parameters of IA 
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DISCUSSION 

The major findings of this study are that BDNF reduces peak IA and that the Ang II-induced 

decrease in IA in CATH.a cells is attenuated by inhibiting the action of BDNF (Figure 16) and that 

p38 MAPK is involved in the signaling of BDNF-induced reductions in IA (Figure 18). These 

results suggest that BDNF and p38 MAPK may be key mediators involved in the reduction of IA 

due to Ang II. Previous reports have demonstrated reduction in IA following 100 nM Ang II 

treatment for 6 h  (Gao et al., 2010), similar to our present findings (Figure 16). However, little is 

known about the signaling cascades involved in this Ang II-mediated change in 

electrophysiological phenotype. Here we demonstrate the upregulation of BDNF protein following 

Ang II treatment (Figure 13) and the involvement of BDNF in the Ang II-induced reduction of IA 

(Figure 16).  

Ang II is known to have immediate effects on K+ currents and neuronal firing through 

signaling by reactive oxygen species. Specifically, Ang II elicits an increase in intracellular 

superoxide anion that inhibits peak and steady state K+ currents within 10 minutes  (Yin et al., 

2010). Our results suggest that BDNF may not be involved in acute modulation of K+ currents, 

because no changes to peak K+ current were observed following 10 min superfusion of BDNF 

(Figure 15). Thus, Ang II may have multiple modes of modulating K+ currents: acutely, by 

generation of reactive oxygen species; and long-term, through BDNF signaling. Furthermore, these 

results suggest that the reduction of IA following treatment with Ang II or BDNF for several hours 

is likely due to a decrease in the expression of channels responsible for IA such as Kv4.2 or Kv4.3 

and not due to direct inhibition of K+ channel activity. Although BDNF increased τact, other kinetic 

parameters of peak K+ current remained unchanged, indicating that the main action of BDNF on 

suppressing IA are likely through reducing the total expression of Kv4.3, which correlates well with 

our previous results demonstrating reductions in Kv4.3 expression following Ang II treatment  

(Gao et al., 2010). 
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Ang II has been shown to act as a neurotransmitter that depolarizes neurons and increases 

excitability  (Oz & Renaud, 2002; Latchford et al., 2005; Zaika et al., 2006), and BDNF is released 

in response to neuronal activity to facilitate the development of LTP  (Huang & Reichardt, 2003; 

Nagappan & Lu, 2005; Minichiello, 2009). These events raise the possibly that the development of 

sympatho-excitation in CHF or some forms of hypertension could be due to the interplay between 

Ang II-elicited increases in neuronal activity in brainstem nuclei, such as the RVLM, and aberrant 

development of long-term potentiation through BDNF. Further investigation is needed to determine 

if Ang II causes an increase in BDNF activity through signaling cascades or if BDNF activity is 

increased due to increased neuronal activity stimulated by Ang II. 

A recent study by Erdos et al. (2015) demonstrated that overexpression of BDNF in neurons 

of the PVN was sufficient to raise blood pressure, HR, and markers of sympathetic tone, implicating 

the ability of BDNF to modulate presympathetic neuronal pathways and increase sympatho-

excitation. Interestingly, these effects were attenuated by intracerebroventricular (ICV) 

administration of the AT1R blocker losartan suggesting the critical role of the Ang II signaling in 

the mechanism of BDNF signaling. This study along with the data presented here suggest a possible 

convergent signaling and bidirectional interaction of the Ang II and BDNF pathways. It remains to 

be seen if the convergence of these signaling pathways is involved in mediating the sympatho-

excitatory conditions seen during disease states such as heart failure and hypertension. 

It has been shown that inhibition of p38 MAPK with SB-203580 can attenuate the reduction 

in Kv4.3 mRNA following Ang II treatment  (Gao et al., 2010). Here, we demonstrate that SB-

203580 can prevent the reduction in IA following treatment with BDNF. These observations, along 

with the involvement of BDNF in Ang II-induced reductions in IA, suggest that p38 MAPK plays 

a role in the convergence of BDNF and Ang II signaling. 

A potential limitation of the current study is the use of an anti-BDNF antibody to inhibit 

BDNF signaling through its receptor tyrosine kinase (TrkB). Other potential methods to block 

BDNF signaling through TrkB include pharmacological inhibition using drugs such as K252a. 
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Although often cited as a specific inhibitor of TrkB, K252a can also inhibit the action of a number 

of tyrosine kinases including p38 MAPK  (Martin et al., n.d.). As we were interested in the activity 

of p38 MAPK in this study, this precluded the use of K252a. Use of anti-BDNF antibody to prevent 

BDNF/TrkB interaction has demonstrated to be an effective inhibitor of BDNF/TrkB signaling  

(Cao et al., 2012).  

The CATH.a cell model has been extensively used in investigations of Ang II signaling 

and K+ current modulation  (Gao et al., 2010; Yin et al., 2010; Yang et al., 2011; Haack et al., 

2012; Xiao et al., 2013). This cell line fully expresses the necessary proteins for Ang II signaling 

and expresses a number of K+ channels including Kv4.3. Therefore, it is appropriate for 

investigation of the effects of Ang II on K+ currents. In our hands, we are unable to elicit action 

potentials from CATH.a cells, which limits the direct application of these results to sympatho-

excitation in that we were unable to observe changes in neuronal sensitivity and action potential 

frequency. However, previous studies using acutely dissociated neonatal neurons have 

demonstrated similar effects of Ang II on K+ currents  (Kang et al., 1992, 1993). More robust 

electrophysiological experimentation such as brain slice measurements or acutely dissociated 

neurons from animal models of CHF is needed to confirm these current findings and previous 

studies in integrative physiological systems. Moreover, although our data demonstrate important 

molecular and signaling interactions in modulating K+ currents in vitro, further investigations are 

needed to observe the impact of these findings to whole-animal physiology, which will be presented 

in the following chapters of the current dissertation. 

These findings indicate the involvement of BDNF signaling in Ang II-mediated reductions 

of IA and suggest the convergence of BDNF and Ang II signaling on p38 MAPK. These data 

provide new insight into the mechanisms responsible for altered intrinsic neuronal excitability in 

diseases characterized by sympatho-excitation such as CHF and hypertension. Further investigation 

into the specific channels and neuronal populations affected by BDNF and Ang II in the intact 
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animal will be beneficial in further understanding the basic physiology and treatment possibilities 

for these prevalent diseases.
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CHAPTER III: INFLUENCE OF BDNF/TRKB 

SIGNALING IN THE NTS ON BAROREFLEX 

SENSITIVITY IN RATS WITH CHRONIC HEART 
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INTRODUCTION 

CHF is a prevalent disease characterized by numerous humoral and autonomic alterations 

such as increased sympathetic nervous system tone and a desensitization of baroreflex control 

(Zucker et al., 2012). Baroreflex control of HR and sympathetic nerve activity provides an 

important short-term feedback loop that buffers changes to MAP and controls cardiac output. 

Alterations in baroreflex sensitivity (BRS) are indicative of dysautonomia and altered feedback 

control of the cardiovascular system in the CHF state (Goldstein et al., 1975; Zucker et al., 2009). 

Baroreflex desensitization is prognostic for negative outcomes in patients with CHF (Schwartz et 

al., 1988; La Rovere et al., 1998). A reduction in BRS may result from numerous peripheral and 

central alterations (Gnecchi Ruscone et al., 1987; Gao et al., 2005a; Wang et al., 2008), many of 

which are still unknown. The dorsal medial NTS (dmNTS) comprises the primary central 

termination of baroreceptor afferents and serves as the initiating central site of the baroreflex arc 

(Seller & Illert, 1969; Jordan & Spyer, 1977; Tang & Dworkin, 2007a, 2009). Although previous 

studies have reported a role for glutamatergic signaling in the dmNTS (Dietrich et al., 1982; 

Andresen & Yang, 1995), the involvement of other neurotransmitters and neuromodulators in the 

baroreflex control at the level of dmNTS, especially in the CHF state are largely unknown. In 

addition, there is a lack of understanding of the role played by neurotrophic factors that may 

influence central desensitization of the baroreflex in CHF. 

The family of neurotrophic factors comprises one such class of potential factors that may 

influence autonomic neuronal activity. BDNF has been implicated in autonomic pathway 

dysfunction (Mattson & Wan, 2008; Martin et al., 2009). BDNF can function as both a 

neurotransmitter and neuromodulator and can thus act both acutely and chronically to alter neuronal 

firing and neuronal sensitivity to synaptic input (Rose et al., 2004). Signaling by BDNF and its 

receptor, TrkB has long been understood to potentiate synapses and increase glutamatergic 

signaling and excitatory ion channel activity in a large number of neuronal pathways such as the 
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hippocampus (Minichiello, 2009). However, whether BDNF/TrkB signaling in NTS is involved in 

autonomic regulation in both normal and CHF states is unknown. Therefore, the overall objective 

of the current study was to investigate the potential contribution of BDNF/TrkB signaling to 

autonomic dysfunction in a rat model of CHF. The specific aims were twofold:  

1. to identify a role for BDNF/TrkB signaling at the level of dmNTS in modulating baroreflex 

function in the normal state and  

2. to explore the potential contribution of abnormal BDNF/TrkB signaling to the central 

desensitization of baroreflex function in animals with CHF. 
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METHODS 

Experiments were performed on male Sprague-Dawley rats weighing approximately 200 g 

at the time of the myocardial infarction and approximately 400 to 520 g at the time of the acute 

experiment. These experiments were approved by the Institutional Animal Care and Use 

Committee of the University of Nebraska Medical Center and were carried out under the guidelines 

of the National Institutes of Health Guide for the Care and Use of Laboratory Animals. 

Animal Preparation 

CHF was produced by left coronary artery ligation as described in Chapter II and as in 

previous studies (Wang et al., 2010b, 2010a, 2014). In the present study, all rats (n=24) survived 

from the sham surgery. However, approximately 74% (26 out of 35) survived coronary artery 

ligation surgery. Three infarcted rats were excluded due to a small infarct size (<15%) measured at 

the time of the terminal, acute experiment. 

Acute experiments were conducted as described in detail in Chapter I including 

hemodynamic measurements via Millar catheter, RSNA recording, and baroreflex experiments. 

Microinjections into the NTS 

NTS microinjection was performed as previously described (Wang et al., 2007). Generally, 

microinjections were made from four- or five-barrel micropipettes with total tip diameters of 20–

30 μm and performed using a four-channel pressure injector (PM2000B; World Precision 

Instruments). The injections were made over a 10 s period, and a 50 nl injection volume was 

measured by observing the movement of the fluid meniscus along a reticule in a microscope. The 

dmNTS (coordinates in mm with respect to calamus scriptorius: 0.5 rostral, 0.5–0.6 lateral, and 

0.4–0.5 deep) (Paxinos & Watson, 1998) was identified by injecting L-glutamate (10 mM, 50 nl) 

and observing a depressor response of at least 15 mmHg. In order to examine the potential effects 

of microinjection of exogenous BDNF into dmNTS on MAP, HR and RSNA in normal and CHF 
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states, unilateral microinjection of different doses of BDNF (10 and 100 pg, Santa-Cruz 

Biotechnologies, Santa Cruz, CA) or artificial cerebrospinal fluid (aCSF, vehicle) into dmNTS was 

performed in sham and CHF rats. The time interval for each dose of BDNF or vehicle injection was 

at least 15 minutes. At the end of the experiments, 50 nl of 2% Pontamine sky blue were injected 

for marking the injection sites.   

In separate groups of rats, in order to evaluate the role of endogenous BDNF/TrkB 

signaling in modulating baroreflex function in normal and CHF states, baroreflex function was 

examined before and 10 min after bilateral microinjection of the TrkB antagonist, ANA12 (Sigma-

Aldrich, St. Louis, MO) or DMSO (vehicle) into dmNTS in sham and CHF rats. The effects of 

bilateral microinjection of different doses of ANA12 (62.5 and 125 µM) into dmNTS on basal 

MAP, HR and RSNA were also observed. The time interval between bilateral ANA12 

microinjections was within a 2 min period. At the end of the experiments, 50 nl of 2% Pontamine 

sky blue were injected for marking the injection sites. 

Western Blotting 

Five sham-operated and five CHF rats were anesthetized, and cardiac function measured 

within 30 min. Rats were euthanized with an overdose of pentobarbital sodium (150 mg/kg, IV), 

brains were quickly extracted, frozen on dry ice and stored at -80 ◦C. At the same time, the hearts 

and lungs were rapidly removed, placed on dry ice and infarct size was quickly measured. 

Brainstems were sliced using a cryostat and the dmNTS was punched bilaterally from CHF and 

sham rats using a tissue biopsy needle of 1.0 mm inner diameter 0.4-1.0 mm posterior to Obex, 0.5-

0.6 mm lateral to the midline, and 0.4-0.5 mm from the dorsal surface of the brainstem. Tissue 

punches were homogenized in RIPA buffer (Sigma Aldrich, St. Louis, MO) containing protease 

and phosphatase inhibitors (Sigma Aldrich, St. Louis, MO) via sonication. Homogenates were 

centrifuged, and the supernatant was collected. Total protein was estimated via a Pierce BSA assay 

(Thermo Scientific, Rockford, IL) and boiled in equal volume of 4% SDS sample buffer. Protein 
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was loaded in equal amounts of 15 µg total protein into each well of 7% (for TrkB analysis) or 12% 

(for BDNF analysis) SDS-PAGE gels. Gels were electrophoresed, and transferred onto 

nitrocellulose membranes (Millipore, Billerica, MA) at 50 V for 90 min. Membranes were blocked 

in Li-Cor blocking solution (Lincoln, NE) for one hour and incubated overnight in 4 ºC with 

primary antibodies to TrkB (1:2,000; ab33655 Abcam, Cambridge, MA), or BDNF (1:2,000; 

ab46176 Abcam) with α-Tubulin (1:5,000; sc-53646 SantaCruz Biotechnology, Santa Cruz, CA) 

as a loading control. Blots were washed and incubated with Li-Cor secondary infrared-labeled 

antibodies (IRDye 680LT 926-68022 at 1:5000 and IRDye 800CW 926-32214 at 1:2000) for 1 h 

at room temperature in PBS with 1% SDS. Blots were washed and visualized using Li-Cor Odyssey 

system and bands quantified via Li-Cor Image Studio software. 

Statistics 

All data are expressed as mean ± standard error of the mean. Differences between groups 

were determined by a one or two-way ANOVA followed by a Tukey post hoc test. Changes in 

baroreflex function before and after NTS microinjection of ANA12 were determined by paired t 

test. A p value <0.05 was considered statistically significant.  
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RESULTS 

Body Weight, Organ Weight, and Baseline Hemodynamics  

Echocardiographic and hemodynamic measurements of sham-operated and CHF rats are 

summarized in Table 1. MI-induced cardiac dilation in CHF rats was indicated by increased LV 

systolic and diastolic diameters and volumes measured by echocardiography at the 6th week post 

MI. Furthermore, these 6-week MI rats exhibited reduced ejection fraction and fractional 

shortening compared with sham rats, indicating decreased cardiac systolic function. Hemodynamic 

data collected at the time of the terminal experiments (~14 weeks) further demonstrated that there 

was a significant increase in LVEDP in CHF rats compared to sham rats. Left ventricular dp/dtmax 

and min were also significantly lower in CHF rats. The heart weight and lung weight to-body 

weight ratios were significantly higher in CHF rats than in sham-operated rats, suggesting cardiac 

hypertrophy and substantial pulmonary congestion in the CHF state. Moreover, in rats with CHF, 

a gross examination revealed a dense scar in the anterior ventricular wall. The mean infarct area 

was 43.3 ±1.1% of the LV area. No infarcts were identified in sham-operated rats. Pleural fluid and 

ascites were also found in some of CHF rats but none in the sham-operated rats. Compared to sham 

rats, there was a slight but significant decrease in baseline MAP in CHF rats.  
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 Sham 
 

CHF 

(n=24) (n=23) 

Body weight (g) 426 ± 7  450±7 

Heart weight (mg) 1271 ± 26  2170 ± 67* 

HW/BW (mg/g) 2.99 ± 0.06  4.83 ± 0.13 * 

WLW/BW (mg/g) 4.33 ± 0.08  8.97 ± 0.25 * 

MAP (mmHg) 105.5 ± 2.4  90.2 ± 1.9* 

LVEDP (mmHg) 4.1 ± 0.4  21.0 ± 1.0* 

HR (bpm) 368.9 ± 6.0  355.4 ± 6.0 

LVEDD (mm) 6.91 ± 0.1  10.77 ± 0.1* 

LVESD (mm) 3.99 ± 0.1  8.92 ± 0.1* 

LVEDV (μl) 69 ± 8  427 ± 26* 

LVESV (μl) 255 ± 11  649 ± 30* 

EF (%) 72.9 ± 0.7  34.2 ± 1.3* 

FS (%) 42.0 ± 0.6  17.2 ± 0.7* 

dP/dTmax 8765 ± 410  4634 ± 204* 

dP/dTmin -8145 ± 291  -3272 ± 123* 

Infarct size (%) 0  43.3± 1.1 * 

 

Values are mean ± SE. BW, body weight; HW, heart weight; WLW, wet lung weight; 

MAP, mean arterial pressure; LVEDP, left ventricle end-diastolic pressure; HR, heart 

rate. LVEDD, left ventricle end-diastolic diameter; LVESD, left ventricle end-systolic 

diameter; LVESV, left ventricle end- systolic volume; LVEDV, left ventricle end-

diastolic volume; EF, ejection fraction; FS, fractional shortening. *P < 0.05 vs. CHF. 

 

 

  

Table 3 - Hemodynamic and echocardiographic data in sham and CHF rats 
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Functional and Histological Identification of the dmNTS 

To define the role of BDNF/TrkB signaling in modulating baroreflex function in sham and 

CHF rats, we focused on the dmNTS, a region that primarily receives and integrates sensory input 

from peripheral baroreceptors and is critical for baroreflex control of the sympathetic nervous 

system. In all microinjection experiments the location of the pipette in the dmNTS was confirmed 

by bradycardia, depressor and sympatho-inhibitory responses to microinjection of glutamate (10 

mM; 50 nl). Figure 19 illustrates the reduction in MAP, HR and RSNA in response to 

microinjection of glutamate in the dmNTS from one representative sham rat. Histological analysis 

of the injection sites stained with 2% Pontamine sky blue is also shown in Figure 19. 

  



75 

 

 

 

  

Figure 19. Histological analysis and functional identification of microinjection sites in the dorsal 

medial nucleus tractus solitarius (dmNTS)  

A) original digital picture of the microinjection site filled with 2% Pontamine sky blue. AP, area 

postrema; Gr, gracile nucleus.  

 

B) representative recording from one animal demonstrating the arterial blood pressure (ABP), mean 

blood pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) responses to 

unilateral microinjection of glutamate (50 nl; 10mM). The dmNTS region was identified by the presence 

of a depressor (>20 mmHg) and sympatho-inhibitory response to glutamate.  

 

C) the distributions of the microinjection sites plotted on standard coronal sections according to the atlas 

of Paxinos and Watson  (Paxinos & Watson, 1998). All microinjection sites in the current study were ~ 

0.5mm rostral to obex (±0.04 mm standard deviation). 
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Response to BDNF in the dmNTS in Sham and CHF Rats 

After the stereotactic location of the dmNTS was confirmed by injection of glutamate with 

one barrel of a four-barrel micropipette, we injected 50 nL of either 10 pg or 100 pg BDNF or aCSF 

(vehicle) using one of the other barrels in randomized order. The time interval between injections 

was 15 minutes, which allowed cardiovascular parameters to recover to baseline. As shown in 

Figure 20-Figure 21, unilateral microinjection of BDNF into the dmNTS produced dose-dependent 

bradycardia, depressor and sympatho-inhibitory responses similar to that of glutamate in sham rats, 

indicating a robust activation of the barosensitive neurons in dmNTS in the normal state. Injections 

of 50 nL of 10 pg or 100 pg BDNF into the dmNTS of rats with CHF also produced the bradycardia, 

depressor, and sympatho-inhibitory responses. However, these effects were significantly blunted 

compared to those of sham rats (Figure 20-Figure 21). Microinjection of aCSF (vehicle) into the 

dmNTS failed to change basal MAP, HR and RSNA in sham and CHF rats. 
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Responses to ANA 12 into the dmNTS in Sham and CHF Rats 

In separate groups of rats, we also investigated the effects of bilateral microinjection of the 

TrkB antagonist ANA 12 (65.2 μM and 125 µM) into the dmNTS on baseline MAP, HR and RSNA 

in sham and CHF rats. In contrast to the effects observed after BDNF, microinjection of ANA 12 

into dmNTS resulted in tachycardia, an increase in MAP, and sympatho-excitatory responses in a 

dose-dependent manner in sham rats (Figure 20-Figure 21), indicating that the endogenous 

BDNF/TrkB signaling in dmNTS plays a tonic role in exciting barosensitive neurons in the NTS 

therefore suppressing blood pressure and sympathetic outflow in the normal state. The sympatho-

excitatory effects of bilateral microinjection of ANA 12 into dmNTS on MAP, HR and RSNA were 

reduced in CHF rats compared to the sham rats. Microinjection of DMSO (vehicle) into the dmNTS 

failed to change basal MAP, HR and RSNA in both sham and CHF rats. 
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Figure 20 - Representative figures showing the effects of microinjection into the dmNTS 

Effects of BDNF (100pg, 50nl) or ANA12 (125µM, 50nl) on arterial pressure, MAP, HR and RSNA in 

sham and CHF rats. Arrows indicate the start and end of the injection. 



79 

 

 

  

Figure 21 - Dose-dependent effects of microinjection of BDNF 

Injections of (10 and 100pg, 50nl, A-C) and ANA12 (62.5 and 125µM, 50nl, D-F) into the dmNTS on 

AP, MAP, HR and RSNA in sham and CHF rats. DMSO and aCSF serve as the control for ANA12 and 

BDNF, respectively. Data are expressed as Mean ± SEM. *, P < 0.05 vs. control, #, P < 0.05 vs. sham. 
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Effect of ANA 12 in the dmNTS on Baroreflex Sensitivity  

To characterize the role of endogenous BDNF/TrkB signaling in the dmNTS in modulating 

BRS in the normal and CHF states, we performed baroreflex experiments before and after bilateral 

microinjections of 125 μM ANA12 into the dmNTS in sham and CHF rats. Following TrkB 

inhibition by ANA-12, the HR response to increases in MAP was blunted for both range and 

maximal gain (Figure 22-Figure 24; Table 4) in sham rats. Similarly both the range and maximal 

gain of the RSNA response to increases in MAP were decreased following ANA-12 injections 

(Figure 22-Figure 24; Table 4). These data suggest that endogenous BDNF/TrkB signaling in the 

dmNTS plays an important role in modulating baroreflex function in the normal state. 

Compared to sham rats, CHF rats exhibited significantly lower HR and RSNA responses 

to increases in MAP (Figure 22-Figure 24; Table 4). Bilateral injections of ANA-12 into the 

dmNTS did not result in any further decrease in range or maximal gain of the HR response to 

increased MAP (Figure 22-Figure 24; Table 4). Interestingly, although the RSNA response to 

increased MAP was already blunted in CHF rats, TrkB receptor inhibition by ANA-12 in the 

dmNTS further reduced both range and maximal gain of the RSNA response to increased MAP in 

CHF rats (Figure 22-Figure 24; Table 4). 
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Figure 22 - Representative figures showing the effects of bilateral microinjection of ANA12 on BRS 

Bilateral injections (125 µM, 50 nl) into the dmNTS changes baroreflex-mediated MAP, HR and RSNA 

responses to intravenous administration of sodium nitroprusside (25 µg) followed by phenylephrine (10 

µg) in sham and CHF rats. Arrows point to some artifacts of HR traces. 
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Figure 23 – Effects of ANA-12 on baroreflex control of HR 

Mean data showing effects of bilateral microinjection of ANA12 (125 µM, 50 nl) into the dmNTS on the 

baroreflex control of HR in sham and CHF rats. Data are expressed as Mean ± SEM. n=8/each group. *, 

P<0.05 vs. before. 
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Figure 24 - Effects of ANA-12 on baroreflex control of sympathetic nerve activity 

Mean data showing effects of bilateral microinjection of ANA12 (125 µM, 50 nl) into the dmNTS on the 

baroreflex control of RSNA in sham and CHF rats. Data are expressed as Mean±SE. n=8/each group. *, 

P<0.05 vs. before. 
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a, range 

(% or bpm) 

x0, BP50 

(mmHg) 

y0, min 

(% or bpm) 

Gmax 

(% or 

bpm/mmHg) 

MAP-RSNA     

Sham before DMSO 130.1 ± 5.0    93.2 ± 1.2 17.8 ± 2.3 3.73 ± 0.14 

Sham after DMSO 126.1 ± 4.3    95.5 ± 1.0 17.3 ± 1.7 3.63 ± 0.10 

CHF before DMSO   80.8 ± 3.5    98.3 ± 1.3 37.7 ± 3.5 1.88 ± 0.20 

CHF after DMSO   77.6 ± 3.8  101.7 ± 0.8 37.0 ± 4.1 1.79 ± 0.21 

Sham before ANA-12 132.6 ± 8.4    91.7 ± 3.7 22.9 ± 3.7 3.64 ± 0.18 

Sham after ANA-12     67.5 ± 3.6*    111.7 ± 0.8*   57.3 ± 3.3*   0.91 ± 0.10* 

CHF before ANA-12   89.8 ± 5.3    96.5 ± 2.6 39.7 ± 4.5  2.05 ± 0.10 

CHF after ANA-12     65.9 ± 3.5*   102.0 ± 2.7 49.8 ± 3.1    1.15 ± 0.08* 

MAP-HR     

Sham before DMSO 153.8 ± 4.9 98.7 ± 2.0 203.0 ± 8.0 4.08 ± 0.12 

Sham after DMSO 144.9 ± 4.7 102.3 ± 2.9 204.6 ± 5.2 3.83 ± 0.08 

CHF before DMSO 82.2 ± 4.3 101.8 ± 1.8 280.7 ± 7.8 1.77 ± 0.19 

CHF after DMSO 77.3 ± 5.5 105.0 ± 2.3 282.1 ± 6.7 1.66 ± 0.20 

Sham before ANA-12 147.1 ± 4.3 98.1 ± 4.4 191.7 ± 5.4 3.90 ± 0.11 

Sham after ANA-12 80.1 ± 5.3* 103.0 ± 4.1* 270.0 ± 6.9* 1.88 ± 0.10* 

CHF before ANA-12 83.0 ± 3.4 103.0 ± 5.2 291.9 ± 9.4 1.90 ± 0.11 

CHF after ANA-12 74.0 ± 3.8 101.2 ± 5.1 305.8 ± 10.1 1.70 ± 0.12 
Values are mean ± SEM. a is the RSNA or HR range,  x0 is the pressure at the midpoint of the range 

(BP50), y0 is minimum RSNA or HR and Gmax is the maximum gain of baroreflex curve. 

  

Table 4 - Summary data for baroreflex function before and after microinjection of chemicals 

into the dmNTS in sham and CHF rats. 
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Expression of BDNF and TrkB in the dmNTS in Sham and CHF Rats 

To further explore potential mechanisms for the impaired response to ANA-12 in the 

dmNTS of Sham and CHF animals, we performed western blot experiments to compare protein 

expression of BDNF and TrkB receptors in the dmNTS of Sham and CHF rats. The expression of 

TrkB protein in the dmNTS was significantly reduced in CHF rats compared to sham rats (Figure 

25A). We failed to observe a significant difference in BDNF protein expression in the dmNTS 

between sham and CHF rats (Figure 25B). 
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Figure 25 - Protein expression of BDNF and TrkB in dmNTS of sham and CHF rats 

Mean ± SEM. n=5/each group. *, P<0.05 vs. sham. 
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DISCUSSION 

The primary objectives of this study were to investigate the role of BDNF/TrkB signaling 

in the dmNTS in regulating baroreflex control and to evaluate impaired BDNF/TrkB signaling as 

a potential mechanism for central desensitization of baroreflex control during CHF. Our results 

demonstrate a number of novel and important findings. First, our study provides evidence for tonic 

signaling of BDNF in the dmNTS in the normal state. Inhibition of endogenous BDNF signaling 

by selectively antagonizing the TrkB receptor with ANA-12 resulted in a sympatho-excitatory 

response in sham rats, suggesting a tonic sympatho-inhibitory role for BDNF neurotransmission in 

the dmNTS. Most importantly, BDNF/TrkB signaling in the dmNTS is integral for normal 

baroreflex function as evidenced by the blunting of BRS following antagonizing TrkB by ANA-

12, which inhibited baroreflex gain and range. These observations together suggest a previously 

unknown role for BDNF neurotransmission in tonic sympatho-inhibition and baroreflex control. 

Second, the observation that this signaling pathway is impaired in the dmNTS during CHF provides 

a novel mechanism for understanding central alterations that contribute to baroreflex 

desensitization during CHF. Because both BDNF and ANA-12 had little effect on hemodynamic 

and RSNA parameters, the tonic sympatho-inhibition of BDNF may be withdrawn thus 

contributing to the increased sympathetic tone associated with CHF. Consistent with this finding, 

TrkB antagonism had little effect on the reduced BRS in CHF animals, which is likely due, in part, 

to decreased TrkB expression in the dmNTS during CHF. These results, taken together, implicate 

a reduction in BDNF/TrkB signaling in the dmNTS during CHF that contributes to sympatho-

excitation and baroreflex desensitization. 

The dmNTS has long been appreciated to be a primary site of baroreceptor afferent 

termination in the central nervous system (Seller & Illert, 1969; Jordan & Spyer, 1977), and early 

reports identified the role of dmNTS neurons in mediating the baroreflex (Crill & Reis, 1968; 

Palkovits et al., 1977). Seminal work by Talman et al. provided indication for the role of glutamate 
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as the predominant neurotransmitter responsible for conducting the blood pressure information 

through the dmNTS (1980). Glutamatergic signaling within the dmNTS has been extensively 

examined and demonstrated to be integral to the function of normal baroreflex activation (Talman 

et al., 1981; Dietrich et al., 1982; Machado, 2001; Talman & Lin, 2013).  A-fiber neuronal 

responses in the dmNTS were potentiated following stimulation of the aortic depressor nerve; an 

effect which increased baroreflex sensitivity. Interestingly, this was blocked by application of an 

NMDA antagonist, implicating the necessity of glutamatergic signaling in conducting and 

potentiating adaptation to baroreceptor input in the dmNTS (Tang & Dworkin, 2007b). Although 

glutamatergic signaling in the dmNTS is predominant, due to its complex neuronal composition, a 

variety of other neurotransmitters have also been demonstrated to be important in baroreflex arc 

conduction. Inhibitory potentials due to GABAergic signaling have been observed in rat dmNTS 

preparations (Glaum & Brooks, 1996). Furthermore, angiotensin II has also been demonstrated to 

elicit cardiovascular baroreflex responses in the dmNTS (Barnes et al., 1993, 2003; Fow et al., 

1994).  

Along with the well-known effects of neurotrophic factors on the developing nervous 

system, a large body of work has demonstrated the influence of neurotrophic factors on network 

patterning and long-term potentiation of synapses. The neurotrophins consist of a small family with 

varied tissue distribution and signaling mechanisms (Lewin & Barde, 1996; Minichiello, 2009). 

BDNF is highly expressed in the NTS (Conner et al., 1997) and in baroreceptor afferents which 

project to the NTS (Martin et al., 2009). BDNF signals primarily through TrkB and elicits several 

long-term neuromodulatory actions as well as immediate, rapid signaling affecting neuronal 

activity. BDNF rapidly enhances vesicular neurotransmitter release from excitatory neurons 

(Shinoda et al., 2014) in the hippocampus. TrkB phosphorylation of NMDA receptors increases 

their open probability (Levine et al., 1998), and BDNF/TrkB signaling results in rapid opening of 

TrpC channels (Li et al., 1999), Nav1.9 channels (Blum et al., 2002), and Ca2+ influx (Rose et al., 

2003). 
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Based on our observations that BDNF induces responses similar to that of glutamate in the 

dmNTS, we conclude that BDNF is excitatory to neurons in the dmNTS. This conclusion is further 

strengthened by the action of inhibiting TrkB thereby preventing endogenous BDNF signaling, 

which produced a neural inhibitory effect. Interestingly, a previous study (Clark et al., 2011) 

demonstrated that microinjection of exogenous BDNF into the dmNTS evoked a sympatho-

excitatory pressor response whereas administration of a non-specific TrkB antagonist K252a 

induced a depressor response in anesthetized rats, indicating that BDNF/TrkB signaling is 

inhibitory to NTS baroreceptor neurons in the normal state. The cause of the conflicting results by 

Clark et al. and our current findings is unclear. One possible explanation is that in the current study, 

we used a more specific TrkB receptor antagonist (ANA-12) (Cazorla et al., 2011) instead of the 

non-specific, tyrosine kinase inhibitor, K252a, often used as a TrkB antagonist as in the previous 

study by Clark et al. However, this fails to explain the difference related to BDNF NTS 

microinjection experiments between these two studies (excitatory vs inhibitory). Importantly, our 

observation that BDNF is excitatory to NTS baroreceptor neurons has been supported by several 

other studies conducted in neuronal networks such as the hippocampus (Minichiello, 2009), 

amygdala (Scharfman, 2013), and cortical neurons (Kim et al., 2012). Autonomic centers in the 

brainstem, such as the RVLM have also been shown to display neuronal excitation following 

injection of BDNF resulting in a pressor response (Wang & Zhou, 2002). Therefore, this is the first 

study to our knowledge to demonstrate that endogenous BDNF signaling in the dmNTS maintains 

tonic inhibition of sympathetic drive.  

Furthermore, not only do our results suggest a tonic, background inhibition of sympathetic 

outflow by BDNF/TrkB in the dmNTS, but they also suggest the necessity of BDNF/TrkB signaling 

in mediating baroreflex function. Although previous studies have identified the presence of 

BDNF/TrkB signaling in the NTS, no study to our knowledge has investigated the implications of 

BDNF/TrkB signaling in the NTS on baroreflex function in both normal and diseases states. We 

found that inhibiting endogenous BDNF signaling in the dmNTS through bilateral injections of 
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ANA-12 blunted both the HR and RSNA responses to changes in MAP. This suggests that TrkB 

signaling is an integral and critical signaling component in the dmNTS for communicating 

baroreflex signals. A recent report investigating the actions of BDNF on synaptic vesicle release 

from cultured rat hippocampal neurons indicated that BDNF enhances transmitter release from 

excitatory synapses but not inhibitory synapses (Shinoda et al., 2014). Furthermore, BDNF has 

been shown to decrease inhibitory GABA synaptic transmission and resultant IPSPs through its 

actions on the neuronal potassium chloride cotransporter 2 in Purkinje fibers (Huang et al., 2012). 

Our results suggest that a similar, excitation-predominant, response also occurs in the dmNTS of 

rats. It is very likely that endogenous BDNF may modulate the NTS barosensitive neurons via 

interaction with glutamatergic or GABAergic systems or a combination thereof. This hypothesis 

needs to be confirmed in future studies.  

Of particular interest in these observations is the potential that alterations in the 

BDNF/TrkB signaling in the dmNTS may play a role in the dysautonomia present during CHF. 

The diminished response to either BDNF or ANA-12 in the dmNTS of CHF rats suggests a 

preexisting suppression of this pathway during CHF, which is further strengthened by the 

observation that CHF rats had decreased TrkB expression in the dmNTS. Thus, withdrawal of 

BDNF/TrkB signaling in the dmNTS may be one explanation for the increased sympathetic tone 

associated with CHF (Zucker et al., 2012). 

Baroreflex function is decreased in many disease states such as CHF (Goldstein et al., 

1975; Wang et al., 2004; Zucker et al., 2009; Kar et al., 2011) and correlates with increased rates 

of mortality (Schwartz et al., 1988; La Rovere et al., 1998). The progression of baroreflex 

desensitization is complex and consists of both peripheral alterations to baroreceptor afferent input 

and central neuronal network dysregulation (Gnecchi Ruscone et al., 1987; Gao et al., 2005a; Wang 

et al., 2008). Many of the central mechanisms for baroreceptor desensitization remain unknown 

although evidence indicates a role for the renin-angiotensin system in mediating this dysfunction 

(Gao et al., 2005a; Wang et al., 2008; Zucker et al., 2009). In our present study, we observed a 
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decrease in baroreflex sensitivity in CHF rats, and manipulation of dmNTS signaling by 

antagonism of endogenous BDNF/TrkB signaling evoked less changes in baroreflex sensitivity. 

The observation that there is a lack of further inhibition following ANA-12 in CHF rats provides a 

rationale for decreased central control of baroreflex function during CHF. In addition, this 

observation coupled with the decreased expression of TrkB in the dmNTS of CHF rats provides 

evidence that impaired BDNF/TrkB signaling in the dmNTS is a mechanism by which central 

alterations in BRS occur during CHF. This decrease in TrkB expression is consistent with the lack 

of response to both exogenous BDNF and ANA-12 because a decrease in receptor expression 

would limit the response of the system to both exogenous application of ligand and antagonism on 

the endogenous signaling pathway. Thus we propose that a decrease in BDNF/TrkB signaling is 

one factor contributing to the central mechanism by which baroreflex sensitivity is reduced during 

CHF. 

Limitations 

Although this study demonstrates impaired BDNF/TrkB signaling mechanisms in the 

dmNTS as a potential explanation for blunted baroreflex sensitivity during CHF, there are some 

limitations to consider. First, it is unclear from the present study what the initiating cause of altered 

BDNF/TrkB signaling is. One possibility is decreased afferent input from peripheral baroreceptors 

(Niebauer et al., 1986) resulting in lower neuronal activity in the dmNTS. Because BDNF/TrkB 

signaling is highly regulated by neuronal activity (Zafra et al., 1990), changes to peripheral 

afferents as seen in CHF may have a profound impact on the regulation of BDNF/TrkB signaling 

in central reflex arcs such as the dmNTS. Another potential interaction between BDNF/TrkB in the 

dmNTS and CHF is the role that angiotensin II may play centrally during the development of CHF. 

Previous work has shown that angiotensin II injections in the NTS can desensitize the reflex 

bradycardia and sympatho-inhibition in response to baroreflex activation (Polson et al., 2007). It is 

possible that an interaction exists between the increased central renin-angiotensin system activity 
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in CHF (Wang et al., 2007; Gao et al., 2008; Zucker et al., 2009) and BDNF/TrkB regulation in 

the dmNTS. 

Another limitation of the current study is that all experiments were conducted under 

anesthesia. Although the baseline hemodynamic parameters and baroreflex sensitivity for our 

experiments were similar to those observed in the conscious state, we acknowledge that the impact 

of anesthetics could potentially play a role in confounding the results. However, given the inherent 

difficulty in conducting selective administration of reagents to the dmNTS in conscious animals, 

anesthetized preparations allow for the most selective and robust investigation into the signaling 

processes of the dmNTS. 

Finally, although we observed a differential expression of TrkB protein in the dmNTS 

during CHF, we failed to observe any change in total BDNF protein expression in the dmNTS. 

Nevertheless, this does not definitively preclude the possibility that the amount of presynaptic 

BDNF release from the baroreceptor afferent terminals to dmNTS postsynaptic neurons may be 

altered due to the peripheral baroreflex afferent desensitization in the CHF state. This hypothesis 

can be further explored in the future by using the microdialysis technique. 

Impairment of baroreflex function has been shown to be associated with progression of 

heart failure and a poor prognosis (Schwartz et al., 1988; Mortara et al., 1997; La Rovere et al., 

1998). The progression of baroreflex desensitization in CHF is at least, in part, due to central 

neuronal network dysregulation (Gnecchi Ruscone et al., 1987; Gao et al., 2005a; Wang et al., 

2008); however, the central mechanisms for baroreceptor desensitization remain largely unknown. 

Our data suggest a role for BDNF/TrkB signaling in the dmNTS in maintaining baroreflex control, 

and that BDNF/TrkB signaling is impaired during CHF. The specific mechanisms responsible for 

the BDNF/TrkB impairment during CHF remain to be investigated and possess a potential area for 

therapeutic intervention in sympatho-excitatory states such as CHF.   
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CHAPTER IV: CONTRIBUTION OF BDNF/TRKB 

SIGNALING TO SYMPATHO-EXCITATION 

FOLLOWING ICV ANGTIOTENSIN II  
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INTRODUCTION 

Previously in this dissertation we have demonstrated the connection between Ang II and 

BDNF in modulation of potassium currents in vitro and that the suppression of BDNF signaling in 

the NTS contributes to baroreflex dysfunction in the CHF state. We have also demonstrated a 

reduction in Kv4.3 channels in the RVLM of rats during CHF, and that restoring levels of Kv4.3 

in the RVLM attenuates the increased sympathetic tone associated with CHF. Therefore, the 

proposed cross-talk between central Ang II signaling and the actions of BDNF has been implicated 

but not directly investigated. Here we aim to demonstrate in vivo the connection between central 

Ang II signaling and BDNF in mediating sympatho-excitation. 

A recent study in which BDNF was overexpressed in the PVN of rats showed an increase 

in MAP and an increased hemodynamic (pressor and tachycardia) response to acute stressors such 

as water and restraint stress (Erdos et al., 2015) and demonstrated that BDNF overexpression 

augments Ang II signaling through the AT1R. However, the study did not investigate the 

relationship between Ang II and the BDNF/TrkB response which may be typical of cardiovascular 

disease states where central RAS activity may be elevated (Francis, 1985; Zucker et al., 2012; 

Biancardi et al., 2013).  

Central Ang II evokes hypertension and increased SNA (Osborn & Camara, 1997; Camara 

& Osborn, 1998; Gao et al., 2005b, 2014) and baroreflex dysfunction (Pan et al., 2007; Gao et al., 

2008). Central Ang II has also been shown to modulate metabolic dysfunction through increased 

thirst (Fitzsimons, 1998) and promotion of cachexia, a catabolic state (Brink et al., 1996, 2001; 

Yoshida et al., 2012). Many of these effects are mediated by Ang II signaling through the AT1R in 

presympathetic areas of the brainstem and hypothalmus (Gao et al., 2005b, 2008; Zucker et al., 

2009) and involve reactive oxygen signaling (Zimmerman et al., 2004; Chan et al., 2005; Sheh et 

al., 2007; Yin et al., 2010). However, little is understood about how AT1R activation by Ang II 
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induces long-term changes relating to neuronal excitability and synaptic plasticity of 

presympathetic centers, which ultimately results in sympatho-excitation.  

As previously discussed in this dissertation, we propose BDNF/TrkB signaling as a 

potential mechanism by which Ang II causes long-term, robust changes to central neuronal activity 

promoting sympatho-excitation. As we have demonstrated in vitro Ang II treatment causes an 

increase in BDNF expression and results in perturbations to K+ currents, here we hypothesize that 

central Ang II treatment will evoke a sympatho-excitatory state mediated through the actions 

of BDNF. We investigated the effect of antagonizing TrkB with ANA-12 on the responses to ICV 

Ang II infusion.  
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METHODS 

Animal Model 

For these experiments male Sprague-Dawley rats with starting weights ranging between 

300 and 350 g were used. The experimental protocols were approved by the Institutional Animal 

Care and Use Committee of the University of Nebraska Medical Center and were carried out under 

the guidelines of the National Institutes of Health Guide for the Care and Use of Laboratory 

Animals. An overview of the experimental paradigm and timeline is provided in Figure 26. 

Animal Preparation and ICV Infusions 

All rats were implanted with radiotelemetry devices as described in Chapter I. Immediately 

following telemetry implantation anesthetized rats were positioned in a stereotaxic apparatus. The 

skull was exposed and Bregma was identified. A small hole was bored in the skull at 0.8 mm caudal 

to Bregma and 1.75 mm lateral to the midline. An Alzet Brain Infusion Kit 2 cannula was inserted 

through the hole, and the tip of the cannula was positioned 4 mm deep to the surface of the skull 

into the right lateral ventricle. The cannula was fixed to the skull with dental acrylic with watch 

screws positioned both rostally and caudally to the cannula for support. The cannula was attached 

to a catheter connected to a subcutaneous osmotic minipump (Alzet 2002; 0.5 µl/h for 14 days) 

containing vehicle. The skin was closed over the skull, and the animal was allowed to recover. 

Following one week of recovery, rats were placed in metabolic cages for 48 h to acclimate. 

Following acclimation, baseline metabolic and hemodynamic recordings were collected as 

described in Chapter II. Following one week of baseline recordings, rats were anesthetized with 2-

4% isuflorane, a small incision was made close to the osmotic minipump, and pumps were removed 

and exchanged with a pump containing either Ang II, Ang II+ANA-12, ANA-12 alone, or vehicle.  

Ang II and ANA-12 were purchased from Sigma-Aldrich. An effective ICV dose of 20 

ng/min Ang II was used based on a survey of the literature  (Camara & Osborn, 1998, 2001; 



97 

 

 

Fitzsimons, 1998; Clayton et al., 2014) and through preliminary dose-response studies (Figure A3). 

ANA-12 was infused ICV at 50 ng/h alone or in combination with Ang II. All infusions were 

dissolved in vehicle composed of a 1:1 solution of aCSF to DMSO.  

Conscious Parameters 

Telemetry recordings were collected as described in detail in Chapter I for collection of 

MAP, HR, and HRV. The pulse wave recordings were exported to the freely available HemoLab 

Software (Iowa City, IA - http://www.haraldstauss.com/HemoLab/HemoLab.html) for processing 

of spontaneous baroreflex sensitivity (sBRS). Traces were filtered through a Butterworth low-pass 

filter with a corner frequency of 20 Hz and the baroreflex gain was determined by the sequence 

method of sBRS (Bertinieri et al., 1985; Stauss et al., 2006).  In brief, baroreflex sequences were 

defined by a minimum of three consecutive beat to beat intervals of either increasing or decreasing 

systolic pressure associated with increasing or decreasing pulse interval, respectively. No time 

delay was applied between pressure and pulse interval changes, and no threshold for pressure 

changes was used. Only sequences with a correlation coefficient > 0.8 between pressure and pulse 

interval were used with the slope of the resultant linear correlation equation set as the baroreflex 

gain. Up sequences (pressure increases) and down sequences (pressure decreases) were 

differentiated and reported separately. Metabolic cage measurements were made once every 24 h 

at approximately 3 PM following completion of the day’s telemetry recordings.  

Acute Animal Preparation 

For acute, terminal animal experiments, rats were prepared in the same manner as described 

in detail in Chapter I for recording of RSNA and baroreflex sensitivity. 

Statistics 

Daily MAP, HR, and metabolic data were analyzed using RM-ANOVA. All other group 

interactions were compared using a one or two-way ANOVA with a Tukey’s post-hoc test. A P 
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value < 0.05 was considered statistically significant. All data was analyzed using SPSS or 

SigmaPlot software. 

 

  

Figure 26 - Experimental timeline and schematic for ICV infusion of Ang II ± ANA-12 
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RESULTS 

Hemodynamic Responses to ICV Ang II 

Rats administered 20 ng/min Ang II ICV demonstrated an immediate and sustained 

increase in MAP with a peak increase of approximately 50 mmHg (Figure 27B). Coinfusion of 

ANA-12 with Ang II also increased MAP relative to baseline with a peak increase of approximately 

20 mmHg (Figure 27B); however this increase was attenuated as compared to Ang II alone (Figure 

27A). Heart rate increased relative to baseline in ICV Ang II animals and in those coinfused with 

ANA-12. There was a peak increase in Ang II alone of 70 bpm at day 5 post infusion, and Ang II 

+ ANA-12 delayed the increase in heart rate to the end of the infusion period and was increased 

approximately 40 bpm relative to baseline (Figure 28B). Vehicle and ANA-12 alone had no effect 

on blood pressure or heart rate. 

Although no significant changes were observed relative to heart rate variability in terms of 

SDNN or RMSSD following ICV Ang II treatment (Figure 29), RMSSD trended toward a decrease 

in Ang II treated animals and was not affected by coinfusion of ANA-12. In the frequency domain, 

LF/HF ratio increased following Ang II (Figure 30), and similar to HRV this was not improved by 

coinfusion of ANA-12. There appeared to be a trend toward a blunted spontaneous baroreflex 

following ICV Ang II in both up and down sequences (Figure 31); however, neither of these 

parameters reached statistical significance. 
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Figure 27 - Effect of ICV Ang II with or without ANA-12 on MAP 

Mean daily MAP values  for rats given ICV Ang II, Ang II + ANA-12, ANA-12 alone, or vehicle (A) 

and change in MAP relative to baseline measurements (B). RM-ANOVA was used to determine group 

interaction and change in pressure from baseline. *P < 0.05 vs. Vehicle; #P < 0.05 Ang II + ANA-12 

vs. Ang II; δ P < 0.05 vs. respective baseline; n = 4/group. 
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Figure 28 – Effect of ICV Ang II with or without ANA-12 on HR 

Mean daily HR values for rats given ICV Ang II, Ang II + ANA-12, ANA-12 alone, or 

vehicle (A) and change in HR relative to baseline measurements (B). RM-ANOVA was used 

to determine group interaction and change in pressure from baseline. N.S. = not significant; 

δ, P < 0.05 vs. respective baseline; n = 4/group. 
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Figure 29 - Heart rate variability parameters following ICV Ang II 

SDNN (A) and RMSSD (B) parameters following ICV infusion of Ang II with or 

without coinfusion of ANA-12. No significant differences were observed by one-way 

ANOVA. n = 4/group. 
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Figure 30 - Frequency domain analysis following IVC Ang II 

Low frequency (0.06-0.7 Hz) / high frequency (0.7-3.0 Hz) ratio is elevated following Ang II infusion 

ICV. Coinfusion of ANA-12 has no effect on attenuating the LF/HF ratio. * P < 0.05 vs. Vehicle; n = 

4/group. 
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Figure 31 - Spontaneous baroreflex sensitivity following ICV Ang II. 

No significant changes to either the up sequences (A) or down sequences (B) baroreflex 

gain following ICV Ang II with or without coinfusion of ANA-12. No group interaction as 

measured by one-way ANOVA; n = 5/group 
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ICV Ang II and ANA-12 Alter Metabolic Balance 

Following ICV Ang II, daily water intake dramatically increased over the course of the two 

weeks of infusion to levels approximately 4-5 times the baseline daily intake by the end of the two-

week infusion (Figure 32). Concurrent with the dipsogenic response, daily urine output also 

increased (Figure 32). Coinfusion of ANA-12 with Ang II augmented these responses in the early 

period of 2-8 days post infusion resulting in rats with 5 times the daily water intake by day 2 of 

infusion. Rats receiving ICV Ang II also demonstrated a lack of appetite with a decrease in daily 

food intake and fecal output (Figure 33). Coinfusion of ANA-12 with Ang II reversed the 

suppression of appetite as compared to IVC Ang II alone. ANA-12 alone or vehicle had no effect 

on water intake, urine output, food intake, or fecal output over the course of the ICV infusion. 
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Figure 32 - Water balance following ICV Ang II. 

ICV Ang II increased water intake (A) and urine output (B) and this effect was potentiated 

by coinfusion of ANA-12. RM-ANOVA; δ P < 0.05 relative to respective baseline; *P < 

0.05 vs. Vehicle; #P < 0.05 vs. Ang II; n = 4/group. 
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Daily Food Balance
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Figure 33 - Daily food balance following ICV Ang II. 

ICV Ang II decreased food intake (A) and fecal output (B) and coinfusion of ANA-12 

prevented this decreased appetite. RM-ANOVA; δ P < 0.05 Ang II relative to baseline; 

n = 4/group. 
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Acute Experiments Following ICV Ang II 

Toward the end of the ICV infusion duration (day 12-13) rats were anesthetized and 

instrumented for measurement of baroreflex sensitivity and RSNA.  

Rats given Ang II ICV exhibited baroreflex dysfunction with a blunted heart rate range 

compared to vehicle controls and max gain. Ang II + ANA-12 did not restore HR baroreflex range 

but improved max gain. ANA-12 alone had no effect on either parameter compared to vehicle 

(Figure 34 and Table 6). Baroreflex control of RSNA exhibited a trend toward a blunted range, and 

max gain was significantly blunted in Ang II treated animals compared to vehicle controls. Ang II 

+ ANA-12 restored RSNA range and max gain compared to Ang II alone. ANA-12 alone had no 

effect compared to vehicle controls (Figure 35 and Table 6). 

Resting RSNA levels were significantly elevated in ICV Ang II rats compared to vehicle 

controls. Coinfusion of ANA-12 with Ang II attenuated the increase in RSNA. ANA-12 alone had 

no effect on RSNA as compared to control (Figure 36-Figure 37). 
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Table 5 - Left Ventricular Hemodynamic Parameters 

 Vehicle Ang II Ang II + ANA-12 ANA-12 

n 3 4 4 3 

Max Pressure 

(mmHg) 
120.6 ± 7.6 144.3 ± 11.8 125.3 ± 11.4 126.3 ± 10.2 

Min Pressure 

(mmHg) 
1.3 ± 1.6 0.1 ± 0.9 2.7 ± 0.4 4.7 ± 1.0# 

EDP (mmHg) 4.6 ± 1.6 5.9 ± 0.5 6.0 ± 0.4 8.7 ± 1.1 

Mean Pressure 

(mmHg) 
54.6 ± 3.7 54.7 ± 3.0 55.0 ± 4.7 62.1 ± 9.0 

Max-Min Pressure 

(mmHg) 
119.3 ± 8.2 144.2 ± 12.7 122.5 ± 11.3 121.6 ± 9.6 

Systolic Duration 

(ms) 
74.7 ± 1.9 72.5 ± 2.6 71.1 ± 3.7 77.0 ± 3.4 

Diastolic Duration 

(ms) 
71.1 ± 2.8 98.9 ± 6.1* 75.6 ± 5.0 71.3 ± 8.5# 

Cycle Duration 

(ms) 
145.8 ± 4.1 170.5 ± 2.8* 146.8 ± 6.4 148.1 ± 8.0# 

Heart Rate (bpm) 413 ± 12 366 ± 3 414 ± 19 414 ± 23 

Max dP/dT 

(mmHg/s) 
7564 ± 1043 10449 ± 1599 8934 ± 1256 9514 ± 1746 

Contractility Index 

(1/s) 
91.6 ± 7.4 127.8 ± 14.0 136.3 ± 28.1 118.6 ± 16.6 

Min dP/dT 

(mmHg/s) 
-9460 ± 1396 -8338 ± 1292 -10718 ± 2126 -12021 ± 1670 

IRP Average 

dP/dT (mmHg/s) 
-3844 ± 381 -3745 ± 138 -4094 ± 657 -5206 ± 1172 

Tau (ms) 10.9 ± 0.6 18.3 ± 3.9 12.0 ± 2.6 8.9 ± 1.4 

Pressure Time 

Index (mmHg·s) 
7.08 ± 0.30 7.78 ± 0.32 6.97 ± 0.38 7.97 ± 0.91 

EDP = End diastolic pressure; IRP = isovolumetric relaxation period; *P < 0.05 vs. Vehicle, #P < 0.05 vs. Ang II 
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Figure 34 - Ang II blunts the HR baroreflex 

Ang II blunted both the range and max gain of the HR response to changes in MAP. Coinfusion of ANA-

12 improved the max gain, but failed to improve the range of the baroreflex response. 
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Figure 35 - Renal sympathetic nerve activity baroreflex following ICV Ang II 

ICV Ang II caused a rightward shift and blunted max gain relative to vehicle. Coinfusion of ANA-12 

improved the max gain of the RSNA response to changes in MAP and partially restored the shifted 

baroreflex. 
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a, range 

(% or bpm) 

x0, BP50 

(mmHg) 

y0, min 

(% or bpm) 

Gmax 

(% or bpm/mmHg) 

MAP-RSNA     

ICV Ang II 58.4 ± 10.7 114.7 ± 3.1* 39.4 ± 4.4 1.5 ± 0.2* 

ICV Ang II + ANA-12 70.7 ± 13.5 105.1 ± 4.1 33.8 ± 8.0 2.8 ± 0.5† 

ICV ANA-12 68.9 ± 2.9 90.3 ± 9.3 36.9 ± 4.4 2.4 ± 0.8 

ICV Vehicle 68.1 ± 7.1 86.5 ± 7.3 35.8 ± 6.7 2.8 ± 0.2 

MAP-HR     

ICV Ang II 30.2 ± 12.0* 138.7 ± 16.6 289.5 ± 19.0 1.0 ± 0.6* 

ICV Ang II + ANA-12 55.6 ± 11.0 133.9  ±  4.2 281.0 ± 15.3 3.5 ± 1.5† 

ICV ANA-12 142.8 ± 21.9 139.1  ±  7.0 246.1 ± 9.8 4.4 ± 1.0 

ICV Vehicle 137.5 ± 21.7 123.4 ± 11.8 212.6 ± 18.5 4.2 ± 1.2 
Values are mean ± SEM. a is the RSNA or HR range,  x0 is the pressure at the midpoint of the range 

(BP50), y0 is minimum RSNA or HR and Gmax is the maximum gain of baroreflex curve. n = 4/group 

*, P < 0.05 relative to ICV Vehicle; †, P < 0.05 relative to ICV Ang II 

Table 6 - Baroreflex parameters following ICV Ang ± ANA-12 
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Figure 36 – Representative tracings of renal sympathetic nerve activity following Ang II or Ang II 

+ ANA-12. 
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Figure 37 - Baseline renal sympathetic nerve activity following ICV Ang II 

ICV Ang II increased RSNA as expressed as a % of maximum activity, and coinfusion of ANA-12 

attenuated this increase. One-way ANOVA; *, P < 0.05 vs. Vehicle; #, P < 0.05 vs. Ang II. n = 4/group. 



115 

 

 

Body and Organ Weights Following ICV Ang II 

Concomitant with the decrease in appetite as shown in Figure 33, rats receiving ICV Ang 

II had lower body weights as compared to vehicle controls (Table 7). Although ICV Ang II + ANA-

12 animals did not exhibit an appreciable decrease in food intake, final body weight was 

significantly reduced compared to vehicle controls. Due to the drastic decrease in body weight of 

Ang II and Ang II+ANA-12 animals, many organs also were reduced in weight in terms of absolute 

weight or when normalized to tibia length. However, when organ weights were normalized relative 

to body weight, heart and wet lung weights trended toward an increase in Ang II treated animals, 

and both of these weight changes were attenuated by coinfusion of ANA-12. Interestingly, the 

spleen to body weight ratio dramatically decreased by approximately 30% relative to vehicle treated 

controls in Ang II rats and was not attenuated by coinfusion of ANA-12.   
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Table 7 - Final body and organ weights following ICV treatment  

  Vehicle Ang II Ang II + ANA-12 ANA-12 

n 4 4 4 4 

Body weight (g) 480.0 ± 25.8 330.0 ± 28.5* 415.0 ± 11.5*# 502.5 ± 15.6# 

Tibia (cm) 5.88 ± 0.03 5.80 ± 0.04 5.85 ± 0.03 5.85 ± 0.07 

Heart weight (mg) 1571.7 ± 115.1 1257.0 ± 81.1 1361.5 ± 71.9 1555.5 ± 14.6 

HW/BW 3.3 ± 0.2 3.8 ± 0.1 3.3 ± 0.1 3.1 ± 0.1# 

HW/TL 267.0 ± 18.8 216.9 ± 14.7 232.7 ± 12.4 266.0 ± 2.0 

Wet Lung (mg) 2089.4 ± 89.4 1730.0 ± 76.6* 1580.5 ± 47.4* 1776.0 ± 25.2* 

WL/BW 4.5 ± 0.4 5.4 ± 0.5 3.8 ± 0.1# 3.6 ± 0.1# 

WL/TL 355.6 ± 16.5 298.5 ± 14.2* 270.3 ± 9.0* 303.7 ± 4.8 

Spleen (mg) 960.0 ± 46.9 435.1 ± 58.9* 471.4 ± 41.2* 800.4 ± 32.8 

S/BW 1.9 ± 0.2 1.3 ± 0.1* 1.1 ± 0.1* 1.6 ± 0.1 

S/TL 162.7 ± 8.0 75.2 ± 10.4* 80.6 ± 7.2* 137.0 ± 6.5 

Liver (g) 17.7 ± 0.9 11.4 ± 1.2* 12.3 ± 1.1* 18.7 ± 0.8#† 

L/BW 34.4 ± 1.2 35.2 ± 1.7 29.5 ± 2.0 37.2 ± 1.3† 

L/TL 3.0 ± 0.2 2.1 ± 0.2* 2.1 ± 0.2* 3.2 ± 0.2#† 

Left Kidney (mg) 1695.5 ± 17.0 1566.8 ± 97.8 1652.4 ± 118.8 2008.0 ± 63.7# 

Right Kidney (mg) 1660.9 ± 24.0 1591.5 ± 99.4 1722.0 ± 105.3 2043.6 ± 72.9# 

BW = body weight; HW = heart weight; TL = tibia length; S = spleen; L = liver; *P < 0.05 vs. Vehicle, #P < 0.05 vs. 

Ang II; †P < 0.05 vs. Ang II + ANA-12 one-way ANOVA 
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DISCUSSION 

The major findings of the current study are that TrkB antagonism by ANA-12 attenuated 

the increased MAP, RSNA, and baroreflex dysfunction caused by central Ang II signaling. Other 

important findings include a potentiated dipsogenic and polyuric response to ICV Ang II by 

coinfusion of ANA-12 and decreased appetite and cachexia caused by central Ang II infusion. 

These in vivo observations implicate the importance of BDNF/TrkB signaling in Ang II-induced 

sympatho-excitation and suggest potentially disparate signaling mechanisms involved in 

sympathetic control vs. thirst/metabolic balance under central Ang II. 

First, that BDNF/TrkB signaling is important in mediating the sympatho-excitation 

following ICV Ang II is in agreement with our in vitro observations of Ang II-induced increases in 

BDNF expression and the BDNF-mediated decrease of K+ currents (Becker et al., 2015). Because 

antagonizing TrkB with ANA-12 attenuates the increased MAP (Figure 27) and completely 

prevents the increased RSNA (Figure 37) following Ang II, we conclude that BDNF/TrkB 

signaling is an important component in Ang II-mediated sympatho-excitation. A previous report 

has indicated that overexpression of BDNF in the PVN is sufficient to induce hypertension (Erdos 

et al., 2015) implicating BDNF signaling in presympathetic centers of the brain as being 

hypertensive, and acute injections of BDNF into presympathetic areas such as the RVLM in 

anesthetized rat preparations increases MAP (Wang & Zhou, 2002). However, in vivo interactions 

between BDNF and Ang II in promotion of sympathetic nerve activity are lacking. Here we extend 

these previous reports suggesting a sympatho-excitatory effect of BDNF and integrate BDNF/TrkB 

signaling with centrally mediated Ang II-induced sympathetic activity, which itself has long been 

appreciated (Zimmerman et al., 2004; Patel & Zheng, 2011; Zucker et al., 2012; Xiao et al., 2013; 

Biancardi et al., 2013). 

ANA-12 was able to completely prevent the increase in RSNA caused by central Ang II; 

however, ANA-12 only partially attenuated the hypertensive response to Ang II and had no 
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measurable impact on LF/HF ratio or HR. One potential explanation for this disparity is the nature 

of the experimental preparation for each parameter. RSNA was measured in anesthetized animals 

at the very end of the infusion period whereas LF/HF ratio and HR were measured in conscious 

animals over the course of the infusion time. The effect of ANA-12 could be washed out by the 

involvement of higher centers’ influence on these conscious parameters. The effect of Ang II may 

also be disparate across different sympathetic nerve beds. The renal sympathetic bed may be more 

directly influenced by an Ang II-BDNF interaction than the cardiac sympathetic bed, which would 

result in an observable difference in RSNA, but not HR or markers of HRV. Vasomotor 

sympathetic tone may be under mixed influence from BDNF-dependent and BDNF-independent 

presympathetic centers thus antagonism of TrkB may only partially prevent an Ang II-induced 

hypertensive response. We are unable to directly elucidate the answers to these questions from the 

current study, and future work will be important in exploring the particular autonomic centers 

impacted by an Ang II-BDNF signaling mechanism. In a salt-loaded model, previous studies have 

found that renal denervation blunts the hypertensive response of ICV Ang II (Osborn & Camara, 

1997). Thus the renal nerves may play a predominant role in mediating central Ang II-induced 

hypertension, and RSNA may be preferentially activated relative to other sympathetic nerve beds. 

Central administration of Ang II is well known to evoke a potent and immediate drinking 

response (as comprehensively reviewed by Fitzsimons, 1998). This response is a primary, 

neurogenic dipsogenic response as adrenalectomized, hypophysectomized (Avrith et al., 1980) or 

bilaterally nephrectomized rats (Avrith & Fitzsimons, 1980) still respond to bolus central injections 

of Ang II. Interestingly, in rats receiving 6 µg/h (100 ng/min) in the lateral cerebral ventricle for 7 

days, there was only a transient dipsogenic response that the authors speculated was due to thirst 

inhibition by the sustained increase in MAP (Dinicolantonio et al., 1982). The dose used in the 

present study is lower than used by Di Nicolantonio et al. and displays a less drastic hypertensive 

response, which could explain the lack of a complete pressor-mediated suppression of Ang II-

induced thirst. Furthermore, in animals receiving coinfusion of ANA-12, there is a more robust and 
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immediate increase in daily water intake following Ang II, suggesting a potential uncoupling of the 

inhibitory feedback control of Ang II-induced thirst. Previous studies investigating the influence of 

arterial pressure and baroreflex input on the dipsogenic response of central Ang II found a 

reciprocal relationship between MAP and central Ang II-induced thirst that was not affected by 

sino-aortic denervation indicating the relationship is baroreflex independent (Thunhorst & Johnson, 

1993). Due to the observation that coinfusion of ANA-12 blunted the hypertensive response to 

central Ang II, this lower pressure would have reduced negative feedback on Ang II-induced thirst. 

Hence, it is likely that ANA-12 is predominately attenuating the increase in sympathetic tone 

following central Ang II and the potentiating effect on thirst is a secondary response to attenuated 

MAP. Although there was an initial potentiation of thirst by coinfusion of ANA-12 with Ang II, 

both groups exhibited similar drinking behavior by the end of the 12 day infusion protocol. To our 

knowledge few studies have investigated this relationship for longer infusion periods as most 

studies are acute or conclude by day 7 of ICV infusion. The convergence of drinking behavior at 

the later stages of infusion suggests a withdrawal of the pressure-mediated inhibition of drinking 

and provides observations warranting further study in long-term, chronically instrumented animals. 

We observed baroreflex dysfunction in both the Ang II and Ang II + ANA-12 groups. 

Previous work has implicated central Ang II signaling in baroreflex dysfunction (Gao et al., 2005b, 

2014; Pan et al., 2007) particularly through its action on the AT1R and promotion of sympatho-

excitation in presympathetic areas such as the PVN and RVLM. Here we also observed baroreflex 

dysfunction following central Ang II, and coinfusion of ANA-12 had modest improvements on a 

number of baroreflex parameters. It is unclear however, if ANA-12 itself had an effect on mediating 

baroreflex sensitivity or if improvements to the baroreflex were secondary to improvements in 

sympathetic tone and MAP. As hypertension itself promotes baroreflex dysfunction through 

resetting and shifting response curves to higher pressures (Gao et al., 2005b; Pan et al., 2007; 

Yamamoto et al., 2013) and blunting sensitivity, the baroreflex dysfunction observed in our hands 

in the current study could be explained as a secondary result of the increased MAP and sympathetic 



120 

 

 

outflow. Accordingly, the reduction in sympathetic tone and MAP by coinfusion of ANA-12 also 

attenuated the rightward shift of the baroreflex.  

The direct effects of ANA-12 on modulating the baroreflex through its actions on central 

autonomic neurons cannot be excluded. As we demonstrated in the previous chapter, ANA-12 in 

the dmNTS inhibits baroreflex function, a finding that appears in conflict with the results presented 

here. An important distinction between these two studies is the route of ANA-12 delivery. In the 

preceding chapter, ANA-12 was directly microinjected into the dmNTS thereby isolating its effects 

to a specific, sympatho-inhibitory autonomic center. Conversely, in the present study, ANA-12 was 

infused ICV and would likely affect multiple autonomic centers and particularly the presympathetic 

areas of the SFO and PVN, which are sensitive to factors circulating in the CSF (Buggy et al.; 

Mangiapane & Simpson, 1980; Fitzsimons, 1998). These sites also contain a high concentration of 

AT1R making them likely targets for the action of ICV Ang II (Song et al., 1992; Lenkei et al., 

1997; Allen et al., 2000). Therefore the predominant actions of ICV infusion of Ang II and ANA-

12 are on control of neuronal activity of these presympathetic sites, and less likely through actions 

on areas such as the NTS. Furthermore, the SFO, PVN, and RVLM are autonomic integration sites 

that provide excitatory neuronal output toward the sympathetic nervous system, with the PVN and 

RVLM possessing direct neuronal projections to the IML. Thus even if central Ang II and ANA-

12 have an effect on NTS or other higher order neurons, the effect may be buffered by the direct 

effects on these autonomic centers with direct outflow to the peripheral sympathetic nervous 

system. The effects of ANA-12 on baroreflex function are therefore mostly due to sympathetic 

withdrawal from direct actions on sites such as the SFO, PVN, and RVLM and less likely due to 

effects on higher order neurons such as the NTS. 

Another observation from this study is the marked cachexia and appetite suppression 

following ICV Ang II. Peripheral Ang II signaling results in cachexia through direct actions on 

skeletal muscle and activation of neurohumoral factors (Brink et al., 1996, 2001). The central 

actions of Ang II on metabolic state, appetite, and muscle wasting are less known; however, 
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previous work with ICV Ang II infusion also demonstrated a decrease in appetite and severe fat 

and muscle tissue wasting concurrent with a decrease in orexic peptides such as neuropeptide Y 

and orexin in the hypothalamus (Yoshida et al., 2012). The present study demonstrates a similar 

finding with a robust decrease in body mass and food intake following ICV infusion of Ang II. 

Interestingly, coinfusion with ANA-12 prevented the depressed appetite of Ang II and attenuated 

the decrease in body mass relative to Ang II alone, but did not normalize body mass to that of 

vehicle controls. This indicates that BDNF/TrkB signaling may be involved in the appetite 

suppressant actions of central Ang II, but may only be partially effective in reducing the 

sympathetic-driven cachexia (Hryniewicz et al., 2003; Laviano et al., 2008). 

Consistent with a decrease in total body mass, most organ masses were reduced following 

ICV Ang II or Ang II + ANA-12 (Table 7). When normalized to body mass, most organ masses 

were similar across groups with the noticeable exception of spleen mass. Spleen to body mass ratio 

was decreased in both Ang II and Ang II + ANA-12 rats. In the salt-Ang II model of neurogenic 

hypertension, splanchnic sympathetic nervous system activity is thought to invoke a robust 

constriction of splanchnic veins and arteries, decreasing splanchnic and vascular capacitance 

promoting hypertension (King et al., 2007; Osborn et al., 2011). Splanchnic sympathetic tone is 

robustly increased following Ang II and may explain the decreased spleen weight observed here. 

ANA-12 did not attenuate this decrease in spleen size, further suggesting that there is differential 

control between Ang II and BDNF/TrkB centrally in mediating different vascular and organ bed 

sympathetic activity. Further work will be required to elucidate the specific sites of action. 

In conclusion, antagonizing BDNF/TrkB signaling with ANA-12 attenuated parameters of 

sympatho-excitation and hypertension following ICV Ang II infusion further implicating the 

necessity of BDNF/TrkB in mediating the neuronal effects of Ang II. ANA-12 however did not 

prevent all effects of ICV Ang II such as slight cachexia, decrease in spleen weight, and water 

balance, suggesting differential control of the Ang II – BDNF/TrkB axis in mediating various organ 

bed sympathetic tone, thirst, and metabolism.  
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Major Findings of the Dissertation 

The major findings of the dissertation are: 

1. That Kv4.3 overexpression in the RVLM is sympatho-inhibitory (Chapter I). 

2. That BDNF is a necessary component of the mechanism by which Ang II reduces K+ currents 

(Chapter II) 

3. That BDNF is an important component in modulation of baroreflex function in normal 

physiological states (Chapter III). 

4. That BDNF/TrkB signaling is reduced in the NTS in the CHF state resulting in central 

baroreflex dysfunction (Chapter III). 

5. That BDNF/TrkB signaling is a necessary component in maintaining central Ang II-mediated 

hypertensive and sympatho-excitatory responses (Chapter IV). 

In addition to these major findings, we have provided evidence supporting the previously 

observed reductions in Kv4.3 channel protein in the RVLM post-MI (Chapter I)  (Gao et al., 2010). 

We have also demonstrated that BDNF signaling is downstream of Ang II in mediating reductions 

in IA, and requires p38 MAPK (Chapter II), that a reduction in TrkB expression in the dmNTS 

likely mediates blunted baroreflex sensitivity during CHF (Chapter III), and that in addition to the 

hemodynamic protection of antagonizing TrkB during central Ang II, ANA-12 blunts the depressed 

appetite and cachexia due to ICV Ang II. 

Taken together, these findings indicate that BDNF/TrkB signaling is important for the 

effects of Ang II on neuronal function in autonomic control centers of the brain in 

cardiovascular disease states such as CHF and hypertension. Figure 38 presents an overview 

of the major findings and a proposed mechanism of Ang II/BDNF interaction in promoting 

sympatho-excitation. 
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Figure 38 - Representative Diagram of the Major Findings of the Dissertation 

(see text for details) 



125 

 

 

Objectives 1-2: BDNF and Potassium Currents 

Similar to a previous study from this laboratory (Gao et al., 2010) we have observed a 

decreased expression of Kv4.3 in the RVLM of rats post-MI (Figure 5). As Kv4.3 mediates IA, it is 

likely that the decreased expression of this channel protein contributes to the sympatho-excitation 

in cardiovascular diseases such as CHF and hypertension. We demonstrated that overexpression of 

Kv4.3 in the RVLM attenuates the sympatho-excitation following MI (Figure 12), lending further 

support to the hypothesis that IA is an important negative regulator of neuronal activity in 

presympathetic neurons of the central nervous system. However, these results are based on the use 

of moderately-infarcted groups of rats, and may not be representative of CHF. Further work will 

be necessary to confirm the beneficial effects of Kv4.3 expression in the RVLM by use of 

confirmed and well-defined CHF models. 

The effects of BDNF in the hippocampus and other tissues have been well studied 

including the ability of BDNF to modulate K+ currents (Chao, 2003; Benarroch, 2015). 

BDNF/TrkB and Ang II/AT1R signaling share many secondary messengers including PKA, 

MAPK/ERK (York et al., 1998; Chan et al., 2005, 2007; Park & Poo, 2012; Xiao et al., 2013), 

CAMKs (Sun et al., 2003; Caldeira et al., 2007; Minichiello, 2009), suggesting a potential for 

convergent signaling of both Ang II and BDNF. Furthermore, MAPK/ERK directly phosphorylates 

Kv4.2  (Adams et al., 2000), and the CamKII-MAPK pathway destabilizes Kv4.3 mRNA (Zhou et 

al., 2012) suggesting that these points of convergence are important in modulating IA. 

Here, we demonstrate, for the first time to our knowledge, that BDNF is an important 

mediator of the effects of Ang II on reducing IA (Figure 16) thus linking the BDNF and Ang II 

pathways in modulation of neuronal K+ currents. This connection appears to be unidirectional in 

that Ang II signaling increases BDNF expression as blocking the action of BDNF attenuated the 

Ang II-induced reductions in K+ currents, but AT1R blockade had no effect on the ability of BDNF 

to suppress K+ currents (Figure 17). Our experiments would then suggest that BDNF expression 
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and activity is a result of Ang II signaling and that the effects of BDNF are independent of Ang II. 

Interestingly, in vivo work done recently by Erdos et al. (2015) suggests that BDNF signaling in 

the PVN increases local RAS activity. A potential explanation is the inherent difference in 

experimental design. We investigated the effects of BDNF and Ang II on K+ currents in an in vitro 

cell culture line, whereas Erdos et al. overexpressed BDNF in a presympathetic nucleus in an intact 

animal. Although there are scattered reports of spontaneous APs firing from CATH.a cells (Du et 

al., 2004), in our hands we have not been able to observe either spontaneous or current infused APs 

from CATH.a cells. This limits our ability to draw conclusions about the activity-dependent 

modulation of signaling processes. One potential explanation for the observation of Erdos et al. that 

BDNF potentiated AT1R signaling could be that increased neuronal activity (i.e. increased AP 

frequency) mediated by BDNF caused differential expression of the local RAS. The expression of 

BDNF is under potent activity-based control (Nagappan & Lu, 2005; Rothman & Mattson, 2012), 

and it would be an exciting observation that the RAS may likewise be modulated by changes to 

neuronal activity. Our cell culture model is limited in this regard; however, this limitation itself 

provides an opportunity for conclusions to be made about the regulation of BDNF expression. 

Devoid of observable changes to neuronal activity, we still observed an increased BDNF expression 

following Ang II treatment indicating that BDNF expression may be under control of Ang II 

signaling. The potential of the neuronal RAS to be under activity-dependent control and the 

particular transcriptional regulation of Ang II-induced BDNF expression warrant future study and 

will be exciting avenues for further understanding the role Ang II and BDNF play in mediating 

presympathetic neuronal activity. 

Future work will be important in continuing the initial observations made in this 

dissertation. As we have shown that BDNF is a component of the Ang II-mediated decrease in K+ 

currents, that Kv4.3 is important in limiting the sympatho-excitation following MI, and that 

antagonizing TrkB blunts the effects of ICV Ang II (Chapter IV), it will be important for future 

work to specifically target presympathetic areas such as the RVLM, manipulate the activity of 
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BDNF and the RAS in vivo, and measure its effects on IA. Such work could include studies 

overexpressing dominant-negative TrkB mutants in the RVLM of rats with CHF and evaluating 

changes to the hemodynamic state and sympathetic nervous system. We have demonstrated that 

p38 MAPK is needed to mediate the effects of BDNF on K+ currents (Figure 18), but future work 

is needed to investigate other areas of BDNF and AT1R convergence such as CaMK, or to 

determine if reactive oxygen species play a role in mediating BDNF expression or BDNF-mediated 

reductions in IA. We have demonstrated the effects of Ang II and BDNF on cultured neuron-like 

cells; however, future work using brain slice or acutely dissociated central neurons will be 

instrumental in better understanding of the role of Ang II-BDNF interactions in primary neurons. 

Objective 3: BDNF in Baroreflex Control 

Because baroreflex dysfunction is a common observation during CHF, we explored the 

hypothesis that BDNF/TrkB signaling is involved in mediating the central desensitization of 

baroreflex function in a rat model of CHF. The implications of this study are two-fold. First, we 

observed a previously undescribed role for BDNF in the dmNTS mediating the baroreflex in normal 

(sham CHF) physiological conditions. Of particular interest was the observation that ANA-12 

evoked a pressor and sympatho-excitatory response in sham animals, suggesting that endogenous 

BDNF signaling in the dmNTS exerts a tonic, sympatho-inhibitory role. Antagonizing TrkB in the 

dmNTS also blunted baroreflex-mediated decreases in HR and RSNA following increased 

pressure. The role of BDNF in the dmNTS mediating sympathetic nerve activity and baroreflex 

control has not previously been observed and provides a novel area for future research. Future 

experiments will be required to elucidate the precise actions of BDNF in the dmNTS such as 

whether it plays a role in mediating glutamatergic or GABAergic signaling, if the effects are 

mediated by projections to the CVLM, PVN, or other autonomic control centers, and if the effects 

of BDNF are due to acute changes to NMDA receptors, Na+ channels, or other receptors and ion 
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channels. Future imaging studies and pharmacological manipulation will be instrumental in 

exploring these questions. 

Second, these studies uncovered BDNF/TrkB dysfunction in the dmNTS in CHF and 

provide a novel explanation for baroreflex desensitization in the CHF state. Through a reduction in 

TrkB expression, both the effects of exogenous BDNF microinjection and ANA-12 inhibition of 

endogenous BDNF signaling were blunted in CHF rats. Similarly, as these rats already possessed 

blunted baroreflex responses, ANA-12 had little effect on further desensitization. This indicates 

that a reduction in BDNF/TrkB signaling in the dmNTS may be a causative factor for blunted 

baroreflex sensitivity in CHF. Similar to the future studies proposed above, in-depth analysis of the 

particular neuronal pathways involved and location of TrkB expression will be instrumental in 

further understanding of the mechanisms by which TrkB is reduced in CHF. 

Objective 4: Central Ang II-induced Sympatho-excitation and BDNF 

The first three objectives of this dissertation established a relationship between K+ channel 

dysfunction, Ang II, and BDNF. The goal of the final study was to incorporate Ang II and BDNF 

signaling in an in vivo approach. We found that antagonizing TrkB with ANA-12 attenuated many 

of the hemodynamic and sympatho-excitatory responses of ICV Ang II. This extends the findings 

of Chapter II into the animal model and demonstrates the involvement of BDNF in mediating many 

of the neuronal effects of Ang II.  

Unexpected results of this study included a differential role for BDNF/TrkB signaling 

between the hemodynamic/sympatho-excitatory responses and the metabolic interaction with Ang 

II. Although ANA-12 attenuated the sympathetic nerve activity response to Ang II, it potentiated 

the dipsogenic and polyuric responses. As discussed in detail in Chapter IV, this may be due to the 

removal of pressure-mediated negative feedback on drinking, but the possibility of a differential 

signaling mechanism between presympathetic centers of the brain and osmosensitive areas cannot 

be excluded. Future work will be important in evaluating what nuclei are important in mediating 
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these effects. Overexpression and knockdown studies will be useful in determining the interaction 

between Ang II and BDNF/TrkB in specific nuclei such as the RVLM. 

At present, we cannot conclude that the protective effects of ANA-12 on ICV Ang II are 

due to preserving K+ channels in the central nervous system. Molecular analysis is currently being 

carried out where we are examining Kv4.3 expression, phosphorylated-TrkB, and total TrkB in 

brain areas such as the RVLM, PVN, NTS, and OVLT. These results will further expand our 

understanding of the interaction between Ang II and BDNF in modulating sympathetic nerve 

activity. 

ICV Ang II resulted in impaired baroreflex function as measured in the acute anesthetized 

preparation. Although ANA-12 seemed to have a tendency toward attenuating this dysfunction it 

was still significantly impaired. In light of the work presented in Chapter III, ANA-12 given ICV 

may not restore baroreflex dysfunction as blocking TrkB in the dmNTS itself blunts baroreflex 

sensitivity. Some of the improvement may be due to withdrawal of activity from presympathetic 

areas such as the RVLM, but confounding interactions due to actions at the dmNTS may prevent 

robust improvements in baroreflex function.  

Conclusions and Perspectives 

The overall conclusions of the work presented in this dissertation are that BDNF is an 

important component in the Ang II-mediated effects on K+ currents, sympathetic nerve activity, 

and baroreflex function. The Ang II-induced expression of BDNF observed in cultured CATH.a 

cells, and the resulting effects of BDNF in suppressing K+ currents provide a pathway by which K+ 

current suppression may occur in presympathetic neurons increasing sensitivity and AP frequency. 

Consistent with this notion, ICV Ang II increased MAP and sympathetic nerve activity, which were 

attenuated by TrkB antagonism. The effects of ICV Ang II and ANA-12 on K+ channels has yet to 

be established.  
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Along with its sympatho-excitatory effects, BDNF plays a role mediating sympatho-

inhibition and baroreflex function in the dmNTS. These disparate effects of BDNF may appear to 

be conflicting. How can BDNF/TrkB signaling be both sympatho-excitatory and sympatho-

inhibitory at the same time? The answer likely comes by examining the nature and function of the 

particular neuronal pathway in question. When acting predominately through sympatho-excitatory 

areas as is likely in ICV infusion, BDNF sensitization of neurons and neuronal pathways results in 

a sympatho-excitatory physiological response. However, when acting through sympatho-inhibitory 

areas such as the dmNTS, BDNF sensitization of neurons results in an overall sympatho-inhibitory 

physiological response. The effects of BDNF/TrkB on the particular neuron are the same 

(excitation) but the resulting integrative physiological outcome is quite different. 

Broader speculation over this point could suggest BDNF is simply serving a similar 

purpose in autonomic networks as it has long been appreciated to play in hippocampal networks 

associated with LTP and memory formation (Yamada et al., 2002; Lynch et al., 2004; Bramham & 

Messaoudi, 2005). Although instead of forming cognitive memories through LTP of synaptic 

pathways in the hippocampus, here it serves to promote a “sympatho-excitatory memory” through 

potentiation of presympathetic neuronal pathways. Neuronal pathways sensitive to Ang II signaling 

either through direct Ang II-mediated transcriptional increases in BDNF expression, Ang II-

mediated increases in neuronal activity (such as reactive oxygen species signaling acute alterations 

of ion currents), or a combination thereof would thus increase their “sympatho-excitatory memory.” 

The effects of this could be multifaceted. It would lead to initial increases in sympatho-excitation 

through direct activation of sympathetic pathways, but the formation of the “sympatho-excitatory 

memory” would result in a long-term, sensitized sympathetic pathway. Although broadly 

speculative, this idea has some experimental support. Recent work from Johnson and co-workers 

has shown a sensitized Ang II response following a so-call “sub-pressor” dose of Ang II or 

aldosterone. Subsequent infusions of Ang II were exaggerated in animals that received the prior 

doses suggesting a sensitization of sympathetic pathways (Xue et al., 2012a, 2012b; Clayton et al., 
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2014). Furthermore, the most recent of these studies observed an increase in the expression of pro-

BDNF and BDNF in lamina terminalus, implicating its involvement in the sensitization pathway, 

or “sympatho-exciatory memory” (Clayton et al., 2014). 

Because baroreceptor afferent discharge is reduced during CHF (Niebauer & Zucker, 1985; 

Niebauer et al., 1986; Wang et al., 1991), NTS neurological input would be reduced. This reduction 

in activity would lead to a decrease in the baroreflex arc “memory” consistent with our observations 

of decreased expression of TrkB and decreased ability of BDNF or ANA-12 to evoke a 

physiological response. This would account for the disparate effects and roles of BDNF across 

separate autonomic pathways. Not only would BDNF potentiate the “sympatho-excitatory 

memory” but reductions in activity through sympatho-inhibitory pathways such as the NTS during 

CHF would reduce the “sympatho-inhibitory memory.” 

Taken together these two pathways would explain both the increased sympatho-excitatory 

effects of BDNF following Ang II and the withdrawal of BDNF signaling from the sympatho-

inhibitory center of the dmNTS during CHF. Although more work is needed to fully define the 

nature of potentiating a “sympatho-excitatory memory” pathway, the work presented in this 

dissertation provides evidence in favor of the synergistic connection between Ang II signaling and 

BDNF in mediating sympatho-excitation and baroreflex dysfunction in cardiovascular disease 

states. 
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Figure A1 – Representative confocal image of labeled RVLM neurons following IML injection 

of rhodamine beads. 

RVLM neurons are labeled by retrograde translocation of rhodamine beads injected into the IML at 

level T3-T5 3 days post-injection demonstrating direct projection of RVLM neurons to the 

sympathetic outflow tract of the spinal cord. 
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Figure A2 – Increased expression of BDNF in whole brainstem of mice following Ang II and 

PVN of rats with CHF. 

Preliminary evidence indicating increased expression of BDNF in whole brainstem homogenates 

from C57/B6 mice receiving 600ng/kg/min of subcutaneous Ang II for 14 days (A) and increased 

expression of BDNF in punches taken from the PVN of rats with CHF (B). n = 2-3/group 
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Figure A3 – Preliminary results exploring dose-response of ICV Ang II 

Change in mean arterial blood pressure following 100 ng/min, 50 ng/min, or 20 ng/min ICV Ang II. n = 

2/group 
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