Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia.

Daniel A. Ryskamp
Moran Eye Institute, and Interdepartmental Program in Neuroscience

Andrew O. Jo
Moran Eye Institute, and Interdepartmental Program in Neuroscience

Amber M M. Frye
Moran Eye Institute, and Interdepartmental Program in Neuroscience

Felix Vazquez-Chona
Moran Eye Institute, and Interdepartmental Program in Neuroscience

Nanna MacAulay
University of Copenhagen

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unmc.edu/com_eye_articles

Part of the Ophthalmology Commons

Recommended Citation
https://digitalcommons.unmc.edu/com_eye_articles/55

This Article is brought to you for free and open access by the Ophthalmology at DigitalCommons@UNMC. It has been accepted for inclusion in Journal Articles: Ophthalmology by an authorized administrator of DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu.
Swelling and Eicosanoid Metabolites Differentially Gate TRPV4 Channels in Retinal Neurons and Glia

Daniel A. Ryskamp,1,2 Andrew O. Jo,1 Amber M. Frye,1 Felix Vazquez-Chona,1 Nanna MacAulay,3 Wallace B. Thoreson,4,5 and David Krizaj2,6,7

1Department of Ophthalmology & Visual Sciences, Moran Eye Institute, and 3Interdepartmental Program in Neuroscience, Salt Lake City, Utah 84132, 2Department of Cellular and Molecular Medicine, University of Copenhagen, 1165 Copenhagen, Denmark, 4Department of Ophthalmology & Visual Sciences, and 5Department of Pharmacology and Experimental Neurosciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, and 6Department of Neurobiology & Anatomy and 7Center for Translational Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84132

Activity-dependent shifts in ionic concentrations and water that accompany neuronal and glial activity can generate osmotic forces with biological consequences for brain physiology. Active regulation of osmotic gradients and cellular volume requires volume-sensitive ion channels. In the vertebrate retina, critical support to volume regulation is provided by Müller astroglia, but the identity of their osmosensor is unknown. Here, we identify TRPV4 channels as transducers of mouse Müller cell volume changes into physiological responses. Hypotonic stimuli induced sustained Ca2+ elevations that were inhibited by TRPV4 antagonists and absent in TRPV4−/− Müller cells. Glial TRPV4 signals were phospholipase A2- and cytochrome P450-dependent, characterized by slow-onset and Ca2+ waves, and, in excess, were sufficient to induce reactive gliosis. In contrast, neurons responded to TRPV4 agonists and swelling with fast, inactivating Ca2+ signals that were independent of phospholipase A2. Our results support a model whereby swelling and proinflammatory signals associated with arachidonic acid metabolites differentially gate TRPV4 in retinal neurons and glia, with potentially significant consequences for normal and pathological retinal function.

Key words: retina; TRP channels; osmoregulation; Müller glia; ganglion cell

Introduction
The ability to sense increases in cell volume represents a primal sensory modality used by cells and organisms as they detect and adapt to activity-dependent changes in their physical environment. Within the CNS, swelling induces compensatory relocation of ions/water and long-term changes in enzyme activation/gene expression in neurons and glia but can also result in excitotoxicity, cytotoxic/vasogenic edema, and irreversible loss of neural function (Hoffmann et al., 2009; Pasantes-Morales and Cruz-Rangel, 2010). Astroglial swelling results in increased intracellular calcium concentration [Ca2+]i, phospholipase A2 (PLA2) activation, release of arachidonic acid (all-cis-5,8,11,14-eicosatetraenoic acid; AA), and production of oxygen-derived free radicals (Staub et al., 1994; Hoffmann et al., 2009; Thrane et al., 2011); however, the detailed molecular mechanisms that transduce cellular swelling within the brain into the physiological response remain to be elucidated.

Müller cells mediate bidirectional ion and water transport between retinal neurons and vascular endothelial cells in part through strategically placed ion and water channels. Under pathological conditions, aquaporin 4 (AQP4)-mediated water fluxes drive glial swelling and AA/eicosanoid release and may contribute to excitotoxic edema and ischemic damage (Da and Verkman, 2004; Verkman et al., 2008; Reichenbach and Bringmann, 2010). Here, we provide evidence that the transient receptor potential vanilloid type 4 (TRPV4) channel mediates Müller cell osmosensing, define its link to PLA2 and its downstream metabolite 5′,6′-epoxyeicosatrienoic acid (5,6-EET), and formulate a mechanistic framework for astrogial volume regulation.

Gain/loss of TRPV4 function has been related to deficient osmoregulation, force transduction, and numerous neurological and musculoskeletal phenotypes (Liedtke and Friedman, 2003; Tian et al., 2009; Loukin et al., 2010; Nilius and Voets, 2013). Nonetheless, the gating mechanism of this ubiquitous channel (Strotmann et al., 2006; Nilius et al., 2004; Kunert-Keil et al., 2006; Ryskamp et al., 2011) remains unclear. The canonical view, that TRPV4 activation requires the involvement of PLA2 and cytochrome P450 (CYP450) (Watanabe et al., 2003a; Nilius et al., 2004; Vriens et al., 2004), has been challenged by studies in heterologously transfected yeast, oocytes, endothelial cells, and sensory neurons (Loukin et al., 2009, 2010; Matthews et al., 2010;
Lechner et al., 2011). Here we show that activation of astroglial, but not neuronal, TRPV4 channels requires AA, its epoxidation enzyme CYP450, and the downstream metabolite product 5,6-EET. TRPV4-dependent Ca2+/H\textsubscript{11001} influx enables further swelling in a hypoosmotic gradient and is sufficient to trigger glial reactivity. This work thus expands the known relationships among glial swelling, mechanical stress, proinflammatory signaling, and edema (Pannicke et al., 2006; Reichenbach and Bringmann, 2010; Pinar-Sueiro et al., 2011; Krizˇaj et al., 2014) into a cellular and molecular framework that centers upon the osmosensor, TRPV4.

Materials and Methods

Animals. All experiments adhered to the National Institutes of Health Guide for the Care and Use of Laboratory Animals and the Association for Research in Vision and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision Research and were approved by the Institutional Animal Care and Use Committees at the University of Utah and the University of Nebraska Medical Center. Mouse strains C57BL/6J, B6.Cg-Tg(Thy1-CFP)23Jrs/J, and pan-null TRPV4−/− 12 (Liedtke and Friedman et al., 2003) were maintained in a 12 h light/dark cycle with free access to food and water. Data from male and female mice were pooled. No sex differences were noted.

Acutely dissociated retina preparation. Mice were killed, eye removed, and retinas isolated in cold Leibovitz 15 (L15) medium (Invitrogen) containing 11 mg/ml L15 powder, 20 mM D-glucose, 10 mM Na-HEPES, 2 mM Na-pyruvate, 0.3 mM Na-ascorbate, and 1 mM glutathione. To digest the extracellular matrix, retinas were incubated in L15 containing papain (7 U/ml; Worthington) for 1 h at room temperature. Retinas were rinsed, placed on ice, and cut into 500\textmu m pieces. One or two of these pieces were triturated and plated on concanavalin A (1 mg/ml)-coated coverslips. As appropriate, dissociated cells were loaded with fura-2 or fura-5F AM (5–10\textmu M; Invitrogen) for 30–40 min and washed for 10–20 min. Under our experimental conditions, most plated cells maintained homeostasis for several hours at 25°C without substantial shifts in baseline [Ca2+], or the amplitude of [Ca2+], responses to agonists or depo-

Figure 1. TRPV4 mediates cation influx in Müller glia and RGCs. A–D, Vertical cryosections of mouse retinas immunolabeled for Müller glia marker GS (red) and AGB (green). Freshly isolated retinas were incubated for 10 min at 37°C with the indicated conditions. A, Negative control (L15 media alone; n = 2). B, Retinas incubated with AGB (N = 3). Basal cation (AGB -) influx takes place in RGCs and photoreceptors. C, GSK101 (100 nM) induces cation influx in RGCs (arrowheads) and a subset of Müller glia (n = 3). D, Agonist-induced cation entry is suppressed by HC-06 (1 \mu M; n = 3). Additional examples of cation influx in the absence (E) and presence (F) of GSX101. G, H, AGB influx between the outer edge of the GCL and the outer limiting membrane (OLM) (G) or within the GCL (H) was quantified by measuring the mean value (optical density) of AGB-ir. I\textsubscript{1}–I\textsubscript{iii}, Vertical cryosection of mouse retina immunolabeled for the Müller cell marker GS (red) and TRPV4 (green) (I\textsubscript{1}). TRPV4 is preferentially localized to the inner limiting membrane region that contains the processes of protoplasmic astrocytes, Müller cell endfeet (arrows), and RGCs (blue asterisk). Müller cell somata (white asterisk) lack TRPV4 in intact retinas. An example distal stalk/distal end is indicated with a bracket. I\textsubscript{2}, I\textsubscript{iii}, Close-up of I\textsubscript{1} (dashed rectangle) showing TRPV4 (I\textsubscript{2}) and the merge (I\textsubscript{iii}). J, TRPV4-ir is present throughout acutely dissociated Müller cells and a presumed RGC soma. Proximal stalk indicated by arrowhead. K, In a human retina section, TRPV4 similarly localizes to endfeet and proximal stalks of Müller glia as well as RGC somata and axon bundles (#). Scale bars, 10 \mu m. I, Inner; O, outer; S, segments; N, nuclear; P, plexiform; L, layer; GC, ganglion cell. *p < 0.05.
Ryskamp et al., 2011
Molnar et al., 2012
Gaiano et al., 2000

(RGC side down) on filter paper using vacuum suction. Retinas were
incubated in Hibernate A medium with papain (30 U/ml) plus cysteine (0.2 mg/ml) for 25–30 min at room temperature. Tissue was washed in ice-cold, Hibernate A supplemented with 1% BSA and DNase (1 mg/ml) followed by two additional washes in ice-cold Hibernate A alone. Retinal cells were dissociated and plated as before. After 10–15 min of plating, cells were superfused with oxygenated Ames’ medium. Upon obtaining a whole-cell recording, the

Figure 2. TRPV4 activation massively elevates Müller cell calcium levels. A, GSK101 dose-dependently increases calcium levels above spontaneous calcium spikes. B, The amplitude of Müller cell responses to GSK101 was quantified using fura-5F. n = 14, 12, and 4, respectively. C, 25 nM GSK101 increased calcium levels far more than other known modulators of Müller cell calcium homeostasis. n = 35, 26, 25, 19, and 19, respectively. D, According to the sigmoidal fit, the EC_{50} of GSK101 was ~16 nM. n = 12. E, GSK101 induced a current with an IV plot characteristic of heteromeric TRPV4. Light gray trace represents voltage ramp-induced transmembrane current under resting conditions. Gray trace represents GSK101-induced current. Black trace represents difference current after subtraction. n = 10. F, TRPV4 opening by GSK101 resulted in a large inward conductance that coincided with an elevation in calcium. NS, Not significant (p > 0.05). ****p < 0.0001.
superfusate was switched to Ames’ medium containing 5 mM CsCl and 10 mM TEA (minimizes inward and outward K+ currents).

Recording electrodes were pulled using a PP-830 vertical puller (Narishige) from borosilicate glass pipettes (1.2 mm O.D., 0.9 mm I.D.) to obtain tips that were 2 μm in diameter and with resistance values between 8 and 10 MΩ. Müller cells were voltage-clamped at −70 mV using a Multiclamp 700A patch-clamp amplifier. Voltage steps and ramps were applied and membrane currents acquired using pClamp 9.2 software with a Digidata 1322 interface. The pipette solution contained the following (in mM): 125 Cs-glucuronate, 10 TEA-Cl, 10 HEPES, 3 EGTA, 1 ATP, 0.5 GTP, 3 MgCl₂, 1 CaCl₂, pH 7.2. Simultaneous ratiometric intracellular Ca²⁺ measurements were made as before with 0.2 mM fura-2 pentapotassium salt in the pipette.

Immunofluorescence. Eyes were removed after death, punctured with a needle at the ora serrata, and placed in 4% PFA in 1× PBS for 10 min. In PBS, the anterior eye was cut away and the posterior eye was fixed for another 50 min. After 3 × 10 min washes with PBS, eyecups were soaked in 15% sucrose for 45 min at room temperature and then 30% sucrose overnight at 4°C. Cryoprotected eyecups were embedded in OCT (Ted Pella), frozen at −80°C, sliced at 16 μm with a cryostat, and mounted onto Superfrost Plus slides. Slides were warmed at 40°C for 10 min and circled with a PAP pen. After washing with PBS, tissue was blocked for 10 min washes with PBS, eyecups were applied at 1:1000 for 1 h at room temperature. After rinsing, labeled slices were protected with Fluoromount-G (Southern Biotechnology), coverslipped, and imaged. Dissociated cells were fixed and immunostained as above. The following primary antibodies were used in this study: anti-TRPV4 (Lifespan Biosciences), 1:100–1:1000; anti-GS (BD Biosciences), 1:1000–1:2000; anti-GFAP (Lifespan Biosciences), 1:100–1:1000; anti-AGB (Signature Immunologics), 1:500; and anti-AGB (Signature Immunologics), 1:100. The secondary antibodies were goat anti-mouse or goat anti-rabbit IgG (Dako), 1:1000. Negative controls without a primary antibody showed no staining. For the AGB loading experiment, retinas were incubated in 5 mM AGB (agmatine) for 10 min at 37°C, fixed, and cryoprotected. Immunofluorescence and differential interference contrast images were acquired on a confocal microscope (Zeiss LSM 510 or Olympus FX1000) using 488 nm Ar (10%) and 543 nm HeNe (100%) lines for fluorophore excitation, suitable filters for emission detection, and 40×/1.2 NA oil objectives.

Reagents. Salts and reagents were purchased from Sigma, except where noted otherwise. AA and its metabolites were from Cayman Pharmaceuticals. Given the instability of AA and 5,6-EET due to auto-hydrolysis, the compounds were aliquoted, gassed with liquid nitrogen, and stored at −80°C until use.

Statistics. GraphPad Prism 6.0 was used to analyze statistics. Data are mean ± SEM. Unless specified, an unpaired t test was used to compare two means and a one-way or two-way ANOVA along with the Holm–Šidák test was used to compare three or more means.

Results

TRPV4 is functional in RGCs and Müller glia
To map the pattern of functional TRPV4 expression in the retina, we incubated intact mouse retinas with AGB⁺, which permeates most nonselective cation channels (Marc, 1999). Control light-adapted retinas probed with an anti-AGB antibody displayed little endogenous signal (Fig. 1A). AGB incubation (10 min at 37°C) revealed cation accumulation in RGCs and photoreceptors (Fig. 1B,E). Stimulation with the selective TRPV4 agonist HC-06. This inhibition is reversible following a washout. n = 30, except noise = 40, **p < 0.01. ****p < 0.0001.

Figure 3. TRPV4 mediates responses to GSK101 in Müller cells. A, B, External calcium is required for GSK101-induced calcium elevations, n = 16. C, D, Responses to GSK101 persist in the presence of the voltage-gated channel blocker cadmium (Cd²⁺), n = 16, 40.**, E, F, The nonselective TRP channel antagonist Ruthenium Red (RuR) blocks responses to GSK101. n = 21 for GSK101; n = 15 for GSK101 + RuR. G, H, GSK101 responses are also blocked by the selective TRPV4 antagonist HC-06. This inhibition is reversible following a washout. n = 30, except noise = 40, **p < 0.01. ****p < 0.0001.
To examine the mechanism underlying the GSK101 response, we recorded the transmembrane current in voltage-clamped Müller cells. GSK101 (25 nM) induced an increase in conductance ($p < 0.0212$) averaging $1378 \pm 522 \text{ pS}$ ($n = 9/10$ cells). Consistent with imaging data, I_{TRPV4} showed little inactivation during 3–10 min stimulation with the agonist, showing a current–voltage relation typical of nonselective cation channels with a reversal at $-4.5 \pm 5.5 \text{ mV}$ (Fig. 2E,F). This observation was reinforced by concurrent $[\text{Ca}^{2+}]$, and whole-cell recordings that indicated substantial overlap between $[\text{Ca}^{2+}]$, and I_{TRPV4}. GSK101-induced $[\text{Ca}^{2+}]$, increases were abolished in $[\text{Ca}^{2+}]$-free saline ($p < 0.0001$, Fig. 3A,B), insensitive to the voltage-operated Ca^{2+} channel blocker Cd$^{2+}$ (100 μM; $p < 0.01$; Fig. 3C,D) and inhibited by the nonselective TRP channel blocker Ruthenium Red (10 μM; $p < 0.0001$; Fig. 3E,F) and the selective TRPV4 antagonist HC-06 (p < 0.0001, Tukey test; Fig. 3G,H). The TRPV1 antagonist capsazepine (10 μM) had no effect on GSK101-induced $[\text{Ca}^{2+}]$, elevations in Müller cells (data not shown).

The kinetics of TRPV4 activation differ in neurons and glia

In contrast to the inactivation of TRPV4 agonist-induced $[\text{Ca}^{2+}]$, responses in RGCs, signals in Müller cells were markedly more sustained (Fig. 4). Concurrent recording from two cells identified post hoc by their immunoreactivity for GS and the RGC marker TuJ1 showed that GSK101 evokes a fast inactivating $[\text{Ca}^{2+}]$, increase in the neuron and a delayed response in the glial cell (Fig. 4A). The dichotomy in the neuronal versus glial response kinetics stands out when TRPV4-mediated signals are normalized for peak $[\text{Ca}^{2+}]$, (Fig. 4B) or when raw traces are statistically analyzed (Fig. 4C–F). GSK101 elevated $[\text{Ca}^{2+}]$, to a peak 215 $\pm 15\%$ and 217 $\pm 16\%$ greater than basal in Müller glia and RGCs, respectively (Fig. 4C). Four minutes after the peak, these $[\text{Ca}^{2+}]$, levels declined to 179 $\pm 11\%$ and 116 $\pm 5\%$ of the baseline during continued agonist stimulation ($p < 0.05$ for Müller glia and $p < 0.0001$ for RGCs; two-way repeated-measures ANOVA). Müller cells exhibited a slower response onset (95.3 vs 18.4 s; $p < 0.001$; two-way ANOVA; Fig. 4D) and time-to-peak $[\text{Ca}^{2+}]$, elevations (236.9 ± 17.7 s vs 93.0 ± 4.4 s; $p < 0.0001$, two-way ANOVA). The slope of the GSK101 response diverged for Müller glia (0.0132 ± 0.0027 ratio/s) and RGCs (0.0319 ± 0.0052 ratio/s; $p < 0.01$; Fig. 4E). The time constant of inactivation following the peak was larger in Müller glia than RGCs ($\tau = 346.2 \pm 31.6$ s vs 123.0 ± 12.3 s; $p < 0.0001$; Fig. 4F). Thus, glial TRPV4 is characterized by distinct modulation and/or gating compared with its neuronal counterpart. Nonetheless, exposure to Ca^{2+}-free saline during initial response (Ryskamp et al., 2011; Fig. 3A) or the postpeak plateau phase of the agonist response (Fig. 4A) facilitated the recovery to baseline, indicating that the transduction and sustained components in both cell types are mediated primarily by plasma membrane Ca^{2+} entry rather than secondary release from internal stores.

![Figure 4. TRPV4 response kinetics differ in RGCs and Müller glia. A. Representative raw traces of calibrated GSK101-induced responses in a concurrently recorded RGC and Müller cell show a short-latency transient ([Ca$^{2+}$]) elevation in the RGC and a sustained [Ca$^{2+}$] response in the glial cell. Ca$^{2+}$-free saline suppressed the sustained response component and decreased the [Ca$^{2+}$] baseline in the RGC. After the recording, the two cells were immunolabeled for TuJ1 and GS, respectively. B. Normalized fura-5F fluorescence from a GSK101-stimulated cohort of RGCs and glia (n = 25 Müller glia and 51 RGCs). Responses to GSK101 are fast and transient, whereas Müller cells exhibit delayed and sustained TRPV4 activation. C. GSK101 significantly increased calcium levels in both cell types; however, RGC calcium levels returned closer to baseline levels 4 min after the response peak in the continued presence of GSK101. D. The latency to the base (n = 17 Müller glia and 19 RGCs), 50% amplitude, and peak response (n = 21 Müller glia and 24 RGCs) was longer in Müller cells. E. The rate of TRPV4 activation (E = n = 20 Müller glia and 19 RGCs) and inactivation (F; n = 20 for each) was faster in RGCs. *p < 0.05. **p < 0.01. ***p < 0.001. ****p < 0.0001.](https://example.com/figure4)
Spatiotemporal TRPV4 activation in Müller cells involves transcellular Ca\(^{2+}\) waves

Müller glial Ca\(^{2+}\) signals evoked by agonists or membrane stretch typically took the form of Ca\(^{2+}\) waves propagating from the endfoot or the distal end toward the perikaryon (Fig. 5A–H). Ca\(^{2+}\) store depletion by cyclopiazonic acid (CPA), a reversible antagonist of sarcoplasmic/endoplasmic Ca\(^{2+}\)–ATPases, combined with stimulation of Ca\(^{2+}\) release by carbachol, reduced the amplitude of the GSK101 response by 34.5 ± 11.6\% (p < 0.05; Fig. 5I). CPA also suppressed Ca\(^{2+}\) wave propagation (Fig. 5K–Q), suggesting that Ca\(^{2+}\)-induced Ca\(^{2+}\) release amplifies the TRPV4 response.

To follow glial TRPV4 activation in the retinal slice (Fig. 5R), glia were loaded with Oregon Green BAPTA-1 (OGB-1) (Kurth-Nelson et al., 2009). GSK101 induced Ca\(^{2+}\) waves that originated within focal points in the distal end of Müller glia and/or the endfoot. The agonist elevated [Ca\(^{2+}\)]\(_i\) in 12 of 14 (86%) distal stalks, 26 of 30 (87%) somata, 21 of 26 (81%) proximal stalks, and 20 of 28 (71%) endfeet. Peak response amplitudes for these regions in ΔF/ΔF\(_0\) were as follows: distal stalk 0.4005 ± 0.0662, soma 0.3707 ± 0.0643, proximal stalk 0.1980 ± 0.0551, and endfoot 0.2988 ± 0.0642 (Fig. 5S). Somatic Ca\(^{2+}\) signals remained elevated after [Ca\(^{2+}\)]\(_i\), levels within apical and distal regions returned to the baseline. The response amplitudes for all Müller cell domains were greater than R\(_p\) (p < 0.01 in all cases; Dunnett’s test). Response latencies were (in seconds): distal stalk 214.8 ± 15.2, soma 246.2 ± 18.1, proximal stalk 353.0 ± 14.3, and endfoot 262.6 ± 14.9 (p < 0.001–0.0001; Bonferroni test; Fig. 5T). Thus, TRPV4 channels can initiate and contribute to propagation of transient Ca\(^{2+}\) waves, representing a plausible candidate trigger mechanism for the regenerative phenomena reported previously (Newman and Zabs, 1998).

Differential TRPV4 channel activation mediates neuronal and glial responses to swelling

Astroglial swelling can compromise neuronal function through edema and excitotoxicity (Pasantes-Morales and Cruz-Rangel, 2010; Reichenbach and Bringmann, 2010; Thran et al., 2011). Given that TRPV4 can be activated by swelling (Strotmann et al., 2000; Becker et al., 2005; Benfenati et al., 2011), we examined the relationship between hypotonicity and volume regulation in Müller cells. HTS dose-dependently and reversibly increased the cell area and volume of Müller glia and RGCs (Fig. 6). Although both cell types express TRPV4, Müller cells were able to withstand larger hypotonic challenges than concomitantly recorded RGCs (Fig. 6B), possibly because of the greater elasticity of the glial membrane (Lu et al., 2006). As depicted in Figure 6, Müller cell swelling was associated with increases in [Ca\(^{2+}\)]\(_i\), with an EC\(_{50}\) of 34.15 ± 3.31\% HTS (Fig. 6C,D). The [Ca\(^{2+}\)]\(_i\) response in Müller cells and RGCs was abolished by the removal of extracellular Ca\(^{2+}\) (Fig. 6E; Ryskamp et al., 2011) and was inhibited by HC-06 (1 \(\mu\)M) (p < 0.05; Fig. 6F,G). Consistent with optical imaging data, 50% HTS elicited inward currents (91.34 ± 17.66 pA) that were antagonized by HC-06 and were absent from TRPV4\(^{-}\) cells (Fig. 6H,I). Thus, TRPV4 channels play a central role in the hypotonicity-induced Ca\(^{2+}\) signals of Müller glia.

TRPV4 activation might be secondary to stretch-induced stimulation of PLA2 (Watanabe et al., 2003a). Consistent with this, PLA2 inhibition with 4-bromophenacyl bromide (pBPB; 100 \(\mu\)M) blocked HTS-induced glial TRPV4 signals (p < 0.001; Fig. 6F). pBPB (n = 39) did not affect GSK101 responses (n = 23).
induced [Ca2+] through different mechanisms. Surprisingly, swelling- and HC-06, but not capsazepine (Dunnett’s test; 0.05), whereas capsazepine, a competitive inhibitor of TRPV1, had no effect at 5 μM (n = 3, 10, and 11, respectively). The PL2 antagonist pBPB has no effect on RGC response to cell swelling even though these responses are mediated largely by TRPV4. n = 23, 16, and 9, respectively. Fig. 6. Differential TRPV4 channel activation mediates neuronal and glial responses to swelling. A, Changes in the volume of calcine-loaded Müller cells were apparent when switching from isotonic (Ai) to hypertonic saline (Aii). Aiii. The volume changes were approximately by measuring cell area. Black represents isotonicity; gray represents hypotonicity. Scale bar, 10 μm. B, Müller glia and RGCs swelled and shrank as a function of tonicity. C, HTS elevated Müller cell calcium as they swelled in a representative experiment. D, Swelling-induced calcium elevations were dose-dependent (95% confidence band around the sigmoidal fit), n = 13–20. E, Swelling-evoked [Ca2+]\textsubscript{EMC} elevations required external calcium. F, PLA2 and TRPV4 contribute substantially to the hypotonic response of Müller glia. n = 10, 13, and 11, respectively. G, The 50% HTS-evoked inward currents in Müller glia (n = 7) that were absent in the presence of HC-06 (n = 8) or in TRPV4 -/- cells (n = 7). J, Müller glia responsiveness to 35% HTS (n = 10 experiments) is reduced by the TRP channel antagonist Ruthenium Red (R/R 10 μM, n = 3) or 1 μM HC-06 (n = 6), but not the TRPV1 antagonist capsaicin (CPZ 10 μM, n = 3). K, RGC responsiveness to HTS (n = 6) is impaired by Ruthenium Red (n = 6) and HC-06 (n = 6), but not TRPV1 inhibition (n = 3). NS, Not significant (p > 0.05). *p < 0.05. **p < 0.01. ***p < 0.001.

TRPV4 gating in Müller cells, but not RGCs, requires activation of PLA2

The prevailing model of TRPV4 gating involves PLA2 activation and biosynthesis of eicosanoid acids, which act as endogenous activators of TRPV4 (Watanabe et al., 2003a; Nilius et al., 2004a; Wong et al., 2012) (Fig. 8A). To test the function of this canonical transduction pathway, we stimulated retinal cells with AA and its downstream metabolite 5,6-EET and tested the role of the crucial intermediary enzyme, CYP450. AA (100 μM) elevated Müller glial [Ca2+], (ΔR/R = 0.39 ± 0.3); Fig. 8B,C) above spontaneous activity (noisy; ΔR/R = 0.16 ± 0.03; p < 0.0001). Both the CYP450 antagonist clotrimazole (CLT; 10 μM) and HC-06 strongly suppressed these responses (p < 0.001; Fig. 8B-E), suggesting that AA-induced [Ca2+]\textsubscript{EMC} responses are mediated by HTS and GSK101 were almost completely absent in TRPV4 -/- cells (Fig. 7A–D), the residual responsiveness in the presence of TRPV4 blockers could be ascribed to incomplete blockade by HC-06.
TRPV4 and the PLA2 signaling pathway. Although AA (10 µM) also induced [Ca^{2+}], elevations in RGCs (Fig. 8F,G), these responses were not antagonized by HC-06 (p > 0.05), despite the effective blockade of GSK101 responses (p < 0.05). 5,6-EET, a major astroglial epoxide metabolite of AA, was proposed as the final activator of TRPV4 (Nilius et al., 2004). 5,6-EET (5 µM) induced [Ca^{2+}], increases (∆R/∆t = 0.31 ± 0.2 in Müller glia and 0.47 ± 0.08 in RGCs) that were inhibited by HC-06 (∆R/∆t = 0.40 ± 0.07 in Müller glia and 0.28 ± 0.03 in RGCs; p < 0.05; Fig. 8H–J). We therefore conclude that glial but not neuronal TRPV4 activation in the retina involves an intermediary PLA2-CYP450 step.

Calcium influx via TRPV4 exacerbates swelling in Müller glia and RGCs

Astrogial swelling is a major problem in traumatic brain injury and retinal diseases, such as diabetic retinopathy and glaucoma (Staub et al., 1994; Pannicke et al., 2006; Sofroniew, 2009; Pasantes-Morales and Cruzel-Rangel, 2010; Pinar-Sueiro et al., 2011). We exposed HTS-stimulated retinal cells to HC-06 and observed the swelling response in wild-type cells with TRPV4^−/− cells. As shown in Figure 9A, HTS-induced increases in cross-sectional area were counteracted by HC-06 (reduced by 46.9 ± 9.4%; p < 0.01; two-way ANOVA; Dunnett’s test) and markedly reduced in TRPV4^−/− Müller cells (reduced by 47.3 ± 6.1%; p < 0.01), indicating that swelling is facilitated by TRPV4 activation itself. HC-06 did not cause a further reduction in HTS-stimulated swelling in TRPV4^−/− Müller glia, consistent with the central role for TRPV4 in the swelling response. Moreover, HTS-induced swelling was more pronounced in heterologously expressing HEK293:TRPV4 overexpressors compared with control cells (p < 0.001 in 35% HTS at each time, two-way ANOVA; Fig. 9B). Although the mechanism through which TRPV4 channels contribute to the HTS-induced swelling in recombinant cells, neurons, and glia remains to be determined, the effect is likely to be mediated by Ca^{2+} influx, as also indicated by the suppression of the HTS-induced increase retinal cell area by BAPTA-AM (200 µM; reduced by 45.7 ± 7.2% for RGCs; p < 0.0001; reduced by 33.2 ± 6.3% for Müller cells; p < 0.05; Fig. 9A).

Given that Müller glial swelling was proposed to involve PLA2 (Pannicke et al., 2006; Reichenbach and Bringmann, 2010), we exposed wild-type and TRPV4^−/− Müller cells to hypotonic saline in the presence of pBB. pBB test the hypothesis that this proposed obligatory activator of TRPV4 (Watanabe et al., 2003b; Nilius et al., 2004) is involved in the swelling response. The PLA2 antagonist reduced cell swelling in wild-type Müller cells (reduced by 66.8 ± 12.2%; p < 0.001) but was not effective in TRPV4^−/− Müller glia (Fig. 9A). Moreover, pBB did not suppress HTS-induced swelling in RGCs (reduced by 2.9 ± 9.2%; p < 0.05). Thus, hypotonicity-induced increases in cell volume are likely augmented by reciprocal stimulation between TRPV4-mediated Ca^{2+} influx and PLA2 activation in retinal glial cells but not neurons.

We next tested whether CYP450, the downstream enzyme in the signaling cascade proposed to govern HTS-mediated TRPV4 activation (Watanabe et al., 2003b; Nilius et al., 2004), contributes to swelling-induced Ca^{2+} responses in TRPV4-expressing retinal neurons and glia. Cells were stimulated with 35% and/or 50% HTS in the presence of the CYP450 antagonist 17-octadecynoic acid (17-ODYA; 10 µM). Consistent with the involvement of CYP450 in the transduction of glial swelling, the antagonist suppressed Müller glial hypotonic swelling in 35% HTS (p < 0.01) but had little effect on RGCs (p > 0.05) (Fig. 10A,B). Similar results were observed using both HTS stimuli as well as the other antagonist, clotrimazole (data not shown). The effect of 17-ODYA on swelling was substantiated at the level of Ca^{2+} homeostasis where the drug antagonized 50% HTS-evoked [Ca^{2+}], increases in Müller cells (p < 0.0001; n = 5), but had no effect on RGCs (p > 0.05; n = 10) (Fig. 10A).

TRPV4 activation or deletion is sufficient to trigger reactive gliosis

 Reactive astrogliosis is an early indicator of CNS stress induced by mechanical stress and neuroinflammation (Tezel et al., 2003; Inman and Horner, 2007; Sofroniew, 2009; Lindqvist et al., 2010; Reichenbach and Bringmann, 2010). In control retinas, the glial marker GFAP was confined to astrocytes within the inner limiting membrane, whereas TRPV4^−/− retinas exhibited a moderate level of GFAP-ir (Fig. 11A,B). After intravitreal injection of GSK101, a marked upregulation in GFAP-ir was observed, especially at the endfeet and proximal processes within the inner plexiform layer (p < 0.01; two-way ANOVA, Dunnett’s test; Fig. 11A,B).
Discussion

This study provides new insights into retinal physiology by identifying the Müller glial osmosensor and demonstrating a mechanistic framework that governs the relationship between glial osmosensing, Ca^{2+} homeostasis, acid metabolism, and swelling. The differential modulation of neuronal and glial TRPV4 channels has broader implications for our understanding of volume (dys)regulation and inflammatory signaling in the healthy and diseased CNS.

At EC$_{50}$, GS101-evoked $[Ca^{2+}]_{MC}$ signals far surpassed Müller responses to other known effectors of Ca^{2+} signaling, including depolarization, purinergic signaling, and Ca^{2+}-induced Ca^{2+} release. The close match between TRPV4-mediated currents and $[Ca^{2+}]$, suggests that both the initial and the sustained phases of the TRPV4 response are mainly mediated by plasma membrane influx. The I-V relationship underlying glial I_{TRPV} did not exhibit the outward rectification typical of homomeric TRPV4 (Watanabe et al., 2003b; Loukin et al., 2010) but rather resembled the stretch-sensitive voltage-independent cation current observed in cultured Müller cells (Puro, 1991). It is possible that the conductance is linearized by heteromerization of TRPV4 with auxiliary TRPC1 or TRPP2 subunits (Da Silva et al., 2008; Köttgen et al., 2008; Ma et al., 2011) and/or modulatory influence of AQP (Becker et al., 2005; Benfenati et al., 2011). Release from internal stores provided a minor contribution to the overall $[Ca^{2+}]_{MC}$; however, in brain astrocytes (Butenko et al., 2012; Dunn et al., 2013) and possibly mechanically stimulated retinal glia (Newman and Zahn, 1998), it fostered the propagation of TRPV4-initiated Ca^{2+} waves from the endfoot toward the distal retina.

The mechanism of TRPV4 gating has been controversial. The obligatory role of PLA2 has been questioned because TRPV4 is stretch-activated in excised patches of membrane, which are devoid of eicosanoids (Loukin et al., 2010, 2011) and the channel is force-sensitive in yeast, which do not express PLA2 (Loukin et al., 2009). Nonetheless, our conclusion that TRPV4 function in Müller glia requires AA and/or its metabolite 5,6-EET, is based on the following observations: (1) AA and 5,6-EET-induced $[Ca^{2+}]_{MC}$ elevations are sensitive to TRPV4 antagonists; (2) AA potentiates Müller cell swelling, whereas PLA2 antagonists suppress TRPV4-evoked and HTS-evoked $[Ca^{2+}]_{MC}$ elevations; (3) PLA2 antagonists did not further suppress HTS-evoked swelling in TRPV$^{-/-}$ Müller cells; (4) The lengthy activation lag time in Müller cells is consistent with activation of intermediary steps; (5) HTS-evoked inward current and $[Ca^{2+}]_{MC}$ increases were not observed in TRPV$^{-/-}$ Müller cells or in the presence of the selective TRPV4 antagonist HC-06; and (6) CYP450 blockers antagonized HTS-evoked signals in Müller glia but not RGCs. By linking the proinflammatory AA pathway to the osmosensitive TRPV4 mechanism, these findings provide a molecular context for the reported effects of AA on glial swelling in cellular and tissue models of ischemia, traumatic brain injury, and diabetic edema and its role in reactive gliosis (Pannicke et al., 2006; Sofroniew, 2009; Nedergaard et al., 2010; Pasantes-Morales and Cruz-Rangel, 2010; Reichenbach and Brinigmann, 2010). The simplest model to account for our results is that cell swelling generated by hypotonic shock, induces TRPV4-dependent influx of cations and water into RGCs and Müller glia. In the glia, this ionic flux is augmented by PLA2 activation and possibly by the activation of the AQP4-mediated cell swelling.
Data from TRPV4$$^{-/-}$$ and HC-06-exposed retinal cells and HEK293 overexpressors show that TRPV4 activation contributes to cell swelling. This is in contrast to observations in salivary gland cells and keratinocytes where TRPV4/Ca$$^{2+}$$ contributed to RVD (Becker et al., 2005; Liu et al., 2006), and cultured astrocytes in which RVD required AQP4, whereas hypotonic sensing was mediated by TRPV4 (Benfenati et al., 2011). AQP4 channels are strongly expressed in Müller endfoot and proximal processes (Nagelhus et al., 1998) and could modulate TRPV4 activation and glial Ca$$^{2+}$$ homeostasis by boosting the rate of cell swelling. Another potential consequence of swelling-induced Ca$$^{2+}$$ signaling is glial activation, which has been previously correlated with increased mechanical stress, arachidonic acid release, and elevated intraocular pressure (Inman and Horner, 2007; Reichenbach and Bringmann, 2010; Huang et al., 2011). We found that exposure to the TRPV4 agonist was sufficient to induce reactive gliosis, an effect that could have resulted directly from Ca$$^{2+}$$ influx or as a secondary response to excitotoxic ATP release mediated by TRPV4-evoked degeneration of RGCs (Ryskamp et al., 2011; Krížaj et al., 2014). Interestingly, unstimulated TRPV4$$^{-/-}$$ retinas also displayed mild gliosis, suggesting that basal TRPV4 activity in healthy retinas restrains glial reactivity.

Excitation mapping and HTS confirmed previous evidence of functional TRPV4 expression in RGCs (Ryskamp et al., 2011); however, the fast, inactivating [Ca$$^{2+}$$]$$_{RGC}$$ responses in RGCs were easily distinguishable from lagging, sustained glial signals. Given the relative insensitivity of [Ca$$^{2+}$$]$$_{RGC}$$ to 5,6-EET and the inability of pBPB, 17-ODYA, and clotrimazole to block HTS-induced [Ca$$^{2+}$$]$$_{RGC}$$ elevations in RGCs, we conclude that, as reported for gastrointestinal neurons (Lechner et al., 2011), retinal neuronal responses are largely independent of the canonical transduction mechanism. This further suggests that TRPV4 might differentially contribute to volume sensing and AA-mediated proinflammatory signaling in retinal neurons versus glia. The origin of AA-mediated [Ca$$^{2+}$$]$$_{RGC}$$ increases in RGCs is unclear but could involve modulation of other TRP channels (TRPV1–3, TRPA1), arachidonate-gated Ca (ARC) channels composed of Orai1/3 subunits, and/or auxiliary effects mediated through epoxygenase, lipoxigenase, or cytoxxygenase pathways downstream from AA (Meves, 2008; Ryskamp et al., 2014).
In conclusion, we report that TRPV4 is expressed in every Müller cell and that its activation is essential for the normal glial [Ca$^{2+}$] response to hypotonic stress, whereas both its absence and overactivation are associated with reactive gliosis. Given that Müller glia perform key housekeeping, osmoregulatory, and mechanosensory functions in the retina, our findings implicate TRPV4 in both normal visual function and injury responses caused by excessive swelling and/or release of proinflammatory metabolites. Although Müller cells are not classically excitable, Ca$^{2+}$ waves induced by endfoot TRPV4 channels might translate the effects of mechanical stress into interglial, gloviscular, and neuroglial signals (Newman and Zahs, 1998; Kurth-Nelson et al., 2009; Butenko et al., 2012; Dunn et al., 2013). Our data also reinforce the importance of TRPV4 signaling in the homeostatic response to mechanical stress. Because cell swelling, synaptic reorganization, and dendritic remodeling represent early RGC responses to elevated intraocular pressure (Pinar-Sueiro et al., 2011; Della Santina et al., 2013; Feng et al., 2013), TRPV4 targeting might mitigate the neuronal pressure-induced phenotype while inhibiting the inflammatory response associated with concomitant glial activation (Inman and Horner, 2007; Pinar-Sueiro et al., 2011; Ryskamp et al., 2011; Della Santina et al., 2013). Parenthetically, ablation of the closely related vanilloid channel TRPV1 was reported to have a protective effect on RGC survival (Koplas et al., 1997; Ho et al., 2014; Jo et al., 2014), the differences in response kinetics might represent a more general feature of Ca$^{2+}$ homeostasis in neurons versus glia. Together, these studies reinforce the notion that vanilloid TRP isoforms contribute to the panoply of cell type-specific responses to stimulus modalities in the vertebrate retina that include pressure, osmotic gradients, temperature, and mechanical injury. Our findings provide novel insights into differential neuronal and astroglial Ca$^{2+}$ responses to swelling and inflammation together with a mechanistic context for TRPV4 signaling in the retina but also suggest that targeting TRPV4 channels might offer a rational new tool for mitigating swelling-mediated neuronal damage and gliosis in patients with traumatic ocular/brain injury, edema, ischemia, and glaucoma.

References
Keirstead SA, Miller RF (1995) Calcium waves in dissociated retinal ganglion (Muller) cells are evoked by release of calcium from intracellular stores. Glia 14:11–22. CrossRef Medline

