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Supervisor: Hamid Band, M.D., Ph.D. 

 

The epidermal growth factor receptor (EGFR) family member ErbB2 (Her2) is 

overexpressed in 20 -30% of invasive breast cancers and this overexpression correlates 

with poor prognosis and shorter overall as well as disease-free survival. Aberrant 

expression of ErbB2 through gene amplification, transcriptional deregulation and/or 

altered endocytic trafficking results in overexpression of ErbB2 at the plasma membrane 

and biases ErbB2 from primarily ligand-driven hetero-dimerization under normal 

expression conditions to increased ligand-independent homo-dimer and hetero-dimer 

formation and consequent activation. C-terminus of HSC70-Inteeracting protein 

(CHIP)/STIP1-homologous U-Box containing protein 1 (STUB1) is an HSP90/HSC70 

interacting negative co-chaperone known to promote ubiquitination and degradation of 

unfolded proteins, playing an essential role in protein quality control. HSP90/HSC70 are 

required for the stability and function of a variety of signaling proteins, including a 

number of protein kinases and their downstream signaling components. It is now known 

that CHIP can function as an E3 ubiquitin ligase towards such HSP90/HSC70 clients to 

induce their ubiquitination and degradation. ErbB2 is a prominent receptor tyrosine 

kinase that is dependent on its continuous association with HSP90 for its stability and 

function as an oncogene. Thus, CHIP, acting as an E3 ubiquitin ligase towards ErbB2 

and its downstream signaling proteins has been hypothesized to function as a tumor 
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suppresser. Consistent with this idea, recent work indicates that CHIP mRNA and 

protein expression is reduced in a subset of breast cancers, primarily those that are 

estrogen-receptor negative and belonging to ErBB2+ and triple-negative subsets.  How 

CHIP functions as a tumor suppressor in breast cancer in general and in ErbB2+ breast 

cancer in particular, has not been fully elucidated. In this thesis, we identify two inter-

connected and novel mechanisms by which CHIP suppresses ErbB2-mediated breast 

oncogenesis. First, we demonstrate that CHIP targets newly synthesized 

HSP90/HSC70-associated ErbB2 for in the Endoplasmic Reticulum and Golgi for 

ubiquitin/proteasome-dependent degradation to negatively control the levels of cell 

surface ErbB2.  Second, by analyzing CHIP expression in tissue microarrays from a 

large and well-annotated cohort of breast cancer patient samples, we identified a series 

of transcription factors whose cognate DNA-binding activity is up- or down-regulated by 

CHIP. We identify Myeloid Zinc Finger 1 (MZF-1), a transcription factor that 

transcriptionally upregulates the expression of extracellular matrix degrading enzymes 

cathepsin B and cathepsin L (CTSB/L) as a target of direct CHIP-dependent 

ubiquitination and degradation as well as indirect inhibition through reduced 

transcription. Small hairpin RNA (shRNA)-mediated depletion of CHIP in ER+ breast 

cancer cells or ectopic overexpression of CHIP in ErbB2 in ErbB2+ and triple-negative 

breast cancer cells demonstrated that loss of CHIP in the two latter subtypes of breast 

cancer is a principal determinant of MZF1-dependent upregulation of CTSB/L expression 

and activity, increased cell migration, invasiveness and matrix degradation, anchorage-

independent growth in soft agar, and xenograft tumor formation and metastasis in vivo. 

Targeting of CTSB using specific chemical inhibition lead to statistically-significant tumor 

growth inhibition with reduced angiogenesis, correlating with inhibition of matrix 

degradation in vitro, suggesting altogether a potentially new therapeutic avenue to 

improve metastatic breast cancer treatment by targeting those tumors with reduced 
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CHIP expression for cathepsin inhibitor therapy in conjunction with conventional and 

ErbB2-targeted therapeutics.  
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Chapter 1: Introduction 
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1.1 Protein maturation  

1.1.1. Protein folding in the Endoplasmic Reticulum (ER)  

Proteins destined for secretion or residence in the plasma membrane, Golgi 

apparatus, lysosomes, or ER are first translocated into the ER. Translocation of most 

polypeptides into the ER lumen occurs through the Sec61 protein channel (1). Targeting 

of soluble ER proteins and Type Ⅰ membrane proteins is achieved by an N-terminal 

signal sequence. As these polypeptides enter the ER lumen co-translationally in an 

extended conformation, chaperones start to function and help them fold correctly. 

Binding immunoglobulin protein (BiP), also called glucose-regulated protein 78 (Grp78), 

is a member of the Hsp70 family of proteins and the major ER luminal chaperone. Like 

cytoplasmic chaperones, BiP maintains the polypeptides in a folding-competent 

conformation and prevents their aggregation. It is one of the first proteins that meets 

nascent polypeptides entering the ER along with other chaperones that are pre-

assembled into a complex. This complex is poised to interact with the polypeptides being 

translocated into the ER and prevents the nascent chain from slipping backwards into 

the cytoplasm. Proteins containing the N-linked glycosylation consensus sequence 

(asparagine-X-serine/threonine, where X is any amino acid except proline) are 

recognized by the oligosaccharide transferase (OST) complex as the polypeptide exits 

the translocon on the luminal side. Glycosylation increases the protein’s solubility, helps 

folding, and increases the stability of folded protein. The OST complex catalyzes the 

transfer of pre-assembled Glc3Man9GlcNAc2 (Glucose3, Mannose9, N-

acetylglucosamine2) from dolichol pyrophosphate onto the asparagine residue of the 

glycan acceptor of the polypeptide. Once glycans are covalently attached to 

polypeptides, the two outer glucose residues are removed by Glycosidase Ⅰ and Ⅱ. This 

produces a Glc1Man9 GlcNAc2 glycan structure which is preferentially bound by the 

lectin chaperones calnexin and calreticulin. Calnexin and calreticulin recruit ERp57, an 
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enzyme that catalyzes one of the rate-limiting steps of protein folding, the disulfide bond 

formation. Binding of calnexin and calreticulin to polypeptide chains also provides time 

for polypeptides to fold and serves as an ER retention mechanism. When calnexin 

releases the glycan, glycosidase Ⅱ removes the third and final glucose moiety. If the 

glycoprotein is correctly folded by this time, it is allowed to continue its progression 

through the secretory pathway. If the polypeptide has failed to fold correctly, it will be 

either given another chance to attempt folding or will be marked for removal from the ER 

and be degraded through ubiquintin-proteasome system (UPS). Re-entry into the 

calnexin/calreticulin cycle is achieved by re-glycosylation of the glycan by UDP-glucose: 

glycoprotein glycosyltransferase (UGGT)(2, 3)(Figure 1.1). 

Once the proteins are correctly folded, native conformers enter ER exit sites. 

Vesicles that are coated with the coatomer protein (COP) Ⅱ coat bud off and traffic 

through the ER-Golgi intermediate compartment (ERGIC) to the cis-face of the Golgi 

complex (4). In certain cases, the retrieval of misfolded proteins from the Golgi complex 

by COP Ⅰ vesicles has been observed (5). The Golgi complex does not contain 

molecular chaperones and does not seem to support protein folding. Once the proteins 

pass through the cis-Golgi, they proceed through the trans-Golgi network (TGN) to the 

plasma membrane or beyond (Figure 1.2). 

 

1.1.2. Endoplasmic Reticulum Associated Degradation 

Terminally misfolded or unassembled proteins that are unable to acquire their 

native structure must be degraded to prevent fruitless folding attempts and the 

accumulation of misfolded polypeptides in the ER. This degradation process is known as 

ER-associated degradation (ERAD), which occurs in three primary steps: (1) recognition 

and targeting (substrate recognition within the ER and targeting to the retro-translocon), 
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(2) retro-translocation (substrate delivery from the ER to the cytosol), and (3) 

degradation (ubiquitin–proteasome dependent degradation)(6). 

The recognition of misfolded or mutated proteins depends on the detection of 

substructures within proteins such as exposed hydrophobic regions, unpaired cysteine 

residues, and immature glycans. In mammalian cells, there exists a mechanism called 

glycan processing. In this mechanism, the lectin-type chaperones calnexin/calreticulin 

(CNX/CRT) provide immature glycoproteins the opportunity to reach their native 

conformation. They can do this by way of re-glucosylating these glycoproteins by an 

enzyme called UDP-glucose-glycoprotein glucosyltransferase. Terminally misfolded 

proteins, however, must be extracted from CNX/CRT. This is carried out by EDEM (ER 

degradation-enhancing α-mannosidase-like protein) and ER mannosidase I. The 

mannosidase removes one mannose residue from the glycoprotein and the latter is 

recognized by EDEM. Eventually EDEM will target the misfolded glycoproteins for 

degradation. 

Because the ubiquitin–proteasome system (UPS) is located in the cytosol, 

terminally misfolded proteins have to be transported from the endoplasmic reticulum 

back into cytoplasm. The protein complex Sec61 is a possible channel for the transport 

of these misfolded proteins, however it is an unlikely candidate as retro-transport 

through the complex is difficult. It is unknown which other membrane protein(s) is 

responsible for this transport. Further, this translocation requires a driving force that 

determines the direction of transport. Since poly-ubiquitination is essential for the export 

of substrates, it is likely that this driving force is provided by ubiquitin-binding factors. 

One of these ubiquitin-binding factors is the Cdc48p-Npl4p-Ufd1p complex in yeast. 

Humans have the homolog of Cdc48p known as valosin-containing protein (VCP/p97) 
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with the same function as Cdc48p. VCP/p97 helps transport substrates from the 

endoplasmic reticulum to the cytoplasm using its ATPase activity. 

 

1.1.3. Ubiquitin proteasome system 

Ubiquitin itself is a highly conserved 76 amino acid protein which covalently 

attaches to substrate proteins through the formation of an isopeptide bond between 

ubiquitin’s C-terminal carboxyl function and in most studied cases the ε-amino group of a 

lysine residue within the substrate protein. In eukaryotes, ubiquitin is abundant with 

levels around 0.1-5% of total cellular proteins (7). Ubiquitin forms a globular structure 

and is very stable.  The transfer of a single ubiquitin to a substrate, a reaction referred to 

as mono-ubiquitylation, typically alters interactions, localization or activity of the modified 

substrate. Conversely, the attachment of multiple ubiquitin molecules results in 

polymeric chains, which, depending on their connectivity, could have unique functions. 

Ubiquitin chain formation can occur through seven lysine residues (K6, K11, K27, K29, 

K33, K48 and K63) or the N-terminus of ubiquitin (M1), leading to the assembly of 

multiple chains with distinct topology; the use of different lysine residues leads to more 

complex ubiquitin topologies. All linkage variants have been detected in cells and their 

abundance changes during the cell cycle or cell differentiation (8, 9). 

Most ubiquitination reactions occur through the subsequent actions of an 

adenosine triphosphate (ATP)-dependent enzymatic cascade consisting of ubiquitin 

activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3). 

Two ubiquitin specific E1s exist in vertebrates called UBA1 and UBA6. The human 

genome contains about forty E2s. More than six hundred distinct E3s ensure the 

regulated modification of specific substrates within human cells (10). 

As shown in Figure 1.3, the initial step in the ubiquitination cascade is the binding 

of Mg•ATP and ubiquitin to E1. Next, ubiquitin is adenylated at its C-terminus by E1 with 
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release of pyrophosphate (PPi). E1’s catalytic cysteine sulfhydryl group attacks the 

ubiquitin adenylate bond leading to discharge of adenosine monophosphate (AMP) and 

the formation of a thioester between E1 and ubiquitin’s C terminal carboxyl group. 

Another round of ubiquitin adenylation leads to a complex of E1 bound to the activated 

ubiquitin adenylate and the thioester ubiquitin intermediates. This single E1 bound to two 

activated ubiquitin species binds E2s with nanomolar affinities. Ubiquitin is then 

transferred to the catalytic site cysteine residue of the respective E2 in a trans-thio-

esterification reaction. The ubiquitin charged E2 dissociates from E1, which now can 

undergo another cycle of ubiquitin thioester and subsequent ubiquitin adenylate 

formation. An E3 will bind an E2 loaded with ubiquitin and catalyze ubiquitin transfer 

from the E2’s active site onto the substrate forming a stable isopeptide bond between 

ubiquitin’s C terminal carboxyl group and a ε-amino group of a lysine residue of the 

respective substrate (11). This process can be repeated multiple times resulting in the 

formation of polyubiquitin chains on a substrate; engagement of the substrate already 

modified with ubiquitin by an E3 causes the addition of another ubiquitin moiety from an 

E2 leading to formation of a covalent bond between the C-terminus of E2 bound 

ubiquitin and a lysine residue of the substrate attached ubiquitin (12). E3 binding sites in 

substrates are called degrons if the E3 promotes substrate degradation. The 

determinants of E2/E3 pairing are further elaborated below. E3s can be divided in two 

major classes: really interesting new gene (RING) and homologous to E6-AP carboxy 

terminus (HECT) ligases. Ubiquitin ligases that further ubiquitylate oligoubiquitylated 

substrates are called E4s. 

The human 26S proteasome is responsible for ubiquitin-dependent protein 

degradation in the ubiquitin proteasome system (UPS) (13). It consists of the proteolytic 

20S core particle (CP) and a 19S regulatory particle (RP). The CP consists of 28 

subunits encoded by 14 different genes and is shaped like a barrel in a symmetrical 
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manner (14, 15). The interior of the barrel is coated with six peptidase active sites, which 

together are able to hydrolyze a wide range of proteins into oligopeptides (14, 15). Entry 

into the inner chamber of the CP is regulated by the RP (13). The RP consists of 19 

subunits in yeast and can be further subdivided into base and lid. Six different ATPases 

responsible for CP-RP complex formation, two scaffold proteins and two ubiquitin 

binding proteins, the 26S proteasome regulatory subunits Rpn10/S5a and Rpn13 (also 

called ubiquitin receptors), make up the base. ATP binding to the ATPases is necessary 

for proper assembly of the complex formations. ATP hydrolysis is required for protein 

unfolding and translocation of the unfolded polypeptide via a channel into the proteolytic 

chamber of the CP (13). The only assigned function for one of the nine lid subunits is the 

deubiquitinase (DUB) activity of Rpn11, which is important for proteasome activity 

cleaving off a ubiquitin chain in one step at the proximal ubiquitin. Consequently, the 

concerted actions of CP and RP enable the 26S proteasome to bind a ubiquitylated 

protein via its ubiquitin receptors, to unfold the protein with its ATPases, to cleave off 

ubiquitin with its DUB and to translocate the unfolded protein into the inside of the CP, 

where its peptidases hydrolyze the proteins. Several other proteins bind the proteasome, 

regulating its function. The ATP-driven chaperone valosin-containing protein/p97 (p97) 

has been implicated in targeting ubiquitylated proteins to the proteasome as well (16, 

17). In complex with its cofactors, which have ubiquitin binding domains, p97 is able to 

interact with ubiquitylated proteins (17, 18). Using its so-called “segregase” activity, p97 

can extract proteins from the ER or the mitochondrial membrane as well as chromatin for 

proteasomal degradation; it has also been shown to be involved in the clearance of 

intracellular protein aggregates, in autophagy and in endosomal trafficking (19). 

 

1.2  Molecular Chaperones 

1.2.1. Hsp70 family   
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The Hsp70 family is one the most ubiquitous and conserved classes of 

chaperones, existing in almost all living organisms. The sequence identity between 

prokaryotic Hsp70, DnaK, and its eukaryotic homologues is around 60% (20). In 

eukaryotes, Hsp70s are found in the cytosol, mitochondria (mtHsp70), chloroplasts 

(cpHSC70), and ER (Grp78/Bip) (21). In mammals, there are two isoforms of cytosolic 

Hsp70, constitutively expressed Hsc70 and stress-inducible Hsp70. Hsp70 is composed 

of three structural domains, a 44 kDa N-terminal ATPase domain followed by an 18 kDa 

substrate binding domain (SBD) and a 10 kDa C-terminal domain (22). Clients interact 

with the hydrophobic pocket in the SBD, and the interaction is profoundly affected by the 

interaction between Hsp70 and nucleotides. In the ATP bound-state, Hsp70 has a low 

affinity but fast exchange rate, while the ADP bound-state shows high client affinity but 

slow exchange rates (22, 23). Moreover, the position of the C-terminal lid is different. In 

the ADP-bound state, the lid moves closer to the SBD, which prevents the release of 

client protein (24, 25). Hsp70s facilitate not only the protein folding or refolding, but also 

the degradation and translocation. To achieve these functions, Hsp70 works together 

with J-proteins (Hsp40s) and nucleotide exchange factors. These co-chaperones 

regulate the Hsp70 machinery by either conferring client specificity or affecting the 

interaction with nucleotides. 

The Hsp70 chaperone machine does not always act alone, but also cooperates 

with other chaperone machines. For example, in the folding of nascent polypeptides, 

Hsp70 interacts with unfolded clients and then transfers them to the Hsp90 chaperone 

machinery through the adaptor protein Hop (Hsp70-Hsp90 Organizing Protein) for final 

maturation and activation (26). Hsp70 forms an early complex with client proteins, Hop 

binds to the open conformation of Hsp90 and acts as the attachment site for Hsp70 

bound client protein. Hop facilities the transfer of the client protein from Hsp70 to Hsp90 

and the intermediate complex is formed. Hsp90 converts to the closed conformation 
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after binding of ATP and p23. After the hydrolysis of ATP, p23 and the folded client 

protein are released from Hsp90 (25, 27). 

 

1.2.2. Hsp90 family   

Hsp90 is a highly conserved molecular chaperone that is essential in eukaryotes 

(28, 29)，and  is one of the most abundant proteins, even in unstressed cells (30, 31). It 

contributes to various cellular processes including signal transduction, protein folding, 

intracellular transport, and protein degradation.  

Hsp90α and Hsp90β are the two major isoforms in the cytoplasm of mammalian 

cells. Hsp90α is the major form which is inducible under stress conditions, while Hsp90β 

is constitutively expressed (32, 33). Hsp90 analogues also exist in other cellular 

compartments such as Grp94 in the endoplasmic reticulum and Trap-1 in the 

mitochondrial matrix.  

One thing of note is that Hsp90 is highly overexpressed in cancer cells (34, 35). 

They utilized the Hsp90 machinery to protect mutationally-activated and overexpressed 

oncoproteins from misfolding and degradation, thereby contributing to tumor survival. 

 

1.3  The ErbB family of receptor tyrosine kinases 

1.3.1. Structure of ErbB receptors 

The Epidermal Growth Factor Receptor (EGFR) family of receptor tyrosine 

kinases (RTK) consists of four members: EGFR (ErbB1, HER1), ErbB2 (HER2; Neu in 

rat), ErbB3 (HER3), and ErbB4 (HER4). They are all Type I class of receptors, sharing 

similar structural characteristics including an extracellular ligand binding domain, a single 

pass hydrophobic transmembrane domain, a highly conserved catalytic protein tyrosine 

kinase (TK) core followed by a carboxyl terminal stretch containing several critical 
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tyrosine residues (36). The extracellular region of the ErbB family of RTKs is comprised 

of four distinct subdomains: two homologous ligand-binding domains (I and III) and two 

cysteine-rich domains (II and IV). One function of subdomains II and IV is to maintain an 

auto-inhibited configuration through intramolecular contacts, thereby forcing subdomains 

III and I into a relative orientation that prevents high-affinity binding of a ligand. Once a 

ligand binds to sub domains I and III, this alters the configuration of the extracellular 

region and exposes a dimerization arm located in sub domain II, thus allowing it to make 

intermolecular links with an adjacent receptor and driving dimerization (37). The tyrosine 

kinase domain is responsible for the transfer of a phosphate group from an ATP 

molecule to a tyrosine residue on a protein substrate. As mentioned above, the most 

highly conserved region within all ErbB family members, as is the case with most other 

RTKs in general, is the tyrosine kinase domain. One exception however is the ErbB3 

protein. This receptor shares the least sequence identity with the other ErbB receptors, 

including residues that are critically conserved throughout all protein kinases, thus 

rendering it catalytically inactive (38). The carboxyl-terminal tail sequences are among 

the most divergent between ErbB receptors (39). Sequence alignment comparing the 

carboxyl-terminus shows the highest level of conservation between the EGFR and 

ErbB2 receptors, particularly in the several tyrosine autophosphorylation sites that have 

previously been mapped in the carboxy-terminus of the EGFR and ErbB2. It is these 

phosphorylated residues that are recognized and bound by specific intracellular proteins, 

thereby initiating a highly coordinated signal cascade (40). All ErbB receptors other than 

EGFR are endocytosis-resistant after ligands binding (41). 

 

1.3.2. Activation of ErbB receptors  

Typically, ErbB receptors are activated by a number of ligands, adding to the 

potential and diversity of ErbB signaling responses (42). Each ligand, now commonly 
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referred to as EGF-like peptide, has an EGF-like domain that is sufficient to confer 

unique specificity for its receptor substrate and they have the ability to modulate the 

catalytic activity of the receptor. Most of these ligands act over short distances as 

autocrine or paracrine factors and their availability or expression pattern in a tissue-

specific or developmental stage-specific pattern offer a level of control over their 

signaling potential. The EGF-like peptides are divided into three groups based on their 

specificity: epidermal growth factor (EGF), amphiregulin (AR) and transforming growth 

factor-a (TGF-a) specifically activate EGFR (43); betacellulin (BTC), heparin-binding 

EGF (HB-EGF) and epiregulin (EPR) exhibit dual specificity for EGFR and ErbB4 (40); 

and the neuregulins (NRG) bind to both ErbB3 and ErbB4 (44). No direct soluble ligand 

for ErbB2 has been identified to date and it remains an orphan receptor. In fact, 

structural analyses of the ectodomain of ErbB2 suggest that it may not require ligand 

binding and remains in a conformation that is conducive to oligomerization. However, 

there have been reports suggesting that a member of the Mucin family known as 

Muc4/sialomucin may act as an unconventional intramembrane ligand for ErbB2 (45-47). 

Interestingly, Muc4/sialomucin contains EGF-like domains that are similar in sequence to 

the EGF-like domains in the NRG ligands (48) and is capable of activating ErbB2 leading 

to limited ErbB2 phosphorylation as well as inducing the translocation of ErbB2 from the 

basolateral surface to the apical surface in polarized epithelial cells (49, 50). Also, ErbB2 

is the only receptor that needs Hsp90 binding for its stability even in its fully mature state 

and at the cell surface.  

 

1.3.3. ErbB2 and breast cancer 

Elevated expression of the ErbB receptors has been observed in clinical studies 

of a significant number of sporadic breast cancers (51). Indeed, overexpression of EGFR 

in mammary carcinomas inversely correlates with patient outcome (52). Furthermore, a 
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limited number of studies relating the ErbB3 receptor with human breast cancer have 

concluded that approximately 22% of cases involved elevated levels of ErbB3, however 

there was no evidence that this was the result of gene amplification. Other studies 

suggest that ErbB3 may be a culprit along with ErbB2 in breast cancer by relating the 

coincidental elevated co-expression of ErbB2 and ErbB3 in mammary tumors (53) or the 

requirement for both ErbB2 and ErbB3 to drive breast tumor cell proliferation.  

To this end, a number of clinical studies have estimated that amplification and 

overexpression of the erbB2 is involved in about 20-30% of human breast cancer (54-

58). The consequences of this have been correlated with a poor clinical prognosis for the 

patient with increased chance of relapse and death (54, 55, 59-61). Consistent with 

other receptors, activating mutations seem to only play a minor role in ErbB2-related 

human cancers. It should be noted however that despite the identification of the V664E 

activating mutation in the sequence of the rat Neu transmembrane region (62), a 

comparable mutation has not been found in human ErbB2. Instead, mutations, when 

found, are within the kinase domain. Thus, it appears that expression of erbB2 to 

elevated levels either through gene amplification or deregulated expression of wild type 

erbB2 is the primary mechanism of ErbB2-driven oncogenesis. Notably, an alternatively 

spliced isoform of ErbB2 was detected in human breast tumor samples and this mutant 

receptor displays elevated catalytic activity in vitro (63). The alternate splicing results in 

an ErbB2 receptor that is strikingly similar to the activating deletion mutations identified 

in Neu-induced murine tumors, which have a higher propensity to dimerize (53, 64). 

However, the exact role and function of the alternatively spliced ErbB2 receptor in the 

normal mammary gland and/or in mammary oncogenesis is not clear at this point.. 

 

1.4  Carboxyl terminus of Hsp70-interacting protein (CHIP)  

1.4.1. Structure of CHIP 
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CHIP, also known as STUB1 (STIP1-homologous U-Domain-containing protein 

1; STIP1 is an alternative name for Hop) was discovered in an attempt to identify novel 

TPR-containing proteins in the human heart. In these studies, a fragment of the human 

CyP-40 (cytochrome P-40) cDNA, corresponding to its TPR domain-encoding 

nucleotides 721 to 1150, was radiolabeled with [α-32P] dCTP and used to screen a 

phage library of human heart cDNAs at low stringency (65). CHIP cDNA encodes a 34.5-

kDa protein. Evolutionarily, CHIP is a well-conserved protein with an amino acid 

sequence similarity of ~98% with mouse and ~60% with the fruit fly (66). Intracellularly, 

CHIP was found to primarily localize to the cytoplasm under quiescent conditions (65) 

although a fraction of CHIP was later found to be present in the nucleus as well (67). 

CHIP is an E3 ubiquitin ligase, has two characteristic domains, one the 

tetratricopeptide repeats (TPRs) at its amino terminus, which serves as the protein-

protein interaction domains, interacting in particular with heat shock proteins (Hsp70, 

Hsc70 and Hsp90) through binding to their conserved c-terminal “EEVD” motifs. Another 

important and unique domain is the U-box domain at the carboxyl-terminus region. The 

U-box domain was first recognized in yeast Ufd2 protein, which perform “E4” activities. 

Moreover, the tertiary structure of U-box resembles that of the RING finger domain, 

which is responsible for E3 activities for a large family of ubiquitin ligases (68). Also, 

CHIP participates in ubiquitinated substrate delivery to the proteasome by interacting 

with the S5a proteasome subunit.  Therefore, CHIP protein mediates interactions 

between the chaperone system and the ubiquitin-proteasome system (69-72).  

 

1.4.2. CHIP in protein quality control 

The classical role of chaperones was initially regarded as those of folding and 

salvaging proteins. However, it became clear that each and every newly synthesized 

polypeptide that engages with chaperones for its folding could not reach a native state, 
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and thus there must be a link between the chaperones and the degradation pathways. 

CHIP provides that link. CHIP was shown to inhibit the forward cycle of chaperones. 

However, the actual role of CHIP became clarified when it was shown to have intrinsic 

E3 ligase activity owing to the C-terminal U-box. Experimental studies with increased 

cellular levels of CHIP found a marked shift towards degradation of the HSP90/HSC70 

clients, glucocorticoid receptor (GR) (65, 73), ErbB2 (74, 75), serum-and glucocorticoid-

regulated kinase (SGK1) (76) and CFTR (77, 78). Definitive evidence for a quality 

control role of CHIP was provided when it was shown to selectively promote the 

ubiquitination of thermally denatured luciferase (and not the native form) when captured 

by Hsc70 and Hsp90 (70, 71, 79). That CHIP may participate in protein turnover was 

hinted by initial observations depicting a relatively higher expression of CHIP mRNA in 

tissues with a large proportion of terminally differentiated, non-proliferating cells and high 

levels of metabolic activity such as skeletal muscle, heart, and brain (65). The 

physiological importance of CHIP came into light with the observations that ~20% of 

CHIP null (CHIP − /−) mice die at embryonic stages and 100% fail to survive thermal 

stress (80). 

CHIP was previously shown to cooperate with the UbcH5 family of E2s to 

catalyze Lys-48-linked poly-ubiquitination. UbcH5 is a stress-associated E2. UbcH5~Ub 

conjugates have been shown to adopt both infinite spiral and linear staggered (backside 

interaction) arrangements.  Interestingly, CHIP can directly interact with four (or more) 

UbcH5~Ub conjugates allowing wide conformational flexibility during poly-ubiquitination 

of substrates (81). One consequence of this is the possibility of formation of forked 

ubiquitin chains. 

Later, Xu and coworkers (82) reported CHIP to interact with the dimeric ubiquitin 

E2 complex Ubc13-Uev1A, which catalyzes the synthesis of Lys-63-linked poly-

ubiquitination. They analyzed crystal structures of mouse CHIP U-box in complex with 
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Ubc13-Uev1a and found a common “Ser-Pro-Ala” motif present in UbcH4, UbcH5, and 

Ubc13 that mediates, and is necessary for, their interaction with the CHIP U-box. 

Although the catalysis of K63-linked poly-ubiquitination is an inherent structural feature 

of Ubc13-Uev1A, it is not clear at present how the binding of CHIP to Ubc13-Uev1A 

facilitates the process. Interestingly, CHIP only stimulates the formation of free K63-poly-

ubiquitin by Ubc13-Uev1a and thus may have to interact sequentially with other E2 

enzymes to attach K63-linked poly-ubiquitin chains on substrates. CHIP binds 3- to 5-

fold more strongly to uncharged Ubc13 than UbcH5a. It remains to be seen whether 

CHIP displays similar relative binding affinities towards ubiquitin charged E2s. 

 

1.4.3. CHIP in breast cancer 

Kajiro et al. (83) showed that CHIP mRNA and protein expression was reduced 

in a small fraction of breast cancer patient tumors that were predominantly estrogen 

receptor (ER)-negative. In vitro and xenograft studies with cell lines expressing high or 

low CHIP indicated that CHIP is an important negative modulator of breast tumor 

progression. Subsequently, a number of studies have connected CHIP expression 

differences to breast and other cancers. Interestingly, there seems to be a dispute 

regarding the oncogenic or tumor suppressive role of CHIP. It was reported that tumor 

growth and metastasis were negatively correlated to CHIP levels in a nude mouse 

xenograft model of breast tumor. CHIP also seemed to regulate the levels of a number 

of well-known oncogenic proteins like the steroid receptor coactivator SRC- 3 and inhibit 

anchorage-independent cell growth and migration. Supporting this finding, some of the 

later studies reported CHIP to negatively regulate breast tumor promoting proteins like 

TRAF2, NF-kB, PTK6, and MIF (macrophage inhibitory factor). These studies also 

documented inhibition of various oncogenic properties of breast tumor cells such as 

MCF7 and MDA-MB-231 (84-86). Further supporting its role as a tumor suppressor, 
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CHIP has been reported to degrade a number of other critical oncoproteins such as pAkt 

(87, 88), c-Myc (89), HIF-1 (90, 91) and ErbB2 (74, 75, 92)  in various cancers. Patani et 

al. (93) assessed the mRNA expression of CHIP in normal and malignant breast tissues 

and correlated with clinico-pathological characteristics. They found a striking decrease of 

CHIP expression with increasing malignant grades (TNM stages). Further, the overall 

patient survival for low CHIP-expressing tumors was significantly lower than high CHIP-

expressing tumors. This study identified CHIP as an important favorable prognostic 

marker (93). However another study suggested that expression of CHIP was a negative 

prognostic factor for breast cancer (92). It is known that chaperones (Hsp70 and Hsp90) 

are overexpressed in cancers and many cancer are addicted to these proteins. Indeed, 

many phase III clinical trial drugs are specific inhibitors of chaperones (35, 94). The co-

chaperones HOP Hop and CHIP compete with each other for chaperone binding and 

exert mutually opposite effects on chaperone function. While CHIP tilts the balance 

toward pro-degradation pathway, Hop favors a pro-folding outcome. Consequently, an 

understanding of the relative levels of co-chaperones Hop and CHIP is of importance. 

Another group observed higher expression of Hsp70, Hsp90, and Hop in colorectal 

cancer. They demonstrated that like Hsp70 and Hsp90, Hop (but not CHIP) is a 

transcriptional target of HSF1 which itself is upregulated in cancers, thus forming a 

positive feedback pro-carcinogenic circuit. Further, the ratio of Hop to CHIP was 

suggested to be a better prognostic marker than individual levels of either protein. 

Seemingly, the downregulation of CHIP is an independent event necessary for the 

realization of this circuit (95). In yet other interesting study, mRNA and protein levels of 

CHIP were found to be significantly lower in more than 75% of gastric tumors relative to 

normal tissue which are in line with previous reports in other cancers (96). 

Thus far, the molecular mechanism in which CHIP regulates oncoproteins and 

suppresses oncogenesis is still largely unknown. In particular, there is paucity of 
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information on key CHIP-regulated molecular pathways that contribute directly to 

oncogenic traits and can be targeted for therapy. Studies presented in this study were 

aimed to elucidate the role of CHIP in ErbB2+ breast cancers with a focus on identifying 

therapeutically-targetable pathways.  
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Figure 1.1. Schematic of protein maturation in the ER. 

(A) Protein folding in the ER. (B) The ER to Golgi apparatus trafficking. 

Adapted from Ellaaard L. and Helenius A., (97) .  
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Figure 1.2. Schematic of ubiquin cascade and proteasome-mediated protein 

degradation 

Ubiquitination is carried out in three main steps; activation, conjugation and 

ligation. Ubiquintin-tagged substract is transported to proteasome for degradation. 

Adapted from Yoshida Y. et al., (98).  
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Chapter 2:   Materials and methods 
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2.1 Cell lines and medium  

ErbB2-overexpressing breast cancer cell lines SKBR3 and BT474 were cultured 

in complete α-MEM medium with 5% fetal bovine serum, 10 mM HEPES, 1 mM each of 

sodium pyruvate, nonessential amino acids and glutamine, 50 µM 2-ME, and 1% 

penicillin/ streptomycin (Life technologies, Carlsbad, CA). ErbB2-overexpressing breast 

cancer cell line 21MT1 cells, obtained from Dr. Vimla Band, was cultured in α-HE 

medium (α-MEM medium supplemented with 1 µg/mL hydrocortisone and 12.5 ng/mL 

epidermal growth factor (Sigma-Aldrich, St. Louis, MO)) (99). The lentiviral packaging 

cell line TSA-54, the ER+ breast cancer cell line MCF7 and the ErbB2-negative and 

estrogen receptor/progesterone receptor-negative (triple-negative) breast cancer cell line 

MDA-MB-231 was cultured in complete DMEM medium with 5% fetal bovine serum, 10 

mM HEPES, 1 mM each of sodium pyruvate, nonessential amino acids and glutamine, 

50 µM 2-ME, and 1% penicillin/ streptomycin (Life technologies, Carlsbad, CA). 

 

2.2 Antibodies and reagents  

The following antibodies were used for immunoblotting: Ubiquitin – monoclonal 

antibody P4D1  from Cell signaling, Denver, PA; ErbB2 – monoclonal antibody (Cat. 

554299) from BD-Pharmingen, San Jose, CA; Phospho-tyrosine - 4G10 monoclonal 

antibody from EMD Millipore, Billerica, MA; Hsc70 - B-6 antibody from Santa Cruz 

Biotechnology, Santa Cruz, CA; CHIP – Rabbit anti-serum made in the laboratory 

through Covance Research Products, Denver, PA (75). CHIP IHC staining was 

performed using polyclonal rabbit antibody from Thermo Scientific, Waltham, MA. 

ErbB2-specific phosphorylation was assessed using anti-phospho-ErbB2-Y1248 

antibody from Cell Signaling Technology, Danvers, MA. Secondary reagents used for 

immunoblotting included horseradish peroxidase (HRP)-conjugated Protein A and Rabbit 

anti-Mouse HRP (Invitrogen, Carlsbad, CA). ErbB2 immuno-staining was carried out 
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using the AF1129 antibody from R&D Systems, Minneapolis, MN, or Alexa Fluor-488 or 

647-conjugated mouse anti-human ErbB2 (CD340) monoclonal antibodies (clone 24D2; 

cat. 324410 and 3244412, respectively) from Biolegend Inc., San Diego, CA, and Alexa 

Fluor -488 or 647 mouse mAb IgG1 (MOPC-21) controls (cat. 400129 and 400130) also 

from Biolegend. Secondary antibodies for immunostaining included Alexa Fluor 488 

donkey anti-goat IgG for ErbB2 and Alexa Fluor 594 donkey anti-rabbit IgG for phospho-

ErbB2-Y1248 from Invitrogen Molecular Probes, Eugene, OR.  17-AAG was obtained 

from Biomol, Plymouth, PA, and stocks prepared at 10 mg/ml or higher in DMSO. 

Trastuzumab (obtained from UNMC pharmacy) was dissolved in Phosphate Buffered 

Saline (PBS). Brefeldin A (Sigma-Aldrich, St. Louis, MO) was dissolved in DMSO. 

Cathepsin B-specific inhibitor CA074 (Sigma-Aldrich, St. Louis, MO) was dissolved in 1% 

DMSO in PBS. 

 

2.3 Protein lysis and quantification 

Cells were either lysed in Radio-Immuno-Precipitation Assay (RIPA) lysis buffer 

(50 mM Tris pH 7.5, 150 mM NaCl, 1% Triton-X-100, 0.05% deoxycholate, 0.1% Sodium 

Dodecyl Sulfate (SDS)) with or in Triton-X-100 lysis buffer (50 mM Tris pH 7.5, 150 mM 

NaCl, 0.5% Triton-X-100), 1 mM PMSF, 10 mM NaF, and 1 mM sodium orthovanadate. 

Lysates were rocked at 4°C for a minimum of 1 hour, centrifuged at 13,000 rpm for 20 

minutes at 4°C in a bench-top micro-centrifuge and supernatants were transferred to 

fresh tubes. Protein concentrations of samples were estimated using the Bicinchoninic 

acid (BCA) assay kit (Thermo Fisher Scientific, Rockford, IL) or the Bradford assay 

reagent (Bio-Rad Laboratories, Hercules, CA) using bovine serum albumin (BSA) as a 

standard. 

 

2.4 Immunoprecipitation (IP) reactions 
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Cells were lysed in RIPA buffer. Following the total protein estimation of the 

lysate samples, the optimized ratio of total lysate and antibody was allowed to incubate 

on a rocker overnight at 4°C. 200 µL of 10% Protein A Sepharose (PAS, GE Healthcare, 

Chalfont St. Giles, UK) beads (washed with RIPA buffer) were added to each IP sample 

and rocked at 4°C overnight. Following this incubation, the samples were centrifuged for 

5 minutes at 13,000 rpm at 4°C, the supernatant was removed to a separate tube, and 

the beads were washed five times with 1 m1 of RIPA buffer. Then, 100 µL of 2X sample 

buffer (10% glycerol, 3% SDS, 0.02% bromophenol blue, 0.5X Upper Tris [4X Upper Tris 

-0.5 M Tris pH 6.8, 0.4% SDS]) was added to each sample, heted at 95oC for 3-5 min, 

resolved by SDS-Polyacrylamide (Biorad) Gel Electrophoresis (PAGE), transferred to 

Polyvinylidene fluoride (PVDF) membrane (Bio-Rad Laboratories, Hercules, CA) and 

subjected to Western Blotting(75). 

 

2.5 Confocal immunofluorescence microscopy 

Cells were grown on glass coverslips inside the wells of a 24-well tissue culture 

plate. After the completion of an experiment cells were fixed in 4% paraformaldehyde 

(PFA) in PBS for 20 minutes. The PFA solution was removed and the cells were 

permeabilized for 20 minutes in immunofluorescence (IF) buffer (10% FBS, 0.2% BSA, 

and 0.05% saponin in PBS). The cells were then stained with primary antibodies for 

overnight at 4 °C followed by three 10-minute washes in PBS. The cells were then 

incubated with the appropriate secondary antibodies for 1 hour (diluted 1:500 in the IF 

buffer), followed by three 10-minute washes in PBS. In preparation for confocal 

microscopy, PBS was removed and the coverslips were carefully removed and inverted 

onto glass microscope slides with Vectashield mounting medium (Vector Laboratories, 

Burlingame, CA), which contained 4′, 6-diamidino-2-phenylindole (DAPI) to stain DNA in 

the nucleus of the cell. The coverslips were allowed to adhere to the surface and dry for 
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5 minutes or more, and then images were captured using a Nikon C1 confocal 

microscope. 

 

2.6 Transfection and plasmids  

XtremeGENE 9 transfection reagent was from Roche Applied Science 

(Indianapolis, IN); siRNA smartpools and Dharmafect I transfection reagent were from 

Dharmacon division of Thermo-Fisher (Pittsburgh, PA). Fluorescent Golgi marker 

plasmid Pm-Turquoise2-Golgi was purchased from Addgene (plasmid No. 36305). 

 

2.7 35S-methionine/cysteine pulse-labeling followed by chase (pulse-chase)  

Cells were grown in 10-cm dishes until sixty to seventy percent confluent. The 

medium was removed, cells were washed three times with PBS, and incubated with 

methionine- and cysteine-free DMEM medium [cat. 21013-024, Life technologies, 

Carlsbad, CA]) for 30 minutes at 37 °C. 35S-labeled methionine/cysteine mixture 

(EXPRE35S35S Protein Labeling Mix, cat. NEG772, from Perkin Elmer, Waltham, MA) 

was added to a final concentration of 0.5 mCi/ml. After 20 minutes, cells were washed 

three times with cold PBS and chased with complete DMEM medium supplemented with 

100 fold extra unlabeled methionine and cysteine for various time points with or without 

brefeldin-A treatment.  

 

2.8 Analysis of cumulative proliferation 

Cells were grown in 6-well plates at a density of 5,000 cells per well.  The cells 

were counted after seven-day culture and re-plated in fresh 6-well plates at the original 

plating density for a total of five serial cultures. The cumulative cell numbers were 

calculated based on the fractions of each harvest used for replating and plotted as a 

function of the times cells were re-plated. 
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2.9 Anchorage-independent growth on soft agar 

2,500 cells were seeded in 0.35% soft agar on top of 0.6% soft agar layer in 6-

well plates. After two weeks, cells were stained with crystal violet and imaged under a 

phase contrast microscope. The colonies were enumerated using the Image J (NIH, MD). 

 

2.10 Trans-well migration and invasion assays  

The migration and invasion assays were performed in trans-well chambers 

separteed by 8 µm pore size nitrocellulose filters (Corning). The membranes for the 

invasion assay were coated with 1:2 diluted matrigel (BD Biosciences) solutions. The 

cells were added in the top chamber in serum-free medium. Medium containing 10% 

FBS served as a chemoattractant in the lower chamber. After incubation for 24 h, the 

cells from the upper side of the membrane were removed by scraping with cotton swabs. 

The cells on the lower side of the filter were fixed with methanol and then stained with 

crystal violet and counted from 10 random fields. All the experiements have 3 replicates, 

and repeated for three times. 

 

2.11 In vivo xenograft tumorigenesis  

10 million cells mixed with 0.2 ml Matrigel (BD Biosciences) were implanted in 

the mammary fat pad of 4-6 week old non-pregnant female NSG mice (The Jackson 

Laboratory).  Three days prior to cell implantation, the mice were primed with s/c 

estrogen pellet (0.72 mg/ 60 day pellets; Innovative Research of America, Sarasota, FL). 

Tumor growth was monitored weekly for 10 weeks.  Tumor dimensions were measured 

with Vernier calipers and tumor volume calculated as length x width x depth/2.  At the 

end of the experiment the tumors along with livers and lungs are taken out for fixation 
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and further analyses. Mice were euthanized when control tumors reached 2 cm3 in 

volume or showed signs of ill health, as per institutional IACUC guidelines. 

 

2.12 Protein/DNA array based screen of DNA-binding activity of 345 transcription 

factors  

Protein/DNA arrays were used to simultaneously screen 345 transcription factors 

for DNA-binding activity.  This was carried out by using the protein/DNA combo-array kit 

(cat. MA1215, Affymetrix, Santa Clara, CA). In brief, 4 µg of total nuclear protein 

(prepared using the Panomics Nuclear Extraction Kit [Cat. AY2002, Affymetrix, Santa 

Clara, CA]) were incubated with biotin-labeled DNA-binding probe mix provided by the 

vendor (TranSignal Probe Mix) to allow the formation of complexes of transcription 

factors (TFs) in the lysates with cognate DNAs in the probe mix. The protein-DNA 

complexes were separated from free probes by electrophoresis in agarose gels. The 

probes present in the complexes were eluted, denatured and hybridized to the 

TranSignal membrane dotted with corresponding non-labeled probes, and the signals 

were detected by chemi-luminescence. 

 

2.13 Electrophoretic mobility shift assay (EMSA)  

EMSA was carried out by using the EMSA kit (cat. 20148, Life Technologies, 

Waltham, MA). The binding reactions were performed by adding 1 µg of nuclear extract 

protein to a mixture containing 20 fmol of 5’- biotin end-labeled double-stranded DNA 

probes in 20 µl of binding buffer. Competition reaction mixtures contained a 200-fold 

molar excess of non-biotin-labeled oligonucleotides. The DNA-protein complexes were 

separated on pre-cast native 7.5% polyacrylamide gels (cat. 456-1021, Bio-Rad, 

Hercules, California) at 100 V and then transferred onto a PVDF membrane. The 
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positions of the biotin end-labeled oligonucleotides were detected by a 

chemiluminescent reaction according to the manufacturer’s instructions.  

 

2.14 Cathepsin B (CTSB)/Cathepsin L (CTSL) activity assay 

CTSB/L activity was performed using Magic Red CTSB/L Activity Kit (Cat. 937 & 

941, Immunochemistry Technologies, Bloomington, MN) according to the manufacturer’s 

protocol. Cells were seeded on coverslips and incubated with Magic Red CTSB 

substrate for 1  h at 37  °C. The cells were washed with PBS, and fixed with 

0.1% formaldehyde. The coverslips were mounted with medium containing DAPI 

staining. Images were taken under fluorescence microscope. The fluorescence intensity 

was further analyzed using Image J (NIH). 

 

2.15 Extracellular matrix degradation assay  

This assay was carried out using QCM™ Gelatin Invadopodia kit (Cat. ECM670, 

EMD Millopore, Billerica, MA) according to the manufacturer’s protocol. FITC-labeled 

gelatin was coated onto glass coverslips and crosslinked with 0.5% glutaraldehyde in 

PBS for 30 minutes. Coated coverslips were then washed three times each with PBS 

and 50 mM glycine in PBS. Cells were cultured for various time points to allow ECM 

degradation, seen as focal loss of fluorescent signal (“holes”) in the labeled gelatin layer. 

The fluorescence intensity was further analyzed using Image J (NIH).  

 

2.16 Patient population and tissue microarrays   

Tissue microarrays (TMAs) were prepared from formalin-fixed, paraffin-

embedded tissue specimens that include a series of primary operable (stage I and II) 

breast carcinoma cases of age <70 presented consecutively between 1988 and 1998 at 

the University of Nottingham Hospital Breast Unit with tumors of less than 5 cm diameter 
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(100). This is a well-characterized series (900 cases) that includes clinical and 

pathological data. These tissue arrays were provided by Dr. Emad Rakha, Pathologist at 

University of Nottingham Hospital. The breast cancer specific survival (BCSS) is defined 

as time (in months) from the date of primary surgery to the date of breast cancer-related 

death. Distant metastasis free survival (DMFS) is defined as duration (in months) from 

the date of primary surgery to the appearance of distant metastasis. The median age of 

patients was 55 years (range 18–70 years) with a median BCSS of 129 months (range 

4–243 months) and median time of DMFS of 114 months (range 5–241 months). Distant 

recurrence occurred in 249 cases (31 %); 228 (29 %) patients died from breast cancer, 

while 435 (56 %) patients were alive at the end of follow-up. Adjuvant systemic therapies 

were provided according to the Nottingham Prognostic Index (NPI) group. Systemic 

therapy was prescribed to the Excellent (NPI B 3.4) and Good (NPI 3.41–5.4) prognostic 

Groups. The Moderate I group received hormonal therapy for ER+ tumors. The 

Moderate II, Poor, and Very Poor Groups received hormone therapy for ER+ tumors and 

cytotoxic therapy for ER- patients. Of the informative cases (n = 801) 360 have received 

hormone therapy (45 %) while 201 cases received chemotherapy (25 %). None of the 

patients received neoadjuvant therapy or anti-HER2 targeted therapy. 

 

2.17 Scoring of TMA 

Of the cores of the 900 breast cancer samples were analyzed as TMAs, sufficient 

tissue was available to perform scoring in 803 cases and these form the basis of 

analyses presented in this study. Normal controls included 25 normal human breast 

tissue specimens. The tissue arrays were stained using immunohistochemistry with anti-

CHIP antibody as described previously (101). 

Semi-quantitative assessment of staining intensity utilized a modified 

histochemical score (H-score) that includes the intensity of staining and the percentage 
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of stained cells. The intensity of staining was scored on a scale of 0 to 3 corresponding 

to negative (0), weak (1), moderate (2), and strong (3) staining. Percentage of positive 

cells was visually estimated. Multiplication of the two indices (intensity and percentage 

positive cells) provided final scores that range from 0 to 300. The pattern of expression 

was visually recorded as nuclear, cytoplasmic, or combined nuclear and cytoplasmic or 

no nuclear/cytoplasmic staining. Any nuclear expression (>1) was considered positive, 

while cytoplasmic expression was considered positive if it exceeded a cut-off of an H-

score of 110, which is based on histogram distribution of the cases as well as X-Tile 

computer software analysis. All cases were scored by a trained pathologist without prior 

knowledge of the clinic-pathological parameters or outcome data. The samples with 

cytoplasmic staining were considered cytoplasmic positive regardless of nuclear-

negativity or positivity; similarly nuclear positive cases included nuclear positive staining 

regardless of cytoplasmic staining status. 

 

2.18 Statistical analysis  

Statistical analysis of tissue microarray IHC staining was performed using the 

SPSS 16.0 statistical software (SPSS Inc., Chicago, IL, USA). Optimal cut-offs for CHIP 

expression were determined using the X-tile bioinformatics software (version 3.6.1, 

2003–2005, Yale University, USA). Analysis of categorical variables was performed with 

χ2 test. Survival curves were analyzed using the Kaplan–Meier method with significance 

determined by the Log Rank test. Multivariate analysis was performed using the Cox 

hazard analysis. Group comparison analysis was performed using student’s t test. A p 

value (two-sided) of <0.05 was considered significant. 
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Chapter 3: CHIP functions as a negative regulator of ErbB2 by 

promoting its ER-associated degradation (ERAD) 
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3.1 Introduction  

The ErbB family (ErbB1-4) of trans-membrane receptor tyrosine kinases (RTKs) 

plays critical physiological roles (102-104). ErbB1 (EGFR) and ErbB2 (Her2/Neu) drive 

oncogenesis in a number of human malignancies. ErbB2 overexpression, as a result of 

gene amplification and/or increased transcription, drives oncogenesis in over a quarter 

of human breast cancer patients (105){{109 Emde,A. 2012}} and also specifies poor 

overall patient survival (105, 106).  ErbB2 overexpression has been successfully 

exploited for therapeutic targeting with humanized monoclonal antibodies (e.g., 

Trastuzumab, Pertuzumab) and more recently with small molecule kinase inhibitors (e.g., 

Lapatinib), resulting in significant improvement of treatment outcomes when added to 

conventional chemo-radiotherapy (107, 108). De novo as well as rapidly acquired 

resistance, however, has emerged as a major limitation to ErbB2-targetd therapy (109, 

110). Newer avenues to promote more effective and durable responses to targeted 

therapy of ErbB2-driven breast and others cancers are therefore urgently needed. 

 Overexpression of ErbB2, most often due to gene amplification, is a diagnostic 

attribute of ErbB2-driven breast cancer and also a predictor of initial response to 

targeted therapy. ErbB2 is a transmembrane (TM) glycoprotein synthesized in the ER, 

and as such is subject to ER quality control, which ensures that the newly synthesized 

proteins do not exit the ER until they are determined to be correctly folded and/or fully 

assembled. Increase in the abundance of misfolded proteins triggers an unfolded protein 

response, one arm of which carries out the dislocation of misfolded/unassembled TM 

proteins into the cytosol for ubiquitin-dependent proteasomal degradation, a conserved 

process of ER-associated degradation (ERAD) (111). A subset of ER-synthesized 

proteins, which include the ErbB family member ErbB3, also undergo an ER “quantity” 

control, which targets otherwise correctly folded proteins to ERAD to maintain their 

physiological levels (112, 113).  The folding of luminal domains of TM proteins is 
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mediated by ER luminal Hsp90-family chaperones, such as Hsp94, while the folding of 

cytoplasmic domains is mediated by the Hsp90-Hsc70 chaperone (Hsc70 will be used to 

collectively refer to both constitutive and inducible members of Hsp70 family) (114). Both 

of these pathways are hyperactive in ErbB2-overexpressing breast cancers, and appear 

critical to maintain the oncogenic drive (111). Hsp90-Hsc70 chaperone complex is a 

dual-purpose machine that promotes folding, but Hsc70 can also attain a pro-

degradation conformation (regulated by co-chaperones) to facilitate degradation of client 

proteins whose mis-folding is sensed to be beyond restoration (106, 115). Studies of 

cystic fibrosis trans-conductance regulator (CFTR) as a model TM protein illustrate this 

process and have established that ER quality control of the cytoplasmic domains of TM 

proteins requires the Hsp90-Hsc70 chaperone, with the associated ubiquitin ligase (E3) 

CHIP functioning to promote a degradation state of Hsc70, leading to CFTR ERAD (62, 

67, 77).  

Newly-synthesized RTKs, including EGFR and ErbB2, associate with Hsp90-

Hsc70 on the ER, and inhibition of Hsp90 with geldanamycin (GA) or its analogues (such 

as 17AAG) promotes rapid RTK degradation, indicating a requirement for Hsp90-Hsp70 

complex to promote folding of newly synthesized RTKs (116-118). Distinct from other 

RTKs, however, ErbB2 remains Hsp90-associated even after its exit from the ER.  As 

others and our laboratory have shown, the inhibition of Hsp90 promotes rapid 

ubiquitination and degradation of mature ErbB2 protein (74, 75, 118). Notably, Hsp90 

inhibitors exhibit selectively higher antitumor effects against ErbB2-overexpressing 

breast cancer cells and these effects are synergistic with ErbB2-targeted therapeutics, 

trastuzumab or lapatinib (119).  Thus, increased Hsp90-Hsc70 chaperone function in 

ErbB2-overexpressing breast cancers is a co-driver of oncogenesis and a therapeutic 

target. Indeed, the Hsp90 inhibitor and trastuzumab combination is currently undergoing 

clinical evaluation in breast cancer (www.clinicaltrials.gov) (120). Understanding how 
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Hsp90-Hsc70 complex protects ErbB2 and how Hsp90 inhibitors promote its degradation 

are therefore critical biological and clinically-relevant questions. 

 Since treatment of ErbB2+ breast cancer cells with Hsp90 inhibitors promotes 

rapid ubiquitination and proteasome-dependent degradation (117), identification of the 

ubiquitin ligase (E3) CHIP (C-terminus of Hsc70 Interacting Protein) as a binding partner 

and inhibitor of the folding function of Hsc70 (65) suggested that it may serve as 

mediator of Hsp90 inhibitor-induced ErbB2 degradation.  Consistent with this idea, 

others and our laboratory observed that overexpression of CHIP in ErbB2-

overexpressing breast cancer cell lines enhanced the GA- or 17AAG-induced 

ubiquitination and degradation of ErbB2 (74, 75).  However, ErbB2 degradation upon 

Hsp90 inhibition was unaffected in CHIP-null mouse embryonic fibroblasts (MEFs) (74) 

and upon CHIP shRNA KD in distinct ErbB2-overexpressing breast cancer cell 

lines(Figure 3.1).  Thus, these studies clearly established that CHIP was not a mediator 

of acute degradation of mature ErbB2 (which is predominantly at the cell surface) upon 

Hsp90 inhibition. However, despite a lack of involvement of CHIP in ErbB2 degradation 

induced by Hsp90 inhibitors, several recent lines of evidence support a critical 

involvement of CHIP in the regulation of ErbB2-driven oncogenesis. In this chapter, we 

demonstrate that newly synthesized ErbB2 is a direct target of CHIP-mediated 

ubiquitination and degradation, through a modified ERAD pathway. 

 

3.2 CHIP regulates cell surface ErbB2  

To examine the molecular mechanisms underlying CHIP-mediated ErbB2 

degradation, we first developed stable CHIP knock-down (KD) ErbB2+ breast cancer 

cells. We observed that cell surface ErbB2 level increased in the 21MT1 CHIP KD cells 

comparing with 21MT1 control cells when analyzed by FACS analysis (Figure 3.2A, left 
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panel). This result was consistent with higher surface ErbB2 staining in CHIP KD cells 

analyzed by immunofluorescence imaging (Figure 3.1 B). 

Next, we constructed stable ErbB2+ breast cancer cells with Myc-tagged CHIP 

overexpression to check the impact on ErbB2 levels. As we expected, surface ErbB2 

level was decreased in CHIP overexpressing cells comparing with control cells (Figure 

3.2A, right panel). The CHIP level in ErbB2+ cells was verified by western blotting 

(Figure 3.1B).  

As CHIP is a E3 ubiquitin ligase, we asked if ErbB2 was a direct target of CHIP 

without any stimuli such as Hsp90 inhibition. Previous reports demonstrated that CHIP 

could regulate the protein quality control both in the ER, with CFTR as a well-studied 

example, and in the cytoplasm (67). We therefore asked if CHIP plays an important role 

in ErbB2 quality/quantity control since overexpression creates opportunities for 

increased mis-folding of the newly synthesized ErbB2 proteins. 

 

3.3 CHIP ubiquitinates ErbB2 for degradation 

To confirm the surface ErbB2 level change was due to CHIP involvement in 

ErbB2 ubiquitination, we performed immuneprecipitation assays in CHIP-overexpressing 

vs. parental ErbB2+ BT474 breast cancer cells. CHIP overexpression increased basal 

ErbB2 ubiquitination even without proteasome inhibitor bortezomib treatment while 

control cells did not show any ubiquitination signals. Proteasome inhibition further 

elevated ubiquitination of ErbB2 in CHIP overexpressing cells compared to control cells 

(Figure 3.3), suggesting that proteasome degradation was an essential pathway for 

ErbB2 degradation. These data demonstrated that CHIP itself functions as an E3 

ubiquitin ligase targeting ErbB2 for proteasome degradation in the absence of Hsp90 

inhibition. However, the total ErbB2 level was not changed dramatically when CHIP was 

overexpressed in ErbB2+ cells. One possible explanation was that in these ErbB2 
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overexpressing cells ectopic-CHIP expression was not high enough to clear all the 

ErbB2 protein and that CHIP only targeted a small pool of ErbB2.  Given our results 

described below on CHIP localization, we reason that it is the newly-synthesized pool of 

ErbB2 that is targeted by CHIP.  

 

3.4 CHIP destabilizes immature form of ErbB2 

Since we showed that alterations in CHIP expression predominantly impacted 

the cell surface ErbB2 expression, we undertook analyses of the impact of CHIP 

expression on ErbB2 during its maturation process. We performed 35S-

methionine/cysteine-labeling pulse-chase experiments to investigate if CHIP 

overexpression could affect the stability and maturation of newly synthesized ErbB2. As 

shown in Figure 3.4A, two bands of ErbB2 appeared after radiolabeled pulse and chase.  

The low-molecular-weight immature form (precursor) appears after pulse-labeling, while 

the higher molecular-weight mature form appears after chase and reflects the post-ER 

glycosylated form that is eventually transported to the cell surface (74). CHIP-

overexpressing 21MT1 cells had a similar maturation pattern as the control cells; 

however, the intensity of the mature ErbB2 form in CHIP overexpressing 21M1 cells was 

reduced relative to the intensity of the initial precursor form compared to the pattern in 

control 21MT1 cells (Figure 3.4B). In the control 21MT1 cells, almost 70% of the 

immature form converted to the higher molecular weight form, consistent with a 

proportion of the newly-synthesized ErbB2 being degraded through ERAD as part of the 

protein quality control. In CHIP-overexpressing 21MT1 cells only 50% of immature form 

converted into the higher molecular weight form, consistent with a larger proportion of 

newly-synthesized ErbB2 undergoing ERAD. These results provide a plausible 

explanation for reduced export of ErbB2 to the cell surface in CHIP-overexpressing cells. 
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Next, to test whether CHIP promoted the instability of the immature form of 

ErbB2, we performed 35S-methione/cysteine pulse-chase experiments without or with 

brefeldin A (BfA), an inhibitor of the transport of newly-synthesized membrane proteins 

from ER to Golgi apparatus. Under BfA treatment, newly-synthesized ErbB2 would be 

expected to remain in an immature form in the ER instead of maturing in the Golgi for 

transport to the cell surface. As expected, BfA treatment for 4 hours efficiently blocked 

the appearance of the mature form of newly-synthesized ErbB2, as there was no signal 

of high-molecular-weight band detected (Figure 3.4C). Indeed, we observed that CHIP 

overexpressing 21MT1 cells showed a faster loss of the immature radiolabeled ErbB2 

compared to the kinetics of loss f signal in control 21MT1 cells (Figure 3.4D). This result 

further supports the conclusion that CHIP targets the immature form of ErbB2 for 

degradation at the ER. Thus, extending previous findings (68), our results show that 

newly-synthesized ErbB2 targeted for ERAD by CHIP. 

 

3.5 CHIP overexpression promotes intracellular retention of ErbB2 in ER and Golgi 

Since CHIP overexpression was observed to promote the destabilization of ER-

localized ErbB2, likely reflecting its targeting to ERAD pathway, we hypothesized that 

CHIP may function at the ER or Golgi to prevent incorrectly-folded, newly-synthesized 

ErbB2 from being exported to the cell surface and preparing it for ERAD. To further 

explore this idea, we performed immunofluorescence imaging studies to asses the 

localization of ErbB2 in CHIP-overexpressing vs. parental SKBR3 cells. As shown in  

Figure 3.5, ectopically-overexpressed CHIP-GFP in ErbB2+ SKBR3 cells colocalized 

with markers of ER and Golgi (Figure 3.5A, calnexin staining represents ER; Figure 3.5B, 

GM130 staining represents cis-Golgi), suggesting that CHIP can function in both ER and 

Golgi apparatus. Importantly, cells with ectopic CHIP-GFP overexpression exhibited 

substantially reduced levels of surface ErbB2 staining, consistent with our conclusion 
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that CHIP function at ER and Golgi negatively regulates ErbB2 transport to the cell 

surface.  

We further looked at the ErbB2 staining in stably CHIP-overexpressing vs. 

control ErbB2-overexpressing 21MT1 cells. In CHIP overexpressing 21MT1 cells, we 

observed increased intracellular ErbB2 while no intracellular ErbB2 was seen in control 

cells (Figure 3.6 and Figure 3.7). Under these conditions, the intracellular ErbB2 did not 

co-localize with an ER marker calnexin (Figure 3.6); instead, it co-localized with a Golgi 

apparatus marker GM130 (Figure 3.7A). To further validate the Golgi localization of 

intracellular ErbB2, we transfected SKBR3 cells with a plasmid coding for a Golgi-

localized pmTurquoise fluorescent probe (from Addgene). Ectopic pmTurquoise Golgi 

marker also co-localized with intracellular ErbB2 in CHIP-overexpressing cells while no 

co-localization was observed in control cells (Figure 3.7B). The quantification of Golgi 

and ErbB2 co-localized cells confirmed that intracellular ErbB2 were stuck in the Golgi in 

most of the CHIP overexpressing ErbB2+ cells (Figure 3.7C). 

The classical ‘ERAD’ is thought to take place at the ER organelle (6). Since we 

observed the CHIP-mediated destabilization of immature ErbB2 in stably CHIP-

overexpressing cells, yet intracellular ErbB2 was only seen in Golgi in these cells, the 

CHIP-dependent control on newly synthesized ErbB2 does not appear to simply involve 

retention in the ER followed by ERAD. We speculate that partially unfolded ErbB2, 

apparently in association with Hsp90, is allowed to progress to the Golgi apparatus.  

However, association of CHIP with molecular chaperones is likely to prevent its further 

transport and may promote retro-transport to ER for degradation. Notably, 

overexpressed ErbB2 is unique among its family members to require Hsp90 for its 

stability in its mature form, including that present on the cell surface. In contrast, other 

RTKs, such as EGFR, require Hsp90 only in their newly-synthesized forms (29). In a 

previous study from our laboratory(75), elevated interaction of ErbB2 and Hsp70 was 
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found upon U-box mutant CHIP H260Q expression, but ErbB2/Hsp90 complex did not 

disassociate when cells were treated with an Hsp90 inhibitor 17AAG, a result in contrast 

to results with parental cells or cells expressing wildtype CHIP. We reason that CHIP 

acts as a negative co-chaperone for Hsp90/Hsc70 (65) and promotes the release of 

Hsp90/Hsc70 from ErbB2, thereby exposing the inherent hydrophobic sequences 

previously identified in ErbB2 to be required for Hsp90 chaperone (118). It is likely that 

this switch leads to newly-synthesized ErbB2 being sensed as an unfolded protein, 

promoting its retention in the Golgi/ER and eventual targeting for ERAD. To assess if 

this model is likely, we carried out IP/Western blotting analysis of ErbB2 association with 

Hsp90 and Hsc70, upon CHIP KD. As shown in Figure 3.8, CHIP KD increased the 

interactions of ErbB2 with Hsp90 and Hsp70. Thus, tumor-associated loss of CHIP can 

be viewed as an adaptive mechanism to relieve ErbB2 of a bottleneck on its transit to 

the cell surface in association with Hsp90.  

 

3.6 Reduced expression of CHIP promotes ER stress 

The needs for protein quality control are elevated in cancer cells as their higher 

metabolic demands create elevated ROS levels and increased protein synthesis creates 

additional protein unfolding (121). Since CHIP is known to serve as a key regulator of 

protein quality control (65, 70), it is reasonable to anticipate that lower levels of CHIP will 

promote the accumulation of unfolded proteins and elevate ER stress. To test this idea 

experimentally, we used the treatment with proteasome inhibitor bortezomib, a clinically-

used drug known to induce ER stress (122-124). We treated 21MT1 control cells and 

their CHIP KD derivative cells with bortezomib for various time points and analyzed the 

expression of ER stress marker CHOP (C/EBP homologous protein) were examined by 

western blotting. As shown in Figure 3.9, CHOP levels were increased in control cells 

upon bortezomib treatment but this was seen primarily at later time point (8 hours); in 



	   41 

contrast, basal CHOP levels were elevated in CHIP KD cells copared to control cells and 

bortezomib treatment led to an earlier increase in CHOP levels, indicating that CHIP is 

required to mitigate ER stress and that reduced levels of CHIP, as are now known to 

occur in tumors such as ErbB2+ breast cancer (124), would be expected to increase the 

basal levels of ER stress.  

A high ER stress level is known to trigger the unfolded protein response (UPR) 

(125). Depending on the duration and degree of ER stress, the UPR could provide either 

survival signals by activating adaptive and anti-apoptotic pathways, or death signals by 

inducing cell death programs. The former is thought to occur in tumor cells which 

activate the UPR gradually and contributes to their ability to survive and exhibit other 

oncogenic traits under hostile environments such as tissue hypoxia and lack of nutrients 

(125). Therefore, acute elevation of ER stress or repression of the adaptive UPR 

mechanisms pharmacologically has been proposed as a means to elevate ER stress to 

levels that could produce cell growth inhibition or death, and hence produce a beneficial 

therapeutic effects against cancer (126). We tested whether lower expression of CHIP in 

tumor cells could indeed sensitize them to acute elevation of ER stress and lead to an 

anti-tumor effect using anchorage-independent growth in soft agar as well as 2D cell 

proliferation assays to assess the effects of bortezomib. As shown in Figure 3.10A, CHIP 

KD SKBR3 cells had elevated colony formation compared to control cells. Treatment 

with bortezomib led to a dose-dependent inhibition of colony formation. However, when 

we compared the efficiency of colony formation (Figure 3.10B), boretomib treatment led 

to a a dramatic decrease in CHIP KD cells as compared with control SKBR3 cells. In 2D 

proliferation assay, the IC50 for bortezomib in CHIP KD cells was 10+1.2nM, compared 

to 15+ 1.3nM in control cells (Figure 3.10C), consistent with the increased sensitivity of 

tumor cells with increased ER stress due to loss of CHIP expression to acute 

pharmacologic elevation of ER stress. 



	   42 

 

3.7 ER stress inducer synergistically inhibit ErbB2+ cells with Trastuzumab 

Trastuzumab  (Herceptin, from Genentech, part of Roche) is a standard targeted 

therapeutic antibody for ErbB2+ breast cancer since 1998. We therefore investigated if 

elevated ER induction with bortezomib could have a synergistic or additive effect with 

Trastuzumab ErbB2+ breast cancer cells. We performed proliferation assays on BT474 

cells by treating with bortezomib alone, Trastuzumab alone, or a combination of both. As 

shown in Figure 3.11, BT474 cells showed a dose dependent growth inhibition upon 

bortezomib or Trastuzumab alone treatment. Analysis of the Combination Index of the 

effects of combined bortezomib and Trastuzumab treatment as an indicator of their 

interaction indicated that bortezomib and trasuzumab could synergistically inhibit BT474 

cell growth (combination indices between between 0 and 1). These results further 

establish that CHIP is a key regulator of oncogenic traits and therapeutic sensitivity of 

tumor cells, and the results described here could form the basis of future efforts to target 

CHIP-low breast ErbB2+ cancers with a combination of ER stress inducers such as 

bortezomib together with Trastuzumab to produce a therapeutic improvement for 

patients with ErbB2+ breast cancer. 

 

3.8 Discussion 

In this chapter, we established a novel role of CHIP in regulating ErbB2 through a 

modified ERAD pathway. Our results suggest that CHIP-dependent alterations in the 

association of ErbB2 with molecular chaperones are an important mechanism to 

promote the Golgi to surface transport of newly-synthesized ErbB2 in ErbB2-

overexpressing breast cancer cells. Thus, loss of CHIP in a majority of EbB2+ breast 

cancers may accentuate oncogenesis in part by ensuring that HSP90 remains 
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associated with ErbB2 and allows this complex to exit ER/Golgi for transport to cell 

surface where it functions to promote oncogenesis. 

As discussed in the introduction, Hsp90-Hsc70 chaperone monitors the folding 

state of cytoplasmic domains of TM proteins (20, 29).  CHIP, as a negative co-

chaperone, promotes the pro-degradation state of the Hsp90-Hsc70 chaperone. Studies 

of model TM proteins, such as CFTR, have demonstrated that misfolding of cytoplasmic 

domains triggers Hsp90-Hsc70 chaperone-dependent ERAD (67, 77). Overexpressed 

ErbB2, which lacks any mutations, is persistently bound to Hsp90-Hsc70 chaperone 

even in its mature state through a unique hydrophobic patch on ErbB2 (118). Inhibition 

of this association (by Hsp90 inhibitors) leads to rapid degradation of ErbB2 (74, 75). 

When the aforementioned hydrophobic patch was rendered EGFR-like, the mature form 

of this mutant ErbB2 is insensitive to Hsp90 inhibitors; under these conditions, Hsp90-

Hsc70 still interacted with the cytoplasmic region,  but through another undefined region, 

and Hsp90 inhibition only destabilized the newly synthesized form, indicating that 

Hsp90-Hsc70 chaperone was separately needed to stabilize the cytoplasmic domain of 

newly synthesized ErbB2. As shown in this study, CHIP in ErbB2-driven breast cancer 

played the essential role as an enforcer of ErbB2 ERAD. As CHIP-dependent ERAD was 

enforced on immature ERbB2 and was accentuated by the retention of this form in the 

ER using brefeldin-A, it would be consistent with ER quality control roles assigned for 

CHIP in the context of mutant CFTR. An example of the ER “quantity” control has been 

presented in which the ER-localized ubiquitin ligase Nrdp1 enforces the ERAD of ErbB3 

to control its surface levels (112, 113). It is therefore plausible CHIP-dependent control 

of the ERAD of ErbB2 could also function as a “quantity” control rather than “quality” 

control since ErbB2 is transported to the cell surface in a chaperone-associated form 

and is functional in this form. 
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It should be noted that acutely overexpressed CHIP co-localized with the ER and 

Golgi in ErbB2-overexpressing breast cancer cells (Figure 3.5), as previously described 

previously in other cells (89). It is therefore plausible that CHIP may function at both 

organelles during the ER quality/quantity control newly-synthesized transmembrane 

proteins such as ErbB2. R, However, stably overexpressed CHIP localized primarily in 

the Golgi and not the ER in ErbB2-overexpressing cells. Since our results with pulse-

chase labeling clearly show that CHIP regulates the conversion of newly sysnthesized 

immature to mature form of ErbB2 and that inhibition of ER to Golgi transport of ErbB2 

exposed immature ErbB2 to CHIP-dependent degradation (Figure 3.4),  we suggest that 

CHIP function towards ErbB2 and potentially other transmembrane proteins, is more 

complex than simply ERAD. We speculate that CHIP association with molecular 

chaperones bound to transmembrane proteins such as ErbB2 promotes ERAD and in 

addition can expose the targeted proteins for degradation even in non-ER compartments 

such as Golgi but that such processes may be slower compared to ERAD (thus 

accounting for a pool of CHIP and ErbB2 being seen in the Golgi but not in the ER in 

stably CHIP-overexpressing ErbB2+ breast cancer cells). This idea is consistent with 

recent results in which mutant CFTR was shown to undergo an ERAD-like degradation 

dependent in part on CHIP even at the cell surface (127). It is also possible that CHIP-

dependent ubiquitination of either molecular chaperones (128) or transmembrane 

proteins such as ErbB2 (74, 75), promotes the retrograde transport from Golgi to ER 

where the marked proteins are then eliminated by ERAD. Notably, CPY protein has 

been shown to be retro-transported from Golgi to ER for ERAD (129). 

Demonstration of CHIP as an enforcer of ErbB2 ERAD would allow future studies 

to test therapeutic options that target components of ERAD and the linked unfolded 

protein stress and UPR response pathways. Recent studies have shown that the 

proteasome inhibitor Bortezomib, which was approved by the FDA for treating multiple 
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myeloma (130), has a very potent inhibitory effect on breast cancer cell lines, and clinical 

trials to test Bortezomib in breast cancer patients are ongoing (122, 123). Our in vitro 

proliferation data suggests that a combination of Bortezomib and Trastuzumab 

specifically in ErbB2+ patients that show reduced CHIP expression could produce a 

therapeutic improvement.
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Figure 3.1 CHIP is not required for Hsp90 inhibition induced ErbB2 degradation 

(A). 21MT1 control and CHIP KD cells were treated with 17AAG for different time 

points. Western blot analysis of cell lysate for ErbB2 and CHIP, Hsc70 is the loading 

control.  (B). SKBR3 control and CHIP KD cells were seed on cover slips and treated 

with 17AAG for 8 hours, cells then were fixed and stained with anti-ErbB2 antibody 

followed by secondary fluorescent conjugate. Cover slips were mounted with DAPI 

staining and further taken images under confocal microscopy.  
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Figure 3.2 CHIP regulates cell surface ErbB2 

(A). 21MT1 cell surfaceErbB2 level is determined by FACS analysis. Knockdown 

of CHIP increased cell surface ErbB2, overexpression of CHIP further decreased cell 

surface ErbB2. Data represent mean + S.D., n=6 (B). Western blot analysis of 21MT1 

cell lysate for CHIP, Hsc70 is the loading control.    
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Figure 3.3 CHIP elevates basal ubiquitinates of ErbB2  

BT474 cells were seed in 10cm dishes and incubated with or without treatment of 

proteasome inhibitor bortezomib for 4 hours.  Cleared lysates from cells harvested were 

quantified by BCA assay. ErbB2 was immuoprecipitated by using trastuzumab (5ug/ml), 

ubiquitin and ErbB2 signals were detected in immuoprecipitates (upper panel) and ErB2, 

and CHIP signals were detected in whole cell lysates (lower panel). 
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Figure 3.4 Overexpression of CHIP down regulates newly synthesized ErbB2  

(A) 21MT1 cells were pulse-labeled for 20 min with [35S] methionine-cysteine and 

were then chased with excess unlabeled methionine-cysteine medium. Cleared lysates 

from cells harvested at the indicated times were immunoprecipitated with anti-ErbB2 

antibodies and were analyzed by autoradiography. (B) Quantification of ErbB2 signal in 

A. (C) 21MT1 cells were pulse-labeled for 20 min with [35S] methionine-cysteine and 

were then chased with excess unlabeled methionine-cysteine medium with Brefeldin A 

treatment. Cleared lysates from cells harvested at the indicated times were 

immunoprecipitated with anti-ErbB2 antibodies and were analyzed by autoradiography. 

(D) Quantification of ErbB2 signal in C. 
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Figure 3.5 CHIP co-localized with ER and Golgi apparatus  

(A) SKBR3 cells were seed on cover slips and transiently transfected with CHIP-

GFP vector, cells then were fixed and stained with anti-ErbB2 and anti-calnexin antibody 

followed by secondary fluorescent conjugate. Cover slips were mounted with DAPI 

staining and further taken images under confocal microscopy. (B) SKBR3 cells were 

seed on cover slips and transiently transfected with CHIP-GFP vector, cells then were 

fixed and stained with anti-ErbB2 and anti-GM130 antibody followed by secondary 

fluorescent conjugate. Cover slips were mounted with DAPI staining and further taken 

images under confocal microscopy.   
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Figure 3.6 ErbB2 does not co-localize with ER in CHIP overexpressing ErbB2+ 

cells 

21MT1 cells were seed on cover slips, then fixed and stained with anti-ErbB2 

and anti-calnexin antibody followed by secondary fluorescent conjugate. Cover slips 

were mounted with DAPI staining and further taken images under confocal microscopy.



	   57 

 

  



	   58 

Figure 3.7 ErbB2 co-localized with Golgi in CHIP overexpressing ErbB2+ cells  

(A) 21MT1 cells were seed on cover slips, then fixed and stained with anti-ErbB2 

and anti-GM130 antibody followed by secondary fluorescent conjugate. Cover slips were 

mounted with DAPI staining and further taken images under confocal microscopy. (B) 

SKBR3 cells were seed on cover slips and transiently transfected with pmTurquoise-

Golgi vector, cells then were fixed and stained with anti-ErbB2 antibody followed by 

secondary fluorescent conjugate. Cover slips were mounted with DAPI staining and 

further taken images under confocal microscopy. (C) Quantification of Golgi and ErbB2 

co-localized cells in A & B. 
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Figure 3.8 Loss of CHIP elevates interaction between ErbB2 and Hsp90/Hsp70  

21MT1 Cells were seed in 10cm dishes and incubated with or without treatment 

of Hsp90 inhibitor 17AAG for 4 hours.  Cleared lysates from cells harvested were 

quantified by BCA assay. ErbB2 was immuoprecipitated by using trastuzumab (5ug/ml), 

Hsp90, Hsp70 and ErbB2 signals were both detected in immuoprecipitants (right panel) 

in whole cell lysates (left panel). 
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Figure 3.9 Loss of CHIP induces ER stress  

21MT1 Cells were seed in six well plates and incubated with or without treatment 

of proteasome inhibitor Bortezomib for different time points.  Cleared lysates from cells 

harvested were quantified by BCA assay. ErbB2, CHOP and CHIP signals were 

detected from western blotting, Hsc70 served as loading control. 
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Figure 3.10 Loss of CHIP sensitizes growth inhibition by stress inducer in ErbB2+ 

cells 

(A) SKBR3 cells were seed in soft agar plates (0.6% bottom, 0.35% upper) with 

the treatment of proteasome inhibitor Bortezomib at different concentrations and 

incubated for 3 weeks. Colonies were stained, imaged and analyzed under microscope. 

Data represent mean + S.D., n=3. (B) The colony numbers in A were normalized to the 

untreated group of control cells. (C) SKBR3 cells were seed in 96 well plates, followed 

by the treatment of proteasome inhibitor Bortezomib at different concentrations for 5 

days. Plates were stained with MTT and read under plate reader. IC50 was calculated 

by Prism software.   
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Figure 3.11 Trastuzumab and bortezomib synergistically inhibit BT474 

proliferation 

BT474 cells were seed in 96 well plates, followed by the treatment of 

trastuzumab alone (A), Bortezomib and the two combinations (B) at different 

concentrations for 5 days. Plates were stained with MTT and read under plate reader. 

Data represent mean + S.D., n=3 (C) Combination index was calculated by the software 

of Prism.  
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Chapter 4: Loss of CHIP in breast cancer unleashes a program 

of tumor invasion and metastasis mediated by the transcription 

factor MZF1 and its targets, cathepsins  
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4.1 Introduction 

ErbB2 overexpression, as a result of gene amplification and/or increased 

transcription, drives oncogenesis in about 20%-25% of human breast cancer patients 

and specifies poor overall survival (131).  ErbB2 overexpression and mutations also 

drive smaller subsets of other cancers, such as aero-digestive and ovarian cancers.  

Targeting of overexpressed ErbB2 with humanized monoclonal antibodies (e.g., 

Trastuzumab, Pertuzumab), and recently with small molecule kinase inhibitors (e.g., 

Lapatinib), in combination with conventional chemo-radiotherapy has led to significant 

improvements in treatment (107, 108).  All treated patients however will eventually 

develop resistance, through de novo or acquired mechanisms, leading to eventual 

disease progression and death due to metastatic disease (109, 110). Current antibody-

based therapeutics are also ineffective against brain metastases due to their inability to 

cross the blood-brain barrier (108). Newer avenues whose targeting could improve the 

existing ErbB2-targeted therapies to impart more effective and lasting responses are 

urgently needed. 

While overexpressed ErbB2 is the driver of oncogenesis in ErbB2+ tumors, 

substantial rewiring of biochemical pathways in tumor cells, together with alterations in 

tumor microenvironment are also essential (132). One such pathway is mediated by the 

Hsp90-Hsc70 molecular chaperone complex, which is essential to facilitate the folding of 

newly synthesized proteins and assembly of multi-subunit protein complexes (133). A 

number of signaling proteins, including ErbB2 itself, perpetually remain Hsp90-

associated to maintain their mature functional states (134). Specific inhibition of Hsp90 

ATPase activity (e.g., with 17AAG) rapidly destabilizes ErbB2, and results in tumor cell 

killing (119, 135). As our laboratory has shown (119, 135), Hsp90 inhibitors synergize 

with ErbB2-targted therapeutics and such combinations are now under clinical 

development although beset with toxicity (120). 
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At the molecular level, ErbB2+ breast cancers express higher levels and a more 

active conformation of Hsp90 (136, 137). The Hsp90-Hsc70 chaperone complex is a 

dual-purpose machine that promotes folding but its Hsc70 component can also attain a 

pro-degradation conformation (133). These transitions are regulated by co-chaperones 

that interact with Hsp90/Hsc70.	   The positive co-chaperone Hop and negative co-

chaperone CHIP (C-terminus of Hsc70-interacting protein; also called STUB1) interact 

with the C-termini of Hsp90 and Hsc70, and mediate an on-off switch (138, 139). 

Elevated phosphorylation near the C-termini of Hsp90 and Hsc70 was shown to 

enhance Hop interaction and reduce CHIP interaction, providing one mechanism for 

upregulation of the active Hsp90-Hsc70 form in breast cancer (26). Loss of CHIP 

expression has now emerged as another mechanism 

CHIP is a U-box-containing ubiquitin ligase (E3) that interacts with Hsp90 and 

Hsc70 through its TPR domains. The co-chaperone function of CHIP is essential for 

protein quality control, and a substantial number of cellular proteins have been identified 

as binding partners and targets of CHIP E3 activity(138, 138, 139, 139, 140, 140). These 

include ErbB2 itself, as others and we have demonstrated (74, 75), and is further 

demonstrated by studies presented in Chapter 3 of this thesis. Recent clinical studies 

support a tumor suppressor function of CHIP in ErbB2+ breast cancers. Two studies of 

smaller breast cancer cohorts showed that CHIP mRNA or protein expression was 

reduced in cancer tissues of a majority of ErbB2+ and triple-negative patients, and loss 

of CHIP expression predicted poor patient survival (83, 92). However, another study 

came to an opposite conclusion (93). In one study, it was shown that CHIP depletion in 

ER+ MCF7 cells upregulated the expression of ER coactivator SRC3, which was found 

to be a CHIP target (83). The significance of this finding to ErbB2+ and triple-negative 

breast cancers, a majority of which does not express ER, is unclear and oncogenesis-

relevant targets of CHIP in these breast cancer subtypes remain unknown.  
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Here, we undertook an extensive clinical-pathological study using a cohort (>800 

patients) of extensively annotated breast cancer tissues (100).  Further, we utilized 

protein/DNA array to identify a novel pathway, mediated by the transcription factor MZF1 

and impinging on matrix degrading enzymes cathepsin B and L, that is regulated by 

CHIP and whose deregulation as a result of loss of CHIP expression contributes to 

ErbB2+ breast cancer progression. We further show that targeting this pathway could 

serve as a potential therapeutic avenue for breast cancer.  

 

4.2 Decreased nuclear CHIP expression correlates with clinical characteristics and 

a poorer survival in breast cancer patients 

That CHIP may serve as a tumor suppressor is supported by reports in different 

solid tumors that show loss of CHIP expression with tumor progression. In our study, 

immunohistochmical staining of CHIP in tissue microarrays (TMAs) from about 956 

breast cancer patients revealed two distinct patterns: cytoplasmic and nuclear staining 

(Figure 4.1A). The Kaplan-Meier analysis revealed that low nuclear staining pattern was 

significantly correlated with poorer breast cancer specific survival of all the breast cancer 

patients while cytoplasmic CHIP staining was not predictive (Nuclear CHIP p=0.003 Vs. 

cytoplasmic CHIP p=0.469, Figure 4.1B). As shown in Table 4.1 lower nuclear CHIP 

expression in the cancerous tissues was also significantly correlated with clinic-

pathological feathers of tumor progression, such as higher tumor size, tumor grade, 

pleomorphism and mitosis status. However, the cytoplasmic CHIP expression was not 

significantly correlated with these features (Table 4.1). Loss of nuclear CHIP expression 

also showed a significant correlation with high levels of various biochemical markers of 

tumor progression and metastasis (Table 4.2), such as reduced staining for hormone 

receptors ER and PR, altered cytokeratins (CK 18, CK19), increased early epithelial-

mesenchymal transition markers (N-cadherin, P-cadherin) and EGFR family proteins 
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(EGFR, ErbB2, ErbB4). However, none of those markers correlated with cytoplasmic 

CHIP expression except CK 18 (p=0.001) and ErbB2 (p=0.016) (Table 4.3). Thus, our 

large TMA analysis confirmed previous findings that low CHIP expression is found in 

larger subsets (about 2/3rd) of ErbB2+ and triple-negative breast cancer patients and a 

smaller subset (1/3rd) of ER+ patients, but more importantly demonstrated that it is the 

loss of nuclear staining of CHIP that provides a marker of poor disease-free survival and 

tumor progression. These latter findings provided a basis for further studies to 

demonstrate a mechanistic basis of how loss of nuclear CHIP may contribute to breast 

cancer oncogenesis. Given the overall focus of this thesis on ErbB2-driven oncogenesis 

as a model to investigate the tumor suppressor function of CHIP, we used ErbB2+ 

breast cancer cell lines as a primary model. However, key findings related to new 

mechanistic insights were confirmed in limited experiments in triple-negative and ER+ 

breast cancer cell line models.  

 

4.3 CHIP suppresses ErbB2+ breast cancer cell growth and tumor formation both 

in vitro and in vivo 

Given our TMA IHC results and previous studies indicating lower CHIP 

expression in ErbB2+ and triple-negative breast cancers, we examined the mRNA and 

protein levels of CHIP in a panel of human breast cancer cell lines that included 

examples of all three major subsets as well as immortal mammary epithelial cell line 

controls. The CHIP expression levels (both mRNA and protein level) were found to be 

lower in ErbB2+ and in triple negative cells compared to normal mammary epithelial cell 

lines and ER+ breast cancer cell lines (Figure 4.1C and 4.1D); analyses of ER+ and 

triple-negative cell lines are consistent with a previous report (83) but our analyses show 

clearly that ErbB2+ breast cancer cell lines recapitulate the lower expression of CHIP 

seen in this subset of breast cancer in patient samples. 
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We then asked whether the tumorigenic traits of ErbB2-overexpressing breast 

cancer cell lines were dependent on the relaxed protein quality control expected in these 

cells as a result of reduced levels of CHIP expression. This was clearly suggested by our 

experiments (Chapter 3) in which the low CHIP levels in ErbB2+ breats cancer lines 

were further reduced by CHIP KD, resulting in increased ErbB2 surface expression. For 

this purpose, we engineered three ErbB2+ cell lines to stably overexpress CHIP 

(CHIPOE , Figure 4.1E) 

We used ErbB2-overexpressing 21MT1 cell line CHIP-hi/low cell pair to 

investigate the role of CHIP in proliferation, anchorage-independent cell growth and 

invasiveness,, important in vitro traits associated with tumor progression. While no 

significant difference in proliferation was observed in a single passage, consistent with a 

similar result upon CHIP overexpression in triple-negative breast cancer cell line MDA-

MB231 published previously (83), our analysis of cumulative cell proliferation over 

multiple passages revealed that CHIPOE cells proliferated modestly but significantly lower 

compared to control cells (Figure 4.3A). In a more stringent assay of proliferation under 

anchorage-independent conditions in soft agar, CHIPOE cells exhibited a significantly 

lower number of colonies compared to control cells (Figure 4.3B), indicating the CHIP 

overexpression decreased anchorage-dependent cell growth. We next performed trans-

well migration and invasion assays using serum growth factors to provide a 

chemoattractant gradient. These analyses demonstrated that CHIPOE cells show a 

significantly reduced ability to migrate in trans-well chambers (Figure 4.3C) and a 

significantly reduced invasion through Matrigel, as shown by the number of cells that 

penetrated the Matrigel-coated membrane (Figure 4.3D). 

Nude mice were orthotopically implanted in the mammary fat pad with BT474 

CHIPOE and control cells (6 mice per group). The CHIP-overexpressing BT474 cells 

formed significantly smaller tumors compared those formed by control cells (Figure 4.2A 
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and 4.2B). Exogenous CHIP overexpression in tumors was confirmed by western 

blotting (Figure 4.2C). Histologic examination revealed that, compared with control cells, 

CHIPOE tumor cells had a lower degree of nuclear atypical and a lower mitotic index 

(Figure 4.2D). In addition, immunostaining of the proliferative marker Ki67 demonstrated 

that the ratio of proliferative cells was lower in CHIPOE tumors (Figure 4.2E and 4.2F). 

However, immunostaining of the apoptotic marker cleaved-caspase 3 did not show any 

significant difference between control and CHIPOE tumors (Figure 4.2E and 4.2G), 

suggesting that the impact of CHIP overexpression is primarily cytostatic.  

The results of these assays indicated that the oncogenic potential of ErbB2+ cells 

was significantly decreased by CHIP overexpression and supports the idea that loss of 

CHIP expression in ErbB2+ breast tumors promotes tumor progression as suggested by 

our clinical-pathological analyses.  

 

4.4 Identification of potential nuclear targets of CHIP using a screen of cognate 

DNA-binding activities of nuclear transcription factors 

Given our results with breast cancer tissue IHC analyses, which highlighted the 

loss of nuclear but not cytoplasmic CHIP expression as a predictor of tumor progression 

and poor patient outcomes, we reasoned that targets of CHIP relevant to its tumor 

suppressor function may likely function in the nucleus. Transcription factors are an 

obvious category of such targets that must act inside the nucleus by binding to their 

cognate DNA elements and regulating the transcription of specific gene sets, often in 

concert (141). Indeed, previous studies in cancer cells and non-cancer cell systems and 

in vivo have identified a number of transcription factors as potential targets of CHIP-

mediated ubiquitylation and functional regulation. The known transcription factor targets 

and the tissues/cell types in which these were found are indicated in Table 4.4. These 

prior examples suggest examples, such as NFkappaB and others, that may be relevant 
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to the tumor suppressor role of CHIP in ErbB2+ breast cancer. We however opted to 

carry out an unbiased screen of CHIP-regulated transcription factors by assessing the 

DNA-binding activities of transcription factors present in a commercially available array. 

The Combi-Array from Affymetrix has an array of cognate DNA-binding sequences 

corresponding to 345 transcription factors in a filter format that allows the analysis of the 

levels of DNA-binding activities of corresponding transcription factors present in a 

nuclear extract, using a work flow described in Chapter2.  Although this assay measures 

DNA-binding activity, and not the protein levels of transcription factors, we reasoned this 

to be an advantage since examples of transcription factors that are regulated by CHIP-

dependent mono-ubiquitylation without degradation have been reported (142). 

We carried out an analysis of relative DNA binding activities in nuclear extracts of 

control vs. CHIP-overexpressing ErbB2+ BT474 breast cancer cell line, and expressed 

the results as fold difference in binding activity (based on the intensity of spots on the 

arrays), where the intensities of control spots were found to show the expected 

invariance. As expected, the DNA-binding activities of most transcription factors did not 

change beyond an arbitrary cu-off of 3-fold (Figure 4.4A).  However, smaller subsets of 

transcription factors present in the nuclear extracts of CHIP-overexpressing vs. control 

cells showed more substantial increase or decrease in DNA-binding activities (Figure 

4.4A), and we consider these as likely targets of CHIP, either as direct targets of 

CHIPE3 ubiquitin ligase or as being regulated by other transcription factors or signaling 

pathways that change the abundance or activities of these transcription factors. 

Consistent with the robustness of our assay, the transcription factors identified as CHIP-

depndent in our analysis (Table 4.4) included many transcription factors shown to be 

downregulated by CHIP, such as p-53 and NFkB (143, 144).  

 

4.5 MZF-1 is a direct target of CHIP-mediated ubiquitination and degradation 
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Among the transcription factors identified by our screen, we focused on MZF-1 

for a number of reasons, a primary one being its recent linkage to invasion signaling 

downstream of ErbB2 (145). Myeloid zinc finger 1 (MZF-1) is a physiological regulator of 

myeloid lineage development but has been linked to leukemia and more recently to solid 

tumors (146-149). P55PIK transcriptionally activated by MZF-1 promotes colorectal 

cancer cell proliferation (146). The MZF-1/c-MYC axis mediates lung adenocarcinoma 

progression caused by wild-type lkb1 loss (148). Osteopontin mediates an MZF-1-TGF-

beta1-dependent transformation of mesenchymal stem cells into cancer-associated 

fibroblasts in breast cancer (149). 

Efforts to identify mechanisms by which ErbB2 signaling leads to breast cancer 

cell invasiveness in a 3D matrix culture identified a novel pathway in which ErbB2 

signaling, via MZF-1, leads to transcriptional upregulation of cathepsin B (CTSB) and L 

(CTSL). In this study, Cdc42-binding protein kinase beta, extracellular regulated kinase 2, 

p21-activated protein kinase 4, and protein kinase C alpha were identified as essential 

mediators of ErbB2-induced cysteine cathepsin expression and breast cancer cell 

invasiveness.	  This identified signaling network activates the transcription of cathepsin B 

gene (CTSB) via myeloid zinc finger-1 transcription factor that binds to an ErbB2-

responsive enhancer element in the first intron of CTSB (145). 

Our screen identified MZF-1 as one of the CHIP targets whose DNA-binding 

activity was reduced upon CHIP overexpression in ErbB2-overexpressing breast cancer 

c ell line BT474(Figure 4.4A; MZF-1 is highlighted as a red dot). To validate MZF-1 is a 

transcription factor regulated by CHIP, we performed electrophoresis mobility shift assay 

(EMSA) using double-stranded oligonucleotide probes corresponding to MZF-1 binding 

sites on the promoters of CD34 genes (150).  The level of binding, as seen in the 

intensity of shifted bands on gels, between MZF-1 and its consensus DNA sequence 

was indeed decreased in CHIP-overexpressing BT474 cells compared to control cells 
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(Figure 4.4B). We further analyzed the mRNA and protein levels of MZF-1 in CHIP-

overexpressing vs. control cells. Upon CHIP overexpression, both mRNA and protein 

level of MZF-1 were decreased (Figure 4.4C and 4.4D). This result suggested that at 

least part of the mechanism by which the DNA-binding activity of MZF-1 was reduced in 

CHIP-overexpressing cells was indirect, via regulation of upstream modulators of MZF-1 

transcription. However, to assess whether or not MZF-1 is also a target of direct 

ubiquitination and degradation by CHIP we assessed the level of mZF-1 protein level 

and its ubiquitination upon CHIP overexpression. We transfected MZF-1 and/or CHIP 

plasmids into HEK-293T cells and analyzed the ubiquitination and degradation of MZF-1. 

Immunoprecipitation of MZF-1 showed increased ubiquitination to be directly 

proportional to ectopic CHIP levels (Figure 4.4E, upper). Correspondingly, the total level 

of MZF-1 decreased upon increased expression of CHIP (Figure 4.4E, upper). All these 

results therefore demonstrated that MZF-1 is ubiquitinated and degraded by CHIP.  We 

further assessed this question by testing the impact of expressing mutations in CHIP, 

CHIPK30A (mutation in TPR domain and hence incapable of associating with 

Hsp90/Hsc70) and CHIPH260Q (mutation in U-box domain and hence E3 deficient) (75), 

on its ability to promote MZF-1 degradation. These analyses showed that intact TPR and 

U-box domains were required for CHIP to reduce MZF-1 protein levels. These results 

support the conclusion that MZF-1 is a bona-fide target of CHIP-dependent degradation.   

In addition, we examined the extracellular matrix degradation by culturing cells 

on FITC-labeled gelatins, which was a critical step for tumor metastasis. The 

degradation of florescent gelatin was significantly decreased in CHIPOE cells (Figure 

4.3E and 4.3F). 

 

4.6 CHIP is a critical negative regulator of MZF-1-dependent Cathepsin B/L matrix 

degradation axis 
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Previously CTSB/L, key regulators of tumor progression and metastasis, have 

been reported to be downstream transcriptional targets of MZF-1 and this axis has been 

shown to hyperactivated by ErbB2 signaling (145). We therefore asked if the negative 

regulation of MZF-1 by CHIP translates into altered expression of CTSB/L. We first used 

the EMSA with DNA sequences corresponding to known MZF-1 binding site in the CTSB 

promoter region as a probe. The binding activity of CTSB/L promoter region was 

decreased in the nuclear extracts of CHIP-overexpressing cells compared to control 

cells (Figure 4.5A). Importantly, both the mRNA and protein levels of CTSB and CTSL 

were decreased upon CHIP overexpression (Figure 4.5B and 4.5C). Next, we used a 

commercial kit (the Magic Red Kit) to test the functional enzymatic activity of CTSB and 

CTSL in the CHIP-overexpressing vs. control ErbB2+ 21MT1 cell lines. CHIP-

overexpressing cells showed reduced red fluorescence, which represents substrate 

cleavage by CTSB/L, compared to control cells (Figure 4.5D). Quantification of red 

fluorescence signals revealed that the levels of CTSB and CTSL activity were lower in 

CHIP-overexpressing cells compared to control cells (Figure 4.5E). Overall, these results 

establish that MZF-1/CTSB/L pro-invasion signaling axis is negatively regulated by CHIP. 

The novel findings described above suggested that one mechanism by which 

loss of CHIP promotes tumor progression is through upregulation of this key pro-

invasion/metastasis signaling pathway.  We therefore investigated whether CTSB/L 

inhibition would prevent or alleviate tumor progression and invasion. We utilized 21MT1 

cells to test the impact of chemical inhibition of CTSB on cell invasion. The matrix 

degradation assay using fluorescent collagen showed that CTSB inhibitor CA074 (151) 

prevented matrix degradation (Figure 4.6A and 4.6B). Further, the colorimetric trans-well 

invasion assay showed marked inhibition of cell invasion by CA074 (Figure 4.6C). 

Next we tested the efficacy of CA074 in BT474 xenograft model, by treating mice 

with CA074, Trastuzumab or their combination, since Trastuzumab is a standard 
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targeted therapeutic antibody clinically used for ErbB2+ breast cancer. Treatment of 

mice with CA074 resulted in a marked inhibition of tumor growth, comparable to that 

seen with Trastuzumab, although the combination did not show a significant 

additive/synergistic effect (Figure 4.6D). The likely explanation for the latter result 

includes the fact that both drugs are being used at their optimal doses based on 

previous studies (151). These results support the idea that one mechanism by which 

loss of CHIP functions to promote ErbB2+ breast tumor progression (based on our 

clinical-pathological studies) is by allowing increased MZF-1 dependent cathepsin 

expression. Our results also support the potential targeting of cathepsin B, and 

potentially CTSB/L together, as a future therapeutic approach against ErbB2+ breast 

cancer where CHIP is downregulated, especially under metastatic settings. 

 

4.7 Discussion 

In this chapter, we used TMAs derived from the largest cohort studied for 

analyses of CHIP protein expression in breast cancer to demonstrate that CHIP 

expression is downregulated in nearly two-thirds ErB2+ and triple-negative subtypes of 

breast cancers and in about a third of ER+ breast cancers. Analyses in cell lines 

confirmed the predominant loss of CHIP expression in the former two subtypes of breast 

cancer, and as in previous studies (83) suggested that loss of CHIP expression is 

regulated at the level of mRNA levels. It will be of interest to examine if this is due to 

suppression of transcription possibly due to hypermethylation of CHIP gene, due to 

influence of altered regulatory RNAs such as microRNAs (152), or both. Since the ER+ 

subtype is the largest subtype of breast cancer, numerically the CHIP-low ER+ tumors 

add to similar ErbB2+ and triple-negative cases with nearly half of all patients with breast 

cancer exhibiting a loss of CHIP expression. Our clinical-pathological analyses suggest 

that patients within this group carry an intrinsically poorer survival and increased tumor 
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progression and metastasis. This is consistent with poorer intrinsic patient outcomes and 

higher metastatic odds of patients with triple-negative and ErbB2+ breast cancers (83). It 

will be of considerable future interest to further assess if the ER+ patients with low CHIP 

expression belong to a particular molecular sub-classification of ER+ tumors; in this 

regard, a potential candidate is the luminal B subtype of breast cancers which has 

considerably poor survival and therapeutic responses compared to luminal A or normal-

like breast cancers (83). Thus, our clinical-pathological analyses, together with other 

recent reports (83, 92), strongly supports the idea that CHIP is a tumor suppresser 

whose expression is a barrier to tumor progression and metastasis in breast cancer. 

Our study revealed a novel finding in that it is the loss of nuclear CHIP instead of 

cytoplasmic CHIP that correlates with tumor progression markers and poorer survival. 

We used this novel clinically-driven insight as a basis for an unbiased protein/DNA array 

screen to identify a substantial group of transcription factors whose DNA-binding activity 

is directly or indirectly regulated by CHIP (Figure 4.4A). This screen vastly expands the 

list of potential targets of CHIP, beyond a few described in the literature (143, 144), 

whose unregulated activity may contribute to oncogenesis in breast and other cancers. 

As an in-depth analysis of all or most of the identified transcription factors would be 

unfeasible within this study, we focused on a particularly novel and relevant candidate 

MZF-1. 

MZF-1 is a physiological regulator of myeloid lineage development but has been 

linked to leukemia and more recently to solid tumors. A previous report exploring 

mechanistic basis of ErbB2-driven invasion signaling in a 3D matrix culture identified a 

novel pathway in which ErbB2 signaling impinges on via MZF1 to upregulate its ability to 

transcribe specific invasion-mediated gene targets cathepsin B (CTSB) and L (CTSL) 

(153). CTSB and CTSL have been shown to be overexpressed in primary breast cancer 

tissues and knockdown of CTSB or MZF1 abrogated invasiveness in vitro. Since our 
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study revealed MZF1 as one of the transcription factors whose DNA-binding activity was 

downregulated by CHIP, we considered it as a particularly pertinent candidate for further 

elucidation as a potential target of CHIP in ErbB2+ breast cancer. 

Further analysis confirmed that MZF-1 was a direct target of CHIP for 

ubiquitination (Figure 4.4D) but also revealed that MZF-1 levels may be regulated by 

CHIP at the mRNA level, likely due to an impact of CHIP on upstream regulators of 

MZF-1 expression, such as FOXM1, which is known to function upstream of MZF-1 and 

showed reduced DNA-binding activity in CHIP-overexpressing cells. It remains possible 

that additional CHIP-dependent negative regulation of MZF-1 activity may emanate from 

negative regulation of upstream kinases, including ErbB2 itself, by CHIP as shown in 

Chapter 3 and in previous studies (74, 75). 

Consistent with a key role of CHIP in controlling the MZF-1-dependent 

transcriptional network leading to CTSB/L expression, ErbB2+ breast cancer cell lines 

express lower levels of CHIP compared to normal or ER+ breast cancer cell lines (such 

as MCF-7) and correspondingly express high CTSB levels, which were markedly 

reduced upon CHIP overexpression (Figure 4.5C). Conversely, knockdown of CHIP in 

an ER+ breast cancer cell line, MCF7, markedly increased the CTSB levels (Figure 

4.5D). The latter result is of interest as it suggests that the MZF-1/CTSB/L axis may be 

activated by non-ErbB2 oncogenic drives as well, consistent with loss of CHIP 

expression in triple-negative and a subset of ER+ breast cancers. Future studies to 

identify oncogenic drivers distinct from ErbB2 that connect to MZF-1/CTSB/L pathway 

will be of great significance. 

Cathepsin B is a well-established downstream mediator of invasive/metastatic 

signaling in various cancers, including breast cancer (145, 151). Targeting CTSB, using 

a specific inhibitor CA074, decreased extracellular matrix degradation and cell invasion 

in vitro and tumor growth in vivo (Figure 4.6). Thus, our studies using both genetic 
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manipulations and pharmacological tools demonstrate that upregulation of MZF-

1/CTSB1/L axis is an important pro-oncogenic mechanism unleashed as a result of loss 

of CHIP expression in ErbB2+ breast cancer. Given the well-established roles of 

cathepsins in matrix remodeling, invasion, angiogenesis and metastatic spread of 

tumors (145), we suggest that loss of CHIP expression promotes tumor progression into 

an invasive/metastatic disease in part through cathepsin upregulation. 

Metastasis is the ultimate cause of death among a vast majority of cancer 

patients (154).  Mechanisms that promote metastases are intricately linked to 

therapeutic resistance (155), reflecting successful tumor cell adaptations (154, 156, 157). 

A major adaptive mechanism is the upregulation of the HSP90/HSC70-depndent 

molecular chaperone pathways that helps maintain protein folding and function in the 

face of increased metabolic needs (34). This chapter identifies the mechanisms by which 

alterations of this pathway provide a decisive component of this adaptation, involving 

loss of expression of a negative co-chaperone CHIP to relax the protein quality control in 

tumor cells in order to maintain the oncogenic drive. Our unbiased screen in ErbB2+ 

breast cancer cells has defined a previously known transcriptional pathway involved in 

promoting metastatic signaling in ErbB2+ breast cancer cells as well as in other 

malignancies. This transcriptional axis provides a novel therapeutic approach by 

targeting its key metastasis-relevant downstream targets, such as CTSB/CTSL. Thus, 

the use of CTSB inhibitor CA074 could suggest a new approach to prevent or treat 

metastases in ErbB2+ breast cancers, and help to prevent or overcome therapeutic 

resistance. Expression of CHIP may also serve as a biomarker to select patients likely to 

benefit from such therapy. Current antibody-based therapy of ErbB2+ cancers is 

ineffective against brain metastases and availability of small molecules against CTSB/L 

could help address this key issue. While this study focused on ErbB2+ breast cancer, 

loss of CHIP expression is also a key event in two-thirds of triple-negative and one-third 
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of ER+ (which together outnumber the CHIP-lo ErbB2+ breast cancers). Together, the 

ErbB2+ and triple-negative breast cancers, while a minority of all breast cancers, 

account for the majority of deaths due to breast cancer, the most common malignancy 

and the second leading cause of cancer deaths among women. Loss of CHIP 

expression is also becoming identified as a mechanism of oncogenic progression in 

other cancers such as colorectal, pancreas and lung cancer (84, 96, 144, 158, 159). 

Thus mechanisms we identified in this study will impact a broad range of human 

malignancies. 

  



	   84 

Figure 4.1. Decreased nuclear CHIP staining in breast cancer patients.  

(A) Representative IHC staining patterns of CHIP. (B) Kaplan-Meier curves 

survival analysis of CHIP expression in breast cancer. (C) The CHIP mRNA level in the 

whole panel of breast cancer cell lines. Total RNA was extracted from cells and followed 

by RT-PCR reactions. GAPDH was used as a normalization control. (D) The CHIP 

protein level in the whole panel of breast cancer cell lines by western blotting. Hsc70 

was loading the control. (E) Generation of stable CHIPOE breast cancer cell lines.  
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Figure 4.2. CHIP overexpression suppresses tumor growth in a mouse xenograft 

model.  

(A) Tumor growth curves in nude mice inoculated with control and CHIPOE BT474 

cells. (B) Representative tumors were shown, upper panel from control cells, lower panel 

from CHIPOE cells. (C) Expression level of CHIP in xenograft tumor cells was analyzed 

by immunoblotting. (D, E) Sections of tumor from mice injected with control and CHIPOE 

cells were stained with hematoxylin and eosin (H&E, E) or labeled with Ki67 (brown 

staining) and cleaved caspase 3 (red staining) (Ki67 and CC3, D). (F, G) Quantification 

of Ki67 (F) and CC3 (G) positive cells in Figure D and E. Bars represents mean + S.D. 

(n=6).  
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Figure 4.3. CHIP overexpression suppresses oncogenesis in ErbB2+ cells.  

(A) Accumulative proliferation of control and CHIPOE 21MT1 cells. Growth rate 

were measured by MTT assay. (B) Decreased anchorage-independent cell growth in 

CHIPOE cells.  Cells were seed in soft agar plates and incubated for 3 weeks. Colonies 

were stained, imaged and analyzed under microscope. (C, D) Decreased migration and 

invasion by CHIP overexpression. Cells were seed onto filters with 8-µm pore size in 

uncoated (C, migration) or Matrigel- coated (D, invasion) upper chambers. Average 

numbers of cells that migrated or invaded are shown. (E) Decreased extracellular matrix 

degradation in CHIPOE cells. Cells were seed on top of FITC-labeled gelatin in glass 

chamber and incubated for 48 hours. Cells were fixed and stained with invadipodia and 

DAPI and imaged under fluorescent microscope. The black hole represents degraded 

extracellular matrix. (F) Quantification of degraded extracellular matrix.  Data represent 

mean + S.D., n=3. 
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Figure 4.4. CHIP regulates transcription factor activity and MZF-1 is one of the 

targets. 

(A) Analysis of DNA-binding activities of 345 transcription factors in control vs. 

CHIPOE ErbB2+ BT474 cell line by Panomics Combo-array (Affymatrix). Y-axis 

represents log-fold binding in CHIPOE over control cells. MZF-1 is highlighted in red. (B) 

MZF-1 binding activity decreased in CHIPOE cells. Biotin-labeled MZF-1 consensus DNA 

sequence was used as probe and loaded with nuclear extracts from CHIPOE and control 

cells to carry out EMAS. 200 fold higher non-biotin-labeled consensus sequence served 

as competitor. (C, D) MZF-1 mRNA and protein level decreased in CHIPOE cells. Total 

RNA was prepared from BT474 cells and MZF-1 mRNA level was quantified using real-

time RT-PCRs (C), protein level was analyzed by immunoblotting (D). (E) Ubiquitination 

and degradation of MZF-1 is induced by CHIP. GFP-tagged MZF-1 and Myc-tagged 

CHIP (0, 0.5, 4ug) were transfected into HEK293t cells. MZF-1 was immuoprecipitated 

by using anti-MZF-1 antibody, ubiquitin and MZF-1 was detected in immuoprecipitants 

(upper panel) and MZF-1, CHIP and Hsc70 were detected in whole cell lysates (lower 

panel).  
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Figure 4.5. CTSB/L is the downstream target of CHIP-MZF-1 axis.  

(A) The binding activity of CTSB promoter region is decreased in CHIPOE BT474 

cells. Biotin-labeled CTSB promoter region DNA sequence was used as probe and 

loaded with nuclear extracts from CHIPOE and control cells to carry out EMAS. 200 fold 

higher non-biotin-labeled consensus sequence served as competitor. (B, C) CTSB/L 

mRNA and protein level decreased in CHIPOE cells. Total RNA was prepared from 

BT474 cells and CTSB/L mRNA level was quantified using real-time RT-PCRs (C), 

protein level was analyzed by immunoblotting. (D) CTSB/L activity decreased in CHIPOE 

cells. Cells were seed on cover slips and incubated with CTSB/L substrates for 1 hour, 

fixed and stained with DAPI, imaged were took under fluorescent microscope. Red 

fluorescence represents CTSB/L cleavage products. (E, F) Quantification of red 

fluorescence in Figure D. Data represents mean+ S.D., n=3. 
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Figure 4.6. CTSB inhibition decreased ErbB2+ cell progression.  

(A) CTSB inhibition decreased extracellular matrix degradation in 21MT1 cells. 

Cells were seed on top of FITC-labeled gelatin in glass chamber and incubated with 

DMSO or CA074 for 48 hours. Cells were fixed and stained with invadipodia and DAPI 

and imaged under fluorescent microscope. The black hole represents degraded 

extracellular matrix. (B) Quantification of degraded extracellular matrix.  Data represent 

mean + S.D., n=3. (C) CTSB inhibition decreased 21MT1 cell invasion. Cells were seed 

on top of marigel-coated membrane in 96-well plated, and incubated with DMSO or 

CA074 for 24 hours. Invading cells were trypsinized, stained and read under fluorescent 

reader. (D) CTSB inhibition decreased tumor growth in xenograft model. BT474 cells 

were inculcated under fatpad of nude mice. Saline/Trastuzumab was injected through 

tail vein at the dose of 4mg/kg every four days. CA074 was intraperitoneally injected 

daily at 25mg/kg. Tumor volumes were monitored every other day. Data represents 

mean + S.E., n=4. 
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Table 4.1 The association between Nuclear (N) CHIP and clinicopathological 

variables in the whole series. 
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Clinicopathological 
variables 

                                               N-CHIP 

         Negative/ low expression, 
N (%) 

High expression, N (%)                 p-value 

Age (years) 
<50 
>50 

 
231(35.1%) 
427(64.9%) 

 
100(31.8%) 
214(68.2%) 

 
0.316 

Menopausal status 
Pre 
Post 

 
248(37.8%) 
408(62.2%) 

 
121(38.7%) 
192(61.3%) 

 
0.798 

Tumour Size 
<2 CM 
>2CM 

 
89(44.5%) 

361(55.5%) 

 
168(53.5%) 
146(46.5%) 

 
0.008 

Tumour Grade 
1 
2 
3 

 
66(10.2%) 

194(29.9%) 
388(59.9%) 

 
72(22.9%) 

126(40.1%) 
116(36.9%) 

 
1×10-7 

Tubule formation 
1 
2 
3 

 
23(3.7%) 

187(29.8%) 
417(66.5%) 

 
23(7.5%) 

117(38.1%) 
167(54.4%) 

 
4×10-4 

Pleomorphism 
1 
2 
3 

 
11(1.8%) 

196(31.4%) 
418(66.9%) 

 
6(2.0%) 

155(50.5%) 
146(47.6%) 

 
1×10-7 

Mitosis 
1 
2 
3 

 
157(25.0%) 
117(18.7%) 
353(56.3%) 

 
148(48.2%) 
63(20.5%) 
96(31.3%) 

 
1×10-7 

Lymph Node Stage 
1 
2 
3 

 
398(61.4%) 
195(30.1%) 

55(8.5%) 

 
192(61.1%) 
101(32.2%) 

21(6.7%) 

 
0.558 

Lymphovascular invasion 
(LVI) 

No 
Definite 

 
 

418(64.5%) 
230(35.5%) 

 
 

202(64.5%) 
111(35.5%) 

 
 

0.993 

Nottingham Prognostic 
Index 
Mild 

Moderate 
High 

 
 

147(23.8%) 
368(59.5%) 
103(16.7%) 

 
 

126(41.7%) 
144(47.7%) 
32(10.6%0 

 
 

1×10-7 
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Table 4.2: The association between Nuclear (N) CHP and different proteins related 

to ER and HER2 pathways in the whole series. 
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                                          N-CHIP 
 Negative/low expression, 

N (%) 
High expression, N (%) p-value 

        Hormon receptors 
   Oestrogen receptor (ER) 

Negative 
Positive 

 
207(31.7%) 
447(68.3%) 

 
44(14.2%) 

266(85.8%) 

 
1×10-7 

Progesterone receptor (PgR) 
Negative 
Positive 

 
296(47.0%) 
334(53.0%) 

 
97(32.1%) 

205(67.9%) 

 
1×10-5 

Androgen receptor (AR) 
Negative 
Positive 

 
272(6.5%) 

313(53.5%) 

 
65(23.7%) 

209(76.3%) 

 
1×10-7 

Triple negative status 
Non TN 

TN 

 
497(78.1%) 
139(21.9%) 

 
276(89.9%) 
31(10.1%) 

1×10-5 

Basal phenotype 
Negative 
Positive 

 
528(82.8%) 
110(17.2%) 

 
285(92.5%) 

23(7.5%) 

5×10-5 

   Other ER related proteins 
CK7/8 

Negative 
Positive 

 
12(1.9%) 

621(98.1%) 

 
3(1.0%) 

297(99.0%) 

 
0.310 

CK18 
Negative 
Positive 

 
2(16.2%) 

476(83.8%) 

 
22(7.9%) 

258(92.1%) 

 
0.001 

CK19 
Negative 
Positive 

 
63(10.2%) 

554(89.8%) 

 
16(5.4%) 

283(94.6%) 

 
0.014 

E-Cadherin 
Negative 
Positive 

 
235(38.1%) 
382(61.9%) 

 
104(35.0%) 
193(65.0%) 

 
0.368 

p-Cadherin 
Negative 
Positive 

 
229(43.8% 
294(56.2%) 

 
144(56.9%) 
109(43.1%) 

 
0.001 

N-Cadherin 
Negative 
Positive 

 
107(22.3%) 
372(77.7%) 

 
78(34.7%) 

147(65.3%) 

 
0.001 

 Tumour suppressor proteins 
p53 

Negative/low 
Positive 

 
423(67.9%) 
200(32.1%) 

 
228(77.3%) 
67(22.7%) 

 
0.003 

BRCA1 
Negative/low 

High 
 

 
266(52.3%) 
243(47.7%0 

 
87(34.0%) 

169(66.0%) 

 
2×10-6 

Proliferation markers 
KI67-LI 

Negative/low 
High 

 
 

171(33.5%) 
339(66.5%) 

 
 

138(54.8%) 
114(45.2%) 

 
 

1×10-7 

Apoptosis related markers 
BCL2 

Negative/low 
High 

 
 

219(44.6%)  
272(55.4%)  

 
 

71(32.7%)  
146(67.3%)  

 
 

0.003 
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       HER family proteins 
HER1 

Negative 
Positive 

 
482(76.0%)  
152(24.0%)  

 
254(83.6%)  
50(16.4%)  

 
0.009 

HER2 
Negative 
Positive 

 
521(82.6%)  
110(17.4%)  

 
273(90.7%)  
28(9.3%)  

 
0.001 

HER3 
Negative 
Positive 

 
44(7.5%)  
539(92.5%)  

 
30(10.8%)  
248(89.2%)  

 
0.112 

HER4 
Negative 
Positive 

 
65(10.4%)  
560(89.6%)  

 
50(16.4%)  
254(83.6%)  

 
0.009 
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Table 4.3 The association between cytoplasmic CHIP and the clinicopathological 

variables in the whole series   
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                                                                  C-CHIP 
 Negative/low 

expression, N (%) 
High expression, N (%) p-value 

                   Hormon receptors 
   Oestrogen receptor (ER) 
Negative 
Positive 

 
151(28.0%) 
388(72.0%) 

 
98(23.4%) 
320(76.6%0 

0.110 

Progesterone receptor (PgR) 
Negative 
Positive 

 
216(41.7%) 
302(58.3%) 

 
175(43.0%) 
232(57.0%) 

0.691 

Androgen receptor (AR) 
Negative 
Positive 

 
193(40.9%) 
279(59.1%) 

 
142(37.4%) 
238(62.6%) 

 
0.296 

Triple negative status 
Non TN 
TN 
 

 
415(79.3%) 
108(20.7%) 

 
352(85.2%) 
61(14.8%) 

 
0.020 

Basal phenotype  
375(71.0%) 
153(29.0%) 

 
321(77.7%) 
92(22.3%) 

 
0.024 

 
CK7/8 
Negative 
Positive 

11(2.1%) 
509(97.9%) 

4(1.0%) 
402(99.0%) 

 
0.176 

CK18 
Negative 
Positive 

78(16.9%) 
384(83.1%) 

34(9.0%) 
345(91.0%) 

 
0.001 

CK19 
Negative 
Positive 

47(9.3%) 
461(90.7%) 

31(7.7%) 
3709(92.3%) 

 
0.416 

E-Cadherin 
Negative 
Positive 

 
186(36.7%) 
321(63.3%) 

 
153(38.3%) 
247(61.8%) 

 
0.629 

p-Cadherin 
Negative 
Positive 

 
190(46.0%) 
223(54.0%) 

 
182(50.8%) 
176(49.2%) 

 
0.180 

N-Cadherin 
Negative 
Positive 

 
107(28.1%) 
274(71.9%) 

 
75(23.7%) 
242(76.3%) 

 
0.185 

 
p53 
Negative/low 
Positive 

 
350(68.8%) 
159(31.2%) 

 
297(73.9%) 
105(26.1%) 

 
0.091 

BRCA1 
Negative/low 
High 
 

 
187(45.3%) 
226(54.7%) 

 
165(47.6%) 
182(52.4%) 

 
0.532 

Proliferation markers 
KI67-LI 
Negative/low 

 
176(41.4%) 
249(58.6%) 

 
130(39.3%) 
201(60.7%) 

 
0.553 
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High 
Apoptosis related markers 
BCL2 
Negative/low 
High 

 
165(40.8%) 
239(59.2%) 

 
123(41.3%) 
175(58.7%) 

 
0.908 

 
HER1 
Negative 
Positive 

 
419(80.0%) 
105(20.0%) 

 
311(76.4%) 
96(23.6%) 

 
0.192 

HER2 
Negative 
Positive 

 
455(87.7%) 
64(12.3%) 

 
333(82.0%) 
73(18.0%) 

 
0.016 

HER3 
Negative 
Positive 

 
50(10.5%) 
428(89.5%) 

 
24(6.4%) 
352(93.6%) 

 
0.036 

HER4 
Negative 
Positive 

 
67(13.0%) 
450(87.0%) 

 
47(11.6%) 
358(88.4%) 

 
0.535 
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Table 4.4: The list of transcription factors which activity were downregulated by 

CHIP overexpression in ErbB2+ BT474 cells 
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. 

ACPBP E12/E47 L-lll BP NF-E6/CP1 
ADD-1 E2 Lactoferrin-BP NF-Y 
ADR-1 EGR-1 LF-A1 NFkB 
ALF-1 EKLF LSF p-53 
alpha-PAL ETF LXRF-1 PAX-2 
AML-1 Freac-2 MEF-1 PAX-4 
ARP Freac-4 MRE PAX-5 
ATF GAG MT-box PAX-6 
ATF adelta GBF-1/2/3/HY5 MTF PBGD BP 
ATF-a H4TF-1 MUSF-1 Pbx1 
c-Rel HFH-1 MyoD PCF 
CACC HFH-3 MZF-1 PEBP-2 
CCAAT HFH-8 NF-1 PPUR 
CEBP HIF-1 NF-1/2 PPUR 
CEF-2 HNF-3 NF-4FA PRDll-BF1 
COUP-TF HNF-4a NF-Atx PUR 
CTCF ISGF NF-E1/YY1 RAR/DR-5 
E12 Isl-1 NF-E2 RB 
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Chapter 5: Conclusions and future directions 
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5.1 Conclusions 

Taken all together, we demonstrated a novel role of E3 ubiquitin ligase CHIP in 

regulating ErbB2-mediated oncogenesis in breast cancer. Previously our laboratory 

reported that CHIP was the E3 ligase that mediated ErbB2 degradation upon Hsp90 

inhibition. However, further analysis of CHIP KD in cells did not abolish ErbB2 

degradation when treated with Hsp90 inhibitor 17AAG. Instead, we observed higher cell 

surface ErbB2 level in CHIP KD cells. A functional role of CHIP in protein quality control 

suggested that CHIP may regulate ErbB2 during its maturation. In support of this 

hypothesis, we show that CHIP downregulates immature ErbB2 by enforcing its ERAD 

pathway (Figure 5.1). In addition, loss of CHIP promotes an increase in ER stress in 

ErbB2+ breast cancer cells, which sensitizes these tumor cells to further ER stress 

induction by a clinically-used drug, the proteasome inhibitor bortezomib. Notably, the 

combination of bortezomib with trastuzumab, a FDA-proved standard therapeutic 

monoclonal antibody targeted against ErbB2+ breast cancer, showed synergistic growth 

inhibition in ErbB2+ breast cancer cells.  

 Consistent with recent and our clinical studies, which support a tumor 

suppressor function of CHIP in ErbB2+ breast cancers, we constructed stable CHIP 

overexpressing breast cancer cell lines and illustrated CHIP as a suppressor of ErbB2+ 

tumor growth and metastasis in vitro and in vivo. We undertook an extensive clinical-

pathological study of an extensively well-annotated breast cancer tissue bank to address 

the variant conclusions of previous studies on whether CHIP is a prognosticator of poor 

or better survival (83, 92, 93). Given the size of our study, our findings conclusively 

demonstrate that loss of CHIP is a key pro-tumor progression adaptation in breast 

cancer.  Importantly, our studies showed that it is the loss of nuclear staining of CHIP, 

observed in two thirds of ErbB2+ and triple-negative and one third of ER+ patients, that 

significantly correlated with poor patient outcome, notably increased tumor grade, tumor 
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size, mitosis, vascular invasion and  lower breast cancer-specific survival at 15 years. To 

explore the mechanism of how nuclear CHIP functions in ErbB2+ breast cancer, we 

conducted an unbiased screen of DNA-binding activity of 345 transcription factors using 

a commercial Protein/DNA array. Myeloid zinc finger 1(MZF-1) was identified and 

validated as one of the direct target of CHIP. Further analysis of MZF-1downstream 

target genes CTSB/CTSL revealed the novel CHIP-MZF-1-CTSB/CTSL pro-invasion 

signaling axis recently identified downstream of ErbB2 (145) to be a key pathway 

controlled by the levels of expression of CHIP in ErbB2+ breast cancer (Figure 5.1). 

Targeting CTSB by using a specific chemical inhibitor CA074 in an ErbB2+ breast 

cancer xenograft model demonstrated that targeting MZF1-CTSB/L axis in CHIP-low 

ErbB2+ breast cancer is a potential therapeutic strategy. Given our findings that MZF-1-

CTSB/L axis is also unleashed by loss of CHIP in ER+ breast cancer cells, it is likely that 

our findings and their therapeutic implications will be directly applicable to other 

malignancies in which CHIP expression is downregulated as a tumor adaptation. Overall, 

mechanistic and initial preclinical analyses presented in this thesis should provide a 

basis for future strategies to improve therapeutics of ErbB2+ and other breast 

cancers with downregulation of CHIP E3 expression by targeting a novel 

pathway identified here to be regulated by CHIP.  

 

5.2 Future directions 

In this thesis, we investigated the tumor suppressor role of E3 ubiquitin ligase 

CHIP in ErbB2+ breast cancer. We identified a novel MZF-1-CTSB/L pathway in ErbB2-

mediated tumor progression and metastasis from an unbiased transcription factor screen 

(Figure 4.4A).  Aside from MZF1, which was analyzed here, the large subset of analyzed 

transcription factors that was downregulated by CHIP included HNF-3 (FoxM1) an 
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important candidate of clinical relevance. FoxM1 overexpression has been  linked to 

EMT, metastasis and resistance to chemotherapy, trastuzumab and lapatinib in ErbB2+ 

breast cancers (155, 160-163), and is overexpressed in breast tumor tissues. It is 

reasonable to anticipate that transcription activity of FoxM1 is also regulated by CHIP 

and its upregulation upon loss of CHIP expression may be a key factor in breast cancer 

progression. It will be of considerable interest to explore this avenue. 

Cancer stem cells (CSCs) have several distinct characteristics, including high 

metastatic potential, tumor-initiating potential and properties that resemble normal stem 

cells such as self-renewal, differentiation and chemotherapy drug efflux (143, 164). 

Because of these characteristics, CSCs are considered to be responsible for cancer 

initiation, progression and metastasis. Recently, CHIP was reported to be reduced CSCs 

in a population of breast cancer cells (165). CHIP depletion resulted in an increased 

proportion of CSCs among breast cancer cells. The molecular mechanism of how CHIP 

regulates CSC properties in breast cancer is unknown. However, from our protein/DNA 

array screening PAX2, c-Myc and p53 transcription factors provide potential candidates 

as these have been identified to be downregulated by CHIP. These transcription factors 

are thought to positively regulate CSCs. (166-170). Hence, further validating these 

factors in breast cancers and performing tumor spheres assays may elucidate the 

relationship between CHIP and CSCs.  

As the link of MZF-1 to breast cancer is relatively new, it will be of great interest 

to assess the importance of this transcription factor in breast cancer oncogenesis and 

metastasis using human cell line and genetically-modified mouse models of breast 

cancer. 

Our studies revealed a key role of CHIP in regulating ErbB2 ERAD, but curiously 

revealed the block to ErbB2 transport to be primarily at the Golgi. It will be of great 

interest to further examine if indeed the ERAD-associated biochemical cascade is 
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indeed involved in CIP-dependent degradation of ErbB2 in the ER as well as potentially 

at the Golgi. Such studies will require fractionation of different pools of ErbB2 and 

assessment of their CHIP-dependent ubiquitination, and interaction with Hsp90/Hsc70 

molecular chaperones as ERAD apparatus. 

Finally, it will be of considerable importance to further validate the findings 

presented here in a broader panel of human breast cancer cell line models and in 

genetically-modified mouse models where the impact of MZF-1-CTSB/L pro-

invasion/metastasis axis can be more critically examined in an environment of an intact 

immune system in models that show various components of metastatic disease aside 

from primary tumorigenesis.    
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Figure 5.1 The working model of how CHIP regulates ErbB2 mediated 

oncogenesis 
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