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Regulation of the transmembrane mucin MUC4 by Wnt/β-catenin in gastrointestinal 

cancers 

Priya Pai, PhD. 

University of Nebraska Medical Center, 2015 

Supervisor: Surinder K. Batra, PhD. 

The transmembrane mucin MUC4 is a high molecular weight glycoprotein that is 

expressed de novo in pancreatic ductal adenocarcinoma (PDAC). MUC4 has been shown to play 

a tumor-promoting role in malignancies such as PDAC, ovarian cancer and breast cancer. Unlike 

the normal pancreas, MUC4 is ordinarily expressed by goblet and absorptive cells in the normal 

colonic epithelium. However, its expression/role in colorectal cancer (CRC) is not well studied.  

In this dissertation, the goal was to identify factor(s) that may differentially regulate 

MUC4 in these two disparate malignancies. Furthermore, in light of its pro-tumorigenic role in 

other malignancies, we analyzed the functional implications of MUC4 expression in CRC. A 

MUC4 promoter analysis showed the presence of three putative TCF/LEF sites located in the 

proximal and distal promoters. Importantly, multiple TCF/LEF sites are typically present in the 

promoters of Wnt/β-catenin pathway target genes. In order to ascertain whether MUC4 was a 

Wnt/β-catenin target gene, we performed β-catenin knock down (KD) studies, treatment with 

Wnt3a ligand, as well as MUC4 promoter luciferase studies in the first section of this dissertation. 

In PDAC, it was observed that MUC4 transcript and protein were decreased upon β-catenin KD, 

WNT3a conditioned medium treatment increased MUC4 and MUC4 promoter luciferase activity 

was increased upon transfection with stabilized β-catenin. Furthermore, immunohistochemistry 

(IHC) with rapid autopsy PDAC tissues showed a positive correlation between MUC4 and β-

catenin expression. Mutation of each of the three putative TCF/LEF sites showed that the sites 

closest to and furthest from the ATG site were critical for MUC4 promoter luciferase activity in 
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the presence of stabilized β-catenin. A Chromatin immunoprecipitation assay (ChIP) confirmed 

that β-catenin associates with the MUC4 promoter at these two sites in PDAC. Functional studies 

with the β-catenin KD cells showed that migratory properties were decreased significantly upon 

KD, concomitant with altered levels of epithelial to mesenchymal transition (EMT) markers. We 

thus concluded that β-catenin up-regulates MUC4 in PDAC, and that the β-catenin-MUC4 axis 

likely contributes to the metastatic properties of PDAC cells. 

The second part of this dissertation deals with the regulation of MUC4 by β-catenin in 

CRC. Here, we observed that the KD of β-catenin induced an increase in MUC4 transcript and 

protein. This was corroborated by transient overexpression of stabilized β-catenin, which resulted 

in decreased MUC4. MUC4 promoter luciferase studies showed that KD of β-catenin resulted in 

increased promoter luciferase activity. The mutation of each of the three TCF/LEF sites and 

subsequent promoter luciferase assays showed that the second and third sites appeared to be 

repressive and that mutation of all three sites in combination caused an increase in MUC4. It was 

also observed that the Wnt/β-catenin pathway can indirectly repress MUC4 by suppression of 

Hath1, a Notch pathway target gene. Functional studies with MUC4 KD showed that MUC4 

confers proliferative but not migratory properties to cells. 

The third part of this dissertation describes the generation of a mouse model aimed at 

delineating the role of Muc4 in CRC progression. Mice with colon-preferential heterozygous loss 

of Apc and mutant Kras, i.e. CDX2 P-NLS -Cre krasG12D/+ApcloxP/+ were crossed with the Muc4-/- 

mice generated in our lab. Preliminary results indicate the expression pattern of Muc4 is altered 

during the progression of CRC. 

Taken together, studies in this dissertation demonstrate the differential regulation of 

MUC4 by the Wnt/β-catenin pathway in PDAC and CRC, and that MUC4 expression may be 

pro-tumorigenic in CRC. 

  



iv 

 
TABLE OF CONTENTS 

 

CHAPTER 1A: Introduction  ....................................................................................................... 1 

1. Synopsis ................................................................................................................................... 3 

2. Introduction to the Wnt/ β-catenin pathway ............................................................................ 4 

3. The role of Wnt/β-catenin signaling in cancer ......................................................................... 5 

4. Wnt/β-catenin in CRC.............................................................................................................. 6 

5. Wnt/β-catenin in pancreatic cancer (PC) ................................................................................. 7 

6. Mucins and their roles in cancer .............................................................................................. 9 

7. The relationship between β-catenin and membrane-bound mucins in cancer, MUC1, MUC4 

and MUC16 ................................................................................................................................ 11 

(a) MUC1 ............................................................................................................................... 11 

(b) MUC4 ............................................................................................................................... 14 

(c) MUC16 ............................................................................................................................. 15 

8. The relationship between β-catenin in cancer and secreted-mucins MUC2, MUC5AC, and 

MUC6 ........................................................................................................................................ 16 

CHAPTER 1 B: MUC4 regulation and expression patterns in pancreatic ductal 

adenocarcinomas (PDAC) and Colorectal Cancer (CRC) ....................................................... 35 

1. Synopsis ................................................................................................................................. 36 

2. The regulation of MUC4 expression ...................................................................................... 37 

A. The epigenetic regulation of MUC4 expression ................................................................ 37 

B. Transcriptional regulation of MUC4 ................................................................................. 39 

C. Post-transcriptional regulation of MUC4 .......................................................................... 42 

D. Summary and conclusions ................................................................................................ 43 

3. MUC4 expression patterns in PDAC and CRC ..................................................................... 44 

A. MUC4 in pancreatic cancer ............................................................................................... 44 

B. MUC4 in colorectal cancer................................................................................................ 45 

C. MUC4 in inflammatory bowel disease: ulcerative colitis and Crohn’s disease ................ 47 

D. Summary and conclusions ................................................................................................ 48 

CHAPTER 1C: Dissertation General Hypothesis and Objectives .......................................... 53 

1. Background and rationale ...................................................................................................... 54 



v 

 
2. Hypothesis ............................................................................................................................. 55 

3. Objectives .............................................................................................................................. 55 

CHAPTER 2: Materials and Methods ....................................................................................... 59 

1. Cell Culture ............................................................................................................................ 60 

2. Lentiviral and Retroviral Transfection ................................................................................... 60 

3. Tissues specimens and Immunohistochemistry ..................................................................... 61 

4. Transient Transfection and Luciferase Assays ...................................................................... 62 

5. RNA Isolation and Real-Time PCR Analysis ........................................................................ 62 

6. Immunofluorescence .............................................................................................................. 63 

7. Migration and Invasion Assay ............................................................................................... 63 

8. Cell Proliferation and Colony Formation Assays .................................................................. 63 

9. Scratch assay .......................................................................................................................... 64 

10. Western Blot Analysis ......................................................................................................... 64 

11. Quantitative ChIP assay ....................................................................................................... 64 

12. Generation of Constructs ..................................................................................................... 65 

13. Promoter Analysis ................................................................................................................ 66 

14. Tumorigenicity Assay .......................................................................................................... 66 

15. Gamma Secretase Inhibitor treatment .................................................................................. 66 

16. Statistical Analysis ............................................................................................................... 66 

CHAPTER 3: The β-catenin/TCF-mediated regulation of MUC4 in pancreatic ductal 

adenocarcinoma ........................................................................................................................... 73 

1. Synopsis ................................................................................................................................. 75 

2. Background and rationale ...................................................................................................... 76 

3. Results .................................................................................................................................... 78 

A. Nuclear/cytosolic β-catenin was associated with MUC4 expression in PDAC ................ 78 

B. Wnt/β-catenin regulated MUC4 expression in PDAC ...................................................... 79 

C. β-catenin directly regulated MUC4 transcript expression ................................................. 79 

D. β-catenin partnered with TCF4 to regulate MUC4 expression ......................................... 81 

E. β-catenin contributed to migratory and mesenchymal properties of PDAC cell lines ...... 82 

F. Orthotopic implantation of β-catenin KD cells affected metastases .................................. 83 

4. Discussion .............................................................................................................................. 84 



vi 

 
CHAPTER 4: The β-catenin/TCF-mediated regulation of MUC4 in colorectal cancer ..... 121 

1. Synopsis ............................................................................................................................... 122 

2. Background and rationale .................................................................................................... 123 

3. Results .................................................................................................................................. 125 

A. MUC4 expression is lost during the progression of CRC concomitant with aberrant β-

catenin localization. ............................................................................................................. 125 

B. Knock down of β-catenin induces the expression of MUC4 in CRC .............................. 126 

C. Overexpression of β-catenin results in down-regulation of MUC4 ................................ 126 

D. MUC4 transcript stability is not affected by β-catenin ................................................... 126 

E. Luciferase studies with MUC4 promoter construct show that MUC4 can be governed by 

β-catenin ............................................................................................................................... 127 

F. Tubular adenomas and hyperplastic polyps in DSS treated ApcMin mice show reduced 

MUC4 expression ................................................................................................................ 128 

G. MUC4 expression is also regulated by Hath1 ................................................................. 128 

H. MUC4 confers increased proliferative and colony forming properties to CRC cells ..... 129 

I. MUC4 KD does not affect the invasive and migratory properties of cells. ...................... 129 

4. Discussion ............................................................................................................................ 129 

CHAPTER 5: Understanding the role of MUC4 in CRC: Generation of Muc4-/-;CDX2 P-

NLS -Cre krasG12D/+ApcloxP/+ mice ............................................................................................... 160 

1. Synopsis ............................................................................................................................... 161 

3. Background and Rationale ................................................................................................... 162 

3. Results/Materials and Methods ............................................................................................ 163 

A. Procurement of animals .................................................................................................. 163 

B. DNA isolation, genotyping and maintenance of animals ................................................ 164 

C. Preliminary analysis of animals sacrificed ...................................................................... 164 

C. Analysis of tissue sections from CDX2P-NLS-Cre; ApcloxP/loxP...................................... 165 

4. Discussion ............................................................................................................................ 166 

CHAPTER 6: Summary, Conclusions and Future directions ............................................... 180 

1. Summary .............................................................................................................................. 181 

A. The Wnt/β-catenin pathway regulates MUC4 in pancreatic ductal adenocarcinoma 

(PDAC) ................................................................................................................................ 182 

B. The Wnt/β-catenin pathway regulates MUC4 in colorectal cancer (CRC) ..................... 184 



vii 

 
C. Generation of Muc4-/-; CDX2 P-NLS -Cre krasG12D/+ApcloxP/+ mice ................................ 186 

2. Future directions .................................................................................................................. 186 

A. The Wnt/β-catenin pathway regulates MUC4 expression in pancreatic ductal 

adenocarcinoma (PDAC) ..................................................................................................... 186 

B. The Wnt/β-catenin pathway regulates MUC4 expression in colorectal cancer (CRC) ... 188 

C. Generation of Muc4-/-; CDX2 P-NLS -Cre krasG12D/+ApcloxP/+ mice ................................ 190 

Bibliography of Priya Pai .......................................................................................................... 201 

 

  



viii 

 
LIST OF FIGURES 

CHAPTER 1A 

Figure 1 Mechanisms of Wnt/β-catenin up-regulation in CRC and PDAC 

Figure 2 Schematic representation of β-catenin-mucin dynamics 

CHAPTER 1C 

Figure 1 Sequence of the MUC4 promoter and 5' UTR 

CHAPTER 3 

Figure 1 The expression pattern of MUC4 and β-catenin in PC tissue and cell lines. 

Figure 2 MUC4 protein and RNA expression are governed by β-catenin. 

Figure 3 Schematic representation of the MUC4 promoter constructs generated. 

Figure 4 β-catenin directly regulates MUC4 transcription. 

Figure 5 Effect of β-catenin on migratory properties/EMT. 

Figure 6 β-catenin KD reduces tumorigenicity/metastasis. 

Figure 7 MUC4 and β-catenin are co-expressed in a subset of human metastatic lesions 

Figure 8 Schematic representation of the role of β-catenin regulated MUC4 

Supplemental Figure 1 β-catenin KD reduces MUC4 transcript and protein 

Supplemental Figure 2 MUC4 promoter luciferase studies with T3M4 

Supplemental Figure 3 β-catenin partners with TCF4 in the nucleus  

Supplemental Figure 4 Functional assays with β-catenin KD cells 

Supplemental Figure 5 Altered EMT markers in CD18/HPAF and the effect of β-catenin KD on 

MUC1 and MUC16 



ix 

 
Supplemental Figure 6 Orthotopic implantation: Kaplan-Meier survival curve and western blot 

analysis of tumor lysates 

CHAPTER 4 

Figure 1 MUC4 and β-catenin expression in colorectal carcinoma (CRC) tissues and cell lines 

Figure 2 Knockdown (KD) of β-catenin induces MUC4 expression. 

Figure 3 Transient over-expression of β-catenin induces MUC4 expression. 

Figure 4 β-catenin does not increase MUC4 transcript stability. 

Figure 5 Luciferase studies with the MUC4 promoter luciferase construct. LS180 cells were 

transiently transfected with si-RNA targeting β-catenin. 

Figure 6 Immunohistochemical staining for mouse Muc4 and β-catenin in colon sections from 

ApcMin mice treated with DSS. 

Figure 7 Hath1 expression levels in CRC 

Figure 8 β-catenin regulated MUC4 via Hath1 

Figure 9 Functional studies with MUC4 KD in CRC: proliferation and colony formation. 

Figure 10 Functional studies with MUC4 KD in CRC: migration and invasion 

Figure 11 Functional studies with MUC4 KD in CRC: wound healing assay 

CHAPTER 5  

Figure 1 Breeding strategy 

Figure 2 A representative genotyping gel. 

Figure 3: Gross appearance of lesions in mice sacrificed. 

Figure 4: Immunohistochemical staining of mouse adenoma. 



x 

 
Figure 5: Immunohistochemical staining of mouse adenocarcinoma in situ 

Figure 6: A single crypt showing neoplastic transformation in the upper half while having an 

untransformed basal crypt. 

CHAPTER 6  

Figure 1 Treatment of CD18/HPAF with Wnt3A conditioned medium. 

Figure 2 Expression profiles of TCF/LEF factors in CRC and PDAC. 

Figure 3 Proposed mechanisms for the regulation of MUC4 expression in CRC and PDAC. 

LIST OF TABLES  

CHAPTER 1A 

Table 1 The relationship between β-catenin and mucins in cancer 

CHAPTER 2 

Table A: List of antibodies 

Table B.1 Real-time PCR/RTPCR primers 

Table B.2 Quantitative PCR primers for ChIP assay 

Table B.3 Cloning primers 

Table B.4 Genotyping primers 

CHAPTER 3 

Table 1 The putative TCF/LEF sites unearthed by MUC4 promoter analysis.  



xi 

 
ABBREVIATIONS 

AP activator protein 

AOM azoxymethane 

ACF aberrant crypt foci 

APC Adenomatous polyposis coli 

ASGP Ascites sialoglycoprotein 

Min multiple intestinal neoplasia 

ATCC American Type Culture Collection 

bHLH Basic helix loop helix 

BRAF v-raf murine sarcoma viral oncogene homolog B1 

CDX caudal type homeobox 

ChIP Chromatin immunoprecipitation 

CIMP CpG island methylator phenotype 

CFTR Cystic fibrosis transmembrane conductance regulator 

CS Composite score 

CRC colorectal cancer 

CREB cAMP response element-binding protein 

DMEM Dulbecco’s modified eagle’s medium 

DNA Deoxyribonucleic acid 

DSS dextran sodium sulfate 

ECM Extracellular matrix 



xii 

 
EGFR Epithelial growth factor receptor 

EMT Epithelial to Mesenchymal transition 

ERBB2 erythroblastic leukemia viral oncogene homolog 2 

ERK Extracellular signal-regulated protein kinases 

FAP familial adenomatous polyposis 

FUT fucosyltransferase 

FAK focal adhesion kinase 

FNA fine-needle aspirate 

FOXA1 forkhead Box A1 

GATA globin transcription factor 

GTP guanosine triphosphate 

HDAC histone deacetylase 

HNF hepatocyte nuclear factor 

HNPCC hereditary nonpolyposis syndrome 

IBD inflammatory bowel disease 

IHC Immunohistochemistry 

IFN interferon 

JAK janus kinase 

KLF4 Kruppel-like factor 4  

KRAS Kirsten rat sarcoma viral oncogene homolog 

KPC PDX-1-Cre, LSL-KrasG12D, LSL-Trp53R172H/- 



xiii 

 
LEF lymphoid enhancer-binding factor  

mRNA Messenger RNA 

miRNA microRNA 

μg Microgram 

μL Microliter 

μM Micromolar 

MDF mucin depleted foci 

MLH1 MutL Homolog 1 

MSH2 MutS Homolog 2 

MSI microsatellite instability 

NLS nuclear localization signal 

NCOA3 Nuclear receptor coactivator3 

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells 

NOD-SCID nonobese diabetic/severe combined immunodeficient 

PanIN Pancreatic intraepithelial neoplasia 

PBS Phosphate-buffered saline 

PCR Polymerase chain action 

PDAC pancreatic ductal adenocarcinoma 

PI3K phosphoinositide 3-kinase 

PKC protein kinase C 

qRT-PCR quantitative Reverse Transcription PCR 



xiv 

 
RAL ras related protein 

RAR retinoic acid receptor 

RNA Ribonucleic acid 

RT-PCR Reverse transcription PCR 

RXR retinoid X receptor 

SDS Sodium dodecyl sulfate 

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SMC sialomucin complex 

STAT signal transducer and transcription factor  

TCF T-cell factor 

TNF tumor necrosis factor 

TMA tissue microarray 

TSA trichostatin A 

TGF transforming growth factor 

UTR untranslated region  

VNTR variable number of tandem repeats 

  



xv 

 
ACKNOWLEDGEMENTS 

Firstly, I would like to sincerely thank my mentor, Dr. Surinder K. Batra, for guiding me 

through the years. I am appreciative of the opportunity I was given in being able to join his group 

and learn a wide array of skills. Despite his busy schedule, Dr. Batra has always found time to 

lend practical advice and offer kind words of encouragement while also offering an honest 

critique of my work. 

I would also like to thank my supervisory committee: Drs. Punita Dhawan, Michel 

Ouellette, Michael Hollingsworth, Parmender Mehta and Vimla Band for their constructive 

critiques and useful suggestions during committee meetings.  

I am fortunate to have been helped in different capacities by numerous past and present 

lab members: Dr. Satyanarayana Rachagani, Dr. Moorthy Ponnusamy, Dr. Imayavaramban 

Lakshmanan, Dr. Parthasarathy Seshacharyulu, Dr. Torres-Gonzalez, Dr. Murielle Mimeault, Dr. 

Prabin Majhi, Dr. Subhankar Chakraborty, Dr. Michael Baine, Dr. Josh Souchek, Dr. Partha 

Mukhopadhyay, Dr. Shikha Tarang, Dr. Srustidhar Das, Dr. Maneesh Jain, Dr. Sukhwinder Kaur, 

Dr. Sakthivel Muniyan, Dr. Muzafar Macha, Dr. Abhijit Aithal, Dr. Sushil Kumar, Dr. Prakash 

Kshirsagar, Dr. Arokiapriyanka Vaz, Dr. Parama Dey, Dr. Dhanya Haridas, Rahat Jahan, Seema 

Chugh, Suhasini Joshi, Suprit Gupta, Nicholas Heimann, Shiv Ram Krishn, Saswati Karmakar, 

Garima Kaushik, Kasturi Banerjee, Ramakrishna Nimmakayala, Eric Cruz, Erik D. Moore and 

Kavita Mallya. In particular, I thank Dr. Satyanarayana Rachagani for helping with all the animal 

experiments and Dr. Moorthy Ponnusamy for lending his expertise with the ChIP assay. I am also 

grateful to my comprehensive exam committee comprising Drs. Richard G. Macdonald, Keith 

Johnson and Pankaj K. Singh for guiding me during through the rigors of the comprehensive 

exam process. I also thank the DNA sequencing and confocal core facilities at UNMC. 

On the personal front; I thank Seema and Divya for their friendship and companionship 

as well as Kavita and Satya for their kindness and hospitality. I also thank the BMB office staff; 



xvi 

 
Karen Hankins, Amy Dodson, Jeanette Gardner, Sue Klima and Jennifer Pace for being such 

consummate professionals at managing the nitty-gritty of keeping the department running 

smoothly. 

I am indebted to my father, who constantly inspires me with his relentless work ethic, 

ceaseless childlike curiosity, steely discipline and my mother, who gave me her love for animals, 

and is my sounding-board for all my problems. I shall be inextricably bound to you all my life 

and am so very grateful. I am also thankful to my extended family; uncles, aunts, grandparents 

and cousins for helping me in times of need and for being pillars of support I can always fall back 

on. I thank all my friends over the years for all their love and support. I thank all my canine and 

feline companions over the years for their unconditional love and adorableness. Lastly, I thank all 

of the anonymous masses of humanity that soldiered through harsh times and led short, brutish 

lives so that a future generation may lead lives of idle contemplation.  

 



1 

 

 

 

 

 

 

 

 

CHAPTER 1 A 

Introduction 

The material covered in this chapter is the subject of 1 review article 

1. Pai P., Rachagani S., Dhawan P. and Batra S.K., Mucins and β-catenin in Gastrointestinal 

Cancers: A Pernicious Partnership; Carcinogenesis, 2015 (under review) 
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1. Synopsis 

The Wnt/β-catenin signaling pathway is indispensable for embryonic development, maintenance 

of adult tissue homeostasis, and repair of epithelial injury. Not surprisingly, aberrations in this 

pathway occur frequently in many cancers and often result in increased nuclear β-catenin. While 

mutations in key pathway members, such as β-catenin and adenomatous polyposis coli, are early 

and frequent occurrences in most colorectal cancers (CRC), mutations in canonical pathway 

members are rare in pancreatic ductal adenocarcinoma (PDAC). Instead, in the majority of 

PDACs, indirect mechanisms, including promoter methylation, increased ligand secretion, and 

decreased pathway inhibitor secretion, work in concert to promote aberrant cytosolic/nuclear 

localization of β-catenin. Concomitant with alterations in β-catenin localization, changes in mucin 

expression and localization have been documented in multiple malignancies. Indeed, numerous 

studies over the years suggest an intricate and mutually regulatory relationship between mucins 

and β-catenin. In this chapter, I summarize several studies that describe the relationship between 

mucins and β-catenin in gastrointestinal malignancies, with particular emphasis upon colorectal 

and pancreatic cancer.  
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2. Introduction to the Wnt/ β-catenin pathway 

The Wnt signaling pathway is an important developmental regulatory pathway and plays 

critical roles in embryogenesis, including roles in regulating delineation of the body axis and in 

the formation of the germ layer [1]. The binding of Wnt ligands, a group of secreted lipid-

modified proteins, activate both the canonical and non-canonical Wnt-signaling pathways [2]. 

The canonical Wnt pathway in particular hinges upon the activity of β-catenin, a molecule 

important for both cell adhesion and signaling, both functions being indispensable for normal 

cellular processes.  

There are two separate pools of β-catenin – cytosolic and membrane-localized [2-5]. The 

membrane-localized fraction participates in cell adhesion, where it forms part of the adherens 

junction. Here, membrane-localized β-catenin links E-cadherin to the cytoskeleton via α-catenin. 

On the other hand, the cytosolic fraction is typically degraded through phosphorylation at the N-

terminus by a destruction complex. This complex consists of glycogen synthase kinase β (GSKβ), 

Axin1, and casein kinase 1 (CK1) [5]. In the presence of a Wnt ligand, which binds to the 

Frizzled seven-pass transmembrane receptor and a co-receptor, the Low density lipoprotein 

Receptor-related protein (LRP), this complex is destroyed via a cascade of reactions triggered by 

the recruitment of dishevelled segment polarity protein 1 (DVL-1) to the receptor complex. Here, 

DVL-1 recruits Axin and glycogen synthase kinase 3 (GSK3) to form part of the Wnt 

signalosome, thus destabilizing the destruction complex [2-5]. Next, β-catenin is released from 

the destruction complex and enters the nucleus through direct contact with the nuclear pore 

complex [6]. Nuclear β-catenin upregulates a host of tissue-specific target genes, typically 

partnering with the TCF/LEF family of transcription factors, which usually function as 

transcriptional repressors in the absence of nuclear β-catenin [2]. Wnt ligands can also activate 

the non-canonical pathway, which is independent of β-catenin and comprises the planar cell 

polarity and the Wnt/Ca(2+) pathways [2]. 
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The β-catenin molecule is remarkably well conserved, as evidenced by the presence of a 

β-catenin-like molecule in all metazoans. The Drosophila analogue of β-catenin, armadillo, was 

crucial in the discovery of the signaling function of β-catenin in a screen for mutations that affect 

segmentation of the embryo [7]. Remarkably, an amoebozoan, Dictyostelium discoideum, 

expresses a β-catenin analogue Aardvark, which maintains cell-cell junctional polarity in 

multicellular aggregates that comprise the fruiting bodies of the normally single-celled organism 

[8]. In the developing embryo, β-catenin is required for mesoderm formation, where the signaling 

function of the molecule plays a crucial role. The β-catenin molecule is also required for 

formation of the neuroepithelial structures and the endoderm. However, here the structural, 

junction-forming function of β-catenin takes precedence over the signaling function [9]. While 

Wnt/β-catenin signaling is not as active in adult tissue as the embryo, the Wnt/β-catenin pathway 

is required for the maintenance of tissue homeostasis and cell renewal, in addition to maintenance 

of the cell-cell junctions [2]. 

Given the multifarious nature of β-catenin and far-ranging effects of the perturbations in 

this critical pathway, Wnt/β-catenin signaling plays an important role in both normal tissue 

homeostasis and tumorigenesis. This chapter summarizes the significance of the Wnt/β-catenin 

signaling pathway in gastrointestinal malignancies, with an emphasis upon PDAC and colorectal 

cancer (CRC). Also, this chapter describes the relationship between the Wnt/β-catenin pathway 

and mucins, which are glycoproteins that play important roles in various malignancies. 

3. The role of Wnt/β-catenin signaling in cancer 

The Wnt/β-catenin signaling plays important role in development as well as homeostasis 

of adult tissue. As expected, mutations in this pathway occur frequently in cancer, most 

commonly in CRC, where around 80% of the patient population possesses either inactivating 

mutations in adenomatous polyposis coli (APC) or activating mutations in β-catenin [5]. 

However, aberrant activation of this pathway also occurs in pancreatic cancer, breast cancer, 
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multiple myelomas, melanoma, hepatocellular carcinoma, and other malignancies [4, 10-12]. 

Both mutations in Axin 1/2 [13] and activating mutations in β-catenin [3] occur in hepatocellular 

carcinoma. Mutations that prevent the phosphorylation-mediated degradation of β-catenin also 

occur in medulloblastoma [3] and the pediatric renal cancer Wilm’s tumor [14]. Activation of 

Wnt/β-catenin signaling may also be wrought by epigenetic mechanisms, as observed in 

colorectal and pancreatic cancers, as well as medulloblastoma, where the promoters of Wnt 

inhibitors were found to be hypermethylated [15, 16].  

Activation of the Wnt/β-catenin pathway can be precipitated either by overt mutations in 

pathway components or indirect mechanisms, such as increased secretion of ligands or decreased 

secretion of inhibitors. These two mechanisms of Wnt/β-catenin activation are exemplified by 

CRC and pancreatic cancer (PC), both gastrointestinal malignancies where the Wnt/β-catenin 

pathway plays a significant role in disease progression, albeit through distinct mechanisms.  

4. Wnt/β-catenin in CRC 

Aberrations in the Wnt/β-catenin pathway frequently occur in CRC. While mutations in 

several Wnt/β-catenin pathway have been recorded, an overwhelming majority of CRCs (70-

80%) possess truncating mutations in APC [17]. Individuals with familial adenomatous polyposis 

(FAP) possess truncating mutations in APC, rendering them liable to the formation of hundreds 

of polyps in their colon, ultimately leading to CRC [1]. The increase in cytosolic/nuclear β-

catenin could also be due to mutations in the exon 3 of β-catenin, which render it resistant to 

degradation, seen in less than 5% of CRCs [17]. Mutations in Transcription factor 7-like 2 

(TCF7L2 or TCF4), the nuclear partner of β-catenin, have also been observed in roughly 5% of 

CRCs [17]. It must be noted, however, that distinct molecular subtypes of CRC exist, and that 

while mutations in the Wnt/ β-catenin pathway are very frequent, not all CRCs are driven by 

aberrant Wnt/ β-catenin signaling. 
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The majority of CRCs follow what is often referred to as the ‘suppressor’ pathway [18]. 

Here, both precursor lesions; ‘traditional’ adenomas, as well as full-blown tumors are 

characterized by aberrantly localized β-catenin, typically a consequence of truncated APC 

mutations [1]. Further, truncating mutations in APC are present in the earliest lesions, aberrant 

crypt foci, suggestive of a driving role for the Wnt/ β-catenin pathway [1]. In addition, around 

50% of these tumors have a Kras mutation [19], which has been shown to aid in nuclear 

localization of β-catenin [20]. The levels of nuclear β-catenin steadily increase during the 

progression of CRC, starting from adenomas to full-blown carcinomas [1]. A subset of CRCs are 

characterized by frequent aberrations in the DNA mismatch repair machinery, often called the 

‘mutator’ pathway [18]. These tumors possess microsatellite instability (MSI) and are less likely 

to possess Wnt/ β-catenin driver mutations [21, 22]. Yet another subtype, mucinous CRC, 

comprising roughly 10% of all CRC [23] has also been observed. These tumors are characterized 

excessive mucin production (chiefly MUC2) are also less likely to have aberrations in the Wnt/ β-

catenin as driving mutations since they also frequently possess MSI-high (MSI-H) status[24]. 

Each of these CRC subtypes are further stratified by varying frequencies of BRAF, Kras 

mutations as well as CIMP (CpG island methylator phenotype) [25]. A detailed analysis of the 

various subtypes of CRC is, however, beyond the purview of this chapter.  

5. Wnt/β-catenin in pancreatic cancer (PC) 

Unlike CRC, where mutations in the Wnt pathway are important driver mutations, PC 

does not usually display such mutations. However, around 65% of PCs show aberrant 

nuclear/cytosolic localization of β-catenin and active Wnt signaling [26]. A significant fraction of 

PC patients also show elevated Axin2 expression, widely regarded as a universal marker of active 

Wnt/β-catenin signaling [27]. Further, the Wnt pathway was found to be one of the 12 core 

signaling pathways most frequently dysregulated in PDAC [28]. 
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The Kras mutation is considered to be the driving mutation in PDAC, the most prevalent 

type of pancreatic neoplasm present in around 90% of patients [29]. Mice that express the 

KrasG12D mutation, driven by the expression of a pancreas-specific Cre (Pdx or p48), develop 

precursor lesions (mPanINs) that eventually form PDACs reminiscent of the majority of human 

lesions [30]. In contrast, mice that express mutant, stabilized β-catenin (exon 3-deleted), driven 

by a pancreas-specific p48-Cre, develop solid pseudopapillary neoplasms, an extremely 

uncommon form of the disease [31]. Mice that express both stabilized β-catenin and mutant Kras, 

driven by p48-Cre (p48-Cre; Cttnb1exon3/+; KrasG12D), develop tumors that resemble intraductal 

tubular neoplasms, yet another extremely rare disease [31]. Despite these findings, activation of 

the canonical Wnt pathway is necessary for the formation of pancreatic intra-epithelial neoplasia 

(PanINs) and full-blown PDAC in the Ptf1a-Cre; KrasG12D (KC) mouse model [32], albeit at 

levels substantially lower than observed in CRC, as demonstrated by Zhang et al, who generated 

a Ptf1a-Cre; KrasG12D; β-cateninf/f mouse model. It was observed that the loss of β-catenin 

prevented the formation of mPanINs (mouse precursor lesions). Notably, β-catenin-depleted cells 

expressed lower levels of mucins in these mice, as determined by Periodic acid–Schiff (PAS) 

staining. 

The proposed causes for the increase in Wnt/β-catenin signaling in PC include epigenetic 

regulation of the Wnt pathway components, increased ligand secretion, and decreased expression 

of pathway inhibitors. For example, the  promoter of the Wnt-inhibitor SFRP1 was found to be 

hypermethylated in PDAC [16]. Also, the canonical Wnt ligand, Wnt 7b, was found to be over-

expressed in PC [33]. Further, Wnt 7b independently confers a poorer prognosis in patients who 

over-express this protein. On the other hand, oncogenic Kras has been shown to induce 

expression of the ataxia telangiectasia group D complementing gene (ATDC) [34], which 

activates β-catenin signaling via stabilization of Dishevelled-2 (Dv2), thereby abolishing the 

destruction complex. Further, in a mouse model that expressed both transgenic ATDC and mutant 
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Kras driven by a pancreas-specific promoter p48-Cre, ATDC was found to induce the epithelial-

to-mesenchymal transition (EMT) and metastasis via β-catenin [29, 34]. It has also been reported 

that Wnt ligand agonists Sulfatase 1 (SULF-1) and SULF-2 are overexpressed in PDAC [35]. 

Other developmental pathways, such as the Notch and Hedgehog pathways, have also been 

shown to cause increased nuclear/cytosolic β-catenin in PDAC [36]. Thus, while β-catenin alone 

is unable to initiate pancreatic tumorigenesis, canonical Wnt signaling is active in PDAC and 

contributes to the EMT and metastasis. The temporal regulation of activation of the Wnt pathway 

appears critical considering that β-catenin has been reported to actively suppresses Kras-mediated 

tumorigenesis by acinar cell regeneration in a mouse model of pancreatitis [37]. Figure 1 

pictorially summarizes the mechanism by which the Wnt/β-catenin pathway is dysregulated in 

both PDAC and CRC. 

6. Mucins and their roles in cancer 

Mucins are heavily O-glycosylated proteins that are normally expressed in the epithelial 

lining of the lungs, and gastrointestinal and reproductive tracts [38]. Mucins can be broadly 

categorized as follows: (i) membrane-bound/trans-membrane mucins, which include MUC1, 

MUC3A/MUC3B, MUC4, MUC11, MUC12, MUC13, MUC15, MUC16, MUC17, and MUC21, 

(ii) secreted (gel-forming) mucins, which include MUC2, MUC5AC, MUC5B, MUC6, and 

MUC19, and (iii) soluble (non-gel-forming) mucins, which include MUC7, MUC8, MUC9, and 

MUC20 [38]. The normal functions of mucins involve protection of the epithelial surfaces via 

entrapment of pathogens, which is primarily a function of secreted mucins [39]. The 

transmembrane mucins can also be involved in cell signaling [39]. Thus, mucins are critical in 

maintaining cellular functions, particularly those of epithelial surfaces. 

While critical in maintaining and protecting the normal epithelium, decades of research 

have revealed that a number of mucins are aberrantly expressed in cancer. For instance, the 

transmembrane mucin MUC4, which is normally absent in the pancreas, is aberrantly 
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overexpressed in PDAC [40]. Here, MUC4 has been shown to act as a binding partner for HER2 

and thereby play a role in promoting metastasis, cell proliferation, and invasion [41-43]. 

Furthermore, MUC4 can interact with secreted endothelial proteins such as Galectin [44], thus 

aiding in the invasion and metastasis of PDAC cells. Likewise, mucins MUC1, MUC16, and 

MUC5AC are also overexpressed in PDAC [39].  

Interestingly, while some mucins are aberrantly overexpressed in cancer, expression of 

other mucins decreases in certain malignancies. For instance, expression of the secreted-mucin 

MUC2, which comprises most of the secreted mucus layer in the colon, is markedly reduced in 

most CRCs, with certain notable exceptions, such as mucinous CRCs [45, 46]. The role played by 

MUC4 in CRC is, however, controversial [47, 48]. For example, while some reports suggest that 

MUC4 is lost as CRC progresses [47], another report indicates that MUC4 expression is 

enhanced in a subset of patients where it confers a poorer prognosis [48]. No correlation between 

high MUC4 expression and MSI or mucinous status of CRC has been observed [23]. MUC1 is 

expressed in both normal and cancerous colons, but its expression increases in CRC and strongly 

confers with disease progression [49]. As with MUC4, MUC1 expression does not correlate with 

MSI status [23]. Other mucins, such as MUC5AC, which is not normally expressed in the colon, 

are also aberrantly overexpressed in CRC [50]. The de novo expression of MUC5AC is more 

frequently observed in mucinous and MSI-high tumors [51, 52]. Thus, despite varying expression 

levels in disparate malignancies, the importance of mucins in disease progression is evident. 

Given their role in promoting cancer progression, mucins have been proposed to be 

important diagnostic and prognostic markers. Consequently, the mechanisms by which these 

molecules promote and/or suppress the progression of cancer have been subject of intense 

investigation. In this regard, a number of studies have focused on the interaction of β-catenin and 

mucins. Most prominently, the cytoplasmic tail of the transmembrane mucin MUC1 has been 

shown to interact with β-catenin in various malignancies and aid in the nuclear localization of the 
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molecule [53]. Other mucins, like MUC16 and MUC4, have also been shown to influence the 

localization and/or stabilization of β-catenin [54, 55].  

While many studies have shown the regulation of β-catenin by mucins, the Wnt/ β-

catenin has also been shown to regulate mucin expression. In CRC, where the β-catenin pathway 

is a driving force, β-catenin has been shown to suppress mucin expression. A siRNA targeting β-

catenin resulted in the loss of mucin expression, as measured by alcian blue staining, in the CRC 

cell line LS174T [56]. Activation of β-catenin has been shown to result in the loss of colonocyte 

differentiation, resulting in a crypt progenitor phenotype in CRC [57]. The loss of mucin 

expression is among the myriad of changes associated with this de-differentiated phenotype. 

Mucin-depleted foci, first identified in rats treated with the carcinogen azoxymethane (AOM), are 

pre-cancerous lesions in CRC characterized by both aberrant β-catenin signaling and loss of 

mucins, [58]. Mucin-depleted foci have also been described in human colon tissue samples [59]. 

Thus, a number of studies have implied that the loss of certain mucins are a consequence of Wnt/ 

β-catenin pathway activation in CRC. The following sections of the chapter summarize the 

diverse, and occasionally contradictory, roles played by mucins and β-catenin in cancer. 

7. The relationship between β-catenin and membrane-bound mucins in cancer, MUC1, 

MUC4 and MUC16  

(a) MUC1  

The relationship between MUC1 and β-catenin has been extensively studied in various 

malignancies. The MUC1 cytoplasmic domain (CD) has been shown to possess a serine-rich 

motif (SXXXXXSSL) required for the binding of β-catenin [60], which is used to bind the 

Armadillo repeat domain of β-catenin, thus preventing the phosphorylation induced degradation 

of β-catenin by GSK3β. Cleavage of the MUC1 CD has been demonstrated to occur through γ-

secretase, thus untethering the cytoplasmic tail from the membrane [61]. In addition, the MUC1 

CD possesses a binding site for GSK3β, at the STDRSPYEKV site [62]. Phosphorylation by 



12 

 
GSK3β of the serine residue next to the proline at this site inhibits the MUC1-β-catenin 

interaction and stimulates the formation of the β-catenin-E-cadherin complex at the membrane. 

The MUC1 CD also possesses a phosphorylation site for the epidermal growth factor receptor 

(EGFR), which phosphorylates the tyrosine residue in the YEKV motif on the MUC1 CD, thus 

priming the tail for binding by the c-Src tyrosine kinase, which leads to increased β-catenin-

MUC1 CD interaction [63, 64]. Protein kinase-C δ phosphorylates the tail at the TDR site, also 

leading to increased β-catenin binding to the MUC1 CD [63-65]. The MUC1CD-β-catenin 

complex can enter the nucleus, where it partners with TCF4 to up-regulate β-catenin target genes, 

such as cyclin D1 [66, 67]. Not only does MUC1 stabilize β-catenin, it also binds the nuclear co-

factor TCF4, preventing binding of the repressive C-terminal binding proteins to TCF4 and 

recruiting transcriptional co-activators such as p300 on the cyclin D1 promoter [68]. The 

expression of MUC1 has been linked to the Wnt target gene Cyclin D1 in a number of cancers, 

such as breast cancer [68], H. pylori-induced gastric cancer [66], and PDAC [67, 69].  

The expression of MUC1 and aberrant β-catenin at the invasive front in gastric cancer 

and CRC has been shown to be independent predictors of poorer prognoses [70, 71]. The MUC1-

β-catenin interaction is implicated in inducing invasion and EMT in breast, renal, gastric, and 

pancreatic cancers [68, 72, 73]. In pancreatic cancer, the seven tyrosine residues present in the 

MUC1 cytoplasmic tail were found to be critical for its interaction with β-catenin and mediation 

of EMT [73]. In mouse NIH3T3 fibroblast cells, the interaction between Galectin-3 and the N-

terminal domain of MUC1 was found to trigger recruitment of β-catenin to the C-terminus of 

MUC1 [74]. In renal carcinoma, the MUC1-β-catenin complex has been found to directly bind 

the Zinc finger protein SNAI1 (SNAIL) promoter, thus triggering EMT and invasion [72, 75]. 

Additionally, the KL6 variant of MUC1 has been found to exacerbate metastasis of PDAC 

through interactions with β-catenin [76]. Further, the MUC1 cytoplasmic tail has been shown to 

interact with APC in some breast cancer cell lines and in human metastatic breast cancer tissue 



13 

 
[77]. Moreover, MUC1 was found to aid in the nuclear localization of β-catenin in CRC [78]. 

Thus, multiple lines of evidence show a direct relationship between MUC1 and EMT, metastasis 

and progression of various cancers. 

In contrast to the aforementioned findings, in HEK293 cells, MUC1 has been implicated 

in suppressing the proliferation of cancer by preventing nuclear localization of β-catenin [79], 

thus contradicting a number of studies. The MUC1- β-catenin interaction may also promote 

cancer progression without necessitating the nuclear localization of β-catenin. For example, in 

breast cancer, the deletion of MUC1 in MMTV-Wnt-1 transgenic mice prolonged the time 

required for tumor formation [80]. However, the MUC1-β-catenin complex was observed in the 

membrane and cytosol of wild-type mice, as opposed to the nucleus. Further, the MUC1-β-

catenin complex was present at the invading edge of the cell membrane connecting to the 

collagenous matrix; this complex co-localized with the focal adhesion proteins fascin and 

vinculin, thus presumably aiding in invasion and metastasis despite preventing the nuclear 

localization of β-catenin. Accordingly, MUC1-β-catenin interactions were found to be greatly 

enriched in metastatic tumors [80].  

In summary, MUC1-β-catenin interactions may either (a) promote nuclear localization of 

β-catenin, thereby upregulating numerous EMT-, metastasis-, and proliferation-related genes or 

(b) prevent nuclear localization of β-catenin by sequestering it at the membrane/cytoskeleton. It 

has been suggested that the relative abundance of these two proteins may determine which path is 

followed [79]. A recent study of PDAC observed that the MUC1-β-catenin regulation of cyclin 

D1 requires the presence of p120 catenin, which sequesters the transcriptional repressor Kaiso. 

This observation suggests that the relative abundance of various p120 isoforms determines the 

ability of MUC1-β-catenin to activate gene transcription [67]. Thus, while the MUC1- β-catenin 

interaction possesses the ability to promote EMT and metastasis, several variables such as the 
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relative abundance of MUC1/ β-catenin and the presence of requisite isoforms of as p120 catenin 

influence the MUC1- β-catenin dynamic. 

(b) MUC4 

While the relationship between MUC1 and β-catenin has been extensively studied, the 

potential relationship between β-catenin and other membrane-bound mucins, such as MUC4, is 

less known. In PDAC, MUC4 induces the dissociation of β-catenin from E-cadherin, by 

triggering lysosomal degradation of E-cadherin via HER2/Src/FAK signaling, and thereby causes 

nuclear localization of β-catenin [54]. Gao et al. proposed that MUC4 can also inhibit nuclear 

localization of β-catenin in lung cancer, where MUC4 plays a protective role [81]. MUC4 may 

also be governed by β-catenin. For example, a recent study, using genetically ablated β-catenin by 

zinc finger nucleases in the PDAC cell line BXPC3, applied a subsequent microarray to 

demonstrate that MUC4 was one of the most significantly down-regulated genes upon the 

depletion of β-catenin (Supplementary Table 3 of  paper by Olson et al.) [82]. Moreover, whole-

exome sequencing of a case of osteosarcoma showed that the Wnt/β-catenin pathway is an 

important disease driver and that MUC4 was up-regulated, hinting at a regulatory relationship 

between β-catenin and MUC4 [83].  

A number of other studies also support the existence of a β-catenin- MUC4 regulatory 

relationship. A study by Hashimoto et al., which examined the role of β-catenin in developing 

lungs, used a lung-specific rCCSP-Cre recombinase in mice and found that when a constitutively 

active (exon 3-deleted) β-catenin was overexpressed, MUC4 transcript levels were significantly 

increased in the bronchial epithelium [84]. Our MUC4-promoter analysis using the MatInspector 

(Genomatix) software showed presence of 3’ putative TCF/LEF binding sites (one in the 

proximal promoter and two in the distal promoter) in the MUC4 promoter. Additional studies 

conducted in our laboratory further suggest that, in PDAC, MUC4 is a direct transcriptional target 

of β-catenin [85].  
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Overall, most studies thus far indicate that the Wnt/β-catenin pathway likely regulates the 

expression of MUC4. Furthermore, MUC4 may regulate nuclear localization of β-catenin through 

its interactions with HER2, which then triggers a cascade of signaling events that culminate in the 

Src-mediated phosphorylation of E-cadherin and result in the release of β-catenin from E-

cadherin. However, MUC4 has also been shown to prevent the nuclear localization of β-catenin 

in lung cancer through a mechanism that has not yet been delineated [81], thus contributing to a 

certain degree of uncertainty in the field. 

(c) MUC16  

MUC16 is a membrane-bound mucin that is upregulated in various cancers, including 

ovarian, pancreatic, and breast cancers [86]. The first report suggesting an interaction between 

MUC16 and β-catenin was published by Comamala et al. in 2011; here, MUC16 was shown to 

interact with β-catenin in the ovarian carcinoma cell line OVCAR3 [87]. Comamala  et al. 

proposed that MUC16 interacts with E-cadherin and β-catenin, thus ensuring their membrane 

localization and preventing EMT. This co-related with the fact that expression of MUC16 is lost 

in late-stage, metastatic ovarian cancer. A different study by Akita et al. focused on the 

interaction between the cytoplasmic tail of MUC16 and β-catenin in a colon cancer cell line, 

HCT116. It was determined that overexpression of the MUC16 cytoplasmic tail resulted in 

reduced expression of membranous E-cadherin and β-catenin. This reduced expression was 

attributed to the increased recruitment of Src family kinases to the membrane, which in turn 

caused degradation of E-cadherin and dissociation of β-catenin from E-cadherin [88]. 

In 2014, Giannakouros et al. proposed that the MUC16- β-catenin complex promotes the 

formation of multicellular aggregates. These aggregates precede dissemination of ovarian cancer 

cells and the MUC16-β-catenin interaction tethers β-catenin at the membrane, preventing  

phosphorylation-mediated degradation of β-catenin by GSK-3β [55]. Thus, while most studies 

indicate that the MUC16 cytoplasmic tail does indeed interact with β-catenin, the role played by 
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the MUC16-β-catenin complex appears to be context-dependent, and either causes increased 

cytosolic/nuclear localization of β-catenin or prevents the nuclear localization and enhances the 

E-cadherin binding propensities of β-catenin. 

8. The relationship between β-catenin in cancer and secreted-mucins MUC2, MUC5AC, and 

MUC6  

MUC2 is the most abundantly secreted mucin in the intestines, produced primarily by 

goblet cells [47]. Notably, unlike most colorectal carcinomas in humans, Muc2-/- mice develop 

colorectal carcinomas in the absence of any other mutations [89, 90] and without aberrantly 

localized β-catenin. However, when Muc2-/- mice were crossed with Apc1638N/+ or ApcMin/+ mice in 

a study by Yang et al., increased tumor formation occurred in the distal colon [91]. This is unlike 

mice for which the Apc gene alone has been mutated or lost, and tumor lesions are located 

primarily in the small intestine [91]. Importantly, these tumors in the distal colon showed an 

increase in aberrant Wnt/β-catenin signaling, which suggests that the loss of MUC2 acts in 

concert with Wnt/ β-catenin signaling to cause CRC [91]. Because these mice also showed signs 

of an inflammatory response in their tumors, it was suggested that loss of MUC2 results in tumors 

through an inflammatory mechanism that complements activation of the Wnt pathway [91]. 

Interestingly, in colon carcinomas, β-catenin has also been shown to negatively regulate MUC2 

expression [92]. This negative regulation of MUC2 was found to be driven by Sox9, which in 

turn is upregulated by β-catenin [93]. Another mechanism of down-regulation of MUC2 by β-

catenin involves Hath-1, a transcription factor that is proteasomally degraded by active Wnt/β-

catenin signaling [94]. Hath-1 up-regulates MUC2 expression [92] and is repressed by the Wnt/β-

catenin pathway [94]. Other mechanisms such as MUC2 promoter methylation have also been 

shown to contribute to the MUC2 mucin loss in CRC [95].  In conclusion, the loss of MUC2 

plays an important role in CRC progression and the Wnt/β-catenin pathway aids in precipitating 
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the loss of MUC2 expression. The loss of MUC2 may promote inflammatory responses which 

exacerbate the severity of the disease.  

The gastric, gel-forming, secreted-mucin MUC5AC is aberrantly overexpressed in 

colorectal carcinoma [47], PDAC [39] and in certain infections, including the infection caused by 

the bacterial pathogen Shigella dysenteriae [96]. Some studies suggest that β-catenin can regulate 

MUC5AC. It has been shown that S. dysenteriae stimulates secretion of interleukin-1β, which in 

turn causes Trefoil factor 3 to stimulate the Akt pathway by phosphorylating the EGF receptor 

[96]. The Akt pathway then potentiates the nuclear localization of β-catenin, which in turn 

upregulates MUC5AC [96]. In rats treated with 1, 2-dimethylhydrazine, a carcinogen, it was seen 

that crypts that contained aberrant localization of β-catenin showed progressively increasing 

levels of MUC5AC (33% immunopositivity at eight weeks and 90% immunopositivity at 36 

weeks) concurrent with progressively decreasing levels of MUC2 [97]. A study by Mucenski et 

al. used transgenic mice that constitutively overexpressed transcriptionally active, exon 3-deleted 

β-catenin, which was achieved using doxycycline-regulated Cre recombinase regulated by the 

lung-specific rat Clara cell secretory protein (rCCSP) promoter. Here, it was observed that mice 

displayed goblet cell dysplasia and increased MUC5AC expression [98]. All the aforementioned 

studies suggest that MUC5AC expression is likely governed by β-catenin, although the precise 

manner in which β-catenin regulates MUC5AC has not yet been studied. 

Concurrent with findings that suggest a regulatory relationship between β-catenin and 

MUC5AC, it has also been found that MUC5AC can increase nuclear accumulation of β-catenin. 

Specifically, a study by Inaguma et al., which investigated the effect of the Hedgehog pathway 

effector GLI-1 in PDAC, determined that MUC5AC can prevent membranous accumulation of E-

cadherin, and therefore untether β-catenin from the adherens junction complex and stimulate 

nuclear accumulation of β-catenin [99]. Thus, MUC5AC expression has been reported to be 

governed by Wnt/β-catenin signaling in S. dysenteriae infections in the colon, and possibly also 
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in colon cancer and in the developing lungs. On the other hand, MU5AC has also been shown to 

regulate β-catenin localization in pancreatic cancer. 

The secreted-mucin MUC6, in conjunction with MUC1 and MUC2, is frequently 

associated with the presence of nuclear β-catenin in gastrointestinal type gastric cancer and has 

been proposed for a prognostic marker by Aihara et al. [100]. A separate study by Silva et al. 

found that patients with gastric cancer who were younger (less than or equal to 40 years old) were 

more likely to express MUC6, MUC5AC, and MUC2, as well as β-catenin, compared to older 

patients (above 40 years old) [101]. However, the prognostic value of these observations remains 

unclear. 

9. Conclusions and future directions  

Despite the proven importance of the Wnt/β-catenin pathway and mucins in regulating 

neoplastic transformation and malignant growth, a number of questions remain unanswered. 

While the MUC1-β-catenin relationship is the most well delineated of all mucin-β-catenin 

relationships, the determinants or context that governs whether the MUC1-β-catenin complex 

enters the nucleus or remains bound to members of the cytoskeleton have not yet been identified. 

Notably, another transmembrane mucin, MUC16, has been shown to interact with β-catenin. 

While the cleavage and nuclear localization of the MUC16 cytoplasmic tail has been 

demonstrated [102], it is not known whether the β-catenin-bound MUC16 cytoplasmic tail can 

also enter the nucleus. Also, the role played by the MUC16-CT-β-catenin complex in ovarian 

cancer, where it prevents EMT by sequestering β-catenin at the membrane, and in colon and 

breast cancers, where it enhances EMT by enabling cytosolic/nuclear localization of β-catenin, is 

lacking sufficient explanation. A similar pattern has been observed for MUC4, where MUC4 

prevents β-catenin nuclear localization in lung cancer but enhances nuclear localization in 

pancreatic cancer.  
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Another stream of research focuses on the regulation of mucin expression by β-catenin. 

This field is replete with findings reflective of the disparate roles played by the collusion of 

mucins and β-catenin in various malignancies. For example, the depletion of β-catenin in the 

Ptf1a-Cre; KrasG12D; β-cateninf/f,  as well as inhibition of β-catenin in the Ptf1a-Cre; LSL-KrasG12D 

; Rosa26rtTa/+; TetO-Dkk1 mouse models of PDAC, resulted in reduced overall mucin staining 

compared to KC (Ptf1a-Cre;KrasG12D) mice,  hinting at a regulatory β-catenin–mucin relationship 

[32]. While this is not conclusive proof of a direct β-catenin-mucin relationship, a study that 

performed a microarray on β-catenin-null PDAC cells found that MUC4 was one of the top 

significantly down-regulated transcripts, implying that MUC4 is regulated by β-catenin [82]. 

Studies from our laboratory support direct β-catenin-mediated up-regulation of the MUC4 

transcript in pancreatic cancer [85]. In CRC, however, β-catenin has been shown to repress mucin 

expression. The β-catenin-mediated repression of MUC2 in CRC occurs via Sox9 up-regulation. 

Additional studies from our laboratory (unpublished data) indicate that β-catenin can repress the 

MUC4 transcript in CRC. The reasons for this seemingly contradictory relationship could stem 

from differing statuses of MUC4 promoter methylation in these two cancers. Studies by Yamada 

et al. showed using the CaCo2 CRC cell line negative for MUC4 mRNA, that while the MUC4 

promoter is methylated at key positions (CpG sites 108-112 in the proximal promoter), these sites 

are un-methylated in PDAC cell lines expressing MUC4 [103]. A repressive histone code 

including deacetylated Histone 3 and trimethylated K27H3 in the MUC4 5’ UTR is also present 

in MUC4-negative cell lines [104]. One possibility is that, given the wide disparity in the degree 

of Wnt/β-catenin pathway activity in PDAC and CRC (50 - 80% nuclear β-catenin in CRC versus 

4 - 11% nuclear β-catenin in PDAC [5]), a different set of target genes are activated. A study by 

Hlubek et al. supports this possiblity. Here, it was observed that even within CRC tumors, 

varying degrees of nuclear β-catenin activate different target genes in the tumor center as opposed 

to the invasive front [105]. Another factor to consider is that while aberrant β-catenin is the 

driving force in CRC progression, dysregulation of β-catenin occurs at a later stage in the natural 
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history of PDAC. Thus, a number of other mutations are at play, possibly influencing methylation 

of the mucin promoter and other variables that affect the β-catenin-mucin relationship. 

Furthermore, β-catenin regulates a number of micro-RNAs (mi-RNAs) in CRC [106]. 

Interestingly, MUC4 has also been shown to be regulated by mi-RNAs such as miR-200c, miR-

219-1-3p, and m-iR-150 [107-109], suggesting the possibility that β-catenin may indirectly 

regulate MUC4 via mi-RNAs. Further studies to address the potentially disparate roles played by 

β-catenin vis-à-vis MUC4 in these two cancers can delineate the precise relationship between β-

catenin and MUC4. 

The apparent discordance between mucin- β-catenin relationships in PDAC and CRC 

could be due to the distinct functions of secretory and membrane bound mucins in normal and 

cancerous conditions. The normal adult gastrointestinal system is characterized by specific levels 

of secretory and transmembrane mucins in every tract/organ. For instance, MUC2 is the 

predominant secretory mucin in the intestine, while MUC5AC is highly preponderant in the 

stomach [110]. The outer, loose layer of MUC2 harbors the intestinal microflora, while the dense 

inner MUC2 layer protects the colonic epithelium from microbial assault [110]. Transmembrane 

mucins such as MUC1, MUC3, MUC17, MUC13 and MUC4 form the protective glycocalyx 

while also participating in cell signaling events, although their functions in normal conditions are 

not as well studied [110]. The variable lengths of the extracellular portions of each mucin form a 

multi-tiered barrier to pathogen invasion [111]. This delicate balance between the levels and 

functions of transmembrane and secreted mucins is disrupted in cancer. In conjunction with 

aberrant β-catenin, it is likely that each transmembrane and secretory mucin plays a highly 

context-dependent role in cancer, based on its expression and role in the normal tissue, thus likely 

accounting for the disparate roles played by mucins and β-catenin in various malignancies.  

Figure 2 and Table 1 summarize the relationship between the Wnt/β-catenin pathway 

and mucins. Notably, the cytoplasmic tails of MUC1 and MUC16 have been shown to interact 
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with β-catenin. In both instances, the mucin-β-catenin complexes can either promote or repress 

tumor progression. The MUC1 cytoplasmic tail-β-catenin complex, in particular, plays an 

important role in various cancers. Likewise, in PDAC and lung cancer, MUC4 has been shown to 

affect β-catenin localization. In colorectal and pancreatic cancer, the Wnt/β-catenin pathway, on 

the other hand, can also regulate expression of MUC5AC, MUC2, and MUC4. Thus, mucins and 

the Wnt/β-catenin pathway have an intricate, mutually regulatory relationship that often 

culminates in cancer progression. As mentioned earlier, further studies are needed to determine 

the factors governing β-catenin-MUC1 mucin nuclear localization as well as the individual roles 

played by β-catenin-mucin complexes in different cancers. While it is apparent that β-catenin can 

govern mucin expression, both indirectly (i.e., MUC2 in CRC) and directly (i.e., MUC4 in 

pancreatic cancer- unpublished study), future studies are needed to explain the seemingly 

contradictory nature of the β-catenin-mucin relationship in various malignancies.  
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Table 1: The relationship between  β-catenin and mucins in cancer  

Mucin  Type  Cancer  Relationship with β-

catenin 

References  

MUC1 Transmembrane  PDAC 

 

 

 

 

CRC 

 

 

Breast 

cancer 

The cytoplasmic tail binds 

β-catenin, enters the 

nucleus, and up-regulates 

Cyclin D1, which induces 

EMT. 

The cytoplasmic tail binds 

β-catenin, enters nucleus, 

and co-localizes with β-

catenin at invasive front. 

The cytoplasmic tail binds 

β-catenin, enters nucleus, 

co-localizes with β-catenin 

at the invasive front. 

[67, 69] 

 

 

 

 

[71, 78] 

 

 

[68] 

MUC16  Transmembrane  Ovarian 

cancer  

 

 

 

 

 

 

CRC  

The cytoplasmic tail binds 

β-catenin, suppresses EMT 

by preventing cytosolic 

localization, and helps form 

multicellular aggregates that 

precede metastasis by 

tethering β-catenin to 

membrane. 

The cytoplasmic tail binds 

β-catenin and recruits Src 

family kinases, thus  

triggering degradation of E-

cadherin and enhancing 

cytosolic β-catenin 

[55, 87] 

 

 

 

 

 

 

 

[88] 

MUC4  Transmembrane PDAC MUC4 causes dissociation [54] 
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Lung 

cancer 

of β-catenin from E-

cadherin by HER2/Src/FAK 

signaling, enhances nuclear 

β-catenin, and is 

transcriptionally up-

regulated by β-catenin. 

MUC4 prevents nuclear 

localization of β-catenin. 

 

 

 

 

 

[81] 

MUC5AC Secreted, gel 

forming 

PDAC 

 

 

CRC 

Enhances nuclear β-catenin 

by disrupting E-cadherin at 

the membrane. 

β-catenin up-regulates 

MUC5AC in HT29 CRC 

cell line; nuclear β-catenin is 

associated with enhanced 

MUC5AC expression. 

[99] 

 

 

 

[96, 97] 

MUC2 Secreted, gel 

forming 

CRC β-catenin represses MUC2; 

loss of MUC2 co-operates 

with β-catenin signaling to 

aid in cancer progression. 

[91-94] 

MUC6 Secreted, gel 

forming 

Gastric 

cancer  

Expression frequently 

associated with nuclear β-

catenin; co-expression is 

prognostic marker. 

[100, 101] 
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Fig.1. Mechanisms of Wnt/β-catenin up-regulation in CRC and PDAC (A.) In CRC, 

mutations in Adenomatous polyposis coli (APC; most common), β-catenin, and Axin1 contribute 

to increased nuclear β-catenin. (B.) In pancreatic ductal adenocarcinoma (PDAC), no mutations 

in canonical pathway members are typically found. However, an increase in the WNT 7B ligand, 

SULF1, and SULF2, which enhance Wnt ligand binding and an increased expression of the ataxia 

telangiectasia group D complementing gene (ATDC), inhibit formation of the destruction 

complex and work together to precipitate cytosolic/nuclear β-catenin. In addition, other 

developmental pathways, such as Notch and Hedgehog, can contribute to the pool of nuclear β-

catenin.   
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Fig.2. Schematic representation of β-catenin-mucin dynamics (i.) MUC1: The cytoplasmic tail 

of MUC1 binds to β-catenin at the serine-rich domain. Formation of the MUC1- β-catenin 

complex stabilizes β-catenin by preventing its phosphorylation-mediated degradation. Following 

cleavage of the cytoplasmic tail, the MUC1- β-catenin complex can either (A) localize adjacent to 

the membrane and bind cytoskeleton members Fascin and Vinculin, or (B) enter the nucleus, 

where MUC1 can also bind Transcription factor 7-like 2 (TCF7L2/TCF4) and aid in transcription 

of β-catenin target genes such as Cyclin D1. (ii.) The MUC16 cytoplasmic tail can bind both β-

catenin and E-cadherin. This may either cause C., the recruitment of Src family kinases (SFKs) 

resulting in the degradation of E- cadherin and release of β-catenin in the cytosol or D., the 

stabilization of the β-catenin-E-cadherin complex. (iii.) MUC4 can act as a binding partner for 

HER2, triggering the activation of Src and FAK, which cause the lysosomal degradation of E-

cadherin and release of β-catenin into the cytosol. (iv.) MUC5AC in the extracellular space can 

hinder the membranous localization of E-cadherin and stimulate cytosolic and nuclear β-catenin. 

(v.) β-catenin has been shown to transcriptionally upregulate MUC5AC and MUC4, and 

transcriptionally repress MUC2. 
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CHAPTER 1 B 

MUC4 regulation and expression patterns in pancreatic ductal 

adenocarcinomas (PDAC) and Colorectal Cancer (CRC)  
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1. Synopsis  

Numerous studies have focused on factors regulating MUC4 expression. In particular, pancreatic 

cancer has been of interest to researchers due to the de novo expression of MUC4 in this 

malignancy. MUC4 has been shown to be regulated by various factors including epigenetic 

factors, transcriptional and post-transcriptional, as well as post-translational mechanisms. While 

most studies have used pancreatic cancer as their model system, other ailments such as breast, 

esophageal, colorectal as well as ulcerative colitis and Crohn’s disease have also been studied. 

Here, I attempt to summarize studies on the epigenetic, transcriptional, post-transcriptional, and 

translational regulation of MUC4. Secondly, while studies on MUC4 in PDAC have been 

unequivocal in asserting that MUC4 is incrementally increased during PDAC progression in a de 

novo fashion, the MUC4 expression pattern in CRC is less clear, confounded by the fact that 

MUC4 is expressed by the normal healthy colon. In addition, the presence of a multitude of 

molecular subtypes in CRC likely leads to an additional level of complexity. Therefore a survey 

of literature examining the MUC4 expression patterns in colorectal cancer was performed and 

their findings have been summarized. 
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2. The regulation of MUC4 expression 

The MUC4 promoter was first characterized by Perrais et al who established that the promoter is 

3.7 kb long, with a long 5’ UTR of 2.7 kb [1]. The first TATA box was found to be located at -

2672/-2668, upstream of the ATG site. There were 2 highly transcriptionally active regions, 

located at -219/-1 and -2781/-2572 and binding sites for a number of transcription factors were 

found in the 5’UTR and proximal promoter. Four alternative transcription start sites have been 

identified, at positions −2603, −2604, −2605, and −199, lending variability to the length of the 5’ 

UTR. Owing to the de novo expression of MUC4 in PDAC, many studies have focused on factors 

regulation MUC4 in this disease. It has been observed that extensive promoter methylation in 

combination with a repressive histone code suppresses MUC4 in non-expressing cells [1-3]. 

Furthermore, numerous spatio-temporally regulated transcription factors and inflammatory 

cytokines work in concert to regulate MUC4 in development and disease [1]. Below, I discuss the 

epigenetic, transcriptional, post-transcriptional and translational factors regulating MUC4 

expression. 

A. The epigenetic regulation of MUC4 expression  

The 5’UTR and the proximal promoter (3’ of the TATA box) are both GC rich and thus show 

potential for methylation, while the distal promoter is not GC rich [1, 2]. In a study that examined 

the effect of histone acetylation and promoter methylation in pancreatic cancer cells, it was 

observed that methylation at five CpG sites in the 5’ UTR, located at -81, -93, -102, -113 and -

121 were critical for the transcriptional regulation of MUC4 [2]. They used three cell lines that 

served as a model for different degrees of MUC4 expression; the pancreatic cancer cell line 

Panc1 (MUC4 negative), the gastric cancer cell line KATO-III (low MUC4 levels) and the 

pancreatic cancer cell line Capan1 (high MUC4 levels). It was observed that the vast majority of 

potential methylation sites in the proximal promoter and 5’UTR were highly methylated 

regardless of MUC4 expression, with the exception of the aforementioned 5 sites [2].  
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Histone acetylation was also found to regulate MUC4 expression; however, it was observed that 

when treated with the histone deacetylase inhibitor Trichostatin A (TSA), there was an increase in 

MUC4 only in MUC4 negative and low-expressing cell lines, while suppressing MUC4 high cell 

lines [2]. The hypothesis put forward to explain this discrepancy was that the promoter occupancy 

of the Sp1 transcription factor, which contributes to constitutive MUC4 transcription, was 

reduced by TSA. In addition, DNMT1, 3A and 3B were found to be responsible for promoter 

methylation [2]. It was hypothesized that in non-expressing cells, promoter hypermethylation and 

histone deacetylation keep MUC4 suppressed, while in early stage cancer hypomethylation but no 

histone acetylation occurs, allowing for low levels of MUC4. Finally, in advanced stage cancer, 

both promoter hypomethylation and permissive chromatin allow for full MUC4 transcription [2]. 

Another study by Yamada et al compared the methylation of the MUC4 promoter in pancreatic, 

breast, lung and colon cancer cell lines with varying levels of MUC4 [3]. Interestingly, it was 

found that regardless of cellular origin, methylation of five residues, from -170 to -102 in the 5’ 

UTR was requisite for MUC4 expression, with the exception of LS174T, where the promoter was 

hypomethylated at these sites despite very low MUC4 expression [3]. However, two of these five 

residues differed from the ones identified by Vincent et al. This was ascribed to technical 

differences in the two studies. The rest of the potential methylation sites in the MUC4 promoter 

were mostly methylated in all the cell lines studied.  

While the aforementioned studies used cell lines to show methylation of the MUC4 promoter, a 

study by Zhu et al used a set of 57 pancreatic cancer tissues and performed methylation specific 

PCR on microdissected tissue to show that promoter hypomethylation incrementally increases 

from low grade PanINs (25% hypomethylation) to high grade PanINs and PDAC (80% 

hypomethylation) [4]. Recently, a study using breast cancer tissues showed that late stage, 

invasive breast cancer showed reduced MUC4 which corresponded to increased promoter 

hypomethylation [5]. Recently, a study from our lab has shown that NCOA3, a histone 
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acetyltransferase, binds the MUC4 promoter, thus creating a favorable chromatin environment for 

MUC4 inducing factors such as retinoic acid to increase MUC4 transcription [6]. NCOA3 was 

also found to induce an increase in MUC4 stability by altering glycosylation related genes such as 

FUT8.  

In conclusion, the epigenetic regulation of MUC4 has been found to chiefly involve a 

combination promoter methylation of key residues in the 5’ UTR and histone acetylation. A 

combination of both these factors is likely required for full MUC4 transcription to occur. 

B. Transcriptional regulation of MUC4  

 In the study where the MUC4 promoter was first characterized [1], it was noted that the 

MUC4 promoter (proximal and distal) contains numerous putative transcription factor binding 

sites for factors such as AP-1 and 2, Sp1 and 3, the GATA family of transcription factors as well 

as the STATs. It was observed that Sp1 could promote transcription, while Sp3 repressed MUC4 

transcription, although the extent of activation/repression by these factors varied between cell 

lines. Furthermore, it was found that EGF and TGF-α were able to induce MUC4 transcription via 

intracellular tyrosine kinases. A synergistic up-regulation of MUC4 transcription by IFN-γ and 

TNF-α as well as with TGF-α was found to occur in the Capan-2 cell line but not Capan-1. This 

was proposed to occur via the binding of STATs and/or NF-κB on the MUC4 promoter. Protein 

Kinase C (PKC) was also found to up-regulate MUC4. Pancreatic cancer cell lines were used by 

this study. 

More recently, the same group used a panel of lung, colon and pancreatic cancer cell lines to 

show that a number of developmentally important transcription factors such as hepatocyte nuclear 

factors (HNFs), GATAs, FOXAs and CDXs regulate MUC4 [7], suggesting that MUC4 may play 

an important role in cytodifferentiation in the lung and intestine. This was supported by IHC 

staining of MUC4 in the developing mouse small intestine, lung, colon and stomach that showed 

MUC4 was expressed prior to and after cellular differentiation. It was observed that the 
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transcription factors CDX-1, CDX-2, FOXA1 and FOXA2 induced MUC4 more strongly in colon 

cancer cell lines, while HNF-1α and HNF-1β induced MUC4 in all cell lines. The factors HNF-

4α, HNF-4β, FOXA2 and GATA-5 were proposed to induce MUC4 in an indirect fashion. The 

binding sites for all these transcription factors were in the distal promoter and it was proposed 

that the spatio-temporal expression of transcription factors as well as indirect mechanisms 

involving other co-factors contribute to the differential expression of MUC4 both 

developmentally and in various cancers.  

Since the very first study where the MUC4 promoter was characterized, most research has 

focused on the regulation of MUC4 in pancreatic cancer. For instance, the TGF-β pathway has 

been shown to regulate MUC4 transcription in PDAC [8], both via Smad2 and Smad4, which 

bind to Smad binding sites in the proximal and distal promoter, as well as through the PKC, PKA, 

PI3K and MAPK pathways in Smad4 negative PDAC cell lines. Another study used the PDAC 

cell line BXPC3 to show that MUC4 can also be regulated by CREB, Ets-1 and Elk-1[9].  

As mentioned previously, pro-inflammatory cytokines such as IFN-γ can regulate MUC4. This 

regulation has been shown to be mediated by the JAK/STAT pathway as follows: IFN-γ binds the 

IFN-γ receptor (INGR), which in turn activates the JAK receptor, ultimately resulting in the 

phosphorylation of STAT-1 at Ser727, which binds the MUC4 promoter causing increased 

transcription [10]. Another secreted factor, retinoic acid, has also been shown to increase MUC4 

transcription by activating the TGFβ-2 pathway [11]. Interestingly, when PDAC cells were 

treated with both IFN-γ and retinoic acid, there was a synergistic effect on MUC4 [12]. However, 

an alternate mechanism was found to be involved in this synergistic up-regulation [12]. It was 

found that retinoic acid partially represses STAT-1 induction while IFN-γ can inhibit TGFβ-2. It 

was proposed that STAT1 and RAR/RXR may act as transcriptional co-factors to up-regulate 

MUC4. A recent study has shown that nicotine can collaborate with IFN-γ and retinoic acid to 

induce MUC4 and that all three of these entities converged on the E2F1 and STAT1, which 
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mediates MUC4 up-regulation [13]. It was observed that nicotine required the presence of α7-

nicotinic acetylcholine receptor subunit to mediate its effect on STAT1 [13]. These findings were 

corroborated by a study from our lab, which showed that nicotine could also activate MUC4 via 

the JAK/STAT3 and MEK/ERK1/2 pathways [14]. All of the aforementioned studies on IFN-γ, 

retinoic acid and nicotine were conducted in PDAC cells. A very recent study in PDAC has 

demonstrated that Kras, the most commonly mutated gene in pancreatic cancer, up-regulates 

MUC4 via the MAPK/AP-1 and NF-κB pathways [15]. AP-1 and NF-κB were found to bind the 

MUC4 proximal promoter as a consequence of the KrasG12V mutation [15]. 

While all studies thus far have focused on the transcriptional up-regulation of MUC4 in PDAC, 

only one study has demonstrated the potential suppression of MUC4 by a transcription factor in 

PDAC. Fauquette et al showed that the AP2-α transcription factor, which is a tumor suppressor in 

PDAC, binds the proximal promoter at sites in the -475/-238 region, thereby suppressing MUC4 

[16].  

Some studies have also studied MUC4 regulation in other malignancies such as esophageal 

cancer. Here, it has been demonstrated that bile acids and their various conjugates can up-regulate 

MUC4 by stimulating the PI3K pathway [17]. Bile acids and their conjugates are present in the 

gastro-esophageal reflux that leads to Barrett’s esophagus, a precursor to esophageal cancer [17]. 

It has also been demonstrated that the effect of bile acids on MUC4 is also mediated by HNF1-α, 

which binds the distal MUC4 promoter [18]. In colon cancer, a recent study has shown that the 

epigenetic regulation of HNF4-α regulates MUC4 expression [19]. It was shown that the use of 

HDAC inhibitors and HDAC siRNAs caused a reduction in HNF4-α, thus indirectly reducing 

MUC4.  

In conclusion, MUC4 is governed by both spatio-temporally regulated transcription factors, as 

well as inflammation and disease related cytokines such as IFN-γ, nicotine and TNFα. In diseases 

such as PDAC, It is likely that a permissive chromatin environment in combination with 
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transcription factors that are possibly activated by factors such as IFN-γ, nicotine and TNFα, are 

required for MUC4 transcription. 

C. Post-transcriptional regulation of MUC4  

The burgeoning field of microRNA (miRNA) research has shown that MUC4, like numerous 

other transcripts, is also regulated by miRNAs. Here also, most studies have focused on 

pancreatic cancer. Typically, miRNAs bind to a sequence in the 3’UTR of a transcript, targeting it 

for degradation or inhibiting translation [20]. The tumor suppressor miRNA-150 binds to a highly 

conserved sequence in the 3’ UTR of MUC4, thereby suppressing translation [20]. This was 

associated with decreased pHER2, pFAK, pERK1/2, migration, and proliferation of PDAC cells. 

The miRNA-150 was found to be reduced in PDAC tissues [20].  

Another miRNA, miR-200c, was shown to bind base pairs 820-842 in exon 1 of the MUC4 

transcript , causing reduced mRNA and protein levels [21]. The PDAC cell lines S2.028 and 

T3M4 were used in this study. Recently, another tumor suppressor miRNA in PDAC, miR-219-1-

3p, has been shown to bind two sequences in the 3’UTR, causing a reduction in MUC4 protein 

[22].  

D. Post-translational regulation of MUC4 

The post-translational regulation of the rat homolog of MUC4, the Muc4/Sialomucin complex 

(SMC) has been extensively studied. The Muc4/SMC is composed of two non-covalently bound 

subunits, the O-glycosylated ASGP-1 and the transmembrane N-glycosylated ASGP-2 [23]. 

Studies in the lactating rat mammary gland showed that while the expression is tightly regulated 

at basal levels in the virgin and non-pregnant animal, there is a dramatic increase mid-pregnancy 

and during lactation [23]. The low basal levels of SMC were found to be due to a post-

translational regulation of SMC by the TGF-β pathway via the intermediates Smad2/Smad4 by an 

indirect mechanism, wherein there was a transcriptional modulation of a gene required for the 
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post translational processing of SMC [23]. This gene was speculated to be a serine protease 

required for the cleavage of the two subunits. Subsequently, it was shown that TGF-β exerted its 

effects by the inhibition of the processing of the two subunits, ASGP-1 and ASGP-2, ultimately 

causing a proteasomal degradation of the protein precursor. This mechanism was followed in both 

cancer cells [24] as well as the rat corneal epithelium [25].  

In a study which used a human pancreatic cancer cell line deficient in CFTR and a sub clone 

expressing functional CFTR, it was observed that functional CFTR suppressed MUC4 post 

translationally by reducing protein half-life in a cell-confluency dependent manner [26]. A 

transcriptional suppression was also observed and the MUC4 promoter regions -1187/-488 and -

3135/-2782 were found to be critical for this regulation [26]. A recent study has shown that Kras 

can increase MUC4 protein levels via the RalB GTPase [15]. However, the mechanism of the 

RalB mediated MUC4 up-regulation was not examined. 

D. Summary and conclusions 

 In conclusion, numerous epigenetic, transcriptional, post-transcriptional and post-

translational factors have been shown to regulate MUC4. Firstly, a permissive chromatin milieu 

and promoter hypomethylation are prerequisites for MUC4 transcription. Secondly, any of several 

spatio-temporally regulated transcription factors may enhance MUC4 transcription. Furthermore, 

inflammatory cytokines such as TGF-β, TNF-α and IFN-γ may also influence MUC4. Third, post-

transcriptional regulatory factors such as miRNAs and cross-talk with other signaling pathways 

such as the TGF-β pathway, Kras/MAPK pathways may affect MUC4 protein stability.  

 Currently, most studies on MUC4 regulation have been conducted in PDAC cell lines. 

Future studies could address MUC4 expression regulation in other malignancies, such as 

colorectal, breast and ovarian cancers. Also, studies could also address MUC4 regulatory 

mechanisms in non-pathological conditions such as the normal human colon, where MUC4 is first 

expressed in embryonic week 6.5 [27].  
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3. MUC4 expression patterns in PDAC and CRC 

A. MUC4 in pancreatic cancer  

 In the normal pancreas, MUC4 is not expressed at the RNA level, while appearing de 

novo at the RNA and protein level in pancreatic cancer [28]. This aspect of MUC4 expression 

sets it apart from all the other mucins and can possibly be exploited for early diagnosis [28]. 

When a panel of seven well characterized mucins was examined, only MUC4 was found to be 

absent in the normal pancreas and cases of chronic pancreatitis while being present in both PDAC 

cell lines and tissue [28]. Furthermore, MUC4 expression incrementally increases during PDAC 

progression, first appearing at PanIN stage I with expressing culminating in full-blown PDAC 

[29]. 

 Over the years, studies have shown that MUC4 can interact with HER2, acting as a 

ligand, thus triggering an intracellular cascade of signaling events involving the MAPK and PI3K 

pathways [30, 31]. Recently, it has been reported that MUC4 can also interact with other EGFR 

family members such as HER3 and HER4 [32]. Furthermore, MUC4 on circulating tumor cells 

can potentiate the cell surface localization of endothelial Galectin-3, and the MUC4-Galectin 

interaction can result in the temporary docking of tumor cells on the endothelium, leading to a 

permanent attachment of the tumor cell to the endothelium [33]. MUC4 is indiscriminately 

expressed on all surfaces of the tumor cell and can therefore interact with extracellular matrix 

proteins (ECM) such as Nidogen, present in the basement membrane, thus disrupting normal 

ECM protein-protein interactions [34]. As a consequence of all the aforementioned features of 

MUC4 function, MUC4 can modulate phenomena as diverse as epithelial to mesenchymal 

transition (EMT) [35], metastasis [35], drug resistance [36], stem cell-like properties [37], tumor 

cell proliferation [30], invasion, and thus PDAC patients that express MUC4 have a poorer 

prognosis[38]. 
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 Given the multifarious and tumor promoting nature of MUC4, a number of studies have 

focused on harnessing its tumor specific expression for therapy and using serum levels as a 

diagnostic/prognostic marker [39-41]. MUC4 has also been proposed as a useful diagnostic tool 

for PDAC in fine-needle aspirates (FNA) [40, 41]. In conclusion, MUC4 has been unequivocally 

established as a tumor specific molecule that can promote tumor progression and metastasis in 

PDAC, as well as serve as a useful diagnostic marker. 

B. MUC4 in colorectal cancer  

While a multitude of studies in PDAC have established the importance of MUC4 expression, its 

status in CRC is less well studied. MUC4 is ordinarily expressed in the colon, with expression 

being concentrated in the lower 2/3rd of the crypt [42]. MUC4 is expressed by both goblet cells 

and absorptive cells [42]. Furthermore, MUC4 is one of the earliest mucins expressed in the 

embryonic gut, appearing at embryonic week 6.5, even before secreted mucins such as MUC2 

[27], suggestive of a role in epithelial cell differentiation.  

Unlike PDAC, a number of molecular subtypes that originate via distinct mutational pathways 

have been identified in CRC. Also, there are distinct precursor lesions associated with each 

subtype. Briefly, CRCs can arise either through somatic mutations or through germ line mutations 

that predispose individuals to CRC. The ‘traditional’ pathway typically requires truncations of the 

APC tumor suppressor gene and is also sometimes referred to as the ‘tumor suppressor’ pathway 

[43]. This could either be due to sporadic somatic mutations or due to germ line mutations, as 

seen in Familial Adenomatous Polyposis (FAP) [44]. Another pathway typically involving the 

activation of oncogenes such as BRAF and KRAS also exists and is usually associated with a 

high microsatellite instability phenotype (MSI-H) implying the loss of mismatch-repair genes 

[45]. This is sometimes referred to as the ‘mutator pathway’. In terms of precursor lesions, most 

tumors usually arise from adenomatous polyps that progress into adenomas, ultimately forming 

carcinomas [44]. Hyperplastic polyps and serrated adenomas are less likely to from CRCs, but 
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when they do, they are typically associated with the ‘mutator pathway’[44]. Furthermore, while 

the majority of CRCs are associated with a loss of mucin expression, a minority (roughly 10%) 

are associated with abundant mucin secretion [46]. These tumors are called mucinous CRCs and 

are more frequently associated with the ‘mutator pathway’[47].  

Ogata et al first examined the MUC4 expression levels in 8 CRC tumors; 4 tumors had 

diminished MUC4, the rest had either an increased expression, or levels comparable to normal 

tissue [48]. When CRC precursor lesions were stained for MUC4 by IHC, MUC4 was reduced in 

serrated adenomas and 50% of hyperplastic polyps, while being present at roughly normal levels 

in traditional adenomas [42]. Another study examined the association between MUC4 expression 

and lesion type. The majority of non-mucinous tumors (66%) had low-moderate expression of 

MUC4 while 34% of the CRC examined had high MUC4 [46]. Of the subset of patients that 

expressed high MUC4, an overwhelming majority (79%) were grade I lesions. Also, 90% of the 

lesions that expressed MUC4 were well/ moderately differentiated. Furthermore MUC4 was not 

associated with either the MSI-H or the mucinous phenotype [46]. 

Very few studies have examined the prognostic significance of MUC4 in CRC. In 2010, 

Shanmugam et al performed an analysis of a large cohort of CRC samples [49]. It was observed 

that while 75% of tumors displayed a loss of MUC4, 25% showed an increase in MUC4 

expression. However, MUC4 expression conferred a significantly worse prognosis to stage I and 

Stage II patients [49]. Another recent study reiterated these findings, when they noted that while 

only a minority (33%) of tumors showed high MUC4, MUC4 was associated with a poorer 

prognosis [50]. Thus, MUC4, when present in high levels in early stages of CRC, appears to 

confer a worse prognosis.  

In conclusion, despite the paucity of studies that examine the role of MUC4 in CRC, most studies 

indicate that MUC4 is lost in late stage CRC, but when present in high levels, especially in early 

stages, confers a worse prognosis. It has been proposed that cancer associated truncated glycan 
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epitopes may cause the seemingly altered expression of MUC4 due to altered affinity of 

antibodies to MUC4[46]. Nevertheless, a recent study performed by our lab [51]appears to 

support the pro-tumorigenic role of MUC4. When Muc4-/- mice were subjected to AOM/DSS 

treatment, it was observed that the presence of Muc4 led to a significant increase in colitis and 

colorectal cancer. 

C. MUC4 in inflammatory bowel disease: ulcerative colitis and Crohn’s disease 

 Inflammatory bowel disease (IBDs) refers to two distinct diseases: Crohn’s disease and 

ulcerative colitis. Both these diseases are characterized by a deranged, inappropriate immune 

response against commensal microflora in the lumen of the gut [52]. Importantly, these diseases 

confer a strong predisposition towards CRC [53-55]. This predisposition is stronger in Crohn’s 

disease where a 20 fold higher-than-normal risk of CRC was observed [53], in comparison to 

ulcerative colitis, where the increase in risk is not as significant [54]. In addition, individuals with 

Crohn’s disease tend to develop mucinous CRCs with a significantly poor prognosis [53]. These 

diseases also differ in other respects; Crohn’s disease tends to be transmural (involving the entire 

gut wall) while ulcerative colitis only involves the mucosa and submucosa [52].  

 Since the primary function of mucins in the gut is to act as a barrier between intestinal 

microflora and the surface epithelium, one would expect an alteration in mucin expression in 

IBD. Studies have shown that there is a more significant depletion of mucins in ulcerative colitis 

in than in Crohn’s disease [56]. The most abundant mucin in the gut; MUC2, as well as MUC4 

are both depleted in ulcerative colitis [56]. On the contrary, MUC4 is up-regulated in Crohn’s 

disease [56, 57]. This has been shown to be a consequence of increased cytokines such as TNFα 

and TGFβ, as well as intestinal differentiation factors such as Hath1 and KLF4 [57]. Thus, MUC4 

appears to be increased by inflammatory cues in Crohn’s disease but not ulcerative colitis. 

 In light of the aforementioned facts, it appears likely that the AOM/DSS Muc4-/- model 

developed in our lab may mimic the inflammation-induced CRC formation as seen in IBD. Since 
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IBD patients tend to develop mucinous carcinomas, a distinct entity differing in many respects 

from the conventional APC driven CRC, it is likely that this the AOM/DSS Muc4-/- model may 

not accurately reflect the role played by MUC4 in the majority of human CRCs. 

D. Summary and conclusions 

 In conclusion, while MUC4 is a cancer-specific tumor promoting molecule in PDAC, its 

expression/role in CRC is less clear. MUC4 is highly expressed in a subset of non-mucinous early 

stage CRC tumors, likely conferring a worse prognosis. Further analysis of the mutational status 

of this subset is required to ascertain the possible diagnostic/prognostic significance of MUC4. 

Thus far, only a single study has suggested that MUC4 is not associated with the MSI-H and 

mucinous sub-type of CRC [46]. However, given the inherent overlap between mutations in the 

canonical CRC subtypes and the possibly heterogenous expression of MUC4 within CRC tumors, 

further studies are needed to establish MUC4 expression patterns in CRC. 
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1. Background and rationale  

 The aberrant expression of mucins and the inappropriate activation of Wnt/β-catenin are 

inextricably linked with the neoplastic process in many malignancies. Moreover, mucins and β-

catenin have a mutually regulatory relationship that aid cancer progression, as has been described 

in Chapter1A.  

In PDAC, several studies have hinted at a regulatory relationship between β-catenin and 

MUC4. Firstly, when β-catenin was inhibited in the well-established KPC (PDX-1-Cre, LSL-

KrasG12D, LSL-Trp53R172H/-) mouse model, a depletion of mucins as measured by alcian blue was 

observed [1]. Second, a microarray performed upon the depletion of β-catenin in the BXPC3 

PDAC cell line showed that MUC4 was one of the most significantly reduced transcripts [2]. 

Third, both aberrant β-catenin and MUC4 have been documented to appear at roughly the same 

stage of progression in in early PanIN precursor lesions [3, 4]. We performed a MUC4 promoter 

analysis using the Genomatix MatInspector program, which showed the presence of 3 putative 

TCF/LEF sites, required for β-catenin mediated transcriptional upregulation (Figure 1).  

In CRC, where aberrant β-catenin is the predominant, cancer-driving anomaly [5], a 

siRNA targeting β-catenin showed resulted in reduced mucins as measured by alcian blue 

staining in the LS174 cell line [6]. The loss of mucins such as MUC2 during CRC progression is 

a generally accepted phenomenon [7], and many studies suggest that MUC4 expression is also 

lost in CRC [8-10]. The ApcMin mouse model for CRC, where truncations in Apc are the only 

genetic abnormality, shows a reduced number of goblet cells and alcian blue staining in lesions 

[11, 12].  

While a number of studies suggest that MUC4 expression is reduced in CRC, 

paradoxically, it has also been claimed that its expression confers a significantly worse prognosis 

to the subset of patients that express MUC4 [13, 14]. This notion has been substantiated to a 
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degree by a recent study in our lab that showed that Muc4 loss was protective towards DSS 

induced colitis and CRC in mice [15]. 

2. Hypothesis  

Based on previous studies suggesting that β-catenin can modulate mucin/MUC4 

expression and a MUC4 promoter analysis performed by our lab showed the presence of three 

putative TCF/LEF sites, we hypothesized that β-catenin can modulate MUC4 expression in 

PDAC and CRC.  

3. Objectives  

Aim 1: To determine whether β-catenin can modulate MUC4 expression in PDAC and determine 

the mechanism of this regulation as well as the functional implications of the β-catenin-MUC4 

axis in PDAC progression and metastasis. 

Aim 2: To determine whether β-catenin can regulate MUC4 expression in CRC and establish the 

mechanism of the possible differential modulation of MUC4 expression by β-catenin in PDAC 

and CRC. 

Aim 3: To establish the functional role played by MUC4 in CRC.  

.   
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Figure1 Sequence of the MUC4 promoter and 5' UTR showing the three TCF/LEF sites( red text) 

and the Hath1 site (green text) unearthed by the MatiInspector promoter analysis. The ATG site is 

in bold type  
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Figure 1 

 

taaaagcaaggcccaccctgcaggggccagcagctgggagctgtccactaaccactatccttgcagctggacagcgaggcccctccaaaaggC

CGTCTCCACCTGCCACCGGGAAAGGACCCGGAGCGAAGGATGTCGTGGGCGGTCAGCCCAGGTGA

TTGCCCTTCTTTTgctttggagccaggcagaacagagctcaaattccagctttgGGACAGTGTGTGGCCCAGAAGGCTGT

AACTGCGGAGTTAACACTCTCCAGTTTCCCTAGATGGCCCGACCTGGCCGGTGACTCGGGGATGAT

GAAGCTCCTGGAGCCTCAGCGTGCTCACTTGAGAGGTAGGGCAGCGCTTTGTACTTCACAGGGCC

ATGGGGACAGGCTCAGGGCCTGGCACTCTAGTGACCGGCTTCATGCTGGGTCACTGACTAGGGAAT

CCACACACCTTTTTAGTCCAGACTGAGTAGGTAAATCAGACTTAATAAACATCCAGCTTCCTGCTCGA

GATCAGCCTAGTTGTCCTAAGTCTGACAAGATTGAACTTTATTCACAGCACGAGGCATAAATGATAT

AAAGGTAAGCAATTTTAGGGGACCCAAAAAACTAGGGACTCCTACTTGGGTAGCTTAGAAGGGGAAT

CTCTCTTGGAGATCCTGGCTTTGCTGCCTCAAACCCAGCTGTCTCTTCAAGCCAAGTCTGGGAGAAT

CTCATGATCTTATCCTTGCTCCAATTTACTTACACCCCACATCCACACTAAGCTCTTCCTGCCTCCCG

TGGAATATTAACTTACACCTGACTTCAGACTCCTGCCCCTATGCAGACCCAGCAGTATGCGGGCCTA

GGAGGTTTTTCGGCCACAAGGAACTAGAGAAGCCACTCATTTTGTCCCCTCTCATTCACCCCATTCT

GTCCCCATCGGATGCCTTGGGAGGAGAGAAGGAAGGACAAATGGGTGTCCCGTGACCCAACCCAG

ATGAAGACAGAGCCATTTATCACAGAGACCCAGACACATCCTAACTCTGGAAAATGGGCATATTGAG

GGGAGCTGGAAAGCAGAAGGGAAACGGGCGTGGGCAGGGAAGAGGTGAACAGGAGTGCGCACGC

CCAGTTCTCCAGGATCTCACGCTCCTAATCAGGATCCTATAAGACTCAAAGGGGACGCAGGAAAGA

CCTGGGCCTGGAAATTCACTTCCGGACTCCTCCTGTATCCTGGCTGGCCCTCGTTTGTGTCTCCCTC

CAGGGATGATGCCCGGATGGAAGGAGGAGCCACGTTCCTCCACAGGTGTCCTCCACAACAGGTGT

CCTCACAACAGGTGTCGTAACAACAGGTGTCCTCACAACAGGTGTCCTAATACTCCCGCagcccctcagc

atctacaggctcactcccaccctacaacctttcagataggtgttatccccattttacaggtgaacgaggaaaacagctcgaagaggctgtgactttgtg

gtgacgcggtggcagagctgggatcaagcccaggtttgTAACGCCCTCCTGGAGTCTCGGCCGTCACAGCAGCTTCC

GGAGAGCGCTGTGTGCCTCTGGCCTTCCTGGCATGGGAAAGAGGTCAGCTACCTGTGTTCGGTCAA

CAAGATGTCCAGCGCTTAGTTTGGTCTCACCTGGATGCTCCTTTCTCCTCTAGAGATGGAAAACTGT

TGTCCTGAAAGCGTCACCAAACAAAACCTGTGGAAAGGTAATGGGGGGACCCACGAGCAAGAGCTG

ACAGAAAAATGACCACGggccgggtgcagtggctcacgcctgtaatcccagcactttgggaggccaaggcgggcggatcatctgagttc

aggggttcgagaccaacctggccaacatggtgaaacctcgtccctactaaaaatacaaaaaaaattagccgggcgtggtggcaggtgcctgtagt

cccagctactagggaggctgaggcaggggaatggcgtgaacccgggaggcggagcttgcagtgagctgagatggtgccactgcactccagcctg

ggcgacagagcaagactccatctcaaaaaaaaaaaaaaGTGCAAAATGATCACGAAGGCCAAGCTGGGCCTTGGTG

TCTGCGAATTCCCTGCAGTAGGTCCCTCCTGCTGCCCCGTCCAGGCGCCCACAGGATGCTCCACAT

GACTCTTTACCTTTATGATTTTCTTACCTCCAGGAAAGAACAGGGTCAGCTCGTCCACCCAGAGCTG

GAGGGACTGTTGGGGGACCACGCCACTTCCCCACGGTATCCGCATTATTATGGCGTGGCCCAGGCT

TTGGCCTGGGGCCATGAACAGACTTTCAGCTTCTAGAAGCAAGTGGTCACAGGGCCTCCGTGACCC

TCGGAGACAGCGCCACAGCGTCGGTTGCCTACTCCTTGCTGGACAAGGCTGGCTCTGCTTGGGAAT

GCAGAAACCCTGAGTCCTTGTCCTGGGCCCCACAGTGTCTGAGCATCGAAGGTCCCTGCTCTGGGA

CGAGTCACCCCACAGACACCCCACATTCGGGAATCAAGTCTTGAGGAATCAGAAGCAGAGATTCAC

ACTGTGGCAAAGAGGGGAGCGGAGGTATCCCCGTTTTCCTTTGCAGAGAGCTACACCAACTGCCCT

CTTCGTCTTTACAACCCTACTTGGGGTCCCTTTCCCTCCTCGCTTGTGCCTGTGAGTTCCAAGAGGT

GGAACTGGGGTGAGCAGAGCCCCCAGGTCTCCAGGAGCAGCTCCACCTCCTCACAGGTTACAGTC

GCTTCCTCCTACCGAGGTTCTGCCTTCAACCCACTGCCCATGCCAGCTCCCTCAGGCCAGTCTCCC

AGACTGTCCCTGGCTCCCTGCACCCTGGCTCCAGCTCCCTGCCCTGGAAAGAAGAAGTCCACCATC

TGGTGAGGGTCTGCCACGCATCTGGGGTCTGCCATGCGTCTGCACTGAGGTTCTGCCACGAGTCTG

CACTGAGGTTCTGCCATGCGTCTGGAGTCTGCCACGCGTCTGGGGTCTGCCACGCGTCTGGAGTCT

GCCATGGGTCTGGGGTCTGCCATGTGTCTGGGATCTGCCGTGCGTCTGGGGTCTGCCACGCATCT

GCACTGAGGTTCTGCCACGCGTCTGGGGTCTGCCACGCGTCTGGGGTCTGCCACGCGTCTGGGGT

CTGCCACGCGCCTGCACTGAGCAGATATTCCAAGCACACCACCCCTTTCCAAAAGACGGCATACAG

TGCATTTCTGTTCCTGCCCCTCACCCACATGGTTCCCCGCTTCCCAATTCCTTGGGGTCTGCTTAAG

TCTCACTCTCTTTCCCCCATTCATACAGCCCCAAGGTCGCTCCCTCTGGGGCCCTTTCTTCCCCATT

CTTCCCAGCAGCCCAAAGCTCTGGTGGGACAGGGGCAGCCCCTGGGGAGGGAGGAGAGGACCCA

GGAACCCGGCTAGGAGGGTGGCCCACCCATTTCCAGTGTGACCTGTTCCCATTCCCCCATGTCTCC

TCCCATCCCTCCCGCCACTCAGCTCAGGCTGATGAGAAGCAGAGCAACGGGTGTATCGGTGTTTTC

TTTCCTGGTGGGGTAGTGGGGTGGGGCTGAGGAGAGAAAAGGGTGATTAGCGTGGGGCCCCGCCC

TCTTTTGTCCTCTTCCCAGGTTCCCTGGCCCCTTCGGAGAAACGCACTTGGTTCGGGCCAGCCGCC

TGAGGGGACGGGCTCACGTCTGCTCCTCACACTGCAGCTGCTGGGCCGTGGAGCTTCCCCAGGGA

GCCAGGGGGACTTTTGCCGCAGCCATG
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1. Cell Culture 

CD18/HPAF was a metastatic clone derived from the HPAF PDAC cell line [1]. T3M4 

was derived from lymph node metastasis of a tumor in the exocrine pancreas [2]. Other PDAC 

cell lines, Capan1, BXPC3, Panc1, AsPc1, and MiaPaCa, were cultured in DMEM containing 

10% fetal bovine serum supplemented with 100 µg/ml penicillin and streptomycin. Colorectal 

cancer cell lines HCT-8, LS180, HCT15, SW480, CaCo2 and HCT116 were maintained in 10% 

fetal bovine serum containing α-MEM supplemented with 100 µg/ml penicillin and streptomycin. 

Cells transfected with lentiviral constructs were maintained in 5 µg/ml Puromycin as a selection 

agent. The L Wnt­3A cells were a gift from Dr. Jing (aka. Jenny) Wang at the University of 

Nebraska Medical Center (UNMC). Wnt-3A conditioned medium was collected as stipulated by 

American Type Culture Collection (ATCC). All cells were maintained at 37ºC with 5% CO2 in a 

humidified atmosphere.  

2. Lentiviral and Retroviral Transfection 

The lentiviral plasmids used included the following: pLKO.1.sh.beta-catenin.2279 

(Addgene plasmid #19762), pLKO.1.sh.beta-catenin.1248 (Addgene plasmid #19761), pLKO.1 

shSCR (Addgene plasmid #17920), and packaging plasmid pCMV-dR8.2 dvpr and envelope 

plasmid pCMV-VSVG, which were a kind gift from Dr. Yuzuru Shiio (University of Tennessee 

Health Science Center). The Lenti-X-293T cell line #632180 (Clontech; Mountain View, CA, 

USA) was used for transfection, and the Lenti-X™ Concentrators #631231 and #631232 from 

Clontech were used to concentrate the lentiviral supernatant. Briefly, 2 X 106 cells were plated in 

10 cm plates, and transfection using a calcium phosphate precipitate method with 20 µg transfer 

vector, 15 µg packaging plasmid, and 6 µg envelope plasmid was performed the next day. 

Concentration of the supernatant collected after 48 hours was done per manufacturer’s 

instructions (Clontech). Following concentration, lentiviral supernatant was used to transfect 2X 
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105 cells plated per well of a 12-well plate. Puromycin (5 µg/ml) was used to select for positive 

clones.  

For generation of the HCT-8 Scr and shMUC4 cell lines, a MUC4 targeting 

oligonucleotide was cloned into the pSUPER.retro.puro vector using the HindIII and BglII 

restriction sites. Phoenix cells were transfected with Scr control and MUC4 targeting 

oligonucleotide, and the supernatant was collected 48 and 72 hours after transfection. This 

supernatant was used to infect the target, i.e., HCT-8 cells. Following selection with Puromycin, 

stably selected pooled populations were maintained in 5µg/ml Puromycin.  

3. Tissues specimens and Immunohistochemistry 

The UNMC Rapid Autopsy Program was used to obtain tissue microarrays (TMA) 

containing primary PDAC tissue specimens (IRB-091-01) and normal pancreas, kidney, and 

colon tissue spots as controls (n = 30, 25 PC spots). TMAs containing metastatic spots (n = 26; 25 

liver metastatic spots, 1 lung metastatic spot) with normal pancreas, colon, and kidney tissues as 

controls were also used (IRB-091-01). Prior consent was obtained from all participants in the 

Rapid Autopsy Program, and the UNMC Institutional Review Board (IRB) approved this study. 

The following antibodies were used: anti-β-catenin #610154, (BD Biosciences; San Jose, CA, 

USA) anti-MUC4 monoclonal antibody clone 8G7 (developed in our lab). The protocols used for 

immunohistochemical (IHC) detection of β-catenin and MUC4 have been described previously 

[3, 4]. The tissue microarrays (TMAs) were evaluated by a UNMC pathologist and were given a 

composite score ranging from 0 – 12, which was a product of the intensity of staining (range 1 – 

3) and number of cells stained (range 1 – 4; 0 - 25% area stained = score of 1, 26 - 50% = score 2, 

51 - 75% = score 3, and 76 - 100% = score 4). 

Tissues from ApcMin mice treated with dextran sodium sulfate (DSS) tissues and mice 

treated with DSS alone were a kind gift from Dr. Punita Dhawan, UNMC. Tissues were evaluated 

by a UNMC pathologist and composite score for immunohistochemical staining in mouse tissue 
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was calculated by estimating the number of positively stained cells per hundred cells and 

multiplying this number by the intensity of staining, which was given a range from 1-3. Pictures 

were taken using a Nikon Eclipse E400 light microscope (Kawasaki, Japan). For staining of 

mouse tissue, the IHC protocol was modified as follows: 5% hydrogen peroxide in methanol 

instead of 3% for human tissue was used to block endogenous peroxide activity and the duration 

of this treatment was extended to 1.5 hours instead of 1 hour. 

4. Transient Transfection and Luciferase Assays  

All transient transfections were performed with Lipofectamine 2000 (Life Technologies; 

Carlsbad, CA, USA). Lysates/RNA/luciferase readings were taken 48 hours post-transfection. 

The pGL4.17 vector was a gift from Dr. Robert Bennett at UNMC. The dominant-negative TCF4 

plasmid pPGS dnTcf-4(deltaN41) was a gift from Eric Fearon (Addgene plasmid #19284) [5]. 

M50 Super 8x TOPFlash and M51 Super 8x FOPFlash (TOPFlash mutant) were gifts from 

Randall Moon (Addgene plasmids # 12456 and # 12457) [6]. The TOPflash vector contains seven 

TCF/LEF-binding sites upstream of a firefly luciferase gene, while the FOPflash vector contains 

seven mutant TCF/LEF sites and was used as a negative control. The pRenilla-CMV luciferase 

vector #E2261 (Promega; Madison, WI, USA) was used as an internal transfection control in all 

luciferase assays, which were performed in triplicate and repeated twice. Briefly, 2 X 105 cells 

were seeded per well in 12 well plates and were transfected the following day. Luciferase 

readings were taken 48 hours later, using the Dual-Glo luciferase assay kit (Promega) as per the 

manufacturer’s instructions.  

5. RNA Isolation and Real-Time PCR Analysis 

RNA was isolated and purified using the QIAGEN RNeasy mini kit (Qiagen; Valenica, 

CA, USA); the RNA concentration was measured using a NanoDrop ND 1000 

Spectrophotometer. The Oligo(dT)12-18 Primer #18418-012 (Life Technologies) and Super 

Script II RNase reverse transcriptase (Invitrogen, Life Technologies) were used to obtain cDNA 
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from 1.5 µg of RNA per cell line. The PCR primers used are enumerated in Table B.1. Real-time 

PCR analysis was performed using the 480 Real-Time PCR System (Roche; Indianapolis, IN, 

USA). A master mix comprised of 2 X Sybr green mix (Life Technologies) with primers and 

nuclease-free water was used to constitute a 10 µl reaction mixture consisting of 1 µl cDNA and 

9 µl of the master mix. 

6. Immunofluorescence 

For IHC with CD18/HPAF, 2 X 105, cells were seeded on coverslips in a 12-well plate 

and processed 48 hours later using a previously described protocol described [7]. The antibodies 

and dilutions used are listed in Supplementary Table A. Images were taken using an LSM 710 

Zeiss Confocal Microscope located at UNMC Advanced Microscopy Core Facility.  

7. Migration and Invasion Assay 

For migration assays, 1.5 X 106 cells were plated in 1.5 ml serum-free DMEM on an 8 

µm pore polyethylene cell culture insert in a 6-well plate (Falcon/VWR #353093; Radnor, PA, 

USA) and Matrigel-coated membrane inserts (BD Biosciences, Bedford, MA) for invasion assay. 

The lower chamber contained 2 ml DMEM supplemented with 10% FBS. The inserts were 

removed 36 hours after seeding. Next, the cells at the top of the chamber were scraped off, and 

the cells that had traversed the membrane were stained with a Diff-Quick cell staining kit (Dade 

Behring Inc.; Westwood, MA, USA). Images of inserts were taken using QCapture (Surrey, BC, 

Canada) software version 2.0.12 at a 10X magnification. 

8. Cell Proliferation and Colony Formation Assays 

The cell proliferation reagent WST-1 (Roche Life Science, #05015944001; Penzberg, 

Upper Bavaria, Germany) was used to measure the proliferative rate of 1000 cells/well in a 96-

well plate over three days in DMEM that contained 1% fetal bovine serum. The readings were 

taken as per the manufacturer’s instructions. For the colony formation assay, 1,000 cells were 
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seeded per well in a 6-well plate in triplicate. The cells were maintained in 10% DMEM and 

allowed to form colonies for 21 days. Cells were then fixed with 100% methanol, stained with 

0.4% crystal violet in methanol, and colonies were manually counted. 

9. Scratch assay 

For the scratch assay, 1 X 106 cells were seeded in triplicate in a 6 well plate such that 

they were 100% confluent and 24 hours subsequent to seeding; two scratches perpendicular to 

each other were made with a sterile 200 µl pipette tip. Photographs of the scratch were taken after 

washing twice with PBS 24 and 48 hours after seeding. 

10. Western Blot Analysis 

Western blot analysis was performed as previously described [7]. Briefly, 1.5-2 X 106 

cells were seeded in a 10 cm plate, and lysates/RNAs were extracted 48 hours later, such that 

cells were 70 - 80% confluent. After a freeze-thaw cycle, lysates were thawed and syringe-passed 

through a 215/8 gauge needle. Next, cells were quantified using Bio-Rad protein assay kit 

(Hercules, CA, USA). A 10% SDS-PAGE gel was used to resolve 20 - 40 µg of whole cell 

lysates for all proteins described, except MUC4, which was resolved on a 2%-agarose gel owing 

to its high molecular weight. The proteins were transferred onto a polyvinylidene difluoride 

membrane (Millipore; Billerica, MA, USA) and probed with primary antibodies overnight at 4ºC. 

The antibodies used and their respective dilutions are described in Supplementary Table A. 

11. Quantitative ChIP assay 

A total of 2 X 107 cells per cell line were used for the chromatin immunoprecipitation 

(IP), which was performed as described previously [8]. The 1% formaldehyde cross-linked 

chromatin was isolated and sheared into 500-1000 bp fragments by sonication (Bioruptor UCD-

200, Diagenode; New York, NY, USA). Prior to IP, 1% of the sonicated DNA was taken as input. 

The concentrations of antibodies used for overnight incubation at 4ºC were as follows: 2.5 µg of 
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anti-β-catenin #610154 (BD Biosciences), -, 2 µg of IgG (negative control). Primers for TCF/LEF 

included Site #1, #2, and #3 on the MUC4 promoter; the TCF/LEF site on the c-myc promoter 

(positive control) and primers for the promoter of an unrelated gene (negative control) were also 

used (Supplementary Table B.2.). Immunoprecipitated qPCR Ct (cycle threshold) values were 

normalized to input Ct values, and all data are represented as a percentage of input. 

12. Generation of Constructs 

For the 4ACAT construct, the β-catenin transcript was amplified using the appropriate 

primers (Table B.3) from the cDNA of a PDAC cell line, T3M4 that expressed the wild-type 

transcript. The amplicon was cloned into a p3XFLAG-CMV10 vector (Sigma-Aldrich; St. Louis, 

MO) digested with the Not1 enzyme (New England Biolabs; Ipswich, MA). Point mutations were 

introduced at Ser33, Ser37, Thr41, Ser45, which were mutated to alanine using appropriate 

primers (Table B.3). The MUC4-promoter fragment was generated from genomic DNA 

(CD18/HPAF cell line) using primers that incorporated the HindIII and KpnI restriction sites 

(Table B.3). The amplicon was cloned into a pGL4.17 vector digested with HindIII and KpnI 

(New England Biolabs). The p3778 construct encompasses the entire MUC4 promoter (proximal 

and distal promoter); the p3000 construct encompasses two TCF/LEF sites (proximal promoter 

and part of distal promoter), and the p2700 construct encompasses one TCF/LEF site (primarily 

proximal promoter). Primers used to generate these constructs are enumerated in Table B.3. 

Mutations at the TCF/LEF sites were introduced using primers enumerated in Table B.2. The 

instructions from the QuikChange® Site-Directed Mutagenesis Kit (Agilent Technologies; Santa 

Clara, CA) were used for primer design. Platinum® Taq DNA Polymerase High Fidelity Assay 

(Life Technologies) was used for all site-directed mutagenesis PCR reactions. Luciferase 

experiments were performed in triplicate and repeated a minimum of three times. Figure 4 B, C 

represent the average of a minimum of three attempts.  
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13. Promoter Analysis 

Promoter analysis was performed using the MatInspector program (Genomatix GmbH; 

Munich, Bavaria, Germany). A matrix similarity score of > 0.85 was used to screen transcription 

factor binding sites. 

14. Tumorigenicity Assay 

For the tumorigenicity assay, sub-confluent cultures of CD18/HPAF Scr/sh-β-catenin 

cells were trypsinized and then counted using the Countess™ Automated Cell Counter (Life 

Technologies) after their viability had been ascertained (>95%). Next, 0.25 X 106 cells/50 µl PBS 

were orthotopically implanted in the head of the pancreas of 14 female athymic nude mice 

obtained from Harlan Sprague Dawley in Indianapolis, IN (7 per group). Mice were observed for 

five weeks, and were subsequently sacrificed and weighed. The animals were treated in 

accordance with guidelines from the UNMC Institutional Animal Care and Use Committee 

(IACUC). The primary tumors were excised and weighed. Tumor metastases sites were counted 

and dissected after a thorough physical examination. Both primary tumors and metastases were 

kept in 10% formalin for 48 hours, after which they were embedded in paraffin blocks that were 

sectioned into 0.5 micron-thick sections.  

15. Gamma Secretase Inhibitor treatment 

Cells were seeded at 50-60% confluency, i.e., 4X 105 cells per well in a 6 well plate 24 hours 

prior to treatment. The gamma secretase inhibitor dibenzazepine (DBZ) was purchased from 

EMD Milipore (CAS 209984-56-5 , catalog # 565789). DBZ was diluted in DMSO and treatment 

concentration was 500nM. Control cells were treated with an equal volume of DMSO. 

16. Statistical Analysis 

All data were analyzed using two-tailed T test with unequal variance.   
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Table A 

Antibody Supplier Catalog no.  WB dilution  

β-catenin Sigma-Aldrich C2206 1:4000 

β-catenin BD Biosciences 610154 1:1000 

MUC4(8G7) Generated in our lab  Clone 8G7 1:1000 

MUC4(2214) Generated in our lab Clone 2214  

pSer9GSK3β Cell Signaling 9336S 1:2000 

GSK3β Santa Cruz 9166 1:2000 

N-cadherin Dr. Keith R. Johnson, 

UNMC  

- 1:500 

E-cadherin  Dr. Keith R. Johnson, 

UNMC  

- 1:500 

Vimentin  Abcam  ab8978 1:1000 

pY1248HER2 Cell Signaling  2247 1:1000 

HER2 Cell Signaling 29D8 1:1000 

pERK1/2 Cell Signaling 9101 1:1000 

Total ERK1/2 Cell Signaling 9102 1:1000 

Zo-1  Cell Signaling 5406 1:1000 

β-actin  Sigma Aldrich  A5316 1:10,000 

CD44 (8E2) Cell Signaling  5640 1:1000 

TCF4 EMD Millipore  17-10109 1:1000 

c-Myc Abcam ab32072 1:2000 

Cyclin D1 Santa Cruz sc-753 1:500 

FLAG Cell Signaling  8146 1:1000 

Hes1 Santa Cruz. Gift; Dr. 

Punita Dhawan, 

UNMC 

sc-25392 1:800 

Snail  Cell Signaling 3879 1:1000 
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Table B.1. Real-time PCR/RTPCR primers 

Primer  Forward primer (5’-3’) Reverse primer (5’-3’) 

β-catenin 

MUC4 

β-actin  

N-cadherin 

Vimentin  

TCF1 

TCF4 

LEF1 

TCF3 

Hath1 

CCTGGTGAAAATGCTTGGTTCAC 

GACTTGGAGCTCTTTGAGAATGG 

TGGACATCCGCAAAGACCTG 

CCTGATATATGCCCAAGACAAAGAGA 

GCAGCTCAAGGGCCAAGGCA 

CATCAGCCAGAAGCAAGTTCACAGGC 

GGAAGAAGCGGCCAAGAGGCAAGATG 

CCATCCCGAGAACATCAAATAAAGTGC 

GAGAATGAACCAGCCGCAGA 

CGAGAGAGCATCCCGTCTAC 

GAAGGCAGTCTGTCGTAATAGCC 

TGCAATGGCAGACCACAGTCC 

CCGATCCACACGGAGTACTT 

CACTGTGCTTACTGAATTGTCTTGGGA 

CCTGCAATTTCTCCCGGAGGCG 

CAGAACCTAGCATCAAGGATGGGTG 

GGACTGAAAATGGAGGGTTCG 

GGACATGCCTTGTTTGGAGTTGACATC 

CGGTCCTCAAGACCTGAACC 

TCCGGGGAATGTAGCAAATA 
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Table B.2. Quantitative PCR primers for ChIP assay  

Primer  Forward primer (5’-3’) Reverse Primer (5’-3’) 

TCF site 1 

TCF site 2 

TCF site 3 

TCF-c-Myc  

Negative 

control  

GAGGGGAGCTGGAAAGCAGAAGGGAAAC 

CAGACTTAATAAACATCCAGCTTCCTG 

TGGAGCCTCAGCGTGCTCACTTGA 

CCCAAAAAAAGGCACGGAA 

TGAACTGTGGTGGAGAGTGC 

GAATTTCCAGGCCCAGGTCTTTC 

CATTTATGCCTCGTGCTGTGAAT 

CAGCATGAAGCCGGTCACTAGAGT 

TATTGGAAATGCGGTCATGC 

AGGAAGGGCTAGGACGAGAG 
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Table B.3. Cloning primers  

Primer Forward primer (5’-3’) Reverse primer (5’-3’) 

CMV10-bCat-

NOT1 

 

GTTATAGCGGCCGCGGCTACTCAAGC

TGATTTGATGGAGTTG 

GTTATGCGGCCGCTTACAGGTCAGT

ATCAAACCAGGCCAG 

S45A CACTACCACAGCTCCTGCTCTGAGTGG

TAAAGG 

CCTTTACCACTCAGAGCAGGAGCTG

TGGTAGTG 

S33A AACAGTCTTACCTGGACGCTGGAATC

CATTCTGGT 

ACCAGAATGGATTCCAGCGTCCAG

GTAAGACTGTT 

S37A 

 

CTGGACGCTGGAATCCATGCTGGTGC

CAC 

GTGGCACCAGCATGGATTCCAGCG

TCCAG- 

T41A GGAATCCATGCTGGTGCCACTGCCAC

AGCTCCT 

AGGAGCTGTGGCAGTGGCACCAGC

ATGGATTCC 

MUC4_3788_Kp

nI FP 

GTTATAGGTACCGACTGCCTGTTGGCG

GAGTCTTGTGGGGTGGAAATGG 

 

MUC4_3788_Hi

ndIII_RP 

 

  

GTTATAAGCTTGAACCAAGTGCGTT

TCTCCGAAGGGGCCAGGGAACCTG 

MUC4_2743_Kp

nI_FP 

GTTATATGGTACCGAGGTGAACAGGA

GTGCGCACGCCCAGTTCTCCAGG 

 

pGL4.17_del308

7_FP 

CTCAATATGCCCATTTTGGTACCGGCC

AGTTAGG 

CTAACTGGCCGGTACCCTGGGTCAC

TGACTAG 

TCFMUT1 

 

TCTCACGCTCCTAATCAGGATCCTATA

AGACGTGCGAGGGACGCAGGAAAGA

CCTGGGCCTGGAAAT 

ATTTCCAGGCCCAGGTCTTTCCTGC

GTCCCTCGCACGTCTTATAGGATCC

TGATTAGGAGCGTGAGA 

TCFMUT2 

 

GAGATCAGCCTAGTTGTCCTAAGTCTG

ACAAGGCCACGCTTTATTCACAGCAC

GAGGCATAAATGATATA 

TATATCATTTATGCCTCGTGCTGTG

AATAAAGCGTGGCCTTGTCAGACTT

AGGACAACTAGGCTGATCTC 

TCFMUT3 

 

GCTCACTTGAGAGGTAGGGCAGCGAC

CCAGGCTTCACAGGGCCATGGGGACA

GGC 

GCCTGTCCCCATGGCCCTGTGAAGC

CTGGGTCGCTGCCCTACCTCTCAAG

TGAGC 
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Table B.4. Genotyping primers 

Primer  Forward primer (5’-3’) Reverse Primer (5’-3’) 

APCflox/flox 

Cdx2-Cre 

KrasG12D 

Muc4 KO  

Muc4 WT allele 

gag aaa ccc tgt ctc gaa aaa a 

gcg gtc tgg cag taa aaa cta tc 

gca ggt cga ggg acc taa ta 

atcagtaaattggtgtgtacttgtgtgcag 

atcagtaaattggtgtgtacttgtgtgcag 

agt gct gtt tct atg agt caa c 

gtg aaa cag cat tgc tgt cac tt 

ctg cat agt acg cta tac cct gt 

ctgtcagaagatgttgatgaggtcgatgct 

gtttccttgaaggactccaatagggtaccc 
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CHAPTER 3 

The β-catenin/TCF-mediated regulation of MUC4 in 

pancreatic ductal adenocarcinoma 

The material of this chapter is the subject of 1 research article. 

1. Pai P, Rachagani S, Lakshmanan I, Macha MA, Sheinin Y, Smith LM, Ponnusamy MP, Batra 

SK The Canonical Wnt Pathway Regulates the Metastasis-Promoting Mucin MUC4 in 

Pancreatic Ductal Adenocarcinoma, Molecular Oncology (In press)  
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1. Synopsis  

Aberrant Wnt signaling frequently occurs in pancreatic cancer (PC) and contributes to 

disease progression/metastases. Likewise, the transmembrane-mucin MUC4 is expressed de novo 

in early pancreatic intraepithelial neoplasia (PanINs) and incrementally increases with PC 

progression, contributing to metastasis. To determine the mechanism of MUC4 upregulation in 

PC, we examined factors deregulated in early PC progression, such as Wnt/β-catenin signaling. 

MUC4 promoter analysis revealed the presence of three putative TCF/LEF-binding sites, leading 

us to hypothesize that MUC4 can be regulated by β-catenin. Immunohistochemical (IHC) analysis 

of rapid autopsy PC tissues showed a correlation between MUC4 and cytosolic/nuclear β-catenin 

expression. Knock down (KD) of β-catenin in CD18/HPAF and T3M4 cell lines resulted in 

decreased MUC4 transcript and protein. Three MUC4 promoter luciferase constructs, p3778, 

p3000, and p2700, were generated. The construct p3778, encompassing the entire MUC4 

promoter, elicited increased luciferase activity in the presence of stabilized β-catenin. Mutation of 

the TCF/LEF site closest to the transcription start site (i.e., -2629/-2612) and furthest from the 

start site (i.e., -3425/-3408) reduced MUC4 promoter luciferase activity. Transfection with 

dominant negative TCF4 decreased MUC4 transcript and protein levels. Chromatin 

immunoprecipitation confirmed enrichment of β-catenin on -2629/-2612 and -3425/-3408 of the 

MUC4 promoter in CD18/HPAF. Functionally, CD18/HPAF and T3M4 β-catenin KD cells 

showed decreased migration and decreased Vimentin, N-cadherin, and pERK1/2 expression. 

Tumorigenicity studies in athymic nude mice showed CD18/HPAF β-catenin KD cells 

significantly reduced primary tumor sizes and metastases compared to scrambled control cells. 

We show for the first time that β-catenin directly governs MUC4 in PC. 
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2. Background and rationale 

Pancreatic cancer (PC) is a highly lethal disease with a rather dismal prognosis, showing 

a five-year survival rate of only 7.2% (SEER Stat Fact Sheet, 2005 - 2011). While numerous 

studies have focused on the genetic abnormalities that underpin this disease, much remains 

unknown regarding this complex, intractable malignancy that unfortunately often only manifests 

symptoms in patients at advanced, metastatic stages [1, 2]. Most prominent among the mutations 

driving PC is the Kras oncogene, which is mutated into a constitutively active form (KrasG12D) in 

around 90% of PC patients [3]. In addition to mutations in Kras, the Wnt signaling pathway has 

been described as one of the 12 pathways most commonly deregulated in pancreatic ductal 

adenocarcinoma (PDAC), which is the most prevalent type of pancreatic neoplasms [4].  

A central mediator of the canonical Wnt pathway is β-catenin, a molecule that plays an 

important role in both cell adhesion and signaling. There are two distinct pools of β-catenin - one 

cytosolic and the other membranous [5]. The membranous fraction participates in cell adhesion 

through interactions with E-cadherin, while the cytosolic fraction is ordinarily degraded by a 

destruction complex, which is comprised of Adenomatous polyposis coli (APC), Glycogen 

Synthase Kinase β, Axin1, and Casein Kinase1 [5]. In the presence of a Wnt ligand, which binds 

the Frizzled/LRP receptor, this complex is abolished and β-catenin is released, whereupon β-

catenin enters the nucleus and upregulates a host of tissue-specific target genes, typically 

partnering with the TCF/LEF family of transcription factors [5]. Wnt ligands can also activate the 

non-canonical pathway, which is independent of β-catenin [5]. While mutations in this pathway 

are rare in PDAC, a spate of recent studies demonstrates the importance of both the canonical and 

non–canonical pathways in PDAC [6-10]. Specifically, the gene expression signature of the 

Wnt/β-catenin pathway as well as aberrant β-catenin localization are implicated in conferring a 

poorer prognosis in patients [11], as well as promoting PC metastases [9].  
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Aberrant cytosolic and nuclear localization of β-catenin occurs early on in PDAC and 

steadily increases with disease progression, starting from the earliest stage of pancreatic 

intraepithelial neoplasia 1 (PanIN-1) [7]. Sustained low-grade activation of the canonical Wnt 

pathway is essential for PDAC progression, subsequent to the Kras mutation, in a mouse model 

of PDAC [12]. Further, the Wnt/ β-catenin pathway is active in most PDAC cell lines and confers 

increased proliferative and anti-apoptotic properties to PDAC cells [8].  

MUC4 is a transmembrane mucin that is absent in the normal pancreas but incrementally 

increases as PDAC advances, with expression commencing at the PanIN-1 stage [13-15]. 

Importantly, our lab has shown the importance of MUC4 in the invasion and metastases of PDAC 

[16-19]. A 2008 study by Chaturvedi et al. proposed that the epidermal growth factor (EGF) 

domains of MUC4 act as ligands for HER2, thereby triggering an intracellular cascade of 

signaling events involving the MAPK and AKT pathways [20]. Other studies have shown that 

knock down (KD) of MUC4 is sufficient to induce a decrease in mesenchymal markers, such as 

Vimentin, and increase in epithelial markers, such as E-cadherin, in PDAC cell lines [21, 22]. 

These alterations in epithelial and mesenchymal markers suggest that MUC4 expression alone 

induces epithelial-mesenchymal transition (EMT) in PDAC. Notably, MUC4 expression is also a 

marker for poor prognosis in PDAC [23]. 

The de novo expression of MUC4 in PDAC has been attributed to factors such as 

nicotine, retinoic acid, interferon-γ, CFTR, TGF-β, and several miRNAs including miR-200c, 

miR-219-1-3p, m-iR-150 [24-31]. The de novo expression of MUC4 has been further attributed to 

the transcription factor NCOA3 [32] as well as epigenetic mechanisms like hypomethylation and 

histone acetylation [33].  

The MUC4 promoter is well characterized; it is around 3.7 kb long [34], and its TATA 

box is located at -2672/-2668 [34]. The MUC4 proximal promoter contains two highly 

transcriptionally active regions; -219/-1 and -2781/-2572 [34]. Interestingly, MUC4 has been 
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hypothesized to aid in the nuclear localization of β-catenin in PDAC by inducing dissociation of 

β-catenin from E-cadherin via HER2/Src signaling [21].  

The objective of this study was to examine the nature and functional implications of the 

β-catenin-MUC4 relationship and the effect of this relationship on PDAC metastasis. For this 

purpose, the study herein involved MUC4 promoter analysis, which showed the presence of three 

putative TCF/LEF sites. This finding implies that MUC4 is a putative transcriptional target of the 

Wnt/β-catenin pathway in PDAC. Another piece of evidence suggesting a β-catenin-MUC4 

relationship was the observation that when β-catenin was depleted using a pancreas-specific Cre 

in the KPC (PDX-1-Cre, LSL-KrasG12D, LSL-Trp53R172H/-) mouse model, β-catenin-negative cells 

showed significantly reduced mucin expression, as measured by alcian blue staining [12]. 

Another recent study by Olsen et al. showed genetically ablated β-catenin by zinc finger 

nucleases in the PDAC cell line BXPC3 [35]. A subsequent microarray showed that MUC4 was 

one of the most significantly downregulated genes in PDAC [35], giving further impetus to our 

hypothesis that Wnt/β-catenin pathway colludes with transcription factors including retinoic acid, 

interferon-γ, and NCOA3 to precipitate MUC4 expression in PDAC. 

3. Results 

A. Nuclear/cytosolic β-catenin was associated with MUC4 expression in PDAC 

Western blot analysis was used to screen panels of PDAC cell lines for expressions of 

MUC4 and β-catenin (Figure 1A). MUC4 was shown to be expressed in all β-catenin-expressing 

cell lines (i.e., BXPC3, Capan1, CD18/HPAF, T3M4) but was absent in β-catenin-non-expressing 

cell lines (i.e., MiaPaCa, Panc1), with the exception of AsPc1. Next, IHC was performed on a 

PDAC TMA, and it was found that both MUC4 and cytosolic/nuclear β-catenin, which is a 

hallmark of active Wnt/β-catenin signaling [36], were present in 80% of the PDAC tissue spots 

examined (n = 25, mean composite score for MUC4= 3.52 [21/25] and for β-catenin = 7.92 
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[24/25]) (Figure 1B). Further, tissue immunofluorescence of human PDAC showed that MUC4 

was expressed in cells that expressed nuclear/cytosolic β-catenin (Figure 1C).  

B. Wnt/β-catenin regulated MUC4 expression in PDAC 

Two lentiviral shRNAs that targeted β-catenin were used to stably KD expression of β-

catenin in PDAC cell lines T3M4 and CD18/HPAF. It was found that upon the KD of β-catenin, 

expressions of MUC4 transcripts and proteins were reduced in comparison to the scrambled 

control-transfected cells in both cell lines (Figure 2A, Supplementary Figure 1B). Confocal 

microscopy was used to confirm the decrease in MUC4 expression in CD18/HPAF and T3M4 

cell lines (Figure 2B, Supplementary Figure 1C). For further confirmation, Lithium Chloride 

(LiCl) was used; LiCl inhibits the GSK3-β enzyme [37] and potentiates increased nuclear β-

catenin due to the prevention of its N-terminal phosphorylation-mediated degradation [37]. Next, 

20 mM and 50 mM LiCl treatment was performed for 48 hours in CD18/HPAF, resulting in 

increased MUC4 expression in a dose-dependent manner (Figure 2C). These findings are 

concurrent with the increase in the inhibitory expression of pSer9GSK3-β. In order to employ a 

more specific inducer of Wnt/β-catenin signaling, CD18/HPAF cells were treated with Wnt-3A 

conditioned medium. Compared to untreated control cells, increasing doses of Wnt-3A 

conditioned medium resulted in increased MUC4 protein expression (Figure 2D). The level of c-

Myc, which is a Wnt/β-catenin target gene in PDAC [38], was used as a positive control. 

C. β-catenin directly regulated MUC4 transcript expression 

In light of observations for a correlation between aberrant β-catenin and MUC4 

expression in PDAC, and the decrease in MUC4 protein and RNA levels upon β-catenin KD, it 

was next determined whether β-catenin can directly regulate MUC4 transcription. MUC4-

promoter analysis by the Matinspector program (genomatix.de) revealed the presence of three 

putative TCF/LEF sites at the following positions: -3408 (Site #3), -3226 (Site #2), and -2612 

(Site #1), with matrix similarity scores of 0.91, 0.84, and 0.907, respectively (Figure 3, Table 1). 
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Next, the following three MUC4 promoter constructs were generated: (i) p3778, which 

encompasses the entire MUC4 promoter and has three TCF/LEF sites, (ii) p3000, which 

encompasses the proximal promoter as well as part of the distal promoter and has two TCF/LEF 

sites, and (iii) p2700, which encompasses the proximal promoter as well as TATA box and has 

one TCF/LEF site (Figure 3). Following the generation of promoter constructs, a stabilized β-

catenin construct, 4ACAT, was generated with four mutations (S33A, S37A, T41A, and S45A) 

that prevent degradation; the TOPflash/FOPflash assay was used to test the efficacy of this 

construct. Notably, CD18/HPAF that was transiently transfected with either 4ACAT or the empty 

vector showed a significantly elevated TOPflash/FOPflash luciferase activity in the 4ACAT cells 

(Figure 4A), indicating that 4ACAT elicits an increased β-catenin/TCF-mediated transcription 

activity. Next, the luciferase activities were compared for all three promoter constructs in the 

presence of 4ACAT and the empty vector. Compared to the other two constructs p3000 and 

p2700, the promoter construct p3778 elicited significantly increased luciferase activity compared 

to the empty vector (Figure 4B). On the other hand, the p2700 construct displayed a higher basal 

level of luciferase activity, but no significant increase in luciferase activity was seen in the 

presence of 4ACAT.  

Following these findings from the luciferase assays for 4ACAT cells, luciferase assays 

were then performed for T3M4 Scr and KD cells. Subsequently, p3778-driven luciferase activity 

was shown to be reduced in the KD cells but not in the T3M4 Scr cells (Supplementary Figure 

2A). Each TCF/LEF site on the p3778 construct was mutated individually as well as in 

combination; the following five different constructs were then generated: MUT1, MUT2, MUT3, 

MUT2,3, and MUT1,2,3, which are enumerated in Table 1. Interestingly, after CD18/HPAF cells 

were transfected with p3778, MUT1, MUT2, and MUT3 in the presence of 4ACAT, it was seen 

that MUT1 elicited significantly reduced luciferase activity in comparison to the un-mutated 

promoter (Figure 4C. Surprisingly, in comparison to p3778, MUT2 elicited an increased 
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luciferase activity, while MUT3 elicited a decreased luciferase activity. Additionally, when all 

three sites were mutated, luciferase activity was diminished compared to p3778, but was 

increased compared to MUT1 and MUT3 (Figure 4C). A similar pattern was observed for T3M4 

(Supplementary Figure 2B).  

Because Site #1 appeared to be critical for MUC4 transcription, another construct was 

generated, MUT2,3, for which Sites #2 and #3 were mutated, but Site #1 was retained. The levels 

of luciferase activity for MUT2,3 were decreased compared to that of p3778, suggesting that Sites 

#2 and/or #3 also play a role in 4ACAT-mediated transcription of MUC4. To confirm if a β-

catenin/TCF complex physically occupies the MUC4 promoter at one or more TCF/LEF sites, 

quantitative Chromatin immunoprecipitation (ChIP) assays were performed in CD18/HPAF Scr 

and CD18/HPAF β-catenin KD cells (Figure 4D). A pull down was performed with a β-catenin 

antibody and IgG as a negative control. Real-time PCR was performed using primers that 

amplified regions containing the TCF/LEF Sites #1, #2, and #3 on the MUC4 promoter. As a 

positive control, the TCF/LEF site on the c-Myc promoter was used, which is a β-catenin target 

gene in PDAC; a non-specific primer pair was used as a negative control. In CD18/HPAF Scr, but 

not CD18/HPAF sh-β-catenin, significant enrichment of β-catenin was seen for TCF Site #1, but 

not for TCF Site #2; further, roughly two-fold enrichment was seen for Site #3 compared to the 

negative control. 

D. β-catenin partnered with TCF4 to regulate MUC4 expression 

Cell lines used in this study (i.e., CD18/HPAF and T3M4) were profiled for the 

expression of TCF/LEF factors. Notably, TCF1, 3, and 4 were found to be abundantly expressed 

in both cell lines (Supplementary Figure 3A.). Because TCF4 is the most significantly over-

expressed TCF/LEF factor in PDAC [39], CD18/HPAF cells were transfected with dominant-

negative TCF4 (i.e., dnTCF4), which lacks an N-terminal β-catenin-binding domain. Decreases in 

MUC4 protein levels and RNA expression were observed upon transfection with dnTCF4 
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(Supplementary Figure 3B), suggesting that TCF4 partners with β-catenin on the MUC4 

promoter. Further, confocal microscopy for HPAF/CD18 cells showed that TCF4 primarily co-

localized with β-catenin in the nucleus (Supplementary Figure 3C). 

E. β-catenin contributed to migratory and mesenchymal properties of PDAC cell lines  

In order to ascertain the functional implications of the β-catenin-MUC4 axis, migration, 

proliferation, and colony formation assays were performed with CD18/HPAF Scr and KD cells. 

Because MUC4 can mediate migration, metastasis, and EMT via HER2/RAF/MEK/ERK 

signaling [21, 22, 40], it was hypothesized for the present study that β-catenin causes EMT partly 

via MUC4 upregulation. It was seen that, while migration was significantly reduced upon β-

catenin KD in both CD18/HPAF and T3M4 cells (Figure 5a, Supplementary Figure 4C), there 

was a non-significant decline in proliferation and colony formation (Supplementary Figure 4B). 

It was further observed that the CD18/HPAF KD cells also assumed a more cobblestone-like 

morphology compared to the dispersed, spindle-shaped Scr cells (Figure 5B).  

Given the change in morphology and the decreased migration upon β-catenin KD, the 

markers of EMT were then analyzed. Notably, in T3M4 KD cells, marked decreases at the protein 

levels were observed for the mesenchymal markers N-cadherin, CD44, and Vimentin, and 

increases were observed at the protein level for epithelial markers E-cadherin and Zo-1. On the 

other hand, CD18/HPAF KD cells showed a decrease in the EMT-regulator Snail and an increase 

in E-cadherin, as well as an increase in the molecular weight of Zo-1 (Figure 5C, 

Supplementary Figure 5A). Further, a significant reduction in phospho-ERK1/2 occurred in the 

KD cells for both cell lines (Figure 5C, Supplementary Figure 5A ); phospho-ERK1/2 is a 

downstream effector of MUC4-HER2 signaling [20]. In contrast, the total ERK levels did not 

significantly decrease in the KD cells for both cell lines. Next, considering that CD18/HPAF cells 

express very low protein levels of N-cadherin and Vimentin, the RNA levels of these 

mesenchymal makers were examined. Interestingly, RNA levels were decreased in the 
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CD18/HPAF KD cells (Figure 5D). In addition, the T3M4 KD cells showed a decrease in 

phospho-HER2.  

Given that the relationship between β–catenin and other transmembrane mucins such as 

MUC1 and MUC16 is well studied, we sought to determine whether β–catenin KD affects other 

mucins in addition to MUC4. In the CD18/HPAF KD cells, a significant decrease was seen in 

MUC16 levels (Supplementary Figure 5B), while no significant difference was seen in T3M4 

KD cells (data not shown). Interestingly, an increase in MUC1 levels occurred in both KD cell 

lines (Supplementary Figure 5B). Overall, these observations suggest that β-catenin contributes 

to an increase in the migratory and mesenchymal properties of PDAC cells as well as alterations 

in mucin levels.  

F. Orthotopic implantation of β-catenin KD cells affected metastases  

In order to examine tumorigenesis and metastases of PDAC, equal amounts of 

HPAF/CD18 Scr and β-catenin KD cells (0.25 x 106 cells / 50µl) were orthotopically implanted 

at the head of the pancreases of seven athymic nude mice, who were monitored for the next five 

weeks. While the Scr group showed high cachexia, mortality, elevated tumor burden, and 

metastases, the β-catenin KD group showed significantly lower tumor burden and reduced 

metastases (Figure 6A and 6C, Supplementary Figure 6A). Sites of metastases were most 

significantly reduced for the diaphragm and peritoneal cavity (Figure 6C). IHC and Western blot 

analysis of tumor lysates from primary tumors confirmed that β-catenin KD was maintained in 

vivo. Further, MUC4, pHER2, and tHER2 levels were also reduced in the KD tumor lysates 

compared to the control cells (Figure 6B, Supplementary Figure 6B).  

In order to ascertain the effect of the β-catenin-MUC4 axis on metastasis in human tissue, 

two metastatic TMAs were analyzed for β-catenin and MUC4 expression (25 spots, liver 

metastasis, UNMC Rapid Autopsy Program). Both aberrant β-catenin and MUC4 were elevated 

in spots corresponding to the same patient (Figure 7). Of the liver metastatic spots examined, 
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40% (10/25) expressed both MUC4 and β-catenin, while MUC4 was expressed in 40% (10/25) of 

the spots (mcs = 5.7). Notably, aberrant β-catenin was universally expressed in all metastatic 

spots.  

4. Discussion 

Both aberrant β-catenin signaling and MUC4 overexpression have been shown to 

contribute to PDAC progression [6, 8, 12, 14, 17]. Mutations in the key components of Wnt 

signaling, β-catenin, and APC are uncommon in PDAC [6]. Despite this, pronounced aberrant β-

catenin signaling has been observed in over 65% of patients with PDAC [6]. Importantly, 

aberrant β-catenin signaling has been attributed to factors such as overexpression of ataxia-

telangiectasia group D complementing gene (ATDC) [41, 42], upregulation of Wnt-7b [9], the c-

met receptor tyrosine kinase [43], and the chemokine receptor CXCR4 [44]. While β-catenin 

signaling does not appear to drive the formation of PDAC, it was shown to be a strong driver of 

metastases and tumor cell invasion in  mice with a Kras-mutant background [12]. Further, 

oncogenic Kras has been shown to induce the expression of the ATDC gene [41], which activates 

β-catenin signaling via stabilization of Dishevelled-2, abolishing the destruction complex. 

Likewise, the ATDC gene was found to induce EMT and metastases via β-catenin in a mouse 

model that expressed both transgenic ATDC and mutant Kras, which was driven by a pancreas-

specific promoter p48-Cre [41]. 

While MUC4 expression incrementally increases from PanIN-1A to PDAC [13], aberrant 

(cytosolic/nuclear) β-catenin first occurs in the PanIN-1 stage, with increasing aberrant 

localization occurring in advanced PanIN lesions and PDAC [7]. Our expression analysis of 

primary PDAC tissues suggests that aberrant β-catenin localization and MUC4 occur in most 

(80%) cases of PDAC. In a 2014 study, Olsen et al. performed a microarray analysis of the 

human PDAC cell line BXPC3, which was completely depleted of β-catenin using zinc-finger 

nucleases. Their analysis showed that β-catenin potentially regulates a wide array of cell adhesion 
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molecules, including integrins, laminins, tight junction proteins, and other members of the 

adherens junction [35]. Interestingly, MUC4 was included in their list of the most significantly 

downregulated transcripts upon depletion of β-catenin, which is a molecule shown to contribute 

to EMT by its ability to act as a ligand for HER2. These observations, as well as the fact that 

PDAC cell lines that express the β-catenin protein also express MUC4, spurred further analyses 

of the MUC4 promoter, which was found to contain three putative TCF/LEF sites.  

The MUC4 promoter has been shown to contain binding sites for numerous transcription 

factors, such as STATs, GATA, Sp1, and GR [34]. Further, the first TATA box is located at 

−2672/−2668 [34]. Our analysis showed that the first putative TCF/LEF site was located just 

proximal to the TATA box, at -2629/-2612, while the other two putative sites were located distal 

to the TATA box, at -3226 and -3408. The TCF/LEF binding site is a conserved sequence in the 

minor groove of DNA, with the consensus sequence being (A/T)(A/T)CAA(A/T)G [45]. Having 

confirmed that β-catenin can regulate MUC4 protein and RNA levels, we generated a construct 

that encompasses the entire MUC4 promoter (p3778), which contains all three TCF/LEF sites. 

We further generated two other constructs (p3000 and p2700) that contain two and one TCF/LEF 

sites, respectively. Promoter luciferase studies with 4ACAT showed that, despite the presence of 

TCF/LEF sites in p2700 and p3000, there was significantly increased MUC4 promoter luciferase 

activity only in the presence of all three sites (i.e., p3778; -3408 [Site #3], -3226 [Site #2], and -

2612 [Site #1]). Our promoter luciferase studies indicated that (i) the MUC4 transcript is directly 

regulated by β-catenin when all three TCF/LEF sites are present, and (ii) the TCF/LEF site 

proximal to the TATA box is critical for β-catenin mediated MUC4 regulation. The latter result 

was surprising given that p2700 construct, which containing only one TCF/LEF site, was unable 

to elicit significantly increased MUC4 promoter luciferase activity in the presence of 4ACAT. 

However, we also observed that MUT3 reduces MUC4 promoter luciferase activity, and that 

some β-catenin/TCF binding also takes place at Site #3, suggesting that Site #3 also regulates 
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MUC4 transcription. Likewise, MUT2 increased MUC4 promoter luciferase activity, suggesting 

that Site #2 ordinarily represses MUC4 transcription. However, we did not observe any 

discernible β-catenin/TCF-binding at Site #2 via ChIP analysis. Thus, it appears that while 

TCF/LEF Site #1 is the most critical for MUC4 transcription, Site #3 is also required for β-

catenin-mediated MUC4 regulation. Further, there appears to be a combinatorial enhancement of 

transcription via Sites #1 and #3. Another factor to be considered is that TCF/LEF Site #1 is in 

extreme proximity to, but does not overlap with, the TATA box. As such, mutating this site may 

also affect numerous other factors that bind in this very active promoter region [34]. However, 

our ChIP results suggest that β-catenin does indeed bind this site. Given that MUC4 transcription 

has been shown to be governed by several other factors, such as STAT1 [16], NCOA3 [32], IFNγ, 

and retinoic acid [26], it is likely that multiple disease-stage specific factors govern MUC4 

expression, and may collude to increase MUC4 expression. 

Functionally, several studies have shown that aberrant β-catenin signaling contributes to 

the migratory and metastatic properties of PDAC cells [8, 41]. Further, it has been suggested that 

β-catenin signaling is epistatic to the MAPK/ERK pathway in PDAC [12], although the precise 

mechanism has not been delineated. Notably, the ERK pathway has been implicated in PDAC 

metastases and invasion [46]. Incidentally, KD of MUC4 in PDAC has been shown to decrease 

pERK1/2 levels [22]. The mesenchymal marker Vimentin has been shown to be a direct target of 

β-catenin/TCF-LEF in breast cancer [47]. The reduction in Vimentin protein and RNA in our KD 

cells suggests that Vimentin may also be a target in PDAC. Furthermore, Zo-1 is considered an 

epithelial marker, but some studies indicate that Zo-1 is overexpressed in PDAC and contributes 

to metastasis [48]. While we saw an increase in Zo-1 levels in T3M4 KD cells, we observed a 

shift to a slightly higher molecular weight Zo-1 in CD18/HPAF KD cells. The occurrence of two 

distinct isoforms of Zo-1 is documented for different cell types [49]. Although we did not 

determine whether there was indeed a shift to a different isoform in the KD cells, in light of the 
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changes in morphology observed in the KD cells, we surmise that this could be a possibility. 

What we did observe CD18/HPAF KD cells was a reduction in the EMT regulator Snail, which 

been shown to repress E-cadherin and MUC1 expression, as well as promote transcription of 

Vimentin [50]. This could be an explanation for the increased levels of MUC1 observed in both 

our KD cell lines. Alternatively, the increase in MUC1 could represent a compensatory 

mechanism for the loss of other transmembrane mucins such as MUC16 (in CD18/HPAF) and 

MUC4. Given that the MUC1-β-catenin interaction is well studied; these interesting observations 

with regard to MUC1 and β–catenin warrant further study. Notably, MUC16 has also been shown 

to interact with β-catenin [51]. However, while we observed a significant reduction in MUC16 

protein expression in the CD18/HPAF KD cells, no significant change was seen in T3M4 KD 

cells. These observations also warrant further studies.  

KD of β-catenin in T3M4 cells resulted in decreased levels of MUC4, accompanied by 

reduced pHER2, suggesting that MUC4/HER2-driven oncogenic signaling was reduced in this 

cell line. While we did not observe a significant difference in pHER2 in the CD18/HPAF KD 

cells in vitro, we observed reduced pHER2 in the tumor lysates from the KD cells that were 

orthotopically implanted. Our earlier studies [52] showed that MUC4 is promiscuous and can also 

partner with other Erbb family members such as HER3 and HER4, whose expression increases as 

a compensatory mechanism when HER2 is knocked down. However, given that the MUC4 levels 

were significantly reduced in both our KD cell lines, the likelihood of any MUC4-HER3/HER4 

coupling is low. 

All the aforementioned studies indicate that β-catenin acts an EMT/metastasis driver in 

the context of a Kras mutation [12, 41]. In addition to up-regulating conventional EMT-related 

genes, such as CD44 [41], it is likely that Vimentin, which has been shown to be a direct target of 

β-catenin signaling in breast cancer [47], and MUC4 represent other genes that are up-regulated 

by β-catenin as part of a larger EMT program. Our tumorigenicity studies showed that both β-
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catenin and MUC4 expression contribute to enhanced tumorigenicity. Specifically, IHC analysis 

of metastatic human tissues showed that β-catenin and MUC4 were expressed in 40% of the liver 

metastatic tissues examined. 

MUC4 is theorized to play an important role in EMT in PC [22] as well as in ovarian [40] 

and breast cancers [53]. For example, MUC4 stabilizes fibroblast growth factor receptor 1 

(FGFR), thereby stabilizing N-cadherin [22]. The N-cadherin and FGFR complex then potentiates 

activation of the AKT and ERK pathways and stabilizes NF-ΚB and AP-1 transcription factors 

[22]. Interestingly, it has also been posited that MUC4 induces nuclear localization of β-catenin 

in PDAC [21], indicating the existence of a possible feed-forward loop.  

In conclusion, our study demonstrates, for the first time, that β-catenin directly regulates 

MUC4 transcription in PC and that MUC4 may exacerbate the β-catenin-induced invasive and 

metastatic phenotypes of PDAC cells by contributing to the upregulation of several EMT 

markers. The findings of this study are summarized in Figure 8. 
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Figure 1. The expression pattern of MUC4 and β-catenin in PC tissue and cell lines. (A) 

Western blot analysis of protein lysates from a panel of PDAC cell lines showed that β-catenin 

(upper panel) was expressed in cell lines that expressed MUC4 (except the AsPc1 cell line). β-

actin was used as a loading control. (B) Immunohistochemistry (IHC) of a tissue microarray 

(TMA) obtained from the UNMC Rapid Autopsy Program (n = 25) showed that both β-catenin 

(average composite score 7.92) and MUC4 (average composite score 3.52) were co-expressed in 

80% of the PDAC spots examined. (C) Tissue immunofluorescence in pancreatic ductal 

adenocarcinoma (PDAC) tissue showed that MUC4 (green) was expressed in cells that also 

expressed nuclear/cytosolic β-catenin (red).  
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Figure 2. MUC4 protein and RNA expression are governed by β-catenin. (A) CD18/HPAF 

and T3M4 pancreatic ductal adenocarcinoma (PDAC) cell lines were transfected with two 

lentiviral shRNAs that targeted β-catenin (shRNA-cat1, shRNA-cat2) or a scrambled sequence in 

the PLKO.1 vector. Further, knock down (KD) of β-catenin resulted in reduced MUC4 protein 

expression. (B) Confocal microscopy analysis was used to analyze MUC4 (green) and β-catenin 

(red) levels in CD18/HPAF Scr and CD18/HPAF shRNA-β-catenin (shRNA-cat) cells. (C) 

Treatment with lithium chloride (LiCl, a GSK3-β inhibitor) at 20 mM and 50 mM concentrations 

was used to induce nuclear β-catenin. Western blot analysis showed a dose-dependent effect on 

MUC4 levels and an increase in phosphorylation of the inhibitory Ser9 residue of GSK3-β, while 

total GSK3-β levels were unaffected. (D) CD18/HPAF cells were treated with increasing amounts 

of Wnt-3A-conditioned medium; levels of c-Myc were used as a positive control.  
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Figure 3. Schematic representation of the MUC4 promoter constructs generated. Three 

MUC4 promoter constructs were generated and cloned into pGL4.7; p3778 encompasses the full 

promoter and incorporates all three putative TCF/LEF sites, p3000 encompasses the proximal 

promoter and part of the distal promoter and two putative TCF/LEF sites, while p2700 

incorporates mainly the proximal promoter and one putative TCF/LEF site.  
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Figure 4. β-catenin directly regulates MUC4 transcription. (A) A stabilized β-catenin 

construct (4ACAT; S33A, S37A, T41A, T45A) elicited increased TOP/FOP luciferase activity in 

comparison to the empty vector control in CD18/HPAF cells. (B) Luciferase activity for MUC4 

promoter fragments p3778, p3000, and p2700 in the presence of 4ACAT compared to the empty 

vector control. Luciferase readings are the average of three or more separate experiments 

performed in triplicate; the standard deviation shown is for three or more separate experiments. 

(C) The p3778 promoter construct with each of the three putative TCF/LEF sites mutated (i.e., -

2612:MUT1, -3226:MUT2, -3408: MUT3) was transfected into CD18/HPAF cells in the 

presence of 4ACAT. The pCMV9-Renilla vector was used as an internal transfection control; all 

luciferase experiments were performed in triplicate and repeated a minimum of three times. 

Images represent the average of at least three experiments, each performed in triplicate. (D) 

Quantitative ChIP assay using β-catenin antibody to pull down sheared chromatin isolated from 

CD18/HPAF Scr and CD18/HPAF sh-cat. Primer pairs specific to the TCF/LEF Sites #1, #2, and 

#3 on the MUC4 promoter were used. Primers amplifying the TCF/LEF site on the c-Myc 

promoter were used as a positive control; an unrelated primer pair was used as a negative control. 

All real-time values were normalized to the 1% input control.   
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Figure 5. Effect of β-catenin on migratory properties/EMT. (A) Knockdown (KD) of β-

catenin in the CD18/HPAF cell line significantly reduced the migration of cells, as measured by a 

trans-well migration assay using 1.5 X 106 cells seeded in uncoated Boyden’s chambers (8 µm 

pore size) in triplicate. Cells were seeded in serum-free medium in the chamber, and 10% fetal 

bovine serum containing DMEM was used as a chemoattractant below the chamber in a 6-well 

plate. Cells were allowed to traverse the membrane for 36 hours, following which the chamber 

was removed, non-migrant cells were scraped off, and cells that traversed the membrane were 

stained. The image on the left is representative of 10 random fields that were analyzed as depicted 

in the image on the right, which quantifies the number of cells per field in CD18/HPAF Scr and 

CD18/HPAF sh-cat. (B) Morphological changes observed in CD18/HPAF sh-cat cells in 

comparison to the Scr vector control transfected cells. (C) Western blot analysis showing that KD 

of β-catenin in T3M4 cells resulted in reduced N-cadherin, E-cadherin, Vimentin, pERK1/2, and 

p HER2 (1248Y), while E-cadherin levels marginally increased; Zo-1 levels also increased. (D) 

Real-time PCR in CD18/HPAF Scr and sh-cat cells showed decreased N-cadherin and Vimentin 

(*p < 0.05).  
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Figure 6. β-catenin KD reduces tumorigenicity/metastasis. (A) Significantly reduced tumor 

weight and increased body weight were observed for β-catenin KD tumors. (B) IHC for β-

catenin, MUC4, and Haematoxylin and Eosin staining for the CD18/HPAF Scr and sh-cat tumors. 

Images were taken at a 20X magnification. (C) Analysis of metastases to various organs (*p = 

0.03, **p = 0.02, ***p = 0.008, ****p = 0.0009). No metastases were detected in organs where 

the white bars are absent in the CD18 sh-cat xenografted mice. The panel on the right shows 

Haematoxylin and Eosin staining for representative metastatic tumors taken from the Scr cohort. 

Dotted line indicates border between tumor and normal tissue. T = tumor, N = normal. Images 

were taken at a 20X magnification.   
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Figure 7. MUC4 and β-catenin are co-expressed in a subset of human metastatic lesions 

Immunohistochemical (IHC) staining for β-catenin (upper panel) and MUC4 (lower panel) in 

serial sections of a liver metastasis taken from the UNMC Rapid Autopsy Program’s tissue 

microarray (TMA) containing metastatic lesions.   
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Figure 8: Schematic representation of the role of β-catenin regulated MUC4 ATDC stabilizes 

Dishevelled 2, thus inhibiting the ‘destruction complex’ comprising GSK3β, Axin2 and APC. 

The β-catenin sequestered in this complex is released, whereupon it enters the nucleus. Our 

findings show that β-catenin/TCF4 up-regulates MUC4 transcription. MUC4 can then partner 

with HER2, triggering an intracellular cascade that culminates in activation of the ERK pathway 

and up-regulation of mesenchymal markers. Also, β-catenin has been shown to independently up-

regulate mesenchymal markers such as Vimentin and CD44, contributing to EMT and metastasis.  
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Supplemental Figure 1. (A) Tissue confocal microscopy image of PDAC tissue showing co-

localization of nuclear β-catenin (red) and MUC4 (green). (B) The qPCR analysis of β-catenin 

and MUC4 RNA levels in CDA8/HPAF and T3M4; *p < 0.0004. (C) Confocal microscopy 

analysis was used to analyze MUC4 (green) and β-catenin (red) levels in T3M4 Scr and KD cells.  
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Supplemental Figure 2 (A) MUC4 promoter luciferase studies with p3778 in T3M4 Scr and KD 

cells. (B) The p3778 promoter construct with each of the three putative TCF/LEF sites mutated 

(i.e., -2612:MUT1, -3226:MUT2, -3408: MUT3) was transfected into T3M4 cells in the presence 

of 4ACAT. The pCMV9-Renilla vector was used as an internal transfection control.  
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Supplemental Figure 3. (A) CD18/HPAF and T3M4 cells were profiled for the expression of the 

TCF/LEF group of transcription factors. Figure shows Real-time PCR results. (B) Transient 

transfection with dominant-negative TCF4 (dnTCF4) in CD18/HPAF cells resulted in decreased 

MUC4 protein and RNA levels compared to the vector control. (C) Confocal microscopy analysis 

was used to analyze TCF4 (green) and β-catenin (red) levels in CD18/HPAF cells.   
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Supplemental Figure 4. (A) The cell proliferation assay (WST-1) showed that CD18/HPAF 

shRNA-cat cells proliferated at a slower rate than Scr control cells. (B) The colony formation 

assays performed for CD18/HPAF Scr and CD18/HPAF shRNA-cat cells showed that the 

CD18/HPAF shRNA-cat cells formed fewer colonies than CD18/HPAF Scr cells. (C) Transwell 

migration assay with T3M4 Scr and KD cells.   



112 

 
  

Supplementary Figure 4  

 

C
D

1
8

 S
c
r

C
D

1
8

 s
h

-c
a

t
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3

O
p

ti
c

a
l 
D

e
n

s
it

y
 (

 4
5
0

 n
m

)

Days

CD 18 SCR

CD18 Sh-cat

0

20

40

60

80

100

120

scr sh

Avg no. of 
colonies 

A B

T3M4 Scr T3M4 sh-catC

10X 10X

0

10

20

30

40

50

60

70

T3M4
Scr

T3M4
sh-cat

A
v
e

ra
g
e

 n
u

m
b

e
r 

o
f 

c
e

ll
s
/f

ie
ld

*



113 

 
Supplemental Figure 5. (A) Western blot analysis of CD18/HPAF Scr and CD18/HPAF 

shRNA-cat cells showing levels of β-catenin, Snail, E-cadherin, Zo-1, pERK1/2, total ERK, and 

β-actin (loading control). (B) Protein expression levels of MUC1 and MUC16 in CD18/HPAF, 

T3M4 Scr, and KD cells.  
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Supplemental Figure 6. (A) Kaplan-Meier curve showing reduced survival of mice injected with 

CD18/HPAF Scr control cells compared to KD cells. (B) Tumor lysates from mice orthotopically 

implanted with CD18/HPAF Scr and KD cells were probed with antibodies for β-catenin, MUC4, 

pHER2, and tHER2.   
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CHAPTER 4 

The β-catenin/TCF-mediated regulation of MUC4 in colorectal 

cancer   
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1. Synopsis 

MUC4 is a transmembrane mucin normally lining the epithelial surface of the colon. While the 

aberrant over-expression of MUC4 in malignancies such as pancreatic, ovarian and breast [1-3] 

cancer has been shown to confer proliferative and metastatic properties to tumor cells, the 

functional role played by MUC4 in colorectal cancer (CRC) has not been extensively studied. 

Moreover, while some studies have reported the loss of MUC4 expression in the majority of 

CRCs [4-6], it is apparent that a subset of CRCs and precursor lesions retain express high MUC4, 

and somewhat paradoxically, MUC4 appears to confer a worse prognosis to these patients [5, 6]. 

A MUC4 promoter analysis performed in our lab showed the presence of three putative TCF/LEF 

sites, implying a possible regulation by the Wnt/β-catenin pathway, a well-established driver of 

CRC progression [6, 7]. Thus, the objective of our study was two pronged: (a) establish the 

functional role of MUC4 in CRC (b) examine the possible regulation of MUC4 in CRC by β-

catenin. To this end, we first transiently and stably knocked down (KD) β-catenin in three CRC 

cell lines; LS180, HCT-8 and HCT116. This resulted in increased MUC4 transcript and protein. 

Overexpression of stabilized β-catenin resulted in a decrease in MUC4 expression. Luciferase 

assays with the MUC4 promoter construct p3778, which encompasses the entire MUC4 promoter, 

showed decreased MUC4 promoter luciferase activity in the presence of β-catenin KD. Mutation 

of all three putative TCF/LEF sites showed that MUC4 promoter luciferase activity is increased 

when all 3 sites are mutated. Further, we show that β-catenin KD can also regulate MUC4 

indirectly via the up-regulation of Hath1, a tumor suppressor in CRC [8]. Functional studies with 

MUC4 KD cells showed significantly reduced proliferation and colony formation but not 

migration and invasion. Taken together, we show that MUC4 expression is repressed by β-catenin 

in CRC. Also, MUC4, when present in either precursor lesions or full blown CRCs may confer a 

proliferative advantage to cells.  
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2. Background and rationale 

  Colorectal cancer (CRC) is the third leading cause of cancer deaths in the United States, 

accounting for 49,700 estimated total deaths in the year 2015 alone. Broadly, CRCs can be 

characterized as having chromosomal instability typified by the loss of heterozygosity of tumor 

suppressor genes, loss of DNA mismatch-repair genes and methylation of a large cohort of genes, 

referred to as CIMP (CpG island methylator phenotype) [9, 10]. This genomic instability can be 

acquired (somatic) or inherited (germline) such as in cases of hereditary nonpolyposis syndrome 

(HNPCC), where individuals possess defects in DNA mismatch repair genes like MLH1 and 

MSH2 [9]. Additionally, CRC is characterized by the mutational inactivation of tumor suppressor 

genes and activation of oncogenes [11]. Most frequently, tumors possess mutations in the 

Adenomatous polyposis coli gene (APC), a tumor suppressor gene that results in the activation of 

the canonical Wnt pathway. An overwhelming majority of CRCs (70-80%) possess APC 

mutations [11]. Here also, certain individuals may possess germline mutations in APC, as seen in 

familial adenomatous polyposis, where virtually all those afflicted develop CRC by age 40 [12]. 

A small subset of patients possess activating mutations in β-catenin, also resulting in the 

activation of the Wnt/β-catenin pathway [11]. Other tumor suppressor genes that are commonly 

lost/mutated include p53 and components of the TGF-β pathway [11]. 

  Oncogenes that are mutated in CRC include KRAS and BRAF [11]. Notably, the CIMP 

phenotype, KRAS and BRAF mutations have been used to distinguish individuals who develop 

precursor lesions called ‘traditional adenomas’ and those that develop serrated adenomas and 

hyperplastic polyps [10]. 

  As mentioned previously, precursor lesions typically follow a polyp-adenoma-carcinoma 

sequence. The degree of nuclear β-catenin progressively increases during CRC progression, as a 

consequence of mutations in APC/ β-catenin [7]. Another feature associated with early CRC 

progression is the presence of dysplastic crypts or aberrant crypt foci (ACF) [13]. These lesions 
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precede the formation of adenomas and are also sometimes associated with mucin depleted foci 

(MDF) [13, 14]. MDFs are characterized by the absence of mucins and were originally identified 

in the colon of rats treated with Azoxymethane and dextran sodium sulfate (carcinogens) [13, 14]. 

  Mucins are high molecular weight glycoproteins and usually line the epithelial surfaces of 

the digestive and reproductive tracts [15]. Mucins can be broadly categorized as follows: (i) 

membrane-bound/trans-membrane mucins, which include MUC1, MUC3A/MUC3B, MUC4, 

MUC11, MUC12, MUC13, MUC15, MUC16, MUC17, and MUC21, (ii) secreted (gel-forming) 

mucins, which include MUC2, MUC5AC, MUC5B, MUC6, and MUC19, and (iii) soluble (non-

gel-forming) mucins, which include MUC7, MUC8, MUC9, and MUC20 [15]. MUC4 ordinarily 

lines the goblet cells and epithelial cells of the normal human small and large intestine. A number 

of studies have suggested that MUC4 expression is generally lost in CRC [4, 16]. However, 

certain other studies suggest that while the majority (around 75%) of CRC tumors have reduced 

or zero MUC4 expression relative to normal tissue, the subset ( around 25%) that have high 

MUC4 expression have a worse prognosis, specifically in the early stages (stage I and II) of the 

disease [5, 6]. Thus, the precise role played by MUC4 in CRC progression is unclear.  

  A number of studies have probed the effect of perturbations in the Wnt pathway on mucins 

in CRC. When a siRNA targeting β-catenin was used in the CRC cell line LS174, the mucin 

staining as measured by alcian blue was decreased [17]. The most abundantly expressed mucin in 

the normal colon, MUC2, is repressed by β-catenin via an indirect mechanism involving Sox9 in 

CRC [18]. The Wnt/ β-catenin pathway also indirectly regulates the level of mucins in CRC, 

notably via regulation of the Notch pathway target, Hath1 [8]. Hath1 (also called Atoh1) is 

suppressed by active Notch signaling [19]. Both the Notch and Wnt pathways have been shown to 

collaborate in CRC progression, in part, by the suppression of Hath1 [19]. Hath1 is a tumor 

suppressor in CRC [8] and has been shown to be reduced in the majority of CRCs. The Wnt/ β-

catenin pathway has been shown to directly reduce Hath1 at the protein as well as the RNA level 
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in CRC [8, 20]. Hath1, in turn, has been shown to regulate MUC2 in CRC [8] and MUC5AC and 

MUC6 in gastric cancer [21]. Importantly, our MUC4 promoter analysis showed the presence of a 

putative Hath1 binding site at -3102/-3089. Thus, a number of factors collude to alter the 

expression of mucins in CRC. 

  Given the importance of both β-catenin and MUC4 in the normal colon as well as in light 

of the fact that the role of MUC4 in CRC is still unclear, we decided to examine the relationship 

between β-catenin and MUC4 in CRC. A MUC4 promoter analysis showed the presence of three 

TCF/LEF sites, suggesting that MUC4 can be regulated by β-catenin in CRC. Based on our 

MUC4 promoter analysis, as well as the generally reduced MUC4 expression in CRC, we 

hypothesized that β-catenin can regulate MUC4 expression in CRC. Furthermore, a retrospective 

study showing that high MUC4 expression in stage I and II conferred a worse prognosis to CRCs 

[5] spurred us to examine the functional aspects of MUC4 function.  

3. Results 

A. MUC4 expression is lost during the progression of CRC concomitant with aberrant β-

catenin localization. 

  We examined the expression of MUC4 and β-catenin in tissue sections from the normal 

colon as well as from a polyp. It was observed that the expression of MUC4 was lower in the 

polyp sections in comparison to the normal colon (Figure 1A). Concurrent with the loss of 

MUC4 expression, we observed an increased degree of aberrant (cytoplasmic/nuclear) staining of 

β-catenin. Furthermore, we analyzed the levels of MUC4 and β-catenin in a panel of CRC cell 

lines (Figure 1B). While all cell lines examined expressed β-catenin, only two of the 7 cell lines 

examined expressed MUC4 abundantly; LS180 and HCT-8. The cell line HCT116 expressed very 

low levels of MUC4. 
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B. Knock down of β-catenin induces the expression of MUC4 in CRC 

  In order to delineate the precise relationship between MUC4 and β-catenin in CRC, we 

knocked down β-catenin using lentiviral shRNA as well as siRNA in three CRC cell lines: HCT-

8, HCT116 and LS180. Upon the knock-down (KD) of β-catenin, there was an increase in MUC4 

in all three cell lines (Figure 2 A). Since the 8G7 antibody used to detect MUC4 protein targets 

the variable number of tandem repeats (VNTR) domain and may therefore be affected by 

variations in the glycosylation state of the protein, we used the 2214 antibody (targeting the 

MUC4-α-N-Ter [22]) to confirm the increase in MUC4 upon KD of β-catenin (Figure 2A).  

  In order to determine whether the β-catenin KD induced MUC4 up-regulation occurred at 

the transcript level, we examined the MUC4 levels in all three cell lines and we confirmed that 

the MUC4 RNA was also increased upon β-catenin KD (Figure 2B). 

C. Overexpression of β-catenin results in down-regulation of MUC4 

  Transient overexpression of β-catenin using the 4ACAT stabilized β-catenin construct 

resulted in a decreased MUC4 protein expression in the LS180 and HCT-8 cell lines (Figure 3). 

D. MUC4 transcript stability is not affected by β-catenin 

  In light of the observation that MUC4 was increased upon β-catenin KD, we decided to 

ascertain whether β-catenin can affect MUC4 RNA stability. For this purpose, we treated our 

HCT116 Scr and sh-cat cells with Actinomycin D (10µg/ml) for 6 hours. It was observed that 

there was a reduction in MUC4 (the half-life of MUC4 mRNA is 5 hours [24]), concurrent with 

the reduction in β-catenin in both the Scr and sh-cat cells (Figure 4), thus indicating that β-

catenin KD does not increase the mRNA stability of MUC4.  
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E. Luciferase studies with MUC4 promoter construct show that MUC4 can be governed by 

β-catenin  

  LS180 cells were transfected with the TOPflash plasmid and its negative control FOPflash, 

which are a measure of the β-catenin/TCF signaling. As expected, there was a decrease in the 

TOP/FOPflash luciferase activity in LS180 β-catenin siRNA transfected cells in comparison to 

the control (Si-ctrl) cells (Figure 5A). We then transfected the LS180 Si-cat and Sictrl cells with 

the MUC4 promoter luciferase construct p3778. There was an increased MUC4 promoter driven 

luciferase activity in the Si-cat cells in comparison to the Si-ctrl transfected cells. However, this 

difference was not statistically significant.  

  Since our promoter analysis indicated the presence of three putative TCF/LEF sites in the 

MUC4 promoter: at positions -2612, -3226 and -3408, i.e., site #1, site #2 and site #3 respectively 

(Table 1, Chapter 3), we went on to mutate the TCF/LEF sites both individually as well as in 

combination (MUT1, MUT2, MUT3, and MUT123) in the p3778 construct. All luciferase assays 

were performed in triplicate and repeated a minimum of three times. Results represent the mean 

of three separate experiments. It was observed that while transfection with MUT1 caused a 

reduction in the luciferase activity (Figure 5B), MUT2, MUT3 and MUT123 caused an increase 

in luciferase activity presence of 4ACAT, suggesting that the mutation of all 3 TCF/LEF sites 

reduces MUC4. Since MUT1 decreased luciferase activity and therefore appeared to promote 

MUC4 transcription, we generated another construct MUT23, which possessed an intact site #1 

but mutant site #2 and #3. This luciferase reading was higher than that of p3778 but lower than 

MUT123. Although mutation of all three TCF/LEF sites resulted in an increase in MUC4 

promoter driven luciferase activity, overall, this difference was not statistically significant.  
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F. Tubular adenomas and hyperplastic polyps in DSS treated ApcMin mice show reduced 

MUC4 expression 

  In order to determine whether the expression of MUC4 is governed by β-catenin in vivo, we 

looked at levels of mouse MUC4 and β-catenin in lesions from ApcMin mice that were treated with 

the colitis and CRC inducer DSS [25] or mice that were treated with DSS alone. The ApcMin mice 

treated with DSS possessed adenomatous polyps and displayed an increased cytosolic/nuclear β-

catenin in the lesion in comparison to the adjacent normal regions. These lesions also displayed a 

virtual absence of MUC4, while adjacent normal regions showed intense MUC4 staining, 

particularly in goblet cells (Figure 6). The goblet cells in normal areas showed strong globular 

cytoplasmic staining, while lesions showed occasional faint apical staining. Similar results were 

obtained with the DSS treated mice, which possessed hyperplastic polyps (Figure 6). 

G. MUC4 expression is also regulated by Hath1  

  Although luciferase studies with the MUC4 promoter constructs indicated that the MUC4 

transcript can be governed by β-catenin, the results were not statistically significant. Therefore, it 

was decided to explore the possibility that β-catenin governs MUC4 expression via indirect 

mechanisms. We examined the level of Hath1 in CRC cell lines. It was seen that the Hath1 was 

higher in MUC4 expressing cell lines, HCT116, HCT8, and LS180 in comparison to MUC4 non-

expressing cell lines HCT15, CaCo2 and HT29 (Figure 7 A). Microarray data from Oncomine 

indicated that Hath1 mRNA expression decreases in CRC in comparison to normal tissue (Figure 

7 B). Furthermore, we observed that there was a significant increase in Hath1 mRNA expression 

upon β-catenin KD (Figure 8A). In order to modulate the levels of Hath1 in CRC cell lines, we 

treated LS180 with 500nM DBZ, a γ-secretase inhibitor, which has been proven to increase Hath1 

[26] for 72 hours. There was an increase in MUC4 (Figure 8A) in the DBZ treated cells in 

comparison to the DMSO treated control cells, concurrent with an increase in Hath1.  
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H. MUC4 confers increased proliferative and colony forming properties to CRC cells 

  Having established that MUC4 is governed by β-catenin in CRC, our objective was to 

delineate the role MUC4 in CRC. Of all the CRC cell lines examined, two cell lines: HCT-8 and 

LS180 expressed abundant MUC4 protein, while HCT116 expressed very low levels of MUC4 

protein (Figure 1B).Given that the role played by MUC4 in CRC is not well defined, we knocked 

down MUC4 in the HCT-8 cell line and performed functional studies in this cell line. 

Proliferation assays in HCT-8 Scr and HCT-8 Sh-MUC4 showed that the KD of MUC4 caused a 

significant reduction in proliferation (Figure 9A). Further, colony formation assay showed that 

MUC4 KD significantly reduced colony formation (Figure 9B).  

I. MUC4 KD does not affect the invasive and migratory properties of cells. 

  In order to gauge the effect of MUC4 KD on the invasive and migratory properties of CRC 

cells, we performed a transwell invasion and migration assay. MUC4 KD did not have a 

significant effect on the invasion and migration of the KD cells (Figure 10A, B). Furthermore, 

we performed a scratch assay, which also did not show any significant difference in the scratch 

area between Scr and KD cells (Figure 11). We thus concluded that MUC4 does not affect the 

invasive and migratory properties of HCT-8 CRC cells. 

4. Discussion  

  Aberrations in the Wnt/ β-catenin pathway are well established initiating events in CRC [7, 

9, 11]. Most frequently, truncating mutations in APC, present in 85-90% of all tumors, prevents 

the phosphorylation mediated degradation of β-catenin and drives the molecule into the nucleus 

[7, 11]. Less frequently, activating mutations in β-catenin that prevent its degradation and 

mutations in Axin2/1 can also cause activation of the Wnt/ β-catenin pathway [7, 11]. The fact 

that aberrant Wnt/ β-catenin pathway activation is an initiating event is underscored by the fact 

that aberrant activation of the Wnt/ β-catenin pathway is the only abnormality seen in early CRC 
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precursor lesions such as aberrant crypt foci and adenomas [27]. The Wnt/ β-catenin pathway 

activates the transcription of a host of tissue specific genes. Overall, β-catenin causes the loss of 

differentiation of CRC cells and pushes the cells into a crypt progenitor phenotype [27]. This 

includes the loss of mucin expression, chiefly MUC2, and the gain of several genes commonly 

active in the proliferative base of the normal colonic crypt such as CD44 [27].  

  As hinted at previously, the loss of mucin expression is one of the defining characteristics 

of precursor lesions such as aberrant crypt foci and mucin depleted foci. The most extensively 

studied mucin in CRC is MUC2, which is the main secreted mucin in the colon [28]. MUC2 

expression is usually lost during CRC progression and this loss has been shown to be mediated by 

β-catenin, albeit via an indirect mechanism involving Sox9 [18]. Other factors, such as the loss of 

Hath1, a transcription factor that ordinarily governs colonocyte differentiation, contribute to the 

loss of MUC2 expression [8]. Hath1 has also been shown to be repressed by β-catenin [20].  

  The expression pattern of MUC4, a transmembrane mucin typically expressed in goblet 

cells and in the lower two-thirds of the normal crypt [29], in CRC progression has been the 

subject of some controversy. While most studies concur that the majority of CRCs display a 

loss/reduced MUC4 expression, somewhat conflictingly, it has been proposed that MUC4 

expression, when present, confers a worse prognosis to patients with early stage (grade I and II) 

CRCs [5, 6]. A meta-analysis of all patient data involving MUC4 showed that MUC4 expression 

was associated with a poorer prognosis in CRC [30]. Also, a recent study from our lab showed 

that Muc4 expression in mice led to increased susceptibility to AOM/DSS induced colitis and 

CRC [31]. In one study, serrated adenomas displayed a complete loss of MUC4 expression while 

50% of hyperplastic polyps showed reduced MUC4 expression and traditional adenomas showed 

no change in MUC4 expression compared to normal [29]. Thus, while MUC4 expression appears 

to be lost in full blown CRCs, it is likely that some precursor lesions and early stage carcinomas 

retain MUC4 expression and that this expression may have a pro-tumorigenic role.  
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  The current study aimed to delineate the role of MUC4 in tumorigenesis in CRC and 

determine whether MUC4 expression is governed by β-catenin, since the MUC4 promoter was 

found to contain 3 TCF/LEF sites. To this end, we first analyzed the expression pattern of MUC4 

and β-catenin in seven commonly used CRC cell lines. It was observed that only two cell lines 

expressed MUC4 abundantly, LS180 and HCT8. These cell lines are moderate/well differentiated 

and secrete Carcinoembryonic antigen (CEA) which is associated with a more differentiated and 

less tumorigenic state [32]. HCT116 expressed very low levels of MUC4. All three MUC4 

expressing cell lines have mutations in APC /β-catenin, Kras and a wild type p53. Most of the 

MUC4 non-expressing cell lines (HCT15, HT29, and CaCo2) possess a mutant p53. Interestingly, 

p53 loss typically occurs at a later stage of CRC progression [11] and therefore the MUC4 

expressing cell lines may represent an earlier stage in CRC progression. Our confocal microscopy 

analysis showed that MUC4 is lost in polyps, concurrent with increased β-catenin in the nucleus. 

This was consistent with earlier reports that report a loss of MUC4 expression in polyps [29]. 

  The KD of β-catenin in the three cell lines that express MUC4 showed that there was a 

significant increase in MUC4 protein expression upon KD of β-catenin. This was consistent at the 

the RNA level, where MUC4 levels were found to be significantly higher in the KD cells. These 

results imply that β-catenin ordinarily represses MUC4; seemingly contradicting our earlier 

findings in pancreatic cancer, where we showed that MUC4 is increased by β-catenin. However, 

one must note that these two diseases are completely different entities with distinct mutational 

profiles and β-catenin typically has different tissue specific target genes. Moreover, nuclear β-

catenin is typically 5-20 times higher in CRC than in PDAC [33], thus possibly altering levels of 

a different set of target genes, which, in turn, could affect factors such as MUC4 promoter 

methylation and histone acetylation. One study has shown that the MUC4 promoter is methylated 

at certain key residues in the proximal promoter in the cell line Caco2 and that treatment with the 

histone deacetylase inhibitor Trichostatin A and DNA methylation inhibitor 5-aza-2’-
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deoxycytidine caused increased MUC4 mRNA [34]. For further confirmation, we transiently 

transfected LS180 and HCT-8 with 4ACAT, the stabilized β-catenin construct, which caused 

decreased MUC4 protein levels. Staining of mouse tissue showed that Muc4 staining intensity 

was significantly reduced in both tubular adenomas and hyperplastic polyps, and that this 

reduction corresponded with increased β-catenin staining in the same areas, thus confirming our 

findings in vivo.  

  The Wnt/ β-catenin pathway has been shown to perturb the levels of numerous miRNAs in 

CRC [35], likely affecting mRNA levels of many genes. Moreover, MUC4 has been shown to be 

targeted by several miRNAs [36, 37]. In light of these facts, we asked whether β-catenin can alter 

the MUC4 mRNA. To this end, we treated the HCT116 Scr and sh-cat cells with 10µg/ml 

Actinomycin D, and it was seen that following 6 hours of treatment, MUC4 mRNA levels in the 

KD cells were not significantly enriched compared to the Scr control cells, implying that β-

catenin does not increase MUC4 mRNA stability.  

  Having confirmed that the β-catenin KD induces increased MUC4 mRNA and protein 

levels, we decided to determine whether this β-catenin induced MUC4 repression occurs via a 

direct or an indirect mechanism. To this end, we used a MUC4 promoter luciferase construct, 

p3778 that encompasses all three of the putative TCF/LEF sites. It was observed that when LS180 

cells were transfected with p3778 in the presence of β-catenin siRNA, there was an increase in 

the MUC4 promoter driven luciferase activity. However, this increase was not significant. 

Furthermore, when we mutated each of the three TCF/LEF sites both individually and in 

combination, there was an increase in MUC4 promoter driven luciferase activity when sites #2, 

#3, sites #2 and #3 in combination, as well as when all three sites were mutated together in 

comparison to p3778. However, when only site #1 was mutated, there was a decrease in MUC4 

promoter driven luciferase activity. This appeared to conflict our other results where mutation of 

either site #2 or #3 or all three sites in combination caused the increase in luciferase activity. 
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However it is possible that binding of β-catenin does not occur at site #1 due to factors such as 

differential promoter accessibility. Despite the observed differences in MUC4 promoter luciferase 

activity due to mutations in TCF/LEF sites, none of the differences were statistically significant. 

  Owing to the fact that we were unable to obtain a statistically significant result with our 

promoter luciferase assays, we went on to examine alternate pathways downstream of β-catenin 

that may regulate MUC4. We focused on Hath1 because this well-established tumor suppressor 

gene in CRC has been shown to be repressed by β-catenin and regulate MUC2 in CRC [8]. Hath1 

is a basic helix-loop-helix transcription factor that is repressed by the Notch pathway and 

determines cell fate determination of intestinal cells into secretory and goblet cells [38]. 

Interestingly, our promoter analysis showed that the MUC4 promoter contains a Hath1 binding 

site. Our results suggest that Hath1 may regulate MUC4 and that the loss of Hath1 may bolster 

the repressive effect of β-catenin on MUC4 expression.  

  The second part of our study focused on the functional aspects of MUC4 expression in 

CRC. As mentioned previously, MUC4 expression is generally lost in CRC but is retained/over-

expressed in some early stage lesions and CRCs. Our proliferation assay showed that MUC4 

expression confers increased proliferative properties and colony formation abilities to cells. This 

is in agreement with most studies in other malignancies such as pancreatic cancer [2, 3, 39, 39]. 

  Our migration, scratch and invasion studies did not show any significant difference with 

MUC4 KD, suggesting that while the presence of MUC4 does confer proliferative properties to 

cells, it may not confer migratory and metastatic properties. This is in keeping with current 

literature, which suggests that MUC4, when present in CRC, confers a worse prognosis only in 

the early, non-metastatic stages of CRC. As mentioned earlier, both high MUC4 expressing cell 

lines are well/moderately differentiated and possess wild type p53, thus likely resembling the 

early precursor lesions that are non-metastatic.  
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In conclusion, this study shows for the first time that β-catenin can repress MUC4 expression in 

CRC, and that other factors deregulated in CRC such as Hath1 also contribute to MUC4 loss in 

CRC. However, the presence of MUC4 confers proliferative but not migratory properties to CRC 

cells, suggesting that MUC4, while aiding in tumor cell proliferation, does not aid in tumor cell 

migration. However, some unanswered questions remain. For example, if the Wnt/ β-catenin 

pathway suppresses MUC4, why does a subset of CRCs express high MUC4? This could be 

answered by a detailed mutational analysis of tumors/cell lines expressing MUC4 by techniques 

such as RNA-seq. It is possible that MUC4 is expressed by tumors having an un-mutated Wnt/ β-

catenin pathway, such as MSI-H (microsatellite instability – high) tumors. MSI-H tumors show a 

lower frequency of APC/ β-catenin mutations [40, 41]. Interestingly, all three of the MUC4 

expressing cell lines; HCT-8, HCT116, LS180 are MSI-H [42].Only one study thus far has 

examined the possible association between MSI-H status and MUC4 expression, and did not find 

a significant correlation [16]. However, a larger scale study may yield different results. 

Alternatively, MUC4 expression may be disease-stage specific, and is perhaps only expressed in 

early stage CRCs, when nuclear β-catenin levels are low. However, all these hypotheses are 

purely speculative, and need to be addressed by more comprehensive studies in the future.  
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Figure 1 MUC4 and β-catenin expression in colorectal carcinoma (CRC) tissues and cell 

lines (A.) Confocal microscopy showed that MUC4 (green) was reduced in a polyp in 

comparison to the normal colon, concurrent with an increase in aberrant (cytosolic/nuclear) β-

catenin (red). (B.) A panel of CRC cell lines was profiled for the expression of MUC4 and β-

catenin. β-actin was used as a loading control.  
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Figure 2: Knockdown (KD) of β-catenin induces MUC4 expression. (A) Lentiviral shRNA 

and siRNA were used to KD β-catenin in HCT-8, HCT116, and LS180. The levels of MUC4 

protein were increased in the KD cells when probed with the 8G7 and 2214 antibodies. (B.) Real 

time PCR was used to assess MUC4 mRNA levels upon β-catenin KD.   
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Figure 3: Transient over-expression of β-catenin induces MUC4 expression. A FLAG tagged 

stabilized β-catenin construct (4ACAT) was transiently transfected in LS180 and HCT-8. The 

levels of MUC4 protein were reduced.   
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Figure 4: β-catenin does not increase MUC4 transcript stability. HCT116 SCR and HCT116 

sh-cat were treated with 10µg/ml Actinomycin D. After 6 hours of treatment, the levels of MUC4 

mRNA were not enriched in the sh-cat cells in comparison to the SCR Actinomycin D treated 

cells.   
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Figure 5: Luciferase studies with the MUC4 promoter luciferase construct. LS180 cells were 

transiently transfected with si-RNA targeting β-catenin. (A.)TOP/FOPflash studies showed 

that there was reduced β-catenin mediated transcription in the cells transfected with siRNA. 

When siRNA transfected cells were also transfected with the p3778 MUC4 promoter luciferase 

construct, there was an increase in MUC4 promoter driven luciferase activity. (B.) The p3778 

promoter construct with each of the three putative TCF/LEF sites mutated (i.e., -2612:MUT1, -

3226:MUT2, -3408: MUT3) was transfected into LS180 cells in the presence of 4ACAT. The 

pCMV9-Renilla vector was used as an internal transfection control; all luciferase experiments 

were performed in triplicate and repeated a minimum of three times. Images represent the average 

of at least three experiments, each performed in triplicate.  
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Figure 6 Immunohistochemical staining for mouse Muc4 and β-catenin in colon sections 

from ApcMin mice treated with DSS. (A.) Staining for β-catenin (upper panel) and Muc4 (lower 

panel) showed intense cytosolic/nuclear staining for β-catenin and depletion of Muc4 in lesions 

(solid arrow), while surrounding normal areas showed reduced β-catenin and intense goblet cell 

staining for Muc4 (dotted arrow).(B.) Table showing type, number of lesions in in mice either 

treated with DSS alone or ApcMin mice treated with DSS.  
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Figure 7 Hath1 expression levels in CRC (A.) Real time PCR for Hath1 was performed in a 

panel of cell lines. The PCR products were then run on a 2% agarose gel. β-actin was used as a 

reference gene.(B.) Data extracted from the Oncomine database shows that Hath1 levels are 

reduced in CRC compared to normal colon tissue.  
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Figure 8 β-catenin regulated MUC4 via Hath1 (A.) Real time PCR for Hath1 in CRC cell lines 

where β-catenin was knocked down showed a significant increase in Hath1 levels (B.) LS180 

cells were treated with the gamma secretase inhibitor DBZ (500nm), which resulted in an 

increase in MUC4 protein. Hes1, a Notch pathway target gene, was used as a verification of 

treatment efficacy.   
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Figure 9 Functional studies with MUC4 KD in CRC. (A) MUC4 was knocked down in the 

HCT-8 cell line. It was observed that there was a significantly reduced proliferation in the KD 

cells in comparison to the SCR control cells. * p < 0.005. (B) Colony formation assay with HCT-

8 SCR and sh-MUC4 showed significantly reduced colony formation with the KD cells.* p<0.05. 

The assay was performed in triplicate in a 6 well plate. Image represents one replicate.   
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Figure 10 Functional studies with MUC4 KD in CRC. (A) Invasion assay performed with 

HCT-8 SCR and KD showed no significant alteration in the number of cells invading the matrigel 

coated insert. Experiment was performed in triplicate. Image represents a single field 

representative of data obtained. Images of 10 arbitrary fields were taken and the numbers of cells 

in each were manually counted. (B.) Migration assay performed with HCT-8 SCR and KD 

showed no significant difference between the numbers of cells that traversed the transwell insert.  
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Figure 11 Functional studies with MUC4 KD in CRC. A wound healing (scratch) assay was 

performed with HCT-8 SCR and KD cells. Breifly, 1 X 106 cells were plated in a 6 well plate and 

a wound (scratch) was made 24 hours later. Images of the scratch were taken at 0 hours and 24 

hours after the scratch was made. The area of the scratch was measured using ImageJ software 

(arbitrary units). No significant difference between HCT-8 SCR and KD was observed.   
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CHAPTER 5 

Understanding the role of MUC4 in CRC: Generation of 

Muc4-/-;CDX2 P-NLS -Cre krasG12D/+ApcloxP/+ mice  
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1. Synopsis 

The role played by MUC4 in CRC progression has been the subject of much speculation. 

While numerous studies have noted that MUC4 is lost in some CRCs [1-3], other studies indicate 

that MUC4 expression in unchanged/elevated and when present, is significantly correlated with a 

worse prognosis, particularly in the early stages of the disease [4, 5]. Furthermore, functional 

characterization of a MUC4 KD CRC cell line in our lab (unpublished studies) showed that the 

presence of MUC4 conferred proliferative properties to cells. Thus, the exact nature of the role 

played by MUC4 in CRC progression remains largely unclear. We sought to address this question 

by generating Muc4-/-;CDX2P-NLS-Cre;KrasG12D/+;ApcloxP/+ (Muc4-/-; CKA) mice, i.e., mice that 

lacked Muc4 expression and had KrasG12D/+ activation and Apc loss induced via a colon 

preferential Cre recombinase. Our preliminary studies show that Muc4 expression is lost in Apc-/-

;Cdx2P NSLCre lesions, concomitant with aberrant β-catenin expression. However, we anticipate 

that the comparison of Muc4-/-; CKA mice with CKA mice will lead to a better understanding of 

the role of Muc4 in CRC initiation and progression.  
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3. Background and Rationale  

The vast majority of CRCs possess truncations in APC or activating mutations in β-

catenin. Chief among the myriad changes associated with aberrantly activated Wnt/ β-catenin 

signaling in CRC is the loss of differentiation, or crypt progenitor-like phenotype [6]. The normal 

colonic epithelium is lined by villi that possess several types of differentiated cells, however; this 

is lost during the process of neoplastic transformation [6]. This loss of differentiation is 

associated with a loss of mucin expression, mainly comprising MUC2 as well as other mucins 

such as MUC4 [1, 7]. Other mucins ordinarily absent from the normal colon, such as MUC5AC 

are expressed de novo in CRC, while mucins such as MUC1 are increased in expression [7]. 

These changes in mucin expression are also accompanied by altered glycosylation that aids in 

cancer metastasis [8]. However, the manner in which these changes in mucin expression levels 

affect CRC progression is not entirely clear.  

The loss of MUC2 has been demonstrated to aid in CRC formation, as demonstrated by 

Muc2-/- mouse models, where it was seen that the loss of Muc2 caused increased susceptibility to 

colitis and that the loss of Muc2 alone was sufficient for CRC formation [9, 10]. These tumors 

were atypical in the sense that they did not possess cytosolic/nuclear β-catenin. However, when 

these mice were crossed with ApcMin mice, tumors that were concentrated toward the distal part of 

the large intestine were observed [11]. ApcMin mice do not ordinarily develop full blown tumors 

and typically develop lesions that are concentrated in the upper gastrointestinal tract [12]. This 

suggests that the loss of Muc2 colludes with alterations in β-catenin. Moreover, the fact that these 

tumors possessed elevated transcripts of genes typically up-regulated during inflammation 

suggested that loss of Muc2 leaves the colon susceptible to inflammation aided tumorigenesis. 

Muc1-/- mice showed increased susceptibility to infection by Campylobacter jejuni [13]. Our lab 

has recently generated a whole body Muc4-/- mouse model which was treated with the chemical 

carcinogens Azoxymethate (AOM) and Dextran sodium sulfate (DSS) [14]. It was observed that 
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the loss of Muc4 conferred reduced susceptibility to DSS induced colitis and colitis induced 

CRC, suggesting that Muc4 aids in CRC mediated tumorigenesis and therefore apparently 

contradicting the results obtained from knock-out models of other mucin genes. Tumors in wild 

type and Muc4-/- mice exhibited increased nuclear β-catenin. Interestingly, wild-type mice showed 

increased Ki67 staining, indicative of increased proliferation. This ties in with the in vitro data 

presented in this thesis that shows that MUC4 confers increased proliferative properties to CRC 

cells. These results may present an explanation of the presence of MUC4 expression in a subset 

of human early CRCs [5].  

Despite the utility of the aforementioned studies in shedding light on the role played by 

MUC4 in CRC, no study thus far has studied the manner in which the loss of MUC4 expression 

ties in with mutations in APC and/or Kras, genetic aberrations that are present in a large 

proportion of human CRC tumors [15]. Therefore, the goal of this study was to analyze the role 

played by MUC4 in the conventional genetic mutation induced CRC progression model. Thus, in 

this study, we have sought to generate Muc4-/-; CDX2P-NLS-Cre; KrasG12D/+; ApcloxP/+ (Muc4-/-; 

CKA) mice. The CDX2P-NLS-Cre confers increased lesion formation in the colon compared to 

other intestine-specific Cre based models [16]. Our breeding strategy is outlined in Figure1.  

3. Results/Materials and Methods 

A. Procurement of animals  

The CDX2P-NLS-Cre; ApcloxP/+ mice was characterized and generated previously [16]. 

We obtained the B6.Cg-Tg(CDX2-cre)101Erf/J mice from the Jackson Laboratory (Stock No: 

009350). These mice express a nuclear localized Cre recombinase regulated by a CDX2 promoter 

and are on a C57BL/6J genetic background. This promoter is expressed in the ileum, caecum and 

colon. The depositing laboratory noted that when ApcloxP/+ mice were crossed with CDX2P-NLS-

Cre mice; they developed lesions mainly in the colon. The B6.Cg-Apctm2Rak/Nci (strain number: 

01XAA) mice were obtained from the National Cancer Institute (NCI) mouse repository. These 
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mice have the exon 14 of the Apc gene flanked by loxP sites. When crossed with mice expressing 

a tissue specific Cre-recombinase, the loxP sites are excised by Cre- recombinase resulting in 

truncated Apc protein, which is 605 amino acids long, of which only the first 580 are present in 

the normal protein. These mice also had a C57BL/6J genetic background. The B6.129S4-

Krastm4Tyj/J (LSL-K-ras G12D) strain was obtained from the NCI. Here, the Kras gene contains a 

point mutation: G12D and is followed by Lox-Stop-Lox codon. In the presence of Cre, the stop 

codon is excised and the mutant protein is expressed. These mice also possessed a C57BL/6J 

genetic background. The whole body Muc4-/- mice were generated in our lab and have been 

described in a recent paper [14]. These mice have a mixed genetic background   

B. DNA isolation, genotyping and maintenance of animals 

Animals were maintained in accordance with guidelines and protocols approved by the 

by the Institutional Animal Care and Use Committees (IACUC) of the University of Nebraska 

Medical Center. The animals were exposed to a 12 hour light/dark cycle and were allowed access 

to food and water ad libitum. The tails of mice were clipped at the age of 8 days and the DNA 

was isolated using the Maxwell 16 mouse tail DNA purification kit, Promega, Madison, WI, 

USA. Following DNA isolation, genotyping was performed using primers listed in Table B.4. in 

the materials and methods section (Chapter 2). Mice were observed daily for rectal bleeding and 

sacrificed once observed, and anal prolapse or any other signs of distress were carefully recorded. 

A representative genotyping gel picture is shown in Figure 2. 

C. Preliminary analysis of animals sacrificed  

We observed that CDX2P-NLS-Cre; ApcloxP/loxP mice developed severe rectal bleeding 

within 14 weeks of age and had large lesions primarily in the colon. It has been reported by an 

earlier study that homozygosity for ApcloxP allele along with CRX2P-NLS-Cre was embryonically 

lethal [16]. However, it was observed that our mice had very faint bands for CRX2P-NLS-Cre 

when genotyped, suggesting that they were likely heterozygous for Cre, thus had a very low dose 
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of Cre, likely accounting for the non-lethality of this genotype. A single CDX2P-NLS-Cre; 

ApcloxP/loxP mouse that was sacrificed due to signs of distress and rectal bleeding showed 

extensive presence of macroscopic lesions concentrated in the colon ( Figure 3) Further, we also 

euthanized and collected tissues from 5-6 months of age ApcloxP/+;Muc4+/-;CDX2P-NLS-Cre. 

These mice displayed splenomegaly; as well as numerous polyps throughout the intestine with an 

increased concentration in the colon. Currently, we are generating composite mice with Muc4-/-

;CKA and their contemporary littermate controls (CKA) mice, in future we will comparing Muc4-

/-;CKA mice with Muc4+/+;CKA as well as Muc4-/-;Cdx2P-NLS-Cre; ApcloxP/+ (Muc4-/-;CA) and 

Muc4-/-; Cdx2P-NLS-Cre; krasG12D/+ (Muc4-/-;CK) mice. 

C. Analysis of tissue sections from CDX2P-NLS-Cre; ApcloxP/loxP 

The part of the colon containing lesions was excised and kept in formalin for 48 hours, 

after which it was transferred to 70% ethanol. Tissue was embedded in paraffin and serial 

sections were made by the Tissue Sciences Core Facility at UNMC. Histological analysis of the 

the colon showed the presence of 1 ductal adenocarcinoma in situ and one adenoma showing low 

grade dyplasia. Further, immunohistochemical analysis showed that the lesions expressed 

dramatically increased cytosolic and occasionally nuclear β-catenin, in comparison to adjacent 

normal tissue, while intense Muc4 staining was present in the goblet cells in normal tissue and 

was dramatically reduced in the lesions, where faint cytoplasmic Muc4 staining was seen 

uniformly in all cells (Figures 3-5). The intensity of β-catenin staining in the lesions was 

variable, and this was possibly due to technical issues with the IHC process. Nevertheless, there 

was a clear intensification of β-catenin staining in all dysplastic/neoplastic areas, which is 

consistent with literature in CRC. Of note, while the overall reduction in Muc4 staining in lesions 

was quite obvious, the shift from staining in goblet cells alone (normal tissue) to being uniformly 

present in all cells, albeit at very low levels in the lesion(s) was striking.  



166 

 
4. Discussion  

Our preliminary data confirms earlier studies performed in our lab where lesions from 

ApcMin tissues were stained, showing that the loss of Muc4 is an inherent characteristic of colonic 

lesions with APC loss. However, our ultimate goal is to establish whether (a) the loss of MUC4 is 

a consequence of the mutations driving the disease and is merely a byproduct of the overall loss 

of differentiation with no significant functional role, or, (b) Muc4 has a significant role to play in 

CRC progression, by either imparting proliferative properties to CRC cells, a condition which 

will be simulated by the Muc4+/+; CKA mice or aiding CRC progression by ablating the 

presumably protective role (i.e., against factors such as inflammation) via its loss of expression, a 

condition simulated by Muc4-/-; CKA mice. We will compare the number and location of lesions 

and overall survival in these two groups of mice.  

Interestingly, two other mice that developed lesions and were sacrificed were 

heterozygous for Muc4 while having a heterozygous loss of Apc. Could this point toward the fact 

that Muc4 is protective in the colon, much like Muc2? However, one must be cautious before 

coming to a conclusion from the very limited sample size and also given the fact that these mice 

express Muc4. We have as yet not obtained any Muc4-/-; CKC mice, which will likely provide a 

more conclusive answer.  
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Figure legends 

Figure 1 Breeding strategy Muc4-/- mice were generated in our lab in an earlier study. These 

mice were crossed with Apcflox/flox, CDX2-Cre and krasG12D/+ to generate intermediate crosses, 

which were inter-crossed in order to generate the Muc4-/-;CDX2-Cre krasG12D/+Apcflox/+ final 

genotype.  
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Figure 2 A representative genotyping gel. Mouse tails were clipped and after DNA extraction, 

PCR using appropriate primers was performed and the products were run on 2% agarose gels. 

Encircled in red boxes are the bands for a mouse positive for Apc (2 bands indicative of 

heterozygosity for the floxed allele), Cdx2-Cre, KrasG12D and heterozygous for Muc4.   
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Figure 3 Gross appearance of lesions in mice sacrificed. Lesions were concentrated in the 

colon and large intestine.  
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  Figure 3  
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Figure 4 Immunohistochemical staining of mouse adenoma. (A.) Staining for β-catenin 

showed intense, widespread (80-90%) cytoplasmic/nuclear staining (solid arrow) in the lesion 

while adjacent normal tissue showed low to moderate staining (dotted arrow). Note that goblet 

cells in normal mucosa appear to be negative for β-catenin. (B.) Staining for Muc4 showed 

intense staining concentrated in the goblet cells (dotted arrow) in the normal mucosa, while 

showing weak cytoplasmic staining in the adenoma cells (solid arrow). Dotted lines demarcate 

lesion.   



174 

 
  

Figure 4  

 

β
-c

a
te

n
in

M
u

c
4

20 X

20 X

Adenoma



175 

 
Figure 5 Immunohistochemical staining of mouse adenocarcinoma in situ (A.) Intense 

cytosolic/nuclear staining for β-catenin in the lesion (solid arrow) and weak staining in the 

adjacent normal areas (dotted arrow) was observed. (B.) Intense staining for Muc4 in goblet cells 

(dotted arrow) and weak, cytoplasmic staining in tumor cells (solid arrow) was observed. Dotted 

lines demarcate lesion.  
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Figure 6: A single crypt showing neoplastic transformation in the upper half while having 

an untransformed basal crypt. Note sharp demarcation in the staining pattern, normal lower 

crypt shows goblet cell Muc4 staining and weak β-catenin staining (dotted arrows) while upper 

transformed half shows intense β-catenin staining and weak Muc4 staining (solid arrows).   
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CHAPTER 6 

Summary, Conclusions and Future directions  
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1. Summary  

Over the past several years, our lab has studied various aspects of MUC4 function and 

regulation in various malignancies [1-5]. However, a number of questions remain unanswered. 

For instance, why does MUC4 confer metastatic and proliferative properties to cells in pancreatic 

and ovarian cancer [3, 4] while suppressing proliferation and migration in other malignancies 

such as lung cancer [6]? Also, while many factors such as miRNAs, retinoic acid, inflammatory 

cytokines, transcription factors such as GATAs, FOXOs etc. [1, 2, 7]; regulate MUC4, might 

other factors also cause MUC4 up-regulation/suppression? The studies presented in this thesis 

attempt to address parts of these questions.  

The overarching goal of the studies presented in this thesis has been to examine the 

regulation of the transmembrane mucin MUC4 by the Wnt/β-catenin pathway in pancreatic ductal 

adenocarcinoma (PDAC) as well as in colorectal cancer (CRC). Briefly, we examined the 

following aspects of MUC4 regulation and function: 1) the regulation of MUC4 by Wnt/ β-

catenin in pancreatic cancer and colorectal cancer, 2) the significance and functional implications 

of Wnt/β-catenin up-regulation in pancreatic cancer and 3) the functional implications of MUC4 

expression in colorectal cancer as well as its contribution to disease progression.  

In a nutshell, our major findings were: 1) MUC4 is up-regulated by β-catenin in 

pancreatic cancer while it is repressed by β-catenin in colorectal cancer. However, factors such as 

promoter accessibility and cross-talk with other signaling pathways may also affect this dynamic. 

2) The Wnt/ β-catenin pathway contributes to the migratory properties of pancreatic cancer cells, 

by up-regulating mesenchymal markers. These results, when viewed in conjunction with the up-

regulation of MUC4 by β-catenin, suggest that the Wnt/ β-catenin pathway contributes to 

metastasis of pancreatic cancer, in part, through MUC4 up-regulation 3) It was observed that 

MUC4 expression contributes to the proliferative and colony forming properties of colorectal 

cancer cells, in an apparent contradiction of the fact that the loss of MUC4 expression is observed 
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in the majority of colorectal cancers. We generated a mouse model to determine the effect of 

Muc4 loss on colorectal cancer progression. Our results with the mouse model thus far indicate 

that Muc4 expression appears to be lost during the course of CRC progression in mice. However, 

these mice need to be characterized further in order to determine the impact of Muc4 loss on 

Apc/Kras driven CRC in mice. Below, I summarize the findings of each project and implications 

thereof. 

A. The Wnt/β-catenin pathway regulates MUC4 in pancreatic ductal adenocarcinoma 

(PDAC)  

The rationale for this study was based on a MUC4 promoter analysis showing the 

presence of 3 TCF/LEF sites as well several other recent studies, including one that reported 

MUC4 as one of the most significantly down-regulated transcripts in a microarray performed 

upon the depletion of β-catenin in the BXPC3 PDAC cell line [8]. First, we examined the 

expression of MUC4 and β-catenin in panel of PDAC cell lines and PDAC autopsy tissues. We 

observed a β-catenin-MUC4 co-expression in all cell lines, with the exception of AsPc1. 

Furthermore, IHC and confocal analysis of PDAC tissue showed that 80% of PDACs expressed 

MUC4 and cytosolic/nuclear β-catenin. Also, cells expressing MUC4 had strong 

cytosolic/nuclear β-catenin staining.  

Having established an apparent correlation between MUC4 and β-catenin expression in 

human cell lines and tissues, we went on to knock-down (KD) β-catenin using two lentiviral β-

catenin shRNA constructs in the cell lines CD18/HPAF and T3M4. We observed a significant 

reduction in MUC4 RNA and protein. For further confirmation, lithium chloride (LiCl) treatment 

(which enhances nuclear β-catenin by inhibiting GSK3β) and Wnt3a conditioned medium 

treatment were used, resulting in increased MUC4.  

The next step was to confirm whether MUC4 up-regulation occurred at the transcript 

level, and to this end we generated three MUC4 promoter luciferase constructs, each containing 
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one (p2700), two (p3000) or three (p3778) TCF/LEF sites. In the presence of 4ACAT, the 

stabilized β-catenin construct, only p3778 (all three sites) showed a significant increase in 

luciferase activity compared to the empty vector. This suggested that all three sites are required 

for the β-catenin mediated MUC4 up-regulation. Next, we mutated each site individually in order 

to determine which site(s) was most critical for the β-catenin mediated MUC4 up-regulation. In 

the presence of 4ACAT, MUT1 (mutation in site #1, closest to the ATG site) showed a 

dramatically reduced luciferase activity compared to p3778 while MUT2 (mutant site #2), quite 

surprisingly, showed an increased luciferase activity compared to p3778, implying that this was 

ordinarily a repressive site. MUT3 (mutant site #3, furthest from the ATG site) showed a 

significantly decreased luciferase activity in comparison to p3778, although this was not as 

dramatic as the reduction seen with MUT1. Due to the dramatic reduction in luciferase activity 

seen with MUT1, we expected that p2700 (promoter luciferase fragment containing only site #1) 

would show an increased luciferase activity in the presence of 4ACAT, however, this fragment 

did not show any significant increase in luciferase activity. This led us to conclude that the full 

promoter containing all three TCF/LEF sites is required for 4ACAT mediated MUC4 up-

regulation. 

Given that our promoter luciferase studies indicated that site #1 and #3 were MUC4 

transcription promoting, while site #2 was repressive, it was deemed necessary to determine 

which sites were actually bound to the β-catenin/TCF complex. A Chromatin 

immunoprecipitation (ChIP) was performed, which showed that while significantly elevated β-

catenin binding occurred at site #1compared to the negative control, no binding was observed at 

site #2 and some binding occurred at site #3. Thus, our overall conclusions were that TCF/LEF 

site #1 and #3 are required for β-catenin mediated MUC4 up-regulation. This is in line with 

literature, which suggests that most β-catenin target genes usually have more than one TCF site 
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and that the β-catenin enhanceosome complex typically recruits two or more distant TCF sites in 

order to create a locally conducive chromatin environment [9]. 

The second part of this project dealt with the functional properties imparted by β-catenin 

to PDAC cells. It was observed that β-catenin KD reduced the migratory properties of PDAC 

cells but did not significantly affect proliferation and colony formation. In line with these 

findings, we observed a significant reduction in mesenchymal markers such as Vimentin, N-

cadherin, CD44 and increased E-cadherin and Zo-1. This was confirmed by tumorigenicity 

studies in mice. Our conclusions from this part of the study were that aberrantly localized β-

catenin appears to act a driver of metastasis in PDAC, concurring with earlier studies with β-

catenin in pancreatic cancer [10, 11]. 

B. The Wnt/β-catenin pathway regulates MUC4 in colorectal cancer (CRC) 

Given the proven significance of altered Wnt/ β-catenin signaling in CRC [12, 13], and 

the fact that several studies indicate a loss of MUC4 expression in CRC progression [14, 15]; it 

was decided to examine whether MUC4 is also a β-catenin target gene in CRC. Furthermore, no 

study thus far has examined the functional significance of MUC4 in CRC. Numerous studies 

indicate that MUC4 expression is generally lost in CRC [14, 16]. However, others claim that 

while MUC4 is indeed lost in a large cohort of non-mucinous CRCs, MUC4 confers a worse 

prognosis to the subset of patients that retain high MUC4 expression, specifically in the early 

stages of the disease (stage I and II) [15, 17]. Most recently, a study from our lab observed that 

Muc4-/- mice are less susceptible to dextran sodium sulfate (DSS) induced colitis and CRC [18]. 

Thus, the goal of this part of the study was to examine the functional implications of MUC4 loss 

in human CRC cell line(s). 

As part of this project, a panel of seven CRC cell lines was profiled for MUC4 and β-

catenin expression. As expected, all cell lines expressed β-catenin abundantly while MUC4 was 

expressed in only three cell lines. Tissue immunofluorescence showed a decrease in MUC4 and 
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increase in cytosolic/nuclear β-catenin in colonic polyps compared to the normal colon. KD of β-

catenin using lentiviral shRNA and siRNA resulted in increased MUC4 RNA and protein 

expression. Transient over-expression of 4ACAT and treatment with Wnt3a conditioned medium 

caused a reduction in MUC4. Treatment with Actinomycin D showed that β-catenin KD does not 

prolong the MUC4 mRNA stability. Luciferase studies using β-catenin siRNA showed that there 

was an increase in p3778 driven luciferase activity in the presence of the siRNA. However, this 

difference was not statistically significant. Luciferase studies with MUT1, MUT2 and MUT3 

showed that mutation of site 2 and 3 caused an increased luciferase activity in comparison to 

p3778. When all three sites were mutated, there was increased luciferase activity. These results 

were also not statistically significant. 

Since our promoter luciferase studies did not yield conclusive results, we looked at other 

factors that may bolster the effect of Wnt/β-catenin on MUC4 in CRC. Hath1 is a basic helix-

loop-helix transcription factor that regulates the differentiation of colonocytes into secretory cells 

in the colonic epithelium [19]. It is ordinarily repressed by the Notch pathway and is a tumor 

suppressor in CRC [19]. MUC2, the major mucin in the intestine, has been shown to be governed 

by Hath1 [19, 20]. Our promoter analysis showed that the MUC4 promoter contains a Hath1 

binding site at position -3102/-3089 upstream from the ATG site. We observed that MUC4 

expressing CRC cell lines expressed higher levels of Hath1 than the non-expressing cells. KD of 

β-catenin resulted in an increase in Hath1and when the LS180 cell line was treated with a gamma 

secretase inhibitor, which has been shown to stimulate Hath1 [20], an increase in MUC4 

expression was observed, concurrent with increased Hath1. 

The second part of this project focused on a functional characterization of MUC4 in 

CRC. It was seen that MUC4 increased the proliferation and colony formation in CRC cells, but 

not migration or invasion. Thus, in conclusion, we found that MUC4 is likely regulated by both β-

catenin and Hath1 in CRC, and that MUC4 confers proliferative properties to CRC cells. 
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C. Generation of Muc4-/-; CDX2 P-NLS -Cre krasG12D/+ApcloxP/+ mice 

As mentioned previously, while in vitro studies with human cell lines indicate MUC4 is 

likely tumor-promoting in CRC, it is apparent that MUC4 is lost during the course of CRC 

progression and yet, confers a worse prognosis to early -stage patients that retain MUC4 

expression. Therefore there is considerable confusion regarding the precise role played by Muc4 

in CRC. Our lab has recently generated a Muc4-/- mouse model [18]. No study thus far has 

analyzed the effect of Muc4 loss in conjunction with a conventional genetically driven mouse 

model of CRC. The goal of this project was to generate a CDX2 P-NLS –Cre driven colorectal 

cancer mouse model that will be crossed with the Muc4-/- mouse model generated in our lab. Thus 

far, we have generated CDX2 P-NLS -Cre ApcloxP/loxP mice, which developed tumors at 14 weeks 

of age. The tumors in these mice show altered Muc4 expression pattern in comparison to adjacent 

normal tissue. We expect that upon obtaining mice with the full Muc4-/-; CDX2 P-NLS -Cre 

krasG12D/+ApcloxP/+ genotype, we will be able to definitively answer questions regarding whether 

Muc4 loss aids or hinders CRC progression.  

2. Future directions  

A. The Wnt/β-catenin pathway regulates MUC4 expression in pancreatic ductal 

adenocarcinoma (PDAC)  

(i) Could Wnt/ β-catenin contribute to MUC4 promoter hypomethylation and histone 

acetylation? 

While our studies in PDAC proffer definitive evidence of a Wnt/ β-catenin mediated up-

regulation in pancreatic cancer, these studies raise a number of questions. For instance, numerous 

studies [21-23] have stated that MUC4 promoter hypomethylation and histone acetylation occur 

early on in PDAC progression, yet what factor(s) might cause these epigenetic changes? 

Coincidentally, the β-catenin has been shown to induce widespread chromatin modifications, 
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including histone acetylation and methylation [9, 24]. Given that both aberrant β-catenin and 

increased MUC4 appear at roughly the same time during PanIN progression [25, 26]; might β-

catenin contribute to the permissive chromatin milieu? However, it is also likely that a number of 

factors including β-catenin collude to cause MUC4 promoter accessibility. These tantalizing 

questions could be addressed by future studies. 

(ii) Could Wnt/ β-catenin affect other mucins? 

During the course of our analysis of the β-catenin KD cells, we observed that the levels 

of other mucins were also affected by the KD of β-catenin. In both CD18/HPAF and T3M4, 

MUC1 levels were increased upon the KD of β-catenin i.e, the presence of β-catenin co-related 

with decreased MUC1 protein while RNA levels were unaltered. Given that the MUC1 

cytoplasmic tail has been shown to interact with, stabilize and potentiate nuclear β-catenin [27], 

this result appears rather counter-intuitive. One possible explanation is that β-catenin, which has 

been shown to target glycosylation related genes [28], alters the glycosylation of MUC1. The 

HMFG2 antibody for MUC1 recognizes sparsely glycosylated MUC1 [29, 30] and thus the 

altered glycosylation of MUC1 may account for the apparent change in protein levels. However, 

these ideas are purely speculative and need to be verified. Alternatively, as mentioned in Chapter 

3, a decrease in other EMT related molecules such as Snail, which has been shown to repress 

MUC1 expression [31, 32], could be responsible for this increase. In the CD18/HPAF cell line 

there was a significant decrease in MUC16 protein levels while RNA levels were unchanged in 

the KD cells. This also suggests that β-catenin might alter MUC16 RNA/protein stability and 

could be addressed by future studies. 
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B. The Wnt/β-catenin pathway regulates MUC4 expression in colorectal cancer (CRC) 

(i) What could possibly cause the differential regulation of the same transcript, MUC4, by β-

catenin in these two malignancies?  

There are several plausible explanations for this apparent contradiction, all of which could be 

addressed by future studies and that are discussed below.  

Firstly, the starkest difference between PDAC and CRC is the disparity in the levels of 

aberrant β-catenin and the stage at which the Wnt/ β-catenin pathway is activated during disease 

progression. The levels of β-catenin transcriptional activity are 5-20 fold higher in CRC 

compared to PDAC [33] as well as appearing much earlier on in disease progression. A study has 

shown that even within CRCs, the invasive front of the tumor expresses much higher nuclear β-

catenin than the tumor center, thus activating a different cohort of target genes, leading to 

heterogenous target gene expression [34]. It has been observed that the tissue specific regulation 

of target genes by β-catenin is due to both differential promoter/histone modifications and the 

relative abundance of different TCF/LEF factors [35]. Interestingly, when CD18/HPAF was 

treated with incrementally increasing doses of Wnt3a, low to moderate levels of Wnt3a caused an 

increase in MUC4 and c-Myc (held to be a β-catenin target gene in PDAC [36]), higher levels of 

Wnt3a did not induce MUC4 while the c-Myc levels were actually reduced in comparison to the 

control (Figure 1). Thus, it is tempting to conclude from this experiment that nuclear β-catenin 

represses MUC4 at higher levels while promoting MUC4 expression at lower levels. This 

hypothesis dovetails neatly with studies in CRC showing moderate/increased MUC4 in early 

grade lesions [37](moderate nuclear β-catenin), while advanced grade CRCs (high nuclear β-

catenin) mostly lacked MUC4 [15]. However, this experiment needs to be validated in other cell 

lines and with more specific inducers of nuclear β-catenin (for example, the 4ACAT stabilized β-

catenin construct) since Wnt3a has been shown to also have β-catenin independent functions [38, 

39]. Another experiment that could validate this hypothesis would be an IHC analysis of large 
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tumors to see whether MUC4 is differentially expressed at the invasive front vis-à-vis the tumor 

center, concurrent with differential nuclear β-catenin expression. 

The second plausible explanation for the observed discrepancy between PDAC and CRC 

could be differential TCF/LEF factor expression. While there are primarily four major TCF/LEF 

factors in humans: TCF4, TCF3, TCF1 and LEF1, these factors have numerous splice variants, 

each of which can either promote/repress target gene transcription [40]. For instance, there are 14 

alternatively spliced TCF4 isoforms in hepatocellular carcinoma alone [41]. Furthermore, the 

presence of alternative promoters means that truncated ‘dominant negative’ isoforms also exist 

[40]. Adding to this already mind-boggling complexity is the fact that β-catenin has been shown 

to occasionally partner with unconventional nuclear binding parkers, such as HIF1α [42], SOX 

family proteins [43] and FOXO proteins [44]. Any or several of these proteins are likely 

differentially expressed in PDAC and CRC, which could possibly lead to the differential 

regulation of the same gene. When a panel of CRC cell lines and the PDAC cell line T3M4 were 

profiled for the expression levels of TCF/LEF factors (Figure 2), we observed that while LEF1, 

TCF1 and TCF4 were expressed in all cell lines, TCF3 was expressed in T3M4 alone while being 

completely absent in CRC. TCF3 is generally held to be a repressive TCF factor [40]. Having 

stated that, one cannot rule out the presence of alternate splice forms/truncated isoforms that may 

potentially promote transcription. T3M4 also showed an overall lower level of TCF1, TCF4 and 

LEF1, which is perhaps expected given the lower level of Wnt/ β-catenin signaling in PDAC. 

Given the paucity of studies on the TCF/LEF factors and their functions in PDAC, future studies 

could address the function/isoforms of these factors in pancreatic cancer, more specifically, the 

function/isoforms of TCF3 in light of the differential expression we observed.  

 A third possible cause, which was touched upon in Chapter 4, is cross-talk with other 

pathways. In Chapter 4, evidence pointing towards the notion that β-catenin can influence MUC4 

levels by suppressing Hath1, which ordinarily increases MUC4 expression was presented. Hath1 
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is also suppressed by the Notch pathway, shown to be active in CRC [45]. The role of Notch in 

PDAC, however, is controversial [46], while interplay between Notch and Wnt, leading to disease 

progression has been reported in CRC [45]. Future studies could address the precise mechanism 

by which multiple pathways such as Notch and Wnt converge upon MUC4 regulation in CRC. 

Specifically, Hath1 could be over-expressed and knocked down in CRC cells and the MUC4 

levels could be subsequently observed, the Hath1 binding site in the MUC4 promoter could be 

mutated and we could perform MUC4 promoter luciferase assays to ascertain the regulation of 

MUC4 by Hath1. In Figure 3, I summarize the presumptive mechanism for the differential 

regulation of MUC4 in CRC and PDAC. 

C. Generation of Muc4-/-; CDX2 P-NLS -Cre krasG12D/+ApcloxP/+ mice  

(i) Does Muc4 aid tumor progression despite being diminished in the majority of CRCs?  

 While we haven’t yet generated the Muc4-/-; CKA mice, which will likely provide a 

definitive answer to this question, a recent study from our lab [18] gives us reason to believe that 

the presence of Muc4 may aid tumor progression. In the CDX2 P-NLS -Cre Apc-/- mice that were 

examined, lesions showed dramatically reduced Muc4 compared to surrounding normal areas. 

However, while normal crypts showed focally intense staining in goblet cells, tumor cells showed 

weak cytoplasmic Muc4 staining that was uniformly distributed throughout the lesion. When 

viewed in conjunction with in vitro human cell line data that show increased proliferation in the 

presence of Muc4, one could ask whether the presence of even low amounts of Muc4, such as 

that seen in mouse tumors, contribute to tumor proliferation.  

 In a recent study from our lab where a Muc4-/- mouse was generated, it was observed that 

a compensatory increase in Muc2 occurred upon depletion of Muc4, which was ascribed to 

increased inflammatory cues such as TNF-α and IL-1β [18]. In the proposed mouse model, the 

mice will not be subjected to any inflammation inducing agents such as DSS, and therefore we 

may not see any increase in Muc2 expression. This observation could also have implications for 
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our functional studies with MUC4 KD in human cell lines. Das et al showed that MUC2 is also 

increased as a compensatory mechanism in HCT-8 MUC4 KD cells [18]. Therefore, in order to 

ascertain that MUC2 up-regulation, which has been shown to suppress proliferation [47] is not 

confounding our results, we could over-express MUC4 using the miniMUC4 vector developed in 

our lab in MUC4 negative cell lines. Furthermore, we could over-express MUC4 in MUC2 

low/negative cell lines such as CaCo2 [48].  

 Another factor to be considered is whether the mouse model will necessarily be an 

accurate reflection of the human disease. For instance, while in the normal human colon MUC4 

has been reported to be present in columnar and goblet cells in the lower 2/3rds of the crypt [37], 

in the mouse we observed Muc4 staining virtually exclusively in the goblet cells throughout the 

crypt, concentrated towards the outer 2/3rds of the crypt. These issues related to whether studies 

in mice are applicable to human cancer could be addressed by more extensive studies with human 

cell lines to bolster our findings in mice, such as corroborating our findings in HCT-8 with 

another MUC4 expressing CRC cell line, LS180 and orthotopic implantation of human MUC4 

expressing/depleted cell lines in athymic nude mice.   



192 

 
Figure 1 Treatment of CD18/HPAF with Wnt3a conditioned medium. CD18/HPAF cells 

were treated with increasing volumes of Wnt3a conditioned medium. It was observed that at 

higher doses of Wnt3A, there was no induction of MUC4 expression. As a positive control, the 

levels of c-Myc, an established β-catenin target in PDAC was used. It was observed that there 

was an increase in c-Myc only at lower volumes of Wnt3A, while reduced levels of c-Myc were 

seen with higher levels of Wnt3A. β-actin was used as a loading control.   
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Figure 2 Expression profiles of TCF/LEF factors in CRC and PDAC. Real time PCR for the 

TCF and LEF factors in a panel of CRC and the PDAC cell line T3M4 was performed.   
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Figure 3 Proposed mechanisms for the regulation of MUC4 expression in colorectal cancer 

(CRC) and pancreatic ductal adenocarcinoma (PDAC). A. in CRC, high levels of nuclear β-

catenin alters MUC4 levels by directly binding the MUC4 promoter and forming a repressive 

complex. Also, the Notch and Wnt/ β-catenin pathways may converge upon the repression of 

Hath1, which ordinarily up-regulates MUC4, thus attenuating MUC4 transcription. B. in PDAC, 

relatively low levels of nuclear β-catenin/TCF4 form a transcription activating complex on the 

MUC4 promoter. Note that Wnt/β-catenin transcriptional activity is more active and occurs 

earlier on in disease progression in CRC in comparison to PDAC.  
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