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MECHANISMS OF LATERAL-INHIBITORY FEEDBACK FROM HORIZONTAL CELLS 

TO CONE PHOTORECEPTORS AT THE FIRST SYNAPSE OF THE RETINA 

Ted J. Warren, Ph.D. 

University of Nebraska, 2016 

Supervisor: Wallace B. Thoreson, Ph.D. 

Polarization of the horizontal cell (HC) membrane potential causes changes in 

the synaptic cleft pH that result in inhibitory feedback from HCs to cone photoreceptors 

(PRs). HCs average signals from many PRs and so negative feedback onto PR 

terminals from HCs subtracts the average luminance of the visual scene from the light 

responses of an individual cone. This feedback operates by changing the voltage-

dependence and amplitude of the L-type Ca2+ current (ICa) that regulates synaptic 

release. Feedback regulation of PR Ca2+ channels involves protons but the mechanism 

by which this pH change occurs is unclear. We investigated three possible sources for 

protons in the cone synaptic cleft: 1) extracellular carbonic anhydrase (CA), 2) protons 

released into the cleft upon exocytosis of synaptic vesicles, and 3) sodium-hydrogen 

exchangers (NHEs). Using electrophysiological measurements of HC to cone feedback, 

we found that CA and vesicular protons are not major sources of protons for feedback. 

Feedback was eliminated by removal of extracellular Na+ and significantly inhibited by 

an NHE antagonist, cariporide, implicating NHEs as a significant source of protons. 

While NHEs are a major proton source, they are not known to be voltage-sensitive and 

thus unlikely to be responsible for changes in extracellular proton levels caused by 

changes in HC membrane potential. Instead we found that removal of bicarbonate and 

inhibition of bicarbonate transporters with 500 μM DIDS both eliminated feedback, 

suggesting that HC polarization changes extracellular pH by altering bicarbonate 

transport. 

To test whether an ephaptic mechanism is involved in mediating feedback, we 
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used paired whole cell recordings to hyperpolarize the HC while cone ICa was active and 

then measured the kinetics of feedback-induced changes in the cone membrane current. 

The time constants of the resulting feedback current were slower than the measurement 

time resolution and not instantaneous as predicted by an ephaptic mechanism.  
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“It is a capital mistake to theorize before one has data. Insensibly one begins to 

twist facts to suit theories, instead of theories to suit facts.” 

Sherlock Holmes 

-A Scandal in Bohemia 

Chapter 1 

1.1 Anatomy of the retina 

At the first synapse in the retina, visual information obtained by the cone 

photoreceptors (PRs) is encoded and transmitted to two types of downstream neurons: 

horizontal cells (HCs) and bipolar cells (BP cells). As we consider in this thesis, the 

information transmitted by photoreceptors is shaped by an iconic neural circuit: a lateral-

inhibitory feedback circuit (Byrne & Roberts, 2009). Lateral inhibition is defined as the 

activity of one neuron having an inhibitory effect on its neighboring neurons (as opposed 

to those neurons that are downstream). The spatially extensive dendritic arbors of HCs 

receive synaptic inputs from many PRs but at the same time feed inhibitory signals back 

to PRs which modifies their synaptic output. Before turning to lateral-inhibitory feedback 

and why it is important in visual processing, I begin with a general review of the anatomy 

of the retina and the phototransduction mechanism employed by photoreceptors. 

The retina is a thin piece of neuronal tissue (~200 μm in depth) that lines the 

back of the eye. One advantage to studying the retina is that its cellular composition is 

well defined and it is easily accessible for examination as a tissue (Dowling, 2012). It is 

composed of five-principle types of neurons: PRs, HCs, BP cells, amacrine cells, and 

retinal ganglion cells (RGCs).   

BP cells receive inputs from PRs and transmit them to third-order amacrine cells 

and RGCs.  Information about the visual scene is separated into a dozen different 

parallel pathways created by a dozen different BP cell types (Masland 2012, see Euler et 
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al., 2014 for specific review of BP cells). These BP cells differ in their synaptic 

connections and response properties as a result of distinct anatomical and molecular 

features that involve differences in dendritic anatomy, glutamate receptors, and ion 

channels (Thoreson & Witkovsky, 1999; DeVries, 2000; DeVries et al., 2006; Puthussery 

et al. 2013).  

HCs and amacrine cells are inhibitory interneurons although there exists a class 

of amacrine cells that release glutamate as a neurotransmitter (Lee et al., 2014). As 

discussed in greater detail later, there are 1-3 types of HCs in most retinas contacting 

PR terminals and BP cell dendrites. Amacrine cells send out their dendritic projections 

laterally to contact BP cell terminals, other amacrine cells, and RGCs. There are at least 

29 amacrine cell types (Masland, 2012). There are more than a dozen types of RGCs, 

maintaining the parallel processing of visual information into multiple different functional 

streams initiated by BP cells (Masland, 2012).  

While most of the light-evoked signals that reach the brain originate with the 

responses of rods and cones, it has been recently recognized that some RGCs are 

intrinsically capable of responding to light without receiving upstream signals from cone 

or rod photoreceptors. These RGCs, known as intrinsically photosensitive retinal 

ganglion cells (ipRGCs) have been shown to be necessary for photoentrainment of the 

circadian rhythm, the pupillary light reflex, and sleep (Pickard & Sollars, 2011). Intrinsic 

photoresponses of ipRGCs can also impact visual perception (Schmidt et al., 2014) and 

participate in retrograde signaling by activating dopaminergic amacrine cells to release 

dopamine. Release of dopamine within the retina has a neuromodulatory effect on the 

neurons in the outer retina (Zhang et al., 2008; Zhang et al., 2012).  

In addition to many types of neurons, the retina also contains three types of glial 

cells. Muller cells are radial glial cells that extend from the inner surface to the outer 
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limiting membrane separating the inner and outer segments of photoreceptors. Microglia 

are the resident immune cells within the retina. Astrocytes can be found in the nerve 

fiber layer at the inner surface of the retina.  

A vertical section of the retina reveals that the cell types are organized in laminar 

fashion. (Fig. 1A, B). PRs lie at the back of the retina and so, after being refracted 

through the cornea and the lens, light must pass through the other layers of the retina 

before reaching the PRs. Just proximal to the cell bodies of the PRs is the outer 

plexiform layer (OPL) which contains the synapses between PRs, HCs and BP cells. 

The inner nuclear layer (INL) contains the cell bodies of BP cells, HCs, and amacrine 

cells. Both the ONL and the INL are named because in the vertical section of the retina 

the nuclear bodies of the neurons appear irregularly clustered together forming distinct 

anatomical landmarks. The INL is sandwiched between the OPL and inner plexiform 

layer (IPL) and the ONL is layered above the OPL but below the OS of the PRs. The 

synapses between amacrine cells, BP cells, and RGCs form the IPL. The cell bodies of 

RGCs form a layer at the inner surface of the retina and their nerve fibers lie atop these 

cell bodies. 
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The present thesis is concerned with elucidating the synaptic mechanism by 

which HCs have an inhibitory influence on the release of glutamate from cone terminals. 

The rest of the anatomical discussion will be concerned with this particular synapse, 

hereafter referred to as the first synapse in the retina or the tri-partite synapse. Readers 

interested in learning more on the encoding and transformation of signals downstream 

from this synapse may consult the following references (Masland, 2012; Euler et al., 

2014; Vaney et al., 2012; Field & Chichilinsky, 2007). 

 

1.2 Cone Photoreceptor Anatomy & Physiology 

Cone and rod PRs are sensory neurons that respond to light rays of varying 

wavelengths. Rod PRs are specialized for detecting dim light during nighttime or 

scotopic conditions, while cones are less sensitive to light and thus involved in detecting 

brighter light during daytime or photopic conditions. Cone and rod photoreceptors both 

possess an outer segment (OS) that contains the phototransduction apparatus (Fig. 2). 

In rods, many of the molecules involved in phototransduction are packed into discs of 

membrane that look much like red-blood cells without the concave center. Rod discs are 

stacked one-on-top of another and ensheathed by a lipid bilayer  membrane that is 

Figure 1. Cellular organization of the vertebrate retina. A) A cross-sectional diagram 

showing the major cell types of the retina. B) Three dimensional representation showing 

the cell types and major layers of the retina. The photoreceptors (PRs) make up the 

outermost layer, where their cell bodies form an anatomically distinct, visual landmark 

known as the outer nuclear layer (ONL). The PRs project towards the inner eye and form 

synapses onto the dendrites of HCs and bipolar cells. This synaptic layer is referred to as 

outer plexiform layer (OPL), and is where HC dendrites contact PR terminals. Bipolar cells 

send their axons toward the inner eye and form synapses with amacrine and RGCs, thus 

forming the inner plexiform layer (IPL). The cell bodies of HCs, bipolar, and amacrine cells 

make up the inner nuclear layer (INL). The cell bodies of the RGCs and their axons 

compose the retinal ganglion cell layer. Image taken under a Creative Commons license 

from: “Simple anatomy of the retina” by Helga Kolb, www.webvision.med.utah.edu. 
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contiguous with the rest of the cell. In cone PRs, the discs are not separate organelles 

but formed by infoldings of the plasma membrane of the OS. The inner segment (IS) is 

composed of a mitochondria-rich region called the ellipsoid and a nucleus. The OS is 

connected to the IS through a thin cilium. This cilium allows changes in the membrane 

potential in the outer segment to spread from the light-sensitive OS to the IS and down 

to the synaptic terminal. Synaptic terminals in rods and many cones sit at the end of an 

axonal process extending from the base of the IS.  

Intracellular recordings by Tomita (1965) provided the first direct evidence that 

PRs hyperpolarize in response to light. This was a surprising finding because 

invertebrate PRs were known to depolarize in response to light, thereby increasing the 

release of NT. Toyoda et al. (1969) showed that the input resistance of vertebrate PRs 

increases upon light stimulation, indicating that light causes ion channels to close. Baylor 

and Fettiplace (1977) carried out a series of elegant experiments demonstrating that 

graded changes in the membrane potential of cone PRs are both necessary and 

sufficient for producing a downstream visual signal. Similar to approaches used in our 

experiments, Baylor and Fettiplace took advantage of the fact that changes in 

membrane potentials can be dictated by the experimentalist by introducing current 

through an electrode that impales the cell. They obtained an intracellular recording from 

a cone PR while at the same time recording action potentials extracellularly from an On-

type RGC that responds to light by increases in firing rate. To show that 

hyperpolarization of the cone PR was necessary for signaling of visual information, the 

two shined a light on the retina to activate the On RGC. In darkness, injecting current to 

hyperpolarize the cone PR mimicked the effect of light and stimulated activity in On 

RGCs. Conversely, depolarizing the cone PR by injection of current antagonized On 

RGC responses to light. These results showed that changes in the membrane potential 

of the cone PR are sufficient for signaling visual information to RGCs (Baylor & 
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Fettiplace, 1977; Baylor, 1987). 

 

Outer segment 

Ellipsoid 

Nucleus 

Terminal 

Cone PR Rod PR 
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Most species have a single type of rod photoreceptor and multiple types of cones 

that differ from one another in their spectral sensitivities. The number of cone subtypes 

varies among species. The ability to compare responses from spectrally distinct cone 

types is required for color vision (Dowling, 2012). The different spectral sensitivities 

among cones arise from differences in the light-sensitive pigments they contain. This 

light-sensitive molecule, known as opsin, is contained within the photoreceptor OS 

(Masland, 2012). In Old World primates, cones contain opsins with spectral sensitivities 

that peak in either the long (red), middle (yellow/green), or short (blue) wavelengths. The 

experimental species used in our studies, salamander, possesses three morphologically 

distinct cone subtypes: small single cones, large single cones, and double cones. 

Double- and large single cones are sensitive to long wavelengths of light, while small 

single cones can be sensitive to UV-, red-, or blue-wavelengths of light (Sherry et al., 

1998; Imamoto & Shichida, 2014). Collectively, cone PRs can respond to wavelengths of 

light between 360 – 780 nm. 

Figure 2. Anatomy of cone and rod photoreceptors (PRs). A) A cone and rod 

PR imaged in a vertical section of salamander retina. Cells were labeled with a 

calcium-sensitive dye, Oregon Green BAPTA 1. Rods and cones both have an outer 

segment (OS) that contain the light-sensitive opsin molecules. The inner segment 

(IS) contains the ellipsoid region which is filled with mitochondria. The nucleus is 

contained below, followed by the synaptic terminals. The cone synaptic terminal is 

termed the pedicle while the rod terminal is called the spherule. Images courtesy of 

Dr. Wallace B. Thoreson. B-C) Stylized representation of a cone pedicle (B) and rod 

spherule (C). Each cone pedicle contains multiple synaptic terminals with dendrites 

of HCs (light blue) and bipolar cells (darker blue) directly across from the cone’s 

synaptic ribbons (black arrows). Ribbons tether glutamate-laden synaptic vesicles 

close to L-type Ca2+ channels. The green dendritic terminals represent flat basal 

contacts of Off-type bipolar cells. Image a) was taken with permission, under a 

Creative Commons license from: “Simple anatomy of the retina” by Helga Kolb, 

www.webvision.med.utah.edu. Images in b and c were taken with permission from 

Regus-Leidig & Brandstatter, Structure and function of a complex sensory synapse. 

Acta Physiologica (Oxford, England)(2012).   
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While cones are specialized for brighter light, rods are able to detect absorption 

of a single photon of light, as might occur when an individual is gazing at the stars on a 

clear, moonless night (Hecht et al., 1942; van der Velden, 1946; Rodieck, 1988). The 

greater sensitivity of rods extends the sensitivity of the visual system by roughly a 

thousand times. 

Phototransduction is initiated when one of the opsin molecules in the OS catches 

a photon of light (Rodieck, 1998; Dowling, 2012). The opsin molecule in the rod OS is 

called rhodopsin whereas opsins in cones are typically referred to as cone opsins. 

Figure 3. Generation of the dark current. A) Na+ ions flow down their chemical 

gradient through cGMP-gated channels in the outer segment (OS) in the dark. The 

electrochemical driving force for K+ drives these ions out through K+-selective 

channels in the IS, thus completing the circuit. Na+ ions are pumped out of the cell by 

Na+/K+-ATPases in the IS to maintain the low intracellular concentration of Na+. B) 

Upon stimulation with light (represented by a large-grey box) the cGMP-gated 

channels close, part of the circuit is disconnected, and the amount of positive charge 

entering the cell decreases. There is still a strong-outwardly directed chemical force 

on K+ ions and so the cell hyperpolarizes. Image A) is taken from Kandel, Schwartz, 

& Jessel. Principles of Neuroscience, 4th Ed. The McGraw-Hill Companies Inc., 

2000. Image B) from Rieke & Baylor. Single-photon detection by rod cells of the 

retina. Reviews of Modern Physics.1998 July; 70(3):1027-36. 
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Opsins are transmembrane apoproteins (30-60 kD) with seven α-helices that surround a 

prosthetic group chromophore, 11-cis-retinal (11-cis-vitamin A aldehyde).  An eighth 

helix runs parallel to the intracellular membrane and is involved in signaling to a G 

protein signaling pathway. 11-cis-retinal is covalently linked to a histidine residue within 

the seventh α-helix of the opsin. The chromophore forms a Schiff base with the opsin 

and the red shift induced by this protonation shifts the chromophore’s absorption 

spectrum, allowing it to absorb wavelengths of light in the visible range from 360 to 600 

nm. Variations within the amino acid sequence of different opsin subtypes alter their 

interactions with the chromophore and thus alter the absorption maxima. For example, 

differences in only three amino acid residues account for most of the 30 nm difference in 

peak spectral sensitivities of middle (M) and long (L) wavelength sensitive primate cones 

(Kawamura & Tachibanaki, 2014).   

Upon absorption of a photon, the 11-cis-retinal moiety undergoes a cis-trans 

isomerization reaction and becomes 11-trans-retinal. This causes a conformational 

change in opsin and activates the opsin into a signaling state, where it interacts with a G 

protein known as Transducin (Gt). Each activated opsin moiety can interact with 

hundreds of Gt molecules, thus amplifying the signal. Gt, in its inactive conformation is a 

heterotrimeric protein composed of α-, β-, and γ-subunits. Absorption of photon by opsin 

causes Gt to exchange a molecule of GDP for GTP and Gt then disassociates into α- 

and βγ subunits. Upon dissociation, the active sites of the α- and βγ-subunits are 

exposed. The βγ complex is thought to be involved with the interaction of the opsin itself 

along with binding to deactivated α-subunits. It is not known to be involved directly in the 

transduction of the light signal itself. The Gα subunit then diffuses and eventually 

interacts with the membrane-anchored phosphodiesterase (PDE). PDE is involved in 

converting guanosine 3’,5’-cyclic monophosphate (cyclic GMP) to guanosine 
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monophosphate (GMP). cGMP is a signaling molecule within the OS that diffuses freely 

and can bind to cyclic GMP-gated cation channels within the OS, thus opening the 

channels and allowing them to carry cations into the OS. Cyclic GMP-gated cation 

channels are permeable to Na+, K+ and Ca2+ ions. The net influx of Na+, and to a lesser 

extent Ca2+, causes the membrane to depolarize in darkness.  Thus in darkness, 

photoreceptors have a membrane potential of approximately -35 to -45 mV (fig. 3). 

When PDE is activated it vigorously hydrolyzes cyclic GMP, reducing the molecule’s 

concentration and the amount of binding of cyclic GMP to the cyclic GMP-gated cation 

channels. Closure of cGMP-gated channels reduces the inward cation current and thus 

hyperpolarizes the photoreceptor (Kawamura & Tachibanaki, 2014; Arshavsky et al., 

2002; Luo et al., 2008). This change in membrane potential spreads throughout the cell, 

until it reaches the synaptic terminal where it affects the voltage-sensitive L-type Ca2+ 

channels. 

Na+ ions entering the cell through cation channels in the OS are extruded by 

Na+/K+ ATPases in the ellipsoid region of the IS. The activity of this pump is fueled by a 

dense accumulation of mitochondria at the outer margins of the IS (Wright, 2004). The 

continuous influx of Na+ ions into the OS and extrusion of Na+ ions out of the IS 

generates a circulating current in darkness (i.e., the “dark current”) that passes from 

inner to outer segment in the extracellular space and through the cilium from outer to 

inner segment in the intracellular space (Fig. 3; Baylor, 1987).  

 

1.3 Synaptic terminals of photoreceptors 

The synaptic terminals of rods are typically found at the end of a thin axon. Rod 

terminals are called spherules for their characteristically spherical shape. In mammals, 

post-synaptic BP and HCs typically contact a rod terminal within a single invagination in 
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the spherule (Rao-Mirotznik et al., 1995; Migdale et al., 2003). The tips of the horizontal 

cells and BP cells within the invagination terminate adjacent to a plate-like protein 

structure within the rod terminal known as the synaptic ribbon. Synaptic ribbons are also 

found in cones and a variety of other sensory neuron synapses that tonically release NT, 

including hair cells, pineal photoreceptors, and retinal bipolar cells (LoGiudice & 

Matthews, 2009). Ribbons are involved in tethering, priming, and regulating the amount 

of the release of synaptic vesicles from the terminal region (Snellman et al., 2011; 

Jackman et al., 2009). The ribbon promotes synchronous release of vesicles, in that it 

tethers the vesicles and the exocytotic machinery within close proximity of the L-type 

Ca2+ channels, so that changes in Vm are more precisely coupled with changes in the 

amount of neurotransmitter released (Thoreson, 2007). The synapse between these 

three cell types--photoreceptors, HCs and BP cells--is known as a tripartite synapse.  

Cone PRs have larger synaptic terminals called pedicles. Unlike rod spherules 

that exhibit a single invaginating synapse, cones contain many invaginations (Fig. 2B & 

C). In the primate retina, pedicles of foveal cones contains approximately 20 synaptic 

invaginations and peripheral cones can contain as many as 50 (Anhelt et al., 1990; 

Havercamp et al., 2001a). As shown in Fig. 4, HCs are lateral to the more central BP cell 

processes and extend deeper into the invagination.  In mammals, On BP cell dendrites 

terminate directly across from the synaptic ribbon, whereas Off BP cells form basal 

contacts onto cone pedicles just outside of the invagination. Unlike this arrangement in 

mammals, in salamander retina about 80% of terminals have Off BP cells as their central 

elements and 80-90% of On BP cells form basal contacts outside of the terminal 

(Lasansky, 1973). In Fig. 4B, the long-vertical electron-dense structure is the synaptic 

ribbon. Cone ribbons are typically 0.2-1 μm long and 0.2-0.5 μm high (Pierantoni & 

McCann, 1981; Sterling & Matthews, 2005; Pang et al. 2008). Rod ribbons are larger, 
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extending 1-3 μm in length.  Ribbons tether a large supply of vesicles near release sites. 

For example, individual rod PRs from the cat retina each possess approximately 3,600 

vesicles (Schmitz, 2009). In salamander retina, each cone ribbon tethers ~100 vesicles 

and each rod ribbon tethers ~700 vesicles (Bartoletti et al., 2010; Thoreson et al., 2004).  

This allows for ribbons to provide a continual supply of vesicles for tonic release 

(Thoreson, 2007). 

 

 

Cone PRs release the neurotransmitter glutamate by the fusion of synaptic 

vesicles at ribbons (Snellman et al., 2010).  Rods release vesicles at ribbons but can 

also release vesicles at non-ribbon sites (Chen et al., 2013, 2014). Synaptic vesicle 

Figure 4. Cross-sectional view of cone synaptic terminal. A) Stylized image of the 

invaginating tripartite synapse. In mammals, the ON bipolar cell (BC) dendrite enters 

the center of the invagination. Two horizontal cell (HC) dendrites flank the ON BC.  

OFF BC dendrites terminate at flat basal contacts just outside the invaginating 

synapse. The locations of ionotropic glutamate receptors (iGluR) on HCs and OFF 

BCs and metabotropic glutamate receptors (mGluR) on ON BCs are also shown. The 

synaptic ribbon is represented as a black-vertical bar with white circles representing 

synaptic vesicles. B) An electron micrograph of tripartite synapse with labeled 

horizontal cell dendrites (H) and bipolar cell terminal (B). A) was taken with 

permission, under a Creative Commons license from: “Simple anatomy of the retina” 

by Helga Kolb, www.webvision.med.utah.edu.Image B) taken from E.A. Schwartz. 

Transport-Mediated Synapses in the Retina. Physiological Reviews. 2002 Jan; 

82(4):875-891. 



15 
 

release from rods and cones is regulated by the gating of voltage-gated Ca2+ channels 

that are clustered just beneath the ribbon (Nachman-Clewner et al., 1999; Morgans, 

2001; tom Dieck et al., 2005).  Unlike conventional synapses in many neurons where 

release is typically regulated by activity of N- and P-type channels, release from ribbon-

bearing cells (including photoreceptors) is controlled by L-type Ca2+ channels (Wilkinson 

& Barnes, 1996; Corey et al., 1984). L-type channels are composed of at least three 

subunits: an α1 pore-forming subunit together with accessory α2δ and β subunits. There 

is ongoing debate about whether or not γ-subunits are expressed in neurons or only in 

muscle cells (Chen et al., 2007; Dolphin, 2012). The accessory subunits affect gating 

properties of the channel and are involved in transport of the channel to the membrane 

surface (Dolphin, 2012). L-type Ca2+ channels are considered to be high-voltage 

activated channels, meaning they have a greater conductance at more positive 

potentials (e.g., -40 mV) as opposed to low-voltage activated channels which can open 

at more negative potentials (e.g., -60 mV).  L-type Ca2+ channels are also characterized 

by their sensitivity to dihydropyridine antagonists and agonists. There are four types of L-

type Ca2+ channels, Cav1.1 – 1.4 classified by the isoform of the α1 pore-forming 

subunit.  Rod and cone PRs mainly express Cav1.4 channels (Bauman et al., 2004; 

Bech-Hansen et al., 1998; Strom et al., 1998) together with α2δ4 and β2a accessory 

subunits (Wysick et al., 2006; Ball et al., 2002).  

L-type Ca2+ channels show little or no inactivation. Non-L-type Ca2+ channels 

undergo voltage-independent inactivation which allows them to close and get ready to 

respond to another action potential, as opposed to still transmitting the previous signal. 

By contrast, the persistent quality of L-type Ca2+ channels allows them to respond 

continually to graded changes in the local membrane potential. CaV1.4 channels show 

even less voltage- and calcium-dependent inactivation than other L-type channels (Lee 
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et al., 2015; Koschak et al., 2003; Baumann et al., 2004; Doering et al., 2005). The lack 

of calcium-dependent inactivation is due to the presence of an autoinhibitory domain on 

the C terminus (Wahl-Schott et al., 2006). 

Glutamate release from photoreceptors causes HCs and Off BP cells to 

depolarize and On BP cells to hyperpolarize (Bloomfield & Dowling, 1985; Shiells et al., 

1981). Light-evoked hyperpolarization diminishes the release of glutamate from 

photoreceptors, thus causes HCs and Off BP cells to hyperpolarize to light and On BP 

cells to depolarize to light. These different response polarities arise from differences in 

the glutamate receptors in these cell types. HCs and OFF BP cells contain ionotropic 

kainate and alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) 

receptors whereas On BP cells possess a metabotropic glutamate receptor, mGluR6 

(Thoreson & Witkovsky, 1999; Yang, 2004; Snellman et al., 2008; Shen et al., 2012). 

Unlike ionotropic receptors in which glutamate binding opens cation channels, activation 

of mGluR6 by glutamate closes non-selective cation channels causing membrane 

hyperpolarization. By relieving this tonic hyperpolarizing influence, the cessation of 

glutamate release by photoreceptors in light causes On BP cells to depolarize. The 

transduction mechanism for mGluR6 involves release of Gβγ subunits from Go proteins 

leading to the closure of TRPM1 channels (Dhingra et al., 2000; Koike et al., 2009; Shen 

et al., 2009, 2012; Morgans et al., 2009). The presence of different types of glutamate 

receptors in different bipolar cells is important for the creation of different channels that 

carry different aspects of the visual scene. In addition to the different response polarities 

of On and Off BP cells, different Off BP cells express different populations of ionotropic 

glutamate receptors.  Some Off BP cells express kainate receptors, some express 

AMPA receptors, and some express both types, albeit segregating them to different 

dendrites (Puller et al., 2013; Lindstrom et al., 2014; Puthussery et al. 2014; Borghuis et 

al., 2014). Differences in the kinetics of these different types of ionotropic glutamate 
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receptors contribute to differences in the abilities of BP cells to encode transient or 

sustained responses (Puthussery et al., 2014; Borghuis et al., 2014). 

 

1.4 Horizontal Cell Anatomy & Physiology 

           HCs are interneurons that form a mosaic tiling the ONL and contacting 

photoreceptors throughout the OPL. HCs receive excitatory glutamatergic input from 

PRs and can release GABA (reviewed by Thoreson & Mangel, 2013). However, as 

addressed in detail later, GABA release from HCs onto photoreceptors does not appear 

to mediate negative feedback from HCs to cones.  HCs predominately express AMPA 

receptors and depolarize in response to application of exogenous glutamate 

(Haverkamp et al., 2001b; Perlman et al., 1989). HCs in the tiger salamander seem to 

have only AMPA receptors (Yang I., 1998) but there is also physiological evidence for 

kainate receptors in HCs of human and mouse (Shen et al., 2004; Feigenspan & Babai, 

2015). HCs are continuously activated by glutamate release in darkness allowing them 

to maintain a steady depolarized Vm in scotopic conditions. To do so, their iGluRs have 

been shown display less desensitization than iGluRs at other synapses (Perlman et al., 

1989; Otis et al., 1996; Carbone & Plested, 2012). Perlman et al., (1989) recorded the 

HC Vm while applying L-glutamate for a period of 20 minutes. The HCs remained in a 

steady depolarized state, only hyperpolarizing during application of glutamate-free ringer 

(Perlman et al., 1989).  

While cone PRs have a dark resting membrane potential between -35 to -40 mV, 

HCs may be depolarized to a resting potential of -10 to -30 mV in darkness and 

hyperpolarize by 20-50 mV in light (Dowling, 2012). Aside from HCs in fish retina, HCs 

do not generate sodium-dependent action potentials. The receptive field size of an 

individual HC is typically much larger than its dendritic field. For example, HC dendritic 
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fields in fish retina range from 30 to 150 μm, while their receptive fields can extend 1 to 3 

mm (Stell & Lightfoot, 1975; Naka & Rushton, 1967). This difference is due to extensive 

electrical coupling via gap junctions between HC dendrites (Kaneko, 1971). The efficacy 

of the electrical coupling varies between night and day and is under neuromodulatory 

control that involves the release of dopamine from amacrine cells which receive their 

signals from ipRGCs (Lasater & Dowling, 1985; Ribelayga et al., 2002; Zhang et al., 

2008). 

In the primate retina, there are two types of HCs classified as H1 and H2. The 

cell bodies of H1 HCs receive inputs from long- and medium-wavelength cones (Verweij 

et al., 1999; Pan & Massey, 2007; Trümpler et al., 2008). In non-primate mammals, H1 

HCs are classified as B-Type (Rodieck, 1998). The axon terminal of H1 and B-type HCs 

forms a compartment that is contacted only by rods and, for most part, electrically 

isolated from the soma and (Nelson et al., 1975). While largely isolated from one 

another, some cone signals may pass from the soma to axon compartments in B-type 

HCs (Trümpler et al., 2008). Rod inputs can pass into HC somas by traveling through 

gap junctions between rods and cones (Raviola & Gilula, 1973).  H2 HCs are axonless 

cells that make contacts with S-, M-, and L- cones and are termed A-type in nonprimate 

species. The different subtypes of HCs form gap junctions exclusively with members of 

their own class as demonstrated by injection with neurobiotin (Dacey et al., 1996). 

In lower invertebrates, HCs can be classified as luminosity (L-type) cells or 

chromaticity (C-type) cells (Twig et al., 2003). L-type HCs respond to all wavelengths of 

light with membrane hyperpolarization whereas C-type cells depolarize to some 

wavelengths and hyperpolarize to others. Mammals lack C-type HCs (Deeb et al., 2000). 

C-type HCs form a third morphological class (H3 cells; Negishi et al. 1997). Although 

there appears to be only a single morphological class, there are two physiological types 
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of C-type HCs: biphasic R/G cells (which hyperpolarize to green light but depolarize to 

red light) and triphasic cells (which hyperpolarize to red and blue but depolarize to 

intermediate green wavelengths) (Burkhardt, 1993).  

Salamanders contain A- and B-types of HCs, in parallel to subtypes found in 

mammals. In salamander, A-types (H2) received signals exclusively from cones, while 

both the soma and axon terminal compartments of B-types (H1) received mixed 

rod/cone signals (Zhang et al., 2006). We did not distinguish these subtypes in our 

experiments. We found that as long as there was evidence of feedforward connections 

from cones to HCs, we observed negative feedback effects from HCs to cones, 

suggesting that all subtypes participate in HC feedback.  

 

1.5 Lateral inhibitory feedback from HCs to photoreceptors 

Hartline was awarded the Nobel Prize in 1967 for the discovery of lateral 

inhibition in the retina of the horseshoe crab, Limulus polyphemus (Hartline et al., 1956; 

Ratliff & Hartline, 1959). Hartline et al. examined the responses of individual 

photoreceptors while stimulating neighboring neurons with light. They noticed an 

exponential increase in action potential frequency (as opposed to a linear increase) from 

the recorded neuron as the light approached closer and closer to a neighboring 

photoreceptor. When the light finally reached an immediately adjacent cell, the recorded 

PR became strongly inhibited and greatly reduced its firing rate (Hartline et al., 1956; 

Dowling, 2012). Lateral-inhibitory feedback was subsequently shown to be important in 

other sensory systems besides vision. In somatosensation, lateral inhibitory feedback 

improves two-point discrimination or the ability to distinguish to between two spatially 

different points of tactile sensation (von Békésy, 1967). Lateral inhibition helps to refine 

and narrow the signals, thus decreasing overlap and increasing the spatial resolution, 
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much like decreasing the optical point spread function in microscopy (Kandel et al., 

2000).   

Denis Baylor et al. (1971) showed that HCs mediate lateral inhibition to cone PRs 

in vertebrate retinas (Fig. 5). While hyperpolarizing cone PRs with a spot of light under 

current clamp conditions, Baylor et al. noticed that increasing the diameter of a light 

stimulus caused the cone’s membrane potential to depolarize. The kinetics and 

receptive field properties of these depolarizing responses in cones were similar to those 

of HC light responses. To test for a connection between the two cell types, they 

polarized the membrane of a HC while recording the membrane potential in a nearby 

photoreceptor. They observed a sign-inverting signal between cones and HCs and 

concluded that the depolarizing response in cones was due to HC hyperpolarization 

(Baylor et al., 1971). 
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Feedback from HCs to PRs is critical for comparing local and global changes in 

light intensity. With their wide receptive field, HCs collect information from many cones 

and thus measure the average luminance over a wide area of the retina. By feeding an 

inhibitory signal back onto a PR terminal, the response to the average light level is 

subtracted from the response of that individual photoreceptor so that intensity changes 

which exceed background become more salient. For example, imagine a white bar 

falling on only one small region of the HC receptive field.  Because cones are 

hyperpolarized by light, the HC will be receiving less glutamate from the illuminated 

cones compared to nearby cones in darkness. The HC feeds back an adjusted inhibitory 

signal onto cone PRs in the dark region, disinhibiting ICa and thereby increasing 

glutamate release.  This enhances the dark border to make it appear extra-dark. This 

mechanism underlies the perceptual phenomenon known as Mach bands, where the 

perceptual contrast between a light and dark border is enhanced (Thoreson & Mangel, 

2012). 

Subtraction of surrounding average light levels from local changes by lateral-

inhibitory feedback creates antagonistic center-surround receptive fields.  These circular 

receptive fields were first discovered in cat RGCs by Stephen Kuffler (1953) who 

showed that shining a spot of light the size of the dendritic field on certain RGCs 

Figure 5. Lateral-inhibitory feedback from a HC to a cone PR. The effect on the 

cone ICa. A) A diagram of two cone PRs with a HC. The cone on the right is voltage 

clamped and the trace represents a recording of the membrane while the cone is in 

dark. Below, is an A-type HC filled with neurobiotin from the rabbit retina. B) Same 

schematic, only the left-hand side of the HC (below) is illuminated. This causes the HC 

to hyperpolarize which relieves inhibitory feedback to the cone, causing an increase in 

ICa and development of an inward current (represented by a downward deflection of 

the trace on the right). Traces recorded by Ted Warren and Wallace B. Thoreson. A-

type HC taken with permission from Pan F, SL Mills, SC Massey. Screening of gap 

junction antagonists on dye coupling in the rabbit retina. Visual Neuroscience. 2007 

Jul-Aug;24(4):609-18, reproduced with permission. 



22 
 

increased their firing rate, while shining an annulus that extended further into the 

periphery inhibited responses. Center-surround receptive fields appear first in cones and 

are also found in BP cells and lateral geniculate neurons that are downstream from 

RGCs (Wiesel & Hubel, 1966).  The appearance of center-surround receptive fields in 

cones and the ability of compounds that block HC feedback to abolish this organization 

in RGCs suggests that center-surround receptive fields originate with negative feedback 

from HCs to cones (Mangel, 1991; Witkovsky et al., 2006; McMahon et al., 2004). 

Lateral inhibitory feedback not only helps us to detect edges and borders but also 

contributes to local adaptation. In everyday visual scenes there is a great range of 

luminance between different objects within the visual scene and if PRs were to directly 

read out the light signals falling on them with no comparison, some individual objects 

could become saturated and it would impossible to distinguish bright objects from 

dimmer ones (Rodieck, 1998). This is akin to what happens when one photographs a 

bright object in a dim room (Masland, 2013). HC feedback provides local control of 

amplification of spatially disparate signals, allowing the retina to view all objects, even if 

one is emanating or reflecting far more photons than another object in the same visual 

scene.  

Feedback from HCs to cones is also critical for detecting color by creating what 

are known as color opponent center-surround fields. Color vision requires the 

comparison of signals from different cones with differing spectral sensitivities.  Although 

cones can differ in their spectral sensitivity, individual cones are “color blind” (Baylor et 

al., 1987).  This means that individual cones, regardless of their spectral sensitivity, 

respond to the number of photons caught by their photopigments. The spectral 

sensitivity of the photopigment in a cone increases the probability that certain 

wavelengths will be absorbed over others, but if one increases the intensity of a light, 
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this has the effect of increasing the probability that the photon will be caught by the PR. 

The idea that cone responses vary only with the number of photons that is captured and 

not with the wavelength of those photons is referred to as the principle of univariance 

(Rushton, 1972). It is only by comparing the ratios of photons caught by cones with 

differing spectral sensitivities that color differences can be detected. Lateral inhibitory 

interactions between individual cones and HCs allow for this comparison and create 

color opponent responses. Recall that C-type HCs respond with different polarities to 

different wavelengths of light. L-type HCs, on the other hand, respond to all wavelengths 

of light with hyperpolarization. Thus, the hyperpolarization of red-sensitive cones to red 

light causes post-synaptic L-type HCs to hyperpolarize. Both red and green-sensitive 

cones receive inhibitory feedback from L-type HCs.  Hyperpolarization of L-type HCs by 

red light thus relieves inhibitory feedback from L-type HCs onto green-sensitive cones.  

The increased glutamate release from green-sensitive cones produces a depolarizing 

response to red light in color-opponent HCs receiving synaptic inputs from these cones.  

In support of a role of HC feedback in generating color opponency in the retina, blocking 

HC feedback eliminates color opponent responses in HCs as well as RGCs (Vigh & 

Witkovsky, 1999; Crook et al., 2011; Kamiji et al., 2012).   

In addition to feedback onto cone terminals, HCs also supply inhibitory feedback 

to rod PRs (Babai & Thoreson, 2009; Thoreson et al., 2008). The mechanisms of HC 

feedback to rods appear similar to feedback from HCs to cones (Thoreson et al., 2008). 

Although it has not yet been investigated, the role(s) of HC to rod feedback in retinal 

processing are also likely to be similar. For example, HC to rod feedback may contribute 

to formation of center-surround receptive fields in retinal ganglion cells under scotopic or 

mesopic conditions (Thoreson & Mangel, 2012).  

HCs can also supply positive feedback back to cone terminals (Jackman et al., 
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2011). This positive feedback is not well understood but involves activation of AMPA 

receptors in HCs and is thought to involve more spatially-limited local interactions than 

negative feedback. By countering the global suppression of cone glutamate release by 

negative feedback in locally juxtaposed cones, this positive feedback mechanism may 

improve our ability to detect faint details at a border or an edge (Jackman et al., 2011). 

 

1.6 Mechanisms of negative feedback from HCs to cones. 

As stated earlier, cone terminals contain L-type Ca2+ channels that open upon 

membrane depolarization and allow Ca2+ to come into the terminal and ultimately cause 

fusion of glutamate-laden synaptic vesicles with the membrane. It was recognized quite 

early that the depolarizing influence of HC to cone feedback modulated the ICa at the 

cone terminal (Gerschenfeld & Piccolino, 1978; Piccolino & Gerschenfeld, 1978; Byzov, 

1979; Gershenfeld et al., 1980), but it was not until 1996 that Verweij et al. determined 

exactly what aspects of the cone ICa was being modulated. Verweij et al. used voltage-

clamp intracellular recordings from cones to step the cone Vm to various potentials and 

compiled two current vs. voltage relationships (hereafter, referred to as an I-V plot), one 

where a small spot of light illuminated only the recorded cone and one where an annulus 

was also present to illuminate the surrounding retina. Application of annular illumination 

did not produce further changes in the cone since it was already saturated by bright 

central illumination but instead hyperpolarized surrounding HCs that have very large 

receptive fields. Upon hyperpolarization of HCs by annular illumination, inhibitory 

feedback was diminished and the activation curve of the cone ICa shifted leftward on the 

I-V plot to more negative potentials (Fig. 6). This was subsequently confirmed by others 

(Hirasawa & Kaneko, 2003; Cadetti & Thoreson, 2006). 
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Since visual information is encoded in the amount of release of the 

neurotransmitter glutamate from the cone terminal, a change in activity of L-type Ca2+ 

channels will alter the amount of glutamate release (Fig. 7). Light-adapted cones have a 

membrane potential of around -45 to -50 mV, just below the mid-point of the ICa I-V plot. 

Thus, a small leftward shift in activation induced by the reduction of HC feedback in light 

can cause a significant increase in ICa activation even without any change in the cone 

membrane potential.  Conversely, depolarization of HCs in darkness will cause a 

positive (rightward) shift in activation, thereby decreasing ICa and glutamate release from 

cones.   

Although it was discovered more than 40 years ago, there is still no consensus 

concerning the mechanism by which HCs mediate inhibitory feedback onto PRs (Fig. 7). 

The three main theories are: 1) a synaptic mechanism (i.e., HC release of GABA onto 

PR terminals), 2) a pH modulatory mechanism (i.e., a change in the synaptic cleft pH), 

and 3) an ephaptic mechanism (i.e., HC polarization influences the local electric field 

Figure 6. Cone ICa with and without feedback. A representative I-V plot of cone ICa in 

darkness (black trace) and during surround illumination (red-orange trace). Notice the 

increase in the peak current and the shift in the activation voltage for ICa to more 

negative membrane potentials during surround illumination. 



26 
 

surrounding the voltage-sensitive L-type Ca2+ channels). 

 

 

1. The GABA Hypothesis 

The first indication that HCs could be GABAergic interneurons came from studies 

in cold-blooded invertebrates and birds where light-stimulated HCs increased their 

uptake of GABA compared to other retinal cells and dark-adapted HCs (Lam & 

Steinman, 1971; however, see Lam, 1975 for exceptions to this). Both vertebrate and 

invertebrate HCs contain GABA, GABA-synthesizing enzyme glutamic acid 

decarboxylase (GAD), and GABA transaminase (see Thoreson & Mangel, 2012). HCs 

also contain SNARE and other proteins (e.g., SNAP25, syntaxin-4) involved in synaptic 

release within their dendritic arbors (Lee & Brecha, 2010; Hirano 2007, 2011). Upon 

stimulation with glutamate and its agonists, HCs have been shown to release GABA. 

There is curious evidence that release of GABA can occur via Ca2+-independent 

mechanism (Yazulla & Kleinschmidt, 1983; Schwartz, 1982). This Ca2+-independent 

mechanism relies on the GABA transporter being present within HC dendrites 

(Schwartz, 2002). A possible mechanism by which this could occur comes from the 

neuromuscular junction where there is non-vesicular release of acetylcholine that is 

mediated by vesicular acetylcholine transporters following vesicle fusion with the plasma 

Figure 7. Flowchart of lateral-inhibitory feedback in the outer retina. The red-

colored cones represent an illuminated surround. The green neurons are the HCs, 

which in this case become hyperpolarized upon illumination of the surround. This 

hyperpolarization leads to a disinhibitory effect on L-type Ca2+ channels within the 

synaptic terminals of the cone PRs in the center (black) which in turn increases their 

release of glutamate. This mechanism creates center-surround antagonistic 

receptive fields that can also be observed in downstream BP and RGCs.  
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membrane (Petrov et al. 2011). Similarly, the vesicular GABA transporter may be 

situated within the vesicle membrane to direct GABA into the vesicular lumen. Upon 

exocytosis, the side of the transporter that was facing the lumen is now exposed to the 

synaptic cleft and able to transport GABA into the cleft without Ca2+ being involved. 

However, this non-canonical form of neurotransmitter release seems to be limited to 

non-mammalian species since these GABA transporters were not found in guinea pig 

HCs (Guo et al., 2010). 

Tachibana and Kaneko (1984) reported that isolated red- & green-sensitive 

cones from fresh-water turtles showed an increase in Cl- currents upon application of 

GABA. In blue-sensitive cones and rod PRs, no effects were seen (Tachibana & 

Kaneko, 1984). Together with evidence that HCs can release GABA, this suggested that 

perhaps GABA receptors might mediate HC to cone feedback.  Wu (1991) found in 

salamander cones that had lost their OS that an application of the GABAa antagonist, 

bicuculline, blocked HC to cone inhibition. However, studies from a variety of other 

species found that HC feedback onto cones was unperturbed by application of GABA, 

GABA antagonists, or GABA agonists (Thoreson & Burkhardt, 1990, Verweij et al., 1996, 

Hirasawa & Kaneko, 2003; Verweij et al., 2003, Tatsukawa et al., 2005; Crook et al., 

2009, 2011). Center-surround receptive fields of BP cells and RGCs in primate and 

salamander retina were also unaffected by a variety of GABA antagonists (Hare & 

Owen, 1996; McMahon et al., 2004). 

Other evidence against the GABA hypothesis concerns the reversal potential of 

Cl- (ECl) in cone PRs. In the dark, cone ECl is approximately -37 mV (Thoreson & Bryson, 

2004). The driving force on a particular ion is the difference between the resting 

membrane potential and the ion’s reversal potential (Vm – Erev). So, at potentials more 

negative than Erev (-37 mV), Cl- will flow out of the cone and cause a membrane 
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depolarization. In bright light, cone PRs have a resting Vm  ≈ -45 mV and so release of 

GABA from HCs Cl- should depolarize cones, not hyperpolarize them as predicted for 

inhibitory feedback from HCs to cones. Thus, a large body of evidence argues that 

GABA is not a viable candidate for lateral-inhibitory feedback from HCs to cones 

(Dowling, 2012). 

 

2. The Ephaptic Hypothesis 

The idea that an ephaptic or purely electrical mechanism can influence cell-to-

cell communication has its roots as far back as the 1930’s. At the time, 

neurophysiologists were debating whether neurons communicated to one another via 

chemical or electrical means (the so-called “soup v. spark” debate; Faber & Korn, 1989). 

While chemical communication is the principal means by which neurons communicate 

with one another, purely electrical communication through gap junctions is also quite 

important (Pereda, 2014).  Ephaptic communication appears to be more limited and has 

thus received less attention (Anastassiou and Koch, 2015).  The term ephaptic comes 

from the Greek word έφάψή, meaning “touch or junction” (Arvanitaki, 1942). Ephaptic 

processes are classified into two different categories, 1) those generated from the 

synchronous activity of a network or an ensemble of neurons, and 2) those between two 

different neuronal cell types (Faber & Korn, 1989). The former, which are largely 

excitatory are seen at the neuronal network level, while the latter is usually inhibitory and 

at the individual level of the neurons themselves (Jefferys, 1995; Anastassiou & Koch, 

2015). To date, there are only a few confirmed examples of ephaptic coupling between 

individual neurons. They include the Mauthner cell axon cap in teleost, the pinceau of 

the cerebellar Purkinje cell, layer 5 pyramidal neurons of the neocortex, the 

photoreceptors of the blowfly, and compartmentalized olfactory receptor neurons in 
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Drosophila (Korn & Faber, 2005; Blot & Barbour, 2014; Anastassiou et al., 2011; 

Weckström & Laughlin, 2010; Su et al., 2012).   

At the tripartite photoreceptor synapse, polarization of the HC had little or no 

effect on the cone’s overall Vm, but instead altered the cone ICa (Byzov & Shura-Bura, 

1986; Piccolino & Neyton, 1982). The increase in ICa at the cone terminal that is induced 

by HC’s inhibitory feedback could not be readily explained by a conventional synaptic 

mechanism and so it was instead postulated that it might be due to either an ephaptic or 

neuromodulatory mechanism (Byzov, 1979; Gerschenfeld et al., 1980; Piccolino & 

Neyton, 1982). 

In the ephaptic mechanism envisioned by Byzov, upon HC hyperpolarization, 

current flow into the HC through the extracellular resistance in the synaptic cleft 

generates a local voltage drop or a net negative field within the synaptic cleft. This 

reduction in positive charge within the synaptic cleft would effectively depolarize the 

locally adjacent cone membrane. This highly local depolarization of voltage-gated Ca2+ 

channels (VGCC) would explain the decrease in threshold for activation of cone ICa upon 

HC hyperpolarization. The ephaptic hypothesis is supported by the fact that the cleft size 

of the tripartite synapse is narrower than traditional synapses (~16-20 nm compared to 

~30 nm; Dowling, 2012), which could produce a higher cleft resistance and thus a larger 

voltage drop between the interior of the invaginating synapse and the surrounding 

extracellular space.  However, some critical parameters have not been measured and so 

this is only circumstantial evidence for an ephaptic mechanism (Dowling, 2012).  The 

resistance of the HC dendrite and its space constant (λ) are key parameters in 

determining if an ephaptic event is feasible at this synapse but they remain unknown 

(Dmitriev & Mangel, 2006; Anastassiou & Koch, 2015). Resistance of the extracellular 

matrix is also unknown. This resistance is determined by both its chemical composition 
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and the cleft volume. Because of a lack of detailed ultrastructural data at the cone 

synapse, current models of the ephaptic effect do not take into account cleft volume 

sizes (Gardner et al., 2015). Although the cleft is narrow, the dendrite of the HC within 

the rod PR terminal has an alternating “ballooned” and “crinkled” topology yielding a 

rather large total surface area of 5.1 ± 1.2 μm2 (Rao-Mirotznik et al., 1995).  The cleft 

volume within the rod invagination is thus 20-fold greater than an average synaptic 

bouton (Rao-Mirotznik et al., 1995). A similarly large volume is present at cone 

invaginations and this large volume would reduce the overall extracellular resistance, 

reducing the ability of extracellular current flow to produce ephaptic voltage changes.   

Kamermans et al. (2001) proposed a modification to the ephaptic mechanism in 

which the HC current sink involved hemi gap junctions or hemichannels at the tips of the 

HC dendrites. Gap junctions are formed from two hemichannels or connexons. Each 

connexon is composed of six transmembrane subunits known as connexins which are 

arranged in such a way as to form a pore in the membrane. While many hemichannels 

remain closed in the absence of a partner, some hemichannels are capable of opening 

into the extracellular space to allow current to pass across the cell membrane (Sáez et 

al., 2005). Immunohistochemical evidence for hemichannels at the dendritic tips of HCs 

along with a lack of ultrastructural evidence that these hemichannels formed gap 

junctions with other hemichannels prompted the idea that they might be involved in 

ephaptic feedback (Janssen-Bienhold et al. 2001; Kamermans et al., 2001).  

In support of a role for hemi gap junctions in feedback, a connexon antagonist 

carbenoxolone reduced feedback (Kamermans et al., 2001). However, carbenoxolone 

also has effects on many other mechanisms including direct inhibition of L-type Ca2+ 

channels in cones (Vessey et al., 2004). Thus, carbenoxolone inhibits transmission from 

cones to HCs making it difficult to separate effects on HC feedback to cones from effects 
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on cones to HCs when using light stimuli. To examine feedback directly without the use 

of light responses, Cadetti and Thoreson (2008) simultaneously voltage-clamped both a 

cone and HC.  Polarizing the HC caused changes in the voltage-dependence and 

amplitude of ICa similar to those produced by polarizing HCs with annular illumination. 

However, blocking hemi gap junctions with carbenoxolone did not reduce the feedback 

effects of HC polarization on cone ICa (Cadetti & Thoreson, 2008).   

In another approach, Shelley et al. (2006) knocked out the HC gap junction 

protein, connexin 57, in mice. This caused a reduction in contrast sensitivity but this 

reduction was attributed to blocking the coupling between HCs and thus reducing the 

size of their receptive fields (Shelly et al. 2006). Feedback is reduced when the size of 

the illuminating surround is reduced (Kaneko & Hirasawa, 2003).  

Eliminating the major gap junction protein in zebrafish HCs, connexin 55.5 also 

reduced contrast sensitivity (Klaassen et al., 2011). In addition, consistent with a role in 

negative feedback from HCs, loss of this protein eliminated depolarizing responses in 

color-opponent HCs and reduced changes in cone ICa voltage-dependence induced by 

HC depolarization (Klaassen et al., 2011). Thus, it has been suggested that in zebrafish, 

HC feedback may involve ephaptic mechanisms utilizing connexin 55.5.   

 As illustrated in Fig. 6, inhibitory feedback from HCs causes both a change in 

the threshold of activation and a change in the peak amplitude of cone ICa (Verweij et al., 

1996; Kaneko & Hirasawa, 2003; Cadetti & Thoreson, 2006; Thoreson et al., 2008; 

Packer et al., 2010). A purely ephaptic mechanism will not produce a change in the peak 

amplitude of ICa. Kaneko and Hirasawa (2003) showed that adding an additional 

depolarization (+2 mV) to the cone to simulate an ephaptic effect caused appropriate 

shifts in the voltage activation threshold but did not produce the increase in the peak of 

ICa that is consistently seen with HC hyperpolarization. Thus, while there may be an 
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ephaptic contribution to HC feedback, there is also a significant contribution from other 

mechanism(s) (Wang et al., 2013; Vroman et al., 2014).  

Ephaptic changes can occur at the speed of light and are thus effectively 

instantaneous. An ephaptic mechanism may be measured relative to a slower event 

(e.g., synaptic transmission) or by observing if the measured phenomenon is as fast as 

the time-resolution capabilities of the electrode (Blot & Barbour, 2014; Ogden, 1987). 

Light responses of HCs and light-evoked feedback changes in cones showed nearly 

identical kinetics, leading to the suggestion that a component of HC feedback is 

instantaneous (Vroman et al., 2013, 2014).  However, HC light responses are 

intrinsically slow and thus limit the resolution of these comparisons.  To test for 

contributions from an ephaptic mechanism, we examine the kinetics of HC feedback in 

Chapter 2 using voltage clamp techniques to rapidly change the HC membrane potential 

while simultaneously measuring feedback-induced changes in ICa in cones. 

   

3. The pH Hypothesis 

Protons are a potential candidate for the fast-acting, neuromodulatory substance 

that Gershenfeld et al. (1980) suggested was involved in HC feedback. Protons have 

inhibitory effects on the conductance of Na+ and Ca2+ channels (Ohmori & Yoshii, 1977; 

Prod’hom et al., 1987; Hess et al., 1986; Tang et al., 2014). Individual protons are 

capable of blocking the channel pore or exerting electrical effects on the voltage-sensing 

helix of the channel, thus affecting its conductance (Prod'hom et al., 1987; Chen & 

Tsien, 1997). In studies on salamander cones, Barnes et al. (1993) showed that 

increasing the extracellular pH from 7.0 – 8.2 caused an increase in the peak amplitude 

of L-type ICa and lowered the threshold for activation. They concluded that a change in 

the proton concentration of the cleft has a modulatory effect on the gain of synaptic 
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transmission, consistent with a potential role of these ions in feedback. 

An increase in the number of protons in the cleft can alter the membrane surface 

potential. Head groups of phospholipids that make up the lipid bilayer have a net 

negative charge that can be neutralized by the binding of a positively charged ion (e.g., 

divalent cation or proton). Thus, if one decreases the concentration of Ca2+ or protons to 

remove that counter ion from the membrane, this makes the external surface of the 

membrane more negative, diminishing the voltage drop that occurs between the outer 

and inner membrane surfaces. This effectively depolarizes the membrane without 

adding more positive charges to the inner membrane (Hille, 2001). Surface charge 

theory can account for the voltage shifts in ICa activation induced by protons (Krafte & 

Kass, 1988; Zhou & Jones, 1996).  However, the fact that different Ca2+ channel 

subtypes respond to pH changes with different magnitude voltage shifts suggests that 

these shifts are not entirely due to diffuse surface charge effects (Doering & McRory, 

2007). A local increase in protons near the voltage sensor could offset negative charges 

around the voltage sensor and thus increase the local trans-membrane electrical field 

experienced by the VGCC to produce a rightward shift in the threshold for activation of 

ICa. 

To account for pH effects on the amplitude of ICa, Chen and Tsien (1997) 

provided evidence that protons can transiently block the pore by competitively binding 

with negatively charged glutamate residues within the pore. These residues are 

responsible for the initial binding and selectivity for Ca2+ ions to be transferred across the 

pore. Modified VGCCs where aspartate residues were substituted for glutamate residues 

in the pore showed less of a pH effect on channel conductance than wild type channels 

(Chen & Tsien, 1997). The idea is that protons interfere with the binding of Ca2+ ions to 

the selectivity filter of the channel and this is measured as a decrease in ICa (Tang et al., 
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2014). 

To test a role for pH in feedback, Kaneko and Hirasawa (2003) supplemented the 

bicarbonate buffer of the external medium with the pH buffer, 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES; pKa = 7.5). Upon stimulation with a light annulus 

to activate the surround, limiting pH changes in the cleft with 10 mM HEPES eliminated 

the effects of HC feedback on the cone ICa (Kaneko & Hirasawa, 2003). HC feedback 

assessed with paired cone/HC recordings and by Ca2+ imaging techniques was also 

abolished by supplementing the superfusate with HEPES (Cadetti & Thoreson, 2006; 

Vessey et al., 2005).  HC feedback to rods was also eliminated by HEPES (Thoreson et 

al., 2008; Babai & Thoreson, 2009).  Packer et al. (2010) showed that the center-

surround antagonistic receptive fields of On retinal ganglion cells were abolished by 

supplementing bicarbonate with HEPES. Color-opponency in the retina of primates and 

fish is also blocked by HEPES (Crook et al., 2011; Kamiji et al., 2012).  

In dissociated HCs, Fahrenfort et al. (2009) found that application of HEPES 

caused an intracellular acidification and suggested that this intracellular acidification 

might have adverse effects on connexin channels. However, Kaneko and Hirasawa 

(2003) showed that the non-aminosulfonate buffer 2-Amino-2-hydroxymethyl-propane-

1,3-diol (Tris) also eliminated feedback.  In addition, Trenholm and Baldridge (2010) 

demonstrated that buffers that possess aminosulfonate groups but exhibit buffering 

capabilities outside of the extracellular pH range had no effect on HC feedback. 

Furthermore, those buffers that did not buffer within the normal pH range nevertheless 

caused intracellular acidification. These data indicate that the block of feedback was not 

due to direct or indirect pH-mediated effects of aminosulfonate buffers on connexins.  

Jouhou et al. (2007) used a pH-sensitive dye, 5-hexadecanoylaminofluorescein 

(HAF), to measure near-membrane pH changes in dissociated HCs from fish retina. 
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They found that depolarization of HCs caused extracellular acidification. However, a 

later study by Jacoby et al. (2014) showed under the conditions used by Jouhou et al., 

his dye likely reported near-membrane intracellular pH, not extracellular pH. When 

loaded for shorter periods of time, Jacoby et al. (2014) found that HAF reported 

extracellular alkalinization upon HC depolarization.  This was consistent with earlier 

observations by the same group made with pH-sensitive electrodes in which they found 

that depolarization of dissociated HCs caused extracellular alkalinization (Jacoby et al., 

2010). These findings are opposite to predictions for a role of protons in mediating HC 

feedback to cones. However, the cell dissociation process may have sheared off critical 

cellular elements at the tips of the HC dendrites. To measure pH changes in a more 

intact retina preparation, Wang et al. (2013) measured changes in synaptic cleft pH by 

engineering a double transgenic zebrafish carrying a pH-sensitive molecule, 

calipHluorin, attached to the α2δ4 subunit of the L-type Ca2+ channel which is anchored 

on the extracellular face of the cone membrane. Wang et al. (2014) also generated HCs 

to express invertebrate FMRF-amide receptor Na+ (FaNaC) channels. Upon imaging 

flatmount retinal tissue, they observed alkalinization of the synaptic cleft when HCs were 

hyperpolarized by light and acidification when HCs were depolarized by activation of 

FaNaC channels with FMRF-amide. This study provided direct evidence for changes in 

the synaptic cleft pH with HC polarization that are consistent with the pH hypothesis. 

The experiments described above establish a critical role for protons in HC 

feedback to cones by showing that: 1) extracellular pH changes can reproduce the 

effects of feedback, 2) blocking pH changes eliminate feedback, and 3) appropriate pH 

changes are observed in the synaptic cleft. In the following chapter, we examine three 

questions concerning HC feedback to cones.  1) What is the source of extracellular 

protons that are involved in HC feedback?  2) What is the mechanism by which free 
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protons are removed by HC hyperpolarization? 3) Are the kinetics of feedback fast 

enough to support involvement of an ephaptic mechanism? 
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Chapter 2: Results 

2.1 Introduction 

The retina has two principal functions: 1) to transduce a light signal into an 

electrochemical signal and 2) to compare signals between different neurons (Rodieck, 

1998). Both of these functions are initially performed by photoreceptor cells which can 

catch photons of light and respond with graded changes in their membrane potential 

(Vm) that reflect the number of captured photons. These light-evoked changes in 

membrane potential in turn regulate release of the neurotransmitter glutamate and thus 

convey analog information of the visual scene to downstream neurons and ultimately to 

the brain. However, PRs do not simply convey differences in light intensity of the visual 

scene, but also have their signals modified by neighboring PRs through interactions with 

interneurons known as horizontal cells (HCs). By allowing PRs to compare signals 

between one another, these interactions shape contrast and chromatic sensitivity. 

HCs that mediate these lateral interactions between photoreceptors receive 

inputs from a spatially extensive array of PRs. In addition to feedforward inputs from 

PRs, HCs also make inhibitory feedback connections back onto PRs that modulate the 

activity of L-type Ca2+ channels in PR terminals, thus altering the amount of glutamate 

release (reviewed by Thoreson & Mangel, 2012). By subtracting the spatially averaged 

luminance signal received from many surrounding PRs, negative feedback from HCs to 

individual PRs enhances the detection of local differences in light intensity, thereby 

improving the salience of borders and edges. Negative feedback interactions between 

spectrally distinct cone subtypes can also create color opponent responses (Packer et 

al., 2010; Crook et al., 2011). 

The mechanism by which HCs supply inhibitory feedback to cone PRs has been 

debated since its discovery over 45 years ago (Baylor et al., 1971). Although other 
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mechanisms may also contribute, experiments from a number of different laboratories 

have established a role for protons. Key results include the ability of pH changes to 

replicate feedback effects on cone ICa (Barnes et al., 1993), blockade of HC feedback by 

enhanced pH buffering (Hirasawa & Kaneko, 2003; Vessey et al., 2005; Cadetti & 

Thoreson, 2006; Trenholm & Baldridge, 2010), and the demonstration that HC 

depolarization acidifies the cone synaptic cleft (Wang et al., 2013). A major goal of the 

present study was to determine the source(s) of protons involved in HC feedback to 

cones. There are only a few mechanisms by which extracellular protons can be 

generated in the synaptic cleft. The most likely possibilities are:  1) generation of protons 

by the actions of extracellular carbonic anhydrase (CA), 2) exocytotic release of protons 

that are packaged into synaptic vesicles with anionic neurotransmitters, and 3) extrusion 

of protons by Na+/H+ exchangers (NHE).  The experiments described in this study point 

to a Na+/H+ exchanger (NHE) within the HC membrane as the principal source of protons 

for lateral-inhibitory feedback. Although NHEs provide the major source for extracellular 

protons, NHEs are not voltage-dependent (Fuster et al., 2004). Instead, our results 

further suggest that voltage-dependent changes in synaptic cleft pH caused by HC 

voltage changes involve bicarbonate flux across the HC membrane. 

In addition to contributions from protons, there is also evidence for a second 

component to feedback (Vroman et al., 2014) that may involve an ephaptic mechanism 

(Byzov & Shura-Bura, 1986; Kamermans et al., 2001). The current idea is that gap 

junction hemichannels in HC dendrites allow greater inward current flow when HCs 

hyperpolarize (Vroman et al., 2013). When combined with high extracellular resistance, 

this current flow can create a voltage drop within the synaptic cleft. By making the local 

electrical field inside the synaptic cleft more negative, this reduces the local trans-

membrane voltage drop sensed by L-type Ca2+ channels in the cone terminal, allowing 
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them to activate at more negative potentials. One property of ephaptic voltage changes 

is that they occur instantaneously (Jefferys, 1994; Vroman et al., 2013). Consistent with 

this prediction, Vroman et al. (2014) found that the kinetics of feedback currents in cones 

evoked by annular illumination matched the kinetics of HC light responses.  However, 

HC light response kinetics are themselves relatively slow and thus may become the rate-

limiting step in this comparison. To produce rapid changes in HC membrane potential, 

we measured the kinetics of feedback currents in cones evoked by voltage steps applied 

simultaneously to voltage-clamped HCs.  Consistent with Vroman et al. (2014), we found 

two kinetic components to feedback but both components were too slow to be explained 

by a purely ephaptic mechanism. 

 

2.2 Methods 

Preparation 

Negative feedback from HCs and cone PRs was studied using two different 

preparations of salamander retina: flatmount and slice preparations. In both instances, 

euthanasia of the animal was done in an ethical manner in accordance with the 

protocols approved by the University of Nebraska Medical Center and the Institutional 

Animal Care and Use Committee. 

Adult-aquatic tiger salamanders (Abystoma tigrinum, 18 – 25 cm in length, male 

or female, Charles D. Sullivan, Co., Nashville, TN, USA) housed on a 12 hour-light/day 

cycle. Experiments were begun 1-2 h into subjective night. Salamanders were 

anesthetized by immersion in MS222 (0.25 g/L) for >15 min and then decapitated with 

heavy shears. The head was hemisected and the spinal column rapidly pithed. The eyes 

were then enucleated and nested on a saline-soaked cotton wad placed on a linoleum 

block for ease of dissection (Van Hook & Thoreson, 2013). The anterior portion of the 
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eye was removed and the eyecup was quartered. For the retinal slice preparation, the 

eyecup quarters were placed on a rectangular piece of nitrocellulose paper (5 x 10 mm; 

type AAWP, 0.8 μM pores, Millipore Ltd.) and then the retinas were isolated from the 

retinal pigment epithelium, choroid and sclera.  The filter paper with retina was cut into 

strips with a width of 125 μm. The retinal slices were rotated 90 degrees and placed in 

the recording chamber where they were perfused at ~1 ml min-1 with a pH 7.4 

bicarbonate-buffered Ringer solution (all in mM: 101 NaCl, 22 NaHCO3, 2.5 KCl, 2.0 

CaCl2, 0.5 MgCl2, 11 glucose).  Solutions were continuously bubbled with 95% O2/5% 

CO2. In some experiments, NaHCO3 was changed to 12 or 32 mM to achieve solution 

pH of 7.1 or 7.8, respectively. In these solutions, the amount of NaCl was adjusted to 

maintain an osmolality of 240 – 244 mOsm as assessed by an osmometer (Wescor). We 

prepared a nominally-Na+ free solution by replacing Na+ with choline (all in mM: 101 

Choline-Cl,  22 Choline-HCO3, 2.5 KCl, 2.0 CaCl2, 0.5 MgCl2, 11.0 glucose, bubbled for 

10 min with 95% O2/5% CO2). For HEPES experiments, we added 10 mM HEPES to the 

standard bicarbonate-buffered solution without adjusting the osmolality and used NaOH 

to return the pH to 7.4. For bafilomycin experiments, we incubated the eyecup overnight 

at 4ºC in a 1% BSA-bicarbonate buffered saline solution to preserve the tissue’s vitality. 

The chamber was viewed with a water-immersion objective (40X, 0.7 NA) on an upright-

fixed stage microscope (BH-2 RFCA Olympus). 

 In order to record light responses from the flatmount retina preparation, we 

prepared the tissue in the dark with the aid of infrared illumination and dissecting 

microscope (Bausch and Lomb) equipped with night-vision goggles (NiteMate NAV3, 

Litton). A section of dark-adapted, isolated retina was placed ganglion cell layer down 

onto a piece of nitrocellulose membrane with a small rectangular hole in the center to 

allow for light stimuli to be focused on the photoreceptors.  
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Electrophysiology 

Patch pipettes for whole-cell patch clamp recordings were pulled from 

borosilicate glass (1.2 mm o.d., 0.95 mm i.d., with an internal filament, World Precision 

Instruments, Sarasota, FL, USA) using a PP-830 micropipette puller (Narishige, Tokyo, 

Japan). Pipettes were filled with an internal-recording solution containing (in mM): 50 Cs-

Gluconate, 40 Cs-Glutamate, 40 CsOH, 10 TEA-Cl, 3.5 NaCl, 1 CaCl2, 1 MgCl2, 9.4 Mg-

ATP, 0.5 Na-GTP, 5.0 EGTA, 10 HEPES. Pipette resistance was between 10–15 MΩ. In 

some experiments, we increased the pH to 9.2 by adding NaOH. Cone PRs and HCs 

were voltage-clamped using an Axopatch 200B patch clamp amplifier (Axon 

Instruments, Molecular Devices, Sunnyvale, CA, USA) and Alembic VE-2 amplifier 

(Alembic Instruments, Montreal, Quebec, Canada), respectively. Whole-cell currents 

were digitized with an Axon Digidata 1440A interface and acquired using Clampex 

10.2.0.12 software. A measured liquid-junction potential of -9 mV was not corrected for 

in these experiments. 

Cones and HCs were identified by their morphology and physiological properties 

(Van Hook & Thoreson, 2013). Charging curves for cones (n = 15) yielded the following 

passive parameters: membrane capacitance (Cm) = 76.1 1 ± 6.68 pF, access resistance 

(Raccess) = 25.7 ± 2.86, membrane resistance (Rm) = 229.9 ± 53.3 MΩ, and time constant 

() = 1.48 ± 0.07 ms. For HCs (n = 15): Cm = 41.9 ± 4.42 pF, Raccess = 36.0 ± 2.87 MΩ, 

Rm = 239.4 ± 75.9 MΩ, and  = 1.03 ± 0.11 ms.  

Center-surround antagonistic stimulation 

For the flatmount preparation, we obtained whole cell voltage-clamp recordings 

from cone PRs. Cones were held at -70 mV and stepped to different test potentials (-60, 

-50, -40, -35, -30, -25, -20, -15,  and -10 mV) to activate ICa by different amounts. A spot 

plus annulus sequence was created in Microsoft Powerpoint and projected onto the 
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retina through a prism in the condenser pathway from a compact LED projector 

(MPro110; 3M Maplewood, MN, USA). The cone was first illuminated with small spot of 

light (diameter = 45 μm) for 1.5 s and then the surround was illuminated with an annulus 

(i.d. = 45 μm; o.d. = 1 mm) for another 1.5 s. The onset and offset of light were detected 

with a photodiode. Annular illumination sometimes evoked direct light response due to 

light scatter into the receptive field center of the cone. In each cell, we therefore 

subtracted the average amplitude of currents evoked at annulus onset and offset when 

the cone was held at -50 and -60 mV. 

Paired recordings 

For slice recordings, we obtained whole cell recordings simultaneously from both 

an HC and cone. Pairs of cells were determined to have a synaptic connection by 

stimulating the cone with a step pulse (from -70 to -10 mV, 50 ms) and observing if the 

simultaneously voltage-clamped HC (Vm = -60 mV) responded with a post-synaptic 

current. To assess feedback, the HC was stepped to one of four test potentials (-90, -60, 

-30, or 0 mV) for 1.9 s and then we measured the cone ICa with a ramp-voltage protocol 

(-90 to +60 mV, 0.5 mV/ms). Two sets of steps were given to each pair with a 45 s rest 

period between trials. In one set, the sequence of steps applied to the HC began with     

-90 mV and in the other set, the sequence began with 0 mV.  

We evaluated the strength of HC to cone feedback by determining the changes 

in the peak amplitude (Ipeak) of the cone ICa and the voltage at which the ICa is half 

maximal (V50) (Cadetti & Thoreson, 2006). The Ipeak was normalized as a percentage 

change compared to the Ipeak values obtained when the HC was hyperpolarized to -90 

mV. Changes in voltage-dependence were measured as the difference in V50 relative to 

the V50 measured when the HC was held at -90 mV. 
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Data were analyzed using Clampfit (Axon Instruments) or GraphPad Prism 4. 

Statistical significance was evaluated with a paired t-test with P<0.05 unless otherwise 

noted. All variability is reported as SEM. 

 

2.3 Results 

Carbonic anhydrase (CA) 

Figure 1 (A – C) illustrates 

measurements of Ifeedback from a cone in flatmount retina.  In this example, the cone was 

voltage clamped at -30 mV which is near the V50 value for ICa. Application of a bright spot 

of light onto this cone evoked an outward light-evoked current (Ioutward). We then applied 

an annulus to illuminate the surrounding region of retina while maintaining central 
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Figure 1. Center-surround antagonistic 

stimulation. 

(A) A representative set of traces from a 

voltage clamped cone in a flatmount retina. 

Illumination of the cone with a spot of light 

evoked an Ioutward (top trace). Superposition 

of annular illumination evoked an inward 

Ifeedback (middle trace). Removal of the 

annulus caused an Ioutward reflecting loss of 

Ifeedback (bottom trace). (B) Same protocol 

with 10 mM HEPES buffer added to bath 

solution. Application of HEPES caused a 

slight increase in the light response due to 

blockade of inward Ifeedback (top trace). No 

currents were observed at onset (middle 

trace) and offset (bottom trace) of annular 

illumination showing that Ifeedback was 

eliminated by buffering synaptic pH 

change with HEPES. (C) Change in 

amplitude of feedback (ΔIfeedback) upon 

onset and offset of annular illumination 

plotted against the cone membrane 

potential (Vm, N = 5). *Differences in 

ΔIfeedback between control and 10 mM 

HEPES achieved statistical significance at 

cone potentials of -25, -20 and -10 mV 

upon light on- and offset (Annulus ON: 

cone Vm = -25 mV P = 0.0063, -20 mV P = 

0.0092, -10 mV P = 0.0077; Annulus OFF: 

cone Vm = -25 mV P = 0.0417, -20 mV P = 

0.0367, -10 mV P = 0.0151). 
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illumination to limit activation of the cone by light scattered back into the center. This 

annular or surround illumination evoked an inward current (Ifeedback) due to an increase in 

ICa resulting from release of negative HC feedback. Removal of annular illumination 

caused a decrease in Ifeedback (Fig. 1A). We repeated this sequence of illumination while 

holding the cone at different potentials from -60 to -10 mV.  The increase in Ifeedback 

evoked by annular illumination and decrease evoked by its cessation show a voltage-

dependence that parallels ICa activation with a threshold above -50 mV and peak near -

25 mV (Fig. 1C). 

One possible source of extracellular protons in the synaptic cleft is the activity of 

extracellular CA which catalyzes the conversion of CO2 and H2O into H2CO3, which then 

spontaneously dissociates into H+ and HCO3
- . While CA can be expressed both intra- 

and extracellularly (Sarthy & Ripps, 2001), extracellular CA XIV has been observed in 

the outer plexiform layer (OPL) of goldfish and mouse retina (Nagelhus et al., 2005; 

Fahrenfort et al., 2009). Using the flatmount retina preparation, we tested whether 

antagonizing extracellular CA function had any effect on HC feedback currents by bath 

applying benzothiophene-3-ylmethylsulfamide (FC5-207a; 1 μM), a membrane-

impermeant CA antagonist (Winum et al., 2007; Fiaschi et al., 2013). Consistent with 

extracellular alkalinization resulting from inhibition of extracellular carbonic anhydrase, 

FC5-207a caused a negative shift in activation potential for ICa and an increase in Ipeak 

(Fig. 2A; N = 7). For comparison, we also show the effect of alkalinization from 7.4 to 7.8 

on ICa in Fig. 2B. However, as shown in Fig. 2C, we observed no significant difference in 

Ifeedback evoked at onset or offset of surround illumination. 
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Figure 2. Extracellular carbonic anhydrase (CA) does not contribute protons 

for feedback. 

(A)  Effect of membrane-impermeant CA antagonist FC5-207a (1 μM) on ICa. 

Application of FC5-207a shifted the activation threshold of ICa to more negative 

potentials along and increased the peak current (Ipeak). This is similar to extracellular 

alkalinization (n = 7) as shown in (B) where the extracellular solution was changed 

from pH 7.4 to 7.8. (C) Ifeedback was unchanged by application of 1 μM FC5-207a (N = 

7). 
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Paired recording protocol 

Because many of the drugs tested in later experiments could potentially influence 

light responses of cones or HCs, we used a different approach to test feedback in which 

we directly manipulated the membrane potential of a voltage-clamped HC while 

recording ICa in a simultaneously voltage-clamped cone.   As illustrated in Fig. 3, we 

stepped the HC to 4 different potentials (-90, -60, -30, and 0 mV) and then measured ICa 

by applying a ramp voltage protocol (-90 to +60 mV, 0.5 mV/ms) to the cone. We 

confirmed synaptic connectivity between the HC and cone by the presence of a post-

synaptic current in the HC during depolarizing stimulation of the cone. For example, Fig. 

3A shows the inward synaptic currents (arrow) evoked by activation of ICa during the 

voltage ramp applied to the cone (Fig. 3B). The ramp-evoked cone currents were leak 

subtracted and plotted against the cone holding potential (Fig. 3C). As shown in this 

example, progressively depolarizing the HC membrane potential caused cone ICa to 

activate at more positive potentials and attain a smaller peak current. To assess the 

strength of HC feedback, we plotted the change in membrane potential at which the 

current was half maximal (V50; Fig. 3D) and the change in peak amplitude (Fig. 3E) 

against the HC holding potential. We normalized data from different cells by measuring 

changes in ICa amplitude and activation relative to values determined when the HC was 

voltage-clamped at -90 mV. 

Vesicular Protons 

 Synaptic vesicles utilize a vesicular ATPase (V-ATPase) to take up protons and 

use the proton gradient to load anionic neurotransmitters (Poudel & Bai, 2014). V-

ATPase activity produces a luminal vesicle pH of 5-6 (Liu & Edwards, 1997). Fusion of 

glutamate-filled vesicles in cone terminals releases protons into the synaptic cleft where 

they can have an inhibitory effect on presynaptic ICa (DeVries, 2001). HCs contain acidic 
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GABA-laden synaptic vesicles at their terminals (Lee & Brecha, 2010). The continuous 

release of glutamate or GABA into the synaptic cleft in darkness could thus potentially 

provide a tonic source of protons. 

Figure 3. Protocol for measuring feedback with paired recordings. 

(A) Currents in an HC during steps from -60 mV to -90 (green), -60 (blue), -30 (red) 
and 0 mV (black). Note the inward synaptic currents evoked by activation of ICa in the 
cone by the ramp voltage protocol (arrow). (B) Currents recorded simultaneously in a 
cone during application of a voltage ramp while the HC was stepped to different 
potentials. (C) Leak-subtracted ICa vs. cone holding potential shows an increase in 
Ipeak and shift in activation of ICa to more negative potentials as the HC was 
hyperpolarized. (D) Feedback-induced changes in activation (V50) as a function of 
changes in HC holding potential. V50 was measured as the cone Vm at which the Ipeak 
was half-maximal. All values were then normalized to the V50 measured when the HC 
Vm = -90 mV. (E) Change in Ipeak as a function of HC holding potential. Data are 
plotted as the percentage decrease in Ipeak from that measured when HC Vm = -90 
mV. All data from the same cell pair. 
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To test this hypothesis, we blocked V-ATPases by incubating retinas in 3.5 μM 

bafilomycin (plus 1% BSA in amphibian superfusate) for 12 hrs and then assessed the 

strength of feedback using our paired-recording protocol (Fig. 3). We also continuously 

applied bafilomycin during the recordings. Consistent with block of V-ATPase activity, 

bafilomycin treatment completely eliminated HC light responses, miniature EPSCs in 

HCs, and EPSCs evoked by depolarizing stimulation of presynaptic cones in paired 

recordings. Because it blocked HC responses, bafilomycin also eliminated Ifeedback 

evoked by surround illumination in the flatmount preparation. However, with our paired 

recording protocol, the changes in Ipeak and V50 induced by changes in HC holding 

potential were not eliminated by bafilomycin. Fig. 4 shows a series of ICa measurements 

made at different HC holding potentials.  As in control untreated cells, there was a 

marked rightward shift in activation and decrease in peak amplitude of cone ICa with HC 

depolarization. Fig. 4A and B show that the changes in Ipeak and V50 values did not differ 

significantly between bafilomycin-treated tissue and control retinas that were incubated 

overnight in BSA-containing amphibian superfusate without bafilomycin. Thus, vesicular 

protons released from either cone or HCs are not required for lateral-inhibitory feedback 

from HCs to cones. These data also show that the release of glutamate from the cone 

terminal is not required for feedback. 
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NHEs 

The extrusion of protons by NHEs contributes to maintenance of the acidic 

internal pH of ~7.2 primarily in PRs and HCs (Koskelainen et al., 1993; Saarikoski, 1997; 

Kalamkarov, 1996; Haugh-Scheidt & Ripps, 1998). To test whether NHEs might provide 

a source of extracellular protons at the cone synapse, we eliminated the inward Na+ 

Figure 4. Vesicular protons do not mediate feedback from HCs to cone PRs. 

 (A) The shift in V50 and (B) the percentage change in the Ipeak the between control 

and bafilomycin-treated retinas plotted against the HC membrane potential. After 

incubating retinas in 3.5 μM bafilomycin for 12 hrs (N = 3), the change in V50 and Ipeak 

caused by changes in HC membrane potential were not significantly different from 

controls (N = 4). Both (A & B) were plotted relative to values when HC Vm = -90 mV. 
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driving force by replacing extracellular Na+ with choline. Na+ replacement eliminated the 

feedback-induced changes in both Ipeak and V50 of cone ICa caused by changes in HC 

holding potential (Fig. 5). The effect on V50 was statistically significant at the HC holding 

potential of 0 mV and the effect on Ipeak was statistically significant at HC holding 

potentials of -30 and 0 mV. Feedback-induced changes in Ipeak and V50 both recovered 

after returning to the control superfusate. These data indicate that feedback requires an 

inward gradient for Na+. 
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To determine whether HCs or cones provided the major source of protons, we 

then tested effects on HC to cone feedback of reducing the intracellular proton 

concentration to restrict the availability of protons needed for NHE activity. To do so, we 

obtained paired recordings and introduced an alkaline patch pipette solution with pH 9.2 

into either the cone or HC. We compared the changes in V50 and amplitude with controls 

recordings obtained using the normal pH 7.2 pipette solution. The feedback-induced 

differences relative to measurements at -90 mV in both V50 and Ipeak were significantly 

reduced (n = 7) at HC holding potentials of -60, -30 and 0 mV by introducing pH 9.2 

solution into the HC (Fig. 6). HCs retained their viability as evidenced by the fact that 

their holding currents were unchanged throughout the recordings.  In contrast, feedback-

induced differences in V50 were not altered by alkalinization of the cone cytosol (Fig. 6; n 

= 4). However, changes in Ipeak were abolished by alkalinization of the cone cytosol.  This 

probably does not reflect a true loss of feedback since changes in V50 were not changed. 

The site at which protons modulate channel conductance resides within the pore (Chen 

& Tsien, 1997) and so it is possible that alkalinization of the cone interior may 

overwhelm the ability of extracellular changes to alter pH within the pore. These results 

support the idea that extrusion of protons by NHE could provide a source of extracellular 

protons and show that the protons are likely to be derived from HC cytosol. 

Figure 5. Removal of extracellular Na+ and alkalinizing the intracellular milieu of 

HC eliminated feedback. 

(A & B) When Na+ in the extracellular solution was replaced with choline the 

feedback-induced shift in the V50 and changes in the Ipeak were eliminated. (N = 5; V50: 

HC Vm = -30 mV, P = 0.052, paired t-test between test and control; 0 mV, P = 0.043; 

Ipeak: HC Vm = -60 mV, P = 0.059, -30 mV, P = 0.020; 0 mV, P = 0.020) Both 

recovered after washout. * indicates statistical significance. 
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Vessey et al. (2005) showed that an NHE antagonist, amiloride, interfered with 

feedback, but amiloride is also known to interact with a variety of channels including 

Figure 6. Effects of alkalinizing cone and HC cytosol on feedback during paired 

recordings. 

Either the cone or HC pipette solution was buffered to ~pH 9.2 and feedback was 

assessed using the paired recording protocol. (A) Alkalinizing HC cytosol (N = 7) 

eliminated the feedback-induced shift in V50 with respect to control (N = 22; unpaired t-

test, ΔV50: HC Vm = -60 mV, P = 0.0403; -30 mV, P = 0.0072; 0 mV, P = 0.0035). 

Alkalinizing cone cytosol (N =4 ) did not alter the feedback-induced shift in V50.  (B) 

Alkalinizing HC and cone cytosol both caused a significant reduction in feedback-

induced effects on Ipeak compared to control (HC alkalinization: HC, Vm = -60 mV, P = 

0.0233, unpaired t-test; -30 mV P = 0.0009, 0 mV P = 0.0013; cone alkalinization:  Vm = 

-30 mV, P = 0.0163; 0 mV, P = 0.0357). 
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epithelium sodium channels (ENaC), acid-sensing ion channels (ASIC), and TRP 

channels. To further test the idea that a NHE may be involved in feedback, we tested the 

NHE antagonists (Masereel et al., 2003) cariporide (N-(Aminoiminomethyl)-5-

cyclopropyl-1-(5-quinolinyl)-1H-pyrazole-4-carboxamide) and zoniporide (N-

(Diaminomethylidene)-3-methanesulfonyl-4-(propan-2-yl)benzamide) on feedback. 

Cariporide (10 μM) caused a significant reduction in feedback-induced changes in Ipeak 

(N = 7 cone/HC pairs, paired comparisons at -60 and -30 mV, p < 0.05) and V50 (paired 

comparison at -30 mV, p < 0.05; Fig 7A & B). The effects of this drug did not show 

recovery during washout period.  Application of zoniporide (25 μM; N=5) showed a 

similar trend towards a reduction in the change of Ipeak and V50 values but did not attain 

statistical significance. 
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We tested whether feedback was sensitive to changes in the extracellular pH by 

obtaining paired recordings in the control-pH 7.4 solution and then switching to a 

solution with either pH 7.1 or 7.8. These solutions were prepared by using 12 or 32 mM 

NaHCO3 rather than 22 mM as used in the control solution.  As shown in Fig. 8, HC 

feedback as measured by decreases in both Ipeak (P < 0.015, one-way ANOVA at HC Vm 

= -60, -30, & 0 mV) and V50 shifts (P < 0.05, one-way ANOVA at HC Vm = 0 mV) was 

significantly strengthened by extracellular acidification suggesting that changes in the 

trans-membrane concentration gradient for protons or bicarbonate alter feedback 

strength. 

Figure 7. The NHE antagonist, cariporide, reduced feedback. 

(A & B) Cariporide (N = 7) caused a significant reduction in feedback-induced changes 

in V50 (A) and Ipeak (B) (V50: HC Vm = -60 mV, P = 0.0631, paired t-test; -30 mV, P = 

0.0356; 0 mV, P = 0.0880; Ipeak: HC Vm = -60 mV, P = 0.0408; -30 mV, P = 0.0230; 0 

mV, P = 0.0599). (C & D) There was a similar trend towards a reduction in feedback 

strength with zoniporide (25 mM) but the differences did not attain significance. Neither 

group recovered from application of the drug. 
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The sensitivity of feedback to changes in pH could be due to changes in either 

the proton or reflect changes in the bicarbonate gradients.  Using the paired recording 

protocol, we looked at effects of removing bicarbonate on feedback. We began by 

adding 1 mM HEPES to our normal saline solution to increase the buffering capacity 

slightly.  This produced a decrease in the changes in the V50  and amplitude (Fig. 8A; P 

Figure 8. Strength of feedback increases as extracellular solution becomes 

acidified. 

Using the paired recording protocol, feedback was tested at pH 7.8 (N = 5), 7.4 (N = 

23), or 7.1 (N = 7) in the bicarbonate-buffered ringer solution. (A) There was an 

increase in the V50 shift as the external pH was lowered (one-way ANOVA, V50: HC 

Vm = -60 mV, P = 0.0615; -30 mV, P = 0.0504; 0 mV, P = 0.0402). (B) There was 

also an increase in the change in the Ipeak as the external pH was lowered (one-way 

ANOVA, Ipeak: HC Vm = -60 mV, P = 0.0001; -30 mV P = 0.0025; 0 mV, P = 0.0003). 
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< 0.05, unpaired Student’s t-test at HC Vm = -30 & 0 mV). We then removed bicarbonate, 

leaving 1 mM HEPES to maintain a constant pH of 7.4, and saw that feedback was 

abolished (Fig. 8B; P < 0.05, unpaired Student’s t-test comparing V50 and amplitude for 

HEPES alone to bicarbonate plus HEPES at HC Vm = -30, & 0 mV). We then tested 

whether sodium-bicarbonate cotransporters (NBCs) might be involved in feedback by 

using a bicarbonate transport inhibitor (Romero et al., 1997; Romero et al., 2013), 4,4′-

diisothiocyano-2,2′-stilbene-disulfonic acid (DIDS) (Virkki et al., 2002; Shmukler et al., 

2014). DIDS significantly reduced feedback-induced changes in V50 and Ipeak of the cone 

ICa in paired recordings (N = 7) at a concentration of 500 μM (N = 5; Fig. 9C & D; P < 

0.05, unpaired Student’s t-test at HC Vm = -60 mV, -30, & 0 mV). Effects of DIDS were 

not significant at a concentration of 100 µM. These data suggest that an NBC and/or a 

Na+-dependent bicarbonate/Cl- exchanger are involved in mediating lateral-inhibitory 

feedback from HCs to cones. 
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Analysis of the Kinetics of Feedback 

 It has been proposed that a purely electrical ephaptic mechanism may contribute 

to negative feedback from HCs to cone PRs (Byzov & Shura-Bura, 1986; Kamermans et 

al., 2001; Kemmler et al., 2014). Ephaptic voltage changes should occur 

instantaneously. We therefore measured the kinetics of feedback currents in cones 

evoked by voltage steps applied to simultaneously voltage-clamped HCs.  Our 

experimental approach is illustrated in Figure 10 which shows data averaged from two 

trials in the same cell.  We repeated trials 2-4 times in each cell. During each trial, we 

stepped the HC from -60 to -30 mV for 2 s to simulate a period of darkness and then 

hyperpolarized the HC to -90 mV for 0.5 s to simulate a bright light flash. During the trial, 

we depolarized the cone to either -30 or -20 mV to partially activate ICa. As shown 

earlier, hyperpolarizing the HC membrane potential enhances ICa by increasing the peak 

amplitude and shifting its activation to more negative potentials. The increase in ICa 

Figure 9. Bicarbonate is required for feedback and inhibition of anion transport 

mechanisms by DIDS blocked feedback. (A) A slight increase in buffering capacity of 

the external solution by addition of 1 mM HEPES decreased in the magnitude of the 

activation shift in V50 (unpaired Student’s t-test, control (N = 5) vs. NaHCO3 + 1 mM 

HEPES (N = 8), ΔV50: HC Vm = -30 mV, P = 0.0406; 0 mV, P = 0.0458), while removal 

of bicarbonate eliminated the shift (unpaired Student’s t-test, control vs. 1 mM HEPES 

(N = 5) only, V50: HC Vm = -60 mV, P = 0.0253; -30 mV, P = 0.0050; 0 mV, P = 0.0042; 

NaHCO3 + 1 mM HEPES  vs. 1 mM HEPES only, -30 mV, P = 0.0451; 0 mV, P = 

0.0266) (B) Feedback-induced changes in Ipeak were reduced when 1 mM HEPES was 

added to the normal solution (unpaired Student’s t-test, control vs. NaHCO3 + 1 mM 

HEPES, Ipeak: HC Vm = -30 mV, P = 0.0078; 0 mV, P = 0.0045) and abolished when 

bicarbonate was removed (unpaired Student’s t-test, NaHCO3 + 1 mM HEPES  vs. 

control, Ipeak: HC Vm = -60 mV, P = 0.0521; -30 mV, P = 0.0037; 0 mV, P = 0.001; 

NaHCO3 + 1 mM HEPES  vs. 1 mM HEPES only, -30 mV, P = 0.0027; 0 mV, P = 

0.0373). (C & D) Application of the anion transport inhibitor DIDS (500 μM, N=5) 

significantly inhibited feedback-induced changes in V50 (C) and Ipeak (D) (unpaired 

Student’s t-test, df=15; V50: HC Vm = -60 mV, P = 0.0080; -30 mV, P = 0.0039; 0 mV, P 

= 0.0063; Ipeak: HC Vm = -60 mV, P = 0.0019; -30 mV, P = 0.0029; 0 mV, P = 0.0011). 

Using a lower concentration of DIDS (100 μM; N = 7) produced a weaker effect that did 

not attain statistical significance. 
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caused by HC hyperpolarization of the HC therefore increased ICa resulted in an inward 

feedback current (Fig. 10B & C, arrow).  Fig. 10C shows the change in feedback current 

from the same cell at a higher gain and faster time base.  The feedback-induced 

increase in ICa was fit better with two exponentials than with a single exponential.  The 

contribution of the slow component varied from cell to cell but we observed a clear 

second component in 12/13 cell pairs (cone Vm = -30 mV). This second component had 

an average time constant of slow = 530 ± 111 ms (N = 12). To measure the initial fast 

kinetics of feedback as accurately as possible, we fit the first 50-100 ms with a single 

exponential (Fig. 11C).  We chose the fitting region that gave the best fit to the initial 

change in feedback current. When the cone was voltage clamped at -30 mV, the inward 

feedback current evoked by the hyperpolarizing voltage step applied to the HC averaged 

-3.2 ± 0.83  pA in amplitude and showed an onset that could be fit with a single 

exponential time constant, fast, averaging 14.2 ± 1.8 ms (N = 8). We also tested a few 

cones held at -20 mV to activate ICa more strongly. In these cells, the feedback current 

was -4.26 ± 1.8 pA and fast averaged 12.5 ± 0.9 ms (N = 7). We never observed an 

instantaneous inward current at the beginning of the HC hyperpolarizing voltage step.  
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We also measured the kinetics of the offset of the feedback current in cones 

when the HC voltage returned from -90 to -30 mV. We found a fast time constant at 

offset of the step averaging 13.6 ± 0.8 ms (cone Vm = -20 mV) and 14.5 ± 1.4 ms (cone 

Vm = -30 mV) similar to the time constants at the onset of feedback.   A clear slow 

component was less consistently evident at offset of the HC hyperpolarizing voltage 
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Figure 10. Testing for an ephaptic connection: protocol and feedback 

currents. 

(A) The step waveform applied to the voltage-clamped HC (top). HC membrane 

current (bottom, Im). (B) Voltage protocol in the cone (top). Simultaneously 

recorded cone membrane current (bottom, Im). (C) Expanded view of Ifeedback in the 

same cone fit with a double-exponential curve. (D & E) Single exponential fits to 

the onset (E) and offset (F) of Ifeedback accompanying onset and offset of the step 

from -30 to -90 mV in the HC while the cone was voltage clamped at -30 mV. 
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step. 

The measurement resolution in these experiments is limited by the summed 

voltage clamp speeds of the cone and HC membranes. We assessed voltage clamp 

speed from the membrane charging curves.  Cone and HC charging curves could both 

be fit by single exponentials (Fig. 11A-B). For trials in which the cone was voltage 

clamped at -30 mV, the charging time constants averaged 2.76 + 0.3 ms (N = 8) and 

1.06 + 0.1 ms (N = 8) for the HC.  For trials in which the cone was voltage clamped at     

-20 mV, the time constants averaging 1.80 + 0.4 ms (N = 7) for the cone and 0.95 + 0.2 

ms (N = 7) for the HC. When summed together for each cell pair, cone + HC for was 3.44 

± 0.4 ms for cone Vm = -30 mV trials and 2.75 ± 0.5 ms for cone Vm = -20 mV trials. As 

shown in the scatter plot in Fig. 11C, the measurement resolution (cone + HC) was 

significantly faster than the feedback time constants measured at both onset and offset 

of the hyperpolarizing voltage step applied to the HC.  This was true whether the trials 

were conducted at a cone holding potential of -30 mV or at -20 mV. Lines connect the 

time resolution and feedback time constants in trials showing the fastest feedback time 

constants.  The feedback currents at onset and offset of the HC voltage step were 9.8 -

11.1 ms slower than the combined voltage clamp speed of the two cells. This difference 

is considerably slower than the activation kinetics of ICa evoked by a step to -30 mV in 

salamander cones (τ = 3.1 ± 0.22 ms at -30 mV, Warren et al., unpublished). This 

indicates that feedback is not fast enough to be produced by ephaptic mechanism. 
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Figure 11. Comparing measurement time resolution with feedback speed. 

(A & B) Capacitive currents evoked by voltage steps applied to a cone (top; -70 to -30 mV) 

and a HC (bottom; -60 to -30 mV). The charging curves were fit with a single-exponential 

functions to obtain the time constants (τ) for charging of the cell membrane (cone: 2.65 ms; 

HC: 1.27 ms). (C) Scatter plot showing the fast time constants of feedback currents at onset 

of the HC voltage step, on, and offset of the step, off, when the cone was held at -20 mV, 

on, and offset of the step, off, when the cone was held at -20 mV, on and off averaged 12.5 

± 0.9 ms and 13.6 ± 0.8 ms, (N = 8).  When the cone was held at -30 mV, τon and τoff, 

averaged 14.2 ± 1.1 and 14.5 ± 1.4 ms, respectively (N = 8). The time resolution for these 

recordings was limited by the sum of the charging time constants in the cone and HC. cone 

+ HC averaged 3.44 ± 0.4 ms for trials in which the cone Vm = -30 mV and 2.75 ± 0.5 ms for 

trials in which the cone Vm = -20 mV. Lines connect the time resolution and feedback time 

constants in trials showing the fastest feedback time constants. The differences between 

the feedback time constant (on and off) and the time resolution (cone + HC) were 

significantly different for all four comparisons (t-tests, paired comparisons; on, -20 mV, P < 

0.0001; on, -30 mV, P < 0.0001; off, -20 mV, P < 0.0001; off, -30 mV, P < 0.0002). 
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2.4 Discussion 

Sources of Protons 

There are a number of different mechanisms that help to regulate pH within and 

around cells (Boron, 2004; Casey et al., 2010).  However, only three mechanisms are 

known to be sources for extracellular protons: 1) protons liberated by the activity of 

extracellular carbonic anhydrase (Sarthy & Ripps, 2001; Fahrenfort et al., 2009; Vessey 

et al., 2005), 2) protons released by exocytosis of acidic vesicles (Chesler, 2003; 

DeVries, 2001), and 3) NHE (Koskelainen et al., 1993; Kalamkarov et al., 1996). 

The CA inhibitors benzolamide and methazolamide have both been shown to 

interfere with feedback (Vessey et al., 2005; Fahrenfort et al., 2009). Although often 

touted as membrane-impermeant, benzolamide, like methazolamide, is actually 

membrane-permeant (Supuran & Scozzafava, 2004). To test for the role of extracellular 

CA, we therefore tested an improved membrane-impermeant CA inhibitor, FC5-207a. 

The compound caused changes in the activation and amplitude of ICa consistent with 

alkalinization of the synaptic cleft. However, it did not alter feedback indicating 

extracellular CA is not likely to be involved in the production of protons for feedback (Fig. 

2A &B). The effects of benzolamide and methazolamide are likely due to their effects on 

intracellular CA activity. Consistent with this, Vessey et al. (2005) found that 

methazolamide only eliminated feedback effects induced by hyperpolarization of HCs by 

application of CNQX but not feedback effects of HC depolarization. They interpreted 

these findings as a reduction in the inward driving force for protons upon 

hyperpolarization. As methazolamide enters the cell, it causes an intracellular 

acidification and thus raises the cytosolic concentration of protons (i.e., a decrease in 

pH), thereby reducing the driving force of the proton into the HC upon hyperpolarization. 

Our results also showed that vesicular protons are not involved in mediating 
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feedback. Incubating cells overnight in bafilomycin ensured that the drug would 

completely block proton transport into vesicles. In dissociated HCs from fish retina, 

Jouhou et al. (2007) used a pH-sensitive dye, 5-hexadecanoylaminofluorescein (HAF), 

to measure near-membrane pH changes and concluded that bafilomycin reduced 

extracellular acidification stimulated by HC depolarization. However, a subsequent study 

presented evidence that this dye reported near-membrane intracellular pH, not 

extracellular pH (Jacoby et al., 2014).  Wang et al. (2014) found that bafilomycin blocked 

the ability of HC depolarization to acidify the synaptic cleft measured in transgenic 

zebrafish with a pH sensitive dye attached to the extracellular surface of cone Ca2+ 

channels (caliphluorin). While this might reflect species differences, variations in Wang 

et al.’s (2014) experimental preparation might account for the differences. Their 

experimental model does not directly test feedback per se, but could be influencing 

perisynaptic sources of protons (Wang et al., 2014) 

Removal of Na+ from the extracellular medium eliminated feedback-induced 

changes in ICa and the NHE antagonist cariporide also significantly reduced feedback. 

These results indicate that the major source of protons involved in feedback is a NHE, 

consistent with the observation that amiloride, another NHE antagonist, blocks HC 

feedback to cones (Vessey et al., 2005). Our results suggest that the HC cytosol is the 

major source of protons extruded by NHE because reducing the proton concentration in 

HCs by use of a pipette solution with pH 9.2 also eliminated feedback-induced changes 

in cone ICa. Introducing pH 9.2 solution into cones did not alter the feedback-induced 

shifts in V50 suggesting that feedback remained intact.  Alkalinizing the cone intracellular 

milieu did however abolish the changes in peak amplitude of cone ICa caused by 

changes in HC membrane potential. Ca2+ interacts with four key glutamate residues in 

the L-type Ca2+ channel pore as it passes into the cell (Chen et al., 1996).  Protonation 
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of these residues interferes with this process. Alkalinizing the cytosol substantially may 

stabilize the protonation state, thereby decreasing the change in the Ipeak when the HC is 

polarized. We could not eliminate the possibility that alkalinizing the HC intracellular 

milieu interfered with the removal of bicarbonate from the cell, however, in renal kidney 

cells bicarbonate transport is unaffected by changes in intracellular pH (Zhou et al., 

2006). 

We identified NHEs in HCs as the principal source of protons involved in 

feedback. However, NHEs are not voltage-dependent and so reduced NHE activity is 

unlikely be directly responsible for the cleft alkalinization caused by HC hyperpolarization 

(Demaurex et al., 1995; Fuster et al., 2004). We consider three other ways that HC 

hyperpolarization might reduce the free proton concentration in the cleft: 1) influx of 

protons into HCs through ion channels (e.g., through TRP channels, gap junction 

hemichannels or other proton permeable channels; Vessey et al. 2005; Wang et al., 

2014); 2) efflux of bicarbonate buffer into the cleft (e.g., through bicarbonate exchange 

or GABA receptor anion channels, Liu et al. 2013); and 3) efflux of phosphate buffer into 

the cleft (e.g., by hydrolysis of ATP exiting HCs through pannexin channels; Vroman et 

al., 2014).  We found that the strength of HC feedback increased with extracellular 

acidification from 7.8 to 7.4 to 7.1.  The phosphate buffer created by hydrolysis of ATP 

has a pKa ≈ 7.2 and so Vroman et al. (2014) predicted that, contrary to our observations, 

acidifying the extracellular environment with pH 7.1 buffer should reduce feedback. To 

achieve stable pH values, we changed the bicarbonate concentration in our medium 

from 12 (pH 7.8) to 22 (pH 7.4) to 32 (pH 7.1) mM.  Thus, our findings that feedback 

strength was increased by extracellular acidification are consistent with both an 

increased inward driving force for protons and greater outward driving force for 

bicarbonate with greater acidification. Using the expression data base from Siegert et al. 
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(2012) indicates that murine HCs express Slc4a3 and Slc4a5. These transporters are 

blocked by DIDS. We found that DIDS at a concentration of 500 μM inhibited feedback. 

We also observed that removing or lowering the bicarbonate concentration from the 

external solution either eliminated or weakened feedback respectively. These two lines 

of evidence argue for either a NBC and/or a Na+-dependent bicarbonate/Cl- exchanger 

as a source of bicarbonate efflux or what the HC is using to alkalinize the cleft during HC 

hyperpolarization (Haugh-Scheidt & Ripps, 1998).  Among the DIDS-sensitive Slc4 

family of bicarbonate transporters, the retinal gene expression database from Siegert et 

al. (2012) indicates that murine HCs express only Slc4a3 and Slc4a5. Slc4a5 is a 

sodium-bicarbonate transporter that has been shown be voltage-dependent, increasing 

HCO3
- entry into cells upon depolarization (Virkki et al., 2002). This isoform shows 

punctate expression in the OPL (Kao et al., 2011) but low expression levels in 

photoreceptors (Siegert et al., 2012) suggesting that expression is concentrated in HC 

dendrites. Slc4a5 knockout mice show a loss of photoreceptors and diminished 

electroretinogram a- and b-waves but feedback from HCs was not studied in these 

animals (Kao et al., 2011). Slc4a3 is a Na+-independent Cl-/HCO3
- exchanger. Unlike the 

concentrated expression of Slc4a5 in HC dendrites, Slc4a3 is expressed throughout the 

entire HC (Kobayashi et al., 1994). There is also no evidence that Slc4a3 activity is 

voltage-sensitive (Halligan et al., 1991) making it a less likely candidate for directly 

converting HC membrane potential changes into extracellular pH changes. However, 

feedback strength can be reduced by increases in cone Cl- conductance (e.g., by 

activating GABA receptors or Ca2+-activated Cl- channels; Endeman et al., 2012) and 

these might involve secondary effects on Cl-/HCO3
- exchange. Liu et al. (2013) 

postulated a mechanism by which depolarization of HCs stimulates release of GABA 

which then acts in an autocrine fashion to activate HC GABA receptors. Reduced influx 

of bicarbonate through GABA receptor channels into the HC when it hyperpolarizes 
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causes the cleft to alkalinize (Liu et al., 2013). A number of studies have shown that 

GABA receptor antagonists do not block HC feedback to cones (Thoreson & Burkhardt, 

1990; Verweij et al., 1996, 2003) suggesting that while GABA receptors may modify 

feedback under certain conditions (e.g., during certain circadian or illumination 

conditions), they are not the principal mechanism for feedback.  

Kinetics of the Ifeedback 

 Ephaptic voltage changes within the invaginating cone synapse induced by 

current flow into the HC should be instantaneous. Previous studies (Vroman et al., 2014; 

Kamermans et al., 2001) showed no difference between the kinetics of HC light 

responses and the kinetics of fast light-evoked feedback currents in cones. However, HC 

light response kinetics are intrinsically slow with a time to peak of ~100 ms. To overcome 

this limitation, we applied voltage steps directly to voltage-clamped HCs.  However, even 

in a voltage-clamped HC, one cannot instantaneously change the membrane potential. 

The speed at which the applied voltage change is attained by the HC is reflected by the 

time course required for charging the HC membrane capacitance. The HC membrane 

charged with an average time constant of 1.06 ± 0.1 ms. The speed at which we can 

detect a change in feedback currents in the cone is also limited by the voltage clamp 

speed which had an average time constant of 2.75 ± 0.3 ms. Therefore, our 

measurement resolution was limited by an average of 3.81 ms. While an ephaptic 

voltage change should be instantaneous, a certain amount of time is nevertheless 

required for L-type Ca2+ channels to respond to a change in voltage within the synaptic 

cleft. The cone terminal contains CaV1.4 L-type Ca2+ channels (Morgans, 2001; 

Baumann et al., 2004). Baumann et al. (2004) found an activation time constant for 

heterologously-expressed mouse CaV1.4 channels to be around 0.6 ms when using a 

strong depolarizing step to fully activate the current. Corey et al. (1984) showed that 
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activation slowed with weaker depolarization finding activation time constants of ~8 ms 

at -30 mV and 3 ms at potentials above 0 mV (Corey et al., 1984). However, these 

experiments were conducted at 12ºC which would be expected to slow activation.  At 

room temperature, Warren et al. (unpublished results) found that the activation time 

constant for L-type Ca2+ channels when stimulated with a step from -30 to -25 mV 

averaged 3.1 ± 0.22 ms. If we add in the time required for activation of L-type Ca2+ 

channels of 3.1 ms, this yields a total delay of 6.91 ms which is still well below the fast = 

values of 12.5 ms obtained when cones were held at -20 mV and 14.2 ms when cone Vm 

= -20 mV. Thus, the feedback mechanism is not instantaneous but adds an additional 

delay. The kinetics of the feedback current are thus slower than predicted for an 

ephaptic mechanism, suggesting instead that the mechanism responsible for fast 

feedback is chemical. 

 Consistent with Vroman et al. (2014), we found that HC feedback to cones 

exhibited two kinetically distinct components. Earlier recordings of surround-evoked 

voltage changes in cones also revealed multiple components to feedback (Fuortes et al., 

1973; O'Bryan, 1973). Different groups found different responses to surround elimination 

included sustained voltage changes and regenerative, spike-like responses arising from 

activation of ICa (Gerschenfeld & Piccolino, 1978, Piccolino & Gerschenfeld, 1980; 

Burkhardt et al., 1988). With regards to the initial onset kinetics of feedback, Vroman et 

al. (2014) points out, fast and slow components of feedback are useful for reducing 

spatial and temporal redundancies, respectively, in the visual input. Slow feedback can 

remove temporal redundancies whereas fast feedback allows spatially-averaged 

luminance to be constantly subtracted from local changes even when the visual scene 

changes rapidly. While we find that fast feedback is not instantaneous, it is still 

sufficiently fast to serve this purpose. A fast feedback mechanism with a time constant of 
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~8 ms is considerably faster than the slow kinetics of HC light responses and so it does 

not add noticeably to the speed at which feedback currents are induced in cones by 

surround illumination. 
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Appendix A: Abbreviations 

List of Abbrevations 

AMPA   alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid 

BAF   Bafilomycin A1 

BSA   Bovine Serum Albumin 

BP   Bipolar cell 

CA   Carbonic anhydrase 

cariporide N-(aminoiminomethyl)-5-cyclopropyl-1-(5-quinolinyl)-1H-pyrazole-

4-carboxamide 

cyclic GMP  Guanosine 3’,5’-cyclic monophosphate  

DIDS   4,4'-Diisothiocyano-2,2'-stilbenedisulfonic acid 

EIPA   5-(N-ethyl-N-isopropyl)amiloride 

Erev   Reversal potential 

FC5-207a  Benzothiophene-3-ylmethylsulfamide 

FMRF-amide  Phe-Met-Arg-Phe-NH2 peptide 

GABA   γ - Aminobutyric acid 

GAD   glutamic acid decarboxylase 

GMP   Guanosine monophosphate 

HEPES  2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid 

HC   Horizontal Cell 

ICa   Ca2+ current 

i.d.   Inner diameter 

Ifeedback   Feedback current 

iGluR   Ionotropic glutamate receptor 

Iinward   Inward current 

Im   Membrane current 

INL   Inner nuclear layer 
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IPL   Inner plexiform layer 

ipRGC   Intrinsically photosensitive retinal ganglion cell 

I - V plot  Current versus voltage plot 

Ioutward   Outward current 

Ipeak   Peak current 

IS   Inner segment 

NA   Numerical aperture 

NBC   Sodium-bicarbonate cotransporter 

NHE   Na+/H+ exchanger 

NT   Neurotransmitter 

o.d.   Outer diameter 

ONL   Outer nuclear layer 

OPL   Outer plexiform layer 

OS   Outer segment 

PDE   phosphodiesterase  

PR   Photoreceptor 

RGC   Retinal ganglion cell 

V50   voltage when Ipeak is half-maximal; 

V-ATPase  vacuolar-type H+- ATPase 

VGCC   Voltage-gated Ca2+ channel 

Vm   Membrane potential 

zoniporide N-(diaminomethylidene)-3-methanesulfonyl-4-(propan-2-

yl)benzamide 
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