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Supervisors: Wing C. Chan, MD and Javeed Iqbal, PhD 

 

Peripheral T-cell lymphomas (PTCLs) comprise a heterogeneous group of mature T-cell 

neoplasms with a poor prognosis. Recently, mutations in TET2 and other epigenetic 

modifiers as well as RHOA have been identified in these diseases, particularly in 

angioimmunoblastic T-cell lymphoma (AITL). CD28 is the major co-stimulatory receptor 

in T-cells which, upon binding ligand, induces sustained T-cell proliferation and cytokine 

production when combined with T-cell receptor stimulation, through many signaling 

molecules including VAV1. This thesis identifies recurrent mutations in CD28 in PTCLs, 

as well as mutations in VAV1. Two residues of CD28 – D124 and T195 – were 

recurrently mutated in 11.3% of cases of AITL and in one case of PTCL, not otherwise 

specified (PTCL-NOS). Surface plasmon resonance analysis of mutations at these 

residues with predicted differential partner interactions showed increased affinity for 

ligand CD86 (residue D124) and increased affinity for intracellular adaptor proteins 

GRB2 and GADS/GRAP2 (residue T195). Molecular modeling studies on each of these 

mutations suggested how these mutants result in increased affinities. We found 

increased transcription of the CD28-responsive genes CD226 and TNFA in cells 
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expressing the T195P mutant in response to CD3 and CD86 co-stimulation and 

increased downstream activation of NF-κB by both D124V and T195P mutants.  VAV1 

mutations affect many important domains and may also enhance co-stimulatory signal.  

Together, these mutations suggest a novel potential pathway for therapeutic targeting in 

PTCLs. 
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Introduction 

 

Epidemiology and clinical characteristics of peripheral T-cell 

lymphomas 

 

Peripheral T-cell lymphomas (PTCLs) are a large group of uncommon, 

heterogeneous diseases which comprise up to 20% of all non-Hodgkin lymphomas 

depending on geographic region.1,2  Most are derived from mature helper T-cells which 

express cluster of differentiation 4 (CD4), and besides anaplastic lymphoma kinase 

positive (ALK+) anaplastic large cell lymphoma (ALCL), most subtypes carry a dismal 

prognosis.1,2  In the Western world, the incidence of PTCLs has increased dramatically 

in recent years, amounting to 3.8% per annum in the United States,3 sharply augmenting 

both clinical and research interest.  A clinical diagnosis requires pathologic examination 

by expert hematopathologists, but because of their rarity and variable clinical 

presentations, these entities remain difficult to diagnose.  Since the publication of the 

WHO guidelines for the classification of lymphoid tumors and their later update,4,5 inter-

observer classification is fairly consistent depending on subtype.  How-ever, even with 

these guidelines, approximately 10% of cases initially diagnosed as a PTCL or related 

NK-cell lymphoma (NKCL) were misdiagnosed in the 2008 International Peripheral T-cell 

Lymphoma (I-PTCL) Group study1 which examined 1,314 cases of PTCL and NKCLs, 

the largest cohort ever examined for these diseases.  Such a margin of error highlights 

the necessity of expert review.  In general, the PTCLs have a poor overall survival, but 

depending on subtype (by pathologic review) and staging (by any or all of the Ann Arbor 

method,6 International Prognostic Index [IPI],7 or Prognostic Index for T-cell lymphoma 

[PIT]),8 prognosis can vary widely. Diagnosis and proper clinical evaluation of the 
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particular entity, therefore, is extremely important for prognostication and choice of 

therapy. 

The two most common PTCLs worldwide are PTCL, not otherwise specified (NOS; 

approximately 30%) and angioimmunoblastic T-cell lymphoma (AITL; approximately 

20%).1  In North America, PTCL, NOS accounts for 34.4% of all cases and AITL for 

16.0%.  Both of these diseases often present with focal or generalized lymph-

adenopathy, and constitutional B-symptoms (fatigue, fever, night sweats, and/or 

unintentional weight loss) are variably present (see Table 1).  Both of these entities 

primarily affect older individuals with a median age of 60 years for PTCL, NOS and 65 

years for AITL.  Although AITL has several unique histologic and immunophenotypic 

features, including a strong association with infection with Epstein-Barr virus (EBV), 

PTCL, NOS is a diagnosis of exclusion. 

In the I-PTCL study, 69% of PTCL, NOS patients presented at Ann Arbor stage III or 

IV, and 29% had greater than one extranodal site; for AITL, 89% presented at Stage III 

or IV, with 27% having more than one site of extranodal involvement.  Physical and 

blood exams were non-specific for both diseases, though hypergammaglobulinemia was 

more common in AITL than PTCL, NOS.  A summary of the findings can be found in 

Table 1. 

Given the geographical differences found in PTCL subtypes, it follows that different 

races and ethnicities may have differential predispositions to various PTCLs.  A recent 

survey of PTCL cases in America has found this to be the case;9 compared to whites, 

American Indians and Alaskan natives were 40% less likely to be diagnosed with PTCL, 

NOS, and too few were diagnosed with AITL to draw conclusions.  Conversely, blacks 

were 67% more likely to be diagnosed with PTCL, NOS, but 29% less likely to have AITL 

than whites.  Still, to contribute ethnicity as a major predetermining factor in PTCL likely 

ignores many broad, mostly unclear, factors. 
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This introductory section will serve to outline the current state of diagnosis and 

treatment of PTCL, NOS and AITL, to describe the current understanding of these 

diseases’ genetic and biological bases, and to discuss relevant background information 

on T-lymphocyte signaling pathways. 

 PTCL, NOS 
(N=340) 

AITL (N=243) 

Age, years   

Median 60 65 

Range 19-87 20-86 

 Number (% of total) as available 

Male 223 (65) 137 (56) 

Stage III-IV 232/334 (69) 214/241 (89) 

Extranodal sites >1 99 (29) 66 (27) 

Systemic (B) symptoms 118 (35) 168 (69) 

IPI > 1 72% 192/222 (79) 

PIT > 1 42% 154/233 (63) 

   

Clinical exam findings   

Skin involvement 16% 21% 

Hepatomegaly 17% 26% 

Splenomegaly 24% 35% 

   

Serum findings (not available for all 
cases) 

  

Elevated LDH 49% 146/223 (60) 

Elevated CRP 50% 84/127 (35) 

Hypercalcemia 5% 3/184 (1) 

Elevated β2-microglobulin 36% 53/92 (22) 

Hypergammaglobulinemia 29/201 (14) 74/166 (30) 

   

Survival   

5-year OS 32% 32% 

5-year PFS 20% 18% 

 

  

Table 1. Clinical characteristics of AITL and PTCL, NOS.  Legend on next 

page. 
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Pathologic characteristics of PTCL, NOS and AITL 

 

As stated previously, review by expert hematopathologists is crucial for diagnosis, 

and agreement on diagnosis is fairly consistent across experts.  Still, first-diagnosis 

inter-observer accord has been pegged at 75% for PTCL, NOS and 81% for AITL.1,3,10  

Clinical data in addition to pathologic data are important and informative for accurate 

diagnosis.  Still, even the experts can disagree on the best characterization. 

 

AITL 

 

Histologically, hematoxylin and eosin (H&E) staining will reveal various degrees of 

effacement of normal lymphoid architecture by small-to-medium sized lymphocytes (see 

Figure 1a).4,11  These lymphocytes may display nuclear atypia.  Usually, there is marked 

proliferation of high endothelial venules (HEVs), with clusters of atypical cells, often 

intermixed with plasma cells, eosinophils, and/or histiocytes.  Most cases display an 

increased follicular dendritic meshwork, and in some hyperplastic follicles are evident.  

Because the neoplastic cells partially mimic the normal function of their putative cell of 

origin, the follicular helper T-cell (TFH; see “Genetics/Cell of Origin), the B-cell 

compartment may be perturbed as well.  Frequently the B-cells are infected with EBV, 

Table 1.  Clinical characteristics of AITL and PTCL, NOS.  Clinical findings are 

usually non-specific, and clinical suspicion is usually low, contributing to the 

difficulty in diagnosis.  Both entities affect older individuals with a slight male 

preference, and the majority are diagnosed at late stage.  AITL tends to have a 

higher proportion of clinical exam findings, but serum findings between the two 

are inconclusive.  Both have a deplorable 5-year overall survival (OS) and 

progression-free survival (PFS).  Adapted and reprinted with permission. © 2008 

American Society of Clinical Oncology.
1
  All rights reserved.  Includes data from 

from Weisenburger et al.
3
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resulting in mild-to-moderate atypia and the appearance of a B-immunoblastic 

proliferation.  Rarely, Reed-Sternberg-like cells may be present, which may confound 

diagnosis.  There may also be an inflammatory infiltrate. 

On immunohistochemical staining, AITL cells express pan-T markers CD2, CD3 

(Figure 1b), and CD5, plus CD4.  A CD8 stain, however, may reveal large numbers of 

infiltrating cytotoxic T-cells, which may obscure diagnosis.  CD10, may be expressed in 

the neoplastic cells(Fig. 1d), as is the transcription factor responsible for TFH identity, 

BCL6.  Cells are usually negative for CD30, but any Reed-Sternberg-like cells may be 

positive for CD30 (Fig. 1e) or rarely CD15 (Fig. 1f).  Staining for TFH markers CXC 

chemokine ligand 13 (CXCL13) and programmed death-1 (PD1)12 will almost always be 

positive, and these two are particularly informative for the distinction between AITL and 

PTCL, NOS.  Stains for inducible co-stimulator (ICOS) will be generally high, though this 

is not thought to be particularly specific.13  Also, as AITL is characterized by the 

expansion of the follicular dendritic meshwork, markers of follicular dendritic cells (FDCs) 

– CD21 (Fig. 1c), CD23, CD35, and CNA42 – are often observed.  As AITL frequently 

occurs in the background of EBV infection, in situ hybridization (ISH) for Epstein-Barr 

virus-encoded small RNAs (EBER) highlights EBV-infected B-cells (Fig. 1f, inset); these 

EBER+ B-cells may be of various sizes, and may separately progress to, or be founders 

of, a B-cell malignancy. 
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Figure 1. Pathologic characteristics of angioimmunoblastic T-cell lymphoma with 

Hodgkin-Reed Sternberg-like cells positive for EBV. (a) Atypical large cells, 

some binucleate (arrow) are seen in a background of atypical lymphocytes. (b) 

Cytological atypia is evident in the T cells, highlighted with a CD3 stain. (c) 

Follicular dendritic cell meshworks are expanded, as seen with a stain for CD21. 

(d) CD10-positive atypical lymphocytes rosette large atypical cells with Hodgkin-

like features. The Hodgkin-like cells are positive for CD30 (e), CD15 (f), and 

EBER (inset).  Reprinted by permission from Macmillan Publishers Ltd: Modern 

Pathology 26 S71-S87 doi:10.1038/modpathol.2012.181 (ref. 
5
)© 2013 
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PTCL, NOS 

 

The morphology of NOS ranges broadly but usually effaces normal nodal 

architecture (see Figure 2A,B).1,4,14  Cellular infiltrates may be monomorphous to highly 

polymorphous.  Nuclei are often irregular and hyperchromatic.  Large cells may have 

prominent nucleoli and mitoses.  Reed-Sternberg-like cells may be present, and HEVs 

are not prominent.  Because PTCL, NOS is a diagnosis of exclusion, there is no specific 

morphologic feature that points to its identification. 

Immunophenotypically, the neoplastic cells may express some or all mature T-cell 

antigens, or aberrantly lose some: CD5, CD7, and CD4 or CD8.  Some cases are CD30, 

CD56, CD20, CD79a, or CD52 positive; some are double positive for CD4 and CD8.   

Figure 2.  Pathologic characteristics of peripheral T-cell lymphoma, not otherwise specified.  (a) 

The tumor cells are variably-sized and consists of small cells with only minimal cytologic atypia 

and larger cells with irregular nuclear contours, prominent nucleoli, and brisk mitotic activity. 

Large cells with clear cytoplasm and Reed-Sternberg-like cells may be seen in some cases. 

Evidence of neoangiogenesis in the form of high endothelial venules is often seen. There is 

often a prominent component of reactive cells in the background, including small lymphocytes, 

eosinophils, macrophages, and plasma cells.  (b) Some cases of PTCL, NOS show Reed-

Sternberg-like cells. One such cell can be seen near the center of this image. The presence of a 

reactive infiltrate in the background consisting of eosinophils, lymphocytes, plasma cells, and 

histiocytes creates further resemblance to Hodgkin's lymphoma.  From Webpathology.com.
15

  

Used with permission. 

a b 



8 
 

Some cases may have a substantial number of CD30+ tumor cells which raises the 

possibility of ALCL.  The T-cell receptor (TCR) β-chain is usually positive, which allows 

differentiation from γδ-PTCL subtypes.  Ki-67, a marker of proliferation, is usually fairly 

high.  Notably, it can be challenging to differentiate this entity from AITL due to the large 

variation in PTCL, NOS, so the markers which are on the neoplastic component of AITL 

– CD10, CXCL13, PD-1, ICOS, BCL6 – should be low to negative in PTCL, NOS.  

However, the follicular meshwork is variable, though low staining decreases the 

likelihood of AITL. 

Cytogenetic characteristics4 of both PTCL, NOS and AITL have been studied in very 

few cases, and these rare findings can be found in Table 2.  These changes are not 

diagnostic and their functions are not known. 

 

 

 

 

 

 

  

 
PTCL, NOS AITL 

TCR clonality + + 

Chromosomal loss 4q, 5q, 6q, 9p, 10q, 12q, 13q 13q 

Chromosomal gain 7q, 8q, 17q, 22q 3, 5, 19, X; 22q, 11q13 

Table 2.  Cytogenetic characteristics of PTCL, NOS and AITL.  Although not 

frequent, these cytogenetic findings
4
 are sometimes identified in each entity. 
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Treatment and outcomes of PTCL, NOS and AITL 

 

There exists no standard of therapy for PTCL, NOS or AITL, but the anthracycline-

based regimen of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP), 

is usually used.  However, no treatment has been found that works consistently well.    

Thus, the major recommendation is to include patients on clinical trials, if possible.16  

This approach has led to the use of several new drugs, trials for most of which are still 

ongoing. 

Despite its prevalence, outcomes associated with the use of CHOP in PTCLs are 

poor.  The addition of etoposide (CHOEP or EPOCH)16  has been shown to improve 

event-free survival (EVS) but not overall survival (OS), particularly in younger patients 

(<60 years).  These formulations and dosages are based primarily on trials in aggressive 

B-cell non-Hodgkins lymphomas, and work fairly well in those diseases but much less 

well in PTCL, NOS.  Other, more intensive regimens have also been tried in the past, but 

uniformly these have shown no improvement in outcomes but increases in treatment 

toxicities.16,17  For AITL, retrospective analysis has found CHOEP to be superior to any 

other regimen.16 

Consolidation therapy remains somewhat controversial,16,17 but radiation therapy is 

used to some success for controlling localized disease.  However, because of the high 

relapse rate for PTCLs, current recommendations strongly suggest the 

chemotherapeutic regimen as a bridge to either autologous (preferred) or allogeneic 

hematopoietic stem cell transplant (HSCT or HCT).18-20  This is not true for lowest-risk 

tumors, which have a notably high OS after therapy with monitoring, but PTCLs only 

rarely present at low stage. 
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Auto-HCT, in which hematopoietic stem cells are collected from patients and then 

returned after marrow-ablative chemotherapy, works best for younger patients in their 

first clinical remission post-chemotherapy, though only a few large studies have been 

performed on which these statements have been based.  There have been more studies 

with smaller patient populations, using various induction and consolidation regimens and 

patients of various ages, stages and diagnoses; predictably, these studies have a wide 

range of outcomes, making it challenging to draw meaningful conclusions when taken 

together.  Understandably, relapse is not uncommon in autotransplant, but the outcomes 

are generally better than without transplant.  Allo-HCT is the only possible curative 

therapy in the case of relapsed or refractory disease.  Unfortunately, given the age and 

health of the majority of patients with PTCL, NOS and AITL, many are poor candidates 

for an allotransplant, leading to difficult clinical decisions.  Patients who are successfully 

engrafted may achieve clinical remission (CR), particularly in chemosensitive patients, 

and some may be cured.18-20  Graft-versus-host disease (GVHD), in which the 

transplanted immune cells attack recipient tissue, remains a major complication.17,18 

Patients who are poor candidates for transplant and/or who fail chemotherapy are 

generally given other chemotherapeutic regimens with variable but generally poor 

efficacy.  Patients may opt for palliative care, or for trials if applicable. 

Even in the past five years, many new drugs have become available which show 

promise in treating PTCLs. 

 Pralatexate, an antifolate, has been approved by the United States Food and 

Drug Administration (FDA) for PTCL when administered with leucovorin 

rescue to minimize side effects.21-23  This treatment has not been as effective 

in AITL as other PTCL subsets, including NOS.  Interestingly, there was no 

correlation between number of prior therapies and response to the drug,23 
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suggesting that the pathways targeted may be independent of the cancers’ 

clonal evolution in response to other chemotherapies. 

 Brentuximab vedotin, is an anti-CD30 antibody conjugated to monomethyl 

auristatin E, an anti-tubulin agent.  It is approved for use in CD30-positive 

PTCLs.24-26  In one study, effect was not directly correlated with tumor CD30 

expression, suggesting that drug activity is measurable even with low levels 

of CD30.  Unfortunately, its side effect profile is fairly serious, with many 

patients experiencing peripheral neuropathy which may not regress 

depending on length of brentuximab therapy, and a small percentage of 

patients developing progressive multifocal leukoencephalopathy.27 

 Histone deacetylase (HDAC) inhibitors, including romidepsin28,29 and 

belinostat30,31, are approved for use in patients who have failed at least one 

prior therapy.  Serious cardiotoxic side effects have been found in cutaneous 

T-cell lymphomas29 (CTCLs, a separate subset of PTCLs), so patients with 

moderate-to-severe cardiovascular disease (a large portion of the patient 

population) are ineligible. 

Further, there are currently 195 listed drug trials for PTCLs, many of which are 

attempting to perfect dosages of known drugs.  Some, however, aim to investigate the 

use of novel agents approved for other malignancies, including: 

 Mogamulizumab,32 an inhibitor of chemokine receptor CCR4 

 Tipifarnib,33 a farnesyltransferase inhibitor which prevents the activation of 

Ras-family GTPases 

 Selinexor,34 an inhibitor of nuclear exporter XPO1, which has been shown to 

maintain tumor suppressor activity in suppressor-mutated tumors 

 Alemtuzumab,35,36 an anti-CD52 antibody 
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 Lenalidomide,37,38 a strong immunomodulatory agent which works through 

many, mostly incompletely understood, mechanisms 

 Bendamustine,39,40 a nitrogen mustard with DNA-alkylating and anti-metabolic 

properties41  

 Bortezomib,42-44 carfilzomib,45 and ixazomib,46 second-generation proteosome 

inhibitors, have shown promise in CTCLs. 

 

With the use of CHOP or other anthracycline-based therapies for PTCL subtypes, 

overall survival for most subtypes is fairly low1 (Figure 3).  For both AITL and PTCL, 

NOS, 5-year overall survival is 32% with CHOP-like chemotherapy, and failure-free 

survival is 18% and 20%, respectively.  At one point, this figure was similar for most 

hematologic malignancies.  Since the use of rationally designed drugs like rituximab for 

B-cell lymphomas, including high-risk diffuse large B-cell lymphomas, these diseases 

have seen remarkable improvements in overall survival and progression-free 

survival,47,48 a trend that has not extended to PTCLs. 

 

 

  

Figure 3.  Overall survival of patients with the “common” 

peripheral T-cell lymphomas, by subtype.  AITL and PTCL, NOS 

both have 5-year survival rates of 32%.  Reprinted with 

permission
1
. © 2008 American Society of Clinical 

Oncology.  All rights reserved. 
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T-cell development and activation: an overview 

 

To explain specifically the development of peripheral T-cell lymphomas, it is first 

necessary to trace T-cell development.  This section briefly discusses T-lymphocyte 

generation in the post-natal human, and how T-lymphocytes become activated. 

 

From stem cell to mature αβ-T-cell 

 

Hematopoietic stem cells (HSCs) reside in the bone marrow and generate all blood 

cells through asymmetric cell division; when a long-term (LT) HSC divides, one daughter 

cell retains hematologic pluripotency whereas the other moves toward a committed 

lineage.  They are identified by surface expression of stem cell antigen 1 (Sca1) and c-

Kit without expression of any lineage-specific markers.49  In the case of cells that will 

become T-lymphocytes, a LT-HSC differentiates into a short-term HSC, which is further 

differentiated into a multipotent progenitor (MPP).  MPPs then divide to terminal, e.g. 

irreversible lineage commitment.  Classically, these progeny are either common 

lymphoid progenitors (CLPs) from which the entire lymphoid lineage is derived, or 

common myeloid progenitors (CMPs) from which the myeloid, megakaryocyte and 

erythroid lineages develop.  Recent work has suggested some trans-differentiation 

between CLPs and CMPs depending on the cytokine milieu, thymic environment, and 

bone marrow cellularity,50 but this complexity is beyond the scope of this chapter. 

To generate T-cells, CLPs, identified by the expression of IL-7Rα and low levels of c-

Kit and Sca1, emigrate from the bone marrow to the thymus.51  What causes this 

emigration is not fully elucidated, but adhesion molecules CD44 and lymphocyte 

function-associated antigen 1 (LFA-1) are both absolutely required.  Expression of B220 
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identifies a thymus-bound subset of CLPs known as CLP-2s which efficiently enter the 

thymus at its corticomedullary junction via CD44, LFA-1, and nearly a dozen other 

adhesion molecules.52,53  CLP-2s are believed to enter the thymus the same way that 

more mature lymphocytes enter peripheral organs: adhesion and tethering to ligand; 

rolling along the endothelia that line the capillary wall adjacent to the organ; and 

extravasation through the endothelial wall into the organ.54 

Mature T-cells can broadly be separated into two categories based on TCR chain 

expressed;55 the α-chain always pairs with β, which is termed an αβ T-cell.  T-cells 

expressing the αβ TCR are up to 98% of mature T-cells in humans.  The remaining 2% 

or so of T-cells express the γ and δ chains of the TCR which will not be further described 

here. The maturation process allows for the generation of appropriately functional β and 

α TCR chains, in that order. 

Pre-T-cells in the thymus go through three distinct phenotypic stages based on 

expression of CD4 and CD8, and the first stage is further divided into four substages.55  

The double-negative (DN) stages express neither CD4 nor CD8, and the cells migrate 

within the thymic outer cortex, but can be further subdivided based on surface 

expression of CD44 and CD25.  DN1 is CD44+CD25-; DN2, CD44+CD25+; DN3, CD44-

CD25+; and DN4, CD44-CD25-.  As the thymocyte progresses through the stages, it is 

sequentially attempting to make a functional T-cell receptor β-chain through 

recombination by action of recombination-activation gene 1 (RAG1) and RAG2, which is 

a hallmark of adaptive immunity in vertebrates.  At the DN3 stage, a pre-α chain (non-

recombined) is synthesized, to form a pre-TCR with the β-chain and components of 

CD3: γ, δ, and multiple ε and ζ chains. In the event that the β-chain is non-functional, the 

pre-T-cell will not be stimulated through its pre-TCR and therefore die. 

Once the DN4 stage is complete and there is a functional β-chain, the cells divide 

several times and then individually recombine the α-chain gene to encode a functional, 
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mature αβ-TCR; the pre-α chain is quickly lost.55  The cells also begin to upregulate 

CD8, followed by CD4, to begin the double-positive (DP) stage.  The cells migrate into 

the deep cortex of the thymus and interact with thymic cortical epithelial cells, which 

express major histocompatibility complex (MHC) classes I (which interacts with TCR and 

CD8) and II (which interacts with TCR and CD4) and present some self-peptides.  Thus, 

the DP cells are able to receive stimulation by MHC through their TCR, which sets up 

the next round of selection.  If the TCR is unable to interact with MHC, the T-cell 

undergoes apoptosis, termed “by neglect.”  But if the TCR interacts with MHC, usually 

weakly to moderately, it receives enough positive signal to stay alive, termed “positive 

selection.”  The nature of this positive signal transduction is discussed later in this 

section.  These selection steps theoretically ensure that T-cells which proceed to the 

next step in development are able to function. 

T-cells that pass positive selection then migrate to the thymic medulla to interact with 

medullary epithelial cells and dendritic cells, which are also coated with MHC presenting 

self-peptides.  At the end of this developmental stage, the T-cells will be single-positive 

(SP) and express only one of CD4 or CD8, which will limit their ability to interact to only 

MHC II or MHC I, respectively.  How these final maturation steps occur has only fairly 

recently been elucidated, and only after protracted experiments with conflicting data; the 

accepted model is called “instructional,” as opposed to a stochastic method of a random 

assortment of MHC interactions.55 

DP cells interacting with epithelial cells receive moderate signaling through MHC I / 

CD8 or MHC II / CD4.  When one signal is stronger, however, the T-cell first 

downregulates the receptor gene that received the primary signal,55 e.g. if signaling 

came through CD4, CD4 is mildly downregulated, so shortly after receiving signal, future 

CD4+ cells may appear CD4medCD8hi.  Eventually, CD8 will be methylated and 

downregulated, and CD4 transcription will be restored. 
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During the DP-SP transition as discussed above, the T-cells are still interacting 

heavily with epithelial cells in the medulla.  If the TCR reacts strongly with MHC, the T-

cell also undergoes apoptosis, termed “negative selection.”  This ensures that the 

nascent T-cells will not react strongly with peptides derived from the body’s own tissues, 

preventing autoimmunity.  The cells are still selected positively as well, such that cells 

that cannot maintain TCR signal throughout thymic migration will still undergo apoptosis. 

The particularities of the DN-DP transition, and to a slightly lesser degree DP-SP 

transition, are quite complex and are important for the understanding of T-cell 

leukemogenesis.56  T-cell leukemias are derived primarily from the various immature T-

cell subsets, so failures of negative selection, or oncogenic mutations which render cells 

unlikely to undergo apoptosis, are very important for leukemia biology.  T-cell 

lymphomas, however, are almost exclusively derived from mature T-cell subsets, which 

means this entire process of thymocyte maturation likely proceeded correctly and any 

directly lymphomagenic mutation occurred after maturation.  For one gene, this actually 

may not be the case (see “TET2” under “mutations” below). 

Once SP cells have completed their migration through thymic stroma, they are 

released into blood to circulate and migrate through secondary lymphoid tissue until an 

activation signal is found. 

 

CD4+ T-cell activation cascade 

 

Mature, naïve CD4+ T-cells circulate throughout the body and enter peripheral 

tissues by random or following chemokine attraction.  At any one time, the majority of T-

cells are likely within peripheral lymphoid organs – spleen, lymph nodes, and oral and 

gastrointestinal mucosa – in a quiescent state, expressing a mature TCR (αβ-complex 

and CD3γ, -δ, two -ε and two-ζ chains) interacting at random with antigen-presenting 
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cells (APCs) via MHC II.  When a T-cell finds an MHC presenting an antigen with which 

it can successfully interact above a certain threshold of affinity, it experiences signal 

transduction activation with pleiotropic effects, but as will be shown, sustained activation 

requires a second, co-stimulatory signal (see Figure 4).  To explain the pathways, first 

the canonical TCR activation cascade is described. 

Most of the early activation proteins are residents of the plasma membrane. Several 

are modified by fatty acid chains (palmitoyl and miristoyl groups) which anchor them in 

the membrane and prevent them from diffusing away, ensuring rapid transduction of 

signal on ligation.  Upon ligation of TCR/CD3 with a cognate antigen, the MHC II 

interaction with CD4 causes CD4 to recruit leukocyte C-terminal Src kinase (LCK).  In 

turn, LCK phosphorylates the immunoreceptor tyrosine-based activation motifs (ITAMs) 

on the CD3ζ chains, which allows binding by Src kinase ζ-associated protein of 70 

kilodaltons (ZAP-70).  LCK then phosphorylates ZAP-70, which phosphorylates linker of 

activated T-cells (LAT).  LCK also separately interacts with and phosphorylates FYN, 

another Src tyrosine kinase.  LAT serves as the scaffold for binding a variety of signaling 

intermediates, including growth factor receptor-bound protein 2 (GRB2), and the VAV 

family, especially VAV1, both of which have many functional domains to interact with 

many different proteins. 

FYN, once activated, activates MEK and ERK through a variety of mechanisms, 

intermediate steps in the RAS-RAF-MEK-ERK classical cascade which phosphorylates 

dozens of other proteins as well as allows the nuclear translocation of transcription 

factors, including nuclear factor κ-B (NF-κB), Fos, Jun, MYC, and nuclear factor of 

activated T-cells (NFAT) among others.  FYN, along with LCK and ZAP-70, activates 

phosphatidylinositol 3-kinases (PI3K), which generate phosphatidylinositol triphosphate 

PIP3 and others, as well as activate protein kinase B (PKB/AKT), and phospholipase C 

γ-1 (PLCG1), described below.57,58 
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With the many different regions which may bind both membrane-bound and cytosolic 

proteins in the T-cell, GRB2 and VAV1 activate a plethora of other proteins, some of 

which will be cursorily mentioned here. Notably, GRB2 and VAV1 phosphorylate PLCG1, 

which in turn activates the calcium influx pathway via enzymatic cleavage of PIP3 into 

inositol triphosphate (IP3) and diacylglycerol (DAG).57,58  DAG also activates FYN.58  

Activation of the calcium pathway also eventually phosphorylates NFAT which 

translocates to the nucleus and has widespread effects on transcription.  The guanine 

exchange factor (GEF) function of VAV1 in particular is important for activation of Ras-

superfamily kinases, including RHOA, which are together necessary for essentially all 

vital function of T-cell biology including actin polymerization, cell motility, global kinase 

pathway transduction, and global intracellular movement.59 

 

Costimulation in T-cell activation1 

 

As mentioned above, sustained T-cell activation requires two separate activation 

steps.  The first is through the variable CD3/TCR which is antigen-specific.  The other is 

through one of many invariant pathways.  CD3/TCR activation without co-stimulation 

induces anergy, in which the T-cell is not able to respond to even high-affinity stimulus or 

proliferate.60 

Classically, co-stimulation occurs through CD28, the prototypical costimulatory 

receptor and founding member of the B7 receptor family.  CD28 contains four exons: the 

first is a trafficking peptide which is cleaved off in final processing; the second contains 

the entire extracellular domain, which is how ligand interacts with CD28; the third is the 

transmembrane domain; and the fourth is the cytoplasmic domain.  Activated APCs (via 

cytokine secretion from innate immune cells, among others) increase the expression of 

                                                           
1
 Some parts rely heavily on Rohr et al. 2015 (ref. 122) 
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B7 family ligands,61 primarily CD80 (B7.1) and/or CD86 (B7.2).  Thus, when activated 

APCs bind naïve T-cells, T-cells ligate both CD3/TCR and CD28 (see Figure 4). 

The intracellular domain is necessary for signal transduction after ligand binding62 

and includes a YMNM motif, which, when phosphorylated, binds the SH2 domains of Src 

family kinases, PI3K regulatory subunits, and GADS/GRAP2 and GRB2. The CD28 

intracellular tail also contains two proline-rich motifs that bind the SH3 domains of 

various signaling proteins, including ITK, GRAP2, and LCK.63  The intermediates of 

CD28 activation further scaffold many of the interactions discussed under “T-cell 

activation.”  Together, CD28-mediated PI3K, GRB2, and VAV1 signaling increase NF-κB 

and NFAT nuclear translocation, augmenting T-cell survival, production of the 

proliferative cytokine IL-2, and cell cycling. 

Activation of both CD3 and CD28 underlies the exquisite complexity of adaptive 

immunity.  The various T-helper subtypes (see “Development and genetics” below) are 

only specified upon activation. 

Members of the B7 receptor family, not just flagship member CD28, have important, 

overlapping, and competing roles in T-cell signaling.  The prototypical competing 

member is cytotoxic T-lymphocyte antigen 4 (CTLA4) which, like CD28, forms 

heterodimers.64  CTLA4 shares high protein homology with CD28 but has some 

differences that result in major changes of affinity and function.64-68  First, CTLA4 also 

binds B7 ligands, but is able to do so at up to 100-fold greater affinity than CD28, both 

through greater affinity due to primary sequence differences but also because CTLA4 

homodimers can bind two B7 ligands whereas CD28, due to steric restraints, can bind 

only one.64  In binding ligand better than CD28, CTLA4 prevents the continued 

transduction of signal thorough CD28.  CTLA4 also initiates transendocytosis,69 in which 

it wrenches ligand out of the donating cell membrane and endocytoses the 

ligand/receptor complex for degradation, thereby forcibly preventing further CD28 



21 
 

activation.  The inhibition is not only limited to the extracellular interactions; the CTLA4 

intracellular domain is unable to bind important intermediates GRB2 and VAV1 and may 

directly activate or inhibit PI3K/AKT activation upon activation through poorly understood 

mechanisms.70,71  CTLA4 can also inhibit CD28 from interacting with intermediates 

including LCK and FYN.71,72  However, it is important to note that despite the 20 years 

that CTLA4 signaling has been studied, many articles directly contradict each other, 

such that most of these details still need to be fully verified.73 

Interestingly, the profoundly anti-stimulatory effects of CTLA4 are known to be 

exploited by many solid tumors;61 whereas neoantigens normally elicit an immune 

response, some cancers cause the activation of CTLA4, thereby inhibiting T-cell-

mediated immunity against the tumor.  Thus “releasing this break” via CTLA4-inhibitory 

antibodies has proven a powerful method to stimulate anti-cancer immunity. 

Another B7 receptor, programmed death 1 (PD1), also has an overall negative effect 

on T-cell activation and has similarly been exploited for anti-tumor immunity.  For 

PTCLs, PD-1 is of particular interest because it is important for identity and function of 

the T-follicular helper cell (TFH) as discussed in the next section.  Inducible co-stimulator 

(ICOS) and B- and T-lymphocyte attenuator (BTLA) are also B7 receptors similarly 

important for TFH function.61 
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Development and genetics of AITL and PTCL, NOS 

 

In order to consider modes of investigation and treatment of these different PTCLs, it 

is important to understand as much as possible the cellular basis for oncogenesis.  

Thus, identifying the cell of origin (COO) is a necessary component of further inquiry.  

Only with the advent of next-generation sequencing (NGS) techniques has the 

technology existed to accurately examine small, otherwise unidentifiable subpopulations 

within a heterogeneous lymphoma.  Thus, the cell types of origin for various lymphomas, 

especially PTCLs, have only recently been described.  Gene expression profiling (GEP) 

has been an integral tool to understand COO and biology of PTCLs; the technique is 

explained under “Next generation sequencing” below. 

 

This section does not serve to review the entirety of our understanding of T-

lymphocyte subtype function, but only to highlight the differences between the putative 

cells of origin of various PTCL entities. 

 

COO: AITL 

 

From extensive GEP analysis of histologically identified AITL cases performed by our 

group74 and others75, the evidence supports the T-follicular helper (TFH) cell as the cell of 

origin for AITLs.  AITLs tend to have a high expression many genes associated with 

TCR signaling, including subunits of the TCR, CD3 genes, CD4, costimulatory CD28, 

other B7-family receptors CTLA4, BTLA, and PD-1, as well as many T-cell signaling 

intermediates.76  This supports the concept of strong TCR signals as required for TFH 

differentiation as discussed below, and that continued activation of this pathway would 
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be necessary for TFH-derived lymphoma to develop.  This does not imply that TCR 

activation is a unique feature of AITLs, however. 

TFH cells are resident T-cells of the germinal center (GC) which are necessary for the 

formation and maintenance of the GC reaction, a hallmark of adaptive immunity in 

vertebrates.  These cells are have surface expression of CD3 subunits and CD4, and 

are marked with expression of the master transcriptional regulator BCL6 and co-

expression of CXCR5, PD1, and ICOS;77-79 however, there is no universal agreement as 

to whether “true” TFH cells express all or some combination of these markers, nor is it 

certain whether cells that express all of these markers are necessarily TFH cells.  Thus, 

for clarity, another requirement – presence in the GC – ensures that T-cells that are 

likely involved in the GC reaction are known as TFH cells.  Cells outside the germinal 

center are termed “pre-TFH cells” depending on their expression of BCL6, CXCR5, PD1, 

and ICOS, but because they are not in the germinal center they cannot directly 

participate in the GC reaction. 

Although there is no consensus on the step-wise mechanism of TFH differentiation, 

there is strong experimental evidence that delineates a significant portion of the origin of 

the TFH cell.  First, antigen-experienced T-cells undergo priming.  Naïve T-cells express 

positive regulatory domain-containing protein 1 (PRDM1), whose product, known as both 

B-lymphocyte-induced maturation protein 1 (Blimp1) or PRDM1, is important for 

maintaining homeostasis in inactive T-cells80,81 and for preventing the TFH transcriptional 

program78 (see Figure 5 and Table 3). Upon T-cell receptor (TCR) / cluster of 

differentiation 3 (CD3) activation, a PRDM1+CD4+ T-cell can be exposed to a variety of 

cytokine microenvironments within peripheral lymphoid tissues.  Exposure to interleukins 

(IL)-21 and/or IL-6, both of which are elaborated by activated immune tissue but 

especially other T-cells,82 can induce the expression of BCL6 via their respective 

receptors IL-21R and IL-6R, which activate signal transducer and activator of 
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transcription 3 (STAT3).83  There is conflicting evidence as to the exact contributions of 

each of these cytokines to TFH identity, suggesting some or total functional redundancy; 

however, the loss of both significantly reduces TFH differentiation.84  It is also possible 

that TFH cells are in fact first polarized towards the TH2 or TH1 lineages, then afterwards 

towards TFH; see “TH2” under “PTCL, NOS” below.  Either way, in these primed, newly 

BCL6-expressing CD4+ T-cells as in BCL6-expressing B-cells, mRNA does not 

necessarily lead to protein translation in B-cells,85,86 likely indicating an additional, as-of-

yet unidentified selection measure for determining TFH identity versus other TH subsets. 

 

Once translated, BCL6 in turn represses PRDM1 and master regulators of other TH 

subtype identity: TBX21, GATA3, RORγT, and FOXP3, which control TH1, TH2, TH17, 

and Treg transcriptional identities, respectively.78 BCL6 also leads to the upregulation of 

the chemokine receptor CXCR5, likely very early because BCL6 levels correlate well 

with CXCR5.82,88,89  CXCR5, with concomitant loss of chemokine receptor CCR7, allows 

these “pre-TFH” cells to home to follicles, where they can interact with antigen-presenting 

Figure 5. Simplified scheme of T-cell differentiation pathways and plasticity (dashed arrows). 

Secreted cytokines are listed in red.87  Reprinted with permission. 
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dendritic cells (DCs) as well as B-cells.90,91  Chemokine CXCL13 serves as the specific 

ligand for CXCR5 and is expressed primarily by professional antigen-presenting cells 

(APCs).  Expression of inducible co-stimulator (ICOS), a B7-family co-stimulatory 

molecule, by the BCL6+CXCR5+ T-cells is required to at the time of DC priming to set the 

stage for germinal center formation, and DCs express the ICOS ligand, ICOS-L.83,92  

Although a DC-dependent phase is necessary for robust TFH development, the T-DC 

interactions appear to be transient and must be replaced by T-B interactions for 

prolonged TFH function.77,93  High-affinity TCR interactions with APCs, especially 

dendritic cells, generate more TFH cells as well.94 

 TH1 TH2 TFH 

Cytokines to induce IFNγ, IL-12 IL-4 
IL-6, IL-

21 

Signal transduced 
through 

STAT1, 
STAT4 

STAT6 STAT3 

Primary transcription 
factor 

TBX21 GATA3 BCL6 

Cytokines produced IFNγ, TNFα 
IL-4, IL-5, IL-

13, IL-10 
IL-21 

Primary cellular cross-
talk 

NK cells, 
macrophages, 
CD8+ T-cells 

B-cells,  
mast cells, 
eosinophils, 
basophils 

B-cells, 
follicular 

DCs 

 

 

 

 

 

Other transmembrane proteins appear to be involved in early TFH function but with a 

less clear mechanism.  Expression of CD28, the canonical T-cell co-stimulatory 

molecule and member of the B7 family, is necessary for the formation of TFH cells; 

CD28-null mice do not develop germinal centers,95,96 likely because they lack TFH cells.  

However, CD28 ligation has not been found to be necessary for TFH development at any 

Table 3.  Relevant T-helper subtype characteristic identities.  The 

prototypical inducing cytokines, signal-transducing intermediates, 

transcription factors, evolved cytokines, and primary cellular 

interactors are shown for the T-helper 1 (TH1), T-helper 2 (TH2), and 

T-follicular helper (TFH) cells. 
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specific stage.  Because of its primacy in early signal transduction through the TCR/CD3 

complex, it seems likely that CD28-null mice cannot have sufficiently high T-cell 

activation to generate TFH cells.  Similarly, OX40, a member of the tumor necrosis factor 

receptor family, is important for primed T-cell survival and can induce CXCR5 

expression,97 but OX40-null mice have near-normal GCs and normal TFH cell 

populations,98,99 suggesting a non-necessary role. 

Once TFH cells find their cognate B-cells, the germinal center takes shape.  BCL6 is 

even more upregulated in TFH cells during the GC reaction.78  High levels of CXCL13 

expressed by FDCs as well as ICOS-L in FDCs and B-cells are required to maintain the 

follicular localization of T-cells, and a lack of ICOS on the T-cells or ICOS-L on B-cells 

prevents these T-B interactions.98  Robust ICOS stimulation leads TFH cells to upregulate 

production of IL-21, which positively signals to the neighboring B-cells, creating a 

positive feedback loop.76  This ICOS-mediated signaling can also be modulated 

downstream: mutations which decrease the activity of Roquin, an mRNA-binding protein 

which degrades ICOS mRNA, increase ICOS signaling and therefore TFH differentiation 

and function as well as increase GC size.100-102  TFH cells are the major control for GC B-

cell differentiation, through which B-cells undergo class switching and become long-term 

antibody-secreting plasma cells, via direct (OX40, CD40L) and indirect (IL-4, IL-21) 

mechanisms.76 

Other transmembrane proteins also take on important roles at the germinal center 

stage, notably of the B7 family.  In addition to CD28 and ICOS, PD1 is upregulated 

dramatically as T-B interactions increase in strength and both T and B compartments 

continue to expand clonally. PD-1/PD ligand 1 interactions between T and B cells are 

required for GC B-cell differentiation and activity as well as TFH activity.103  T-cells co-

expressing PD-1 and CXCR5 are the prime representatives of active germinal center TFH 

cells.  Another B7 family member, B- and T-lymphocyte attenuator (BTLA), is 



27 
 

upregulated on TFH cells during the germinal center reaction and is probably involved in 

decreasing co-stimulation through overall negative regulation on CD28,104 although what 

exactly it does has not been completely assessed in relation to TFH cells specifically.  

The strongest ligand of BTLA, herpes virus entry mediator (HVEM), mediates a 

multifactorial inhibition105 of unclear significance in TFH function. 

It is important to note that despite the fairly detailed understanding of how TFH cells 

are generated, there exists no model which generates TFH in vitro that can retain their 

function.  By the same note, there is not an AITL model available that recapitulates the 

unique architecture of the disease or even is a phenotypic TFH cell.  This has 1) hindered 

research in TFH function, and 2) hindered research in AITL specifically. 

 

COO: PTCL, NOS 

 

GEP studies have also suggested that PTCL, NOS are also derived from T-helper 

subsets.74,106  Our group has shown that expression of the TH1-specific signature 

associated with TBX21 (historically known also as T-bet) or the TH2-specific signature 

associated with GATA3 transcription factors delineate distinct groupings of PTCLs by 

prognosis and active genes.  The canonical T-helper subset functions have been 

explored for the better part of 30 years, and as such it is much more convenient to 

consider the current understanding in review rather than by the multitude of original 

studies.76,87,107,108 

TH1 polarization is induced by exposure to interferon gamma (IFNγ) and IL-12, both 

of which are elaborated primarily by dendritic cells as well as natural killer (NK) cells.  

Signaling through IFNγ and IL-12 receptors activates STAT1 and STAT4, which induce 

the expression of TBX21.  TBX21 upregulates the production of IFNγ and tumor necrosis 

factor (TNF)α, leading to a Type I-polarized positive feedback loop through both 
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autocrine and paracrine mechanisms, as well as supporting its own transcription.  

TBX21 also suppresses GATA3, RORγT, FOXP3, and BCL6, thereby inhibiting 

polarization towards the other T-helper lineages.  The Type I response increases the 

proliferation and function of CD8+ cytotoxic T-cells, macrophages, and natural killer cells, 

among others, thereby preventing the spread of primarily intracellular pathogens, e.g. 

viruses, as well as bacterial infection.  IFNγ is also directly implicated in stimulating the 

release of immunoglobulin (Ig)G antibodies from B-cells, which increases macrophage 

function via pathogen opsonization. 

TH2 polarization, however, is induced by exposure to IL-4, which initially is released 

from other activated T-cells, eosinophils, basophils, mast cells, and dendritic cells.  The 

IL-4 receptor phosphorylates STAT6, which then upregulates IL4 as well as a number of 

other genes, including the master transcription factor of TH2 identity, GATA3.  With IL-4 

inducing a feed-forward loop, GATA3 suppresses the other T-helper transcription 

factors, further upregulates itself and IL4, and upregulates MAF (whose product, c-MAF, 

is another, but less lineage-specific, transcription factor).  Upon interaction with other 

Type II effector cells – the aforementioned basophils, eosinophils, and mast cells – TH2 

cells elaborate IL-5 and IL-13, migratory, maturational and proliferative signals for the 

Type II cells.  Also elaborated is IL-10, a potent suppressor of TH1 activity and a mild 

attenuator of all T-cell function. This response is associated with multicellular infections 

such as helminths, and is necessary for sustained B-cell stimulation, antibody 

production, and antibody class switching.  Because of the necessity of TH2 function for 

antibody-mediated immune function, the Type II response is of particular interest in 

autoimmune disease and allergy. 

Because of the TH2 activity on B-cells, it has been hypothesized that TFH cells may 

be derived from TH2 cells.76  This is supported by the relative high levels of IL-4 within 

peripheral lymph organs, a result of resident dendritic cells as well as activated migratory 
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T-cells.  Further, TH2 cells are already primed to interact with B-cells whereas TH1 cells 

are not, also supporting the notion of a close relationship between the TFH and TH2 

phenotypes.  Therefore, activated T-cells in lymph organs may be first polarized towards 

TH2, and only with the addition of IL-21 and/or IL-6 stimulation at the appropriate time is 

BCL6 upregulated and the TFH program activated.  This could also partially explain why 

some BCL6+ cells do not become TFH cells; they are already TH2-polarized, and the 

exposure to TFH cytokines cannot overcome this effect, so BCL6 is thereafter 

downregulated.  However, others have found that although TFH cells may elaborate and 

respond to IL-4, the increase in IL-4 production is independent of the known TH2 

mechanism,89 suggesting TH2 independence.  At the same time, a recent study has 

found that murine activated T-cells in TH1-polarizing growth conditions in vitro express 

both Bcl6 and Tbx21 in an IL-12-dependent manner, and only after prolonged culture is 

the TH1 identity set and Bcl6 downregulated,109,110 suggesting a TH1-TFH intermediate 

that only afterwards is specified; this was replicated in vivo by exposure to toxoplasma.  

Either way, it is likely that the “traditional” cytokine-mediated T-helper subtype 

specification in Table 3 and Figure 5 misses very important complexities. 

One other TH subset, the regulatory T cell (Treg), deserves special mention here 

because of its canonical function.  Identified by expression of the transcription factor 

FOXP3, Tregs profoundly suppress other T-cell function through expression of 

suppressive cytokines IL-10 and TGFβ, and through direct interaction.107,108  Tregs are 

present throughout the peripheral lymph system and are often found adjacent to active 

lymph tissue.  Thus, in order to develop into cancer, T-cells likely somehow escape the 

suppression caused by Treg cells.  This mechanism is unclear, but both AITL and PTCL, 

NOS have perturbed Treg compartments.  AITL cases tend to have fewer intranodal 

Tregs than normal tissues, and those cells that are there show a resting, e.g. inactive, 

phenotype.111 In fact, there is an example of a FOXP3-high PTCL, NOS which was 
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quickly fatal.112  Therefore, T-cell lymphoma cells must be altering other T-cell 

compartments, but how is not yet understood. 

Type I and Type II immune activation (mediated by TH1 and TH2 cells, respectively) 

have historically been discussed as mutually exclusive. The last fifteen years of work, 

however, has demonstrated not only many more transcriptionally and phenotypically 

distinct helper-T classes, including TFH cells as discussed above plus TH17, TH9, and 

TH22, which all interact to create the classically described types of activation.87,107,108 

There is great plasticity between the different subsets, though TH1 and TH2 identities are 

thought to be relatively stable because they have built-in positive feedback loops to 

maintain the current polarization and inhibit all other helper lineages (see Figure 5).  This 

transcriptional flexibility has been found to be important for maintaining a variety of 

disease states and their animal models, suggesting that this plasticity may play further 

roles in T-cell lymphoma development that have not yet begun to be explored. 

 

Next-generation sequencing: new frontiers in PTCL research 

 

Only with the advent of next-generation sequencing (NGS) has the search for the 

genetic underpinnings of PTCLs begun to come to fruition.  There are three significant 

bottlenecks in obtaining meaningful sequencing data, and we will discuss each in 

relation to PTCLs. 

First chokepoint: the sample itself.  The greatest initial challenge in searching for 

genetic events in PTCLs has been the rarity of samples.  Pathologists and oncologists 

from multiple institutions working together to maximize sample collection, such as the 

members of the Leukemia/Lymphoma Molecular Profiling Project (LLMPP), has gone a 

long way to facilitating the sharing of samples and data. 
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Even then, collecting biopsies with enough residual tumor to get sufficient DNA has 

been problematic; as discussed in “Pathologic characteristics,” T-cell lymphoma cells 

tend to not grow in easy-to-separate clumps but be infiltrative, surrounded by normal and 

reactive tissues including normal T-cells.  Obtaining a 100% pure cancer sample, much 

less a 75% cancer sample, is therefore nigh on impossible, unlike in solid tumors or 

even some B-cell lymphomas which grow in sheets.4  In sequencing studies, these 

samples are considered to have low “tumor content.” Consider that it is relatively simple 

to obtain a high-purity population of neoplastic cells from solid tumors or different types 

of leukemia, either by excising part of the tumor or by collecting circulating neoplastic 

cells from blood.  For these, a relatively high proportion of the assayed nucleic acids will 

come from the neoplasms; one refers to these samples as having high tumor content.  In 

the case of almost every PTCL subtype, neoplastic cells and normal cells exist side-by-

side in affected organs, and it is difficult to effectively distinguish them by histology.  

Excised tissues, therefore, may have extremely varied, but often quite low, neoplastic 

contributions. Further, PTCLs generally do not have a leukemic phase in which large 

numbers of neoplastic cells are released into the blood,4 so harvesting peripheral blood 

mononuclear cells (PBMCs) has even a lower likelihood of collecting neoplastic cells for 

analysis. 

Tissue processing is the next complication.  Biopsies for routine pathologic practice 

are formalin-fixed and paraffin-embedded (FFPE) before sectioning and staining; the 

fixation process leads to severe DNA fragmentation and damage and therefore 

sequencing artifacts, mostly C>T|G>A, thought to be due to cytosine deamination during 

formaldehyde removal.113  Storing biopsies “fresh frozen,” by flash freezing and 

embedding in a polyethylene glycol / polyvinyl alcohol-based medium (OCT; “optimal 

cutting temperature”), prevents this potential problem.  However, this method is more 

labor-intensive, more expensive, less useful in standard pathology lab practice, and 
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requires long-term storage at -80 degrees Celsius or in liquid nitrogen, all of which put 

this method beyond what most lab practitioners and institutions are willing and able to do 

on a regular basis.  In the past five years, technological developments including 

commercially available, kit-based techniques have been optimized for the extraction of 

FFPE DNA or RNA, significantly decreasing artifactual reads and increasing overall 

quality of sequencing output.114  This not only increases the use of new cases, but also 

opens up archival tissue to sequencing examination.  Other storage-related problems 

can arise, e.g. if the sample has become too oxidized, DNA quality may be too low to 

use,114 but many archival tissues will still be able to be extracted for sequencing. 

It is important to note that PTCLs as opposed to other cancers have additional issues 

raised during sequencing.  When performing sequencing studies, usually a normal, non-

cancerous tissue from the same patient is sequenced as a control to determine whether 

any variants found are germline, e.g. not cancer-specific, or somatic, mutations in the 

cancer.  For historic PTCL cases, no normal was ever taken, and even in the 

sequencing era cases often do not have corresponding normal tissues.  Thus, it is 

harder to call a variant somatic without something to which it can directly compare.  

Prospectively, normal tissue, in the form of swab of unaffected skin or nucleic acid 

extracted from peripheral blood, can be collected, but it is difficult to ensure that 

standard collection practices are followed when the samples come from all over the 

world.  In this study, no cases have corresponding normal tissues to which mutant calls 

can be compared, but variant frequency can serve as a partial surrogate; if the variant 

frequencies (VF; described below) approximate 50% or 100%, the variant is likely to be 

in all of a single or both alleles, and is possibly germline.  However, for most of these 

cases, VF is much less than 50%, indicating a heterogeneous population, some of which 

contain a mutant allele; the most likely cause is if the mutation is somatic. 
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Having obtained tumor samples of high quality, either DNA or RNA (or both), the 

next bottleneck has been in the actual sequencing techniques.  Consider the time and 

cost of sequencing an entire human genome in 2000, when the first genome was 

completed: 10 years, nearly $100,000,000.  This cost was from using Sanger 

sequencing, and from paying all the man-hours to sequence and analyze.115  The 

Sanger method uses serial addition of dideoxynucleic acids which can be incorporated 

into a growing DNA strand but cannot serve as a substrate for elongation.116  Four 

reactions were performed, one for each of the dNTPs, resulting in four tubes each with a 

multitude of chains of different lengths.  The chain-terminated sequences were 

sequentially loaded into a polyacrylamide-urea gel and separated by electrophoresis.  

Thus, a user could quickly read through short segments when developed, e.g. by 

radiography.  This method is for the most part accurate, but has several problems, 

including that it only sequences any given base one time, it is problematic in repetitive 

sequences, resolution of single bases may be difficult depending on the imaging 

platform, and it is incredibly labor-intensive.  Capillary-based Sanger sequencing 

machines allowed unattended sequencing while ensuring multiple rounds of coverage 

over the same bases, increasing accuracy dramatically and bringing the maximum 

number of bases sequenced per day up to approximately 115 kilobase pairs (kbp; 

115,000 base pairs), which is what was in use by the end of the completion of the 

Human Genome Project.   

To combat the problems that Sanger sequencing could not overcome, as well as 

increase the throughput of sequencing studies, massively parallel sequencing (MPS) / 

next-generation sequencing (NGS) techniques were developed in the first decade of the 

21st century.  Several commercially available machines exist but they all have many 

similarities.115,117  This study uses whole-transcriptome sequencing (WTS)/RNASeq and 

targeted sequencing, so these two modalities will be discussed here.  Simultaneous 
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reading allows for much greater depth, or number of times a given base is read, 

decreasing error.  It also allows for a greater number of base pairs to be read with no 

bias – the Illumina HiSeq X10 can read up to 1.8x106 kbp,118 an approximate 15 million-

fold increase over what was in use in the year 2000.  Sequencers also include a quality 

value for every base, which is the sequencer’s estimate in confidence of the read given 

the values of the other bases not called. 

For most WTS analyses117 including the one used here, “library preparation” occurs 

first, in which polyadenylated mRNAs are isolated and converted to complementary DNA 

(cDNA), and broken into small fragments with an approximate median of 50-150bp.  

During library preparation, adaptors are ligated, and cDNA with adaptors are selected.  

An additional “barcode” may be ligated between the adaptor sequences and the target to 

run multiple sequences together.  Adaptor-ligated fragments are then bound in solid 

state, e.g. to a plate or flow cell, and the cDNA may be amplified by a high-fidelity 

polymerase.  Finally, the fragments are sequenced, though by what mechanism is 

dependent upon the machine. 

The WTS in this study was performed on an Illumina GIIx machine, which uses the 

standard Illumina library preparation as described in the preceding paragraph.  The 

amplification step, called “bridge amplification,” ensures that there is enough substrate to 

allow the optical system to “see” each base when added and relies on segments 

complementary to the adaptors already adhered to the flow cell.  This innovation allows 

less input (as low theoretically as a few nanograms) of sample, and increases the 

likelihood of accurately identifying rare sequences, but also introduces potential false 

reads due to polymerase error.  The bridge amplification process creates “clusters” of 

identical sequences physically close together on the flow cell.  The clusters are then 

repeatedly run and detected by the machine, completely eliminating humans from the 

actual sequencing steps.  When run, the flow cell is flooded with fluorescently labeled 
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DNA bases which have a blocking group on the 3’ end of the base, preventing additional 

incorporation of other bases.  Once bound, the clusters are read by the fluorescent tag 

on the newly-incorporated base.  The tag is then cleaved, and the blocking group is 

chemically substituted with a hydroxyl group, allowing each strand to incorporate a new 

base on the next run.  

We also perform targeted exome sequencing,119-121 which employs a different 

capture technique than WTS.  For this study, cDNA was PCR-amplified by multiple 

primers targeting each exon, and the amplicons were sequenced as described above.  

This method allows incredible depth of the targets of interest, but can introduce PCR 

errors which are then amplified during processing. 

The ability to generate all these sequences has been a boon to PTCL research (and 

all genetics), but it has also generated problems with copious volumes of data.  Raw 

sequencing files vary wildly in size due to the type of sequencing performed, the amount 

of primary sample input, and the depth of sequencing.  Quality data are also included 

within the file and can double or triple the file size.  And one does not usually sequence 

a single case by itself when looking for cancer-causing changes; dozens to hundreds of 

cases are included in a single run.  For many, sheer storage can become a problem.  

Further problematic is the amount of space required to analyze data as described below.  

Processing can tie up even good computers for extended periods of time, which is 

decreased by the use of cloud computing so that many of the calculations can be done 

on a separate server. 

Sequencing data must go through several steps before meaningful results are 

available, and each step of processing can employ one or more of dozens of available 

algorithms, which may lead to discrepancies even when different groups use identical 

sequencing data.  For PTCLs, our group has developed its own analysis 
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pipeline,74,106,122-124 which specifically is used for our high- and low tumor-content 

samples. 

First, low-quality reads are eliminated from further processing to decrease strain and 

time.  Then, the raw reads must be aligned to the reference sequence: for humans, the 

most recent public version of the Human Genome Project is usually used.  Once aligned, 

differences from references are then called; in cancer, these are putative mutation sites.  

However, it is important to note that single nucleotide polymorphisms (SNPs), which are 

classified as differences from reference in 1% of the population or greater, will be found 

in mutation calling because they differ from reference.  Considering their high frequency, 

most sequencing studies looking for novel mutations, including the present work, filter 

out SNPs at this stage using the dbSNP database maintained as part of the Human 

Genome Project. 

Once mutations are called, further analysis can be performed to help decide whether 

the putative mutations have significant effect on the product.  That is, for proteins, the 

putative substitution can be assessed automatically for likelihood to be functional, 

deleterious, or neutral.  For non-coding RNAs assessed through cDNA, mutations which 

affect seed site or other binding site can potentially be assessed, though the tools to do 

this well are still in development. 

Finally, though, the end user has to decide whether a mutation is likely relevant by 

themselves, and to verify some of the mutations by separately performing PCR and 

Sanger sequencing. 

One major use of RNASeq that is not for mutational analysis is gene expression 

profiling (GEP)74,106,117 when cDNA is used as the input.  GEP can be performed by 

array, wherein unique probes are bound to individual microwells of a chip, cDNA is 

loaded onto the whole chip, and the probes hybridize to their specific complementary 

cDNA segments during processing.  The binding is read by degree of fluorescent or 
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chemiluminescent output, and therefore is a semi-quantitative measure of each 

individual target.  NGS can do the same thing in silico: numbers of reads of any 

transcript can be found and therefore compared proportionally to other samples.  Unlike 

an array-based GEP, sequencing does not rely on pre-made probes, making RNASeq 

able to find any transcript, not just what is pre-loaded into the array.  However, 

amplification procedures can artificially alter the ultimate expression levels due to bias in 

the amplification or sequencing process. 

 

Known mutations in PTCL, NOS and AITL 

 

The first discovered set of mutations, and among the most frequent in PTCLs, affect 

genes which alter epigenetic stability. These are primarily loss-of-function mutations in 

TET2 and DNMT3A, and a gain-of function mutation of IDH2. 

Ten-eleven translocase 2 (a.k.a. Tet methylcytosine dioxygenase 2; TET2) has at 

least one loss-of-function (LOF) mutation in approximately 80% of PTCL cases122,123,125-

129 and catalyzes the conversion of 5-methycytosine (5mC) to 5-hydroxymethylcytosine 

(5hmC), the first step in cytosine demethylation.  In promoter regions, methylated 

cytosines in CpG islands (CG dinucleotides) repress transcription; TET2 catalyzes, 

therefore, the first and rate-limiting step in preventing an abnormal global accumulation 

of 5mC.  Mutations found in PTCLs usually lead to a loss of TET2 function, either by 

premature translational arrest and nonsense-mediated decay or loss of catalytic activity. 

Either event is expected to prevent demethylation and thus effect global 

hypermethylation.  This has indeed been found to be true in TET2-mutated murine 

leukemia models130 as well as in primary TET-mutated glioblastoma131 and acute 

myeloid leukemias (AML).132  Unfortunately, it has been difficult to assess the 

contributions of TET2 mutation in PTCL for several reasons.  First, as described above, 
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the incidence of PTCLs is overall much lower than that of either glioblastoma or AML, 

leading to a lack of primary tissues.  Even more importantly, PTCLs often have much 

lower tumor content than samples of the other cancers, likely masking less striking 

specific epigenetic changes.  TET2 mutations are particularly interesting because 

homologs with the same function, TET1 and TET3, are also mutated in myeloid 

leukemias133 and gliomas131 and often mutually exclusively from TET2, but never in 

PTCLs.  Why exactly this is the case is unclear. 

One additional layer of complexity with TET2 is that it is mutated fairly frequently in 

the general population without hematologic malignancy as well, with approximately 

2.0%-3.5% carrying at least one hematologic malignancy-related somatic mutation 

including TET2.134,135  This suggests that TET2 mutations may serve as the founding 

changes for a wide variety of malignancies.  In reference to lymphopoiesis, it suggests 

that the thymocytes may already have TET2 mutations; therefore, even PTCLs may 

have predisposing mutations before maturation. 

DNA methyltransferase 3A (DNMT3A) is mutated in about 30-40% of PTCL, NOS 

and AITL, but usually only in cases that have TET2 mutations as well.123,129,136  It 

catalyzes de novo CpG methylation, thereby decreasing transcription of affected genes.  

Its mutations almost exclusively occur in the methyltransferase domain and lead to a 

loss of methyltransferase function.137  Thus, its mutations would be expected to lead to 

global hypomethylation, or at least hypomethylation of genes that should be silenced.  

DNMT3B, a family member with unique functions, is not found to be mutated in PTCLs, 

nor is it mutated in other malignancies either. 

Isocitrate dehydrogenase 2 (IDH2) is found to be mutated in approximately 30% of 

AITLs and only rarely in PTCL, NOS.123,138  It is an enzyme of the Krebs cycle which 

converts isocitrate to α-ketoglutarate (α-KG).  Unlike the other enzymes above, IDH2 is 

mitochondrial.  Also unlike the other enzymes, IDH2 mutations occur at a single codon, 
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arginine 172, mutated usually to either serine or lysine, and these mutations are gain-of-

function (GOF), rather than LOF.  Mutant IDH2 gains additional catalytic activity, 

converting isocitrate to 2-hydroxyglutarate (2-HG) in addition to α-KG.  2-HG cannot be 

used in subsequent steps of the Krebs cycle, so it diffuses out of the mitochondria and 

into the nucleus, where it directly interferes with 5mC-5hmC conversion by TET2 by 

competing with α-KG, a cosubstrate in the enzymatic reaction.  It similarly inhibits 

several other dioxygenases, including a number of lysine demethylases.139,140 

Interestingly, IDH2 mutations in AITL occur almost exclusively in the background of 

TET2 mutations, whereas in AML132 and gliomas,141 IDH2 mutations are mutually 

exclusive from TET2 mutations.  Similarly, both AML and glioma may have IDH1 or IDH2 

mutations, and they are mutually exclusive, whereas in AITL, only IDH2 is mutated.  

Further, leukemias and gliomas have two hotspots for IDH2 mutations – R140 and R172 

– whereas PTCLs only appear to have the latter.  Our group has recently attempted to 

delve into the specific mechanisms of IDH2 mutation on T-cell function and found 

epigenetic alterations on several T-cell-specific genes123 that may contribute to the 

pathogenesis of AITL. 

The most unexpected recent addition to the PTCL mutation spectrum is in RHOA, 

the flagship member of the RHO GTPase superfamily.  Approximately 53-70% of AITL 

cases and 20% of PTCL cases have identical mutations at glycine 17, mutated to valine 

or less frequently glutamate.123,125,127,128  These mutations appear to occur exclusively in 

the background of TET2 mutation.  RHOA and its close family members are central to a 

host of cellular processes, including signal transduction, cellular migration, calcium 

homeostasis, and mitosis, among others.  The G17V mutation has been studied in vitro 

and in non-T cells.125,127,128  The substitution of glycine 17 prevents the G-box, the 

domain responsible for stabilizing guanine nucleotide, from binding guanine.  Therefore, 

RHOA G17V cannot bind GTP or GDP and therefore cannot perform any of its effector 
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functions.  Further, through mechanisms not entirely clear (though there are some 

hypotheses: see “Discussion”), the RHOA mutant prevents WT RHOA from its effector 

functions, including binding of GTP and formation of stress fibers.  RHOA G17V mildly 

augmented Jurkat T-cell proliferation as well. 

Considering the importance of the TCR pathway to PTCL maintenance from the 

GEPs, it follows that mutation of members of this pathway which could be relevant to 

lymphomagenesis and cancer progression.  Interestingly, few mutations have been 

reported.  One study shows a few mutations in FYN,125 which have not been reported 

since; another shows a mutation in VAV1, and a few in CD28;128,142 and yet a third study 

finds single case of a fusion between ITK and SYK,143 two kinases important in early 

TCR transduction (see “CD4+ T-cell activation cascade”).  However, none are well-

characterized.  Other studies have also found high expression platelet-derived growth 

factor receptor α (PDGRFA) without mutation,144 and relatively frequent mutation of 

phospholipase C γ-1 (PLCG1),145,146 both of which can increase TCR/CD3 activation 

responsiveness, though these findings have not yet been replicated in any other patient 

population or sequencing dataset. 

 

With this understanding of the current state of research in peripheral cell 

lymphomagenesis, this thesis delves into mutation and activation of the CD28 co-

stimulatory pathway in PTCL, NOS and AITL. 
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CHAPTER 1: MATERIALS AND METHODS 

Patient specimens 

 

The clinical and pathological characteristics of the patients included in the study have 

been published106,122,123 and are included in Table 4 below. We included 20 molecularly 

diagnosed AITL lymphomas for transcriptome sequencing in our study and 85 additional 

cases of molecularly and/or histologically diagnosed AITL, PTCL-NOS, and ALK-

negative ALCL. This study was approved by the Institutional Review Boards of the 

University of Nebraska Medical Center and City of Hope National Medical Center. 

Case Disease Sex Age Time Status CD28.call CD28mut TET2 RHOA 

001 AITL Female  76.51 2.90 1 0   0 1 

002 AITL Male  76.68 4.66 0 0   1 1 

003 PTCL Female  66.52 5.81 1 0   0 0 

004 PTCL Male  49.73 0.46 1 0   1 1 

005 PTCL Male  97.36 0.04 1 0   0 0 

006 PTCL Male  64.55 0.04 1 0   0 0 

007 PTCL Female  70.28 3.12 1 0   1 1 

008 PTCL Male  68.67 1.46 1 0   0 0 

009 ALCL.neg Male  64.11 0.84 1 0   0 0 

010 AITL Male  58.03 0.66 1 1 T195P 1 1 

011 PTCL Female  75.26 8.70 0 0   0 0 

012 PTCL Female  78.89 1.33 1 0   0 0 

013 PTCL Male  66.25 4.28 0 0   0 0 

014 PTCL Male  80.92 0.59 1 0   1 0 

015 AITL Male  40.34 14.96 0 0   0 0 

016 AITL Male  40.46 3.85 0 0   1 1 

017 PTCL Female  74.52 0.09 1 0   0 0 

018 AITL Female  74.76 6.92 0 0   1 1 

019 AITL Male  66.63 2.21 0 1 D124E 1 1 

020 AITL Female  65.99 1.17 0 0   0 0 

021 AITL Female  64.39 1.02 0 0   1 1 

022 PTCL Female  54.67 2.88 0 0   1 1 

023 AITL Male  65.49     0   1 1 

024 AITL Male  68.07 6.34 0 0   1 0 

025 AITL Male  63.00     0   1 0 
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026 PTCL Male  19.37     0   0 0 

027 AITL Female  52.19 3.83 0 0   1 0 

028 AITL Female  74.54     0   1 0 

029 AITL Male  45.44     0   1 0 

030 PTCL Female  72.14 4.31 0 0   1 0 

031 AITL Female  73.58 0.07 1 0   1 0 

032 AITL Female  69.31 0.20 0 0   1 0 

033 AITL Male  33.30     0   1 0 

034 AITL Male  59.22     0   0 0 

035 PTCL Male  33.77     0   1 1 

036 AITL Female  79.95 0.01 0 0   1 0 

037 AITL Male  63.43 0.44 1 0   1 1 

038 AITL Male  52.90     0   1 0 

039 AITL Male  66.95     0   0 1 

040 PTCL Female  68.70     0   1 1 

041 AITL Male  60.84 0.74 0 0   1 1 

042 AITL Female  67.93     0   1 0 

043 AITL Female  47.50 0.52 0 0   1 1 

044 PTCL Male  65.23     0   0 0 

045 PTCL Male  65.23     0   0 0 

046 PTCL Male  27.92     0   0 0 

047 AITL Male  69.33 2.25 1 0   1 1 

048 PTCL Female  73.52 7.92 1 0   1 1 

049 AITL Male  68.07 0.32 1 1 T195P 1 1 

050 AITL Female  57.83 0.77 1 0   1 1 

051 AITL Male  44.10 3.06 0 0   1 1 

052 AITL Female  58.86 0.25 1 0   1 1 

053 PTCL Male  51.05 0.92 1 0   0 0 

054 PTCL Male  76.02 1.26 1 0   1 1 

055 PTCL Male  69.52 2.30 1 0   1 1 

056 PTCL Male  63.72 4.52 1 0   1 0 

057 AITL Male  82.13 0.62 1 0   0 1 

058 AITL Female  51.55 11.85 0 0   1 0 

059 ALCL.neg Male  58.72 0.03 1 0   0 0 

060 ALCL.neg Male  39.94 0.10 1 0   0 0 

061 ALCL.neg Male  48.66 3.04 1 0   0 0 

062 ALCL.neg Male  48.66     0   0 0 

063 ALCL.neg Male  30.86 0.08 1 0   0 0 

064 ALCL.neg Female  89.45 0.07 1 0   1 0 

065 ALCL.neg Male  77.84 2.47 1 0   1 1 

066 ALCL.neg Male  78.27 0.09 1 0   1 0 

067 ALCL.neg Male  59.82 0.79 1 0   0 0 

068 ALCL.neg Male  77.01 3.57 0 0   0 0 
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069 PTCL Male  58.33 2.11 1 0   0 0 

070 PTCL Male  75.00 10.48 0 0   1 0 

071 PTCL Male  61.40 6.33 0 0   0 1 

072 PTCL Female  46.51 0.97 1 0   1 0 

073 PTCL Female  62.38 8.66 0 0   0 0 

074 PTCL Female  59.26 5.19 0 0   0 0 

075 PTCL Male  29.42 1.08 1 0   1 1 

076 PTCL Male  63.09 2.45 1 0   0 0 

077 PTCL Male  54.50 5.57 0 0   0 0 

078 PTCL Female  55.90 0.57 1 0   1 0 

079 PTCL Male  74.28 0.62 1 0   0 0 

080 PTCL Female  67.55 18.40 1 1 T195I 1 1 

081 PTCL Male  83.69 0.29 1 0   1 0 

082 PTCL Male  66.76 0.52 1 0   0 0 

083 PTCL Male  75.29 1.49 1 0   0 0 

084 PTCL Female  88.08 2.55 0 0   1 1 

085 PTCL Female  62.86 0.75 1 0   1 0 

086 AITL Female  87.23 0.06 1 1 D124E;T195P 1 1 

087 AITL Male 51.00 0.20 1 1 D124V 1 1 

088 AITL Female 55.00 1.85 1 0   1 1 

089 AITL Female  69.82 2.15 1 1 T195P 1 1 

090 PTCL Female  81.71 14.79 1 0   0 1 

091 ALCL.neg Female 78.00 0.60 1 0   1 0 

092 AITL Male 78.00 0.07 1 0   1 1 

093 AITL Female 68.00 2.21 0 0   1 1 

094 AITL Male 48.00 0.27 1 0   1 0 

095 AITL Male 72.00 2.40 1 0   0 1 

096 PTCL Male 53.00 2.03 1 0   0 1 

097 AITL Male 69.03 2.29 1 0   0 0 

098 AITL Female 73.20 5.93 1 0   0 0 

099 AITL Female 72.96     0   0 1 

100 AITL Female 63.00     0   1 0 

101 AITL Female 77.00     0   0 0 

102 AITL Male 49.00     0   0 0 

103 AITL Female 59.00     0   1 0 

104 AITL         0   1 1 

105 AITL         0   0 0 

 Table 4.  Clinical characteristics of patients in this study.  Legend on next page. 
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Patient RNA and targeted exome sequencing 

 

RNAs were extracted from the AITLs using the QIAgen RNEasy kit and analyzed by 

high-throughput RNAseq using the Illumina GIIx sequencer. TopHat147 was used for 

alignment, and Cufflinks148 was used for gene expression analysis. TopHat-Fusion149 

was used to analyze aberrant transcripts.  TopHat uses Bowtie150 as an alignment 

engineer.  Gene expression levels were calculated by Cufflinks/Cuffnorm v2.2.1 relative 

to the median of all samples.  To normalize to the T-cell signature,74,106 the mean FPKM 

values for the nine T-cell-specific genes CD2, CD3D, CD3E, CD3G, CD3Z (CD247), 

CD5, CD7, ZAP70, and LAT were calculated for each cancer sample and normal control.  

Then, the CD28 FPKM value was divided by the mean nine-gene normalization factor 

and multiplied by 100%.  For targeted sequencing, we used the TruSeq Custom 

Amplicon (TSCA) platform (Illumina, Inc.) to interrogate all four exons of CD28, all 

eleven exons of TET2, and all five exons of RHOA in PTCL specimens.  The TSCA 

approach allows sequences >600kb and up to 1,536 amplicons in a single multiplex 

reaction.  The integrated indices support sequencing up to 96 samples per MiSeq run 

(Illumina).  Alignment was performed with Mutascope,151 which takes advantage of the 

fixed start/end coordinates in amplicon sequencing to improve alignment.  VarScan2152 

was used to call variants. 

 

Table 4.  Clinical characteristics of patients in this study.  Gender, age at diagnosis, 

follow-up information, and CD28, TET2 and RHOA mutation status are indicated for the 

105 cases of AITL, PTCL-NOS, and ALK-ALCL in this study.  For follow-up status, 1 = 

deceased.  For mutation status, 1 = present. 
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Gene expression profiling (GEP) and gene set enrichment analysis (GSEA) were 

performed as described comparing CD28 WT AITL cases to AITL cases with high-

variant frequency D124 or T195 mutations. There were 178 differentially expressed 

genes found.  Gene sets are described in Figure 15. 

 

Fusion transcript validation and sequencing 

 

The ICOS-CD28 and VAV1-HNRNPM fusion mRNAs discovered on whole transcriptome 

sequencing were verified by PCR and Sanger sequencing on patient cDNA using the 

following primers: ICOS (forward): 5’-TGAACACTGAACGCGAGGAC-3’; CD28 

(reverse): 5’-CATTGGTGGCCCAACAGG-3’; VAV1 (forward): 5’- GATGCAGCAGAATT-

TGCCATCAGC-3’; HNRNPM (reverse): TTGCATTGCTCTCCTGGCATGTTC. 

 

Survival analysis 

 

The Kaplan-Meier curve was constructed, and difference in survival was tested by the 

log-rank method, using the survival package in R.153 

 

Surface plasmon resonance (SPR) spectrometry 

 

Binding experiments were carried out using surface plasmon resonance as implemented 

in the BiacoreTM T200 (GE Healthcare). All analyses were performed at 37 °C. 

Analyses of the interaction between CD28 and its ligands were performed in HBS-EP 

buffer (0.01M HEPES, pH 7.4, 0.15M NaCl, 0.05% sodium azide, 0.005% (v/v) 
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Surfactant P20). Analyses of the interaction between the tyrosyl phosphopeptides of 

CD28 and SH2 domain-containing proteins were performed in a “Cytoplasmic Buffer” 

(0.01M HEPES, pH 7.4, 0.146 M KCl, 0.05% sodium azide, 0.005% (v/v) Surfactant 

P20). For determining the binding affinity of CD28 for their ligands, a blank flow cell was 

used as the control, and CD28 Fc fusion protein at 0.1 mg/ml, 10mM sodium acetate, pH 

5.0, was directly immobilized to the dextran matrix of Research Grade CM5 sensor chips 

(GE Healthcare) by amine coupling using the manufacturer’s kit (GE Healthcare) and an 

activation time of 5 min, resulting in immobilization levels of approximately 2500 RU. For 

determining the binding affinity of tyrosyl phosphopeptides of CD28 for SH2 domain-

containing proteins, biotinylated tyrosyl phosphopeptides or the universal control peptide 

(a 15-residue neutral peptide with the sequence of GSGSGSGSGSGSGSG, G = 

Glycine, S = Serine) were indirectly immobilized to the sensor surface of SA sensor 

chips (GE Healthcare) via streptavidin to levels of approximately 250 RU as previously 

described.154 Equilibrium binding analysis was undertaken as described.64,65  Briefly, 2-

fold serial dilutions of analytes were injected simultaneously over flow cells containing 

the immobilized proteins or peptides. Injections were of 30s duration, at a buffer flow rate 

of 20µl/min, which was sufficient for binding to reach equilibrium.   The binding data were 

examined using Biacore T200 Evaluation Software (GE Healthcare), and affinities were 

derived using the curve fitting tools of Origin version 5.0 (MicroCal Software Inc., 

Northampton, MA) and Microsoft Excel. 

 

Digital Droplet PCR for putative CD28 F51L mutations 

 

To determine the absolute numbers of copies of CD28-F51L and CD28-WT within our 

samples, the Bio-Rad QX200 system (Bio-Rad, Hercules, CA) was used to perform 
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digital droplet PCR in a duplex assay. Two hundred ng of genomic DNA were used as 

input, and the reaction mix was prepared according to the manufacturer’s guidelines 

(Droplet Digital PCR Applications Guide, Bio-Rad). Following droplet generation, 

samples were amplified on a Bio-Rad CFX384 Thermal Cycler with the following primer 

combination (CD28 Forward Primer: 5’-ACAATGCGGTCAACCTTAG-3’, CD28 Reverse 

Primer: 5’-CAGACTTCCACAGCACTATC-3’) in the presence of two differentially labeled 

oligonucleotide probes (WT: HEX-labeled 5’- CCCGG+A+A+CTC+CC-3’; F51L: FAM-

labeled 5’-CGG+A+G+CTC+CC-3’, where “+” indicates that the following nucleotide is a 

locked nucleic acid). Probe signals were quenched with 3’ Black Hole Quencher. The 

primers and probes were purchased from Integrated DNA Technologies (San Diego, 

CA). Data were analyzed using QuantaSoft analysis software (version 1.6.6, Bio-Rad). 

On average, 32,640 copies (range 11640 – 100200) of the CD28-WT allele were present 

in a single 20 μL reaction, whereas no copies of the mutant allele were detected.  Five 

samples with a putative CD28 F51L mutation were analyzed together with one negative 

template control, three reactive lymph node specimens, and seven cases with unknown 

CD28 mutation status. 

 

Molecular modeling of novel CD28 mutants 

 

The following PDB files were used to analyze the effects of the D124V mutation in 

CD28: 1YJD (CD28),155 1I85 (CD86 and CTLA4),156 and 1I8L (CD80 and CTLA4).157  

The amino acid change in CD28 was made in Coot158 and was modeled in each of the 

three preferred rotamers.  Each rotamer was analyzed for steric clashes with 

Molprobity159 and the Val rotamer with only one clash was selected.  The wild-type and 

mutant CD28 structures were aligned with CTLA4 in the CD86-CTLA4 structure using 
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LSQKAB160 in CCP4i161 (residues 60-118 of CTLA4 were used for the alignment).  The 

aligned CD28 structures were combined with CD86 using PHENIX.162  Interactions 

between CTLA4, CD28, and CD28 D124V and CD86 were analyzed with LigPlot+.163  

These interacting residues were used to guide the docking program HADDOCK164 to 

create docked structures of CD86 or CD80 with CTLA4, CD28, and CD28 D124V.  After 

initial rigid-body energy minimization and semi-flexible refinement in torsion angle space, 

HADDOCK performs a final refinement in explicit solvent.  This was done to more 

accurately predict the interface between CD86 and CD28 over simple rigid-body 

alignment in the absence of an experimental structure of the complex.  The docking of 

CTLA4 with CD86 demonstrated that the program could accurately recapitulate the 

experimental structure of the complex (data not shown).  Each of these docking results 

as well as the CD86-CTLA4 complex from structure 1I85 and the CD80-CTLA4 complex 

from structure 1I8L were split into the individual structures using PDBSET in CCP4i and 

the electrostatic surface potentials were analyzed with APBS165 and PDB2PQR166 using 

the APBS plugin167 in PyMOL.168 To analyze the effects of the T195P mutation in CD28, 

the crystal structure of DpYMNMT from CD28 bound to the GRB2 SH2 domain was 

used (PDB 3WA4).169 Residues Pro-Arg-Arg were added to the C-terminal end of the 

CD28 peptide and Thr195 was mutated to Pro with Coot.  The water molecules, Cd ion, 

and acetic acid molecule were removed from the PDB file and the three letter code for 

phosphotyrosine was changed from PTR to TYP, which is the code required by 

HADDOCK.  The interactions between the CD28 peptide and the GRB2 SH2 domain 

were analyzed with LigPlot+.  This revealed that the phosphotyrosine interacts with R67, 

R86, S88, S90, and S96 of GRB2, and the N193 residue of the CD28 peptide interacts 

with K109 and K120.  These residues were then used to guide docking of the 

DpYMNMTPRR and DpYMNMPPRR CD28 peptides to the GRB2 SH2 domain using 

HADDOCK. 
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Cell lines and transduction 

 

CD28 constructs 

 

The entirety of CD28 with or without D124V or T195P mutations was cloned into GFP-

containing pMIG-2B vectors (Promega). Retrovirus was produced in 293T cells 

essentially as described previously.170  Briefly, 2x106 293T cells were transfected with 

8μg pMIG-CD28 plasmid and 9.4μg pCL3-Ampho viral packaging plasmid by the 

calcium chloride method. Transfected 293T cells were cultured in Jurkat media (RPMI-

1640, 10% FBS, 1% 1M HEPES buffer, 1% penicillin/streptomycin) and retrovirus-

containing supernatant was collected and filtered (0.45μm). Virus and polybrene 

(10μg/mL, Sigma-Aldrich, St. Louis, MO) were used to infect ~500,000 Jurkat cells, 

clone E6.1 (ATCC).  Cells were centrifuged at 300 g for 75 minutes at 32°C. Transfected 

cells stably maintaining GFP expression after one week were sorted using flow 

cytometry. Cells were then cultured and frozen or used in the activation assay. All cell 

culture reagents were obtained from Life Technologies unless otherwise stated. 

 

VAV1 constructs 

 

VAV1-variant-2 was purchased in the pOTB7 vector, and HNRNPM was purchased 

in the pCMV-Sport6 vector (Harvard Medical School, Clones HsCD00326560 and 

HsCD00321972, respectively). 

A single FLAG-tagged VAV1-standard was created using the following primers: 

forward: 5’- GTTTTTGGATCCGCCATGGACTACAAGGACGACGATGACAAGGGTG-

GAGGTATGGAGCTGTGGCGCCAATG-3’; reverse: 5’-TCACAGCAGGTGGACAGG-
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AAGG-3’.  pOTB7-VAV1 and the PCR product were digested with BamHI and AflII.  The 

resultant 4352bp and 258 bp fragments were ligated, generating pOTB7-flagVAV1. 

To generate the VAV1-HNRNPM junction, patient cDNA was amplified using the 

following primers: forward: 5’- GTTTTTCGGTCCGGATCCCTTGTAACAGGGTGAAGC-

CCTATG-3’; reverse: 5’- GCAGCTTTTTTCATGCTCTCTTC-3’, producing a 502bp 

fragment.  This fragment and pCMV-Sport6-HNRNPM were digested with RsrII and 

EcoRI, and the fragment was ligated into the pCMV-Sport6-HNRNPM vector to produce 

a 6963bp pCMV-Sport6-fusionHNRNPM intermediate. 

To create VAV1-HNRNPM, the pOTB7-flagVAV1 and pCMV-Sport6-fusionHNRNPM 

vectors were both digested with BamHI and Bsu36I, and the appropriate 2032bp and 

6894bp fragments, respectively, were ligated to produce pCMV-Sport6-flagVav1-

HNRNPM.  This served as the basis for the rest of the construct design. 

To create the final construct used in this study, VAV1-HNRNPM, VAV1-front, and 

VAV1-whole were all cloned with a triple FLAG tag on the N-terminus, and back-

HNRNPM was cloned with a triple FLAG tag on the C-terminus.  They were all inserted 

at the SalI and BamHI sites of either the pBABE-puro (gift from Hartmut Land, Jay 

Morgenstern & Bob Weinberg (Addgene plasmid # 1764)171 or the pMIT retroviral vector 

(gift of T. Mitchell)172 which has the murine Thy1.1 coding sequence downstream of the 

IRES.  Accuracy of the cloning was confirmed by Sanger sequencing. 

For pBABE-puro-based vectors, pCL3-ampho virus was packaged in 293T cells 

transfected with Lipofectamine (Thermo Scientific) per the manufacturer’s protocol, and 

the resultant virus was used to infect VAV1-null Jurkat cells (J.vav1; gift of D. 

Billadeau).173  Resistance to puromycin was selected over four weeks. 

For pMIT-based vectors, ecotropic receptor-encoding retrovirus (pBABE zeo 

Ecotropic Receptor was a gift from William Hahn, Addgene plasmid # 10687) was 

packaged in pCL3-ampho in 293T cells transfected with Lipofectamine, which was then 
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used to infect J.vav1 cells.  Resistance to Zeocin was selected over a period of four 

weeks.  Then, vectors encoding each of the four VAV constructs or empty pMIT were 

transfected by Lipofectamine into PLAT-E cells (gift of Zuoming Sun, City of Hope), and 

the resultant ecotropic virus was used to transfect J.vav1-EcR cells.  After one week, 

cells were sorted for positive Thy1.1 expression by anti-Thy1.1 antibody (APC-

conjugated, clone OX7; Biolegend), and they were sorted three more times for 

equivalent Thy1.1 levels before being frozen or used in experiments. 

 

T-cell stimulation and luciferase assay 

 

To prepare the stimulatory beads, anti-CD3 antibody UCHT1 (BioLegend, San Diego, 

CA) and either CD80-Ig or CD86-Ig (Sino Biological, Beijing, China) were ligated to 

M450 tosylated beads (Life Technologies) per the manufacturer’s instructions at a ratio 

of 1:1. In some experiments, human CD3/CD28 beads (Life Technologies) were used.  

For the NF-κB reporter assay, 6x106 Jurkat cells stably transduced with the CD28 

mutants or WT were electroporated with Photinus luciferase NF-κB reporter vector 

pGL4.32 (Promega) and the Renilla pRL-TK control vector (ratio 10:1) using the Amaxa 

Nucleofector® (program X-001). Twenty-four hours post-electroporation, the cell number 

was determined and cells were stimulated with the indicated beads at a ratio of 1:1 for 

four hours and then harvested and lysed. The dual luciferase assay from Promega was 

performed according to the manufacturer’s instructions, and luciferase activity was 

measured using the POLARstar Omega plate reader (BMG Labtech, Offenburg, 

Germany). 
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Nanostring nCounter assay 

 

To measure gene expression over time,174 one million Jurkat cells stably transduced with 

either CD28 mutants or WT, or each of the VAV-fusion-containing pMIT vectors, were 

stimulated with one million of the indicated beads for the indicated time, then 

immediately washed in PBS, lysed in Qiagen buffer RLT, and placed at -80°C until use. 

Aliquots were thawed, and 10,000 cells per reaction were prepared for nCounter 

expression analysis per the manufacturer’s instructions (NanoString Technologies, Inc. 

Seattle, WA). We designed a customized codeset panel for 29 genes and two 

housekeeping genes (Table 5). Cell lysate was hybridized to the custom codeset at 65° 

overnight. The reaction was processed on the nCounter prepstation and gene 

expression data were acquired on the nCounter Digital Analyzer on the “high resolution” 

setting. Standard quality control by the nSolver analysis software was employed. 

 

Immunofluorescence 

 

Transduced J.vav1 cells were counted and washed with PBS, then spun against slides 

using a Cytospin in 2.5% bovine serum albumin (Sigma-Aldrich, St. Louis, MO; medium 

acceleration, 5 minutes), then fixed for 20 minutes in 4% paraformaldehyde (PFA; 

Sigma) in PBS, washed three times for with PBS.  Cells were then permeabilized for 1 

hour in 0.3% Triton-X100 (Sigma) / 0.5% BSA in PBS (TB-PBS), washed with fresh TB-

PBS, then incubated overnight at 4 degrees in the dark with rabbit anti-FLAG (Cell 

Signaling Technology, clone 2368) 1:800 in 0.5% BSA-PBS.  The next day, cells were 

washed three times in TB-PBS, then incubated for 90 minutes at room temperature in 

the dark with PE donkey anti-rabbit 1:1500 in 0.5% BSA-PBS (BioLegend, 



53 
 

Catalog#406421).  After incubation cells were washed three times in PBS then sealed 

with Prolong Gold anti-fade with DAPI (Life Technologies) and a cover slip.  Twenty-four 

hours later, slides were imaged on a Zeiss LSM-710 confocal microscope for emissions 

at 555nm and 410nm. 
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Flow cytometric analyses 

 

All flow analyses employed standard gating on forward- and side scatter profiles to 

ensure only data for single cells of the appropriate size were analyzed.   

For Thy1.1 expression, cells were stained for 30 minutes at 37 degrees with 1μg/mL 

AlexaFluor 647 anti-Thy1.1 (BioLegend, clone OX-7), then washed with PBS. 

For proliferation, one million cells of each cell line were incubated with CFSE (Life 

Technologies) 1:1500 for 30 minutes at 37 degrees per the manufacturer’s instructions, 

then 10,000 gated events were assessed every day for one week on an Accuri C6 (BD 

Biosciences) for emission in FL-1. 

For CD69 expression, 80,000 cells of each cell line were plated in a 96-well plate 

and stimulated for 8 hours with CD3/CD28 beads (Invitrogen) or not.  Cells were 

washed, beads removed by a magnet, then cells were stained 1:500 with anti-CD69-PE 

(BioLegend, clone FN50) for 30 minutes at 37 degrees in the dark.  Cells were then 

washed with PBS and 30,000 gated events assessed on an Accuri C6 for emission in 

FL-2. 

For VAV1 expression, one million cells were rinsed with PBS and fixed with 4% PFA 

for 10 minutes at 37 degrees, then chilled, and rinsed with PBS.  Cells were then 

permeabilized in methanol (Macron Chemicals, Central Valley, PA) for one hour on ice.  

After washing with PBS, cells were incubated with rabbit anti-VAV1 (Cell Signaling 

Technologies, #2502) 1:25 in 0.5% BSA-PBS for one hour at room temperature with 

occasional mixing.  After washing, cells were then incubated with Alexa647 goat anti-

rabbit Ig (Cell Signaling Technologies, clone 4414) 1:800 in 0.5% BSA-PBS for 30 

minutes at room temperature in the dark, then washed in PBS-2% FBS and analyzed on 

an Accuri C6 for emission in FL-4. 
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Calcium flux was analyzed essentially as described previously. Five million cells of 

each cell line were incubated with Indo1-AM (Life Technologies) 1:1000 in 100μL HBSS 

(Life Technologies) for 30 minutes at 37 degrees in the dark, then washed in PBS and 

incubated another 30 minutes at 37 degrees in the dark to cleave AM esters.  After 

washing again, cells were kept on ice until use.  Cells were collected on a BD LSR 

Fortessa using the recommended filter sets for Indo1 acquisition.  Cells were collected 

for 90 seconds to establish baseline, then stimulated for 12 minutes with 1ug/mL anti-

CD3 (BioLegend, clone UCHT1) and 1μg/mL anti-CD28 (BioLegend, clone CD28.2) 

cross-linked with rabbit anti-mouse Ig (BioLegend, clone Poly4053).  Data were binned 

for each second, and the ratio of emission at 515nm (“violet”)/395nm (“blue”) was plotted 

against time in Microsoft Excel. 
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CHAPTER 2: RESULTS
2
 

 

Detection of CD28- and VAV1-containing fusion transcripts, and 

mutations in CD28 and VAV1, through whole transcriptome 

sequencing 

 

Our analysis of WTS data from 20 AITL cases revealed a single case showing an in-

frame ICOS-CD28 fusion transcript. This fusion transcript was confirmed by Sanger 

sequencing of cDNA from the case showing a fusion of ICOS exon 1 (forward) with 

CD28 exon 2 (Figure 6A). ICOS exon 1 encodes the membrane signal sequence, but 

this is cleaved from the protein; thus, ICOS promoter-mediated expression of the 

transcript would be expected but with no change in the final product. ICOS is highly 

expressed in AITL and in TFH cells.74 The fusion transcript was found to contain a 

mutation of aspartate 124 of CD28 to valine (D124V; Fig. 6B). This AITL case was found 

to express CD28 at a level higher than most other cases in this study; additionally, the 

AITL cases expressed CD28 at a level higher than normal T-cell subsets when  

normalized for T-cell content175 (Figure 7A). Three cases with the CD28 residue 

threonine 195 mutated to proline (T195P) with varying variant frequencies (VFs) were 

also identified. Additionally, we also found TET2 single-nucleotide variants and indels as 

reported previously126 as well as RHOA mutations.123 Based on these findings, we 

performed targeted whole-exon sequencing for CD28, TET2, and RHOA on 90 T-cell 

lymphoma cases (38 AITL – including five also having WTS, 40 PTCL-NOS, and 12 

ALK- ALCL). In 88 cases, subtype was assigned molecularly.74 For PTCL-NOS cases, 

                                                           
2
 Used with permission from Rohr et al. 2015 (reference 122) 
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GEP previously performed106 classified the cases into TBX21 or GATA3 subtypes; cases 

that did not fit into either category were considered “unclassified” (Table 6).  Clinical 

information for all cases in this study is available in Table 4. 

We also found a single VAV1-HNRNPM fusion transcript; the junction occurred 

Figure 6: Distribution of CD28 mutations discovered on transcriptome and targeted sequencing in 

T-cell lymphoma subtypes. A: Alignment of ICOS-CD28 fusion transcript and identification of 

breakpoint, verified by Sanger sequencing. B: Demonstration by Sanger sequencing of D124V 

mutant in ICOS-CD28 transcript, GAC>GTC (red box). C: Kaplan-Meier survival analysis of AITL 

cases with CD28 mutations (red) versus AITL cases with no CD28 mutations (black).  CD28-

mutant cases had inferior survival after diagnosis (p=0.005). D: CD28 map and mutations found 

in 20 AITL cases with whole transcriptome sequencing plus 38 AITL (including five cases 

overlapping with transcriptome sequencing; red), 40 PTCL-NOS (black), and 12 ALK-ALCL 

cases. SP: signal peptide; IgV: Ig variable region-like domain CD28 and CTLA4; TM: 

transmembrane domain. Yellow: “antigen-binding” site required for interaction with ligand within 

IgV domain; pink: SH2-binding motif; green: SH3-binding motifs. #: identified in whole-

transcriptome sequencing; +: identified in targeted sequencing platform. The diagram was built 

using DOG, version 2.0.
176 
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between VAV1 exon 24 (forward) and HNRNPM exon 2.  The two genes are present on 

chromosome 19 in the same orientation; an approximately 1.66Mb deletion may have 

generated the fusion.  This was validated by PCR and Sanger sequencing (Figure 8A,B).  

Other putative fusions were also identified from the WTS data (Figure 7C). 

  
Number (% of screened)   

    
T195 D124 

Total by 
diagnosis (%) 

AITL (n=53)°   3 (5.7)  3 (5.7)* 6 (11.3) 

PTCL, NOS 
(n=40) 

TBX21 (n=19) 1 (5.3) 0 1 (5.3) 

GATA3 (n=12) 0 0 0 

Unclassified 
(n=9)° 0 0 0 

ALCL, ALK- 
(n=12)   0 0 0 

Total by residue   4 3 7 (6.7) 

 

 

 

 

 

 

 

CD28 mutations are relatively frequent in AITL and correlate with 

poor survival 

 

The frequencies of CD28 mutations are presented in Table 6 and Fig. 6D, and the 

TET2 and RHOA mutation status and molecular diagnosis for individual cases are in 

Table 7. Several of the mutations were verified by PCR and Sanger sequencing as 

somatic (Figure 9).  The average depth in our targeted sequencing platform was >1000-

fold, and variant frequencies for a single nucleotide polymorphism (SNP; rs3116496) 

Table 6: Recurrent mutations in CD28 in screened T-cell lymphoma cases.  Summary of 

mutations in CD28 found on targeted sequencing of PTCL cases, grouped by resultant 

mutated residue and diagnosis. Seven of 105 total cases (6.7%) had mutations at 

recurrent residues within CD28. *: this D124E case also has a T195P mutation at lower 

variant frequency; this case is only tabulated in the D124 column.  °: one case of AITL 

and one case of PTCL-Unclassified has only a histological diagnosis. 
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within the targeted region reveal a SNP proportion of approximately fifty percent (Table 

8).  Paired-end reads filtered out likely misreads, and only recurrent mutations affecting 

the same codon were identified to reduce the possibility of artifact or random calls. 

Mutations at D124 and T195 were identified by these criteria, and seven of 105 (6.7%) 

PTCL cases had a mutation at one of these residues, including 6/53 (11.3%) AITLs. Two 

mutations, both at residue T195, had VFs greater than 10% in the targeted platform 

data, and one mutation at D124 had a VF greater than 5%. 
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Figure 7: FPKM of CD28 in AITL compared to non-neoplastic T-cell subtypes, 

and comparison of CD28-mutant and –WT case T-cell signature and TET2 

frequency. A: The FPKM for CD28 was calculated in each sample, and then 

samples were normalized to the T-cell signature26,32 to account for low tumor 

content in AITL. Data for normal T-cells were publicly available33. The average 

FPKM ratio for cancer samples was 31.21 (dashed line), whereas for the 

normal subtypes combined the average was 11.61 (dotted line; p<0.0001, 

Mann-Whitney test). These values are likely underestimations of the true CD28 

FPKM values in the tumor because the normalization method cannot 

distinguish the neoplastic from non-neoplastic contribution to the T-cell 

signature. B: CD28 mutation status did not alter T-cell signature (p>0.61).  C-D: 

CD28 mutation status was independent of TET2 mutant call variant frequency 

in both the targeted (C; p>0.32) and RNA sequencing platforms (D; p=0.40) 

and E-F: CD28 mutation status was independent of RHOA mutant call variant 

frequency in both the targeted (E; p>0.99) and RNA sequencing platforms (F; 

p>0.31). 
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There was no difference in relative expression of the T-cell signature106 (Figure 7B) 

between CD28 wild-type and mutant cases in the transcriptome data. There was also no 

significant difference in average TET2 or RHOA VF based on CD28 mutation status in 

either the RNAseq or the targeted sequencing platforms (Figure 7B-D). AITL cases with 

CD28 mutations have inferior survival to CD28-WT cases (p=0.005; Fig. 6C). We also 

found apparent mutations at residue phenylalanine 51 (F51) as previously reported in T-

cell lymphomas,128 but these were all found at extremely low apparent VF (<2%) and 

could not be verified by droplet digital PCR  (ddPCR).177 

We also subjected published PTCL sequencing datasets125,127,128 to the same 

analysis pipeline and found two T195P and three F51 mutations, ranging from 2.29% to 

41.12% variant frequency (Table 9). Cases of a fusion of CD28 with family member 

Codon Disease 
Residue 
change 

Variant 
frequency 

TET2 
mutation 
variant 

frequency 

RHOA 
mutation 
variant 

frequency 

D124 AITL 

D124V 21.9 (Tr) 16.0 (Tr) 11.9 (Tr) 

D124E* 49.1 (Tr) 45.6 (Tr) 28.5 (Tr) 

D124E 5.9 11.57 9.75 

T195 

AITL 

T195P 
64.2 (Tr) 50.0 (Tr) 11.2 (Tr) 

10.58 17.73 3.72 

T195P 42.7 (Tr) 28.12 (Tr) 20.6 (Tr) 

T195P 2.17 44.98 21.1 

PTCL-
TBX21 T195I 12.3 13.09 

14.4 

 

Table 7: Mutated residue in CD28 by diagnosis, variant frequency, and TET2 

and RHOA mutation status and frequency. The CD28 mutation reads are 

grouped by diagnosis. Because TET2 mutations are varied, and individual cases 

often have more than one single-nucleotide variant (SNV) or indel, only the 

presence of SNVs or indels and the highest variant frequency is shown. Variant 

frequencies are either from transcriptome (Tr) or targeted sequencing data as 

indicated. *: this case with D124E also had a T195P mutation at 6.6% variant 

frequency. 
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CTLA4 have recently been reported in Sézary syndrome,178,179 and a recent report on 

adult T-cell leukemia/lymphoma180 shows several mutations and fusions of CD28. We 

examined our WTS data for additional CD28 fusion transcripts but none were found. We 

also examined our NK/γδTCL data181 and found no CD28 mutations. 

 

CD28 mutant D124V has a greater affinity for CD86 than CD28 WT 

 

The D124V mutant found in the ICOS-CD28 fusion protein in an AITL case exchanges 

a negatively charged amino acid for an uncharged, hydrophobic one, and D124E (AITL) 

substitutes it for a slightly larger but equally charged R-group. These recurrent D124 

mutations are immediately C-terminal to the core of the highly conserved ligand-binding 

site of CD28 (refs. 30, 43) (see Fig. 6C). 

 

 

 

Figure 8.  VAV1 mutations in PTCL cases from transcriptome data. A. Alignment of 

VAV1-HNRNPM fusion, which was validated by PCR and Sanger sequencing (B).  

The distribution of VAV1 mutant calls is shown in C.  Red, AITL; black, PTCL, NOS.  

*These mutations occur in the same case at similar variant frequencies. 

VAV1 exon 1-24 HNRNPM exon 2-15

T8P      H9P

C31G*

V153G

L224Q

V287G

T321P

V561G*

A

B

C
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Case Call location Ref Call SNP VF Ref_F Ref_R SNP_F SNP_R 

2 chr2 204594512 T C 50.16% 310 316 315 315 

8 chr2 204594512 T C 56.84% 306 303 404 398 

10 chr2 204594512 T C 48.73% 421 425 400 404 

13 chr2 204594512 T C 49.53% 486 487 469 486 

16 chr2 204594512 T C 1.06% 558 562 6 6 

17 chr2 204594512 T C 52.50% 401 408 447 447 

18 chr2 204594512 T C 48.48% 595 593 556 562 

20 chr2 204594512 T C 49.45% 567 572 561 553 

21 chr2 204594512 T C 82.21% 582 581 2677 2696 

23 chr2 204594512 T C 52.47% 550 556 610 611 

25 chr2 204594512 T C 46.02% 610 603 518 516 

27 chr2 204594512 T C 99.83% 4 4 2334 2350 

31 chr2 204594512 T C 48.30% 840 859 788 799 

33 chr2 204594512 T C 52.87% 545 539 605 611 

36 chr2 204594512 T C 57.89% 519 519 703 724 

40 chr2 204594512 T C 55.23% 505 501 620 621 

41 chr2 204594512 T C 55.30% 506 519 634 634 

42 chr2 204594512 T C 51.41% 677 688 721 723 

48 chr2 204594512 T C 59.95% 522 526 786 783 

51 chr2 204594512 T C 99.83% 6 4 2993 3008 

63 chr2 204594512 T C 43.16% 1803 1800 1368 1368 

65 chr2 204594512 T C 97.69% 3 3 124 130 

66 chr2 204594512 T C 51.62% 616 620 654 665 

67 chr2 204594512 T C 46.52% 1197 1200 1040 1045 

73 chr2 204594512 T C 99.42% 4 4 681 693 

75 chr2 204594512 T C 99.79% 3 4 1629 1630 

76 chr2 204594512 T C 13.69% 2246 2237 356 355 

80 chr2 204594512 T C 54.84% 305 311 373 375 

83 chr2 204594512 T C 72.20% 288 292 755 751 

92 chr2 204594512 T C 56.56% 392 399 517 513 

93 chr2 204594512 T C 50.93% 1075 1063 1106 1113 

95 chr2 204594512 T C 59.31% 271 269 394 393 

Table 8: Targeted sequencing SNP calls.  For the cases with SNP rs3116496 (which is 

within an intron of CD28; Chromosome 2, position 204594512, T>C), the variant frequencies 

for most SNP calls were at approximately 50% or 100%, likely indicating the presence of the 

SNP in either one or both alleles of CD28, respectively. 
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Figure 9. CD28 variants are somatic mutations.  A-C: Three additional putative CD28 

mutations were subjected to Sanger sequencing.  T195P (A, C) and D124E (B) all had the 

expected mutant calls at a frequency <<50%, indicating that these variants are somatic in 

nature, rather than germline. 
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CD28 mutant D124V has a greater affinity for CD86 than CD28 WT 

To assess whether D124 mutations affect the affinity of CD28 for its physiological 

ligands, we selected the CD28 D124V mutant for surface plasmon resonance (SPR)-

based analysis of the binding affinity of CD28 for its ligands. Representative binding 

curves and Scatchard plots for determination of experimental Kd and Ka are shown in 

Figure 10A-D. The affinity of CD28 D124V for CD86 was an average 2.6-fold higher than 

that of CD28 WT (Fig. 10E; p < 1x10-5 for 6 replicates), whereas CD80 binding affinity 

was not significantly different. 

To understand why CD86 has a greater affinity for the CD28 D124V mutant than for 

CD28 WT, we modeled their interaction (Figure 11). Because a complete crystal 

structure of CD28 bound to ligand is not available, we used the crystal structures of the 

CD28 extracellular domain155 and the complex between CD86 and CD28 family member 

CTLA4.156 In this model, the protein surface in the vicinity of the D124V mutation has a 

more positive overall charge compared to CD28 WT and more closely resembles the 

surface charge of CTLA4 (Fig. 11C, F, I), which binds CD86 with a 20- to 100-fold 

greater affinity than CD28.66-68 This is possibly because the negatively charged D124 

counters any surrounding positive charges, leading to a neutral surface on CD28 WT. 

The D124V mutant is therefore expected to interact more strongly with the negatively 

charged pocket of CD86 (Fig. 11A, D, G, black dashed outline). Thus, the increased 

affinity of the mutant may result from improved charge complementarity. Furthermore, 

several residues, notably in the ligand-binding site, are rotated compared to CD28 WT. 

This is likely a result of the improved electrostatic interactions with the mutant CD28, 

leading to a better packing of the interface. We also performed molecular modeling on 

the CD80-CD28 interaction (Figure 12; Table 10) in the same manner using the crystal 

structure of CTLA4 in complex with CD80.157 



68 
 

 

 

  

 

F
ig

u
re

 1
0
. D

iffe
re

n
tia

l b
in

d
in

g
 a

ffin
itie

s
 in

 C
D

2
8
 W

T
 a

n
d
 m

u
ta

n
ts

. A
-D

: B
in

d
in

g
 a

ffin
itie

s
 to

 B
7
 fa

m
ily

 lig
a

n
d
s
 C

D
8
0
 a

n
d
 C

D
8

6
 w

e
re

 c
o
m

p
a
re

d
 

b
e
tw

e
e
n
 C

D
2
8
 W

T
 a

n
d
 th

e
 D

1
2

4
V

 m
u
ta

n
t. R

e
p
re

s
e

n
ta

tiv
e
 c

u
rv

e
s
 o

f C
D

2
8
 W

T
 (A

, B
) a

n
d
 D

1
2
4

V
 (C

, D
) b

in
d
in

g
 s

o
lu

b
le

 C
D

8
0
 (A

, C
) o

r C
D

8
6
 (B

, 

D
). T

h
e
 in

s
e
t S

c
a
tc

h
a
rd

 p
lo

t s
h
o

w
s
 th

e
 re

g
re

s
s
io

n
 fo

r th
e
 d

is
s
o
c
ia

tio
n
 c

o
n
s
ta

n
t K

d  c
a
lc

u
la

tio
n

. E
: T

h
e
 v

a
lu

e
s
 fo

r th
e
 a

s
s
o
c
ia

tio
n
 c

o
n
s
ta

n
t K

a  w
e
re

 

e
x
p
e
rim

e
n
ta

lly
 d

e
te

rm
in

e
d
 s

ix
 d

iffe
re

n
t tim

e
s
; th

e
 a

v
e
ra

g
e
 a

n
d
 s

ta
n
d

a
rd

 d
e

v
ia

tio
n

 a
re

 s
h
o

w
n
. ***: p

 <
 1

x
1
0

-5 fo
r 6

 re
p
lic

a
te

s
; n

s
, n

o
t s

ig
n
ific

a
n
t. F

: 

C
D

2
8

 ta
il m

o
tif p

h
o
s
p
h
o

p
e

p
tid

e
s
 w

e
re

 in
d

ire
c
tly

 im
m

o
b
iliz

e
d
 in

 a
 flo

w
 c

e
ll a

n
d

 in
tro

d
u
c
e

d
 to

 th
e
 S

H
2
 d

o
m

a
in

s
 o

f th
e

 in
d
ic

a
te

d
 p

ro
te

in
s
. R

e
la

tiv
e
 

a
ffin

itie
s
 (m

e
a
n
 ±

 s
ta

n
d
a
rd

 d
e
v
ia

tio
n
) fo

r C
D

2
8
 s

p
e
c
ie

s
 e

x
p
e
rim

e
n
ta

lly
 d

e
te

rm
in

e
d
 fo

r th
e
 S

H
2
 d

o
m

a
in

s
 fro

m
 th

e
 in

d
ic

a
te

d
 p

ro
te

in
s
.  ***: p

 <
 1

x
1
0

-5 

fo
r 8

 re
p
lic

a
te

s
. 



69 
 

CD28 mutant T195P has a higher affinity for GRB2 and 

GADS/GRAP2 than the CD28 WT 

The T195P mutation changes a polar amino acid to a hydrophobic one at the residue 

between the YMNM-containing SH2-binding motif and proximal PxxP-containing SH3-

binding motif, essential mediators of adaptor protein binding during downstream 

signaling.182 This mutant of CD28 is predicted to have a higher affinity for GRB2 than WT 

according to ScanSite.183 To examine experimentally whether T195P alters the affinity of 

CD28 for adaptor proteins, we determined the affinity of this form of CD28 for several 

SH2 domains in known binding partners (Fig. 9). For two replicates, only GADS/GRAP2 

and GRB2 showed significant differences, so each was assayed six more times. The 

CD28 T195P mutant had an average 1.7-fold greater affinity for GADS/GRAP2 and a 

2.0-fold greater affinity for GRB2 than the CD28 WT (p < 1x10-5 for both). 

No complete crystal structure of the CD28 cytoplasmic domain is available, and it is 

likely intrinsically disordered.  However, there is one model of a synthesized (non-native) 

CD28 phosphotyrosine motif interacting with the SH2 domain of the adaptor protein 

GRB2,169 which we employed to build our model. The CD28 T195P mutation, which 

alters the lone residue between the SH2- and proximal SH3-binding motifs, was 

predicted to modify the conformation of the cytoplasmic tail C-terminal to the mutation 

(Fig. 10J-L). Interestingly, the HADDOCK model164 predicts that the interaction with 

GRB2’s SH2 domain is not directly altered. Rather, P196, within the adjacent SH3-

binding motif, contorts significantly, potentially increasing the interaction between the 

CD28 P196 Cβ and Cδ atoms and the side chains of GRB2 R142 and N143, respectively. 

Comparing wild-type CD28 to the T195P mutant, the distance between P196 Cβ and the 

closest guanidino [-NHC(=NH)NH2] group of GRB2 R142 is essentially unchanged (4.5 

vs. 4.7Å). However, the distance between P196 Cδ and the closest amino group on  
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Figure 11: Protein modeling of CD28 WT and D124V interacting with CD86, and CD28 WT 

and T195P interacting with GRB2. A-I: PyMOL models of CD86 bound to receptor CTLA4, 

CD28 WT, or CD28 D124V with APBS-generated electrostatic surfaces. A-C: CD86-CTLA4 

interaction. The residue corresponding to D124 in CD28 (L141) is indicated in C and the 

protein surface in the vicinity of this residue has an overall positive charge (also apparent in 

B). The negatively charged binding surface of CD86 can be seen in A (dashed line and 

surrounding area). D-F: CD86-CD28 WT interaction. The surface around D124 is more neutral 

compared to CTLA4. G-I: CD86-CD28 D124V interaction. Replacement of the negatively 

charged aspartate residue leads to a more positively charged surface, similar to CTLA4. The 

orientation of several residues is changed (Y118 – red arrow, P121 – black arrow) between 

CD28 WT and CD28 D124V in these models. J-L: PyMOL models of the CD28 cytoplasmic 

tail with or without the T195P mutant binding adaptor protein GRB2. J, L: CD28 WT (J) and 

T195P (L) cytoplasmic tail binding GRB2 (J, salmon; L, chartreuse). T195 is colored black (J); 

T195P is colored yellow (L). Note the distances between CD28 P196 carbons Cβ (black dotted 

circle) or Cδ (black dashed circle) and the closest non-hydrogen atoms on GRB2 (red arrows). 

CD28 P196 Cβ moves from 10.6Å away from GRB2 N143 in the CD28 WT to 6.9Å in CD28 

T195P. K: Overlay of CD28 WT versus T195P mutant binding of GRB2. There is a significant 

change in orientation of several CD28 residues: proximal SH3-domain P196 (purple arrow) 

rotates and approaches GRB2 N143 in the CD28 T195P mutant. GRB2 R142 and N143 have 

a strikingly different rotation in the CD28 T195P mutant compared to WT (red dashed circle). 

 

GRB2 N143 decreases from 10.6 to 6.9Å, drawing it close enough to interact. Given the 

lack of constraints in this model that would be imposed by the remainder of the CD28 

tail, these results must be interpreted with caution; however, they do provide a plausible 

explanation for the altered affinity. 

 

VAV1 mutations: predicted affinity differences 

 

The various apparent VAV1 point mutations (see Fig. 8) were not predicted to have 

any differential binding by ScanSite.183  However, the VAV1-HNRNPM fusion was 

predicted to have an additional, high-affinity site for binding PLCG1, suggesting that the 

mutant may have a novel mechanism of activating PLCG1.  This interaction could not be 

modeled because HNRNPM has no solved structure, and even by homology its structure 

could not be predicted due to its large, repetitive regions which do not appear to be  
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Figure 12. Molecular modeling of CD80 interacting with CTLA4, CD28 WT, and 

CD28 D124V. Legend on next page. 
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anchored intrinsically.  It is possible that HNRNPM is largely intrinsically disordered and 

can only hold a structure when in complex with nucleic acid through its RNA recognition 

motifs (RRMs). 

Considering that the VAV1 point mutations only occurred in one case each, there are 

wide potential differences in affinities for binding partner through each unique site.  

These have not so far been modeled because they have not yet been confirmed as true 

mutations. 

 

 

Figure 12: Molecular modeling of CD80 interacting with CTLA4, CD28 WT, and CD28 D124V. 

A-I: Surface diagrams of modeled interactions between CD80 and B7 family members as in 

Fig. 11. J-O: Cartoons of the same interactions; italicized and non-italicized labels indicate 

residues in CD28 or in the B7 family member, respectively. There are several notable 

differences between the CD80-CD28 WT interaction and that of CD80 and CD28 D124V. 

First, the surface of CD28 D124V near the mutated residue (Fig. 12I) is remarkably positively 

charged (bottom right), whereas in CD28 WT, the corresponding surface near residue D124 is 

more neutral (Fig. 12F). Upon examination of the residues interacting with D124 in CD28, the 

closest nitrogen (Nζ) of lysine 127 was found to be 2.1Å away from the oxygen group in D124 

(Fig. 12K), likely due to electrostatic interaction and hydrogen bonding between the two side 

chains.  The positive lysine approaching the negative aspartate cancels out both charges, 

leading to the neutral surface seen in the model. In CD28 D124V, the Nζ of K127 is 12.7Å 

from the closest carbon in V124 (Fig. 12L); as valine is hydrophobic, the positively charged 

lysine is repelled.  This represents another significant difference. In CD28 WT, the amino 

nitrogen of K20 is 6.9Å from the closest oxygen of D124, whereas it is 5Å from the closest 

carbon atom in D124V despite the loss of electric attraction in the hydrophobic valine.  This 

appears to be due to the electrostatic repulsion and/or steric hindrance from the attracted 

K127 in CD28 WT. Thus, K20 contributes to the positive surface charge in CD28 D124V 

described above, whereas in CD28 the charge is mitigated by D124. Additionally, this 

movement of K20 makes it closer to E81 in CD80 in the CD28 D124V mutant compared to the 

WT (6.0 vs. 9.8Å), suggesting additional electrostatic stabilization in the interaction of the 

mutant. CTLA-4 does not have a positively charged residue in the equivalent location. 

Comparing the interacting residues near and within the MYPPPY “antigen-binding” site of 

CD28 WT, CD28 D124V, and CTLA4 interacting with CD80, CTLA4 and CD28 D124V are 

more similar in distance from CD80 than CD28 WT (Table 1; Fig. 12M-O).  Also of note, 

compared to the most negatively charged interaction surface of CD86 (Fig. 11), the 

corresponding surface of CD80 is notably more neutral or tending toward positively charged 

(Fig. 12A, D, G). This suggests a different mechanism for the improved activation of CD28 

D124V, as delineated above. 
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Intermolecular 
measurements 

     

   
Distance (Å) from CD80 atom 

CD28 (CTLA4) atom CD80 atom Interaction type CTLA4 
CD28 
WT 

CD28 
D124V 

K20-Nζ E81-O Hydrogen bond   9.8 6.0 

M117(134)-Sδ R92-NH Hydrogen bond 4.4 3.8 3.4 

P121(138)-Cγ K36-Cγ Dispersion forces 5.1 6.2 4.6 

P121(138)-Cγ K36-Cδ Dispersion forces 4.6 5.7 3.7 

Y122(139)-OH R94-N1 Hydrogen bond 4.1 5.8 5.3 

L123(Y140)-Cδ K36-Cδ Dispersion forces 4.5 7.2 3.2 

L141-Cδ 

E81-O 

Dispersion forces 9.1     

D124-O Hydrogen bond   9.4   

V124-Cγ Dispersion forces     7.7 

      Intramolecular 
measurements 

     

   
Distance (Å) from Atom 2 

CD28 (CTLA4) atom 1 Atom 2 Interaction type CTLA4 
CD28 
WT 

CD28 
D124V 

K20-Nζ 
D124-O Hydrogen bond   6.9   

V124-Cγ Dispersion forces     5.0 

K113(130)-Nζ 

L141-Cδ Dispersion forces 5.5     

D124-O Hydrogen bond   2.7   

V124-Cγ Dispersion forces     7.1 

Y122(139)-Cε 

L141-Cδ Dispersion forces 5.1     

D124-Cβ Dispersion forces   4.8   

V124-Cγ Dispersion forces     3.7 

K127-Nζ 
D124-O Hydrogen bond   2.1   

V124-Cγ Dispersion forces     12.7 

 

Table 10: Inter- and intramolecular distances in the CD80-CTLA4, CD80-CD28WT, 

and CD80-CD28D124V interactions models. The distances between interacting 

atoms were calculated in PyMOL. 
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CD28 mutants alter transcription and induce higher NF-κB pathway 

activation than CD28 WT 

 

To determine whether these mutations alter the kinetics or magnitude of CD28 

signaling, we examined the expression of transcripts previously determined to be 

regulated upon CD28 ligand binding in Jurkat and/or CD4+ T-cells.184 Jurkat cells 

transduced with CD28 WT or mutants with similar levels of expression (Figure 13) were 

incubated for the indicated times with beads ligated with anti-CD3 antibody and CD86. 

CD28-positive Jurkat cells were chosen instead of CD28-null for this experiment to best 

model the heterozygous-mutant tumor as only one allele in the tumor cells is expected to 

be mutated. 

 

 

Figure 13: GFP expression in CD28 mutant- or WT-expressing Jurkat cell lines.  Jurkat cells 

retrovirally transfected with pMIG-CD28 plasmids as described in the Materials and Methods 

were assessed for GFP expression by flow cytometry on an Accuri C6 cytometer.  
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Expression profiles were similar among the samples (Figure 14A); the Nanostring 

method, which directly counts the number of transcripts in a given sample, was chosen 

because it has greater reproducibility than qPCR.174 Two of the assayed genes, CD226 

and TNFA, showed upregulation in CD28 T195P over WT (Fig. 14B, 14C). No assessed 

transcript was significantly different between CD28 D124V and WT. 

An NF-κB reporter vector was transfected into these Jurkat cells, and the cells were 

exposed to beads coated with anti-CD3 and either CD80 or CD86 (Fig. 14D). Compared 

to Jurkat cells transduced with CD28 WT, D124V showed a 1.9-fold greater NF-κB 

induction in response to CD80 and a 1.7-fold greater induction to CD86. T195P showed 

1.5-fold and 1.8-fold higher NF-κB induction to CD80 and CD86, respectively. The 

increase in activation by the D124V mutant did not significantly differ between CD80 and 

CD86, an unexpected finding given the difference seen in the SPR (Fig. 10). We also 

compared the GEPs of the six CD28-mutant AITL cases to those of CD28 WT AITL 

cases and found 178 differentially-regulated genes (Figure 15A). Gene set enrichment 

analysis (GSEA) showed several differentially regulated pathways, most notably an 

increased T-cell signal transduction signature in CD28 mutant cases and a higher B-cell 

development signature in CD28 WT cases (Fig. 15B-I). 
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VAV1-HNRNPM fusion protein characterization 

 

To understand the function of the VAV1-HNRNPM fusion protein, the entire fusion 

protein was cloned.  For controls, VAV1 only N-terminal to the junction (Vav1-front), the 

entirety of VAV1 (VAV1-whole), or HNRNPM C-terminal to the junction (back-HNRNPM) 

were also cloned (Figure 16).  The VAV1-containing constructs have a triple FLAG tag 

on the N-terminus; the HNRNPM-only construct has a triple FLAG tag on its C-terminus.  

The pBABE-based vectors were stably transfected into J.vav1 cells (a VAV1-null 

derivative of the Jurkat T-cell line), and cells were stained for the location of the FLAG 

tag (Figure 17).  VAV1-HNRNPM showed mostly cytoplasmic staining with some nuclear 

puncta, suggesting primarily cytoplasmic localization.   

The pBABE-puro constructs unfortunately progressively lost FLAG signal over 

several passages while retaining resistance to puromycin selection, so the constructs 

were recloned into the pMIT vector and selected based on quantity of murine Thy1.1 

expression (Figure 18) for the remaining functional analyses.  Each has only one or two 

replicates, so results must be interpreted cautiously. 

 

Figure 14. CD28 D124V and T195P mutants alter transcriptional profiles and increase NF-κB 

signaling in response to CD28 ligation. A: Jurkat cells stably transduced with GFP-containing 

retroviral constructs expressing CD28 WT or mutants were stimulated with beads ligated with 

anti-CD3+CD86 for the indicated time, and specific transcripts were quantitated using the 

Nanostring nCounter. The heat map was constructed from comparative expression profiling of 

the indicated genes. B-C: Two transcripts, CD226 and TNFA, showed significantly increased 

expression in cells expressing the CD28 T195P mutant. *: p<0.05 between T195P and WT; 

***: p<0.005 between T195P and WT. There is no significant difference between the D124V 

and WT. D: Luciferase reporters of NF-κB activation were transduced into Jurkat cells 

expressing the indicated CD28 transgene and stimulated with the indicated beads for four 

hours. Diagram averages three replicates. *, p<0.05; **, p<0.01; ns, not significant. Both CD28 

mutants activated NF-κB more strongly than WT upon ligation of CD80 or CD86 with CD3 

stimulation. 
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Figure 15: Gene expression profiling (GEP) and gene set enrichment analysis 

(GSEA) on CD28 mutant versus CD28 WT AITL cases.  AITL cases with a high 

expression of D124 or T195 mutations (6 total) were compared to CD28-WT 

AITL cases.  A: There were 178 genes with significant differential expression, 

p<0.005.  B-G: GSEA on the expression profiles of CD28-mutant versus CD28-

WT cases. Notably, the T-cell signal transduction signature (B) was 

overexpressed in the CD28 mutant group, as was the metastatic signature 

(C), the TGFβ pathway (D), and the stem cell signature (E).  F-I: CD28 mutant 

cases underexpressed the IFNγ signaling, IL4 signaling, antigen processing, 

and pre-B lymphoma pathways, respectively. 
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J.vav1 cells transfected with constructs or empty control, or the WT Jurkat, were 

assessed for proliferative capacity by carboxyfluorescein succinimidyl ester (CFSE) dye 

dilution (Figure 19).  The fusion-containing cells have slightly higher fluorescence levels 

at later timepoints, suggesting a slightly lower proliferation level, and all J.vav1 cell lines 

had lower proliferative capacity than Jurkat.  Notably, expression of WT VAV1 in J.vav1 

cells did not reconstitute the proliferation seen in Jurkat. 

These cells were also assessed for capacity to upregulate CD69, a marker of 

activation, during stimulation.  The fusion-containing cells had lower CD69 expression at 

24 hours of stimulation than cells expressing the other constructs (Figure 20). 

Expression of VAV1 was assessed by intracellular flow cytometry.  VAV1 was seen 

in all expected samples (Figure 21).  However, the Jurkat cell did not show particularly 

good staining. 

 

 

Figure 16. VAV1-HNRNPM construct and controls.  Domain names and 

amino acid positions are indicated.  The three VAV1-containing constructs 

have a triple FLAG tag on the N’-terminus; the back-HNRNPM construct 

has a triple FLAG on the C-terminus. 

 

VAV1-HNRNPM

VAV1-whole

VAV1-front

back-HNRNPM
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The importance of VAV1 in the initiation of calcium flux in T-cell activation is well-

described, and the VAV1-HNRNPM fusion has a high predicted affinity for PLCG1 via a 

site on HNRNPM (see “VAV1 mutations – predicted affinity differences).  Therefore, 

calcium flux in stimulation was assessed by flow cytometry.  For two replicates, very little 

difference was seen, with the fusion-containing cells fluxing faster than empty vector but 

slower than other transfected cells (Figure 22). 

To assess the effects of the fusion on transcription, cells were stimulated for 8 hours 

then interrogated using the Nanostring codeset described above.  For one replicate, 

several genes were significantly upregulated compared to controls (Figure 23).  Notably, 

 

Figure 17.  Cellular localization of VAV1-HNRNPM and related constructs using the FLAG tag.  

A-B. IDH2-FLAG Jurkat cells (A) stain in their mitochondria, and J.vav1 cells (B) have no 

staining.  C. VAV1-HNRNPM cells have mostly cytoplasmic FLAG expression with distinct 

nuclear puncta.  VAV1-front cells (D) and back-HNRNPM cells (F) have pancellular expression, 

whereas VAV1-whole cells have the expected exclusively cytoplasmic expression. 

A B C

D E F
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CCL4, CD69, CD83, IER3, LTB, TIEG, TNFAIP3, and TNFA, all of which are early 

activation response genes, have a large number of reads in the VAV1-HNRNPM 

sample, higher than the Jurkat Vav1+ control.  The VAV1-whole and VAV1-front control-

expressing cells also have higher expression of many of these than Jurkat, and usually 

higher than the VAV1-HNRNPM-expressing cells. 
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Figure 18. Thy1.1 expression of VAV1 

constructs.  Each transfected J.vav1 

line has similar Thy1.1 levels.  

Untransfected cells have no Thy1.1 

expression. 

 

 

 

 

Figure 19.  CFSE proliferation assay. Cells of each line 

indicated in the legend were analyzed over one week for 

proliferation capacity. 
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Figure 20.  Increased expression of CD69 in response to stimulation.  Transfected cells plus 

wild-type Jurkat were stimulated for zero (A), 5 (B) or 24 (C) hours with CD3/CD28 beads, and 

surface expression of CD69 was assessed by flow cytometry. 

A B C

 

Figure 21.  Intracellular expression of VAV1.  Cells were 

permeabilized and stained for VAV1, then assessed by flow 

cytometry. 
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Figure 22.  Changes in expression of TCR-upregulated genes over time.  Transfected cells or 

wild-type Jurkat were stimulated or not for 8 hours with CD3/CD28 beads, and RNA levels 

were directly assessed.  The VAV1-HNRNPM cells (red square and upright blue triangle) 

notably upregulated many targets higher than Jurkat (blue circle and brown square), 

including CD69, and IER3.  The VAV1-whole and VAV1-front controls, however, upregulated 

most of the targets greater than Jurkat as well. 

Figure 23.  Calcium flux.  Transfected cells or wild-type Jurkat were stimulated and degree of 

calcium flux was measured.  Jurkat cells (top blue line) show the expected kinetics and 

degree of flux.  Empty vector and EcR-transfected J.vav1 cells (bottom orange circle and gray 

crosses, respectively) show characteristic delay of influx and lower maximum levels, plus low 

sustainability.  Cells with VAV1-front and VAV1-whole (green triangle and purple “X”, 

respectively) have a similar early kinetic profile to Jurkat cells but cannot sustain the influx.  

Cells with VAV1-HNRNPM and back-HNRNPM display an intermediate kinetic profiles.  

Average of two replicates, normalized to baseline values. 
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CHAPTER 3: DISCUSSION AND DIRECTIONS FOR 

FUTURE STUDY
3
 

 

CD28 and VAV1 mutations 

 

Gene expression profiling analysis has pointed to a strong T-cell receptor signal in 

peripheral T-cell lymphomas, both for AITL and PTCL, NOS.  This work explores the 

outcomes of mechanisms by which increased or constitutive activation of the T-cell 

receptor pathway may occur: mutation of proximal signal molecules.  Sequencing data 

on 105 PTCL, NOS and AITL cases showed a fusion and recurrent mutations in CD28, 

the canonical T-cell co-stimulatory receptor, as well as several mutations and a fusion in 

VAV1.  These molecules sit at the earliest stages of signal transduction through the 

TCR, and in both cases, their proper function is necessary to propagate and sustain T-

cell activation.  Recent sequencing studies on PTCLs, particularly AITL, have shown 

frequent mutations in RHOA and in the epigenetic modifiers TET2, DNMT3A, and IDH2, 

as well as less frequent mutations affecting TCR signaling proteins, including FYN. Our 

study finds similar frequencies and locations of TET2 mutations in AITL and other types 

of PTCL as previously determined, and we show that the less frequent CD28 mutations 

may play a role in promoting TCR and NF-κB signaling. 

CD28 is the canonical co-stimulatory receptor which is activated by B7-family ligand 

while MHC binds the CD3/TCR complex with co-receptor CD4 (or CD8, though for the 

purpose of the diseases discussed in this thesis, CD4 is the operative molecule).  Upon 

ligation, the CD28 intracellular domain’s SH2- and SH3-binding motifs bind and a 

                                                           
3
 Sections of the discussion are based on Rohr et al. 2015 (ref. 122) 
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multitude of signaling proteins, notably, GRB2, PI3K, ITK, LCK, PKCθ, and FYN.  These 

activated intermediates initiate major shifts in cellular metabolism, motility, and 

transcription status in concert with CD3/TCR activation.  Although the TCR provides the 

major stimulatory signal, co-stimulator activation is required to maintain activation and 

allow the T-cell to assume its effector function.  Co-inhibitory B7 family receptors, 

including CTLA4 and PD1, among others, compete with CD28.  In addition to directly 

competing for ligand, the B7 family co-inhibitors can decrease CD3/CD28 signaling 

through direct and indirect interaction with signaling intermediates. 

The cancer samples in this study show recurrent mutations of CD28 at two residues: 

aspartate 124, which is immediately adjacent to the six-amino acid MYPPPY “antigen-

binding” motif, and threonine 195, which is between the SH2- and N-terminal SH3-

binding motifs.  One mutation at each residue (D124V and T195P) was found to have a 

higher affinity for binding partner by SPR and each was found to induce higher NF-κB 

activation than CD28 WT when stimulated.  For T195P, there were also notable 

transcriptional differences upon activation.  The interactions were modeled to identify the 

potential mechanism by which the increased affinity may occur. 

The fusion transcript between ICOS and CD28 is driven by the ICOS promoter, most 

likely as a result of partial tandem duplication of the CD28-ICOS-CTLA4 locus. Because 

ICOS is highly expressed in AITL, it is expected that this fusion can drive higher CD28 

expression (Figure 7). However, the signal peptide, encoded by the first exon of ICOS, is 

cleaved from the final protein, such that the product only contains CD28 with the 

mutation. Recently reported cases of Sézary syndrome had a CTLA4-CD28 fusion, 

whose expression is expected to be driven by CTLA4; in this case, the extracellular 

domain of CD28 is replaced by CTLA4, which augments CD28 intracellular signaling 

through the higher-affinity CTLA4 extracellular domain.178,179 A study on adult T-cell 

leukemia/lymphoma found rare CD28 D124, T195, and F51 mutations, ICOS-CD28 and 
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CTLA4-CD28 fusion transcripts, and copy number increases of CD28.180 Although we 

found no CTLA4-CD28 fusions, we show that enhanced CD28 pathway activation can 

be achieved also through mutation. The D124V mutant, which occurs adjacent to the 

extracellular ligand-binding site, has an increased affinity for ligand CD86 shown by 

modeling and SPR analysis (Figures 10 and 11). Our modeling of the interaction 

between CD86 and CD28 indicates that the increased affinity of the D124V mutant is 

likely due to improved electrostatic interactions as opposed to steric or hydrophobic 

factors. There is also evidence of enhanced downstream target activation. The fact that 

the D124V mutant has the same NF-κB activation with either CD80 or CD86 stimulation 

is unexpected based on the binding analysis (Fig. 14) which shows CD86, but not CD80, 

having a higher affinity for the D124V mutant. The model of the CD80-CD28 interaction 

shows several interactions that could explain these findings (Fig. 12). On the cell 

surface, the orientation of CD28 homodimers is highly constrained, whereas in the SPR 

flow cell, they are three-dimensionally unconstrained. Three-dimensional Ka 

measurements by SPR of TCR/MHC interactions are approximately 1000-fold lower than 

the same analysis in two dimensions. Thus, it is possible that a difference in affinity for 

CD80 between WT and mutant CD28 when confined to the plasma membrane may not 

be apparent by SPR analysis. Also, crystal structures of the modeled complexes would 

be useful, as they may reveal changes not predicted by the molecular modeling. 

Interestingly, CD28 expression in multiple myeloma has been shown to alter 

myeloma proliferation and survival,185 and to be predictive of disease progression and 

relapse in conjunction with CD86, but not CD80, expression.186,187 

There are several possible mechanisms by which increased ligand affinity may 

augment CD28 signaling. First, the increased affinity for SH2-containing adaptor proteins 

may directly increase CD28 signaling. Another possibility is through reduced receptor-

mediated endocytosis. The PI3K regulatory subunit’s SH2 domain binds to the 
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phosphotyrosine motif of the CD28 cytoplasmic tail and effects a wide range of changes, 

including CD28 receptor internalization. Our binding assays show no significant 

difference between the CD28 WT and CD28 T195P binding of PI3K regulatory subunits 

(Fig. 10). Because GRB2 and GADS/GRAP2 have a significantly higher affinity for the 

T195P mutant tail over WT, perhaps these adaptor proteins outcompete PI3K for binding 

to the CD28 SH2-binding motif and thereby compromise CD28 endocytosis. A 

decreased downregulation of CD28 signaling would have the same effect as direct over-

activation, e.g. to augment cell cycling, proliferation, and cytokine production. 

Analysis of gene expression using nCounter (Fig. 14) showed enhanced 

upregulation of two CD28-responsive genes, CD226 and TNFA, by CD28 T195P 

compared to WT. CD226 is crucial for TFH differentiation and can significantly modulate 

T-cell function by outcompeting its inhibitor TIGIT to bind receptor CD155.188 TNFA is a 

potent cytokine that enhances proliferation, in part by inducing IκB-kinase 

phosphorylation and NF-κB activation.189 It is also interesting that CD28-mutant AITL 

cases showed upregulation of the T-cell signal transduction signature over CD28 WT 

AITL cases (Fig. 7). One major consequence of TCR/CD28 signaling is the activation of 

the NF-κB signaling pathway, and both mutants demonstrate enhanced NF-κB activity 

using a luciferase reporter assay. Taken together, these data support the notion that the 

two CD28 mutations explored in this study may impart a functional advantage to CD28-

mutant T-cells. 

One other mutation hotspot in CD28 was identified in our screen, as found in 

previous studies: phenylalanine 51, which we found to be mutated to leucine or valine.  

However, these cases had extremely low variant frequency in the sequencing platform, 

and none of the mutations were able to be verified by digital droplet PCR.  Other studies 

have also identified F51 mutations in PTCLs, including Sézary syndrome,179 ATLL,180 

and AITL,128 and we also found these mutations using our analysis pipeline (Table 9); 
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mutation of F51 was found to increase proliferation in a CTCL model.179  Thus, despite 

the negative PCR data, it seems plausible that the F51 mutations are real but subclonal.  

Still, we cannot be certain. 

The clonality or subclonality of various mutations in lymphoma is important for 

considering how cancers can become resistant to treatments.  In the natural history of 

many cancers, including AITL and PTCL, NOS, there is often an initial response to 

chemotherapy resulting in decreased tumor size on imaging, but frequently cancers 

evolve to be resistant to treatment.  As discussed in “Treatment and outcomes,” PTCLs 

tend to relapse, often within the first few months after treatment begins.  It is likely that 

relapse is caused by some subclone within a cancer which has a survival or proliferation 

advantage that allows it to grow even in the presence of the chemotherapy.  We hypo-

thesize that activating mutations of CD28 may give a clone a survival advantage, and 

thus be the population that survives chemotherapeutic insult.  The only way to test this 

would be to have more samples.  Ideally, there could be serial samples from the same 

patient to track mutational changes as has been done in diffuse large B-cell lymphoma190 

and others.  A good start would be to get at least some samples that are known relapse 

after clinical remission.  However, standard-of-care does not include rebiopsy for PTCLs 

unless there is clinical suspicion of a different malignancy or other concern, so there 

needs to be a concerted effort to collect and sequence relapsed PTCL cases in order to 

test whether CD28 or any other mutation is tied to risk of an event after treatment.  

This study also finds and validates a gene fusion in which VAV1 participates, and 

identifies several putative mutations from WTS and WES data.  GRB2, LCK, FYN, and 

other early TCR intermediates such as LAT and SLP76 directly or indirectly activate 

VAV1, a guanine exchange factor (GEF) that activates Rho family members including 

CDC42, RAC1, and RHOA, which regulate a multitude of intermediates in later signal 

transduction.  Particularly, VAV1 is important in actin remodeling, calcium flux, and a 
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variety of pathways leading to transcriptional upregulation of activation-induced 

cytokines and other proteins via NFAT and NF-κB, among others.  There are three VAV 

family proteins, but VAV1 is the most specific to, and most important for, the 

hematopoietic system. 

Adult T-cell leukemia/lymphoma (ATLL), another PTCL subtype with fairly poor 

prognosis, has a well-defined, almost exclusive, association with infection by the human 

T-lymphotrophic retrovirus (HTLV-1).  It is characterized by high TCR activation levels as 

well.  As discussed above, a recent study examining an extremely large cohort (n=426) 

found great numbers of mutations throughout the genome.180  Notably, ATLLs had a 

variety of mutations within TCR-associated proteins, many of which are or are predicted 

to be activating.  There were also several fusion proteins involving the B7 family 

receptors CTLA4, CD28, and ICOS, all of which put the activating CD28 cytoplasmic 

domain under control of promotors of the inhibitory CTLA4, and increased copy number 

of CD28.  There were also several recurrent mutations in VAV1 and PLCG1 which likely 

also function to positively regulate signaling.  Why another AITL study in addition to this 

ATLL study found PLCG1 mutants whereas our samples had none is unclear.  Possibly 

it has to do with the geographic and ethnic differences among the various populations as 

well as inherent differences between different subtypes of PTCLs.  Further, one study 

found a high proportion (ten percent of their cohort) of CTLA4-CD28 fusions in various 

PTCL entities.191  This number, frankly, seems too high considering that all other studies, 

including this dissertation, report no more than two percent of cases having CD28 

fusions; we have submitted a letter to the editor analyzing all available datasets and 

finding significantly fewer fusions than implied by that study.192 

 

VAV1 was among the first GEFs identified, and its functional domains among the first 

assessed.  VAV1 has a complex autoinhibitory mechanism by which its double 
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homology (DH) domain, a major catalyst for GEF activity, is inhibited by its neighboring 

acidic (Ac) domain, and phosphorylation of tyrosine 174 in the Ac domain in early TCR-

mediated activation relieves this autoinhibition on the DH domain, eventually allowing 

the RhoGEF domain to exchange guanine.  This autoinhibitory mechanism is 

augmented by interactions with the C-terminal SH3 domain, which is also relieved by 

indirect phosphorylation through TCR activation.  Mutation or deletion of the C-terminal 

SH3 domain, therefore, prevents this secondary step of auto-inhibition thereby leading to 

increased activation.  This indeed appears to be the case in ATLL, where the majority of 

VAV1 mutations are either within the Ac domain or clustered in the C-terminal SH3 

domain, though there are other hotspots as well. 

The VAV1-HNRNPM fusion found in this study eliminates the entire SH3 domain, 

and other putative mutations may have other effects on the various domains in which 

they take part.  At the time of writing we are attempting to confirm the presence of these 

mutations by whole-exome sequencing.  Should they prove to be real, their function will 

need to be assessed to determine whether they can alter downstream pathway 

activation and then lead to or propagate cancer.  Preliminary work on the VAV1-

HNRNPM mutation suggests that the fusion protein can translocate to the nucleus, likely 

via its somewhat cryptic nuclear localization sequence.193  Although the effects on CD69 

expression, a marker of activation, were minimal by flow cytometry (Fig. 19), there does 

indeed appear to be greater positive transcriptional effects of the mutant compared to 

the WT VAV1 in CD3/CD28 stimulation, including CD69 specifically (Fig. 23).  These 

each are, however, for a single biological replicate, so more data must be collected in 

order to assert whether the findings are true. 

For the short-term future experiments, confirming and expanding the findings in the 

VAV1 fusion study will be necessary to decide whether the fusion is of consequence.  In 

the longer term, the function of the putative VAV1 mutations needs to be assessed 
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should they prove to be true.  Given the preponderance of mutations throughout VAV1 in 

ATLL, it follows that the apparent mutations in AITL and PTCL, NOS, if they are true, are 

likely relevant to the disease as well. 
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The mutations in AITL and PTCL, NOS must cooperate 

 

TET2, IDH2, and DNMT3A mutations in AITL and PTCL, NOS are discussed at 

length in “Genetic origins.”  We found the expected overall and variant frequencies of 

TET2 mutations; IDH2 and DNMT3A mutations for these same cases are reported in 

Wang et al. 2015.  Given that each of the other mutations exists nearly exclusively in the 

background of TET2 loss-of-function, there must be a degree of either cooperativity 

between the later mutations and TET2 LOF, or the loss of TET2 predisposes to other 

mutations.  Either way, the global hypermethylation phenotype in TET2 mutant cells 

must create the environment required for T-cell lymphomagenesis, and exactly how the 

other mutations fit in is still a puzzle that must be solved. 

The dominant negative G17V mutation in RHOA is particularly perplexing, though a 

variety of mutations in RHOA are known to occur in other cancers.  For essentially all 

cell lineages including most hematopoietic cells, RHOA acts to polymerize actin and 

controls contraction on the trailing or lagging edge during cellular migration.  RHOA was 

found to be a transforming factor in fibroblast culture,194 and its activity is very important 

in metastasis of many solid tumors;195,196 RHOA is frequently highly expressed in 

metastatic cancers.  Several other mutant forms of RHOA have recently been identified 

in diffuse gastric carcinomas.197  A plethora of RHOA mutations were also found in 

ATLL, some of which are activating and some inactivating.180  Notably, the most 

common mutants in the gastric cancers – Y42C, R5Q/W, and G17E –  are also expected 

to decrease GTP binding, though this has not been shown for R5 mutants.  Pediatric 

Burkitt lymphomas also have relatively frequent R5Q/W mutations in RHOA.180  

Together, this suggests a common mechanism of RHOA GTP-binding inactivation that 

promotes cancer development, though what exactly this is remains mysterious, 
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particularly because no G17V mutations occurred in gastric disease or Burkitt 

lymphoma, and because RHOA-activating mutations can also occur in the same 

diseases.  It would also be expected that if RHOA loss-of-function was oncogenic, then 

there would be examples of indels and nonsense mutations, and/or many more locations 

of mutation which would decrease RHOA activity.  The fact that there are specific 

mutational hotspots suggests a mechanism beyond simple loss, and/or only a few 

mutations are not maladaptive. 

Even the function of RHOA in lymphocytes has evidence somewhat difficult to 

reconcile.  Early work on thymocyte development (the process summarized under “From 

stem cell to mature αβ T-cell”) shows that RHOA activity is necessary for T-cells to 

mature, presumably because of 1) the intrathymic migration necessary for training, and 

2) the importance of actin in stabilizing the immunologic synapse.  Further, intercellular 

adhesion, which is initiated by transmembrane protein interactions but maintained by 

actin polymerization to keep adhesion proteins stable in the cell membrane, also 

requires RHOA function as specifically tested in Jurkat cells.198  Thus, a loss of GTPase 

function would be expected to reduce actin polymerization, and this is indeed shown for 

the G17V mutant.  Nevertheless, the total loss of functional RHOA in T-cells by 

transgenic expression of C3 exotoxin generates a T-acute lymphoblastic leukemia-like 

disease with thymic enlargement in mice.199 

One possible explanation for this strange behavior of RHOA G17V may relate to its 

affinities for other proteins in the so-called GTPase cycle.200  In order for GTPases like 

RHOA to function, they must be loaded with GTP.  Inactive GTPases are stably bound to 

GDP, and in the case of the Rho family, most are complexed in the cytosol with any of a 

class of guanine dissociation inhibitors, or GDIs; the prototypical GDI for RHOA is 

RhoGDI.  The GDI-bound fraction is in equilibrium with a small portion of membrane-

bound, inactive protein that can potentially be activated by guanine exchange factors 
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(GEFs, of which VAV1 is one) which catalyze the exchange of GDP for GTP.  The 

GTPase is now active.  For the GTPase to become inactive, the GTP must be 

hydrolyzed; this is by the action of GTPase accelerating proteins (GAPs), prototypically 

RhoGAP for RHOA, which increases the intrinsic activity of the GTPase, hydrolyzing the 

terminal phosphate bond of the GTP to generate GDP.  At this point, the GDP-bound 

GTPase can then re-complex with a GDI or be reactivated through the action of a GEF. 

Not only is RHOA G17V unable to bind GTP and be active, it is unable to bind 

guanine nucleotide at all.  Thus, it is hypothesized that the mutant RHOA may be 

“locked” in a conformation where it binds a GEF, but the GEF cannot dissociate because 

it cannot load GTP. If this were the case, there may be a preferential sequestration of 

some GEF or GEFs, allowing other GEFs or GAPs or GDIs to exert their pleiotropic 

effects on any number of cytosolic proteins.  Our laboratory is actively working on 

discovering what the important interactions for RHOA G17V might be.  One particularly 

interesting hypothesis (proposed by Timothy McKeithan) would be mostly lymphocyte-

specific: because VAV1 is among the most important GEFs for RHOA in T-cells, 

perhaps membrane-bound RHOA G17V sequesters VAV1 close to the plasma 

membrane, preventing dissociation.  VAV1 has many domains which can interact with 

many other proteins (see Figures 4 and 8) independent of its GEF function.  Thus, if 

VAV1 is constitutively membrane-bound, it may be able to activate other early 

intermediates independent of TCR/CD28 activation. 
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Future directions: towards a model of PTCL, NOS and AITL 

 

Research in PTCL, NOS and AITL pathogenesis is hindered for several reasons as 

mentioned above.  Perhaps the most frustrating is a lack of PTCL models.  Other T-cell-

derived cancers such as T-cell leukemias and cutaneous T-cell lymphomas have several 

cancerous cell lines available publically from repositories such as the American Type 

Culture Collection (ATCC).  The former includes the cellular model used for the majority 

of this study, Jurkat; besides the fact that is a leukemic line, it also is not the best 

representation for normal T-cells because it is missing the tumor suppressor PTEN, 

which exerts a variety of its own effects on cell cycle, activation, and migration; thus, it 

likely dos not faithfully represent the human mature T-cell. 

AITL and PTCL, NOS, however, have never been successfully grown in vitro.  This is 

partially due to the relative patient infrequency, such that there has been less available 

to attempt to grow, as well as the paucity of historical and even current data concerning 

primary tumor drivers.  But the major reason is that both of these entities are strongly 

influenced by the micro-environment in which they develop.   As discussed in “COO: 

AITL,” the cells from which AITL are derived, TFH cells, are able to mature and stay alive 

as a differentiated TFH cell only in the presence of a germinal center, e.g. activated B-

cells and FDCs.  In vitro differentiation of TFH cells, or at least TFH-like cells, has been 

accomplished.  However, long- or even medium-term expansion of a non-cancerous TFH 

cell without B-cell and FDC interaction is as of yet impossible; our group has even tried 

to overexpress BCL6 in Jurkat cells, but to no avail (Jianbo Yu, unpublished data).  This 

is further underscored by the fact that AITL only extremely rarely undergoes a leukemic 

transition, in which the cells are able to stay alive while circulating in the blood without 

the constant support of the meshwork of the peripheral lymphoid tissues.  The only 
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foreseeable way truly generate a cell culture-based model of AITL is to develop a multi-

cell-type co-culture in which dendritic cells present an antigen to which both 

PRDM1loBCL6hiCXCR5hiCD4+ T-cells and mature B-cells are able to interact.  Only in 

this complex system can the appropriate degree of activation through the TCR, along 

with OX40 co-stimulation from B-cells and CD28 co-stimulation from both B-cells and 

dendritic cells, be maintained.  It is important to note that FDCs are important for T-cell 

training and do not normally take part in the GC reaction,93 but there still needs to a 

consistent, controlled, physiologic activation measure for the T-cells to become TFH. 

Practically, the one way to possibly accomplish the model outlined above would be to 

generate mice in some way.  We have generated mice with conditional loss of TET2 in 

T-cells to recapitulate what is found in human AITL and PTCL, NOS.  Mice expressing 

Cre recombinase under control of the Cd4 promoter (Jackson Laboratory, Tg(Cd4-

cre)1Cwi/BfluJ, stock 017336)  were crossed with mice which have the third exon of both 

their Tet2 alleles bounded by LoxP sites.133  Without Cre, cells have normal Tet2 

expression because the LoxP sites are spliced with the introns in which they sit.  

However, in the presence of Cre, the third exon of Tet2 is removed, such that all 

progeny of Cre-expressing cells, in this case CD4+ T-cells as well as perhaps some 

dendritic cells, will lose the third exon of Tet2 and not have a functional protein.  Some 

mice were also crossed with the OTII line, expressing a transgenic T-cell receptor which 

encodes an ovalbumin-specific TCR for MHC Class II, thereby allowing selective 

activation with a known antigen (Jackson Laboratory, B6.Cg-Tg(TcraTcrb)425Cbn/J, 

stock 004194). These mice are currently aging and will be assessed over their life for 

development of lymphoma.  Further, T-cells will be removed at various ages and 

assessed for functionality. 

T-cells from the murine lines above could potentially be used as donors for in vitro or 

in vivo work.  Another way to generate reactive T-cells could be through an acute 
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injection that would elicit an antibody reaction, such as sheep red blood cells; this will be 

less uniform, but would more appropriately generate a heterogeneous reaction more 

representative of the likely physiological reaction to antigenic challenge.  There are still 

other agents that could generate a known response, e.g. murine viruses, but for these it 

would be too easy to contaminate the mice intended to be uninfected.  This would be 

particularly problematic in a mouse facility at an academic institution that does not 

normally use biosafety level 2+ precautions or higher in routine handling and 

maintenance of mouse colonies. 

Even once these T-cells are ready to be used in modeling, the major issue remains 

recapitulation of normal nodal architecture.  For in vivo work, simple injection of 

potentially malignant T-cells should be enough to get them to home to peripheral 

lymphoid organs and divide as expected; only performing this experiment can decide.  

The in vitro modeling is even more complex.  Peripheral lymphoid organs are three-

dimensional structures, clearly, whereas tissue culture plates are two-dimensional.  

There do exist mesh inserts which adherent cells, FDCs in this particular model, could 

use as a scaffold and allowing multi-dimensional access for the potential interacting B 

and T cells, but it doesn’t let B- and T-cells move around each other with the dendritic 

meshwork in place.  Plus, gravity would pull non-adherent cells away from the insert 

towards the bottom of the well, and without moving lymph to keep cells in circulation, the 

lymphocytes would eventually not be able to interact with the FDCs anyway.  A round-

bottom plate would avoid the gravity issue but still not mimic the 3D structure of a lymph 

node.  It is truly a conundrum. 

Recent advances in bioengineering have generated organ-specific scaffolding which 

allows population by living, functional cells. In the functional cases (including heart,201 

liver,202 and pancreas,203 among others), the stated goal involves a single cell type 

(cardiomyocyte, hepatocyte, pancreatic β-cell, respectively) performing a cell-intrinsic 
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function in a position fixed in space.  For peripheral lymphoid organs, these strategies 

would not work so well, because these organs need specific inflow and outflow with 

many different cell types interacting, and most of these interactions are not fixed in 

space anyway.  Thus, a scaffold on which dendritic cells can grow would likely not be 

able to support a germinal center reaction or the migratory patterns of mature CD4+ T-

cells.  Perhaps in many years, there will exist an artificial lymph node or spleen which is 

able to function in all organ capacities, but that certainly is not just around the corner. 

One other possibility rests in the recent development of patient-derived xenograft 

(PDX) models, in which excisions of patient tumors are implanted in NOD/SCID/Il2rg-null 

(NSG) mice, and different potential chemotherapies are tried to assess the best 

response of the individual tumor.  These findings then inform the choice of therapy in the 

patient.  PDX models are fairly easy to generate for epithelial, solid tumors; in general, 

they can implant in almost any tissue.  For the PTCLs, especially the stromal-dependent 

tumors like the two diseases assessed here, this does not work as well, but has been 

previously met with moderate success.204  If PDXs can work consistently for biopsies of 

AITLs, then in addition to using the models to look at therapy, the tissue can propagate 

1) to give more cells for sequencing, and 2) allow long-term monitoring of cancer 

progression in a way that has certainly not been possible up to this point, thereby 

generating an extrinsic model which uses human cells. 

 

Conclusion: towards targeting co-stimulation for treatment of PTCLs 

 

Here we have studied the effects of mutations in proximal molecules of the T-cell so-

stimulatory pathway and found that they allow angioimmunoblastic T-cell lymphoma 

(AITL) and peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS) to increase 
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activation through the TCR, thereby increasing downstream signaling.  This signaling 

likely contributes to the survival of mutated cells, giving these cells the ability to 

contribute to lymphoma development and potentially resistance to therapy.  It is clear, 

from this and from others’ work, that the CD3/CD28 pathway is a central mechanism 

which prevents these cancerous cells from dying.  Therefore the co-stimulatory pathway 

is a rational target for these diseases. 

Altering CD28 biology, however, can have serious effects.  In a Phase I trial of a 

CD28 superagonist used to stimulate immune reaction, all six healthy individuals 

experienced cytokine storm and progressed to various degrees of organ failure, 

consistent with systemic inflammatory response syndrome (SIRS).205  Blocking of CD28 

activity through an inhibitory antibody has recently been successful in preventing acute 

kidney allograft rejection in non-human primates206 and is well-studied in rodents,207 

though titration for humans must be carefully done before clinical trial.  Other inhibitors of 

co-inhibitory CD28-family receptors already exist and are used in patients:208 anti-CTLA4 

(ipilimumab), anti-PD1 (nivolumab), and anti-PDL1 (atezolizumab) are used to increase 

immunologic response to solid tumors in humans.  More relevant to PTCLs, CTLA4-Ig 

(abatacept), which binds B7 ligand and prevents ligation with CD28, is already used 

successfully to treat many autoimmune diseases by preventing T-cell activation.  With 

proven tolerability, we hold that abatacept or similar classes of immune modulators 

should be considered for trial in PTCLs.  If a lymphoma is sequenced and has a 

TCR/CD28 activating mutation, then this drug may provide the key to prevent the signals 

which allow the cancer to persist. 

Someday soon, there will be a successful treatment for PTCLs.  It is only through 

hard work that we will find it. 
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