
University of Nebraska Medical Center University of Nebraska Medical Center 

DigitalCommons@UNMC DigitalCommons@UNMC 

Theses & Dissertations Graduate Studies 

Spring 5-7-2016 

Molecular Mechanisms Regulating MYC and PGC1β Expression Molecular Mechanisms Regulating MYC and PGC1  Expression 

in Colon Cancer in Colon Cancer 

Jamie L. McCall 
University of Nebraska Medical Center 

Tell us how you used this information in this short survey. 

Follow this and additional works at: https://digitalcommons.unmc.edu/etd 

 Part of the Cancer Biology Commons, and the Molecular Biology Commons 

Recommended Citation Recommended Citation 
McCall, Jamie L., "Molecular Mechanisms Regulating MYC and PGC1β Expression in Colon Cancer" 
(2016). Theses & Dissertations. 81. 
https://digitalcommons.unmc.edu/etd/81 

This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It 
has been accepted for inclusion in Theses & Dissertations by an authorized administrator of 
DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu. 

http://www.unmc.edu/
http://www.unmc.edu/
https://digitalcommons.unmc.edu/
https://digitalcommons.unmc.edu/etd
https://digitalcommons.unmc.edu/grad_studies
https://unmc.libwizard.com/f/DCFeedback/
https://digitalcommons.unmc.edu/etd?utm_source=digitalcommons.unmc.edu%2Fetd%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/12?utm_source=digitalcommons.unmc.edu%2Fetd%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/5?utm_source=digitalcommons.unmc.edu%2Fetd%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unmc.edu/etd/81?utm_source=digitalcommons.unmc.edu%2Fetd%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@unmc.edu


 

MOLECULAR MECHANISMS REGULATING MYC AND PGC1β EXPRESSION IN 

COLON CANCER 

 

by 
 

Jamie L. McCall 
 

A DISSERTATION 

 

Presented to the Faculty of  

the University of Nebraska Graduate College  

in Partial Fulfillment of the Requirements  

for the Degree of Doctor of Philosophy 

 

 

Cancer Research Graduate Program 

 

 

Under the Supervision of Professor Robert E. Lewis 

 

 

University of Nebraska Medical Center 

Omaha, Nebraska 

 

 

April 2016 

 

 

 

Supervisory Committee 

Joyce Solheim, Ph.D.          Richard MacDonald, Ph.D. 

Stephen Bonasera, M.D., Ph.D.    Jyothi Arikkath, Ph.D. 



 

 

 

 

 

To my parents, Mark and Terri McCall,  

for always encouraging me to pursue my dreams,  

no matter what life throws in the way. 

 

 

To my brother, William McCall,  

for eliciting my natural curiosity. I am confident that our childhood  

“science experiments” helped shape our career paths today. 

 

 

To my best friend, Phil Purnell,  

for pushing me to embrace new places and experiences.  

I definitely would not be here without you!  

Thank you for your love, respect,  

and no-nonsense approach to life when I need it. 

 



 i 

Acknowledgements 

 This work would not be possible without the support, guidance, and assistance of 

many people. I owe my deepest gratitude to my mentor, Rob Lewis. Thank you for 

allowing me to struggle, make mistakes, and find solutions. Your enthusiasm for science 

is contagious. I have enjoyed all of our conversations whether they were about science 

or practically any other subject imaginable. However, you seem to have an uncanny 

ability to know when I am pipetting and, therefore, a captive audience. Also, thank you 

for supporting a collaborative lab environment. It has made the countless hours in lab 

more rewarding.  

I would like to thank current and former members of the Lewis lab for their helpful 

discussions and valuable scientific input. I would especially like to thank Drew Gehring 

for his significant contribution to the EPHB4 project. Your perpetual positive attitude and 

incredible generosity are beyond compare. To Paula Klutho, thank you for being my 

hands when I broke my wrist. My animal experiments would have been impossible 

without you. I would also like to thank Dee Volle for teaching me how to design primers 

for site-directed mutagenesis. I had no clue how necessary that would become. To Mario 

Fernandez and Binita Das, thank you for your endless assistance over the years, even 

after you each have left for post-doctoral positions. I wish you the best in your respective 

careers. Lili Guo, thank you for all of your helpful suggestions and critiques. MaLinda 

Henry, I will continue to give your advice on how to present data to new graduate 

students, and I will always appreciate your outlook on science and life. To Diane 

Costanzo-Garvey and Deandra Smith, your dedication to your work is inspiring. Finally, 

to Beth Clymer, thank you for bringing fresh enthusiasm to the lab when I needed it 

most. You have really pushed me to stay focused and ask questions. I appreciated your 



 ii 

endless proofreading, and I will genuinely miss our scientific discussions, emails, and 

texts. 

I would also like to thank my supervisory committee, Dr. Stephen Bonasera, Dr. 

Joyce Solheim, Dr. Richard MacDonald, and Dr. Jyothi Arikkath for their dedication to 

students as well as their helpful suggestions and critiques during my comprehensive 

exam. I would also like to thank Dr. Bonasera for his expertise and assistance while I 

was conducting mouse behavioral studies. I would have been completely in over my 

head without him.  

 

  



 iii 

MOLECULAR MECHANISMS REGULATING MYC AND PGC1β EXPRESSION IN 

COLON CANCER 

Jamie L. McCall, Ph.D. 

University of Nebraska, 2016 

Supervisor: Robert E. Lewis, Ph.D. 

Identification and characterization of pathways specific to tumor cell survival, but 

absent in normal tissues, provide opportunities to develop effective cancer therapies with 

reduced toxicity to the patient. Kinase suppressor of Ras 1 (KSR1) is required for the 

survival of colorectal cancer (CRC) cells, but dispensable in normal cells. Using KSR1 

as a reference standard, we identified EPH (erythropoietin-producing hepatocellular 

carcinoma) receptor (EPHB4) as a KSR1 functional analog. 

We show here that, like KSR1, EPHB4 is aberrantly overexpressed in human 

CRC cells and selectively required for their survival. Both KSR1 and EPHB4 support 

tumor cell survival by promoting the expression of downstream targets Myc and the 

transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 

1β (PGC1β). While KSR1 promotes the aberrant expression of Myc and PGC1β protein 

via a post-transcriptional mechanism, EPHB4 has a greater effect on Myc and PGC1β 

expression due to its ability to also elevate mRNA levels. Subsequent analysis of the 

post-transcriptional regulation demonstrates that KSR1 promotes the translation of Myc. 

These findings reveal novel KSR1- and EPHB4-dependent signaling pathways 

supporting the survival of CRC cells through regulation of Myc and PGC1β, suggesting 

that inhibition of these pathways should be selectively toxic to colorectal tumors. 

We demonstrate that MEK inhibition reduced expression of Myc and PGC1β in 

CRC cells. To define the pathways that regulate expression of Myc and PGC1β, we 

examined the downstream effects of MEK1/2 substrates ERK1/2 and HSF1. Depletion of 
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HSF1 increases Myc and PGC1β expression, while ERK1/2 inhibition decreases their 

expression. 

The data presented here define multiple mechanisms regulating Myc and PGC1β 

expression, suggesting that tight regulation of this pathway is critical in normal cells. 

Aberrant expression of Myc and PGC1β contributes to the proliferation and survival of 

breast and renal cell carcinomas. We show that this pathway is also critical for CRC 

survival and is ERK-dependent. Together, these data reveal that tumor cells in various 

cancers require Myc-dependent expression of PGC1β to promote cell survival, which 

may be exploited in the development of new cancer therapeutics. 
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Ras signaling 

Discovery of ras oncogenes 

Ras was originally identified due to the transforming properties of the rat-derived 

Harvey and Kirsten murine sarcoma retroviruses (1-3). The cellular homologs of the viral 

Harvey and Kirsten ras sequences were first identified in the rat genome in 1981 (4), and 

were subsequently identified in mouse (5) and human genomes (6). The Harvey 

sarcoma virus-associated oncogene was named H-ras and the Kirsten sarcoma virus 

form was termed K-ras in mammals. It was soon identified that human tumors often 

contained mutated and constitutively activated forms of Ras proteins, including cancer 

cells of bladder, colon, and lung origin (7-10). A third ras-related gene was cloned from 

neuroblastoma and leukemia cell lines in 1983, it was termed N-ras (11-14). 

Meanwhile, much work was focused on determining how the oncogenes differed 

from the wild-type alleles. Point mutations found predominantly in codon 12, but also 

less commonly in codons 13 and 61, resulted in amino acid substitutions in the encoded 

Ras proteins (15-18). The characterization of ras as a true oncogene was questioned 

when it was discovered that H-ras alone could not transform freshly isolated rodent 

embryonic cells, but it was subsequently shown that H-RasG12V could transform primary 

cells that had been previously immortalized with carcinogens (19) or transfected with 

myc, SV40 large T antigen, or adenovirus E1A oncogene (20, 21). These findings 

suggested that Ras proteins can only transform cells that have undergone predisposing 

changes, such as acquisition of indefinite proliferation in culture (22-24). The 

identification of ras mutations in patient tumors, but not normal tissue, was an important 

validation that the ras mutations identified in cell lines were not merely artifacts of cell 

culture (25-27). 
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Approximately 30% of all human tumors screened carry a mutation in one of the 

canonical ras genes (K-ras, H-ras, N-ras) (28). Mutations in ras genes predominantly 

affect the K-ras locus, with oncogenic ras mutations being detected in 20-25% of all 

tumors samples screened, whereas the rates for H-ras and N-ras are 3% and 8%, 

respectively (28). Further analyses have shown that there are specific mutations that 

correlate with certain cancer types, for example K-ras mutations are present in a majority 

of pancreatic ductal adenocarcinomas and a large percentage of lung and colon tumors, 

but they occur rarely in bladder cancers where H-ras is the most frequently mutated 

isoform (28, 29). Additionally, N-ras mutations are frequently identified in hematopoietic 

tumors and malignant melanomas, whereas K-ras and H-ras mutations in melanomas 

are rare (28). H-ras mutations are the least frequent, but are prevalent in bladder 

cancers (28). K-ras has two alternative splice variants that result from differential splicing 

at exon 4, K-Ras4A and K-Ras4B (30, 31). Recent work in colorectal cancer has 

demonstrated that K-Ras4A is associated with better overall survival, while K-Ras4B is 

associated with significantly larger tumor size (32). 

Interestingly, oncogenic hotspots are concentrated around two codons of the 

primary nucleotide sequence of all ras family members, these include codons 12 and 61. 

However, the frequency of mutations at each site varies among the three main ras family 

members. Approximately 99% of the detected K-ras mutations occur at glycine 12 (G12, 

86%) and glycine 13 (G13, 13%), whereas the remaining 1% occur at glutamic acid 61 

(Q61) (28). Oncogenic mutations in N-ras genes have the highest rate of mutations at 

Q61 (60%), and lower rates at codons 12 (24.4%) and 13 (12.7%) (28). Finally, H-ras 

has another pattern of mutations, with the highest percentages detected in codon 12 

(54%), followed by codon 61 (34.5%), and then codon 13 (9%) (28). While early reports 

described ras amplification in some tumors and cell lines (33-35), more recent reports 
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suggest that ras amplification is not a predictive marker of tumor aggressiveness (36, 

37). 

Activation 

Heterotrimeric G proteins toggle between inactive GDP-bound and active GTP-

bound states (38, 39). H-ras was initially described to bind guanine nucleotides, 

suggesting that it may possess intrinsic GTP hydrolysis (or GTPase) activity (40, 41) that 

turned off active signaling. In 1984, three groups reported that mutated Ras 

oncoproteins differed functionally from the normal counterparts in that they had impaired 

GTPase activity (42-44). These studies suggested that Ras proteins were consistently in 

an active state and, therefore, may promote continual downstream signaling. However, 

the extent of GTPase impairment did not always correlate with transformation indicating 

that it was necessary, but not sufficient, to drive aberrant Ras activation (45, 46). The 

first inactivators of Ras signaling were found to possess GTPase-promoting functions 

that preferentially acted upon normal, but not oncogenic N-Ras and H-Ras (43, 47, 48). 

Inactivators, such as son of sevenless (SOS) and neurofibromin-1 (NF-1), were named 

guanine nucleotide exchange factors (GEFs). 

Oncogenic Ras mutants have impaired ability to hydrolyze GTP, either 

intrinsically or in response to GTPase activating proteins (GAPs). The oncogenic 

mutations at residues G12, G13, and Q61 are located in the N-terminal lobe of the Ras 

catalytic site (49). When Ras interacts with GAPs, the GAP contains an arginine finger 

that inserts into the Ras active site and provides a positive charge to stabilize the 

negative charges that accumulate during hydrolysis (50). Normally, the arginine finger 

interacts with G12. Thus, mutations at this residue inhibit the proper transition state 

complex with GAPs resulting in decreased rates of hydrolysis (51). It is thought that the 

increased side-chain in G13 mutations would interrupt this transition state as well. GAPs 
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also increase hydrolysis by ordering the Ras active site, specifically placing Q61 in the 

active site (52). In the active site, the larger Q61 forms hydrogen bonds with both the 

GAP arginine finger and a water molecule (52). Substitutions at Q61 are unable to form 

these dual hydrogen bonds reducing overall rates of hydrolysis. 

Importantly, all Ras isoforms share amino acid sequence identity in all of the 

regions responsible for GDP/GTP binding, GTPase activity, and effector interactions. 

However, another key determinant of Ras transformational activity is the post-

translational lipid processing that localizes Ras to the cell membrane (53-56). The 

molecular mechanism of Ras lipid processing is a stepwise progression, the first of 

which is the addition of a farnesyl isoprenoid lipid to the C-terminal CAAX motif of Ras 

(Fig 1.1) (57-59). This reaction is catalyzed by the enzyme farnesyl transferase (FTase). 

Subsequent studies showed that this prenylation reaction is followed by proteolytic 

cleavage of the AAX sequence by Ras-converting enzyme-1 (RCE1) and the 

carboxymethylation of the terminal cysteine residue by the enzyme isoprenylcysteine 

carboxymethyltransferase-1 (ICMT1) (60, 61). These modifications at the CAAX motif 

appear to be essential for Ras association with the plasma membrane, but additional 

modifications are necessary for full membrane recruitment. The C-terminal lysine 

residues of K-Ras4B are sufficient to anchor it to the plasma membrane, but H-, N-, and 

K-Ras4A need an additional palmitoylation step, catalyzed by palmitoyltransferase 

(PTase), which adds a palmitoyl group to the C-terminus upstream of the cysteine 

residue (61). The modification by farnesyltransferase occurs in the endoplasmic 

reticulum (ER), whereas the palmitoylation step occurs after shuttling through the Golgi 

apparatus. 



 6 

 

Fig 1.1 C-terminal processing of Ras. 

Lipidation of the C-terminus of H-Ras, N-Ras, K-Ras4A, and K-Ras4B is necessary for 

membrane targeting. First, FTase catalyzes the addition of a farnesyl pyrophosphate 

group. The modified Ras is translocated to the endoplasmic reticulum where the AAX 

group is cleaved by RCE) and a methyl group is added by ICMT1. At this point, K-Ras4B 

can be translocated to the plasma membrane. However, H-Ras, N-Ras, and K-Ras4A 

are shuttled to the Golgi where PTase adds a palmitoyl group before they are 

transported to the plasma membrane. 
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Epidermal growth factor (EGF) stimulation was the first identified upstream driver 

of Ras activation (62). Antibodies against Ras block serum-stimulated growth in NIH-3T3 

cells (63) and growth factor-induced differentiation in PC12 cells (64). Ligand stimulation 

of EGF receptor (EGFR) or platelet-derived growth factor receptor (PDGFR) was found 

to transiently induce GTP-bound Ras in mammalian cells (65, 66). It was therefore 

hypothesized that Ras activation was required for signaling by extracellular mitogens. 

Ras isoforms are preferentially expressed and activated in different tissues (67). 

Additionally, it is now appreciated that there are distinct functions of Ras isoforms in 

development. K-Ras4B, but not K-Ras4A, is necessary for embryogenesis (68, 69). H-

Ras and N-Ras are not necessary for normal development, as animals lacking these 

genes are viable and develop normally (70, 71). More recent work suggests that H-Ras 

can functionally replace K-Ras during embryogenesis, but only when driven by the K-ras 

promoter (72). This suggests that there is functional redundancy among the proteins, but 

that tissue-specific expression is a necessary regulator during development. 

Downstream signaling 

Ligand-induced receptor tyrosine kinase (RTK) dimerization promotes 

autophosphorylation in trans resulting in receptor activation (73). These phosphorylation 

sites serve as binding sites for proteins that contain a Src homology 2 (SH2) domain, a 

phosphotyrosine binding domain (PTB), or both, as is expressed in Shc (73, 74). Shc 

then recruits Grb2 (growth factor receptor-bound protein 2) and SOS1/2 leading to Ras 

activation (73). Ras-dependent signaling regulates many cellular functions including 

gene expression, proliferation, survival, differentiation, cell cycle entry, and cytoskeletal 

dynamics. Dysregulation of these cellular functions is a hallmark of cancer (75). 

At least seven families of proteins have been shown to interact with Ras in a 

GTP-dependent fashion (76, 77) (Fig 1.2). C-RAF (RAF-1) was the first known Ras 
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effector (78-83). RAF is the first kinase in the RAF/MEK/ERK signaling cascade (see 

below). The p110 catalytic subunits of phosphoinositide 3-kinase (PI3K) were 

recognized as the second class of validated Ras effectors (84). The p110 catalytic 

domain and AKT (also known as protein kinase B, a key downstream target of PI3K) 

were identified independently as retroviral oncogenes (77). Additionally, knock-in mice 

homozygous for a PI3K p110α lacking a Ras-binding domain (RBD) are resistant to lung 

tumors induced by oncogenic K-Ras4B (85). The presence of an RBD is a common 

feature of Ras effectors. Ral-specific GEFs were identified by screening for proteins with 

RBDs in the C-terminal ends (86-88). Initial studies in NIH-3T3 cells suggested that 

RalGEFs and their substrates, RalA and RalB small GTPases, played minor roles in 

cellular transformation (89, 90). However, studies in human cells suggested that 

RalGEF-Ral interactions are important in cancers of the pancreas, prostate, and bladder 

(91, 92). 

Less well-known effectors of Ras signaling include TIAM1 (T lymphoma invasion 

and metastasis-inducing 1), PLCε (phospholipase Cε), and Nore1. TIAM1 is a Rac-

specific GEF that was identified in silico by searching for novel proteins with RBDs (93). 

TIAM1-Rac signaling regulates the actin cytoskeleton and activates PAK (p21-activated 

kinases) and JNK (c-Jun N-terminal kinase). PLCε is a novel isoform of PLC that 

contains an RBD. It connects Ras signaling to the production of secondary messengers, 

diacylglycerol (DAG) and calcium (94). In a carcinogen-induced mouse model of skin 

cancer, TIAM1 or PLCε disruption prevented H-Ras-driven oncogenesis (95, 96). 

Finally, members of the RASSF (Ras-associated domain family) family were 

found to contain RBDs and mediate Ras-induced apoptosis (97, 98). RASSF5 (Nore1) 

was first identified in a yeast two-hybrid assay as an effector of H-Ras (99). When Nore1  
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Fig 1.2 Ras signaling pathways in mammalian cells. 

Phosphorylated RTKs serve as docking sites for Shc, Grb2, and SOS1/2 (RasGEF) to 

activate Ras. GTP-bound Ras activates several pathways, of which several are depicted 

here. The two best studied pathways are the PI3K-AKT and the RAF/MEK/ERK kinase 

cascade leading to increased survival and proliferation. RalGEFs promote the activation 

of small GTPases, RalA and RalB. Activation of TIAM1, PLCε, and RASSF (Nore1) 

contribute to cytoskeleton rearrangement, secondary messenger signaling, and 

apoptosis, respectively. 
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complexes with Mst1 (Macrophage stimulating 1), it results in a Ras-dependent, pro-

apoptotic pathway (97). Subsequent studies indicated that RASSF1, RASSF2, RASSF4, 

and RASSF6 can also play pro-apoptotic roles (100-103). This is consistent with the 

observation that RASSF proteins are often downregulated in cancer cells (98). 

Ras/RAF/MEK/ERK 

There are three main components of the RAF/MEK/ERK signaling pathway; 

however, there are several isoforms of each. The RAF family consists of C-RAF, B-RAF, 

and A-RAF. MEK and ERK each have 2 members that regulate this pathway, MEK1/2 

and ERK1/2, respectively. RAF, MEK, and ERK isoforms can each form dimers that 

further define the specificity of signaling (104, 105). 

All three paralogs of RAF contain three conserved regions: the N-terminal CR1, 

which contains the RBD and cysteine-rich domain (CRD); the CR2, which contains 

important residues for RAF membrane recruitment during activation; and the CR3, which 

contains the kinase domain (106). Each RAF isoform appears to have a distinct 

mechanism of activation, with B-RAF considered to be more active than C-RAF or A-

RAF (107-109). Mutations in B-RAF are commonly found in cancers, including 

melanomas, but mutations in C-RAF and A-RAF are rare (110, 111). Upon growth factor 

stimulation, activated Ras recruits RAF to the membrane and promotes the formation of 

functionally asymmetric RAF homo- and heterodimers in which one monomer, typically, 

B-RAF, allosterically stimulates the kinase activity of the other (106, 112, 113). In fact, 

kinase-dead forms of B-RAF occur in human cancers and are oncogenic (114, 115). 

This is due to their ability to dimerize with wild-type C-RAF and subsequently activate 

MEK1/2 and ERK1/2 signaling (116). 

RAF phosphorylates and activates MEK1/2 at Ser217 and Ser221, which are 

located in the activation loop of MEK (117). MEKs can be partially activated by 
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phosphorylation at either site, and substitution of these sites with acidic residues 

enhances basal activity (118). Different RAF isoforms activate MEK1 and MEK2 

differentially: A-RAF is a weak activator; B-RAF preferentially activates MEK1; and C-

RAF efficiently activates both MEKs (119). mek2-/- mice are viable, fertile, and show no 

phenotypic abnormalities (120). Conversely, mek1 disruption is embryonic lethal in the 

recessive condition (121, 122). Homozygous mek1 mutants die between embryonic day 

(E) 8.5 (121) and E10.5 (122) as a result of placental defects. 

MEK1 can downregulate MEK2-dependent ERK signaling (121). The MEK 

heterodimer is negatively regulated by ERK-mediated phosphorylation of MEK1 on 

Thr292, a residue that is absent in MEK2 (121, 123, 124). If MEK1 is absent or unable to 

bind MEK2, the negative feedback phosphorylation loop in which ERK inhibits MEK1 is 

lost and MEK2-dependent phosphorylation and activation of ERK is prolonged (121). 

mek1-/- fibroblasts migrate more slowly than wild-type counterparts in response to 

fibronectin (122). However, mek1 ablation enhances growth factor-induced fibroblast 

migration due to increased ERK activation in MEK1-deficient cells (121). 

MEK1/2 catalyze the phosphorylation of ERK1/2 on Thr202/185 and 

Tyr204/187(125). Phosphorylation at both sites is necessary for significant kinase 

activity, with phosphorylation at the tyrosine preceding that at the threonine (126). 

ERK1/2 catalyze the phosphorylation of serine/threonine residues that occur in the 

sequence Ser/Thr-Pro (127), also known as proline-directed phosphorylation. Known 

substrates of ERK1/2 include the nuclear targets, TCF (ternary complex factor) family of 

transcription factors and MSK (mitogen- and stress-activated protein kinases), and the 

cytoplasmic target, p90 ribosomal S6 kinase (RSK) (128). ERK1 and ERK2 are 84% 

identical in sequence and share many, if not all, functions (129). However, the erk1 gene 

is dispensable for normal development of mice, but ablation of erk2 is embryonic lethal 
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(130-132) suggesting that differences in function (at least during development) are 

present. 

EGFR is a potent activator of ERK1/2, but a weak activator of the PI3K pathway 

(133). However, at low levels of EGF stimulation, PI3K activity induces recruitment of 

Grb2-associated binding partner (GAB) to the membrane and contributes to ERK1/2 

pathway activation. With prolonged EGF stimulation, the dependency on PI3K is 

decreased as EGFR recruits Shc-Grb2-SOS1/2 complexes that activate the Ras/ERK-

dependent signaling (134). Long-lasting pulses of EGF-induced ERK1/2 activity can 

persist over the course of 4-5 consecutive cell divisions (135). 

Scaffold proteins 

Scaffold (or adaptor) proteins are used by the cell to confer spatial or temporal 

regulation of cellular signaling (136). There are several scaffolding proteins that interact 

with members of the RAF/MEK/ERK signaling cascade, and they are predicted to restrict 

ERK to certain subcellular compartments (137). For example, Kinase suppressor of Ras 

1 and 2 (KSR1/KSR2) interact with B-RAF, C-RAF, MEK1/2, and ERK1/2 and scaffold 

Ras-dependent signaling effectors at the plasma membrane (see below) (138). IQGAP1 

is a large, widely expressed protein that modulates actin dynamics, microtubule 

dynamics, cell-cell adhesion, and transcriptional regulation (139). IQGAP1 binds to B-

RAF, MEK1, MEK2, ERK1, and ERK2 regulating their activation in response to EGF 

(140-142) and CD44 (143). While ERK is constitutively bound to IQGAP1 and binding is 

not sensitive to EGF stimulation, the interaction between IQGAP and MEK1 increases 

and the IQGAP1/MEK2 interaction decreases following EGF treatment (141). Knockout 

of IQGAP renders B-RAF insensitive to EGF stimulation (142). 

β-arrestins desensitize and promote the internalization of G protein-coupled 

receptors (GPCRs) (139). Following activation, GPCRs are phosphorylated and 
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internalized to terminate signaling. β-arrestins recruit RAF, MEK1/2, and ERK1/2 to the 

GPCRs enhancing the activation of ERK, and accompany the receptors to early 

endosomes (139). β-arrestins prevent the translocation of active ERK1/2 to the nucleus, 

restricting ERK to cytosolic substrates. Therefore, β-arrestins spatiotemporally regulate 

GPCR-induced ERK1/2 activation (139, 144, 145). 

 MEK partner 1 (MP1) binds only the MEK and ERK interaction and tethers MEK 

and ERK at the endosomes, which is critical for full ERK activation (146, 147). Several 

scaffolds have been characterized that specifically bind to and enhance the activation of 

MEK1, but not MEK2 (141, 148-150). For example, MP1 and its binding partner p14, 

specifically organize MEK1 and ERK1 to coordinate signaling through early and/or late 

endosomes (139, 146, 149). 

Sef (Similar expression to FGF) is a transmembrane scaffold for MEK1/2 and 

ERK1/2 that anchors these effectors to the Golgi apparatus. Sef only binds to activated 

MEK1/2 and inhibits the dissociation of the MEK-ERK complex, preventing ERK1/2 

translocation to the nucleus and promoting the ERK-dependent phosphorylation of 

specific cytoplasmic substrates (151). 

KSR1 

Deletion or loss-of-function alleles of ksr1 suppress the rough eye and multivulval 

phenotypes of activated Ras in Drosophila melanogaster and Caenorhabditis elegans, 

respectively (152-154). KSR proteins constitute a novel family of proteins that have 

remarkable overall structural similarity to proteins of the RAF family (138). All members 

are characterized by the presence of five conserved regions (CA1-5) (152) (Fig 1.3). The 

CA1 is a 40 amino acid region unique to KSR proteins, and its function remains 

undefined. The CA2 is a proline-rich region, the CA3 is a cysteine-rich, zinc-finger 

domain, the CA4 is a serine/threonine-rich region, and the CA5 is a putative kinase 
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domain (138, 152, 155). Further dissection of the KSR protein suggests that the positive 

effects on ERK signaling are mediated by amino acids 319-390 which correspond to the 

CA3 (156, 157), while the inhibitory effects appear to be mediated by the kinase-like 

domain (CA5) (158, 159). KSR and RAF both have kinase domains in the C-terminal half 

of the protein. However, the kinase-like domains of human and mouse KSR1 lack a 

critical lysine in the ATP-binding domain, which is responsible for hydrolysis and transfer 

of the γ-phosphate group of ATP, and is conserved in other kinases (160). The lack of 

conservation at this amino acid renders the kinase inactive. Furthermore, KSR1 does not 

contain conserved residues that correlate with peptidic recognition sequences that are 

found in both serine/threonine and tyrosine kinases (138, 154). 

KSR1 lacks the RBD that is present in RAF family proteins suggesting that KSR1 

does not bind Ras directly. However, KSR1 regulates Ras-mediated signaling because it 

functions as a molecular scaffold of the RAF/MEK/ERK kinase cascade that enhances 

oncogenic signaling. Both MEK1 and MEK2 bind directly to the CA5 region of KSR (157, 

158). MEK is stably associated with KSR in both quiescent and growth factor-stimulated 

cells (161, 162). However, their dissociation may be necessary for maximal cellular 

transformation, as cells harboring KSR1 mutations that disrupt KSR1-MEK interactions 

(KSR1C809Y) have increased colony formation in soft agar (unpublished observations, 

Kortum & Lewis). ERK1/2 binding is induced upon Ras activation at the FxFP motif in 

the CA4 domain of KSR (161, 163, 164). The KSR1 interaction with RAF is also Ras-

dependent, but requires interactions with other proteins, such as MEK (155, 165). 

KSR1 regulates the intensity and duration of ERK activation to modulate cellular 

proliferation and oncogenic potential (166). The intensity and duration of ERK activation 

are critical to the regulation of downstream processes (167-170). For example, in PC12 

cells, EGF induces a transient activation of ERK leading to proliferation, while stimulation 

with nerve growth factor (NGF) leads to prolonged ERK activation and translocation to  
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Fig 1.3 Conserved domains of KSR proteins. 

Murine KSR1 (873 AA) and KSR2 (947 AA) are depicted above. All KSR proteins share 

five conserved areas (CAs). CA1 is a 40-residue domain unique in KSR proteins and is 

necessary for KSR/RAF complexes. CA2 is a proline-rich stretch. CA3 is a cysteine-rich, 

zinc-finger domain that promotes translocation to the plasma membrane. 

Phosphorylation of serine residues (S*) on each side of CA3 is required of 14-3-3 

binding and sequestration in the cytoplasm. CA4 is a serine/threonine-rich region that is 

highly phosphorylated and required for ERK binding. CA5 is a kinase-like domain that 

lacks kinase catalytic function, but is necessary for KSR/MEK interactions.  
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the nucleus to promote differentiation (168). In MEFs, treatment with EGF again leads to 

transient ERK activation, whereas prolonged activation with PDGF induces 

phosphorylation of immediate early proteins and cell cycle progression (167, 170). Loss 

of KSR1 reduces growth factor-induced ERK activation in MEFs (166). Furthermore, 

KSR1 is necessary and sufficient for RasV12-driven transformation in MEFs, with an 

optimal dosing level similar to that observed with maximal ERK signaling. Cells 

expressing increasing levels of KSR1 have increased EGF- and PDGF-induced ERK 

activation. However, after reaching a maximal level of ERK activation, higher levels of 

KSR1 actually reduce ERK signaling to levels at or below controls (166). The 

mechanism by which excessive levels of KSR1 repress ERK signaling is undefined. It is 

predicted that when KSR1 is overexpressed it forms separate complexes with RAF, 

MEK, and ERK preventing the complex composition needed for maximal ERK signaling. 

KSR1 also interacts with caveolin-1 and is responsible for MEK/ERK 

redistribution to the caveolin-1-rich fractions of the plasma membrane (171). The 

interaction between KSR1 and caveolin-1 is necessary for optimal ERK activation, as 

cells containing a KSR1 mutant unable to bind caveolin-1 are deficient in the early 

stages of growth factor-mediated ERK activation (171). Moreover, KSR1 modulates 

RasV12-induced replicative senescence in MEFs (172). Oncogenic Ras induces cell 

growth arrest by RAF/MEK/ERK-mediated activation of p19ARF/p53 and INK4/Rb tumor 

suppressor pathways. H-RasV12 fails to induce p53, p19ARF, p16INK4a, and p15INK4b 

expression in MEFs lacking KSR1 resulting in proliferation instead of growth arrest 

(172). Abolishing the interaction between KSR1 and caveolin-1 also has adverse effects 

on H-RasV12-induced senescence and transformation (171). Taken together, these data 

demonstrate that KSR1 is a potent modulator of Ras signaling. 

KSR1 is phosphorylated on multiple residues that may be involved in the 

subcellular distribution of KSR1 resulting in significant effects on ERK signaling (173, 
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174). Members of the MARK family, C-TAK1 and EMK, and nm23H1 all phosphorylate 

KSR1 at Ser392 (175-177). C-TAK1-mediated phosphorylation of KSR1 on Ser297 and 

Ser392 is crucial for KSR1 to interact with the regulatory protein 14-3-3 (163, 176). In 

unstimulated cells, the 14-3-3 binding of KSR1 sequesters it in the cytoplasm. Growth 

factor stimulation and Ras activation, induces protein phosphatase 2A (PP2A)-

dependent dephosphorylation of KSR1 on Ser392 releasing 14-3-3 and exposing the 

CA3 region, which is essential for translocation and accumulation at the plasma 

membrane (178). KSR1 is rapidly translocated to the plasma membrane, where it can 

promote the Ras/MAPK pathway activity (176, 178). 

KSR1 phosphorylation at both Thr274 and Ser392 modulates the proliferative 

potential of EGF- and PDGF-dependent signaling (179). Expression of KSR1 mutated at 

Thr274 and Ser392 promotes sustained ERK1/2 activation in response to treatment with 

either EGF or PDGF and accelerates cell cycle progression (179). Normally, the EGF 

response is transient and does not promote S-phase entry. However, blocking KSR1 

phosphorylation at these sites induces a PDGF-like response to EGF stimulation. It is 

predicted that phosphorylation at these two sites promotes the degradation of KSR1, as 

the mutant has an increased half-life, which results in increased proliferation and colony 

formation in soft agar (179). 

Four sites on KSR1 (Thr260, Thr274, Ser320 and Ser443) are phosphorylated 

upon growth factor stimulation or expression of H-RasV12 (163, 180). Mutations at these 

sites had no effect on Ras-dependent signaling or the ability of KSR1 to scaffold the 

RAF/MEK/ERK pathway (163), but docking of ERK1/2 on KSR1 accelerated the 

phosphorylation (181). Phosphorylation of KSR1 (and BRAF) by ERK1/2 promotes the 

dissociation of BRAF/KSR1 complexes and promotes the release of KSR1 from the 

membrane (181). This negative feedback loop can thereby modulate the duration of 

KSR1-dependent signaling. 
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The Ras effector protein IMP (impedes mitogenic signal propagation) modulates 

Ras-dependent signaling by inactivating KSR1 (182, 183). IMP promotes KSR1 

hyperphosphorylation and localizes KSR1 to a detergent-insoluble fraction (183). IMP 

overexpression inhibits H-Ras- and C-RAF-mediated transformation in cells by 

preventing MEK1/2 activation by C-RAF. Upon H-RasV12 expression or growth factor 

stimulation, IMP is autopolyubiquitinated and degraded, releasing KSR1 to translocate to 

the plasma membrane (183). Overall, these data demonstrate that KSR function is 

regulated via phosphorylation and compartmentalization through complex formation. 

ksr1-/- mice are grossly normal despite suppressed ERK activation. However, 

they are resistant to murine polyoma middleT-driven tumor formation (184). Additionally, 

mice lacking ksr1 have disorganized hair follicles (185) and have fewer and enlarged 

adipocytes as compared to their wild-type counterparts (186). In vitro, deletion of ksr1 

prevents the ERK- and RSK-dependent phosphorylation and stable expression of the 

transcription factor C/EBPβ, which is required for the subsequent expression of C/EBPα 

and PPARγ necessary for adipogenesis. Interestingly, increasing KSR1 expression to 

levels that promote maximum ERK activation actually inhibits the adipogenic program by 

promoting the phosphorylation of PPARγ at an inhibitory site (186). These data suggest 

that controlled expression of KSR1 ensures appropriate levels of ERK activity for 

progression through the adipogenesis program. 

In MEFs, KSR1 enhances the glycolytic and oxidative phosphorylation potential 

of cells by inducing the expression of the metabolic regulators peroxisome proliferator-

activated receptor gamma coactivator 1α (PGC1α) and estrogen-related receptor α 

(ERRα) only in the presence of activated Ras (187). This pathway is essential for the 

transformation of cells by oncogenic Ras. In ksr1-/- MEFs expressing H-RasV12, ectopic 

PGC1α is sufficient to rescue ERRα expression, metabolic capacity, and anchorage-

independent growth. The ability of PGC1α to promote anchorage-independent growth 
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requires its interaction with ERRα. Conversely, the expression of a constitutively active 

ERRα in ksr1-/- cells with H-RasV12 is sufficient to normalize the metabolic capacity, but 

not rescue anchorage-independent growth (187). 

PGC1α was not detected in colon tumor cell lines. However, a related gene 

PGC1β and the same coactivator, ERRα, were identified as downstream effectors of 

Ras signaling in CRC cells and tumors (188). KSR1 is overexpressed in colon tumor 

cells as compared to expression in immortalized, but not transformed human colonic 

epithelial cells (HCECs) (188). HCECs were isolated from normal human colon and 

immortalized with CDK4 and human telomerase reverse transcriptase (hTERT). HCECs 

maintain wild-type adenomatous polyposis coli (APC), K-Ras, and TP53 proteins. They 

also form crypt-like structures in 3D culture, but are incapable of anchorage-independent 

growth or tumor formation in nude mice (189). Depletion of KSR1 is selectively toxic to 

the cancer cells and is required for anchorage-independent growth and tumor 

maintenance in colon cancer cell lines (188). The downstream effectors of KSR1-

dependent signaling, PGC1β and ERRα, are also upregulated in colon tumor cells. 

Suppression of PGC1β or ERRα expression decreases tumor colon cell viability and 

anchorage-independent growth, as well as delays and suppresses tumor formation in 

nude mice (188). Taken together, these data suggest that targeting KSR1 or its 

downstream effectors may be a successful approach to target colon cancer. 

Targeting Ras signaling 

Targeting Ras and other components of Ras-dependent signaling has been 

extensively explored and is an ongoing area of investigation. Here we summarize the 

different levels of Ras signaling that have been targeted clinically and present pre-

clinical work on innovative ways being developed to target Ras directly. 
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For patients harboring tumors with high EGFR expression and wild-type K-ras, 

treatment with monoclonal antibodies against EGFR, such as cetuximab and 

panitumumab, has significant clinical benefit (190-193), whereas negligible responses 

are observed with patients carrying mutant K-ras (192, 194). Overall, tumor-free 

progression and overall survival is better in patients with wild-type K-ras (195). In 

colorectal cancer, resistance to EGFR inhibitors seems to develop through selection of 

preexisting clones that contain K-ras mutations (196). 

The post-translational modifications of Ras have been prime targets of Ras 

inhibition. Farnesyltransferase inhibitors (FTIs) were developed to simulate the CAAX 

motif of Ras and were used as competitive inhibitors to block the post-translational 

processing needed for Ras activation. Mouse studies showed regression of MMTV-H-

ras-driven mammary carcinomas with FTI treatment with no detectable systemic 

toxicities (197). However, unlike H-Ras, N-Ras and K-Ras are subsequently modified 

with an alternative prenylation catalyzed by geranylgeranyltransferase 1 (GGTase-1) 

making them insensitive to FTIs (198, 199). 

Targeted inhibition of RCE1 and ICMT1 in NIH-3T3 cells and yeast (ste14) 

indicated that blocking proteolytic cleavage of Ras was not sufficient to inhibit its 

functions (200, 201). More recently, it was shown that rce1-deficient mice have a 50% 

reduction in membrane-bound K-Ras and H-Ras corresponding with decreased tumor 

xenograft growth of mouse skin carcinoma cells (202). Similar studies targeting ICMT1 in 

MEFs show partial reduction in membrane association of K-Ras with concomitant loss of 

tumorigenesis (203). Compounds targeting ICMT1, such as methotrexate, have some 

effectiveness in MEFs and DKOB8 human CRC cells in cell culture and animal models 

(204, 205). 

While direct targeting of Ras has been difficult, studies have shown that a 

reduction in K-Ras expression in cancerous cells, by antisense, miRNA or siRNA 
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oligonucelotides, halts proliferation and leads to cellular death (206, 207). A new 

approach involves targeting DNA secondary structures called G-quadruplexes in the 

promoter of K-ras (208). Instead of forming the traditional double-helix, negative 

superhelicity induced by transcription can promote local unwinding of the DNA in these 

G/C-rich regions allowing for rearrangement of the guanine-rich strand to form planar 

structures via hydrogen bonds between four guanine residues known as G-

quadruplexes. Formation of G-quadruplexes in DNA has been shown to modulate 

transcription and in RNA modulates translation. Strategies to stabilize the G-

quadruplexes in the K-ras promoter, thereby reducing its transcription, are currently 

underway (208). 

Other strategies for targeting Ras focus on inhibition of the downstream signaling 

pathways. B-RAF-specific, ATP-competitive inhibitors (such as vemurafenib) have 

shown promise in the clinic in melanoma patients with mutant B-RAF (B-RAFV600E) (209). 

However, there is a paradoxical effect in that they accelerate the growth of cells with 

mutant Ras (210-212). Paradoxical activation is caused by transactivation resulting from 

the induction of RAF homo- (C-RAF/C-RAF) and heterodimers (B-RAF/C-RAF) (112). In 

the presence of RAF inhibitors and activated Ras, the drug binds directly to the ATP-

binding site of one kinase (the “activator” kinase) and promotes the transactivation of the 

other kinase in the dimer (the “receiver” kinase) (112, 116).  In B-RAFV600E tumors, K-Ras 

is not activated, as these mutations are mutually exclusive (213). Thus, transactivation is 

minimal and ERK signaling is inhibited (112). Additionally, RAF inhibition in the absence 

of activated Ras induces the dimerization of B-RAF and KSR1 to inhibit downstream 

ERK activation (181). This is likely due to the fact that KSR1 is not a kinase and B-RAF 

is bound to the inhibitor; thus, there is no “receiver” kinase to transactivate. 

RAF inhibitor PLX4720 does not induce B-RAF/C-RAF dimers, but still activates 

MEK and ERK in transformed cells (112, 210, 214). B-RAF inhibitors PLX4720 and 
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GDC0879 induce the dimerization of C-RAF and KSR1. While KSR1/B-RAF complexes 

inhibit ERK signaling (181), KSR1/C-RAF dimerization promotes ERK signaling. These 

inhibitors also require KSR1 to activate MEK and ERK in Ras-transformed cells (113). 

RAF transactivation requires phosphorylation of an N-terminal acidic domain in the 

“activator,” but not the “receiver” kinase. This motif is located between residues 446-449 

and is constitutively phosphorylated in B-RAF, but not in C-RAF and KSR1 (116). 

However, point mutations in equivalent regions of KSR1 and C-RAF (KSR1YLQE/DDEE and 

C-RAFSSYY/DDEE) in kinase-dead constructs (KSR1A587F or C-RAFA373F) resulted in potent 

ERK activation (116). Together, these data solidify the idea that RAF kinases (and 

KSR1) form functionally asymmetric dimers, and that this is a mechanism of resistance 

to RAF inhibitors in the presence of activated Ras. 

Direct inhibition of MEK has not been clinically successful in achieving increasing 

progression-free survival. Preclinical studies identified distinct mechanisms by which 

cells acquire resistance to MEK inhibition, including amplification of B-RAF (215), STAT3 

upregulation (216), or acquisition of mutations in the binding pocket of MEK that block 

inhibitor binding (217, 218). MEK inhibition also induces paradoxical activation of the 

ERK pathway. This is due to loss of negative feedback loops. Activated ERK can directly 

phosphorylate both RAF (219) and MEK1 (123, 124) suppressing RAF/MEK/ERK-

dependent signaling. In the absence of ERK-dependent MEK inhibition, MEK can 

continue to activate ERK. This mechanism also operates in K-Ras-mutated colorectal 

cancer cells and induces AKT activation in response to MEK inhibition (220). 

Inhibition of ERK overcomes acquired resistance to MEK inhibition (221). Several 

compounds have been developed that target ERK1/2 directly (221-224). FR18024 is an 

ATP-competitive inhibitor that has not been completely characterized (225). VTX-11e is 

a potent ATP-competitive ERK inhibitor with oral bioavailability (223). SCH772984 is a 

recently identified, highly potent and selective inhibitor of ERK1/2 (224) that induces a 
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novel allosteric pocket adjacent to the ATP binding site contributing to high selectivity 

and low off-rate (226). Direct ERK inhibition is a relatively new way to target Ras 

signaling. Further preclinical testing needs to be completed before its clinical viability can 

be assessed. 

Summary 

It has been more than 30 years since the first gene associated with rat sarcoma 

virus was identified in human tumors (227). Since then, we have learned an enormous 

amount regarding structure, activation, and downstream signaling pathways, only some 

of which is summarized here. However, targeting Ras signaling in cancers remains a 

moving target. Each therapy has resulted in the discovery of acquired or even innate 

tumor resistance. This has been beneficial in further mapping of the extensive network of 

Ras-dependent signaling, including both positive and negative feedback loops, but is 

increasingly frustrating for the future of clinically relevant therapeutics targeting Ras.  

Here we identify new ways to target Ras-dependent signaling in colon cancer 

cells and further define Ras/RAF/MEK signaling networks. The studies described in this 

dissertation examine the following topics: 

1) Identification of KSR1 and EPHB4 as vulnerabilities in colon cancer 

that regulate Myc and PGC1β expression 

2) Characterization of MEK-dependent signaling, including the ERK- and 

HSF1-dependent regulation of Myc and PGC1β expression 
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Gene expression-based high-throughput screen and functional 

signature ontology analysis 
The gene expression-based high-throughput screen has been previously described 

(188, 228). The gene expression-based signature measured in the screen is based on 

six genes (ACSL5, BNIP3L, ALDOC, LOXL2, BNIP3, and NDRG1) that are consistently 

affected by KSR1 depletion as well as two housekeeping genes (PPIB and HPRT) that 

were included for normalization. To identify targets that are KSR1 functional analogs 

based on their gene expression-based signature, two similarity metrics were employed, 

Euclidean distance (ED) and Pearson correlation (PC). KSR1-depleted positive controls 

cluster with a low ED and high PC. Linear regression analysis was used to establish a 

cutoff (PC > 0.25 * ED + 0.5) for KSR1 similarity based on the ED and PC values of 

KSR1 positive controls. Targets that clustered with the positive control KSR1-depleted 

wells and exceeded the established cutoff based on these two metrics were designated 

as possible KSR1 functional analogs and candidates for further evaluation. 

Cell culture 

Colorectal cancer cell lines HCT116, SW480, DLD1, SK-CO-1, Caco2, and HCT15 were 

purchased from American Type Culture Collection (ATCC). The CBS and GEO 

colorectal cancer cell lines were gifts from Dr. Michael Brattain (U. Nebraska Med. Ctr.). 

Cells were grown in either Dulbecco’s modified Eagle medium (DMEM) or Eagle’s 

minimum essential medium with 10% fetal bovine serum (FBS), 2 mM L-glutamine, and 

0.1 mM nonessential amino acids (NEAA). All colorectal cancer cells were grown at 

37°C with ambient O2 and 5% CO2. Immortalized non-transformed human colonic 

epithelial cell lines (HCEC) were a gift from J. Shay (UT Southwestern) (189). HCECs 

were grown in medium composed of 4 parts DMEM to 1 part medium 199 (Sigma-

Aldrich) with 2% cosmic calf serum (GE Healthcare), 25 ng/mL EGF, 1 µg/mL 
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hydrocortisone, 10 µg/mL insulin, 2 µg/mL transferrin, 5 nM sodium selenite, and 50 

µg/mL gentamycin sulfate. HCECs were grown in a hypoxia chamber with 2% O2 and 

5% CO2 at 37°C. 

siRNA transfections 

Pooled or individual (Table 2.1) siRNAs targeting EPHB4 (M-003124-02), KSR1 (LU-

003570-00-0002), Myc (L-003282), MAP2K1 (J-003571), MAP2K2 (J-003573), MAPK3 

(J-003592), MAPK1 (J-003555), HSF1 (M012109), as well as a non-targeting siRNA 

control (D-001810-01) (DharmaconGE), were introduced into HCT116 or Caco2 cells 

using the Lipofectamine RNAiMAX (Invitrogen) reverse transfection protocol per 

manufacturer’s instructions. Briefly, 125 pmol of siRNA and 5-7 µL of RNAiMax were 

combined in OPTI-MEM for 5 minutes. DNA:Lipofectamine complexes were overlaid with 

2 mL of cells (150,000 cells/mL) in 6-well plates. Final RNAi concentrations are 50 nM. 

HCECs were transfected following the RNAiMax reverse transfection protocol using 2.5 

µL RNAiMax transfection reagent per 6 mL of antibiotic free-medium and 150,000 

cells/mL with a final RNAi concentration of 10 nM in 6-cm dishes (CorningTM, 

PrimariaTM). After a 72-hour transfection, cells were lysed in RIPA lysis buffer with 

protease and phosphatase inhibitors (described below). 

Reagents 

The EPHB4 receptor tyrosine kinase inhibitor (AZ12672857) was a gift from J. Kettle 

(AstraZeneca). The EPHB4 inhibitor was dissolved in DMSO to achieve a stock 

concentration of 10 mM. Z-Leu-Leu-Leu-al (MG132, C2211), cycloheximide (CHX, 

C7698), Bafilomycin A1 (BafA1, B1793), poly-2-hydroxyethyl methacrylate (polyHEMA, 

P3932), and propidium iodide (PI, P4170) were purchased from Sigma-Aldrich and were 

used at the concentrations specified in the figures and accompanying text.  
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Table 2.1 Sequences of individual siRNA duplexes 
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Anchorage-independent growth on poly-2-hydroxyethyl methacrylate 

(polyHEMA)-coated plates 

polyHEMA stock solution (10 mg/mL) was made by dissolving polyHEMA in 95% ethanol 

and shaking at 37°C until fully dissolved (6 hours to overnight). Black-sided, clear-

bottom, 96-well plates were coated with polyHEMA by evaporating 200 µl of the 10 

mg/mL stock polyHEMA solution in each well. Cells were plated in complete medium on 

polyHEMA-coated wells at a concentration of 2 x 104 cells/100 µl 48 hours post-

transfection (as described above). Cell viability was measured per the manufacturer’s 

protocol using the CellTiter-Glo® Luminescent Cell Viability Assay (Promega). 

Specifically, this was done by adding 90 µl of CellTiter-Glo® reagent, shaking for two 

minutes to lyse the cells, incubating at room temperature for 10 minutes, and measuring 

luminescence (POLARstar OPTIMA). 

Cell growth assay 

Cells (5,000/well) were transfected on white, 96-well plates. Transfections were done as 

described above but at a ratio of 1:25 for all of the reagents. At 0 and 72 hours post-

transfection, 10 µL of alamarBlue® (ThermoFisher Scientific) was robotically added to 

each well. Plates were incubated at 37°C for three hours and fluorescence was 

measured (POLARstar OPTIMA).  

Propidium iodide staining 

Cells were assayed for apoptosis using the sub-G1 peak measured following propidium 

iodide (PI) staining. Prior to staining, all medium in each sample well was collected and 

placed in a 12 x 75 mm round bottom polystyrene tube (BD Falcon, 352054). Cells were 

washed once with PBS, the PBS was saved, and cells were subsequently treated with 

0.25% trypsin for 5-10 minutes. Saved medium was then used to resuspend the trypsin-
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treated cells from the corresponding wells, which were collected and placed in the 

polystyrene tubes. Cells were pelleted by centrifugation for 5 minutes at 2800 RPM 

using an Immunofuge II. The supernatant was aspirated, and the cell pellets were 

resuspended in 2 mL of PBS, then pelleted again by centrifugation for 3 minutes at 2800 

RPM. The PBS was aspirated and the cells were fixed in 2 mL of ice cold 70% ethanol 

for at least one hour at -20°C. Cells were then warmed to room temperature (~15 

minutes), pelleted by centrifugation for 3 minutes, then rehydrated in 2 mL of room 

temperature PBS and incubated at 37°C for 15 minutes. Cells were then pelleted, the 

PBS aspirated, and the cells were resuspended in PI stain overnight. Data was acquired 

using a Becton-Dickinson FACSCalibur flow cytometer and analyzed using ModFit 

analysis software to detect a sub-G1 peak of fluorescence. 

Western blot analysis 

Whole-cell lysate extracts were prepared in radioimmunoprecipitation assay (RIPA) 

buffer composed of 50 mM Tris-HCl, 1% NP-40, 0.5% Sodium deoxycholate, 0.1% 

Sodium dodecyl sulfate, 150 mM NaCl, 2mM EDTA, 50 mM NaF, 10 µg/mL aprotinin, 10 

µg/mL leupeptin, 2 mM EDTA, 1 mM PMSF. Cytoplasmic and nuclear fractionations 

were performed using NE-PER Nuclear/Cytoplasmic Extraction Reagents (Thermo 

Scientific, 78835) Protein concentration was determined using the Promega BCA protein 

assay. Samples were diluted in 1X sample buffer (5X stock – 313 mM Tris-HCl pH 6.8, 

10% SDS, 50% glycerol, 0.05% bromophenol blue) with 100 mM DTT (20X stock = 2 M). 

SDS-PAGE was performed, membranes were blocked in Odyssey PBS blocking buffer 

(LI-COR Biosciences, 927-40000), and incubated in primary antibody (listed below) 

overnight at 4°C. LI-COR secondary antibodies (IRDye 800CW, 680LT, or 680RD) were 

diluted 1:5000-1:10,000 in 0.1% TBS-Tween 20 (for nitrocellulose) or 0.1% TBST + 

0.01% SDS (for PVDF). Membranes were imaged using the LI-COR Odyssey. 
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Antibodies 

Primary antibodies were diluted as follows: EPHB4 (mAb 265, a gift from 

Vasgene) 1:500 and (D1C7N, 14960, Cell Signaling) 1:1000; KSR1 (H-70, Santa Cruz) 

1:1000; α-tubulin (B-5-1-2, Santa Cruz) 1:2500; β-actin (C-4, Santa Cruz) 1:2000; 

PGC1β (provided by Dr. A. Kralli, The Scripps Research Institute) 1:5000; c-Myc (5605, 

Cell Signaling) 1:1000; PARP (9542, Cell Signaling) 1:1000; pERK (9106, Cell Signaling) 

1:1000; ERK (9102, Cell Signaling) 1:1000; pMEK (4694, Cell Signaling) 1:1000; MEK 

(9122, Cell Signaling) 1:1000; pMyc T58 (ab85380, Abcam) 1:500, pMyc S62 (ab78318, 

Abcam) 1:500; FBW7 (CDC4 H-300, Santa Cruz) 1:1000; β-TrCP (4394, Cell Signaling) 

1:1000; and HDAC2 (ab7029, Abcam) 1:5000; PDCD4 (D29C6, 9535, Cell Signaling) 

1:1000); p4E-BP1 T70 (9455, Cell Signaling) 1:1000; eIF4A (C32B4, 2013, Cell 

Signaling) 1:1000; eIF4E (9742, Cell Signaling) 1:1000, peIF4E S209 (9741, Cell 

Signaling) 1:1000; 4E-BP1 (53H11, 9644, Cell Signaling) 1:1000. 

RT-qPCR 

RNA was harvested using 1 mL TriReagent (MRC, TR118) and stored at -80°C until 

extraction. RNA was extracted per manufacturer’s protocol and final RNA pellets were 

resuspended in nuclease-free water. DNase digestion was performed (Qiagen, 79254) 

and RNA cleanup was completed (Qiagen, 74106). RNA was quantified using the 

NanoDrop 2000 (Thermo Scientific). Reverse transcription was performed using 

iScript™ Reverse Transcription Supermix for RT-qPCR (Bio-Rad, 170-8840) with 1 µg of 

total RNA per 20 µL reaction. RT-qPCR was performed using the primers and conditions 

listed in Table 2.2. All targets were amplified using SsoAdvanced™ Universal SYBR 

Green Supermix (Bio-Rad) with 40 cycles of a 2-step program (95°C x 5 sec, Tm x 45 

sec) on an MX3000P (Stratagene). Data were normalized using two of the normalization  
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Table 2.2. Sequences of qPCR primers 
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genes listed here: HPRT, β-actin, and/or GAPDH. Analysis was performed according to 

the q-base protocol, as previously published (229). 

TCGA  

mRNA expression was analyzed based on the RSEM normalized RNA-Seq values of 

primary tumor (n=285) and normal solid tissue (n=41) samples as well as patient-

matched samples (n=26) within The Cancer Genome Atlas (TCGA) Colon 

Adenocarcinoma (COAD) dataset. Results were analyzed for statistical significance 

using unpaired and paired Student’s t tests for the unpaired and patient-matched 

samples, respectively. 

Myc translation 

Myc translation reporter constructs (pGML, phpL and phpmL) for luciferase assays were 

a gift from Anne Willis (Medical Research Council, Leicester, UK) (230, 231). RNAi 

depletions were performed in 6-well plates as described above. The following day, cells 

were transfected with 3 µg of the translation vector and 1 µg of pSV-β-galactosidase 

vector (Promega, E1081) using 10 µL of Lipofectamine 2000 (Invitrogen) per well. After 

24 hours, luciferase and β-gal expression was assessed using Dual-Light® System 

(Applied Biosciences, T1003) according to the manufacturer’s instructions. Briefly, cells 

were rinsed twice with PBS, lysed with Lysis Solution (100 mM potassium phosphate pH 

7.8, 0.2% Triton X-100, 0.5 mM DTT), and 10 µL of each lysate was added (in triplicate) 

to a 96-well plate. Luminescence was measured (POLARstar OPTIMA) for 1 second per 

well. When quantifying basal translation from each vector, luciferase expression was 

normalized to β-galactosidase expression. When comparing the affect of KSR1 or 

EPHB4 depletion on Myc translation, luciferase signal was normalized to protein input. 

 



 33 

Statistical analysis 

P and EC50 values were calculated using Prism Software (GraphPad, La Jolla, CA). A P 

value of less than 0.05 was considered statistically significant. Values presented here 

are shown as mean +/- standard deviation (SD) unless otherwise noted. EC50 values 

were calculated in Prism using an algorithm for fitting non-linear curves with variable 

slopes. 
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Chapter 3: KSR1 and EPHB4 regulate Myc and PGC1β to 

promote survival of human colon tumor cells 

 

 

 

 

 

 

 

 

 

 

 

Portions of the material covered in this chapter are the topic of a manuscript 

submitted for publication by McCall JL, Gehring D et al. 
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Introduction 

Colorectal cancer (CRC) is the third most common cancer in the U.S. and 

worldwide (232). It is sporadic in nature with only 15-30% having a major hereditary 

component (233, 234). CRC is a heterogeneous disease with distinct molecular features 

of the tumor contributing to the prognosis and response to targeted therapies (235). 

Several critical genes and pathways are important in the initiation and progression of 

CRC, most notably the Wnt, Ras/MAPK, PI3K, TGFβ, p53, and DNA mismatch-repair 

pathways (236). Oncogenic Ras mutations commonly occur in human CRC, with 

approximately 43% of patients harboring activating K-Ras mutations (237). Patients 

carrying an oncogenic form of Ras have poorer prognoses compared to patients 

harboring wild-type Ras (238-240). Their poor response to therapy can be attributed to 

the observed attenuation in benefit from anti-epidermal growth factor receptor (EGFR) 

therapies (241) or resistance to RAF inhibitor therapies (242). Ras proteins are a family 

of small GTPases that regulate a number of cellular signaling pathways associated with 

the promotion of an oncogenic phenotype, particularly through the MAPK and PI3K 

pathways (243). The MAPK signaling pathway is composed of the downstream signaling 

molecules RAF, MEK, and ERK, whose subcellular locations are modulated by KSR1 

(244). KSR1 is a scaffold of the RAF/MEK/ERK kinase cascade and is required for 

maximal MAPK-dependent signaling (180, 245). While KSR1 is required for the survival 

of CRC cells, it is dispensable in normal colon epithelial cells (188). ksr1-/- mice develop 

normally with attenuated ERK signaling and display a reduced tumor burden in an 

MMTV-driven mouse tumor model (185, 246). Given that KSR1 is dispensable for 

normal cells, but indispensable for colorectal cancer cells, we sought to detect and 

exploit further vulnerabilities in human colon tumor cells. To do this, we developed a 

gene expression-based high-throughput screen and used functional signature ontology 
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(FUSION) (188, 228) to identify functional analogs of KSR1. From this screen, we 

identified EPH (erythropoietin-producing hepatocellular carcinoma) receptor B4 (EPHB4) 

as a KSR1-like, cancer-specific vulnerability that may be exploited by targeted therapies. 

EPH receptors are the largest family of receptor tyrosine kinases (RTKs) with 

important roles in tissue organization and growth during development as well as in tissue 

homeostasis in adults (247-249). Humans have nine EPHA and five EPHB receptors 

that are classified by their ability to bind their respective ligands, ephrin (EPH-receptor 

interacting protein) A and ephrin B on an adjacent cell. There are five type-A and three 

type-B ephrin ligands. Ephrin B ligands are transmembrane and receptor-ligand binding 

is capable of transmitting both forward (through the RTK) and reverse (via the ligand) 

signaling [reviewed in (250, 251)]. This bidirectional signaling results in repulsion 

between the two cells and is responsible for establishing boundaries between distinct 

cell types (252, 253). For example, EPHB4 binding to its ligand ephrin B2 contributes to 

the establishment of capillaries in the vasculature with EPHB4 expressed primarily in the 

venous endothelium and ephrin B2 in the arterial endothelium (254, 255). ephb4 or 

ephrin B2 knockout mice are embryonic lethal due to their inability to develop proper 

vasculature systems (256-258). In the intestine and colon, EPHB-expressing cells are 

present in the progenitor cells of the crypts, whereas the ephrin B ligand is present in the 

more differentiated cells (255, 259). The repulsion of EPH-ephrin binding leads to 

opposing gradients and contributes to the morphology of the intestine and colonic crypts 

(255, 259). 

We have recently shown that tumor-specific expression of PGC1β is required for 

colon cancer survival (188). Previous work has shown that PGC1β is a direct 

downstream target of Myc (260, 261). Myc-dependent PGC1β transcription is inhibited 

by hypoxia in renal clear cell carcinoma due to induction of MXI1 (a repressor of Myc 
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activity) (261), a mechanism that may be operative in the hypoxic regions of many tumor 

types. In breast cancer cells, HER2 and IGF1 signaling regulate PGC1β via induction of 

Myc mRNA expression and/or regulation of Myc protein stability. Tight regulation of Myc 

expression is essential for normal cell function (262, 263). Dysregulation of Myc occurs 

in more than half of all human tumors and often correlates with aggressive disease (264, 

265), resistance to therapy (266-268), and poor prognosis (269-271). Myc activates or 

represses the transcription of a large number of genes involved in key cellular processes 

such as cell proliferation, metabolism, apoptosis, and protein synthesis (272). In cancer 

cells, Myc activation can be induced through constitutive activation of a pathway (i.e., 

Wnt activation in tumors with APC mutations) (273), or through alterations of the Myc 

gene (i.e., amplification and translocation) (274, 275). Defects in the APC pathway occur 

in many human colon carcinomas and result in enhanced TCF-dependent transcriptional 

activation of Myc (273). In fact, Myc is essential for the for the “crypt progenitor cell-like” 

phenotype of APC-deficient cells in vivo (259). Simultaneous deletion of APC and Myc in 

the murine adult small intestine rescued the phenotypes of APC deficiency; cells 

proliferated, differentiated, and migrated like wild-type intestinal enterocytes (276).  

Additionally, Ras activation and subsequent phosphorylation events enhance 

Myc protein stability (277, 278). Constitutive expression may cause Myc to bind to and 

activate E-box-driven genes that would be regulated by other E-box transcription factors 

in normal nonproliferative cells, thereby increasing the downstream targets of Myc in 

cancer cells (279). Recent work from The Cancer Genome Atlas (TCGA) Network 

discovered that, in a comprehensive examination of human colon and rectal cancers of 

diverse anatomical origin and mutation status, changes in Myc transcriptional targets 

were found in nearly all of the tumors (280), suggesting an important role for Myc in 

CRC. While a promising target for CRC, Myc is a transcription factor and traditionally 

considered “undruggable” (262, 281). Although there are new strategies emerging to 
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inhibit Myc, including interrupting key dimerization events or DNA binding (262), finding 

additional or alternative ways to target Myc protein expression or its downstream 

effectors may provide therapeutic benefits to many cancer patients.  

Here we examined EPHB4 and its relationship to Myc and downstream effectors 

of KSR1 signaling to identify pathways on which colorectal cancer cells are uniquely 

dependent. We show that EPHB4 has phenotypic and molecular effects in colorectal 

cancer cells similar to KSR1, and that both KSR1 and EPHB4 are essential for the 

survival of colorectal cancer cells, but dispensable for the survival of non-transformed, 

immortalized human colonic epithelial cells (HCECs). Additionally, we demonstrate that 

both molecules support the expression of PGC1β, which is required for maintaining 

tumor cell viability. Finally, we show that EPHB4 supports Myc expression by elevating 

Myc mRNA, while KSR1 promotes the expression of PGC1β by enhancing the 

translation of Myc mRNA into protein. 

Results 

EPHB4 is identified as a functional analog of KSR1  

Kinase Suppressor of Ras 1 (KSR1) regulates the oncogenic potential of 

activated Ras (166). Our lab recently showed that KSR1 also promotes anchorage-

independent growth and tumor maintenance in human colon tumor cell lines (188). We 

demonstrated that KSR1 is selectively toxic to colorectal cancer (CRC) cells as 

compared to immortalized, non-transformed human colonic epithelial cells (HCECs). 

Using a gene expression signature representing depletion of KSR1, we developed a 

high-throughput screen termed Functional Signature Ontology (FUSION) (228) to 

identify functional analogs of KSR1. Details regarding the screen, gene signature, and 

FUSION have been described previously (188, 228). Based on unsupervised 

hierarchical clustering of reporter gene expression following RNAi-mediated depletions 
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of individual genes, we found that knockdown of EPH receptor B4 (EPHB4) clustered 

with the RNAi-mediated KSR1 depletion (siKSR1) positive controls. We further 

quantified and visualized this relationship by examining and plotting Pearson correlation 

versus Euclidean distance similarity metrics (Fig 3.1A, Beth Clymer). Depletion of 

EPHB4 has a Euclidean distance of 1.44 and a Pearson correlation of 0.88, and 

siEPHB4 (blue) clusters with the siKSR1 (red) reference standards. Based on previous 

work demonstrating that gene expression-based signatures can be used to represent the 

functional state of a cell (188, 228, 282, 283), the similarity of siKSR1- and siEPHB4-

dependent gene expression signatures suggests that EPHB4 is likely to share functional 

similarity with KSR1. 

EPHB4 expression is elevated in a variety of human cancers including cancers of 

the head and neck, prostate, bladder, ovaries, large intestine, lung, brain, pancreas, and 

the esophagus (269, 271, 284-290). We analyzed the expression of EPHB4 in a panel of 

colon tumor cells as compared to its expression in HCECs. Western blotting revealed 

that EPHB4 protein is overexpressed in all colon tumor cell lines tested (Fig 3.1B, Drew 

Gehring). RT-qPCR analyses demonstrate that the abundance of protein cannot be 

entirely attributed to an overabundance of mRNA (Fig 3.1C). While there is a trend 

towards increased mRNA levels in all colon tumor cell lines as compared to HCECs, 

only SK-CO-1 cells show a statistically significant increase. To evaluate the relevance of 

these findings in human tumors, we examined EPHB4 gene expression in the colon 

adenocarcinoma dataset within The Cancer Genome Atlas (TCGA) and demonstrated 

that EPHB4 is significantly increased at the mRNA level in human colon tumor samples 

compared to normal solid tissue samples (Fig 3.1D, Beth Clymer). These findings were 

consistent both when using all available data (top) or using only the patient-matched 

tumor and normal samples (bottom). In fact, every patient-matched tumor demonstrated 

an increase in EPHB4 expression relative to the normal sample.  



 40 

Fig 3.1 Genome-scale RNAi screen identifies EPH Receptor B4 (EPHB4) as a 

KSR1-like effector.  

(A) Identification of EPHB4 as a KSR1 functional analog using Pearson correlation and 

Euclidean distance similarity metrics. (B) Western blot and (C) RT-qPCR of EPHB4 

levels in a panel of colon tumor cell lines and immortalized, non-transformed HCECs. 

RT-qPCR data are shown as mean ± SD. ****p<0.0001 (matched, one-way ANOVA, 

Dunnett’s post-test). (D) EPHB4 gene expression (RNA-Seq) data from TCGA for 

unpaired primary colon tumors and normal solid tissue samples (top) primary tumors and 

patient-matched normal solid tissue samples (bottom). Number (n) of samples analyzed 

in each is shown. (A) Student’s unpaired t-test. (B) **** p < 0.0001. Student’s paired t-

test. **** p < 0.0001. The results published here are in whole or part based upon data 

generated by the TCGA Research Network: http://cancergenome.nih.gov/.  (3.1A and 

3.1D were performed by Beth Clymer, 3.1B was performed by Drew Gehring) 
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Depletion of EPHB4 is selectively toxic to colon tumor cells 

Depletion of KSR1 is selectively toxic to colon tumor cells as compared to 

HCECs (188). To determine whether EPHB4, like KSR1, is required for tumor cell 

survival, we measured viability, anchorage-independent growth, and apoptosis in two 

colon tumor cell lines and HCECs following knockdown of KSR1 or EPHB4 by RNAi. 

Cell growth was measured by alamarBlue® Cell Viability Assay after 72 hours of KSR1 

or EPHB4 depletion. In HCT116 cells, KSR1 and EPHB4 RNAi reduced cell growth as 

compared to controls by 81% and 71%, respectively (Fig 3.2), whereas, in the Caco2 

cells, cell viability was decreased by 95% with KSR1 depletion and 69% with depletion of 

EPHB4. Cell growth was unaffected in the HCEC cell line. To measure anchorage-

independent growth, cell growth was measured on a polyHEMA-coated plate (291, 292) 

using CellTiter-Glo® Luminescent Cell Viability Assay, as described previously (188). 

Following depletion of KSR1 or EPHB4, growth in anchorage-independent conditions 

was reduced by 57% and 53% in HCT116 cells and 74% and 51% in Caco2 cells, 

respectively (Fig 3.3). HCECs are unable to proliferate in an anchorage-independent 

environment and were not used in this experiment. Validation of target knockdown is 

shown by western blot in Fig 3.2 and Fig 3.3. To determine if the reduced cell viability in 

normal and anchorage-independent conditions is due to increased apoptosis, PARP 

cleavage was assessed by western blot following depletion of KSR1 and EPHB4 in 

HCECs, HCT116, and Caco2 cells. HCECs showed no PARP cleavage following target 

knockdown, whereas HCT116 and Caco2 cells demonstrated PARP cleavage upon 

KSR1 or EPHB4 depletion (Fig 3.4). These observations show that KSR1 and EPHB4 

are selectively required for colon tumor cell survival and growth and suggest that without 

KSR1 or EPHB4 cells undergo apoptosis. 

Downstream effectors of KSR1-dependent signaling in colon tumor cell lines 

include the RAF/MEK/ERK kinase cascade and PGC1 family of transcriptional regulators  
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Fig 3.2 Depletion of KSR1 or EPHB4 is selectively toxic to CRC cells. 

Viability of HCEC, HCT116, and Caco2 cells was measured following RNAi of KSR1 or 

EPHB4 by alamarBlue® assays. Data are shown as mean fluorescent intensity ± SD. 

****p<0.0001 (matched two-way ANOVA, Dunnett’s post-test for multiple comparisons). 

Validation of target knockdown at 72 h is shown by western blot below. 
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Fig 3.3 Depletion of KSR1 or EPHB4 inhibits anchorage-independent growth. 

Viability of HCT116 and Caco2 cells was measured following RNAi of KSR1 or EPHB4 

in anchorage-independent conditions by CellTiter-Glo® assays. Data are shown as 

relative light units (RLU) ± SD. ****p<0.0001 (matched two-way ANOVA, Dunnett’s post-

test for multiple comparisons). Validation of target knockdown at 48 h timepoint is shown 

by western blot below. 
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Fig 3.4 KSR1 and EPHB4 depletion selectively induces apoptosis in CRC cells. 

PARP cleavage was measured by western blot following depletion of KSR1 or EPHB4 

for 72 h in HCEC, HCT116, and Caco2 cells.  
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(166, 172, 180, 187, 188). We recently identified PGC1β as a key downstream effector 

of KSR1 in human colon tumor cells and showed that its expression is required for colon 

cancer survival both in vitro and in vivo (188). To determine whether EPHB4 disrupts 

either of these pathways, we assessed MEK1/2 and ERK1/2 activation and total PGC1β 

protein levels by western blot after 72 hours of EPHB4 depletion in HCT116 and Caco2 

cells. We observe that depletion of EPHB4 does not affect MEK1/2 or ERK1/2 

phosphorylation. However, EPHB4 RNAi does suppress PGC1β levels (Fig 3.5). These 

data suggest that EPHB4 is acting as a functional analog of KSR1 to regulate PGC1β. 

Inhibition of EPHB4 kinase activity is selectively toxic to colon tumor cells  

Currently, there are several clinical trials in various cancers involving the 

pharmacological targeting of EPHB4 (250, 251). One strategy for targeting EPHB4 is 

inhibition of its kinase activity. To test whether this, like RNAi-mediated EPHB4 

depletion, is selectively toxic to colon tumor cells, we treated HCECs and a panel of 

colon tumor cell lines with increasing doses of an EPHB4 kinase inhibitor, AZ12672857 

(AZ2857), for 72 hours and cell viability was measured using CellTiter-Glo®. The EC50 

for each cell line was determined from four independent experiments using a non-linear 

curve fit with a variable slope (Fig 3.6A, Drew Gehring). HCECs (EC50 = 14 µM) were 

less sensitive to EPHB4 inhibition than HCT116 or Caco2 cells, 3.2 µM and 2.6 µM, 

respectively. The EC50 of three additional colon tumor cell lines (SW480, DLD1, and SK-

CO-1) are shown in the table of Fig 3.6A (Drew Gehring). HCECs tolerated doses up to 

20 µM (highest tested) without increasing the percentage of PI-stained cells in the sub-

G1 peak when measured by flow cytometry (Fig 3.6B, Drew Gehring). However, at the 

same dose, HCT116 and Caco2 cells had >50% sub-G1 cells after 72 hours of treatment 

with AZ2857. Taken together, these data indicate that inhibition of EPHB4 decreases 

total ATP levels as measured by the CellTiter-Glo® cell viability assay in the HCECs,  



 46 

 

Fig 3.5 Depletion of EPHB4 decreases PGC1β expression, but not MEK and ERK 

activation. 

EPHB4 was depleted by siRNA for 72 h in HCT116 cells. Protein expression was 

measured by western blot. (Experiment performed by Kurt Fisher) 
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Fig 3.6 EPHB4 inhibitors are selectively toxic to colon tumor cell lines. 

HCEC, Caco2, HCT116, SW480, DLD1, and SK-CO-1 cells were treated with increasing 

doses of AZ12672857 and cell viability was measured by CellTiter-Glo® at 72 hours. 

Each data point represents four independent experiments. Data are presented as mean 

± SEM. Data were normalized and the EC50 for each cell line was calculated using an 

algorithm for fitting a non-linear curve with variable slope in GraphPad Prism. (B) HCEC, 

HCT116, and Caco2 cells were treated with increasing doses of AZ12672857. The sub-

G1 peak was quantified following PI staining and analysis by flow cytometry. 

(Experiments performed by Drew Gehring) 
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possibly through reduced growth or induction of senescence, but that treatment with 

AZ2857 does not induce apoptosis. However, in the tumor cell lines, HCT116 and 

Caco2, treatment with AZ2857 clearly reduces cell viability via induction of cell death. 

KSR1 and EPHB4 regulate Myc and PGC1β 

Previous research demonstrated that Myc regulates PGC1β transcription in renal 

cell carcinoma (261) and breast cancer cells (260). Therefore, we examined whether 

Myc regulates PGC1β in colon tumor cell lines. In HCT116 and Caco2 cells, Myc was 

depleted with a pool of siRNA; PGC1β protein levels were decreased with Myc 

knockdown as assessed by western blot (Fig 3.7A). To determine if this effect was due 

to a single siRNA and potentially an off-target effect, the four siRNA duplexes (duplexes 

22, 23, 24, and 25) that compose the pool were assessed independently. Expression of 

PGC1β protein correlated with degree of Myc knockdown (Fig 3.7B). The pool of all four 

siRNA duplexes was used in the following experiments. Next, PGC1β mRNA levels were 

measured by RT-qPCR following depletion of Myc. In both HCT116 and Caco2 cells, 

Myc depletion significantly decreased expression of PGC1β mRNA (Fig 3.8). Expression 

of Myc is required for the formation of intestinal crypts, but is dispensable for 

homeostasis of the adult epithelium (293). To evaluate the importance of Myc 

expression to CRC cell viability, two tumor cell lines (HCT116 and Caco2) and one 

normal colon cell line (HCECs) were transfected with siMyc or a non-targeting siRNA 

and cell viability was assessed 72 hours post-transfection. Depletion of Myc reduced cell 

viability in HCT116 (60%) and Caco2 (64%) cells, but did not affect growth in the HCECs 

(Fig 3.9), indicating that the tumor cells are more reliant on the expression of Myc for cell 

growth. Validation of target knockdown is shown by western blot. 
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Fig 3.7 Myc regulates PGC1β in colon tumor cells. 

(A) Western blot following RNAi of Myc in HCT116 (left) and Caco2 (right) cells. (B) Myc 

and PGC1β protein expression in HCT116 cells transfected with individual or pooled (all 

4) Myc siRNA duplexes. 
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Fig 3.8 Myc depletion reduces PGC1β mRNA levels in CRC cells. 

RNA levels of Myc and PGC1β were measured by RT-qPCR in HCT116 (left) and Caco2 

(right) cells following RNAi of Myc. Data are shown as mean ± SD. *p<0.05, **p<0.01, 

***p<0.001 (paired, two-tailed t-test). 



 51 

 
Fig 3.9 Myc depletion decreases viability in colon tumor cell lines. 

Cell viability was measured by alamarBlue® following depletion of Myc. Data are shown 

as mean ± SD. ***p<0.001 (matched, two-way ANOVA). 
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To determine whether KSR1 and EPHB4 are regulating PGC1β through a Myc-

dependent pathway, we assessed Myc and PGC1β protein levels following depletion of 

KSR1 or EPHB4 resulted in diminished expression of Myc and PGC1β (Fig 3.10A), with 

EPHB4 depletion having the greatest effect on Myc levels. To confirm that these data 

are not the result of a single siRNA or an off-target effect, we transfected the four 

individual siRNA duplexes for KSR1 (Fig 3.10B) and EPHB4 (Fig 3.10C) into HCT116 

cells and measured target, Myc, and PGC1β protein expression by western blot 72 

hours post-transfection. With the exception of KSR1 siRNA 6, all individual duplexes 

sufficiently depleted the expression of their target as well as Myc and PGC1β. Due to its 

lack of target knockdown, the KSR1 siRNA duplex 6 was not used in the siKSR1 pool in 

any experiment. Additionally, HCT116 and Caco2 cells were treated with increasing 

doses of the EPHB4 kinase inhibitor, AZ2857, for 72 hours. Western blots indicate that 

pharmacological inhibition of EPHB4 decreases Myc and PGC1β protein levels similar to 

that seen with depletion using siRNA (Fig 3.11A, Drew Gehring). HCT116 cells were 

treated with 10 µM AZ2857 for 0-72 hours and total levels of Myc and ERK activation 

were assessed by western blot. Inhibition of EPHB4 reduced Myc levels in an ERK-

independent manner (Fig 3.11B). 

To assess whether EPHB4 also regulates PGC1β mRNA levels, HCT116 and 

Caco2 cells were transfected with siRNA targeting EPHB4 (or a non-targeting siRNA) or 

treated with 10 µM of AZ2857 for 72 hours. Myc and PGC1β mRNA levels were 

measured by RT-qPCR. Data from three biological replicates (each measured in 

triplicate) are shown in Fig 3.12A (siRNA) and Fig 3.12B (EPHB4 inhibitor). Depletion of 

EPHB4 by siRNA decreased Myc and PGC1β mRNA expression by 46% and 49% in 

HCT116 and 70% and 26% (not significant) in Caco2 cells, respectively. Inhibition of 

EPHB4 with the kinase inhibitor AZ2857 consistently decreased levels of both Myc and 

PGC1β mRNA 70% and 45% in HCT116 and 67% and 56% in Caco2, respectively.  
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Fig 3.10 Inhibition of KSR1 or EPHB4 decreases Myc and PGC1β protein levels. 

Myc and PGC1β protein levels were assessed by western blotting following RNAi of 

KSR1 or EPHB4 in HCT116 (left) and Caco2 (right) cells. (B) Individual siRNA duplexes 

for KSR1 (top) and EPHB4 (bottom) were transfected into HCT116 cells and Myc and 

PGC1β protein expression was assessed by western blot. The KSR1 pool contains 

duplexes 7-9. The EPHB4 pool contains all 4 siRNA duplexes. 
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Fig 3.11 Treatment with EPHB4 kinase inhibitor decreases Myc protein levels. 

Myc and PGC1β protein levels were assessed by western blotting following treatment 

with AZ12672857 (AZ2857), an EPHB4 inhibitor in HCT116 (left) and Caco2 (right) cells. 

(B) Myc, phospho-ERK, and total ERK1/2 protein levels were assessed by western 

blotting following treatment of HCT116 with 10 µM AZ2857 for 0-72 h. (Experiment 

3.11A performed by Drew Gehring) 
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Fig 3.12 EPHB4 inhibition decreases Myc and PGC1β mRNA expression. 

RNA levels of Myc (top) and PGC1β (bottom) were measured by RT-qPCR in HCT116 

(left) and Caco2 (right) cells following RNAi of EPHB4 (A) or treatment with AZ2857 (B). 

Data are shown as mean ± SD. *p<0.05, **p<0.01 (A) repeated measures, one-way 

ANOVA with Dunnett’s post-test for multiple comparisons; (B) paired, two-tailed t-test.  
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Depletion of KSR1 did not affect mRNA levels of Myc or PGC1β (Fig 3.12A). These 

observations suggest that EPHB4 may regulate PGC1β transcription in a Myc-

dependent manner. Although EPHB4 was identified by FUSION using KSR1 as a 

reference standard, and both proteins share common downstream effectors (Myc and 

PGC1β), these data reveal that the mechanisms by which EPHB4 and KSR1 regulate 

Myc and PGC1β are not identical. 

KSR1 and EPHB4 do not affect Myc stability 

One mechanism by which Myc protein stability is regulated is through 

proteasome-mediated degradation by F-box and WD repeat domain-containing 7 

(FBW7)-containing Skp1-Cul1-Fbox (SCF) ubiquitin ligase (277). FBW7 is frequently 

deleted or mutated in a variety of cancers including gastric (294), colon (280, 295), and 

breast (296). In contrast, FBW7 is rarely mutated in pancreatic cancer, but the protein is 

significantly downregulated by activated Ras-RAF-MEK-ERK signaling (297). ERK-

dependent phosphorylation of FBW7 leads to ubiquitination and proteasome-mediated 

degradation by an undefined E3 ligase resulting in elevated expression of FBW7 

substrates, such as Myc (297). On the basis of these observations, we tested whether 

depletion of KSR1 or EPHB4 increased the amount of FBW7 in the colon cancer cell 

line, HCT116, which expresses FBW7 (298). Since KSR1 is necessary for maximal ERK 

phosphorylation and subsequent activation (166), we anticipated that depletion of KSR1  

would increase cellular levels of FBW7. However, as shown in Fig 3.5 and 3.11B, 

depletion of EPHB4 does not affect phosphorylation of MEK or ERK. Therefore, we 

predicted that depletion of EPHB4 would not enhance FBW7 levels in the HCT116 cells. 

As anticipated, FBW7 is significantly upregulated in HCT116 cells upon KSR1 depletion. 

However, it is also upregulated by EPHB4 depletion, although to a lesser degree than 

KSR1 depletion (Fig 3.13). Another SCF ubiquitin ligase, SCFβ-TrCP, targets an alternate  
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Fig 3.13 Depletion of KSR1 or EPHB4 increases FBW7 expression in HCT116 cells. 

Expression of the E3 ubiquitin ligases FBW7 and β-TrCP were assessed by western blot 

after knockdown of KSR1 or EPHB4. 



 58 

phosphodegron at Ser279 and Ser283 to ubiquitinate and stabilize Myc (299). We, 

therefore, tested the expression of β-TrCP following KSR1 or EPHB4 depletion. 

Expression of β-TrCP was unchanged in either condition (Fig 3.13). 

FBW7-dependent degradation of Myc is dependent on consecutive 

phosphorylation at Ser62, then Thr58 (277, 300). Phosphorylation at these sites exhibit 

opposing roles, with Ser62 promoting Myc stability and Thr58 promoting 

ubiquitin/proteasome-dependent degradation by FBW7 (277, 300, 301). In the absence 

of Ser62 phosphorylation, Myc protein is rapidly degraded by one of several FBW7-

independent mechanisms (277, 302). To determine if depletion of KSR1 or EPHB4 is 

promoting Myc degradation by mediating phosphorylation of either of these sites, we 

assessed Myc phosphorylation following proteasome inhibition with MG132 using 

phospho-specific antibodies. The ratio of phosphorylated to total Myc after MG132 

treatment was quantified in three independent experiments (Fig 3.14). While levels of 

Thr58 phosphorylation remained unchanged and highly variable, phosphorylation at 

Ser62 was consistently decreased in KSR1- and EPHB4-depleted cells indicating that 

KSR1- or EPHB4-dependent phosphorylation of Myc at Ser62 contributes to the 

stabilization of Myc. 

We further assessed the role of KSR1 and EPHB4 in FBW7-dependent 

regulation of Myc using HCT116 cells with genetic deletion of FBW7 (298). Myc and 

PGC1β protein levels were assessed in the presence and absence of KSR1 or EPHB4. 

Knockdown of KSR1 or EPHB4 resulted in decreased Myc and PGC1β protein even in 

the absence of FBW7 (Fig 3.15). Taken together, these data suggest that although 

KSR1 and EPHB4 can augment FBW7 levels and increase phosphorylation of Myc at 

Ser62, these proteins primarily regulate Myc expression by an FBW7-independent 

mechanism and further suggest the possibility that an additional E3 ligase recognizing 

Myc phosphorylation at Ser62.  
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Fig 3.14 Depletion of KSR1 or EPHB4 decreases Myc phosphorylation at Ser62 in 

HCT116 cells. 

Expression of phosphorylated and total Myc following KSR1 or EPHB4 depletion in the 

presence or absence of MG132 was assessed by western blot. Phospho-Myc 

expression was quantified and normalized to total Myc. Quantification of three replicates 

(mean ± SD) is shown in the graph below. 
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Fig 3.15 Depletion of KSR1 or EPHB4 decreases Myc stability in WT and FBW7-/- 

HCT116 cells. 

Myc and PGC1β protein expression is assessed by western blot following KSR1 or 

EPHB4 depletion in WT and FBW7-/- HCT116 cells. 
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To test the hypothesis that depletion of KSR1 or EPHB4 is affecting Myc levels 

by regulating protein stability, we examined the turnover of Myc in HCT116 cells 

following treatment with CHX with and without RNAi of KSR1 or EPHB4. Representative 

western blots of HCT116 cells from three independent experiments are shown (Fig 

3.16A). Data from three independent experiments in each cell line was quantified and 

the half-life of Myc in each condition was calculated using GraphPad Prism software. 

Depletion of KSR1 or EPHB4 did not change the rate of Myc turnover (Fig 3.16B). 

KSR1 promotes the translation of Myc 

Regulation of protein synthesis is mediated by key inhibitors of translation, 

eukaryotic initiation factor 4E binding protein 1 (4E-BP1) and programmed cell death 4 

(PDCD4) [reviewed in (303)]. 4E-BP1 sequesters eukaryotic initiation factor 4E (eiF4E) 

to inhibit translation. Phosphorylation of 4E-BP1 releases eIF4E and de-represses 

protein synthesis [reviewed in (303)]. Similarly, PDCD4 sequesters eukaryotic initiation 

factor 4A (eIF4A). Phosphorylation of PDCD4 leads to its nuclear localization or 

proteasome-mediated degradation (304). PDCD4 can be phosphorylated by p70 S6 

kinase (S6K) or p90 ribosomal protein S6K (RSK) (304, 305). 4E-BP1 and eIF4E 

regulate cap-dependent translation, while PDCD4 and eIF4A regulate both cap-

dependent and –independent translation [reviewed in (303)].  

To determine if KSR1 or EPHB4 affects the expression of these key regulators of 

protein synthesis, KSR1 and EPHB4 were depleted by siRNA for 48 hours in HCT116 

and Caco2 cells. In both cell lines, depletion of KSR1, but not EPHB4, decreased 4E-

BP1 and eIF4E phosphorylation (Fig 3.17). This suggests that depletion of KSR1 inhibits 

cap-dependent translation. Additionally, depletion of KSR1, and not EPHB4, increased 

the total levels of PDCD4, suggesting that KSR1 can promote both cap-dependent and 

cap-independent translation.  
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Fig 3.16 Depletion of KSR1 or EPHB4 does not affect Myc stability in HCT116 or 

Caco2 cells. 

Depletion of KSR1 or EPHB4 performed for 72 hours prior to treatment with 100 µg/mL 

CHX or vehicle for 0, 15, 30, 45, 60, or 75 minutes. Myc levels were assessed by 

western blot (A). Assay was performed three times in each cell line. Myc expression was 

quantified and normalized to β-actin. Myc half-life was calculated using a non-liner, one-

phase decay (Y0 = 100, plateau = 0) with automatic outlier elimination in GraphPad 

Prism (B).
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Fig 3.17 Depletion of KSR1 affects key inhibitors of protein translation. 

HCT116 and Caco2 cells were transfected with siRNA targeting KSR1 or EPHB4, or a 

non-targeting siRNA (Cont) for 48 hours. Protein expression levels were assessed by 

western blot. 
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We further assessed the role of KSR1 and EPHB4 in Myc translation using 

luciferase reporter constructs containing the Myc 5’ UTR. The 5’ UTR of Myc mRNA 

contains an internal ribosome entry site (IRES) (230), and therefore Myc is translated in 

both a cap- and IRES-dependent manner. Translation from the IRES element depends 

on eIF4A (helicase), but is independent of eIF4E (cap binding protein) (306). First, we 

measured total translation of Myc (cap- and IRES-dependent) using the pGML reporter 

construct (231, 307), which contains the entire 5’ UTR of Myc. Luciferase signal was 

normalized to total protein in each sample. Depletion of KSR1, but not EPHB4, 

decreased translation of Myc in HCT116 and Caco2 cells by 49% and 33%, respectively  

(Fig 3.18). Since KSR1 also affected the expression of PDCD4, we also measured the 

effect of KSR1 depletion on IRES-dependent translation of Myc. Depletion of KSR1 

decreases IRES-dependent Myc translation in HCT116 and Caco2 cells by 63% and 

68%, respectively (Fig 3.19). 

To determine the relative contribution of IRES-dependent translation of Myc to 

total Myc synthesis, HCT116 and Caco2 cells were transfected with pGML (Myc 5’ 

UTR), phpL (hairpin only), or phpmL (hairpin-Myc 5’ UTR) luciferase reporter constructs 

with a pSV-β-galactosidase vector for 24 hours. Luciferase expression was normalized 

to β-galactosidase expression in each well. IRES-dependent translation comprises 32% 

and 14% of total Myc translation in HCT116 and Caco2 cells, respectively (Fig 3.20). 

KSR1 protects EPHB4 from lysosome-dependent degradation 

To assess the possible relationships between KSR1 and EPHB4, KSR1 and 

EPHB4 were depleted by siRNA for 72 hours in HCT116 and Caco2 cells. Levels of 

KSR1 and EPHB4 protein (Fig 3.21A) and mRNA (Fig 3.21B) were measured by 

western blot and RT-qPCR, respectively. Depletion of KSR1 results in a consistent 

reduction in EPHB4 protein expression, but not mRNA levels. EPHB4 knockdown does  
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Fig 3.18 KSR1 promotes the translation of Myc protein. 

HCT116 and Caco2 cells were depleted of KSR1 or EPHB4 for 24 hours and then 

transfected with the pGML (Myc 5’ UTR) luciferase reporter construct for an additional 

24 hours. Luciferase expression was normalized to total protein in each well. Data are 

shown as mean ± SD. *p<0.05, **p<0.01 (repeated measures, one-way ANOVA with 

Dunnett’s post-test for multiple comparisons). 
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Fig 3.19 KSR1 promotes IRES-dependent translation of Myc. 

HCT116 and Caco2 cells were depleted of KSR1 for 24 hours and then transfected with 

the phpmL (hairpin-Myc 5’ UTR) luciferase reporter construct for an additional 24 hours. 

Luciferase expression was normalized to total protein in each well. Data are shown as 

mean ± SD. *p<0.05 (paired, tailed t-test). 
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Fig 3.20 IRES-dependent translation accounts for a portion of total Myc 

translation. 

HCT116 and Caco2 cells were transfected with pGML (Myc 5’ UTR), phpL (hairpin only), 

or phpmL (hairpin-Myc 5’ UTR) luciferase reporter constructs with a pSV-β-

galactosidase vector for 24 hours. Luciferase expression was normalized to β-

galactosidase expression in each well. Data are shown as technical replicates of a single 

biological replicate. 
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Fig 3.21 Depletion of KSR1 decreases EPHB4 protein, but not mRNA, expression. 

KSR1 or EPHB4 was depleted in HCT116 and Caco2 cells for 72 h. (A) KSR1 and 

EPHB4 protein levels were assessed by western blot. (B) KSR1 and EPHB4 mRNA 

levels were measured by RT-qPCR. Data are shown as mean ± SD. *p<0.05, ***p<0.001 

(repeated measures, one-way ANOVA with Dunnett’s post-test for multiple 

comparisons). 
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not affect KSR1 protein or mRNA expression in either cell line. This suggests that KSR1 

regulates EPHB4 protein levels via a post-transcriptional mechanism. 

KSR1 regulates proteins, such as Myc and PGC1β, which are degraded by the 

proteasome (188, 308). Therefore, we tested whether KSR1 depletion induces 

proteasome-mediated degradation of EPHB4. HCT116 and Caco2 cells were depleted 

of KSR1 for 72 hours and incubated with and without 10 µM MG132 for the final 6 hours 

of knockdown. Treatment with MG132 was unable to rescue the EPHB4 levels when 

KSR1 was depleted (Fig 3.22). Inhibition of proteasomal degradation of Myc was used 

as a positive control for MG132 treatment. In HCT116 cells without KSR1 depletion, 

MG132 treatment increases EPHB4 expression suggesting that EPHB4 degradation is 

partially mediated by the proteasome in these cells, but the effect of KSR1 on EPHB4 

stability is independent of proteasome-mediated degradation. 

A canonical method of RTK signal termination is downregulation after ligand 

binding (309-311). Lysosome-mediated degradation of RTKs, including EPHB1, has 

been well documented (312-314). We assessed whether EPHB4 degradation is 

mediated by the lysosome and whether KSR1 stabilizes EPHB4 expression by 

suppressing this degradation. KSR1 was depleted in HCT116 and Caco2 cells for 72  

hours with and without treatment with 100 nM bafilomycin A1 (BafA1), an inhibitor of 

autophagosome-lysosome fusion, for the final 8 hours of knockdown. Treatment with  

BafA1 alone increased the expression of EPHB4 in both HCT116 and Caco2 cells (Fig 

3.19). Additionally, when cells were depleted of KSR1, treatment with BafA1 rescues 

EPHB4 expression. Increased LC3BII and p62 expression are used as positive controls 

for BafA1 treatment. Taken together, these data indicate that KSR1 stabilizes EPHB4 by 

suppressing lysosome-mediated degradation. 
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Fig 3.22 EPHB4 expression is not rescued by proteasomal inhibition with MG132. 

KSR1 was depleted in HCT116 and Caco2 cells for 72 h. Cells were treated with and 

without 10 µM MG132 for the last 8 h of knockdown. Proteins were analyzed by western 

blot. Myc is used as a positive control for MG132 treatment. 
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Fig 3.23 KSR1 expression protects EPHB4 from lysosome-dependent degradation. 

KSR1 was depleted in HCT116 and Caco2 cells for 72 h. Cells were treated with and 

without 100 nM Bafilomycin A1 (BafA1) for the last 8 h of knockdown. Proteins were 

analyzed by western blot. LC3B and p62/SQSTRM are used as positive controls for 

BafA1 treatment. 
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Discussion 

Here we identify a new pathway critical for colon tumor cell survival impacted by 

effectors of Ras and Wnt signaling. Two proteins, KSR1 and EPHB4, are required for 

increased Myc protein expression in human colon tumor cells, which then promotes the 

expression of its downstream effector PGC1β (Fig 3.24). We recently showed that Ras-

induced and KSR1-dependent PGC1β upregulation is required for colon cancer survival 

in vitro and in vivo (188). Here, we show that KSR1- and EPHB4-dependent 

mechanisms increase and stabilize Myc expression, which drives PGC1β expression in 

colon tumor cell lines to promote their survival. 

Using KSR1 as a reference standard, we used FUSION (188, 228) to identify 

EPHB4 as a gene that is required for colon tumor cell survival. The mechanistic role that 

EPHB4 plays in cancer remains controversial. However, a preponderance of data 

indicates that EPHB4 is overexpressed broadly in human cancers including cancers of  

the head and neck, prostate, bladder, ovaries, large intestine, lung, brain, pancreas, and 

the esophagus (269, 271, 284-290). Further research has shown that the ablation or 

inhibition of EPHB4 in a number of cancer cell types reduces tumor cell viability 

including: prostate (315), bladder (286), ovarian (269), colon (271), lung (287), head and 

neck squamous cell carcinoma (316), and esophageal (290). Additionally, patient data 

have shown that EPHB4 levels negatively correlate with overall patient survival in 

ovarian cancer and glioblastoma (269, 288). 

Expression of EPHB2 and EPHB4 is regulated by Wnt/β-catenin signaling in 

human CRC (271, 317). β-catenin’s binding partners, p300 and CBP, determine which 

gene is transcribed, with p300 promoting EPHB2 expression and CBP promoting EPHB4 

(271). EPHB2 is present in the normal colon and EPHB4 is only expressed when tumors 

arise (271). These data contrast with previous studies showing that EPHB4 is expressed  
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Fig 3.24 Model of MEK/ERK-dependent regulation of Myc and PGC1β expression 
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in human colonic crypts and early CRC lesions (318) followed by promoter 

hypermethylation and epigenetic silencing in more advanced stages (319). These data 

also indicate that EPHB4 expression is highest at the bases of crypts, suggesting that it 

plays an important role in maintaining the population of stem and progenitor cells located 

in that region of the crypt (318). The repulsive interaction that occurs when the ephrinB2 

ligand-expressing cells of the upper region of the crypt come in contact with the EPHB4 

receptor-expressing cells located at the base of the crypt suggests that this expression 

pattern may aid in compartmentalizing tumor cells and reducing the dissemination of 

such cells; in these studies, EPHB4 is functioning as a tumor suppressor (318, 320-322). 

While controversial, the majority of studies support the idea that increased EPH forward 

signaling promotes cell segregation and is primarily tumor-suppressive, whereas reverse 

signaling through the ephrin ligand is tumor-promoting driving neoangiogenesis and 

invasion (321, 323). However, further data suggest that ligand-independent forward 

signaling when EPHB4 is overexpressed promotes tumorigenesis, while ephrinB2-

dependent activation is tumor suppressing (324, 325). Additionally, EPHB forward 

signaling can also be cross-activated by FGFR and ERBB receptors leading to non-

canonical forward signaling that promotes cell proliferation (251), thereby contributing to 

tumorigenesis. 

We show that EPHB4 is overexpressed in a panel of colon tumor cell lines and, 

like KSR1, EPHB4 depletion via siRNA or small-molecule inhibition is selectively toxic to 

colon tumor cells as compared to immortalized, but non-transformed HCECs. The 

mechanism of HCEC resistance to EPHB4 inhibition may result from the fact that 

EPHB4 expression is minimal in this cell line and the cells do not rely on its 

overexpression for survival. These data are consistent with previous studies showing 

that EPHB4 is absent in normal colon, but is expressed in all 102 human colorectal 

cancer sections analyzed by both immunohistochemistry and RT-qPCR (271). 
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Recent work from The Cancer Genome Atlas (TCGA) Network discovered that, 

in a comprehensive examination of human colon and rectal cancers of diverse 

anatomical origin and mutation status, changes in Myc transcriptional targets were found 

in nearly 100% of the tumors (280), suggesting an important role for Myc in CRC. While 

a promising target for CRC, Myc is a transcription factor and traditionally considered 

“undruggable” (262, 281). Although there are new strategies emerging to inhibit Myc, 

including interrupting key dimerization events or DNA binding (262), finding additional or 

alternative ways to target Myc protein expression or its downstream effectors may 

provide therapeutic benefits to many cancer patients. 

Our studies show that EPHB4 regulates Myc expression through the promotion 

of mRNA levels. However, KSR1 does not share this mechanism of action, which led us 

to examine alternative explanations for its ability to increase Myc levels in human colon 

tumor cells. Further analyses of post-transcriptional mechanisms suggest that KSR1 

promotes the translation of Myc. Myc mRNA can be translated into protein under 

conditions where initiation from the 5’ cap structure and ribosome scanning is inhibited. 

Previous work has shown that, following hypoxia, PGC1β mRNA is decreased in 

renal clear cell carcinoma cells that is caused by an induction of MXI1, a repressor of 

Myc activity (261). Further work demonstrated that Myc regulates HER2- and IGF1-

dependent induction of PGC1β in breast cancer cells (260). Our work indicates that Myc 

also mediates EPHB4 and KSR1 regulation of PGC1β expression. Combined with these 

reports, our work suggests that tumor cells of diverse origins find multiple ways to 

regulate Myc-driven PGC1β expression. 

Lysosomal degradation of RTKs is well documented (326). Here we show that 

EPHB4 is primarily degraded via the lysosome and that KSR1 depletion promotes that 

degradation. Canonical lysosomal RTK degradation occurs following activation of the 

receptor by its respective ligand. However, ligand-independent receptor degradation has 
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been reported (327, 328). Mechanisms involved in KSR1-dependent regulation of 

EPHB4 have not been explored further. However, it is anticipated that KSR1-dependent 

effects on Myc and PGC1β are not simply due to KSR1 stabilizing EPHB4. This 

prediction is based on the differential effects (transcriptional versus post-transcriptional 

regulation of Myc expression) observed with KSR1 and EPHB4 depletion. However, the 

observation that KSR1 can promote the stability of RTKs may allude to a broader 

mechanism by which KSR1 supports tumorigenesis. 

The identification of these relationships highlights an important aspect of 

FUSION. Although the screen was intended to identify genes whose knockdown 

mimicked that of KSR1 depletion in a Ras-mutated cell line, it is designed in a way that 

focuses on phenotype, which does not necessarily require direct effects on KSR1-

specific pathways. Therefore, we can identify critical effectors, such as EPHB4, whose 

inhibition has the same effect as depletion of KSR1, but whose mechanism of action is 

different. Additionally, although the cell line used in our screen (HCT116) has activated 

Ras, this study indicates that we have and can identify vulnerabilities in cancer tumor 

cells that are independent of constitutively activated Ras pathways. This may lead to the 

identification of potential targets that are applicable in a wide variety of cancer cell types. 

Here we highlight the benefits of using an unbiased screen and FUSION analysis 

to identify potential vulnerabilities present only in cancer cells that are not found in 

normal cells. In fact, the identification of EPHB4 as a novel effector of Myc signaling 

prompted us to evaluate the relationship between KSR1 and Myc, establishing that the 

identification of targets using FUSION can also reveal novel information about KSR1 as 

well. We demonstrate novel mechanisms by which KSR1 and EPHB4 regulate PGC1β 

via promotion of Myc translation and mRNA expression, respectively. While the 

regulation of PGC1β by Myc has been previously studied in renal cell carcinoma (261) 

and breast cancer cells (260), we show that this pathway is present in and critical for 
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colon cancer cell survival. Taken together, these data reveal that tumor cells in various 

cancers have a unique dependence on Myc-dependent expression of PGC1β for cell 

survival, which may be exploited in the development of new cancer therapeutics. 
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Chapter 4: PGC1β expression is promoted by ERK and 

inhibited by HSF1 
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Introduction  

Heat shock factors (HSFs) are a small group of transcription factors that regulate 

the heat shock response (HSR). There is a single HSF in yeast, worms, and flies, but 

four HSFs (HSF1, 2, 3, 4) in mammals, of which HSF1 is the master regulator of HSR 

[reviewed in (329)]. HSR is a highly conserved, protective mechanism that manages 

environmental stresses, promotes survival, and regulates the longevity of the organism. 

Following exposure to certain stresses, HSF1 is activated to induce a group of proteins 

known as the heat shock proteins (HSPs) (330, 331). Activation of HSF1 is a multi-step 

process consisting of trimerization, extensive post-translational modifications (including 

phosphorylation, acetylation, and sumoylation), nuclear translocation, DNA-promoter 

binding, and induction of transcriptional targets (including Hsps) [reviewed in (329)]. In 

addition to the classical induction of the heat shock response, HSF1 has been shown to 

regulate up to 3% of the yeast genome including genes functioning in energy production 

and signal transduction (332). 

HSF1 is a potent modifier of tumorigenesis and is required for tumor initiation and 

maintenance in a variety of cancer models (333). HSF1 is dispensable under non-stress 

conditions, but crucial for growth and survival in tumor cells (333). Elevated levels of 

HSF1 have been detected in several types of cancer including cancers of the breast, 

lung, and colon (333, 334), but no somatic mutations in HSF1 have been identified in 

human cancers thus far. Additionally, HSF1 drives a transcriptional program distinct from 

the HSR to upregulate cancer-specific genes and support oncogenic processes such as 

cell cycle regulation, signaling, metabolism, adhesion, and translation (334). The HSF1 

cancer-specific transcriptome signature was found to be associated with increased 

metastasis and reduced survival in lung, breast, and colon cancer patients (334). 
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Unlike mutant Ras, overexpression of HSF1 is unable to transform immortalized 

MEFs (333). Conversely, MEFs lacking hsf1 are resistant to transformation induced by 

oncogenic H-RasV12D or PDGF-B (333). Additionally, mice deficient in HSF1 exhibit a 

lower incidence of tumors and increased survival as compared to their wild-type controls  

both in a model of chemical skin carcinogenesis, as well as in a genetic model 

expressing oncogenic p53 (335). HSF1 expression in tumor cells is a prime example of 

“non-oncogene addiction” (336). While not every protein in a given tumor-promoting 

pathway can be activated to an extent that directly promotes oncogenesis, they can be 

rate limiting within their pathways and represent potential drug targets. These potential 

targets are important because they represent approaches to treat cancers that are not 

dependent on traditional oncogenes. 

A recent publication has identified HSF1 as a new substrate of MEK1/2 (335). 

Using a combination of inhibitors and mutant constructs, they show that phosphorylation 

of HSF1 on Ser326 stabilizes HSF1 protein and is dependent on the activity of MEK1/2, 

but not ERK1/2, in NIH 3T3 and HEK293T cells. In vitro kinase activity assays were 

used to demonstrate that increasing doses of a MEK inhibitor (U0126) were sufficient to 

inhibit phosphorylation of HSF1 at Ser326, whereas increasing doses of the ERK 

inhibitor (FR180204) were not. Additionally, inhibition of MEK1/2 significantly decreased 

direct binding of HSF1 to DNA in the presence and absence of heat shock suggesting 

that MEK1/2 can directly regulate the HSF1-driven transcriptional program regardless of 

heat shock/cellular stressors. 

The canonical substrate of MEK1/2 is ERK1/2. MEK1/2 catalyzes the 

phosphorylation of human ERK1/2 at Tyr204/187 and Thr202/185 (125). ERK1/2-

dependent signaling regulates a variety of processes including cell adhesion, cell cycle 

progression, migration, survival, differentiation, metabolism, proliferation, and 

transcription (105). Human ERK1 and ERK2 are 84% identical and share many functions 
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(129), but are not entirely redundant (132). The erk1 gene is dispensable for mouse 

development. erk1-/- mice are deficient in thymocyte maturation and, therefore, normal T-

cell effector function, but are viable, fertile, and are normal in size (130, 131). Ablation of 

erk2 is embryonic lethal (132). 

ERK1 and ERK2 have more than 175 documented cytoplasmic and nuclear 

substrates (337). In the nucleus, they can target the ternary complex factor (TCF) family 

of transcription factors, including the E-twenty six (Ets)-domain transcription factor Elk1. 

These play a role in inducing the expression of immediate early genes, which encode c-

Fos and c-Myc. c-Myc and c-fos induce the expression of late-response genes that 

promote cell survival, division, and motility (169, 338). In the cytoplasm, ERK1/2 have a 

variety of substrates including c-Myc (as described in Chapter 3) and the 90-kDa 

ribosomal S6 kinase (RSK) family of proteins (339). RSK proteins contain two kinase 

domains, an N-terminal kinase domain (NTKD) or C-terminal kinase domain (CTKD) 

within a single polypeptide chain (339). The CTKD is involved in the autophosphorylation 

of RSK proteins, while the NTKD is important in substrate phosphorylation. ERK1/2 

phosphorylates RSK at Thr573 in the CTKD activation loop, which subsequently 

catalyzes the phosphorylation of Ser380 (339). Regardless of substrate, ERK1/2 

catalyze the phosphorylation of serine or threonine residues in a proline-directed manner 

(127). The optimal primary sequence for ERK1/2 phosphorylation is Pro-X-Ser/Thr-Pro 

with a proline at both the -2 and +1 positions (127). 

Small-molecule inhibitors of ERK1/2 have been developed with varying success. 

Two main strategies have been employed: ATP mimetic inhibitors that target the active 

kinase (type-I inhibitors) such as FR180204 and VTX-11e, and inhibitors that target and 

stabilize the inactive state of an enzyme (type-II inhibitors) (224). Selectivity is a 

challenge for type-II inhibitors as they target a more diverse range of structures. Ideally, 

one would use non-ATP-based allosteric inhibitors because they are usually highly 
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selective (210, 340). Recently a highly potent and selective ERK1/2 inhibitor was 

identified (224). This inhibitor does not bind to the “active” or “inactive” conformation of 

ERK1/2, but rather induces an allosteric site adjacent to the ATP pocket in which it binds 

(226). This inhibitor also has a slow dissociation rate allowing its effects to remain after 

the drug has been washed out making it an ideal inhibitor to use both in vitro and in vivo 

(226). 

Peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1 (PGC1) 

family members, PGC1α, PGC1β, and PGC1-related coactivator (PRC), are 

transcriptional coactivators that serve as inducible coregulators of nuclear receptors that 

control cellular energy via metabolic pathways (341). PGC1α was first identified in brown 

adipose tissue (BAT) through its functional interaction with the nuclear receptor PPARγ 

during thermogenesis (342). PGC1β and PRC were subsequently identified to regulate 

PPARγ-dependent transcription (343-345). In addition to PPARγ, PGC1 coactivators 

enhance the transcriptional activity of a variety of nuclear receptors, including liver X 

receptor (LXR) (346) and estrogen-related receptors (ERRs) (347, 348) as well as non-

nuclear receptors, including forkhead box O1 (FOXO1) (349) and SREBP1 (346). 

PGC1α and PGC1β serve diverse functions in multiple organ systems. PGC1α and 

PGC1β are both highly expressed in mitochondria-enriched tissues with high energy 

demands, including BAT, cardiac muscle/tissue, and slow-twitch skeletal muscle (342, 

344, 345). However, PGC1α is enriched in the brain and kidneys. PGC1α is a cold-

inducible coactivator that is also stimulated in the skeletal muscle by exercise (350) and 

in the heart and liver by fasting (351, 352). PCG1β is also induced by fasting, but not 

cold exposure, indicating some conserved and some unique mechanisms of upstream 

regulation of PGC1 proteins (344, 353). 

PGC1α and PGC1β are the most robust coactivators of ERRα (342, 344, 345). 

Under normal conditions, the PGC1/ERRα complex regulates metabolic homeostasis in 
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tissues such as BAT and muscle. It is likely that some of the same mechanisms that 

regulate PGC1/ERRα in normal physiology are also involved in cancer. For instance, 

PGC1α is induced by hypoxia in the skeletal muscle, resulting in hypoxia-inducible factor 

(HIF)-independent, but ERRα-dependent expression of VEGF and increased 

angiogenesis (354). Additionally, the PGC1/ERRα complex is positively regulated by 

oncogenic pathways in cancer cells. In breast cancer, HER2 activation increases the 

expression of PGC1β (355) resulting in increased ERRα-dependent transcription (356). 

As described in Chapter 3, PGC1β is a direct transcriptional target of Myc (260, 261), 

which is overexpressed in a variety of cancers including colon cancer. We showed that 

Myc expression is regulated by KSR1 in the colon tumor cell lines. Our lab has 

previously published that PGC1α and PGC1β expression is independent of ERK1/2 in 

mouse embryonic fibroblasts (187) and colon tumor cell lines (188), respectively, but is 

dependent on the presence of activated Ras and KSR1 (187). With the recent 

identification of a new MEK1/2 substrate, HSF1, I hypothesized that the KSR1-

dependent PGC1β expression in colon cancer cell lines is mediated by a MEK1/2-

dependent and ERK1/2-indpendent mechanism. 

Results 

Depletion of KSR1 reduces HSF1 expression 

With the recent identification of HSF1 as a novel MEK1/2 substrate, we set out to 

determine if KSR1 affected the phosphorylation of HSF1 at Ser326. We hypothesized 

that KSR1 regulates HSF1 phosphorylation and possibly functions as a scaffold in a 

proposed RAF/MEK/HSF1 cascade. To test whether KSR1 affects phosphorylation of 

HSF1, KSR1 was depleted in HCT116 cells for 72 hours and protein levels were 

assessed by western blot. KSR1 depletion reduced both phosphorylated and total levels 

of HSF1 (Fig 4.1). The reduction in total HSF1 protein levels may be due to a decrease  
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Fig 4.1 Depletion of KSR1 decreases pHSF1 (Ser326) and total HSF1 levels.  

HCT116 cells were transfected with siRNA targeting KSR1 or a non-targeting siRNA 

(Cont) for 72 hours. Protein expression levels were assessed by western blot. 
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in HSF1 downstream targets, particularly heat shock proteins (e.g., HSP90) that stabilize 

and sequester HSF1 in the cytoplasm. Additionally, depletion of KSR1 for 72 hours leads 

to persistent MEK inhibition and prolonged MEK inhibition has been previously 

demonstrated to reduce total HSF1 levels in malignant peripheral nerve sheath tumor 

(MPNST) cells (357). 

Prolonged Depletion of MEK1/2 decreases PGC1β expression 

We have previously demonstrated that 24 hours of treatment with the MEK 

inhibitors U0126 or PD0325901 does not decrease PGC1β expression in HCT116 cells 

(188), but we never studied the effects of prolonged MEK1/2 inhibition on PGC1β. To 

determine if PGC1β expression is dependent on the expression and activity of MEK1/2, 

HCT116 cells were treated with DMSO or the MEK inhibitor U0126 for 0-96 hours. Due 

to the short half-life of U0126 in medium, inhibitor was replenished every 24 hours. We 

found that cells treated with U0126 had substantially decreased levels of PGC1β protein 

by 24 hours (Fig 4.2). Levels of the co-activator ERRα protein were depleted in a similar 

manner. PGC1β levels do decrease in DMSO-treated cells at the 72-hour and 96-hour 

timepoints. At these timepoints, the wells are completely confluent, which may be 

contributing to this decrease. However, at all timepoints, the expression of PGC1β is 

less in MEKi-treated cells than in the controls (Fig 4.2). Previous studies suggest that 

prolonged MEK inhibition can decrease KSR1 levels. Therefore, to rule out that the 

effects on PGC1β were due to decreased KSR1 we assessed KSR1 expression at all 

timepoints. Phosphorylation of ERK1/2 was used to assess the degree of MEK inhibition. 

Next, we determined whether inhibition of MEK decreases PGC1β and ERRα 

mRNA levels. As shown in Chapter 3, Myc regulates PGC1β expression in colon tumor 

cell lines. Therefore, we also examined whether MEK inhibition decreased Myc mRNA 

levels as well. HCT116 cells were treated with DMSO or 20 µM U0126 or PD98059 for  
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Fig 4.2 MEK inhibition suppresses PGC1β and ERRα expression. 

HCT116 cells were treated with 20 µM MEK inhibitor (U0126) or vehicle for 0-96 hours. 

PGC1β and ERRα levels were assessed by western blot.  
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48 hours. Treatment with the MEK inhibitors resulted in decreased Myc and PGC1β, but 

not ERRα, mRNA levels (Fig 4.3A). It should be noted that although the decrease in 

expression is small, 19-20% for Myc and 24-25% for PGC1β, it is statistically significant. 

To verify that the inhibitors are working in this experiment, we treated a second set of 

wells simultaneously for western blot analysis. Fig 4.3B shows that inhibition of MEK 

decreases Myc, PGC1β, and ERRα protein expression in all replicates. It should be 

noted that MEK1/2 inhibition decreases protein expression (Myc = 49%, PGC1β = 41%, 

and ERRα = 51%) more than mRNA levels (Myc = 19%, PCG1β = 25%, and ERRα = 

8% in U0126-treated cells. This suggests that MEK1/2 regulates these proteins via a 

post-transcriptional mechanism. 

siRNA-mediated depletion of MEK1/2 showed a significant decrease in mRNA 

levels of Myc, but not PGC1β or ERRα (Fig 4.4). It is possible that using siRNA, the 

effect on PGC1β takes longer to develop than it does using MEK inhibitors and would be 

significant at later time points. Alternatively, this experiment may distinguish the ability of 

kinase inhibition to more effectively debilitate MEK signaling than siRNA, which may not 

be capable of targeting all MEK mRNA. Finally, these results may be indicative of off-

target effects of MEK kinase inhibitors. 

MEK1/2 depletion inhibits Myc, PGC1β, and ERRα expression with and 

without heat shock  

To examine the contributions of MEK1 and MEK2 individually and elucidate the 

mechanism behind MEK-dependent regulation of PGC1β, HCT116 cells were 

transfected with siRNA targeting MEK1, MEK2, or MEK1/2 for 72 hours. Half of the cells 

were subjected to heat shock (HS) at 43°C for 30 minutes to induce phosphorylation of 

HSF1. Depletion of MEK1 or MEK2 alone did not have a significant effect on ERK1/2 or 

HSF1 phosphorylation. However, simultaneous RNAi-mediated knockdown of MEK1/2  
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Fig 4.3 MEK inhibition suppresses mRNA levels of Myc and PGC1β, but not ERRα. 

(A) HCT116 cells were treated with 20 µM U0126 or PD98059 (or vehicle) for 48 hours. 

Myc, PGC1β, and ERRα mRNA levels were measured by RT-qPCR. Data from three 

biological replicates are presented as mean ± SD. Significance was measured using a 

one-way ANOVA with a Dunnett’s multiple comparison post-test. * p < 0.05 (B) Duplicate 

wells of each replicate in A were plated for western blot analysis of Myc, PGC1β, and 

ERRα expression 
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Fig 4.4 MEK depletion suppresses Myc mRNA levels. 

MEK1 (MAP2K1) and MEK2 (MAP2K2) were simultaneously depleted in HCT116 for 72 

hours. Myc, PGC1β, and ERRα mRNA levels were quantified using RT-qPCR. Data 

from three biological replicates are presented as mean ± SD. Significance was 

measured using a one-way, paired t-test. * p < 0.05 
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decreased expression of activated ERK and HSF1 in the absence of HS (Fig 4.5). 

Phosphorylation of HSF1 at Ser326 was stimulated by HS, even when MEK1/2 was 

knocked down in the HCT116 cells, indicating that the residual activated MEK1/2 is 

sufficient to phosphorylate HSF1 upon HS induction or that HSF1 may be 

phosphorylated at Ser326 by an additional kinase in the colon tumor cell lines. Depletion 

of MEK1 or MEK2 alone had minimal to no effect on Myc, PGC1β, or ERRα protein 

levels. However, depletion of MEK1/2 together decreased levels of all three. It was 

previously reported that sustained inhibition (96 hour) of MEK could decrease KSR1 

levels (357). We, therefore, verified that the decreases observed in MYC, PGC1β, and 

ERRα expression were not due to downregulation of KSR1. 

MEK1/2 and ERK1/2 inhibition prevents HS-induced HSF1 phosphorylation 

Previous reports suggest that the MEK-dependent HSF1 phosphorylation at 

Ser326 is ERK-independent (335). Tang et al. treated HEK293T cells with 1 µM 

FR180204 or 100 nM SCH772984 (two ERK1/2 inhibitors) overnight and measured 

phosphorylated (Ser326) and total HSF1 by western blot (335). They found that 

treatment with ERK inhibitors increased phosphorylation of Ser326 on HSF1 over that of 

DMSO-treated cells. To confirm this finding in colon cancer cells, HCT116 cells were 

treated with 20 µM U0126 or 1 µM SCH772984 for 24 hours. Surprisingly, inhibition of 

MEK1/2 or ERK1/2 resulted in decreased levels of HSF1 phosphorylation (Fig 4.6). To 

determine if inhibition of ERK1/2 also prevented HS-induced phosphorylation of HSF1, 

HCT116 cells were subjected to 30 minutes of HS at 43°C after 24 hours of treatment 

with U0126 or SCH772984. MEK1/2 or ERK1/2 inhibition was sufficient to block HSF1 

phosphorylation following HS (Fig 4.6). 

HSF1 inhibits the expression of Myc and PGC1β  

 HCT116 and Caco2 cells were transfected with MEK1/2 siRNA for 72 hours. To  
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Fig 4.5 MEK siRNA decreases Myc, PGC1β, and ERRα expression. 

HCT116 cells were transfected with siRNA targeting MEK1, MEK2, or MEK1/2 for 72 

hours then subjected to the presence or absence of heat shock (HS) at 43°C for 30 

minutes. 
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Fig 4.6 Inhibition of MEK and ERK decreases pHSF1 (Ser326) expression in colon 

cancer cells. 

HCT116 and Caco2 cells were treated with 20 µM U0126, 1 µM SCH772984, or DMSO 

for 24 hours then subjected to the presence or absence of heat shock (HS) at 43°C for 

30 minutes. Protein expression levels were assessed by western blot. 
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evaluate the nuclear translocation of HSF1, cells were harvested using 

nuclear/cytoplasmic fractionation. Protein expression and compartmentalization was 

assessed by western blot. In HCT116 and Caco2 cells, depletion of MEK1/2 reduced the 

amount of phosphorylated HSF1 in the nuclear compartment (Fig 4.7). A similar pattern 

is observed in Myc, PGC1β, and ERRα expression where reduced phosphorylated 

HSF1 expression in the nucleus correlates with less Myc, PGC1β, and ERRα protein. 

This suggests that nuclear translocation of HSF1 is necessary for sustained expression 

of these transcriptional regulators. 

 To determine whether HSF1 directly promotes the expression of Myc, PGC1β, 

and ERRα, HSF1 was knocked down by siRNA and protein expression was measured 

by western blot. HSF1 depletion surprisingly increased Myc and PGC1β expression in 

HCT116 and Caco2 cells (Fig 4.8). There was no effect on ERRα. Further, it was 

determined that 72 hours of HSF1 depletion does not affect KSR1 levels or ERK 

activation (Fig 4.8). Therefore, the increased Myc and PGC1β expression is not a 

consequence of KSR1 or ERK1/2 signaling upregulation. These data suggest that 

MEK1/2 regulates HSF1 phosphorylation and the expression of Myc and PGC1β through 

independent pathways. 

Activated ERK1/2 induces the expression of Myc, PGC1β, and ERRα 

 Inhibition of MEK1/2 through siRNA depletion and kinase inhibitors decreases 

Myc, PGC1β, and ERRα expression via an HSF1-independent mechanism. Currently, 

HSF1 and ERK1/2 are the only documented MEK1/2 substrates. We, therefore, 

readdressed the possibility that MEK1/2 is regulating these proteins through an ERK-

dependent pathway. ERK1/2 was depleted in HCT116 and Caco2 cells for 72 hours by 

siRNA and lysates were harvested using nuclear/cytoplasmic fractionation. In HCT116 

and Caco2 cells, ERK1/2 depletion decreased Myc, PGC1β, and ERRα in the nucleus  
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Fig 4.7 MEK depletion inhibits nuclear translocation of pHSF1 S326 in colon tumor 

cell lines. 

HCT116 cells were transfected with siRNA targeting MEK1/2 or control for 72 hours. 

Nuclear and cytoplasmic fractions were isolated and protein expression levels were 

assessed by western blot. 
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Fig 4.8 HSF1 depletion increases Myc and PGC1β protein expression in colon 

tumor cell lines. 

HCT116 and Caco2 cells were transfected with siRNA targeting HSF1 or control for 72 

hours. Protein expression levels were assessed by western blot.  
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 (Fig 4.9). Interestingly, 72 hours of ERK1/2 depletion increased total levels of 

phosphorylated HSF1 (Ser326), 15% in HCT116 and 11% in Caco2, but did not affect 

nuclear translocation (Fig 4.9). These data are consistent with the mechanism proposed 

by Tang et al. (335), where ERK1/2 inhibition upregulates phospho-Ser326 HSF1 

through inhibition or loss of a feedback loop and subsequent activation of MEK1/2. 

 A small-molecule inhibitor was used to assess whether ERK inhibition mimicked 

the results from the knockdown studies. HCT116 and Caco2 cells were treated with 1 

µM SCH772984 for 0-72 hours. Protein expression of Myc, PGC1β, and ERRα was 

assessed by western blot. Inhibition of phospho-RSK was used as a positive control for 

ERK inhibition. Treatment with SCH772984 decreased levels of Myc, PGC1β, and ERRα 

in both cell lines by 24 hours (Fig 4.10). Taken together, these data suggest that the 

expression of Myc, PGC1β, and ERRα are dependent on the activity of ERK1/2.  

Discussion 

Here we further define the mechanisms of Myc, PGC1β, and ERRα regulation in 

colon tumor cells (summarized in Fig 4.11). We have identified that MEK1/2 plays a dual 

role in the regulation of these proteins. Through the phosphorylation of HSF1, MEK1/2 

inhibits Myc, PGC1β, and ERRα expression. However, as shown in Fig 4.3 and Fig 4.4, 

this effect is overcome by the ERK-dependent promotion of Myc, PGC1β, and ERRα. In 

the absence of HS, it is apparent that the MEK/ERK axis is the primary regulator of Myc, 

PGC1β, and ERRα expression in colon cell lines. This may be due to ERK1/2-

dependent phosphorylation of HSF1 at Ser307, which antagonizes both nuclear 

translocation and transcriptional activity of HSF1 in absence of stress (358). Fig 4.9 

demonstrates that even with increased phosphorylation of HSF1 at Ser326 following 

ERK1/2 siRNA-mediated depletion, Myc, PGC1β, and ERRα protein levels are still 

decreased.  



 97 

 
Fig 4.9 ERK1/2 depletion inhibits Myc, PGC1β, and ERRα expression, but does not 

affect nuclear translocation of pHSF1 S326 in colon tumor cell lines. 

HCT116 and Caco2 cells were transfected with siRNA targeting ERK1/2 or control for 72 

hours. Nuclear and cytoplasmic fractions were isolated and protein expression levels 

were assessed by western blot. 
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Fig 4.10 ERK inhibition decreases expression of Myc, PGC1β, and ERRα. 

HCT116 (top) and Caco2 (bottom) cells were treated with 1 µM SCH772984 (ERK1/2 

inhibitor) or vehicle for 0-72 hours. Myc, PGC1β, and ERRα levels were assessed by 

western blot. 
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Fig 4.11 Model of MEK/ERK-dependent regulation of Myc and PGC1β expression. 
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The ability to induce HSF1 phosphorylation in the absence of MEK1/2 contradicts 

data presented by Tang and colleagues (335). They showed that inhibition of MEK in 

NIH-3T3 cells with 20 µM U0126 for 3 hours prior to HS (43°C x 30 minutes) was 

sufficient to suppress phosphorylation of HSF1 at Ser326 (335). Interestingly, they also 

show that HS induces phosphorylation of MEK and ERK in NIH-3T3 cells (335), which 

we do not observe in the HCT116 cells. This suggests that the mechanisms regulating 

MEK-dependent phosphorylation of HSF1 may be variable in different cell types. 

Additionally, while Tang et al. (335) provide a plethora of circumstantial evidence 

indicating MEK1/2 phosphorylates HSF1, they do not have a concrete experiment in 

which purified, active MEK1/2 directly phosphorylates HSF1 at Ser326. This should be 

addressed in future experiments. 

Here we show that MEK1/2 and ERK1/2 inhibition for 24 hours can prevent HS-

induced phosphorylation of HSF1 (Fig 4.6). However, after 72 hours of ERK1/2 

depletion, HSF1 phosphorylation at Ser326 is increased. This is consistent with the idea 

that MEK1/2 phosphorylates HSF1 at Ser326 and MEK1/2 activity is upregulated by 

prolonged ERK inhibition via a negative feedback loop. The ERK1/2 activity is still 

repressed at 72 hours as indicated by reduced RSK phosphorylation in Figures 4.9 and 

4.10. The ability of ERK1/2 inhibition to prevent HSF1 phosphorylation at Ser326 at early 

timepoints (24 hours), but to promote phosphorylation at late timepoints (72 hours) is 

puzzling. It is possible that ERK1/2 directly phosphorylates Ser326, as the sequence 

surrounding the phosphorylation site fits the consensus sequence for proline-directed 

phosphorylation (359), but taking our studies and the previous studies by Tang et al. 

(335) into account, this mechanism is unlikely. Alternatively, an ERK1/2-dependent 

priming phosphorylation may be necessary for phosphorylation at Ser326. It is known 

that sequential phosphorylation of Ser307 by ERK1/2 and Ser303 by GSK3β is 

necessary for repression of HSF1 transcription (360) and FBW7-dependent 
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ubiquitination (361). A similar priming phosphorylation may be required for subsequent 

phosphorylation at Ser326. Finally, studies in HeLa cells indicate that mTOR complex 1 

(mTORC1) can phosphorylate HSF1 at Ser326 (362). Cross-activation between the Ras-

ERK and PI3K-Akt pathways occurs when ERK1/2 phosphorylates RAPTOR to promote 

Ras-dependent activation of mTORC1 (363). Therefore, ERK inhibition at 24 hours may 

prevent the mTORC1-dependent phosphorylation of HSF1 at Ser326, but prolonged 

ERK inhibition upregulates MEK1/2 through feedback loops and promotes MEK1/2-

dependent HSF1 phosphorylation. Mechanisms of ERK-dependent HSF1 

phosphorylation need to be further defined. 

The upregulation of Myc and PGC1β following depletion of HSF1 may be due to 

HSF1-dependent promotion of HIF1α. In mammary cells, HSF1 regulates HIF1α 

translation via upregulation of HuR, which generally promotes mRNA stability and 

translation (364). HuR is overexpressed in a variety of cancers and correlates with 

cancer progression, including colon cancer progression (365-368). HIF1 regulates Myc 

by two mechanisms: 1) HIF1 binds to and activates transcription of MXI1, which encodes 

a repressor of Myc transcriptional activity, and 2) HIF1 promotes MXI1-independent, 

proteasome-dependent degradation of Myc (261). Alternatively, HuR has been shown to 

directly bind to Myc mRNA and decrease its expression (369). Further work needs to be 

conducted to determine if either of these mechanisms are relevant in colon tumor cell 

lines.  

Here we present the novel finding that MEK1/2 promotes PGC1β and ERRα via 

an ERK-dependent mechanism (Fig 4.2 and Fig 4.3). This conclusion is supported by 

both direct depletion of ERK1/2 using siRNA and small-molecule inhibition experiments 

(Fig 4.9 and Fig 4.10). As demonstrated here, the two MEK1/2 substrates may have 

opposing roles on common downstream targets, such as HSF1-dependent inhibition and 

ERK1/2-dependent promotion of Myc and PGC1β expression (Fig 4.8 and Fig 4.9). With 
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the identification of an additional MEK1/2 substrate, HSF1, moving forward it will be 

essential to distinguish between MEK1/2- and ERK1/2-dependent mechanisms.  
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Chapter 5:  Conclusions 
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The experiments in this dissertation sought to identify additional vulnerabilities in 

cancer cells that, like KSR1 depletion, may be targets for cancer therapeutics and further 

define the molecular mechanisms that regulate key proteins in colon cancer survival. In 

the course of these studies, we identified several mechanisms by which cells regulate 

Myc and PGC1β expression in human CRC. We demonstrate that depletion of KSR1 or 

EPHB4 negatively regulates the protein levels, whereas depletion of HSF1 actually 

increases Myc and PGC1β protein expression. We further show that KSR1 and EPHB4 

decrease Myc expression via different mechanisms. KSR1 depletion does not affect Myc 

and PGC1β mRNA expression, whereas depletion of EPHB4 decreases mRNA levels of 

both. In support of separate mechanisms of Myc and PGC1β regulation, the effects of 

KSR1 on Myc and PGC1β protein levels are ERK-dependent. However, EPHB4 

depletion does not affect MEK or ERK phosphorylation in these cell lines. The data 

presented here expand our understanding of mechanisms that regulate Myc and PGC1β 

expression and highlight vulnerabilities in colon tumor cells that may be exploited using 

targeted therapies. 

Is KSR1- or EPHB4-mediated expression of Myc and PGC1β 

dependent on activation of the RAS/RAF/MEK pathway? 

The results reported here are consistent between HCT116 and Caco2 cells. 

HCT116 cells are heterozygous for K-RasG13D, while Caco2 cells are K-RasWT. 

Importantly, Caco2 cells express moderate levels of EGFR (370) and respond initially to 

anti-EGFR therapies with decreased proliferation (371) before acquiring MET/Src-

dependent resistance (372). Signaling via c-MET can activate Ras and promote Ras-

dependent signaling in the presence of EGFR inhibition (373). Therefore, Caco2 cells 

may depend on Ras-dependent signaling for survival even in the absence of mutated 

and constitutively activated Ras. 
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In addition to Ras activation, defects in the APC pathway occur in 80-90% of 

human colon carcinomas, resulting in enhanced TCF-dependent transcriptional 

activation of Myc and EPHB4 (271, 273). Cells with APC mutations lose the ability to 

regulate β-catenin signaling. Alternatively, cells can acquire a mutation in CTNNB1 

(gene encoding β-catenin). These mutations activate β-catenin-dependent signaling by 

decreasing their negative regulation (374). Both HCT116 and Caco2 cells harbor 

mutations in β-catenin leading to constitutive activation. HCT116 cells have WT APC 

and heterozygous β-cateninΔSer45 (374). The Ser45 residue is phosphorylated by CK1α 

as a priming site for GSK3β-dependent phosphorylation at Thr41, Ser37, and Ser33 and 

subsequent degradation by E3 ubiquitin ligases (375). Therefore, β-catenin protein in 

HCT116 cells is resistant to GSK3β-dependent regulation. β-catenin with the Ser45 

residue deleted acts as a dominant negative, increasing β-catenin/TCF-mediated 

transcriptional activity (374). Caco2 cells are an example of cells that have mutant forms 

of both APC and β-catenin. However, the mutation in β-catenin is different than that 

found in HCT116 cells. Caco2 cells have a heterozygous G to C missense transversion 

that results in a glycine to alanine mutation at residue 245 (374). This mutation is directly 

N-terminal to a serine residue that is phosphorylated by CDK5 (376). Therefore, it is 

predicted that the G245A mutation increases the accessibility of Ser246 for 

phosphorylation and β-catenin activation. These mutations in β-catenin may be a 

mechanism by which HCT116 and Caco2 cells upregulate EPHB4 expression. 

Recent work has identified pathway cross-talk in which activated K-Ras4B 

promotes tumorigenicity by inhibiting non-canonical Wnt/Ca2+-signaling in pancreatic 

cells (377). The non-canonical Wnt/Ca2+ pathway involves activation of calmodulin 

(CaM) kinase II (CaMKII) and the transcription factor NF-AT as well as the inhibition of β-

catenin/TCF signaling by blocking the interaction between β-catenin and TCF4. KRas4B, 
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but not H-Ras, N-Ras, or K-Ras4A, binds to and sequesters CaM, thereby preventing 

CaMKII activation. In colon tumor cells lines, knockdown of K-Ras significantly represses 

β-catenin/TCF/LEF transcriptional activity and proliferation in SW480 (mutant for APC, 

wild-type β-catenin), but not HCT15 (mutant APC) or HCT116 (wild-type APC) cells with 

activating β-catenin mutations (377). However, Wnt/Ca2+/CaMKII-dependent signaling 

also inhibits sphere formation in 3D culture. Inhibition of Ras downregulates CaMKII 

activity and prevented sphere formation in the three cell lines (377). Therefore, even in 

the presence of activated β-catenin, activated Ras can regulate the non-canonical Wnt 

signaling pathway to modulate tumorigenesis. 

In the present study, we did not directly examine the effects of KSR1 or EPHB4 

depletion on canonical or non-canonical Wnt/β-catenin signaling. However, when we 

observed that KSR1 depletion decreased EPHB4 protein levels, we did test whether this 

effect was due to regulation of mRNA levels or protein stability. We show that KSR1 

depletion does not affect EPHB4 mRNA expression (Fig 3.21) suggesting that KSR1 is 

not regulating the Wnt/β-catenin-dependent transcriptional activation of EPHB4. 

Additionally, Wnt/β-catenin-signaling induces transcription of Myc. Taken together, it is 

unlikely that KSR1 is acting through Wnt/β-catenin canonical signaling to promote the 

upregulation of Myc and EPHB4 expression. 

The mechanisms by which KSR1 and EPHB4 regulate Myc and PGC1β 

expression in colon tumor cell lines need to be further defined. Previous work 

demonstrates that inhibition of EPHB4 using a monoclonal antibody reduces proliferation 

and increases apoptosis in HT-29 (K-RasWT, B-RAFV600E) xenografts (378). Together with 

our studies showing that EPHB4 depletion is toxic to colon tumor cell lines harboring 

mutant and wild-type K-Ras in the absence of activated B-RAF, these data suggest that 
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EPHB4 inhibition may be a viable therapeutic strategy selectively targeting colon tumor 

cells regardless of mutations in the Ras/RAF/MEK signaling pathway.  

Regulation of Myc in colon tumor cell lines 

Dysregulation of Myc occurs in more than half of all human tumors and often 

correlates with aggressive disease (264, 265), resistance to therapy (266-268), and poor 

prognosis (269-271). Myc activates or represses the transcription of a large number of 

genes involved in key cellular processes such as cell growth, metabolism, apoptosis, 

and protein synthesis (272). The Cancer Genome Atlas (TCGA) Network found that, in a 

comprehensive examination of human colon and rectal cancers of diverse anatomical 

origin and mutation status, changes in Myc transcriptional targets were found in nearly 

100% of the tumors (280), suggesting an important role for Myc in CRC. Therefore, 

finding novel ways to target Myc may clinically benefit patients with colorectal cancer. 

Ras activation and subsequent phosphorylation events enhance Myc protein 

stability (277, 278). ERK1/2-, CDK-, or JNK1/2-dependent phosphorylation of Ser62 

stabilizes Myc expression, but also primes Myc for GSK3β-dependent phosphorylation at 

Thr58. Following phosphorylation at Thr58, Ser62 is dephosphorylated by PP2A and 

ubiquitinated for proteasome-mediated degradation by SCFFBW7 E3 ligase (277, 278). In 

the absence of the stabilizing phosphorylation at Ser62, Myc is rapidly degraded by 

alternative mechanisms (277). Here we show that while depletion of KSR1 and EPHB4 

decrease phosphorylation of Myc at Ser62 (Fig 3.14); however, inhibition of 

phosphorylation is incomplete and Myc protein stability is unaffected by the absence of 

KSR1 or EPHB4 (Fig 3.16).  

Protein synthesis is promoted by mTORC1 and the downstream S6K due to their 

ability to phosphorylate and thereby inactivate 4E-BP1 and PDCD4 proteins, which 
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inhibit the translation initiation complex (379, 380). As a consequence, inhibition of 

mTORC1 blocks Myc expression in myeloma cells, and targeting protein translation with 

silvestrol limits the growth of Myc-driven hematopoietic tumors (381). However, 

treatment with a dual mTOR/PI3K inhibitor (BEZ235) failed to suppress the translation of 

Myc, and often times enhanced Myc expression, in colon tumor cell lines (382). 

Furthermore, treatment with BEZ235 enhanced phosphorylation of ERK1/2 in K-Ras 

wild-type and K-Ras mutant colorectal cancer lines (382). The ERK1/2 substrate RSK 

also phosphorylates 4E-BP1 and PDCD4 to promote protein translation (304, 383). Due 

to the role of KSR1 as a scaffold of the RAF/MEK/ERK kinase cascade, we predict that 

the KSR1-depedent promotion of Myc translation is due activation of RSK. 

Myc translation can be initiated via a cap-dependent and -independent (IRES-

dependent) mechanisms (230, 306). Our data suggest that KSR1 can promote both 

mechanisms of Myc protein synthesis (Fig 3.18 and 3.19). However, depletion of KSR1 

also suppresses the phosphorylation of 4E-BP1 and PDCD4, key inhibitors of global 

translation. The idea that KSR1 affects global protein synthesis should be addressed in 

future studies. Tumors can develop an enhanced ability to promote cap-dependent 

protein synthesis by overexpressing eIF4E or loss of 4E-BP, [reviewed in (384)]. 

However, during apoptosis, growth arrest, mitosis, hypoxia, or amino acid starvation, 

cap-dependent translation is suppressed and IRES-mediated translation is induced (307, 

385). In addition to Myc, IRES-dependent translation of mRNAs encoding HIF1α, 

VEGFA, Bcl2, X-linked inhibitor of apoptosis (XIAP), and p120Catenin has been 

reported [reviewed in (384)]. It is important to note that we have only tested the ability of 

KSR1 to promote IRES-mediated translation of Myc. However, if KSR1 promotes global 

IRES-mediated translation, there may be a KSR1-dependent mechanism by which 

cancer cells survive during times of stress. 
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The action of HSF1 is multifaceted. It promotes cell proliferation and survival in 

response to diverse oncogenic stimuli, enhances ERK activation in response to serum 

starvation, modulates protein translation, and supports glucose uptake and glycolysis 

(333). While HSF1 is not necessary for survival in normal conditions, it is required during 

the heat shock response and the proteotoxic stress induced by oncogenesis (357). Due 

to the role of HSF1 in proteostasis and heat shock response, it was anticipated that 

upregulation of Myc and PGC1β by HSF1 would promote survival in the presence of 

stress. In contrast to EPHB4 and KSR1, the presence of HSF1 actually decreases the 

expression of Myc and PGC1β protein (Fig 4.8).  

Recent reports demonstrate that HSF1 plays an essential role in the 

development of lymphomas in p53-deficient mice and the development of carcinomas in 

a Ras tumor model (333, 386). This role in early-stage tumorigenesis is likely due to a 

role for HSF1 in evasion of oncogene-induced senescence (387). Tumor maintenance is 

also dependent on HSF1-mediated expression of HuR, which can stabilize and promote 

HIF1α translation (387). Upregulation of HuR controls mRNA stability and/or translation 

of many proteins involved in cancer, including proteins involved in angiogenesis (e.g., 

HIF-1, HIF-2, and vascular endothelial growth factor [VEGF]), cell survival (e.g., p53 and 

Sirt1), proliferation (e.g., cyclins, Cdc2, and p21), and others (365, 368). The HuR-

dependent reduction in Myc mRNA expression (364) or stability (369) may be overcome 

by the ERK-dependent promotion of protein stability or translation in CRC cells. 

Regulation of PGC1β in colon tumor cell lines 

 We demonstrate here that the expression of PGC1β is regulated by a variety of 

mechanisms including KSR1- and EPHB4-dependent upregulation and HSF1-dependent 

suppression. However, with the exception of the induction of apoptosis, we do not 

examine the downstream effects of PGC1β depletion in colon tumor cells. PGC1s are a 
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small family of transcriptional coactivators that augment the responses of transcription 

factors and play a critical role in the control of metabolism (388). PGC1 coactivators 

directly interact with nuclear receptors, including PPARα and PPARγ, estrogen-related 

receptors (ERRs), liver X receptors (LXR), hepatocyte nuclear factor 4α (HNF-4α), and 

non-receptor transcription factors and regulatory elements including cAMP response 

element-binding protein (CREB), the lipogenic transcription factor sterol regulatory 

element binding protein 1c (SREBP-1c), and forkhead box O1 (FOXO1) (388). 

Therefore, further examination of PGC1β-mediated signaling in both normal and tumor 

cells is warranted. 

Lipogenic nuclear receptors LXRα and LXRβ are nutrient-responsive receptors 

that heterodimerize with RXR to influence gene expression promoting fatty acid (FA) 

biosynthesis and triacylglycerol (TAG) secretion (388). LXR increases the synthesis of 

FA and TAG by upregulating sterol regulatory element binding protein 1c (SREBP-1c) 

(389). PGC1β plays a critical role in stimulating the expression of genes that regulate 

hepatic lipogenesis and TAG secretion (388). Adenoviral-mediated overexpression of 

hepatic PGC1β in rats induces increased TAG synthesis and VLDL secretion leading to 

hypertriglyceridemia and hypercholesterolemia (347). PGC1β induces lipogenesis in the 

liver by coactivating both LXR and SREBP-1 to promote expression of FA synthase 

(FAS), stearoyl-CoA desaturase (SCD1), and HMG-CoA reductase (HMGCR) (347). 

Both PGC1β and SREBP-1c, but not PGC1α, are induced in the liver in response to an 

acute high fat diet (24-48 h) (347).  

Previous work in our lab shows that KSR1 regulates adipogenesis by 

coordinating ERK- and RSK-dependent phosphorylation and stabilization of 

CCAAT/enhancer-binding protein beta (C/EBPβ) (186). C/EBPα, C/EBPδ, and C/EBPβ 

transcription factors promote PPARγ expression (390). C/EBP transcription factors also 

regulate SREBP-1c gene expression during adipogenesis (391). Therefore, KSR1 may 



 111 

contribute to lipid accumulation by both promoting the expression of nuclear receptors as 

well as stabilizing the co-activator PGC1β. 

PGC1β induces angiogenesis in skeletal muscle (392). Angiogenesis can occur 

under pathological conditions, such as tumor growth, and physiological conditions, such 

as embryonic development and exercise. It is triggered by the secretion of soluble 

factors, including VEGF, PDGF, angiopoietin (ANGPT), and FGF, from tissue (393). 

Under hypoxic conditions, hypoxia-inducible factor 1α (HIF-1α) is stabilized and free to 

dimerize with HIF-1β to activate proangiogenic genes such as VEGF (394). However, 

PGC1β induces the expression of VEGF in cell culture and in vivo via an ERRα-

dependent and HIF-1α-independent mechanism. EPHB4 signaling is a potent regulator 

of VEGF-dependent angiogenesis (395-398). Several studies observed that EPHB4-

ephrinB2 reverse signaling regulates VEGF-dependent pathways by specifically 

preventing VEGFR internalization required for activation of such pathways (396, 397). 

Alternatively, others have reported that EPHB4-ephrinB2 forward signaling is required 

for angiogenesis, as a small molecule inhibitor of EPHB4 kinase activity suppresses 

VEGF-driven angiogenesis in vivo (398). Future work should address whether EPHB4 

forward signaling-dependent potentiation of angiogenesis is due to its ability to promote 

PGC1β expression. 

We show that inhibition of Myc suppresses PGC1β mRNA expression in colon 

tumor cell lines (Fig 3.8). However, additional experiments indicate that in the presence 

of cycloheximide, PGC1β protein expression can be rescued by the addition of MG132 

for 2 hours (McCall, data not shown). This suggests that PGC1β expression is not 

entirely dependent on the transcriptional regulation by Myc. PGC1 proteins are modified 

by post-transcriptional modifications, primarily reversible acetylation, phosphorylation, 

and methylation (388). Both PGC1α and PGC1β complex with the acetyltransferase 

GCN5 (general control of amino acid synthesis 5); GCN5 then acetylates several lysine 
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residues on PGC1 proteins to inhibit their transcriptional activity (399, 400). This is 

opposed by SIRT1 (sirtuin 2 ortholog 1)-dependent deacetylation and activation (400, 

401). Interactions between KSR proteins and SIRT1 have been identified (Fernandez 

and Lewis, unpublished), but KSR1-dependent acetylation of PGC1 proteins has not 

been examined thus far. 

Phosphorylation of PGC1β is relatively unstudied. Dr. McDonnell’s group at Duke 

University has identified several serines on PGC1β that are predicted to be 

phosphorylated, and they modified those serines to alanines to inhibit phosphorylation 

(personal communication). We examined the expression of four of these constructs 

(S256A, S384A, S524A, and S638A) with and without the addition of the proteasomal 

inhibitor, MG132. Interestingly, PGC1βS638A had the lowest expression without MG132, 

but relatively equal expression as the other constructs in the presence of MG132 (Das 

and Lewis, unpublished). Further examination of this site indicates that there is a proline 

at the +1 position (LSLPsPEGLSLK). Therefore, the potential that ERK1/2, or 

alternatively MEK1/2, phosphorylates PGC1β at this site should be examined. The lysine 

at 645 is the equivalent of the GCN5-dependent acetylation site on PGC1 proteins in 

mice (400). The relationship, if present, between Ser638 phosphorylation and K645 

acetylation should be examined. Furthermore, we have previously published that PGC1β 

is ubiquitinated in colon tumor cell lines (188). Therefore, determining the residue(s) 

modified by ubiquitination would be beneficial in further defining the mechanisms 

regulating PGC1β protein expression.  

Summary 

Cells are regulated by a vast network of signaling pathways that maintain cell 

homeostasis. Alterations in these networks can lead to the promotion of tumor 

development. The studies described here identify vulnerabilities in colon tumor cells that 
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can be exploited for therapeutic intervention. Currently, there are several inhibitors of 

EPHB4 signaling, including monoclonal antibodies and kinase inhibitors that are being 

developed as cancer therapeutics. But thus far targeting KSR1 directly has been elusive. 

However, depletion of EPHB4 or KSR1 in colon tumor cell lines results in the decreased 

expression of common effectors, Myc and PGC1β. The results of these experiments 

further demonstrate that Myc and PGC1β expression are regulated by multiple 

mechanisms in colon tumor cells. The data show that depletion of KSR1 or EPHB4 

decreases Myc and PGC1β levels, while depletion of HSF1 increases their expression. 

While previous work demonstrated ERK-dependent regulation of Myc stability, these 

data are the first to show that KSR1-dependent regulation of PGC1β is mediated by ERK 

activation. Therefore, in addition to EPHB4 inhibitors, the use of ERK inhibitors may 

prove to be a viable option for the treatment of patients with colon tumors. 

In future studies, it will be important to determine if Myc-dependent expression of 

PGC1β enhances the oxidative and glycolytic capacity of the colon tumor cells. If so, the 

extent to which this mechanism is common among tumor types that demonstrate 

elevated levels of protein translation should be assessed. Furthermore, it should be 

determined whether the Myc-mediated increase in PGC1-dependent metabolic capacity 

is restricted to cells with increased translation of Myc mRNA or if it is also present in 

cells with increased Myc expression due to alternative mechanisms (e.g. gene 

amplification). Finally, the extent to which this mechanism represents a unique 

vulnerability to tumor cells should be examined.  
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Appendix A: Characterizing the roles of KSR1 and KSR2 

in mouse behavior and lessons on littermate controls 
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Rationale 

Anxiety (including panic disorder, generalized anxiety disorder, and social 

phobia) is a common non-motor symptom in 25-49% of patients with Parkinson’s 

disease (PD) (402, 403), a rate higher than that reported in healthy or comparably 

disabled elderly controls, indicating that anxiety is associated with the disease 

mechanism rather than purely social distress due to motor impairment. Anxiety is 

considered a normal adaptive response that detects and prepares an individual against 

an imminent or potential threat; however, increased anxiety has a negative impact on 

health-related quality of life (404). 

The physical symptoms of PD mainly result from progressive and profound loss 

of dopaminergic neurons that project to the striatum, but are also associated with losses 

in the pathways that project to the amygdala and hippocampus (405). The amygdala is 

considered the key structure responsible for the generation of emotional behaviors (406) 

including fear-related behaviors (407, 408). In fact, levels of dopamine (DA) in the 

amygdala are increased in response to aversive events (409). Furthermore, DA 

signaling in the amygdala and striatum are required for learning and maintaining 

conditioned avoidance responses (410). 

Anecdotal observations from Lewis lab members suggested that mice lacking 

ksr2 are abnormally calm when handled. Previous work in other labs has demonstrated 

that ksr1 is required for some forms of long-term associative memory formation (411). 

KSR proteins are highly expressed in the brain (411, 412), including in the hippocampus 

and the amygdala (411), but little is known about their functions. KSR1 is expressed in 

both the cell bodies and dendrites of the neurons in the CA3 region of the hippocampus, 

but not glial cells (411). KSR2 is also expressed in the hippocampal neurons (Guo & 

Lewis, unpublished). However, brains of ksr knockout mice do not show any gross 
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alterations in brain morphology compared to wild-type mice (411) (Costanzo-Garvey & 

Lewis, unpublished). It has been reported that in the hippocampus, KSR1 is important 

for protein kinase C (PKC)-dependent ERK signaling, but does not mediate the cyclic 

AMP (cAMP)/protein kinase A (PKA)-dependent pathway (411). KSR1 is also important 

for long-term associative memory formation (411) and both PKA and MAPK/ERK 

signaling are required for long-term potentiation (LTP) in the hippocampus (413-415) 

and amygdala (416). Due to the high level of KSR1 expression in the amygdala, we 

sought to determine whether KSR proteins functioned in the brain to regulate anxiety- 

and depression-related behaviors. 

Methods 

Open Field 

Mice are placed in a 49 cm x 49 cm x 38 cm white box and allowed to explore for 20 

minutes. Locomotor paths are monitored using a video tracking system, Ethovision 

(Noldus, Leesburg, VA, USA), and analyzed for time in the center (defined as 7 cm from 

each wall), total distance traveled, as well as total distance traveled in the center. This 

test measures both anxiety (increased time spent in the center) and habituation 

(persistent exploration). 

Elevated Zero 

A zero maze (34 cm ID and 46 cm OD, braced on 4 legs, 40 cm tall) is used according to 

procedures previously described (417). Briefly, mice are placed in the center of one of 

the closed quadrants and are allowed to move freely in the maze for 6 minutes. Latency 

to enter an open quadrant, time spent in open quadrants, and number of zone transitions 

(all four paws transferring from the open arm to closed arm or vice versa) are scored by 

two blinded observers. The elevated zero maze complements the open field test, but is a 

better measure of pure anxiety (418). Mice are naturally exploratory, but tend to avoid 
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open and potentially dangerous areas [reviewed in (418)]. Therefore, mice prefer to 

remain in the closed arms of the maze. Mice who venture out more often (quantified as 

zone transitions) and spend more time in the open arms are classified as anxiolytic. 

Forced Swim Test (FST) 

A 1 L beaker is filled halfway with warm water. The test mouse is then placed into the 

beaker. The water is deep enough that the animal has to either swim or float to remain 

above the surface (it cannot stand), but the walls are too high to permit escape. The trial 

is videotaped for 6 minutes. At the end of this period, the mouse is removed from the 

beaker, dried with a paper towel, and returned to its home cage. The beaker is emptied 

and refilled in preparation for testing the next mouse. Primary outcome is the amount of 

time actively resisting (either swimming or attempting to climb) compared to the amount 

of time spent floating. Antidepressant phenotypes are characterized by greater amounts 

of time floating rather than swimming/climbing.  

Tail Suspension 

A thin aluminum rod (the crossbar) is mounted using standard clamps across two lab 

stands that are parallel to the table surface, and approximately 0.3 m above the surface. 

The mouse is removed from the home cage, and is gently fastened to this crossbar 

using adhesive masking tape. The mouse is then videotaped for 6 minutes. At the end 

of this period, the mouse is removed from the bar, the tape removed from the tail, and 

the animal returned to its home cage. The bar and adjoining areas are cleaned with 

chlorohexidine in preparation for testing the next mouse. Primary outcome is the 

amount of time spent actively resisting this position compared to the amount of time 

dangling without any visible muscular exertion. Antidepressant phenotypes are 

characterized by greater amounts of time dangling rather than resisting. 
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Stereotypy 

The open field arena was “binned” into nine regions that varied in size, but 

contained similar numbers of data points per bin. The bins were constrained in that they 

were set as rectangles that shared a common row, but not column. Raw locomotor (x,y) 

coordinate data from the video tracking system were imported into MATLAB (MathWorks 

Inc, Natick, MA, USA). Data were binned using a MATLAB algorithm provided by Dr. 

Bonasera, as previously described (419). Patterns were required to be longer than two 

bins and not overlap in time to proceed with analyses. A commercially available program 

(Theme, Noldus) was used to evaluate pattern structure. Within a given trial, we 

calculated what percentage of total trial time the animal is engaged in route-tracing 

behavior. We also determined the maximum length of patterns from each trial. 

Statistics 

All statistics were performed using Prism Software (GraphPad). All data are 

presented as mean ± SEM. Data presented as genotypes over time were analyzed with 

a two-way ANOVA with Bonferoni’s post-test for multiple comparisons. Figures with two 

columns were analyzed using a two-tailed, student’s t-test. All others were analyzed with 

a one-way ANOVA with Bonferoni’s post-test for multiple comparisons. A p value of less 

than 0.05 was considered statistically significant. 

Results and Discussion 

Pilot study with non-littermate WT controls indicates that KSR1 is 

important in mouse anxiety 

Age-matched ksr1-/- male mice (5-6 weeks in age) were placed in an open field 

arena (one at a time) and allowed to freely roam for 20 minutes. This test measures 

anxiety, exploration, and habituation behaviors. Sessions were recorded with an 
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overhead camera and route mapping was performed using Ethovision software. A wild-

type mouse will typically spend time in the corners and around the edges of the arena, 

displaying thigmotactic behaviors.	
  A mouse that enters the center of the arena more 

often is considered anxiolytic or less anxious. 

Examples of wild-type and ksr1-/- mice route maps are shown in Fig A.1A. In the 

open field test, ksr1-/- mice travel further (Fig A.1B) and spend significantly more time in 

the center than the wild-type controls (Fig A.1C). Since ksr1-/- mice exhibit increased 

locomotive activity as compared to WT controls, we quantified the stereotypic behaviors 

(specifically route-tracing) displayed by each phenotype. Stereotypies are defined as 

motor actions of unknown functional purpose that are repeatedly performed in a near-

identical manner (420, 421). These behaviors may include patterns (route-tracing), 

repetitive head movements, and syntactic grooming (420). Increased stereotypic 

behaviors are a behavioral correlate of aberrant striatal function (422-424). Particularly, 

increased DA receptor stimulation at synapses within the striatum can induce increases 

in stereotypy (419, 425). To quantify the patterns of routes taken by each mouse, we 

used t-pattern sequential analyses (419, 426). This is a mathematical approach that 

determines whether a sequence of events occurs within a specified time interval at a 

rate greater than that expected by chance. ksr1-/- mice spend a larger percentage of their 

time performing stereotypic behaviors (Fig A.1C), but do not have longer patterns than 

their wild-type counterparts (Fig A.1D). 

To determine if this anxiolytic phenotype is also observed in the elevated zero 

maze, ksr1-/- and wild-type mice were placed in the closed arm of the elevated zero 

maze and allowed to freely explore for six minutes. In this test, mice are given a choice 

to spend time in the unprotected, open arm, or the protected, closed arm. Mice generally 

avoid open areas, especially when brightly lit. Therefore, while it is common for a wild-

type mouse to transition to the other closed arm, they usually run quickly to get out of the  
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Fig A.1 Age-matched ksr1-/- mice display an anxiolytic phenotype as measured in 

the open field arena. 

Age-matched WT and ksr1-/- mice (5-6 weeks, male) were tested using the open field 

test. (A) Example of data analyzed for each genotype. (B) Cumulative distance traveled. 

(C) Cumulative time spent in the center of the arena. (D) Percentage of time spent in 

stereotypic (repetitive) patterns. (E) Average length in longest pattern. 
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open space. Again, all trials were recorded using an overhead video camera system and 

route-mapping for each trial was performed using Ethovision software (Noldus). 

An example of the arena and maps for each genotype are shown in Figure A.2A. 

ksr1-/- mice exhibited an abnormal locomotive pattern during the elevated zero maze (Fig 

A.2C). They also spend significantly more time in the open arm of the elevated zero 

maze than wild-type mice (Fig A.2D). Taken together, these data suggest that ksr1-/- 

mice have decreased anxiety. 

Age-matched ksr1-/- female mice (5-6 weeks of age) also exhibit a significant 

anxiolytic phenotype in the elevated zero maze, but fail to recapitulate the phenotype 

seen in the male mice in the open field test (data not shown). 

Age-matched ksr2-/- mice trend towards decreased anxiolytic phenotypes 

Given our anecdotal evidence that ksr2-/- mice appear to be calmer when 

handled than wild-type mice, we tested the effect of genotype on anxiety-related mouse 

correlates using the open field arena and elevated zero maze. Male and female ksr2-/- 

and wild-type mice were tested. Only male data are presented here. ksr2-/- mice have 

slightly more total movement in the open field than wild-type mice (Fig A.3A). They also 

spend slightly more time in the center (Fig A.3B). However, the route-tracing stereotypic 

phenotypes observed in mice lacking ksr1 are not present in ksr2-/- mice (Fig A.3C-D). 

We further tested these mice in the elevated zero maze. Again, ksr2-/- male mice have a 

trend of increased locomotion (Fig A.3E) and increased time spent in the open arms of 

the elevated zero maze (Fig A.3F), but these results are not significant. ksr2-/- female 

mice did not exhibit these trends. 

Taken together, male mice lacking ksr2 have a trend towards anxiolytic 

phenotypes, but the results were not significant for the open field and elevated zero  
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Fig A.2 Age-matched ksr1-/- mice display an anxiolytic phenotype as measured in 

the elevated zero maze. 

Age-matched WT and ksr1-/- mice (5-6 weeks, male) were tested using the elevated zero 

maze. (A) Example of data analyzed for each genotype. (B) Cumulative distance 

traveled. (C) Cumulative time spent in each arm of the maze. 
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Fig A.3 Age-matched ksr2-/- mice do not display anxiolytic phenotypes. 

Age-matched WT and ksr2-/- mice (5-6 weeks, male) were tested using the open field 

test (A-D) and the elevated zero maze (E-F). 
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maze. However, power calculations indicate that significance may be obtained using 

additional mice (12 and 7 for open field and elevated zero maze, respectively).  

Littermate-controlled studies indicate that KSR1 does not affect mouse 

anxiety 

Several confounding factors can affect the results of behavioral tests (427-429). 

Therefore, it is recommended that all studies are performed with littermates. Additionally, 

the estrus cycle can affect results; so male mice are preferentially used in these assays 

(430). To address these issues, we repeated the assays using a littermate-controlled 

cohort of wild-type, ksr1+/-, and ksr1-/- male mice (5-6 weeks in age). This group failed to 

recapitulate any of the original phenotype observed in the pilot study (Fig A.4). This may 

be due to several reasons: 1) the pilot study used age-matched controls, whereas the 

current study used littermate controls; 2) the pilot and current studies were performed in 

different seasons, which may affect mouse behaviors. The first point is very important 

because maternal behavior during the neonatal period has been shown to regulate 

anxiety in adult mice (431); therefore, it is essential to use matching littermate, wild-type 

controls in these analyses. 

Interestingly, data from age-matched and littermate-matched ksr1-/- mice are 

nearly identical in all reported measurements. However, the wild-type mice are 

significantly different. Of major note is that in the pilot study, these genotypes not only 

came from different litters, but were also derived from parents with different genotypes. 

The ksr1-/- mice are fertile and at the time of the study the colony was maintained using 

null x null crosses. The wild-type mice were obtained from wild-type x wild-type crosses 

or from the ksr2 colony. ksr2-/- mice are infertile and their colony is maintained ksr2+/- X 

ksr2+/- breeding. Additionally, ksr2-/- mice often do not survive until weaning. In pilot 

studies, we used the “extra,” age-matched wild-type mice from the ksr2+/- X ksr2+/- cross  
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Fig A.4 Littermate-controlled ksr1-/- mice do not display anxiolytic phenotypes. 

Age-matched WT, ksr1+/-, and ksr1-/- mice (5-6 weeks, male) were tested using the open 

field test (A-D) and the elevated zero maze (E-F).  
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to pair for comparison to ksr1-/- mice. 

Furthermore, each colony is numbered differently for genotyping in the second 

week of life. Mice in the ksr1 colony and wild-type crosses are healthy and large. They 

are marked using ear clipping. Knockout mice in the ksr2 colony are weak and very 

small. We have an issue with ear clippings tearing and generally being too large for their 

ear size. Therefore, we have an exemption from IACUC to mark these mice using toe 

clippings. Recent studies indicate that toe clipping does not adversely affect the behavior 

studies we performed. Thus, it is anticipated that the clipping method is not the primary 

cause for the significant differences observed in the wild-type groups (432, 433). 

It is likely that maternal care is drastically different in these three breeding 

schemes and may be contributing to the differences we observed in the wild-type mice. 

Animal studies support the idea that physical and emotional neglect and parental loss 

during childhood can lead to negative consequences in adulthood, such as an increased 

likelihood to develop depression and anxiety disorders (434, 435). In rats, males that 

undergo maternal separation (MS) for 3-4.5 hours a day for the first 2 or 3 weeks of life 

exhibit an increase in fearfulness in adulthood (436, 437). Males that undergo repeated 

separation show greater hypothalamic-pituitary-adrenal activity both basally and in 

response to an acute stressor upon reaching adulthood (437, 438). In C57BL/6 mice, 

behaviors of males and females can be altered by MS (431). Specifically, they show that 

maternally separated males showed higher levels of anxiety and fear behavior in 

adulthood, as measured by the open field test and elevated plus maze, compared to 

control males. Conversely, they found that maternally separated females exhibit less 

anxiety and fear behavior in adulthood, but only during diestrus (431), suggesting that 

estrus cycle should be monitored when conducting behavioral studies. Thus, it appears 

that early life stressors in the form of maternal separation can have a lasting influence on 

the physiology and behavior of offspring for both rats and mice. 
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Future work addressing the differences in maternal care among the colonies 

would be relevant to this work, but was not pursued. However, this work did shift the way 

the breeding colonies are managed. We now breed ksr1-/- mice from ksr1+/- X ksr1+/- 

crosses for all studies. Furthermore, we have started producing inducible ksr2fl/fl mice. 

Under the traditional breeding scheme, obtaining ksr2-/- and wild-type male littermates to 

use in the behavioral studies was essentially impossible as mice lacking ksr2 expression 

often do not survive past weaning. Using an inducible knockout mouse model, we can 

properly measure the contribution of KSR2 to anxiolytic phenotypes using littermate 

controls. 

At the time of these studies, we also conducted assays to measure a potential 

depression-related phenotype in the littermate-controlled ksr1-/- mice, including the tail 

suspension test (TST) and Porsolt’s forced swim test (FST). These tests were performed 

on the same mice as the open field and elevated zero maze. Videos of these tests were 

recorded and need to be analyzed by two independent, blinded reviewers for time spent 

immobile. However, due to the innate agility of the C57BL/6 strain, the tail suspension 

test may not be an appropriate test to measure depression (439).  If the data from the 

FST are indicative of a depressive phenotype, we may need to utilize a learned 

helplessness paradigm to prevent lost data due to tail climbing. 
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