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THE ROLE OF DNA METHYLTRANSFERASES IN 

NORMAL AND MALIGNANT MOUSE HEMATOPOIESIS  

Staci L Haney, Ph.D. 

University of Nebraska Medical Center, 2016 

Supervisor: Rene Opavsky, Ph.D. 

DNA methylation is an epigenetic modification that regulates gene transcription. The 

addition of a methyl group to cytosine is catalyzed by a family of enzymes known as 

DNA methyltransferases (Dnmts). The three catalytically active Dnmts in humans and 

mice are Dnmt1, Dnmt3a, and Dnmt3b. DNA methylation is clinically relevant, as 

aberrations in the methylation landscape are a hallmark of nearly all human cancers. 

Cancer methylomes are typically characterized by genome wide hypomethylation and 

regional specific hypermethylation, both of which have been linked to alterations in gene 

expression. In order to understand the contribution of epimutations to the development 

of hematological malignancies we created several mouse models in which one or more 

Dnmt is deleted in hematopoietic stem cells and all downstream lineages. This allowed 

us to address the role of individual Dnmts in normal and malignant hematopoiesis. We 

found that Dnmts contribute to the cancer methylome through both de novo and 

maintenance methylation, and that activities of individual Dnmts seldom overlap with one 

another. We identified Dnmt1 as being critical for T cell development and maintenance 

of the tumor phenotype in T cell lymphomas. Furthermore, we identified Dnmt3a and 

Dnmt3b as critical tumor suppressor genes in the prevention of chronic lymphocytic 

leukemia in mice. Collectively, these studies provide insight into the effects of Dnmt 

deregulation in tumorigenesis.  
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INTRODUCTION 

 
DNA methylation in mammalian cells.  

DNA methylation plays a critical role in many biological processes, including 

regulating gene expression, silencing of retroviruses, X-chromosome inactivation, 

genomic imprinting, and differentiation (1). DNA methylation primarily occurs in the 

context of CpG dinucleotides, is asymmetrical and cell-type specific (1). In general, DNA 

methylation at promoter regions is associated with the inhibition of gene transcription (2), 

while increased gene body methylation is postulated to promote gene transcription (3). 

The three active mammalian DNA methyltransferases, Dnmt1, Dnmt3a, and Dnmt3b, 

are responsible for catalyzing the addition of a methyl group to the 5th position of the 

cytosine ring. All three Dnmts are critical for development, as demonstrated by 

knockouts generated in mice. Deletion of Dnmt1 and Dnmt3b are embryonically lethal, 

while loss of Dnmt3a results in death of mice around 4 months of age, likely due to multi 

organ failure (4, 5).  

Dnmt3a and Dnmt3b are largely responsible for de novo methylation during early 

embryogenesis. While both enzymes are responsible for the establishment of 

methylation patterns, they each display non-overlapping functions during mouse 

embryonic development. Dnmt3b for example is almost exclusively involved in the 

methylation of minor satellite repeats at centromeres (5). The sequence-specificity of 

Dnmts is further demonstrated by findings in mouse embryonic stem cells (ES cells) in 

which the expression of only Dnmt1, and not Dnmt3a or Dnmt3b, results in a lack of 

methylation at imprinted genes and genomic repeats, suggesting that these loci are de 

novo methylated by either Dnmt3b or Dnmt3a (6). In contrast, Dnmt1 was initially 

classified as a maintenance enzyme, due to its high affinity for hemi-methylated sites (7). 
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The unique regulatory domain of Dnmt1 functions by binding to PCNA during cellular 

divisions, thus allowing it to read existing methylation patterns and duplicate them on the 

newly synthesized DNA strand (8). While the de novo and maintenance classifications 

are convenient, further investigation into the discrete roles of Dnmts has changed the 

way we think about the formation and maintenance of the methylation landscape.  

Several reports suggest that Dnmt1 can also function as a de novo 

methyltransferase. For example, overexpression of Dnmt1 induced locus-specific de 

novo methylation in human fibroblasts that was associated with specific sequence motifs 

(9, 10). Additionally, knockout of Dnmt1 in ES cells suggests de novo activity for Dnmt1 

at repeat elements and single-copy genes (11). We found that Dnmt3a and Dnmt3b 

function in the cancer-specific maintenance methylation of gene promoters (12, 13), 

while others showed that Dnmt3a maintained lowly methylated canyon regions (14). 

Despite an ever increasing body of research, a complete understanding of the individual 

roles of Dnmts in normal cells and various disease states remains elusive. 

Methylation independent repressor function of Dnmts. 

In addition to their roles as methyltransferases, Dnmts can function to repress 

gene transcription in a methylation independent manner (18). The methylation 

independent repressor activity has been well demonstrated for Dnmt3a. The conserved 

C-terminal domain of Dnmt3a mediates the addition of methyl groups to DNA, while the 

N-terminal regulatory domain mediates interactions with DNA and other proteins (15). 

While Dnmt3a can regulate transcription via methylation at CpG dinucleotides found in 

the promoter and other regulatory regions (15), it can also repress transcription in a 

methylation-independent manner through interaction with histone deacetylases (HDACs) 

and other repressor proteins via its ATRX-like domain (16). For instance, Dnmt3a 

interacts with the methyl CpG binding domain of Mbd3 and Brg1 to silence expression of 
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the metallothionein-I gene in mouse lymphosarcoma cells (17).  Likewise, in vitro studies 

found that RP58, a transcriptional repressor, targeted Dnmt3a to a synthetic promoter to 

silence gene expression in a methylation-independent manner (16). In addition to 

Dnmt3a’s ability to interact with transcriptional repressors, it may also interfere with the 

ability of transcription factors to bind to regulatory elements on chromosomes to activate 

transcription. For instance, p53-mediated transactivation of the CDKN1A gene was 

inhibited by direct Dnmt3a binding with p53 without changes in DNA methylation (18). 

Which proteins facilitate the recruitment of Dnmt3a to specific loci is difficult to predict, 

given that Dnmt3a can interact with at least 68 transcription factors (19). Overall, the 

methylation-independent activity of Dnmts is a lesser studied area and its prevalence 

and effects on physiological processes not fully known. 

DNA methylation and cancer.  

Due to its role in several critical biological processes, it is not surprising that 

aberrant DNA methylation is a hallmark of nearly all cancers. For decades the DNA 

methylation field has focused on the identification of tumor suppressors that become 

inactivated by promoter hypermethylation in tumors. The discovery that loci encoding 

tumor suppressors, p21 and p15, are both hypermethylated and silenced in human 

hematological malignancies (20, 21) led many to believe that all methyltransferases 

function as oncogenes. Since DNA methylation if reversible, removal of this 

hypermethylation could lead to the re-expression of tumor suppressor genes. These 

concepts lead to the creation of Dnmt inhibitors, such as 5-azacytidine and decitabine, 

which shows modest success in the treatment of myelodysplastic syndrome and acute 

myeloid leukemia (22). However, the use of such hypomethylating agents overlooks 

three important aspects: 1) the unique roles of individual Dnmts in the generation and 

maintenance of the cancer methylome, as methylation inhibitors are non-specific and 
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believed to inhibit all methyltransferases equally, 2) promoter hypomethylation and 

oncogene expression and 3) genomic instability induced by hypomethylation. Thus, 

further understanding of the role of individuals Dnmts in the generation and maintenance 

of the cancer epigenome, as well as the effect of inhibition of these enzymes is needed.  

While the DNA methylation field has focused mainly on the identification of 

hypermethylated tumor suppressors, little attention has been paid to the role of promoter 

hypomethylation and expression of oncogenic modifiers. Studies in solid tumors found 

that putative oncogenes WNT5A, S100P, and CRIP1 are demethylated and 

overexpressed in human prostate cancer (23). Others found that promoter 

hypomethylation of protease urokinase results in its overexpression, which is associated 

with tumor progression in breast and prostate cancers (24, 25).  

In addition to oncogene re-expression, DNA hypomethylation may also result in 

genomic instability and an increased susceptibility to spontaneous mutations, 

chromosomal breaks, and re-expression of normally silenced retroviral elements (26). 

Some suggest that as the genome increased in complexity and size the risk brought 

forth by unrestricted movable elements increased dramatically and that DNA methylation 

evolved as a way to protect the genome from the spread outside elements (27). Several 

reports in mice and humans support the idea that DNA methylation “protects” the 

genome. For instance, in vivo studies in mice carrying a hypomorphic allele of Dnmt1 

were found to develop T-cell lymphomas, likely due to hypomethylation and genomic 

instability that resulted in the generation of oncogenic Notch1 (28).  Studies in human 

prostate cancer found a significant correlation between alterations on chromosome 8 

and genome wide hypomethylation (29), while a similar study noted an association 

between hypomethylated Sat2 sequences and 1q copy gain with a 1q12 breakpoint in 

hepatocellular carcinoma (30). Together, these studies demonstrate the importance of 
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hypomethylation in tumorigenesis and highlight the need for additional studies 

investigating the potential tumor suppressor role of Dnmts.  

Hypomethylation in tumors may results from inactivation or reduction in the levels 

of Dnmts. To understand the role of Dnmts in tumorigenesis, numerous conditional Dnmt 

knockouts were created. For instance, Dnmt1chip/− mice which have drastically low levels 

of Dnmt1 develop T-cell lymphomas around 8 months of age, despite severely 

compromised T-cell development (31, 32). To gain deeper insight into the function of 

Dnmt1 in lymphoid malignancies, we genetically inactivated Dnmt1 in a mouse model of 

MYC-induced T-cell lymphomagenesis and found that Dnmt1 is critical for the prevention 

and maintenance of T-cell lymphomas (33). Using the same model, we demonstrated 

that loss of Dnmt3b accelerated tumorigenesis and lead to the hypomethylation and 

ovexpression of the oncogenic modifier Ment, suggesting that Dnmt3b functions as a 

tumor suppressor (13). The tumor suppressor activity for Dnmt3b is further supported in 

mouse models of B-cell malignancies, by us and others (34, 35). Work from our lab and 

others show that loss of Dnmt3a expression in hematopoietic stem cells is sufficient to 

induce a wide range of hematological malignancies in mice, including chronic 

lymphocytic leukemia, myelodysplastic syndrome, and T-cell lymphoma (34, 36, 37). 

Such results, coupled with the high mutation rates of DNMT3A in human hematological 

malignancies has led to profound interest into the tumor suppressor properties of 

Dnmt3a in malignant hematopoiesis.  

The role of Dnmt3a in hematological malignancies.  

Next generation sequencing of human tumors has identified DNMT3A as a 

mutational hotspot in human hematological malignancies. Mutations in the DNMT3A 

coding sequence have been reported in 22% of patients with acute myeloid leukemia 

(38), 8% of myelodysplastic syndrome (39), 7% of primary myelofibrosis (40), 7% of 
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chronic myelomonocytic leukemia (41) and 11% of T-cell lymphomas (42). Two studies 

have suggested that DNMT3A mutations occur very early in pre-leukemic cells and likely 

serve as an initiating mutation (43, 44). Importantly, pre-leukemic cells with DNMT3A 

mutations were found in the blood of patients in remission from AML, indicating they can 

survive chemotherapy treatment and upon acquisition of additional mutations may spur a 

relapse (43, 44). This idea is supported by the fact that Dnmt3a deficient hematopoietic 

stem cells (HSC) have an increased ability to cell renew and their expansion over time 

may lead to an increased ability to promote pre-leukemic cells (45). 

While mutations have been found throughout the DNMT3A loci, they largely 

cluster in the c-terminal catalytic domain. Mutations are almost always heterozygous, 

and not homozygous (46). Arginine 882 is a mutational hotspot, accounting for 58% of 

mutations in AML and 23% of mutations in T-call acute lymphoblastic leukemia (46). In 

vitro studies showed that the R882H mutation functions in a dominate-negative manner 

by inhibiting the wild-type proteins ability to form tetramers (47). In mice, overexpression 

on the R882H DNMT3A mutant in hematopoietic stem cells resulted in the development 

of chronic myelomonocytic leukemia within 12 months (48). In patients with AML, the 

R882 mutation is associated with global hypomethylation (49). This loss of methylation is 

most prominent at promoters, with loci encoding HOX genes being significantly affected 

(49). These studies suggest that mutations found in human tumors, in particular R882H, 

disrupt normal Dnmt3a function which result in epimutations that likely play a role in 

tumorigenesis.  Furthermore, understanding the functional consequence of these 

mutations may be of critical importance for the development of new therapies.  

Due to the significant mutation rate of DNMT3A in human hematological 

malignancies, our lab was interested in further elucidating the role of Dnmt3a in 

malignant hematopoiesis. To do so we utilized a conditional knock out model, in which 
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Dnmt3a is deleted in hematopoietic stem cells and all downstream lineages (34). 

Surprisingly, all Dnmt3a-deficient mice developed a disease similar to chronic 

lymphocytic leukemia (CLL) by one year of age. Next, we asked whether Dnmt3a 

haploinsufficiency can induce a CLL-like disease or other hematologic malignancies by 

observing Dnmt3a+/- mice. Likewise, long-term Dnmt3a decrease results in the 

development of a CLL-like disease in 65% of mice and myeloproliferative disease in 

15% of mice within 16 months. Whole-genome bisulfite sequencing (WGBS) revealed 

significant hypomethylation in tumors. Later studies performed by Mayle et al., and Celik 

et al., found that deletion of Dnmt3a in the hematopoietic compartment of mice resulted 

in the development of a wide-range of malignancies, including myelodysplastic 

syndrome, acute myeloid leukemia, primary myelofibrosis, and T- and B-cell acute 

lymphocytic leukemia. Altogether, these findings demonstrate that reduction in Dnmt3a 

levels has profound phenotypic consequence on both the cellular and molecular levels, 

and identify Dnmt3a as a tumor suppressor gene in the prevention of myeloid, B- and T-

cell transformation.    

The role of Dnmt1 in tumorigenesis.  

While DNMT3A is heavily mutated in human tumors, DNMT1 is mutated less 

frequently. DNMT1 is mutated in about 7% of cases of colorectal adenocarcinoma and 

1.6% of prostate cancer (50-53), while mutations in hematologic malignancies are very 

rare, with only one mutation found to date in AML (54). Studies in human T cell, B cell, 

and myeloid malignancies revealed an increase in the levels of DNMT1 in tumors, 

suggesting a possible role in tumor maintenance (55, 56). Functional studies in mice 

have provided profound insight in the roles of Dnmt1 in tumorigenesis. One study using 

a mouse model of colorectal cancer found that decreased levels of Dnmt1 in ApcMin/+  

mice resulted in an increased tumor incidence at early stages of colon cancer  (57).  
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Dnmt1 was also found to function as a tumor suppressor in a simian virus 40 (SV40)-

induced tumorigenesis model of prostate cancer (57, 58). In addition to its role in solid 

tumors, several reports suggested an important role for Dnmt1 in normal and malignant 

hematopoiesis. Using Dnmt1chip/- mice, near complete reduction in Dnmt1 levels in mice 

resulted in the development of CD4+CD8+ T cell lymphomas (31, 32). In an AML model 

driven by MLL-AF9 overexpression, a reduction in Dnmt1 delayed leukemogenesis and 

impaired leukemic stem cell self-renewal, indicating a key role for Dnmt1 in the 

maintenance and establishment of leukemia (59). To further elucidate the role of Dnmt1 

in malignant hematopoiesis, we deleted Dnmt1 in a mouse model of MYC-induced T-cell 

lymphomagenesis (MTCL). Reduction in Dnmt1 delayed lymphomagenesis by 

suppression of normal hematopoiesis and by impairing proliferation of tumor cells. 

Collectively, these studies illustrate a critical role for Dnmt1 in both tumor development 

and maintenance for solid and hematological malignancies.  

The role of Dnmt3b in tumorigenesis.  

Despite similarities in sequence homology and function, unlike DNMT3A, 

DNMT3B is very rarely mutated in human tumors. While not linked with tumorigenesis, 

germline mutations in DNMT3B are associated with the very rare immunodeficiency-

centromeric instability-facial anomalies (ICF) syndrome, which is characterized by global 

hypomethylation and chromosome instability (60). In addition, Shen et al., identified 

single-nucleotide polymorphisms (SNPs) in DNMT3B that were associated with 

increased risk of developing lung cancer (61).  

Despite the lack of observed mutation, there are several lines of evidence to 

suggest that alterations in the levels or activity of Dnmt3b plays a role in tumorigenesis. 

In mice, two separate studies using MYC-induced models of T- and B-cell lymphoma 

identified Dnmt3b as a tumor suppressor gene (13, 35). Likewise, we found that loss of 
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Dnmt3b accelerated the development of CLL in Dnmt3a-deficient mice (34). In fact, 

additional evidence exists suggesting that Dnmt3b may play a role in CLL pathogenesis. 

Down-regulation of DNTM3B in CLL was first noted almost a decade ago (62). 

Furthermore, analysis of available microarray data from 448 human CLL samples 

revealed that DNMT3A and DNMT3B are in the top 1% of the most frequently under-

expressed genes (63). Consistent with the down-regulation of Dnmts, whole-genome 

bisulfite sequencing of human CLL samples reveled massive hypomethylation of the 

genome, suggesting that loss of methylation may play a pivotal role in the pathogenesis 

of the disease (64). Furthermore, in the TCL1 transgenic mouse model of CLL, it was 

reported that Tcl1 binds Dnmt3a and Dnmt3b and inhibits their activity, resulting in 

hypomethylation even prior to leukemia onset, suggesting that inhibition of Dnmts is 

likely partially responsible for CLL pathogenesis in this model (65). Collectively, these 

findings suggest that suppression of Dnmt3b likely plays a critical role in the 

transformation of multiple hematopoietic lineages, including B cells. 

There is also evidence to suggest an oncogenic role for Dnmt3b. One study 

found that the overexpression of Dnmt3b was responsible for the hypermethylation 

phenotype observed in breast cancer cells (66). Likewise, Dnmt3b and Dnmt1 were 

found to cooperate to maintain DNA methylation and gene silencing in human cancer 

cells (67). Such hypermethylation may result in the inactivation of tumor suppressor 

genes, whose absence could contribute to disease pathogenesis.  

Hypothesis.  

Given that aberrant DNA methylation is hallmark of virtually all human tumors, 

and that alterations in the methylation landscape can have a direct effect on gene 

transcription and genomic stability, we sought to further elucidate the roles of individual 
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Dnmts in tumorigenesis. To accomplish this, several tumor studies using various Dnmt 

knockout mice were generated.  

In Chapter 1, to further elucidate the role of Dnmt1 in malignant hematopoiesis 

and to determine Dnmt1's contribution to aberrant DNA methylation in cancer, we used a 

conditional knockout approach to inactivate Dnmt1 in a mouse model of MYC-induced T-

cell lymphomagenesis with the hypothesis that loss of Dnmt1 will accelerate 

tumorigenesis in mice. Conversely, we show that loss of Dnmt1 delayed 

lymphomagenesis by suppression of normal hematopoiesis and by impairing 

proliferation of tumor cells, illustrating that Dnmt1 is required for maintenance of the 

tumor phenotype (33). 

 In Chapter 2, to understand the role of Dnmt3a in lymphomagenesis, we again 

use the MYC-induced T-cell lymphoma model in conjunction with a Dnmt3a- allele. We 

hypothesized that Dnmt3a will function as a tumor suppressor in this model, given the 

broad range of human malignancies that harbor DNMT3A mutations. Surprisingly, loss 

of Dnmt3a extends the survival of mice due to a decrease in cellular proliferation and the 

upregulation of a subset of tumor suppressor genes likely regulated by Dnmt3a’s 

methylation independent repressor function (12).   

In Chapters 3 and 4, we use a conditional Dnmt3a knockout (in the absence of 

MYC), and conventional Dnmt3a-heterozygous mice to examine the role of Dnmt3a in 

normal and malignant hematopoiesis. We hypothesized that loss or decrease in Dnmt3a 

levels would have profound effect on long-term hematopoiesis, resulting in the 

development of hematological malignancies similar to those observed in humans with 

DNMT3A mutations. Interestingly, we found that Dnmt3a is a haploinsufficient tumor 

suppressor in the prevention of chronic lymphocytic leukemia and myeloproliferative 

disorder. 
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CHAPTER 1: Essential Role for Dnmt1 in the Prevention and 
Maintenance of MYC-Induced T-Cell Lymphomas1 

 

Introduction 

Cytosine methylation is an epigenetic mark that is abundant throughout 

intragenic and intergenic regions within the mammalian genome. The methylation of 

gene promoters has been associated with gene repression, while the methylation of 

gene bodies may promote proper transcription (68, 69). Due to its genome-wide 

distribution and effects on transcriptional regulation, DNA methylation plays a critical role 

in a wide range of physiological processes, including silencing of endogenous retroviral 

elements, X-chromosome inactivation, imprinting, proliferation, differentiation, and 

apoptosis (70, 71). The disruption of normal methylation patterns contributes to the 

pathogenesis of a variety of human diseases such as neurodegenerative, 

developmental, and autoimmune disorders (72, 73). In particular, global deregulation of 

cytosine methylation is apparent in cancer, where genome-wide hypomethylation is 

suggested to promote tumorigenesis by invoking genomic instability and upregulating 

oncogenes, whereas aberrant promoter hypermethylation supports tumorigenesis by 

silencing tumor suppressor genes (15).  

Whereas the association of deregulated methylation with cancer is well 

established, the individual roles of the enzymes catalyzing DNA methylation, DNA 

methyltransferases (Dnmts), in the pathogenesis of human cancer are unclear. Three 

catalytically active Dnmts (Dnmt1, Dnmt3a, and Dnmt3b) are responsible for the 

                                                           
1 The material presented in this chapter were previously published: Peters SL, Hlady RA, 

Opavska J, Klinkebiel D, Novakova S, Smith LM, et al. Essential role for Dnmt1 in the prevention 
and maintenance of MYC-induced T-cell lymphomas. Molecular and cellular biology. 
2013;33(21):4321-33. 
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generation and maintenance of methylation patterns in the mammalian genome. While 

Dnmt3a and Dnmt3b are associated with de novo methylation because of their 

involvement in the establishment of normal methylation patterns (5, 74), Dnmt1 is  

essential for maintenance of the methylation landscape due to its ability to 

recognize hemimethylated DNA and conserve methylation during somatic cellular 

division (75). However, the discrete roles of Dnmts in the formation and maintenance of 

the methylation landscape are more complex. Several studies have suggested that 

Dnmt1 may function as a de novo enzyme. For example, overexpression of Dnmt1 

induced locus-specific de novo methylation in human fibroblasts that was associated 

with specific sequence motifs (9, 10). Additionally, knockout of Dnmt1 in embryonic stem 

cells suggests de novo activity for Dnmt1 at repeat elements and single-copy genes 

(11). Although the main function of Dnmt1 appears to be related to cytosine methylation, 

Dnmt1 also interacts with a large number of repressor proteins, such as histone 

deacetylases and DNA methyltransferase-associated protein 1 (DMAP1), to inhibit 

transcription in a methylation-independent manner (76-78).  

Recent studies have identified somatic mutations in DNMT1 in cancer; however, 

they are infrequent. DNMT1 is mutated in about 7% of cases of colorectal 

adenocarcinoma and 1.6% of prostate cancer as well as a small subset of cases of 

acute myeloid leukemia (AML) (50-53). Furthermore, increased DNMT1 expression is 

observed in subsets of human T-cell, B-cell, and myeloid malignancies, suggesting that 

DNMT1 may be important for tumor maintenance (55, 56). Functional studies in mice 

have shown that decreased levels of Dnmt1 resulted in an increased tumor incidence at 

early stages of colon cancer in ApcMin/+ mice and simian virus 40 (SV40)-induced 

tumorigenesis in the prostate, suggesting a tumor suppressor function for Dnmt1 in 

these models (57, 58). Mutations in hematologic malignancies are very rare, with only 
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one mutation found to date in AML (54). Studies in mice suggested an important role for 

Dnmt1 in myeloid malignant hematopoiesis. In an AML model driven by MLL-AF9 

overexpression, a reduction in Dnmt1 delayed leukemogenesis and impaired leukemic 

stem cell self-renewal, indicating a key role for Dnmt1 in the maintenance and 

establishment of leukemia (59). In contrast, a severe reduction in levels of Dnmt1 clearly 

promotes transformation of T cells. A combination of a hypomorphic Dnmt1chip allele 

(expressing only 10% of Dnmt1 levels relative to the wild-type allele) with a conventional 

Dnmt1 knockout allele in Dnmt1chip/− mice resulted in the development of T-cell 

lymphomas (TCLs) by 8 months of age, despite severely impaired T-cell development 

(31, 32). To further elucidate the role of Dnmt1 in malignant hematopoiesis and to 

determine Dnmt1's contribution to aberrant DNA methylation in cancer, we used a 

conditional knockout approach to inactivate Dnmt1 in a mouse model of MYC-induced T-

cell lymphomagenesis. Here we show that loss of Dnmt1 delayed lymphomagenesis by 

suppression of normal hematopoiesis and by impairing proliferation of tumor cells. 

Global approaches identified 730 gene promoters differentially methylated in normal 

thymocytes, MYC-induced T-cell lymphomas (MTCLs), and MTCLs deficient for Dnmt1, 

suggesting that Dnmt1 contributes to the cancer methylome by both de novo and 

maintenance activity. Thus, our studies not only provide a biological mechanism 

explaining delayed lymphomagenesis in the absence of Dnmt1 but also identify Dnmt1 

target genes for the first time in the relevant in vivo setting. 

Methods 

Mouse studies: EμSRα-tTA; Teto-MYC and Dnmt12lox mice were acquired from 

D. W. Felsher (Stanford University, Stanford, CA) and R. Jaenisch (Whitehead Institute, 

Cambridge, MA), respectively. ROSA26EGFP mice (79) and Teto-Cre mice (80) were 

obtained from The Jackson Laboratory. All mice were back-bred for five generations into 
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the FVB/NJ background. Standard genetic crosses were performed to generate the 

appropriate transgenic mice for these experiments, and the results were confirmed by 

PCR-based genotyping. Genomic DNA for genotyping was obtained from mouse tails. 

Tumor-bearing mice were carefully monitored for their overall health and harvested 

when they became terminally ill.  

Mice used for tumor studies were EμSRα-tTA; Teto-MYC; Teto-Cre; 

Rosa26LOXPEGFP/EGFP; Dnmt1flox/flox and EμSRα-tTA; Teto-MYC; Rosa26LOXPEGFP/EGFP; 

Dnmt1flox/flox mice (referred to as MYC; Dnmt1−/− and MYC; Dnmt1flox/flox mice, 

respectively). Further studies were performed utilizing EμSRα-tTA; Teto-MYC; Teto-Cre; 

ROSA26EGFP/EGFP; Dnmt1+/+, EμSRα-tTA; Teto-MYC; Teto-Cre; ROSA26EGFP/EGFP; 

Dnmt3aflox/flox, and EμSRα-tTA; Teto-MYC; Teto-Cre; ROSA26EGFP/EGFP; Dnmt3bflox/flox 

mice (referred to as MYC; Dnmt1+/+, MYC; Dnmt3a−/−, and MYC; Dnmt3b−/− mice, 

respectively).  

Fluorescence-activated cell sorter (FACS) analysis, proliferation, and 

apoptosis: Single-cell suspensions from in vitro cultures or from the thymus, spleen, 

lymph node, and bone marrow were prepared and stained with the appropriate 

antibodies. For bromodeoxyuridine (BrdU) incorporation assays, cells were incubated 

with BrdU and labeled using allophycocyanin (APC)-conjugated anti-BrdU (BrdU-Flow 

kit; BD Biosciences) according to the manufacturer's instructions and analyzed using BD 

FACSDiva analysis software after processing samples on the FACSCalibur II flow 

cytometer. Similarly, tumor cells were stained with annexin V-APC (eBioscience) 

antibody and events were acquired on the FACSCalibur II flow cytometer. Cell cycle 

analysis was performed utilizing Vybrant DyeCycle Orange stain (Invitrogen) according 

to standard protocols and acquired on the LSR II cytometer. Thymi, spleens, lymph 

nodes, and bone marrow from developmental and tumor studies were stained with the 
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following antibodies to analyze cell surface marker expression: CD4, CD8, CD11b, 

B220, CD3, TER119, Sca-1, c-kit, CD19, gamma-delta T-cell receptor (TCRγδ), and 

TCRβ conjugated to phycoerythrin (PE), PE-Cy5, or APC. All antibodies were obtained 

from eBioscience. Populations of Lin− Sca-1+ c-kit+ (LSK; negative for lineage markers 

CD4, CD8, CD11b, CD19, TER119, CD3, gamma-delta T-cell receptor [TCRγδ], and 

TCRβ and positive for Sca-1 and c-kit) cells were distinguished by gating against lineage 

markers (CD4, CD8, CD11b, B220, CD3, and TER119) and subsequent gating for Sca-

1+ c-kit+ cells. Sorting of enhanced green fluorescent protein (EGFP)-positive CD4− 

CD8−, CD4+ CD8+, CD4+, and CD8+ thymocytes was performed on the FACSAria cell 

sorter.  

MSCC and data analysis: Methyl sensitive cut counting was performed using 

methods developed by Ball et al. (81). This technique uses the methyl-sensitive 

restriction endonucleases HpaII and HpyCh4IV to cut genomic DNA at all unmethylated 

CCGG and ACGT sites, respectively. Libraries were generated by digesting 2 μg of 

gDNA with 20 U of the restriction enzymes. Next, an adapter containing an Mme1 

recognition site was ligated to the fragmented DNA. Libraries were digested with Mmel 

enzyme, which cuts 18 bp downstream of its recognition site. The fragments were then 

ligated to a second adapter to allow PCR amplification, gel purified, and sequenced 

using a high-throughput sequencer. The resulting 18-bp sequence tags were aligned 

with the mouse genome (mm9) using the short read sequence aligner Bowtie (82).  The 

method results in output of sequencing tags, in which a high nuber of reads (termed 

counts) correlates with low methylation and vice versa. Count data was batch analyzed 

by edgeR (a bioconductor package for R programming language), which uses Bayesian 

estimation and exact tests based on the negative binomial distribution to generate 

pairwise comparisons between groups (83). False discovery rates (FDR) were 
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generated using the Benjamini Hochberg method (FDR < 0.05 was considered 

significant).  

The data in the methylation heat maps (see Figure 5C and D and Figure 6C) 

represent averages for raw counts of all statistically significant changes of 2-fold or 

greater within individual promoters between MYC; Dnmt1flox/flox and MYC; Dnmt1−/− mice. 

The promoter is defined as at bp −1500 to +350 relative to the transcription start site. All 

genes considered to be hypomethylated or hypermethylated included two or more 

independent HpaII/HpyCh4IV sites that showed changes of 2-fold or greater with a false 

discovery rate (FDR) of less than 0.05.  

Tissue culture: Mouse MYC; Dnmt1flox/flox cells were maintained in RPMI 1640 

(Invitrogen) containing 10% fetal bovine serum (Invitrogen) and 0.025 mM 2-

mercaptoethanol. Cell lines were cultured at 37°C in a humidified 5% CO2 atmosphere. 

Cre-mediated deletion of Dnmt1 was achieved using an established MYC; Dnmt1flox/flox 

cell line infected with murine stem cell virus (MSCV)-internal ribosome entry site (IRES)-

puro-CreERT2 (Addgene plasmid 22776 [35]). Retroviral infections were done as 

described previously (13). Cre-mediated excision of Dnmt1 was induced by addition of 4-

hydroxytamoxifen (4-OHT; Sigma-Aldrich) at a concentration of 150 nM. DNA for PCR-

based determinations of Dnmt1 deletion efficiency was prepared from cells harvested 

after 24 and 72 h. For the colony PCR genotyping analysis, cells from two primary MYC; 

Dnmt1−/− lymphomas were plated into 48-well culture plates in RPMI medium with 10% 

fetal calf serum (FCS) at dilutions of one cell or fewer per well and cultured for several 

weeks. DNA was extracted from individual cones and subjected to genotyping.  

Total methylcytosine: Measurement of 5-methyl-2′-deoxycytidine levels was 

performed at the University at Buffalo Pharmaceutical Sciences Instrumentation Facility, 

as described previously (84).  
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Affymetrix microarray analyses: RNA was isolated using Trizol and RNAeasy 

kit (Invitrogen and Qiagen, respetively). A total of 200 ng of RNA was reverse 

transcribed using the Ambion WT Expression Kit (Ambion). The cRNA was then 

hybridized to the Affymetrix GeneChip Mouse Gene 1.0 ST Array and chips were 

scanned using a GeneChip 3,000 6G scanner by the UNMC DNA Microarray Core 

Facility. GCOS software was used to scale dataset and assess quality assurance 

parameters such as background, hybridization kinetics, and reverse transcription 

efficiency. Intensities were imported into Partek Genomics Suite software using Robust 

Multi-chip Averaging (RMA) background correction and quantile normalization on a 

linear scale. Regularized t test analysis of control versus treatment comparisons was 

performed using a Bayesian approach to estimate the within-treatment variation among 

replicates using Cyber-T software (85). This principle uses the weighted average of local 

standard deviations for genes with similar expression levels, resulting in a stabilized 

within-treatment variance estimate. 

Heat maps were generated using the average levels of expression of three MYC; 

Dnmt1flox/flox tumors as a reference. Ingenuity pathway analysis (IPA) (Ingenuity Systems) 

core analysis was used to interrogate microarray data based upon their functions and 

association with canonical pathways. Significant gene expression changes (FDR < 0.05) 

between MYC; Dnmt1flox/flox and MYC; Dnmt1−/− mice were imported into IPA with a 

threshold of 1.75-fold change.  

Statistics: The survival data in Figure 1B were analyzed using the Kaplan-Meier 

method for overall survival and the log-rank test for survival distributions. Continuous 

variables were compared using 2-sample Student's t tests, with error bars representing 1 

standard error of the mean. Bisulfite sequencing data were analyzed using paired t tests. 

P values and FDR of less than 0.05 were considered statistically significant.  
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Western blot analysis: The following antibodies were used for Western blot 

analysis: Dnmt3b (52A1018; Imgenex), Dnmt1 (H-300; Santa Cruz), Dnmt3a (H-295; 

Santa Cruz), and γ-tubulin (H-183; Santa Cruz). For Western blotting, protein lysates 

were separated in SDS acrylamide gels and blotted into Immobilon P membranes 

(Millipore). Blots were incubated in blocking buffer (5% skim milk) at a concentration of 1 

mg/mL. The primary  

antibody was then detected using horseradish-peroxidase-conjugated secondary  

antibodies and the ECL reagent as described by the manufacturer (Pierce). 

Quantitative qRT-PCR: cDNA was prepared from RNA using Bio-Rad iScript 

according to the manufacturer's protocol. cDNA was combined with SYBR green 

Supermix (Bio-Rad) with a final volume of 20 μl, and experiments were done in 

duplicate. Reaction conditions were optimized by the use of standard curves for each 

primer pair. Thermocycling was performed using a CFX96 system (Bio-Rad). Threshold 

cycle (CT) values were normalized based upon the expression of ubiquitin.   

Primer sequences: The primer sequences used in these experiments are listed 

below. For determinations of Dnmt1 deletion efficiency, GGGCCAGTTGTGTGACTTGG, 

ATGCATAGGAACAGATGTGTGC, and CTTGGGCCTGGATCTTGGGGA were used. 

For Akt3 quantitative real-time RT-PCR (qRT-PCR), CATCTGAAACAGACACCCGATA 

and GTTGTCCATGCCGTCCAT were used. For Nrbf2 qRT-PCR, 

TCTCTGAAGCCATGAAGCTG and GTGCTCTGCTGCGCTTTC were used. For 

Rasgef1a qRT-PCR, AGGACAGCTGGAAGGCACT and ATCTGTCGCAATGTCACCAA 

were used. For Upb1 qRT-PCR, TCTCTGCCAGCAGATCAATG and 

TAGTTGGGTTTGACCGCTTC were used. For H2-Ab1 combined bisulfite restriction 

analysis (COBRA) and bisulfite sequencing, TGGTTTTTTATTTGGGATTAATTTT and 

TAAACCCTACTATCTCCCCATACAC were used. For Abhd14a COBRA, 
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GTTAAGTTTGGTTATTAGGGAAGAA and ATAAATCTTTTACACCCTTCCTAAC were 

used.  

Bisulfite sequencing and COBRA: Sodium bisulfite treatment of genomic DNA 

was carried out utilizing an EpiTect bisulfite kit (Qiagen). Primers for bisulfite PCR for 

both COBRA and bisulfite sequencing were designed through the use of MethPrimer 

(86). For COBRA, bisulfite PCR products were digested with TaqI (NEB). The resulting 

fragments were then loaded onto an 8% PAGE gel, separated by electrophoresis, and 

detected with SYBR green Gold (Invitrogen). Bisulfite PCR fragments were also 

processed for bisulfite sequencing by cloning into pGem-T Easy vector (Promega). DNA 

was purified from clones and sequenced at the University of Nebraska Medical Center 

High-throughput DNA Sequencing and Genotyping Core Facility.  

Results 

Loss of Dnmt1 delays MYC-induced T-cell lymphomagenesis. 

In this study, we utilized the genetic setting outlined in Figure 1A and described 

previously (13). Briefly, the EμSRα promoter is active in ∼40% of all hematopoietic 

lineages, including stem cells, and drives the expression of the tetracycline 

transcriptional transactivator (tTA). Expression of tTA drives simultaneous expression of 

the MYC oncogene and Cre recombinase from the Teto promoter. Activation of Cre 

results in the excision of the “stop cassette” located upstream of the Rosa26LOXPEGFP 

locus, leading to the synthesis of EGFP. Thus, EGFP allows monitoring of tTA/Cre-

expressing cells by flow cytometry (fluorescence-activated cell sorter [FACS]) analysis. 

Importantly, Cre expression also results in the excision of the conditional knockout allele 

of Dnmt1 (referred to herein as Dnmt1flox).  

http://mcb.asm.org/content/33/21/4321.long#F1
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To assess the effects of Dnmt1 loss on MYC-induced lymphomagenesis, we 

compared levels of tumor development in cohorts of EμSRα-tTA; Teto-MYC; Teto-Cre; 

Rosa26LOXPEGFP/EGFP; Dnmt1flox/flox and EμSRα-tTA; Teto-MYC; Rosa26LOXPEGFP/EGFP; 

Dnmt1flox/flox mice (designated MYC; Dnmt1−/− and MYC; Dnmt1flox/flox mice, respectively). 

As shown in Figure 1B, lymphomagenesis was significantly delayed in the cohort of 

MYC; Dnmt1−/− mice relative to MYC; Dnmt1flox/flox mice (median survival, 166 and 90 

days, respectively). Analysis of DNA and protein revealed that tumors arising in MYC; 

Dnmt1−/− mice retained ∼50% of Dnmt1 levels (Figure 1C and D). Furthermore, analysis 

of individual clones grown in vitro from single cells isolated from MYC; Dnmt1−/− tumors 

revealed that a vast majority of cells had the Dnmt1flox/− genotype, suggesting that 

primary tumors mainly consisted of cells heterozygous for the Dnmt1 knockout allele 

(Figure 1E). Taken together, these data suggest that Dnmt1 is required for the survival 

of tumor cells.  

Reduced Dnmt1 levels did not affect the levels of Dnmt3a and Dnmt3b, 

suggesting that these enzymes are unlikely to exert compensatory effects on the 

process of lymphomagenesis (Figure 1F). FACS analysis confirmed similar 

immunophenotypes of lymphomas developed in MYC; Dnmt1−/− and MYC; Dnmt1flox/flox 

mice. Specifically, MTCLs from both genetic groups consisted of cells that were either 

CD4+ CD8+ CD44+ CD25− or CD4+ CD8− CD44+ CD25−, suggesting that loss of Dnmt1 

does not affect the immunophenotype of the tumors (Figure 1G and H). We previously 

observed no measurable effects of Cre and EGFP expression on the process of 

lymphomagenesis in this model (13, 87). In addition, loss of Dnmt1 had no measurable 

effects on MYC expression (data not shown). Therefore, these results suggest that 

differences in survival between cohorts of MYC; Dnmt1−/− and MYC; Dnmt1flox/flox mice 

http://mcb.asm.org/content/33/21/4321.long#F1
http://mcb.asm.org/content/33/21/4321.long#F1
http://mcb.asm.org/content/33/21/4321.long#F1
http://mcb.asm.org/content/33/21/4321.long#F1
http://mcb.asm.org/content/33/21/4321.long#F1
http://mcb.asm.org/content/33/21/4321.long#F1
http://mcb.asm.org/content/33/21/4321.long#F1
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can be attributed to the loss of Dnmt1 and that this loss does not result in an altered 

immunophenotype(s) in this mouse model.   

 

Figure 1. Loss of Dnmt1 delays MYC-induced T-cell lymphomagenesis. (A) Transgene 

schematic depicting genetic setting used in these studies. tTA is expressed in ∼40% of cells 

and drives expression at the Teto promoter, resulting in transcription of the MYC oncogene 

and activating Cre-lox recombination to conditionally delete Dnmt1 and activate EGFP 

expression. (B) Kaplan-Meier survival curves MYC; Dnmt1flox/flox (F/F) and MYC; Dnmt1flox/flox 

(−/−) mice. Median survival rates (MS), numbers of mice (n), and P values (log-rank test) are 

shown. (C) PCR-based analysis of deletion efficiency of the Dnmt1 conditional knockout allele 

in MYC; Dnmt1−/− tumors. F and KO indicate DNA fragments derived from the floxed and 

knockout alleles, respectively. Dnmt1flox/flox and Dnmt1flox/− genomic DNAs served as controls. 

NC indicates negative control (no DNA). (D) Immunoblot analysis of Dnmt1 expression in 

normal thymocytes (Th) and in MYC; Dnmt1flox/flox and MYC; Dnmt1−/− lymphomas. γ-Tubulin 

served as a loading control. (E) PCR-based analysis of deletion efficiency of the Dnmt1 

conditional knockout allele in cellular clones from MYC; Dnmt1−/− tumors. The top and bottom 

panels represent two tumors with 10 clones each. F and KO indicate floxed and knockout 

alleles, respectively. Dnmt1flox/flox and Dnmt1flox/− genomic DNAs served as controls. NC 

indicates negative control (no DNA).  
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Figure 1 cont. Loss of Dnmt1 delays MYC-induced T-cell lymphomagenesis. (F) 

Immunoblot analysis of Dnmt3a and Dnmt3b expression in normal thymocytes (Th) and in 

MYC; Dnmt1flox/flox and MYC; Dnmt1−/− lymphomas. (G) Representative examples of FACS 

analysis from immunophenotyping of MYC; Dnmt1−/− tumors using anti-CD4 and anti-CD8 

antibodies. Examples of CD4 single-positive and CD4/CD8 double-positive tumors are 

shown. (H) Summary of immunophenotypes for CD4 single-positive and CD4/CD8 double-

positive tumors as determined by FACS analysis using CD4 and CD8 expression in MYC; 

Dnmt1flox/flox and MYC; Dnmt1−/− lymphomas. 
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Dnmt1 is required for cellular proliferation and maintenance of tumor phenotypes 
in MTCLs. 

To examine the underlying cellular basis for the extended survival of MYC; 

Dnmt1−/− mice, we measured annexin V expression and bromodeoxyuridine (BrdU) 

incorporation in cell lines established from lymphomas of terminally sick MYC; Dnmt1−/− 

and MYC; Dnmt1flox/flox mice. Flow cytometry quantification of annexin V revealed similar 

expression levels for MYC; Dnmt1flox/flox and MYC; Dnmt1−/− mice. However, a modest 

but statistically significant reduction in BrdU incorporation was observed in cells from 

MYC; Dnmt1−/− lymphomas (Figure 2A and B). These data suggest that defective tumor 

cell proliferation may, in part, be responsible for the delayed tumorigenesis seen in MYC; 

Dnmt1−/− mice.  

To determine whether Dnmt1 is required for maintenance of the tumor 

phenotype, we generated two inducible MYC; Dnmt1flox/flox; Cre-ER cell lines, in which 

Cre-mediated excision of the Dnmt1 conditional allele is achieved by the addition of 4-

hydroxytamoxifen (4-OHT) to cell cultures. Importantly, while the cellular viability of two 

MYC; Dnmt1+/+; Cre-ER control cell lines treated with 4-OHT was not affected (data not 

shown), loss of Dnmt1 resulted in death of MYC; Dnmt1flox/flox lymphoma cells within 72 h 

(Figure 2C). As shown in Figure 2D, activation of Cre-ER in vitro yielded efficient 

deletion of the Dnmt1 conditional allele at as early as 24 h and remained high at 72 h. 

Collectively, these data support the idea of a requirement for Dnmt1 in the maintenance 

of the tumor phenotype in vitro.  

 

 

 

http://mcb.asm.org/content/33/21/4321.long#F2
http://mcb.asm.org/content/33/21/4321.long#F2
http://mcb.asm.org/content/33/21/4321.long#F2
http://mcb.asm.org/content/33/21/4321.long#F2
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Figure 2. Loss of Dnmt1 results in decreased proliferation and is critical for tumor cell 

survival. (A and B) Analysis of apoptosis by annexin V staining (A) and BrdU incorporation 

assay (B) of four independent T-cell lines derived from MYC; Dnmt1flox/flox and MYC; Dnmt1−/− 

primary MYC-induced lymphomas. Representative FACS diagrams are shown with average 

percentages and standard deviations in the upper right quadrant (P < 0.05 (Student's t test). 

Quantification of obtained results for each assay is shown as an average value with error bars 

representing standard errors of the means (SEM). Statistically significant differences are 

indicated by an asterisk. (C) A representative example of cell cycle analysis of a MYC; 

Dnmt1flox/flox cell line expressing Cre-ER without 4-hydroxytamoxifen (4-OHT) and after 24, 48, 

and 72 h of incubation with 4-OHT. The cell cycle was measured by Invitrogen Vybrant 

DyeCycle Orange stain. The percentage of dead cells (blue) is indicated on FACS diagrams. 

(D) PCR-based analysis of deletion efficiency of the Dnmt1 conditional KO allele in MYC; 

Dnmt1flox/flox cell lines infected with Cre-ER and treated with 4-OHT at 24 and 72 h. F and KO 

indicate DNA fragments derived from the floxed and knockout alleles, respectively. 
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Loss of Dnmt1 impairs T-cell development. 

The presence of the Rosa26LOXPEGFP reporter transgene in MYC; Dnmt1−/− mice 

allows evaluation of biological and molecular events occurring in hematopoietic cells by 

FACS. To further investigate the processes responsible for delayed lymphomagenesis, 

we evaluated T-cell development in MYC; Dnmt1−/− mice by measuring levels of EGFP in 

thymi. Both percentages and numbers of EGFP-positive cells were decreased ∼20-fold 

in MYC; Dnmt1−/− mice relative to thymi isolated from control EμSRα-tTA; Teto-MYC; 

Teto-Cre; Rosa26LOXPEGFP/EGFP; Dnmt1+/+ mice (designated MYC; Dnmt1+/+ mice) 

(Figure 3A and B). PCR-based genotyping revealed low levels of deletion efficiency of 

the conditional Dnmt1 allele in the thymi of MYC; Dnmt1−/− mice, whereas EGFP-positive 

thymocytes sorted by FACS analysis retained ∼50% of the conditional Dnmt1 allele 

(Figure 3C). A marked decrease in cell numbers was evident at all stages of T-cell 

development in EGFP-positive MYC; Dnmt1−/− thymi, including DN1 to -4, CD4− CD8−, 

CD4+ CD8+, CD4+, and CD8+ cells (Figure 3D to F). Dnmt1 was particularly important for 

the transition from CD4− CD8− double-negative (DN1 to -4) cells to the CD4+ CD8+ 

double-positive (DP) stage during differentiation, since CD4+ CD8+ cells showed the 

highest fold reduction (Figure 3G). Consistently, the number of T cells in spleen and 

lymph nodes was substantially reduced (Figure 3G). PCR-based genotyping of sorted 

EGFP+ DN, DP, CD4+, and CD8+ MYC; Dnmt1−/− cells showed the lowest level of Dnmt1 

knockout efficiency in the DN population, with progressive increases in DP, CD4, and 

CD8 cells (Figure 3H), suggesting that the requirement of Dnmt1 for cellular survival 

during normal thymocyte  

development is highest in the least-differentiated DN cells but becomes less stringent in 

the more-differentiated stages. This is consistent with the CD4+ CD8+ immunophenotype 

and deletion efficiency of Dnmt1 observed in the majority of MYC; Dnmt1−/− lymphomas 

http://mcb.asm.org/content/33/21/4321.long#F3
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(Figure 1C and H). Altogether, these results suggest that T cells lacking Dnmt1 are 

selected against during T-cell development and that an efficient transition from the DN 

stage to the DP stage of thymocyte differentiation requires Dnmt1.  

http://mcb.asm.org/content/33/21/4321.long#F1
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Figure 3. Loss of Dnmt1 impairs T-cell development. (A) Representative FACS profiles with 

total percentages of EGFP expression. (B) Total numbers of EGFP+cells isolated from thymi of 24-

day-old MYC;Dnmt1+/+ and MYC;Dnmt1−/− mice. (C) PCR-based analysis of deletion efficiency of 

the Dnmt1 conditional KO allele in unsorted (U) and EGFP-positive sorted (S) cells isolated from 

thymi of MYC; Dnmt1−/− mice (n = 2). F and KO indicate DNA fragments derived from the floxed 

and knockout alleles, respectively. (D) CD4 and CD8 expression in EGFP+ and EGFP- cells from 

thymi of 24-day-old MYC; Dnmt1−/− mice. (E) The total number of EGFP+ T-cell populations within 

the thymus of MYC; Dnmt1+/+ and MYC; Dnmt1−/− mice. Double-negative (DN), CD4/CD8 double-

positive (DP), CD4 single-positive (CD4), and CD8 single-positive (CD8) cell results are shown. (F) 

Further analysis of thymocyte development within the CD4/CD8 double-negative population (DN1 

to DN4) by FACS in MYC; Dnmt1+/+ and MYC; Dnmt1−/− thymi. (G) The left bar graph shows the 

fold reduction of EGFP+ double-negative (DN1 to -4), CD4/CD8 double-positive (DP), CD4 single-

positive, and CD8 single-positive cells in the thymi of 24-day-old MYC; Dnmt1−/− mice relative to 

EGFP-positive MYC; Dnmt1+/+ cells. The right bar graph depicts fold reduction of EGFP+ CD4 and 

CD8 single-positive cells in the spleen and lymph node (LN) relative to EGFP+ MYC; Dnmt1+/+ 

cells. Error bars represent SEM; (*) denotes P < 0.05 (Student's t test). n represents the number of 

biological replicates. (H) PCR-based analysis of deletion efficiency of the Dnmt1 conditional KO 

allele in FACS-sorted DN, DP, CD4, and CD8 single-positive  EGFP-positive thymic cells from 24-

day-old MYC; Dnmt1−/− mice. F and KO indicate DNA fragments derived from the floxed and 

knockout alleles, respectively. Dnmt1flox/flox and Dnmt1flox/− genomic DNA served as controls. 
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Ablation of Dnmt1 alters hematopoietic development. 

We next investigated whether loss of Dnmt1 negatively impacted development of 

other hematopoietic lineages. Indeed, cell surface marker expression revealed 

decreased levels of EGFP-positive B -cells and myeloid cells in the spleen, lymph node, 

and bone marrow in MYC; Dnmt1−/− mice (Figure 4A and B). Interestingly, the fold 

reduction of B220+ cells was substantially greater than that of CD11b+ cells in all three 

tissues, indicating that the lymphoid lineage may be more sensitive to reductions in the 

Dnmt1 level. This finding is consistent with previous work in which Dnmt1 was found to 

be essential for normal B-cell differentiation but not myeloid differentiation (27). DNA 

isolated from the bone marrow and spleen showed low efficiency of Dnmt1 knockout 

(Figure 4C), further supporting the idea that Dnmt1 is required for normal hematopoiesis. 

The Eμ-tTA transgene that activates Cre-mediated excision of the conditional 

Dnmt1 allele is expressed in hematopoietic stem cells and early hematopoietic 

progenitor cells (HSC/HPCs), which are defined by a Lin− Sca-1+ c-kit+ marker profile 

(LSK; cells negative for lineage markers CD4, CD8, CD11b, CD19, TER119, CD3, 

gamma-delta T-cell receptor [TCRγδ], and TCRβ and positive for Sca-1 and c-kit). Thus, 

the substantial decrease in EGFP-positive cells in hematopoietic organs of MYC; 

Dnmt1−/− mice could be caused by an essential role of Dnmt1 in either the differentiation 

or the maintenance of HSC/HPCs. To assess this, we analyzed LSK populations in the 

bone marrow. Numbers of EGFP-positive LSK cells in MYC; Dnmt1−/− mice were 

significantly lower than of those isolated from MYC; Dnmt1+/+ mice (Figure 4D and E). 

The relative absence of EGFP-positive MYC; Dnmt1−/− LSK cells indicated these cells 

have a competitive disadvantage in comparison to their EGFP-negative counterparts 

with respect to maintenance of their physiological levels in the bone marrow and during 

http://mcb.asm.org/content/33/21/4321.long#F4
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differentiation into hematopoietic lineages, likely due to the critical role of Dnmt1 in these 

processes.  

 

 

 

 

 

Figure 4. Impaired hematopoiesis in MYC; Dnmt1−/− mice. (A) The total numbers of EGFP-

positive cells within the spleen, lymph node (LN), and bone marrow (BM) of MYC; Dnmt1+/+ 

and MYC; Dnmt1−/− mice. (B) Fold reductions in total numbers of EGFP-positive B-lymphoid 

(B220) and myeloid (CD11b) cells relative to EGFP-negative B-lymphoid and myeloid cells in 

spleens, lymph nodes, and bone marrow of 24-day-old MYC; Dnmt1−/− mice. (C) PCR-based 

analysis of deletion efficiency of the Dnmt1F allele in total DNA isolated from bone marrow 

(BM) and spleen (SP) of 24-day-old MYC; Dnmt1−/− mice. Dnmt1flox/flox and Dnmt1flox/− 

genomic DNA controls as well as a negative control (NC) are shown. F and KO indicate DNA 

fragments derived from the floxed and knockout alleles, respectively. (D) FACS analysis of c-

kit and Sca-1 expression in lineage-negative (Lin−) EGFP-negative and Lin− EGFP-positive 

cells (LSK cells: Lin− Sca1+ c-kit+) in the bone marrow of MYC; Dnmt1−/− mice. Average 

percentages of LSK cells are indicated in the FACS diagrams. (E) The total numbers of LSK 

cells in EGFP-positive populations in bone marrow of MYC; Dnmtflox/flox and MYC; Dnmt1−/− 

mice. Error bars represent SEM; P < 0.05 (Student's t test). Statistically significant differences 

are indicated by an asterisk. The number of samples is indicated by n. 
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Reduction of Dnmt1 in MTCLs leads to altered locus-specific methylation. 

To investigate how decreased levels of Dnmt1 affect DNA methylation in tumors, 

we first analyzed the content of 5-methyl-2′-deoxycytosine in DNA from primary mouse 

MTCLs using an established mass spectrometry method (84). MYC; Dnmt1flox/flox and 

MYC; Dnmt1−/− lymphomas had decreased levels of global 5-methylcytosine relative to 

normal thymocytes, suggesting that tumors underwent global DNA hypomethylation 

(Figure 5A). No significant differences between MYC; Dnmt1flox/flox and MYC; Dnmt1−/− 

lymphomas were observed. This result is consistent with the moderate effects observed 

in an HCT116 cell line with knockout of Dnmt1 alleles (88). To determine locus-specific 

effects of Dnmt1 on DNA methylation, we profiled the methylation status of HpaII and 

HpyCh4IV restriction sites using methyl-sensitive cut counting (MSCC) in genomic DNA 

isolated from MYC; Dnmt1flox/flox and MYC; Dnmt1−/− lymphomas as described previously 

(30). Analysis of Line-L1, Line-L2, and Sine/Alu repeat elements revealed 

hypomethylation in both tumor groups relative to normal thymocytes but no significant 

differences in repeat element methylation between tumor groups (Figure 5B).  

We next analyzed MSCC data to determine how Dnmt1 affected the DNA 

methylation landscape in MYC; Dnmt1flox/flox tumors. A total of 24,236 promoters in the 

mouse genome have at least two restriction sites as seen from HpaII and/or HpyCh4IV 

digests. To rigorously assess the methylation status of promoters, we considered a 

change in methylation to be significant only if it occurred in two or more independent 

restriction sites in promoter areas at from bp −1500 to +350 relative to the transcription 

start site, with a 2-fold or greater change at a false discovery rate (FDR) of less than 

0.05. A comparison of the methylation landscapes of MYC; Dnmt1flox/flox and MYC; 

Dnmt1−/− cells revealed that 730 promoters were differentially methylated between these 

http://mcb.asm.org/content/33/21/4321.long#F5
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two tumor groups (Figure 5C; see also Data Set S1 in the supplemental material). Of 

these,  

303 promoters showed increased levels of methylation in MYC; Dnmt1−/− lymphomas, 

possibly as a result of deregulation of DNA methylation machinery. Of the 427 promoters 

that showed decreased methylation levels in MYC; Dnmt1−/− lymphomas, 214 promoters 

were also hypomethylated in normal thymocytes, suggesting that these promoters might 

be de novo targets of Dnmt1 in tumorigenesis. The remaining 213 promoters were highly 

methylated in normal thymocytes and MYC; Dnmt1flox/flox lymphomas but hypomethylated 

in MYC; Dnmt1−/− lymphomas, suggesting that Dnmt1 is involved in the maintenance of 

methylation at these promoters.  

Decreased levels of Dnmt1 resulted in methylation changes of 777 genes, with 

440 hypomethylation and 337 hypermethylation events in gene bodies (Figure 5D). 

Additionally, we have seen a relatively small amount of overlap of genes that are 

hypomethylated in both the promoter and the gene body (∼6%), suggesting that Dnmt1 

activity is locus specific. Collectively, these data indicate that the contribution of Dnmt1 

to the promoter methylation consists not only of maintenance methylation patterns but 

also of cancer-specific de novo activity. Since MYC; Dnmt1flox/flox tumors retain ∼50% of 

Dnmt1 protein levels, our data also suggest that gene promoters require higher levels of 

Dnmt1 than gene bodies or intragenic regions to maintain proper methylation patterns.  
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Figure 5. Analysis of DNA methylation in Dnmt1-deficient tumors. (A) Total 5-

methylcytosine levels in normal thymocytes (Th), MYC; Dnmt1flox/flox (F/F) tumors, and MYC; 

Dnmt1−/− (−/−) tumors. The human colorectal carcinoma parental cell line HCT116 (H) and 

the HCT116 DNMT1−/−; DNMT3B−/− cell line (H13B) served as controls. (B) In silico analysis 

of relative methylation levels of Line-L1, Line-L2, and Sine/Alu repeats in normal thymus 

(Th), MYC; Dnmt1flox/flox tumors, and MYC; Dnmt1−/− tumors by MSCC. (C) A heat map 

analysis of MSCC data displaying 427 hypomethylated and 303 hypermethylated promoters 

in MYC; Dnmt1−/− tumors relative to MYC; Dnmt1flox/flox tumors (FDR < 0.05 [negative 

binomial]). Genes proposed to have Dnmt1 de novo (214 genes) and Dnmt1 maintenance 

(213 genes) activity are labeled. A color bar is shown, with black representing a high degree 

of methylation and yellow representing lower levels. Th indicates normal thymocytes. n 

represents the number of biological replicates. (D) A heat map displaying the numbers of 

hypermethylated (n = 337) and hypomethylated (n = 440) gene bodies in MYC; Dnmt1−/− 

tumors relative to MYC; Dnmt1flox/flox tumors. Normal thymus (Th) levels are also shown. 

Changes represent a P of <0.05 with a 2-fold or greater change. 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3811897_zmb9991001750005.jpg
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Deregulated transcription in Dnmt1-deficient lymphomas. 

To further understand the molecular basis for increased survival of MYC; 

Dnmt1−/− mice, as well as the effects of Dnmt1 on gene transcription, we next compared 

microarray-based gene expression profiles of MYC; Dnmt1−/− lymphomas to those of 

normal thymocytes and MTCLs. We identified 1,260 genes whose expression levels 

were significantly different (1.75-fold; FDR < 0.05) between MYC; Dnmt1flox/flox and MYC; 

Dnmt1−/− lymphomas (Figure 6A; see also Data Set S2 in the supplemental material). 

Loss of Dnmt1 resulted in transcriptional upregulation of 780 genes, which is consistent 

with the function of Dnmt1 as a repressor protein. Although we cannot rule out the 

possibility that Dnmt1 plays a role in transcriptional activation, 480 genes downregulated 

in MYC; Dnmt1−/− lymphomas likely represent secondary changes rather than being a 

direct consequence of Dnmt1 inactivation. Real-time quantitative RT-PCR (qRT-PCR) 

confirmed that Akt3, Nrfb2, and Rasgef1a genes are upregulated whereas Upb1 is 

downregulated in MYC; Dnmt1−/− lymphomas (Figure 6B). Unsupervised hierarchical 

clustering analysis using global gene transcription profiles of all genes resulted in perfect 

segregation of tumors in a Dnmt1-specific manner, with MYC; Dnmt1flox/flox tumors 

clustering closer to MYC; Dnmt1−/− lymphomas than to normal thymocytes (Figure 6A). 

Tight clustering of MYC; Dnmt1−/− lymphomas suggests that Dnmt1 plays an important 

role in regulating the transcriptome in MTCLs, likely through specific target genes.  

To gain further insight into the pathogenesis of MYC; Dnmt1−/− lymphomas, we 

performed IPA using 780 genes whose transcription was significantly changed 

(upregulated 1.75-fold or more, FDR < 0.05) relative to MYC; Dnmt1flox/flox lymphomas. 

The top five disease groups associated with higher expression in MYC; Dnmt1−/− 

lymphomas relative to control MYC; Dnmt1flox/flox lymphomas were cancer, hematological 

disease, developmental disorders, immunological disease, and renal and urological 

http://mcb.asm.org/content/33/21/4321.long#F6
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disease (data not shown). Of these, the most significant functional disease network was 

that of cancer. Eight genes (Dcn, Rag1, Brca2, Cdkn1a, Zeb1, Ccnd3, Runx1, and 

Ssbp2) from the hematologic disease network “tumorigenesis in thymic lymphomas” 

were overexpressed in Dnmt1-deficient lymphomas, and their upregulation was 

suggested by IPA to be involved in the suppression of T-cell lymphomagenesis (Figure 

6C). In addition, IPA showed that negative regulators of cell cycle, such as 

retinoblastoma (Rb1), were upregulated in Dnmt1-deficient lymphomas. Considering all  
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Figure 6. Significantly deregulated genes in MYC; Dnmt1−/− tumors. (A) A heat map derived 

from global transcription profiling by microarray displaying 1,260 genes that are 1.75-fold changed 

in MYC; Dnmt1−/− tumors relative to MYC; Dnmt1flox/flox tumors. A total of 780 genes show 

upregulation, while 480 show downregulation (FDR < 0.05 [Bayesian t test]). A color bar is shown 

to reference upregulation in red and downregulation in green. Above the heat map, an 

unsupervised hierarchical clustering of normal thymi (Th), MYC; Dnmt1flox/flox (F/F) tumors, and 

MYC; Dnmt1−/− (−/−) tumors is shown. (B) qRT-PCR displaying the relative mRNA levels of 4 

differentially expressed genes in MYC; Dnmt1flox/flox and MYC; Dnmt1−/− tumors. The average 

results of two replicates are shown for n = 2 samples for each group. Error bars represent SEM. 

(C) The network tumorigenesis in thymic lymphomas derived from Ingenuity pathway analysis of 

780 upregulated genes from MYC; Dnmt1−/− cells. All eight genes within the network are predicted 

to suppress thymic lymphomagenesis. (D) Heat maps for genes with at least a 2-fold decrease in 

promoter methylation as determined by MSCC and at least a 1.75-fold induction in expression as 

determined by microarray in MYC; Dnmt1−/− lymphomas. Average values from normal thymocytes 

(Th) and MYC; Dnmt1flox/flox and MYC; Dnmt1−/− tumors are shown.  

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3811897_zmb9991001750006.jpg
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these results together, these molecular events may contribute to the delayed 

lymphomagenesis observed in MYC; Dnmt1−/− mice.  

To determine the effects of Dnmt1-dependent methylation on gene transcription, 

we next analyzed levels of gene expression in Dnmt1 target genes. This comparison 

revealed that expression of 17 of 427 hypomethylated genes correlated with promoter 

hypomethylation, suggesting that differential methylation affects a relatively small 

(∼4.0%) subset of genes (Figure 6D).  

H2-Ab1 is a target of cancer-specific de novo methylation by Dnmt1 in vivo. 

The major histocompatibility class 2 gene (H2-Ab1) is involved in antigen 

processing and presentation (89). Its locus encodes two distinct isoforms (Figure 7A). 

Our MSCC data showed that the promoter region driving expression of the longer H2-

Ab1 isoform may be a target of Dnmt1, as it was consistently hypomethylated in MYC; 

Dnmt1−/− tumors (Figure 7B). To determine if H2-Ab1 is a maintenance or de novo target 

of Dnmt1, we performed combined bisulfite restriction analysis (COBRA) and bisulfite 

sequencing of the −43 to +471 region of this promoter in normal thymocytes and MYC; 

Dnmt1flox/flox and MYC; Dnmt1−/− tumors. In both assays, MYC; Dnmt1flox/flox tumors were 

consistently hypermethylated relative to normal thymocytes, while Dnmt1-deficient 

tumors showed near-complete ablation of promoter methylation (Figure 7C and D). 

These changes in methylation correlated with gene transcription of the major isoform of 

H2-Ab1, which was severely repressed in MYC; Dnmt1flox/flox tumors compared to normal 

thymocytes but was derepressed in MYC; Dnmt1−/− tumors (Figure 7E). Importantly, this 

potential de novo activity of Dnmt1 is independent of the presence of Dnmt3a and 

Dnmt3b, as levels of methylation of the H2-Ab1 locus remained high in thymic 

lymphomas with genetic inactivation of either Dnmt3a or Dnmt3b (Figure 7D). 
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Importantly, a potential de novo activity of Dnmt1 is not limited to H2-Ab1 since the 

promoter of the  

Abhd14a gene is also hypermethylated in MYC; Dnmt1flox/flox but is unmethylated in 

MYC; Dnmt1−/− lymphomas (Figure 7E). Furthermore, global methylation profiling of 

MYC; Dnmt1−/− and MYC; Dnmt3b−/− tumors showed an overlap of only 3% in Dnmt1 

target genes (Figure 7G, (13), and data not shown). In addition, only 35 of 780 (4%) 

Dnmt1 target genes were overexpressed in both Dnmt1−/− and Dnmt3b−/− MTCLs (Figure 

7G). Thus, Dnmt1 appears to have cancer-specific target genes whose methylation 

and/or expression is largely independent of the presence of Dnmt3b and perhaps 

Dnmt3a.  
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Figure 7. H2-Ab1 is a target of Dnmt1-mediated methylation in lymphomas. (A) An illustration 

of the exons and introns comprising the two H2-Ab1 isoforms. Black arrows represent the 

transcription start site. Red arrows denote the location of qRT-PCR primers. (B) A methylation bar 

graph depicting average methylation levels across three CpG sites analyzed by MSCC in the 

promoter of H2-Ab1 for normal thymocytes (Th) and MYC; Dnmt1flox/flox and MYC; Dnmt1−/− tumors. 

(C) COBRA of the H2-Ab1 promoter in normal thymocytes and in MYC; Dnmt1flox/flox (F/F) and 

MYC; Dnmt1−/− lymphomas. Undigested (U) and digested (D) fragments correspond to 

unmethylated and methylated DNA, respectively. CpG indicates a fully methylated control. (D) 

Bisulfite sequencing of the H2-Ab1 promoter in normal thymocytes (Th) and in MYC; Dnmt1flox/flox, 

MYC; Dnmt1−/−, MYC; Dnmt3aflox/flox (3a−/−), and MYC; Dnmt3bflox/flox (3b−/−) lymphomas. The 

dashed lines denote the location of the CpG dinucleotides within the locus. Each pie denotes an 

individual CpG dinucleotide within the locus, and each wedge of the pie represents the sequence 

of an individual allele. Black denotes the percentage of methylated alleles, while white represents 

unmethylated alleles. (E) qRT-PCR analysis of H2-Ab1 longer-isoform expression in normal 

thymocytes, MYC; Dnmt1flox/flox tumors, and MYC; Dnmt1−/− tumors. Error bars represent SEM; (*) 

denotes P < 0.05 (Student's t test). (F) COBRA of the Abhd14a promoter in normal thymocytes 

(Th) and in MYC; Dnmt1flox/flox and MYC; Dnmt1−/− lymphomas. (G) Overlap of 260 genes identified 

in Dnmt3b-deficient MTCLs and 427 potential Dnmt1-dependent targets, as determined by MSCC, 

are shown in the left Venn diagram. The right Venn diagram shows 253 genes that were at least 

1.75-fold upregulated in the absence of Dnmt3b in MTCLs overlaid with the 780 genes that were 

upregulated in MYC; Dnmt1−/− tumors. The overlapping genes are listed below each diagram. 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3811897_zmb9991001750007.jpg
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Discussion 

In the present study, we used a MYC model to characterize the role of Dnmt1 in 

T-cell lymphomagenesis. We show that Dnmt1 plays a crucial role in the prevention and 

maintenance of the tumor phenotype in MTCLs as well as in normal hematopoiesis. 

Importantly, we identified locus-specific maintenance and de novo activity for Dnmt1. 

Our results suggest that Dnmt1, in addition to its involvement in maintenance of DNA 

methylation patterns during cellular division, also plays an irreplaceable role in promoter 

and gene body methylation during tumorigenesis. This report represents the first in 

which the cancer-specific de novo and maintenance activity of Dnmt1 in the in vivo 

setting is presented.  

Suppressed tumorigenesis in MYC; Dnmt1−/− mice is surprising in view of 

previous work that has suggested that T cells are particularly sensitive to low levels of 

Dnmt1. Whereas a global decrease in Dnmt1 levels is achieved in all cells in Dnmt1chip/− 

mice, these mice almost exclusively (91%) develop T-cell lymphomas over the course of 

8 months, despite the fact that this all occurs in the context of reduced numbers of 

HSC/HPCs and thymocytes in Dnmt1chip/− mice. This is likely occurring through the 

induction of genomic instability and activation of oncogenes such as Notch by 

intracisternal A particles (28, 31, 32).  

There are at least two biological processes that may explain the increased 

latency of Dnmt1 tumors in our model. First, deletion of Dnmt1 in MYC; Dnmt1−/− mice 

results in considerable defects in hematopoietic development which may limit the pool of 

cells susceptible to MYC-induced lymphomagenesis. Inefficient hematopoiesis is largely 

a consequence of a severe reduction in the number of HSC/HPCs. The total quantity of 

EGFP-positive LSK cells in MYC; Dnmt1−/− mice is decreased 4-fold relative to the 

EGFP-negative population, suggesting that HSC/HPCs encountering loss of Dnmt1 are 
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at a competitive disadvantage relative to EGFP-negative cells in terms of their ability to 

self-renew within the same microenvironment. Additionally, decreased cellularity of 

EGFP-positive cells of lymphoid and myeloid origins suggests that the differentiation 

potential of the remaining LSK cells—likely with only partial Dnmt1 expression—is also 

skewed. Our data are consistent with observations showing an essential role for Dnmt1 

in the self-renewal and differentiation of HSCs (31, 90). c-Myc has been reported to be 

involved in differentiation of HSCs, as loss of c-MYC results in pooling of stem cells (91, 

92). Since our data were obtained in a setting where high levels of transgenic MYC were 

present, it also appears that MYC overexpression is insufficient to rescue Dnmt1-driven 

defects in hematopoietic differentiation. Our results show an accumulation of Dnmt1-

deficient T cells in the double-negative stage of T-cell differentiation, similar to what was 

observed in Lck-Cre; Dnmt1−/− mice, whereby Cre actively deletes Dnmt1 alleles at the 

DN2 stage of thymocyte differentiation and results in impaired differentiation (93). 

Altogether, these data indicate serious defects in hematopoiesis in the absence of 

Dnmt1, which ultimately diminishes the pool of hematopoietic cells available for MYC-

induced transformation.  

Second, a biological process that may contribute to increased survival of MYC; 

Dnmt1−/− mice is the decreased proliferation potential of MYC; Dnmt1−/− cells. This may 

reflect increases in the levels of key antiproliferative genes such as retinoblastoma (Rb) 

that were observed in MYC; Dnmt1−/− lymphomas. Rb is a negative regulator of cell cycle 

and is a tumor suppressor in hematopoietic cancers (94, 95). Another possibility is that a 

larger cadre of genes contributes to this phenomenon. For example, Ingenuity pathway 

analysis of genes upregulated in MYC; Dnmt1−/− lymphomas unveiled an eight-gene 

(Dcn, Rag1, Brca2, Cdkn1a, Zeb1, Runx1, Ssbp2, and Ccnd3) signature (tumorigenesis 

in thymic lymphomas) where all eight genes are predicted to decrease thymic 
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lymphomagenesis. Indeed, inactivation of seven of these eight genes has been 

functionally linked to promotion of thymic lymphomagenesis. Loss of Ssbp2 or Dcn 

accelerated T-cell lymphomagenesis in p53−/− mice, while ablation of Rag1 accelerated 

Eμ-MYC tumorigenesis (96-98). Germ line inactivation of Brca2, Cdkn1a, Runx1, or 

Zeb1 is sufficient to result in hematologic malignancies in mice (99-103). Thus, these 

putative Dnmt1 target genes have been independently linked to their ability to suppress 

lymphomagenesis in mouse tumor prevention settings.  

Therefore, within one cellular compartment (T cells), Dnmt1 plays a dichotomous 

role by preventing tumorigenesis through maintaining the integrity of the genome and 

silencing oncogenes (Dnmt1chip/− studies [(28, 32)]) and promoting lymphomagenesis by 

retention of cells susceptible to transformation (MYC; Dnmt1−/− studies). This is likely due 

to the fact that low levels of Dnmt1 allow cells to survive and accumulate genetic and 

epigenetic changes promoting tumorigenesis whereas complete deletion of Dnmt1 is 

incompatible with the viability of normal hematopoietic cells. Thus, Dnmt1 may both 

promote and inhibit tumorigenesis even within the same tumor type, depending on the 

degree of its activity. At present, we cannot rule out the possibility that germ line 

inactivation of one Dnmt1 allele in Dnmt1chip/− mice promotes T-cell transformation in a 

non-cell-autonomous way. Thus, further studies are required to determine if 

microenvironments deficient for Dnmt1 can enhance T-cell lymphomagenesis.  

This study also uncovered an important role for Dnmt1 in the maintenance of the 

tumor phenotype. For example, all tumors that developed in MYC; Dnmt1−/− mice 

retained ∼50% of Dnmt1 levels and exhibited decreased proliferation, suggesting that 

Dnmt1 is crucial for the survival of tumor cells. This was further confirmed through 

functional inactivation of Dnmt1 in fully developed MYC; Dnmt1flox/flox lymphomas, which 

led to severely impaired cellular survival. In addition to being critical for the maintenance 
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of the tumor phenotypes either in AML induced by MLL-AF9 or in B-cell leukemia 

induced by combined overexpression of Myc and Bcl2 (31, 59), Dnmt1 function is also 

fundamental for the maintenance of mouse MTCLs.  

Our data further indicate that even incomplete inactivation of Dnmt1 has a 

profound effect on the molecular landscape of MTCLs. By comparing methylation 

patterns of normal thymocytes, MYC; Dnmt1flox/flox lymphomas, and MYC; Dnmt1−/− 

lymphomas, we identified 427 promoters whose methylation appeared to depend upon 

Dnmt1. Of these, 214 promoters are likely targets of Dnmt1 de novo activity, as their 

methylation is low in normal thymocytes and MYC; Dnmt1−/− lymphomas but is increased 

in MYC; Dnmt1flox/flox tumors. The remaining 213 gene promoters are methylated in 

normal thymocytes and MYC; Dnmt1flox/flox lymphomas but hypomethylated in MYC; 

Dnmt1−/− lymphomas, suggesting that Dnmt1 is involved in maintenance of the 

methylation at these loci throughout tumorigenesis. Furthermore, Dnmt1 target loci 

appear to be largely independent of Dnmt3b, as a comparison with our previously 

published Dnmt3b targets (13) showed only a 3% overlap with newly unveiled Dnmt1 

targets in this study. Along the same lines, locus-specific de novo methylation by Dnmt1 

at the H2-Ab1 target gene is independent of both Dnmt3a and Dnmt3b, as lymphomas 

deficient for either methyltransferase gain methylation at levels similar to those seen with 

MYC; Dnmt1flox/flox lymphomas. Results showing differing spectra of Dnmt1 and Dnmt3b 

target genes identified in MTCLs are consistent with the opposing effects of Dnmt1 and 

Dnmt3b on MYC-induced lymphomagenesis, during which, as our recent studies 

showed, Dnmt3b functions as a tumor suppressor gene (13). Our data also show 

increased methylation of 303 promoter regions in MYC; Dnmt1−/− lymphomas. At 

present, it is unclear why a decrease in Dnmt1 levels results in promoter 

hypermethylation. However, locus-specific increases in methylation levels have been 
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recently observed upon loss of methyltransferase activity of Dnmt3a in mouse 

hematopoietic stem cells (45).  

The present knowledge base of target loci of Dnmt1 is minimal. Previous studies 

have identified targets of Dnmt1-dependent methylation and transcription in the HCT116 

colon cancer cell line (93, 104). When we compared these target genes with Dnmt1 

targets identified in this study, we observed only a 2% overlap (data not shown), 

suggesting that Dnmt1 may have tissue- or species-specific target loci. The apparent 

lack of a significant overlap in Dnmt1 target genes between the HCT116 cell line and 

MTCLs may also stem from the different growth conditions under which the cells were 

maintained. For example, the spectrum of Dnmt1 target genes in HCT116 cell line may 

reflect the different selection pressures that cells experience during in vitro culturing. In 

contrast, the methylation profiles of the MTCLs are more likely to faithfully reflect 

physiological patterns, as they were obtained from primary lymphomas grown in vivo. In 

any case, in addition to Dnmt1's canonical function as a maintenance methyltransferase 

during DNA replication, Dnmt1 may localize to specific loci in a cell- or tissue-specific 

manner.  

Juxtaposition of 427 Dnmt1-dependent methylation targets and 780 genes 

upregulated in MYC; Dnmt1−/− tumors identified only a ∼4% correlation of promoter 

methylation with the transcription status. This number is likely underestimated, perhaps 

due to limitations in MSCC analysis as well as in array-based gene transcription 

profiling. The use of two restriction enzymes (HpaII and HpyCh4IV) increased the 

coverage of DNA methylation profiling to ∼16% of all CpGs in the mouse genome but 

still may not have been sufficient to fully reveal the effects of Dnmt1 on the cancer 

methylome (105). Similarly, Affymetrix gene transcription profiling is unable to reliably 

distinguish between the levels of expression of various gene isoforms. For example, the 
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Dnmt1 target gene H2-Ab1 encodes at least two isoforms whose transcripts significantly 

overlap. As a result, global microarray profiling has not identified differences in 

expression of this gene between MYC; Dnmt1flox/flox and MYC; Dnmt1−/− lymphomas. 

However, isoform-specific qRT-PCR clearly showed upregulation of the longer isoform 

which is driven by a specific promoter upon hypomethylation in Dnmt1-deficient MTCLs. 

Thus, future studies will focus on the use of more-sensitive methods, such as whole-

genome bisulfite sequencing for methylation profiling and transcriptome sequencing 

(RNA-seq) for transcriptional profiling, to further analyze the relationship of DNA 

methylation to transcription. It is possible that inhibitory effects of DNA methylation on 

transcription are limited in some biological settings. Indeed, recent studies have 

identified a low correlation between changes in promoter methylation and differential 

gene expression in mouse hematopoiesis and human AML (38, 45). Thus, additional 

discrete studies should be performed to address this point.  

Our present findings highlight the importance of Dnmt1 in the prevention and 

maintenance of T-cell malignancies and complex activities of Dnmt1 in the tumor 

methylome and transcriptome.  
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CHAPTER 2: Methylation-independent repression of Dnmt3b 
contributes to oncogenic activity of Dnmt3a in mouse MYC-induced 

T-cell lymphomagenesis2 

 

 

Introduction 

Methylation of CpG dinucleotides in DNA is an essential epigenetic modification 

involved in X-chromosome inactivation, genomic imprinting and tissue-specific gene 

regulation (15).Three DNA methyltransferases (Dnmts) catalyze the addition of a methyl 

group to cytosine in mammalian cells: Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 is primarily 

responsible for maintenance of methylation patterns during cellular divisions through its 

ability to read and transfer methylation groups to the newly synthesized DNA strand 

during replication (7). Consistently with the importance of maintaining epigenetic integrity 

in dividing cells, homozygous deletion of Dnmt1 is lethal at early stages of 

embryogenesis (4). Dnmt3a and Dnmt3b function primarily as de novo enzymes (5). 

Dnmt3b is responsible for early de novo methylation and repression of germ line genes 

(74),  and its inactivation is embryonically lethal. Dnmt3a is dispensable for 

embryogenesis, but Dnmt3a-knockout mice die shortly after birth due to multiple organ 

failure (5). Emerging evidence suggests that all three enzymes may have a role in 

maintenance and de novo activity in a locus-specific manner (15), but their ability to 

affect promoter methylation in normal and pathological settings is still poorly understood. 

                                                           
2 The material presented in this chapter were previously published: Haney SL, Hlady RA, 

Opavska J, Klinkebiel D, Pirruccello SJ, Dutta S, et al. Methylation-independent repression of 
Dnmt3b contributes to oncogenic activity of Dnmt3a in mouse MYC-induced T-cell 
lymphomagenesis. Oncogene. 2015;34(43):5436-46. 
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Dnmt3a and Dnmt3b share several sequence and structural similarities, including a 

conserved C-terminal domain, which mediates addition of methyl groups to DNA, and 

the N-terminal regulatory domain, which mediates interactions with DNA and other 

proteins (15). Methylation at CpG dinucleotides found in the promoter and other 

regulatory regions is often associated with transcriptional silencing (15). In addition to 

their methyltransferase activities, Dnmt3a and Dnmt3b can repress transcription in a 

methylation-independent manner. Critical to this process is their interaction with histone 

deacetylases (HDACs) and other repressor proteins via their ATRX-like domain (16). For 

instance, Dnmt3a interacts with the methyl CpG binding domain of Mbd3 and Brg1 to 

silence metallothionein-I transcription in mouse lymphosarcoma cells (17). However, 

how methylation-independent repressor activity affects physiological processes remains 

elusive. 

Genome-wide deregulation of the DNA methylation landscape, including locus-

specific hyper- and global hypo-methylation, is a consistently observed phenomenon in 

human tumors. This deregulation, in particular hypomethylation, likely comes from 

genetic alterations of DNMTs found in cancer. Although mutations in DNMTs were 

identified in a variety of human tumors, they are most often found in hematologic 

malignancies. For example, DNMT3A is one of the most frequently mutated genes in 

myeloid and T-cell malignancies with the frequency ranging from 8% cases of 

myelodysplastic syndrome to 33% of angioimmunoblastic T-cell lymphoma (38, 39, 106, 

107). In T-cell malignancies, approximately two-third of mutations are missense, with the 

remainder being frame shifts, nonsense mutations and deletions (42, 106, 107). The 

majority of mutations cluster in the catalytic domain, suggesting that the change in 

methylase activity is important for tumor development. The substitution of arginine for 

histidine in the catalytic domain (R882H mutation) accounts for ~60% of the mutations in 
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acute myeloid leukemia. In addition to being hypomorphic, this mutant is believed to 

function as a dominant-negative protein (108). The effects of aberrations found outside 

the catalytic domain, and those common to T-cell malignancies, are not known. In 

contrast to DNMT3A, DNMT3B or DNMT1 is rarely mutated in hematologic 

malignancies. Why in hematologic diseases genetic alterations are present in DNMT3A 

but not in other DNMTs is unclear. 

Like mutations in DNMT3A, increased activity of the proto-oncogene MYC is 

frequently observed in human T-cell malignancies, either through mutations in 

oncogenes, such as NOTCH1 for which MYC is a transcriptional target, or through 

genetic alterations of the MYC locus itself (109). For example, a subset of peripheral T-

cell lymphomas (TCLs) has a frequent gain of the MYC locus (8q24) with subsequent 

overexpression, suggesting that MYC has a role in the pathogenesis of the disease 

(110). 

The sensitivity of T-cells to MYC-induced transformation was previously 

demonstrated using a bitransgenic EμSRα-tTA;Teto-MYC mouse model in which 

tetracycline transcriptional transactivator (tTA) drives MYC expression resulting in the 

development of immature TCLs (111). Using a model of MYC-induced T-cell 

lymphomagensis (MTCL), we recently demonstrated that conditional inactivation of 

Dnmt1 compromised normal and malignant hematopoiesis and delayed MYC-induced T-

cell lymphomagenesis (33). In contrast, Dnmt3b functions as a tumor suppressor (TS) as 

its loss does not affect normal T-cell development but accelerates MTCL (13). 

Utilizing a model of MTCL, we show that loss of Dnmt3a extends the survival of 

mice due to a decrease in cellular proliferation with no effect on the disease spectrum. 

Using genome-wide approaches, we observed upregulation of TS genes, including 

Dnmt3b, E2f2 and Pten, whose expression is elevated in Dnmt3a-deficient lymphomas 
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without apparent changes in DNA methylation in their promoters or gene bodies. We 

further show that catalytically inactive Dnmt3a inhibits Dnmt3b in vitro. Finally, genetic 

inactivation of Dnmt3b accelerated MTCL, suggesting that delayed lymphomagenesis is 

at least in part mediated by Dnmt3b. Altogether, our data provide evidence for an 

unexpected oncogenic function of Dnmt3a in MTCL, through methylation independent 

repressor activity critical for the proliferation of tumor cells. 

Methods 

Mouse studies: EμSRα-tTA;Teto-MYC and Dnmt3aF/F mice were obtained from 

D.W. Felsher (Stanford University) and R. Jaenisch (Whitehead Institute), respectively. 

ROSA26EGFP and Teto-Cre mice were purchased from The Jackson Laboratory (Bar 

Harbor, ME, USA). All experiments were performed using mice of FVB/NJ background. 

Genotypes were confirmed by PCR using genomic DNA isolated from mouse tails. For 

analysis of T-cell development (including cell surface marker analysis, EGFP 

expression, and weights and cellularity of thymus, lymph node and spleen), 21-day-old 

mice from the EμSRα-tTA;Teto-MYC;Teto-Cre;Rosa26LOXPEGFP/EGFP;Dnmt3aF/F 

(MYC;Dnmt3aΔ/Δ) and EμSRα-tTA;Teto-MYC;Teto-Cre;ROSA26EGFP/EGFPDnmt3a+/+ 

(MYC;Dnmt3a+/+) cohorts were used. FACS-sorted EGFP+ thymocytes isolated from 21-

day-old EμSRα-tTA;Teto-Cre;Rosa26LOXPEGFP/EGFP (Dnmt3a+/+) and EμSRα-tTA;Teto-

Cre;Rosa26LOXPEGFP/EGFP;Dnmt3aF/F mice (Dnmt3aΔ/Δ) were used as controls for MSCC 

analysis. For tumor studies, the survival of EμSRα-tTA;Teto-

MYC;Rosa26LOXPEGFP/EGFP;Dnmt3aF/F mice (MYC;Dnmt3aF/F) was compared with 

MYC;Dnmt3aΔ/Δ or EμSRα-tTA;Teto-MYC;Teto-Cre;Rosa26LOXPEGFP/EGFP;Dnmt3aF/+ 

(MYC;Dnmt3aΔ/+) mice, and survival of EμSRα-tTA;Teto-

MYC;Rosa26LOXPEGFP/EGFP;Dnmt3aF/F;Dnmt3bF/F (MYC;Dnmt3aF/F;Dnmt3bF/F) was 

compared with that of EμSRα-tTA;Teto-MYC;Teto-



49 

 

 
 

Cre;Rosa26LOXPEGFP/EGFP;Dnmt3aF/F;Dnmt3bF/F (MYC; Dnmt3aΔ/Δ;Dnmt3bΔ/Δ). Full 

genotypes with abbreviations and genetic crosses to produce mice are listed in 

Supplementary Tables S1 and S2. Differences in survival were calculated using the 

Kaplan–Meier method and the log-rank test for survival distributions. A two-sided 

Student’s t-test was used to analyze differences in tumor burden, EGFP percentage and 

cell surface marker expression. 

MSCC and data analysis: MSCC library preparation, data collection and data 

analysis were performed as previously described (13, 33, 34, 81). The method results in 

an output of sequencing tags, or counts, which inversely correlate with the methylation 

status of a particular CpG. The R programming language and bioconductor package 

‘edgeR’ was used for statistical analysis of count data (83, 112). An FDR was estimated 

using the Benjamini Hochberg method. To carefully assess the methylation status of 

promoters, we considered a change in methylation to be significant only if it occurred in 

two or more independent HpaII and/or HpyCh4IV restriction sites, with a fold change 2, 

at an FDR of <0.05. The promoter was defined as −1500 to +500 base pairs relative to 

the transcription start site. Results were confirmed using COBRA as previously 

described (13, 33). 

Affymetrix microarray analyses: Microarray was performed at the UNMC 

Microarray core facility as previously described (13). Statistical analysis was done using 

Cyber-T software (85). Genes differentially expressed (P<0.05 and fold change >1.5) in 

MYC;Dnmt3aΔ/Δ tumors relative to MYC;Dnmt3aF/F tumors were analyzed using IPA 

(Qiagen, Valencia, CA, USA) to identify common pathways and disease associations. 

Microarray data were deposited in NCBI’s Gene Expression Omnibus (accession no. 

GSE59338). 

http://www-ncbi-nlm-nih-gov.library1.unmc.edu:2048/entrez/query.fcgi?db=Nucleotide&cmd=Search&term=GSE59338
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Generation of retroviruses and infection of cell lines: Retroviral vectors were 

created by subcloning the coding sequences of wild-type Dnmt3a and catalytically dead 

Dnmt3a (Dnmt3aCD) into the MSCV-IRES-RFP vector (113). Dnmt3aP705V/C706D has two 

amino-acid substitutions in the catalytic domain, which eliminate methylase activity of the 

enzyme. Constructs were verified by sequencing. Tumor cells isolated from 

MYC;Dnmt3aΔ/Δ mice were cultured in vitro in RPMI 1640 medium supplemented with 

10% FBS and 0.025 mM 2-mercaptoethanol. Retroviral infection of cells was performed 

as previously described (13). Cells were infected using one of three retroviral vectors 

(MSCV-IRES-RFP, MSCV-IRES-Dnmt3a-RFP or MSCV-IRES-Dnmt3aCD-RFP), and 

RFP+ cells were sorted 72 h after infection for RNA isolation and qRT–PCR analysis. 

FACS analysis, proliferation, and apoptosis: Flow cytometry, BrdU, and 

Annexin V measurements were performed as previously described (13, 33). All 

antibodies were obtained from eBioscience (San Diego, CA, USA). BrdU was performed 

using the APC BrdU-Flow Kit (BD-Pharmigen, San Jose, CA, USA) according to the 

manufacturer’s instructions and data was analyzed using BD-FACS Diva software. 

Apoptosis was measured using the Annexin V-APC antibody (eBioscience). A two-sided 

Student’s t test was used to analyze differences in proliferation and apoptosis. 

Thymocytes isolated from 21 day old Dnmt3a+/+ and Dnmt3a∆/∆ (EμSRα-tTA;Teto-

Cre;Rosa26LOXPEGFP/EGFP and EμSRα-tTA;Teto-Cre; Rosa26LOXPEGFP/EGFP;Dnmt3aF/F 

mice, respectively) were sorted for EGFP+ cells using the FACS Aria.   

Western blot: The following antibodies were used for Western blot: Dnmt3b 

(52A1018, Imgenex, Littleton, CO, USA), Dnmt3a (H-295, Santa Cruz, Santa Cruz, CA, 

USA), -Tubulin (H-183, Santa Cruz), and PCNA (PC10, Santa Cruz). Western blots 

were carried out as described previously (13). Briefly, For Western blotting, protein 

lysates were separated in SDS acrylamide gels and blotted into Immobilon P 
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membranes (Millipore). Blots were incubated in blocking buffer (5% skim milk) at a 

concentration of 1 mg/mL. The primary antibody was then detected using horseradish-

peroxidase-conjugated secondary antibodies and the ECL reagent as described by the 

manufacturer (Pierce). For Figure 6d and Supplementary Figure S13 protein levels were 

quantified by measuring band density of Dnmt3b and normalized to PCNA and -tubulin, 

respectively (ImageJ software). 

Real-time quantitative RT-PCR (qRT-PCR): RNA was converted to cDNA using 

oligo dT primers and Superscript reverse transcriptase per manufacturer’s instruction 

(Invitrogen, Grand Island, NY, USA). qRT-PCR was carried out using SYBR Green 

Supermix (Bio-Rad, Hercules, CA, USA) at a final volume of 20 l and performed in 

triplicates. Thermocycling was performed using the CFX96 cycler (Bio-Rad). Gapdh 

expression values were used for normalization of CT values. Primer sequences are listed 

in Supplementary File S3. 

Results 

Oncogenic role of Dnmt3a in MTCL. 

To evaluate the role of Dnmt3a in MTCL, we generated EμSRα-tTA;Teto-

MYC;Rosa26LOXPEGFP/EGFP;Dnmt3aF/F (designated MYC;Dnmt3aF/For control mice), 

EμSRα-tTA;Teto-MYC;Teto-Cre;Rosa26LOXPEGFP/EGFP; Dnmt3a+/F (designated 

MYC;Dnmt3a+lΔ or heterozygous mice) and EμSRα-tTA;Teto-MYC;Teto-

Cre;Rosa26LOXPEGFP/EGFP; Dnmt3aF/F (designated MYC;Dnmt3aΔ/Δ or Dnmt3a-deficient; 

Figure 1a) mice and measured survival. Although loss of one allele of Dnmt3a had no 

effect on MTCL, we found that the biallelic inactivation of Dnmt3a significantly extended 

the survival of mice relative to controls (Figure 1b). Analysis of protein and DNA 

confirmed the complete ablation of Dnmt3a in tumors arising in MYC;Dnmt3aΔ/Δ mice 
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(Figures 1c and d). Loss of Dnmt3a had no effect on MYC expression (Supplementary 

Figure S1), suggesting that the delayed MTCL in Dnmt3a-deficient mice was not caused 

by downregulation of transgenic MYC. Tumor burden in various hematopoietic organs 

was similar between control and Dnmt3a-deficient mice, indicating that loss of Dnmt3a 

did not affect mouse survival in a tissue-specific manner (Supplementary Figure S2). 

Like control lymphomas, tumors from MYC;Dnmt3aΔ/Δ were either CD4+/CD8+ or CD4+, 

with no measurable differences in expression of other T-cell (CD3, TCRβ, TCRγδ), B-cell  

(B220, CD19), myeloid (CD11b, Gr-1) or erythroid (TER119) markers (Figure 1e and 

data not shown). Altogether, this suggests that loss of Dnmt3a did not affect the disease 

spectrum in this MTCL model. Thus, contrary to our expectations, these data show that 

loss of Dnmt3a suppresses MTCL, suggesting an oncogenic function for Dnmt3a in T-

cells. 
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Figure 1. Ablation of Dnmt3a delays T-cell lymphomagenesis. (a) Genetic setting used to 

conditionally delete Dnmt3a. The tetracycline activator protein (tTA) is expressed and 

promotes simultaneous expression of the Teto-MYC and Teto-Cre transgenes. Expression of 

Cre results in excision of the stop cassette located upstream of the Rosa26LOXPEGFP 

reporter locus and deletion of Dnmt3a within the same subpopulation of cells. Thus, inclusion 

of the EGFP transgene allows for monitoring cells expressing tTA, Cre and MYC, as well as 

to identify cells deleted for Dnmt3a. In the pre-tumor stage (from birth to approximately day 

21), the EμSRα-tTA transgene is expressed in 30–50% of cell in all hematopoietic lineages, 

including hematopoietic stem cells. During tumorigenesis, MYC-expressing cells expand 

rapidly, resulting in EGFP-positive tumors. (b) Kaplan–Meier survival curve for control 

(MYC;Dnmt3aF/F, blue), Dnmt3a-deficient (MYC;Dnmt3aΔ/Δ, red) and Dnmt3a heterozygous 

(MYC;Dnmt3a+/Δ, green) mice. Number of mice (n) and median survival (MS) is shown. 

Comparison of MYC;Dnmt3aF/F with MYC;Dnmt3aΔ/Δ was statistically significant (P=0.0002). 

(c) Immunoblot showing Dnmt3a expression in normal thymocytes (N), control tumors 

(MYC;Dnmt3aF/F) and Dnmt3a-deficient tumors (MYC;Dnmt3aΔ/Δ). γ-Tubulin is shown as a 

loading control. (d) PCR-based deletion efficiency of Dnmt3a in MYC;Dnmt3aΔ/Δ tumors. 

Dnmt3aF/Δ served as a control. F and Δ indicate floxed and knockout alleles, respectively. (e) 

FACS analysis of immunophenotypes is plotted to show percentage of CD4+ and CD4+CD8+ 

malignanies in MYC;Dnmt3aF/F (F/F) and MYC;Dnmt3aΔ/Δ (Δ/Δ) mice. 
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Supplementary Figure S1. MYC expression is similar between control and Dnmt3a-
deficient lymphomas. qRT-PCR analysis of MYC levels in MYC;Dnmt3aF/F

 

tumors (blue, n=4) 
and MYC;Dnmt3a∆/∆ (red, n=4).  Error bars denote ± SEM. 
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Supplementary Figure S2. Tumor burden in control and Dnmt3a-deficient mice. 

Analysis of tumor burden in MYC;Dnmt3a F/F
 

(F/F, blue) and MYC;Dnmt3a∆/∆ (∆/∆, red) 

terminally ill mice. Weights of thymus (TH), spleen (SP), and lymph node (LN) were 

averaged. Error bars denote ± SEM. Number of mice (n) used for each group is shown. 
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Dnmt3a inactivation decreases cellular proliferation during disease progression. 

We next sought to determine the nature of biological processes affecting MTCL 

in the absence of Dnmt3a. We first looked at T-cell development in 21-day-old EμSRα-

tTA;Teto-MYC;Teto-Cre;ROSA26EGFP/EGFP;Dnmt3a+/+ (MYC;Dnmt3a+/+) and 

MYC;Dnmt3aΔ/Δ mice. Although Dnmt3a was efficiently deleted in EGFP+ cells isolated 

from the thymi of MYC;Dnmt3aΔ/Δ mice (Figure 2a), no substantial differences were 

found in size or cellularity of thymi and spleens when compared with MYC;Dnmt3a+/+ in 

21-day-old mice (data not shown). T-cell development evaluated by expression of CD4, 

CD8, CD25 and CD44 markers and the percentage of cells expressing EGFP was not 

affected by loss of Dnmt3a at 21 days (Figure 2b, Supplementary Figures S3 and S4). 

These data suggest that Dnmt3a is dispensable for T-cell development, consistent with 

our previous report (34). Similarly, no differences in the levels of apoptosis were 

observed between MYC;Dnmt3a+/+ and MYC;Dnmt3aΔ/Δ mice at any stage of tumor 

development (Figure 2c). In contrast, whereas BrdU incorporation was similar at early 

stages of tumor development (21 days), a substantial decrease in cells incorporating 

BrdU was observed at later stages of tumor development (35 days and terminally ill 

mice; Figures 2d and e, Supplementary Figures S5 and S6). Together, these results 

imply that the extended survival of MYC;Dnmt3aΔ/Δ mice is caused by decreased 

proliferation during disease progression. 
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Figure 2. Dnmt3a inactivation decreases cellular proliferation during disease 

progression. (a) PCR-based deletion efficiency of Dnmt3a in EGFP+ sorted thymoctyes 

isolated from 21-day-old MYC;Dnmt3aΔ/Δ mice. Dnmt3aF/Δ served as a control. F and Δ 

indicate floxed and knockout alleles, respectively. (b) FACS analysis of T-cell development in 

thymocytes isolated from 21-day-old MYC;Dnmt3a+/+ (blue) and MYC;Dnmt3aΔ/Δ (red) mice. 

Number of mice (n) in each cohort is shown. Quantification of obtained results is shown as an 

average value with error bars representing±s.e.m. (c) Analysis of apoptosis by Annexin V 

staining in cells isolated from the thymi of 21-day-old, 35-day-old and final tumors in 

MYC;Dnmt3a+/+ (blue) and MYC;Dnmt3aΔ/Δ (red) mice. Error bars denote±s.e.m. Number of 

mice used for each group is shown inside the bars. (d) Representative FACS diagrams 

showing BrdU labeling in MYC;Dnmt3a+/+ (blue) and MYC;Dnmt3aΔ/Δ (red) final thymic 

tumors. The percentage of cells staining positive is shown. (e) Quantification of BrdU-positive 

cells isolated from the thymi of 21-day-old, 35-day-old and final tumors in MYC;Dnmt3a+/+ 

(blue) and MYC;Dnmt3aΔ/Δ (red) mice. Quantification of results for each time point is shown 

as an average value with error bars representing±s.e.m. Number of mice used for each 

comparison is shown inside the bar. P<0.05 is denoted by a (*). 
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Supplementary Figure S3. Loss of Dnmt3a does not effect T-cell development. FACS 

analysis of T-cell development in CD4negCD8neg  (double negative, DN) thymocytes 

populations isolated from 21 day old MYC;Dnmt3a+/+ (+/+, blue) and MYC;Dnmt3a∆/∆  (∆/∆, 

red) mice. Immunophenotypes of DN populations in thymocytes are as follows: 

CD4negCD8negCD25negCD44+ (DN1), CD4negCD8negCD25+CD44+ (DN2), 

CD4negCD8negCD25+CD44neg (DN3), and CD4negCD8negCD25negCD44neg (DN4). Number of 

mice (n) in each group is shown. Quantification of obtained results is shown as an average 

value with error bars representing ± SEM 
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Supplementary Figure S4. EGFP expression in thymocytes from control and Dnmt3a-

deficient mice. Average percentage of EGFP+ cells in the thymi of 21 day old, 35 day old, 

and final tumors in MYC;Dnmt3a+/+ (blue) and MYC;Dnmt3a∆/∆  (red) mice, as determined by 

FACS. Error bars represent ± SEM. Number of mice used for each group is shown inside the 

bars. (*) denotes P<0.05. 
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Supplementary Figure S5. Analysis of Annexin V staining by FACS. Representative 

FACS diagrams showing analysis of apoptosis by Annexin V staining in thymocytes isolated 

from 21 day old, 35 day old, and final tumors in MYC;Dnmt3a+/+ (blue) and MYC;Dnmt3a∆/∆  

(red) mice. The percent of cells staining positive is shown in upper quadrant 
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Supplementary Figure S6. Analysis of BrdU incorporation by FACS. Representative 

FACS diagrams showing BrdU labeling for thymocytes isolated from 21 day old and 35 day 

old MYC;Dnmt3a+/+ (blue) and MYC;Dnmt3a∆/∆  (red) mice.  
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Dnmt3a ablation results in genome-wide methylation changes in lymphomas. 

To investigate the locus-specific effects of Dnmt3a on DNA methylation, we used 

methyl-sensitive cut counting (MSCC) to profile the methylation patterns of 

MYC;Dnmt3aF/F and MYC;Dnmt3aΔ/Δ lymphomas along with normal Dnmt3a+/+ and 

Dnmt3aΔ/Δ thymocytes as previously described (13, 33, 34, 81). In this next-generation 

sequencing-based method, the methylation—evaluated based on the number of 

sequence tags (termed counts)—inversely correlates with the degree of methylation at 

HpaII and HpyCh4IV sites (81). A total of 24 236 promoters in the mouse genome have 

at least two HpaII and/or HpyCh4IV restriction sites. To rigorously assess the 

methylation status of promoters, we considered a change in methylation to be significant 

only if it occurred in two or more independent restriction sites in promoter areas from 

−1500 to +500 base pairs relative to the transcription start site (two fold, false discovery 

rate (FDR) <0.05). We first compared promoter-specific methylation between 

MYC;Dnmt3aF/F and MYC;Dnmt3aΔ/Δ lymphomas. This analysis revealed that 370 gene 

promoters were hypomethylated in MYC;Dnmt3aΔ/Δ lymphomas, suggesting that these 

promoters may represent potential targets of Dnmt3a-specific methylase activity (Figure 

3a and Supplementary File S1). In contrast, the promoters of 64 genes were 

hypermethylated in MYC;Dnmt3aΔ/Δ lymphomas, likely as an indirect effect of Dnmt3a 

loss (Figure 3a). 

Next, we analyzed the methylation status of these promoters in normal 

thymocytes and Dnmt3a-deficient thymocytes. Out of the 370 promoters hypomethylated 

in MYC;Dnmt3aΔ/Δ lymphomas, 353 were also hypomethylated when compared with 

either normal or Dnmt3aΔ/Δ thymocytes, implying that Dnmt3a is dispensable for their de 

novo methylation during normal development, but may have a role in their maintenance 

methylation during tumorigenesis (Figure 3a and Supplementary Figure S7). In contrast, 
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17 promoters were specifically hypermethylated in MYC;Dnmt3aF/F tumors, indicating 

that they may represent potential targets of Dnmt3a cancer-specific de novo methylation 

(Figure 3a and Supplementary Figure S7). Finally, promoters of 10 genes were 

hypomethylated in normal Dnmt3a-deficient thymocytes, suggesting that their 

methylation is already decreased during normal development and thus their 

hypomethylation in MYC;Dnmt3aΔ/Δ lymphomas is not tumor-specific (Supplementary 

Figure S7). Methylation read-outs from MSCC analysis were confirmed for selected 

promoters using locus-specific combined bisulfite restriction analysis (COBRA). For 

example, the predicted gene AK046742 appeared to be a target of Dnmt3a’s cancer-

specific de novo activity, as its promoter region was not methylated in normal 

thymocytes and MYC;Dnmt3aΔ/Δ tumors but was methylated in MYC;Dnmt3aF/F tumors 

(Figure 3b). Conversely, Leng1 may be a target of Dnmt3a maintenance activity as the 

area near its promoter was hypermethylated in normal thymocytes and MYC;Dnmt3aF/F 

lymphomas but not in MYC;Dnmt3aΔ/Δ lymphomas (Figure 3b). These data indicate that 

the contribution of Dnmt3a to the tumor-specific methylation patterns consists of both de 

novo and maintenance activities. It is worth noting that the magnitude of Dnmt3a effects 

on genome-wide methylation may be larger, as analysis of promoters using single HpaII 

or HpyCh4IV sites showed 1854 hypomethylated promoters in MYC;Dnmt3aΔ/Δ 

lymphomas (Supplementary Figure S8). Thus, a higher resolution genome-wide 

methylation profiling studies—such as whole-genome bisulfite sequencing—may better 

address this point in future studies. 
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Figure 3. Dnmt3a ablation results in genome-wide methylation changes in 

MYC;Dnmt3aΔ/Δ lymphomas. (a) Analysis of MSCC data showing 370 hypomethylated and 

64 hypermethylated promoters in MYC;Dnmt3aΔ/Δ tumors relative to MYC;Dnmt3aF/F tumors. 

Proposed de novo (17 genes) and maintenance (353 genes) targets are labeled. Methylation 

status of normal thymocytes (N) is also shown. Promoter is defined as +500 to −1500 relative 

to the transcription start site. Differentially methylated sites had a fold change of two or 

greater and an FDR<0.05 at two independent CpG sites. Number of samples per group (n) is 

shown. A color bar depicting fold change is shown with blue representing a high degree of 

methylation and yellow representing lower levels. (b) COBRA analysis of the AK046742 and 

Leng1 promoters in normal thymocytes (N), MYC;Dnmt3aF/F and MYC;Dnmt3aΔ/Δ tumors. 

PCR fragments were digested with the restriction enzyme BstUI. Undigested {U} and digested 

{D} fragments correspond to un-methylated and methylated DNA, respectively. C indicates a 

fully methylated control. Position of primers relative to the transcription start site for each 

gene is shown in brackets to the left. 
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Supplementary Figure S7. Summary of differentially methylated genes in Dnmt3a-
deficient tumors. Pie chart showing breakdown of differentially methylated genes in 
MYC;Dnmt3a∆/∆  (∆/∆) tumors relative to MYC;Dnmt3aF/F (F/F) tumors as determined by 
analysis of MSCC data. Methylation changes for normal thymocytes (N) and Dnmt3a-deficient 
thymocytes (N3a) are also shown. All differentially methylated genes are based on 2 tag 
analysis, a fold change of 2 or greater and an FDR<0.05. Red denotes proposed maintenance 
targets and blue represents de novo targets. 
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Supplementary Figure S8. Global methylation profiling by MSCC using 1 tag analysis. 

Analysis of MSCC data showing 1,854 hypomethylated and 1,055 hypermethylated 

promoters in MYC;Dnmt3a∆/∆ tumors (∆/∆) relative to MYC;Dnmt3aF/F tumors (F/F). Proposed 

de novo (137 genes) and maintenance (1,717 genes) targets are labeled. Methylation status 

of normal thymocytes (Th) is also shown. Promoter is defined as +500 to -1,500 relative to 

the transcription start site. Differentially methylated sites had at least one tag with a fold 

change of 2 or greater and an FDR<0.05. Number of samples per group (n) is shown. A color 

bar depicting fold change is shown with black representing a high degree of methylation and 

yellow representing lower levels.  
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DNA methylation-independent upregulation of TS genes in Dnmt3a-deficient 
lymphomas. 

To further understand the molecular basis for the extended survival of 

MYC;Dnmt3aΔ/Δ mice, we compared microarray-based gene expression profiles of 

MYC;Dnmt3aΔ/Δ lymphomas with those of normal thymocytes and MYC;Dnmt3aF/F 

lymphomas. We identified 2246 genes whose expression levels were significantly 

different (1.5-fold; P<0.05) between MYC;Dnmt3aF/F and MYC;Dnmt3aΔ/Δ lymphomas 

(Figure 4a, Supplementary File S2). Loss of Dnmt3a resulted in the transcriptional 

upregulation of 1421 genes, which is consistent with the function of Dnmt3a as a 

repressor protein. qRT–PCR confirmed that Cd79b, E2f2 and Pten were upregulated in 

MYC;Dnmt3aΔ/Δ lymphomas (Figure 4b). Microarray analysis also identified 825 genes 

downregulated in MYC;Dnmt3aΔ/Δ tumors (Figure 4a). Although we cannot rule out the 

possibility that Dnmt3a has a role in transcriptional activation, these genes likely 

represent secondary changes resulting from deregulated transcription upon loss of 

Dnmt3a. 

To gain further molecular insight into the pathogenesis of MYC;Dnmt3aΔ/Δ 

lymphomas, we performed Ingenuity Pathway Analysis (IPA) using the 1421 genes that 

were significantly upregulated relative to MYC;Dnmt3aF/F lymphomas. The top five 

disease groups associated with upregulated genes were immunological disease, cancer, 

inflammatory disease, infectious disease and hematological disease (Supplementary 

Figure S9). This search also identified a 17-gene signature under the disease network 

‘Lymphomagenesis’ whose upregulation was predicted to suppress lymphomagenesis 

(Figure 5a). This signature consisted of Bcl2l11, Brca2, Dna2, Dnmt3b, E2f1, E2f2, 

Exo1, Irf1, Irf8, Nqo1, Prdm2, Pten, Recql4, Smurf2, Ssbp2, Tyk2 and Xrcc2. In contrast, 

analysis using genes downregulated in MYC;Dnmt3aΔ/Δ lymphomas did not yield any 

significant change under the disease network ‘Lymphomagenesis’. Surprisingly, both 
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promoter and gene body methylation was unaffected for all 17 genes (Figure 5b and 

Supplementary Figure S10), suggesting that the increased expression of these genes is 

independent of changes in DNA methylation. Furthermore, methylation of gene bodies 

(defined as +500 to the end of the gene) was largely unaffected by loss of Dnmt3a 

(Supplementary Figures S11 and S12). The 17-gene TS signature observed in Dnmt3a-

deficient MTCLs may represent molecular events functionally contributing to the 

extended survival observed in MYC;Dnmt3aΔ/Δ mice. 
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Figure 4. Loss of Dnmt3a leads to deregulated transcription. (a) A heat map derived from 

global transcription profiling by microarray displaying 1421 overexpressed and 825 under-

expressed genes in MYC;Dnmt3aΔ/Δ tumors relative to MYC;Dnmt3aF/F tumors (fold 

changegreater than or equal to1.5 and P<0.05 by Bayesian t-test). Expression in normal 

thymocytes (N) is also shown. A color bar is shown to reference fold change with upregulation 

in red and downregulation in green. Number of samples (n) is shown. (b) On the left, 

expression data obtained from microarray for three differentially expressed genes in 

MYC;Dnmt3aΔ/Δ (red) relative to MYC;Dnmt3aF/F (blue) tumors are shown. On the right, qRT–

PCR data displaying the relative mRNA levels of the three genes are shown. Quantification of 

obtained results is shown as an average value with error bars representing±s.e.m. Number of 

samples used for each comparison is shown inside the bars. P-values are shown with 

statistical significance denoted by a (*). 
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Supplementary Figure S9. Summary of Ingenuity pathway analysis. IPA core analysis 

was performed on 2,246 genes differentially expressed between MYC;Dnmt3a∆/∆ and 

MYC;Dnmt3aF/F tumors. 

 



71 

 

 
 

 

  

 

 



72 

 

 
 

  

 

 

Supplementary Figure S10. MSCC analysis of promoter methylation for the 17 gene 

signature obtained from IPA. Analysis of methylation levels at individual CpGs present in 

the promoter regions of the 17 gene signature. Average counts from MSCC data in 

MYC;Dnmt3aF/F (blue) and MYC;Dnmt3a∆/∆ (red) were used with error bars designating ± 

SEM. Counts inversely correlate with methylation status. Promoter is defined at -1,500 to 

+500 base pairs relative to the TSS. (*) denotes a P <0.05. 
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Figure 5. DNA methylation-independent upregulation of tumor suppressor genes in 

Dnmt3a-deficient lymphomas. (a) The 17-gene signature ‘Lymphomagenesis’ derived from 

Ingenuity Pathway Analysis (IPA) of 1421 upregulated genes in MYC;Dnmt3aΔ/Δ tumors. 

Upregulation of these 17 genes are predicted to suppress lymphomagenesis. Fold changes 

derived from microarray data, as well as Z-score and P-value generated by IPA, are shown. 

(b) Bar graph showing quantification of promoter methylation for the 17 genes using average 

counts from MSCC data in MYC;Dnmt3aF/F (blue) and MYC;Dnmt3aΔ/Δ (red) tumors. 

Proposed Dnmt3a target gene, AK046742, is shown as a positive control. The promoter is 

defined as −1500 to +500 relative to the transcription start site. Error bars denote±s.e.m. 

P<0.05 is shown by a (*). 
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Supplementary Figure S11. Quantification of total gene body methylation for the 17 

gene signature obtained from IPA. Counts from MSCC data for MYC;Dnmt3aF/F (blue) and 

MYC;Dnmt3a∆/∆ (red) tumors were averaged. Error bars denote ± SEM. Counts inversely 

correlate with methylation status 
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Supplementary Figure S12. MSCC analysis of gene body methylation of four tumor 

suppressor genes. Bar graph showing quantification of methylation levels for individual 

CpGs present in the gene body of Dnmt3b, E2f1, E2f2, and Pten. Average counts from 

MSCC data in MYC;Dnmt3aF/F (blue) and MYC;Dnmt3a∆/∆ (red) were used and error bars 

represent ± SEM. Counts inversely correlate with methylation status. 
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Dnmt3a represses Dnmt3b expression independently of its catalytic activity. 

Our global approach identified TS genes under the disease network 

‘Lymphomagenesis’ whose increased expression is associated with little-to-no changes 

in DNA methylation. Thus, their increased expression could either be in a direct 

response to loss of Dnmt3a repressor function or could be an indirect consequence of 

lymphomagenesis. 

We have recently reported that a close relative of Dnmt3a, Dnmt3b, is a TS gene 

in this MTCL model due to its ability to negatively regulate cellular proliferation during 

disease progression (13). As our data indicate that a key biological process behind 

delayed MTCL is decreased proliferation and our global gene expression data showed 

upregulation of Dnmt3b in MYC;Dnmt3aΔ/Δ tumors, we wondered whether Dnmt3a 

regulates Dnmt3b expression. To address this we first looked at the expression of 

Dnmt3b in MYC;Dnmt3aΔ/Δ lymphomas. This analysis revealed upregulation of mRNA 

and protein levels of Dnmt3b, suggesting that Dnmt3a may repress Dnmt3b (Figures 6a 

and b). Re-introduction of wild-type Dnmt3a into cell lines derived from MYC;Dnmt3aΔ/Δ 

lymphomas resulted in moderate but significant decrease in Dnmt3b RNA and protein 

levels (Figures 6c–e, Supplementary Figure S13). As we did not detect differences in 

methylation levels of the Dnmt3b promoter or gene body, we asked whether Dnmt3a 

inhibition of Dnmt3b could be independent of its methylase activity. To test this directly 

we infected MYC;Dnmt3aΔ/Δ lymphoma cells with Dnmt3a in which two key amino acids 

in the catalytic domain were mutated to produce a catalytically dead Dnmt3a protein 

(Dnmt3aCD (113)). Overexpression of Dnmt3aCD repressed Dnmt3b expression to a 

similar extent as wild-type Dnmt3a. Altogether, these data suggest that Dnmt3a 

represses Dnmt3b in a methylation-independent manner (Figures 6c–e). 
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Figure 6. Dnmt3a represses Dnmt3b expression independently of its catalytic activity. 

(a) qRT–PCR analysis of Dnmt3b transcript levels in control MYC;Dnmt3aF/F tumors (blue) 

and MYC;Dnmt3aΔ/Δ tumors (red). The number of samples used for each group is shown 

inside the bars. Error bars denote±s.e.m. P<0.05 is shown by a (*). (b) Immunoblot showing 

Dnmt3b protein levels in MYC;Dnmt3aF/F tumors, MYC;Dnmt3aΔ/Δ tumors, and a Dnmt3b-

deficient control (b). PCNA served as a loading control. (c) Immunoblot analysis showing 

Dnmt3b and Dnmt3a expression in three independent MYC;Dnmt3aΔ/Δ cell lines (A, B, C) 

infected with empty vector (Vec), wild-type Dnmt3a (3a) or catalytically dead Dnmt3a (3aCD). 

Lane 4 shows a Dnmt3b-deficient control (NC). PCNA and γ-Tubulin are shown as loading 

controls. (d) Quantification of Dnmt3b protein levels in MYC;Dnmt3aΔ/Δ cell lines (A, B, C) for 

(c). Dnmt3b levels were normalized to PCNA. Relative protein levels were calculated by 

adjusting values for empty vector control (Vec) to one and using this as a baseline for all 

other comparisons. (e) qRT–PCR analysis of Dnmt3a (left) and Dnmt3b (right) transcript 

levels in cell lines derived from MYC;Dnmt3aΔ/Δ tumors infected with empty vector control 

(black), wild-type Dnmt3a (red) or catalytically dead Dnmt3a (yellow).  
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Supplementary Figure S13. Relative Dnmt3b protein levels in three cell lines after 

Dnmt3a expression. Quantification of Dnmt3b protein levels in MYC;Dnmt3aD/D cell lines (A, 

B, C) infected with empty vector (black), Dnmt3a (red) or catalytically dead Dnmt3a (3aCD). 

Dnmt3b levels were normalized to -Tubulin. Relative protein levels were calculated by 

adjusting values for empty vector control (Vec) to one and using this as a baseline for all 

other comparisons 
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Loss of Dnmt3b accelerates lymphomagenesis in Dnmt3a-deficient mice. 

We next hypothesized that upregulation of Dnmt3b may be an important 

molecular event inhibiting MTCL in the absence of Dnmt3a. To test this directly, we 

generated and compared the survival of MYC;Dnmt3aΔ/Δ;Dnmt3bΔ/Δ (Double-knockout; 

DKO) mice with MYC;Dnmt3aF/F;Dnmt3bF/F mice (Figure 7a). In contrast to the prolonged 

survival seen in MYC;Dnmt3aΔ/Δ mice, DKO mice displayed indistinguishable survival 

compared with MYC;Dnmt3aF/F;Dnmt3bF/F control mice (Figure 7b). Both Dnmt3a and 

Dnmt3b were efficiently inactivated in DKO lymphomas (Figures 7c and d). Apoptosis, T-

cell development, tumor burden, transgenic MYC expression and tumor spectrum were 

similar between terminally sick control and DKO mice (Supplementary Figures S14–19), 

indicating that the additional loss of Dnmt3b did not impact these processes. 

Interestingly, proliferation of lymphoma cells, a process impaired in MYC;Dnmt3aΔ/Δ 

mice, was similar between terminally sick control and DKO mice (Figure 7e), which is 

consistent with the decreased survival of DKO mice relative to Dnmt3a-deficient mice. 

The distinct roles of Dnmt3a and Dnmt3b in MTCL are consistent with molecular 

changes observed in Dnmt3a- or Dnmt3b-deficient lymphomas. Out of 370 promoters 

hypomethylated in MYC;Dnmt3aΔ/Δ lymphomas, only 3% were hypomethylated in 

Dnmt3b-deficient lymphomas (13), indicating that Dnmt3a and Dnmt3b have distinct 

targets in vivo (Figure 7f). Similarly, only 11% of genes upregulated in Dnmt3a-deficient 

lymphoma were also overexpressed in Dnmt3b-deficient lymphomas (Figure 7f (13)). 

Collectively, these data illustrate both cellular and molecular differences between 

Dnmt3a and Dnmt3b in MTCL. 
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Figure 7. Loss of Dnmt3b accelerates lymphomagenesis in Dnmt3a-deficient mice. (a) 

Genetic setting used to delete conditional alleles of Dnmt3a and Dnmt3b. (b) Kaplan–Meier 

survival curve for MYC;Dnmt3aF/F;Dnmt3bF/F (blue), MYC;Dnmt3aΔ/Δ;MYC;Dnmt3bΔ/Δ (green) 

and MYC;Dnmt3aΔ/Δ (red, also shown in Figure 1b) mice. Median survival (MS) and number 

of mice (n) is shown. (c) Immunoblot showing Dnmt3a and Dnmt3b expression in control 

tumors (MYC;Dnmt3aF/F;Dnmt3bF/F), Dnmt3a;Dnmt3b-deficient tumors 

(MYC;Dnmt3aΔ/Δ;MYC;Dnmt3bΔ/Δ) and a Dnmt3b-deficient control (b). γ-Tubulin is shown as a 

loading control. (d) PCR-based deletion efficiency of Dnmt3a and Dnmt3b in 

MYC;Dnmt3aΔ/Δ;Dnmt3bΔ/Δ tumors. Dnmt3aF/Δ and Dnmt3bF/Δ served as controls. F and Δ 

indicate floxed and knockout alleles, respectively. (e) Quantification of BrdU-positive cells 

isolated from final thymic tumors in MYC;Dnmt3aF/F;Dnmt3bF/F (blue) and 

MYC;Dnmt3aΔ/Δ;Dnmt3bΔ/Δ (green) mice. Error bars represent±s.e.m. Number of mice used 

for each comparison is shown inside the bars. (f) Venn diagrams displaying the overlap 

between genes hypomethylated (left) and overexpressed (right) in both Dnmt3b- and 

Dnmt3a-deficient tumors. The number of genes identified by methylation analysis usingMSCC 

(fold change 2, FDR<0.05, Benjamini Hochberg) and expression analysis using microarray 

(fold change 1.5, P<0.05, Bayesian t -test) are shown. 
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Supplementary Figure S14. Representative Annexin V and BrdU staining in control and 

DKO thymocytes. Cells  were isolated from the thymi of 21 day old, and final tumors in 

MYC;Dnmt3a+/+;Dnmt3b+/+ (blue) and MYC;Dnmt3a∆/∆; Dnmt3b∆/∆  (green) mice. Percent of 

cells staining positive is shown in the upper quadrant. 
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Supplementary Figure S15. Analysis of T-cell development in control and DKO mice. 

Top panel shows FACS analysis of T-cell development in CD4
neg

CD8
neg 

(DN) thymocytes 

populations isolated from 21 day old MYC;Dnmt3a
+/+

;Dnmt3b
+/+

 (blue) and 

MYC;Dnmt3a
∆/∆

;Dnmt3b
∆/∆

  (green) mice. Immunophenotypes of DN populations in 

thymocytes are as follows: CD4
neg

CD8
neg

CD25
neg

CD44
+

 (DN1), CD4
neg

CD8
neg

CD25
+

CD44
+

 

(DN2), CD4
neg

CD8
neg

CD25
+

CD44
neg

 (DN3), and CD4
neg

CD8
neg

CD25
neg

CD44
neg

 (DN4). 
Bottom panel shows quantification of CD4 and CD8 labeling in thymocytes. Number of mice 
(n) in each cohort is shown. Quantification of obtained results is shown as an average value 
with error bars representing ± SEM. 
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Supplementary Figure S16. Summary of tumor burden in control and DKO mice. 

Organs were isolated from MYC;Dnmt3aF/F;Dnmt3bF/F (blue) and MYC;Dnmt3a∆/∆;Dnmt3b∆/∆  

(green) terminally ill mice. Weights of thymus (TH), lymph node (Ln) and spleen (SP) were 

averaged and error bars represent ± SEM. Number of mice (n) used for each group is shown. 
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Supplementary Figure S17. MYC expression is similar between control and DKO 

tumors. qRT-PCR analysis of MYC levels in MYC;Dnmt3aF/F;Dnmt3bF/F tumors (blue, n=4) 

and MYC;Dnmt3a∆/∆;Dnmt3b∆/∆ (green, n=3).  Error bars denote ± SEM. 
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Supplementary Figure S18. Summary of tumor immunophenotypes in control and DKO 

mice. Immunophenotypes of tumors in MYC;Dnmt3aF/F;Dnmt3bF/F (F/F) and 

MYC;Dnmt3a∆/∆;Dnmt3b∆/∆  (∆/∆) mice. Relative percentage of CD4+ and CD4+CD8+ 

malignancies is shown. 
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Supplementary Figure S19. Representative FACS analysis of T-cell lymphomas in 

control and DKO mice. Flow diagrams showing CD4 and CD8 staining in thymic tumors 

isolated from MYC;Dnmt3aF/F;Dnmt3bF/F (blue) and MYC;Dnmt3a∆/∆;Dnmt3b∆/∆  (green) mice.  
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Discussion 

Since the discovery of DNMT3A mutations in myelodysplastic syndrome and 

acute myeloid leukemia (38, 39) a number of alterations in DNMT3A were found in other 

human hematologic malignancies, including T-cell leukemias and lymphomas (42, 106, 

107). In both myeloid and lymphoid malignancies, mutations in DNMT3A primarily occur 

in the catalytic domain (38, 39, 42, 106, 107), suggesting that inactivation of the 

methyltransferase activity contributes to transformation. A recent biochemical analysis 

showed that the most common mutation, DNMT3A R882H, decreases methylase activity 

by ~80% at least partially by disrupting the ability of Dnmt3a to homotetramerize (47). 

Overexpression of mouse R878H mutant (analogous to human R882H) in embryonic 

stem cells decreased the activity of wild-type Dnmt3a and Dnmt3b likely by functioning 

as a dominant-negative and forming complexes with wild-type Dnmt3a and Dnmt3b 

(108). Ectopic expression of DNMT3A R882H in hematopoietic stem cells followed by 

transplantation into lethally irradiated mice induced a disease resembling chronic 

myelogenous leukemia within 1 year, demonstrating direct functional involvement of 

mutated DNMT3A in the development of myeloid leukemia. 

Here we used a mouse genetic model that allowed us to evaluate the effects of 

Dnmt3a inactivation along with MYC overexpression in all hematopoietic lineages. 

Although overexpression of MYC typically results in the development of TCLs, the 

development of acute myeloid leukemia in this model was reported in 13% of mice (111). 

We observed that Dnmt3a inactivation did not alter normal hematopoietic development, 

tumor spectrum or tumor type. Rather, Dnmt3a deficiency inhibited MTCL due to 

inhibitory effects on proliferation during disease progression and in tumor cells. 

Several interesting implications arise from these studies. For instance, Dnmt3a 

functions as both an oncogene and TS in the hematopoietic compartment. This finding is 
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surprising in view of our recent study that long-term loss of Dnmt3a in hematopoietic 

cells results in B-cell transformation and the development of chronic lymphocytic 

leukemia (CLL) in mice (34). Thus, the Dnmt3a locus harbors both oncogenic (promotion 

of MTCL due to its pro-proliferative function) and TS (prevention of CLL development) 

functions in the hematopoietic compartment. What is the molecular basis for such 

different activities in similar cell types? We speculate that the differences may stem from 

two biological functions of Dnmt3a, methylation-independent and methylation-dependent 

repressor activities, respectively. This concept is supported in the MTCL model by IPA of 

microarray data, which identified 17 genes under the category of ‘Lymphomagenesis’ 

whose upregulation in Dnmt3a-deficient lymphomas was predicted to suppress 

lymphomagenesis. Importantly, whereas all of these genes were overexpressed in 

MYC;Dnmt3aΔ/Δ tumors, we have not observed changes in their promoters or gene body 

methylation. The lymphomagenesis signature consisted of genes whose TS functions 

were either reported in spontaneous B- and T-cell lymphomagenesis (Brca2, Dna2, 

Exo1, Prdm2, Smurf2 and Ssbp2 (99, 114-117)), p53-deficient or oncogene-provoked 

lymphomagenesis (Bcl2l11, E2f1, Xrcc2, Recql4 and Tyk2 (118-122)), including MTCL 

(Pten, E2f2 and Dnmt3b (13, 87, 123)), or other aspects of lymphomagenesis (Nqo1, Irf1 

and Irf8 (124-126)). Whether upregulation of any of these genes is involved in MTCL in 

the absence of Dnmt3a remains to be seen; however, individual inactivation of E2f2 or 

Pten accelerated MTCL (87, 123). Furthermore, given that Xrcc2 deficiency accelerated 

lymphomagenesis induced by loss of p53 (120), and Brca2 deficiency results in the 

development of TCLs (99), other TS genes may be contributing to the extended survival 

of MYC;Dnmt3aΔ/Δ mice. 

In contrast to MTCL, loss of Dnmt3a induces CLL and is associated with 

widespread promoter hypomethylation in this context (34). In view of these data, coupled 
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with recently reported extensive promoter and gene body hypomethylation in human 

CLL (64), it seems that the basis for Dnmt3a TS function in CLL is its methyltransferase 

activity. Such a conclusion is further supported by the recent finding that the Tcl1 

oncoprotein, whose overexpression induces CLL in mice, inhibits Dnmt3a catalytic 

activity, which likely contributes to disease development (65). An alternative possibility is 

that methylation-dependent and independent repressor activities of Dnmt3a have 

opposing roles in T- and B-cell transformation, but T-cells are differentially sensitive due 

to cell-type-specific differences. Dnmt3a was reported to function as a TS in lung cancer 

and as an oncogene in colorectal carcinoma (127, 128), further supporting that the role 

of Dnmt3a in tumorigenesis is highly complex and likely context specific. Here we show 

that Dnmt3a functions as an oncogene in MTCL, likely through the methylation-

independent repression of TS genes. 

Another conclusion from our studies is that Dnmt3a and its close relative Dnmt3b 

have distinct functions in MTCL. We have recently reported that loss of Dnmt3b, unlike 

Dnmt3a, accelerated MTCL (13). Others have shown that Dnmt3b haploinsufficiency 

promoted MYC-induced B-cell lymphomagenesis (35), clearly demonstrating a TS role 

for Dnmt3b. It was reported that loss of Dnmt3a results in exhaustion of stem cell self-

renewal and defective differentiation (45). However, our data presented here and 

previously, point to a lack of differences of Dnmt3a or Dnmt3b deficiency on thymocyte 

development, likely due to different biological settings (13, 34). Thus, opposing roles of 

Dnmt3a and Dnmt3b on MTCL cannot be explained by changes in hematopoiesis. 

Rather, Dnmt3a and Dnmt3b seem to have contrasting effects on proliferation of TCLs, 

with Dnmt3a promoting and Dnmt3b inhibiting proliferation of tumor cells. Molecularly, 

the scope of tumor-specific changes in methylation and gene expression are larger for 

Dnmt3a compared with Dnmt3b. Consistent with the differential effects of these 
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enzymes on MTCL, out of the 17 genes in the Dnmt3a-specific ‘Lymphomagenesis’ 

signature, only one gene (Bcl2l11) is upregulated in Dnmt3b-deficient MTCLs, further 

supporting the idea that at least some of these genes are responsible for the extended 

survival in MYC;Dnmt3aΔ/Δ mice. Whether these broader molecular effects of Dnmt3a in 

MTCL reflect different protein levels or qualitative differences in the functions of Dnmt3a 

and Dnmt3b remains to be seen. 

Importantly, we present genetic evidence that the oncogenic function of Dnmt3a 

is at least in part due to the negative regulation of the TS Dnmt3b. The lack of 

methylation changes in the promoter and gene body, coupled with the ability of both 

wild-type and a catalytically dead mutant of Dnmt3a to repress Dnmt3b in vitro, suggests 

that methylation-independent repressor activity is important for its oncogenic functions. 

We show that repression is likely relevant in vivo, as genetic inactivation of Dnmt3b 

accelerates MTCL. 

One critical question that remains to be answered is how the methylation-

independent activity of Dnmt3a represses Dnmt3b. Dnmt3a interacts with a number of 

repressor proteins, including HDAC1, Rb and Daxx (16, 77, 129). Thus, recruitment of 

Dnmt3a to the Dnmt3b promoter could bring repressors that inhibit Dnmt3b transcription. 

Direct binding of Dnmt3a to sequences in the Dnmt3b promoter seems unlikely given 

that no clear Dnmt3a binding site has been identified, although weak consensus 

sequences were reported (19). Instead, interaction of Dnmt3a with transcription factors 

and subsequent recruitment to the Dnmt3b promoter seems more likely. Indeed, it was 

previously reported that the transcriptional repressor RP58 targeted Dnmt3a to a 

synthetic promoter to silence gene expression in a methylation-independent manner 

(16). Dnmt3a could also interfere with the ability of transcription factors to activate 

transcription. For example, p53-mediated transactivation of the CDKN1A gene was 
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suppressed by direct Dnmt3a interaction with p53 without changes in DNA methylation 

(18). Which protein mediates the potential recruitment of Dnmt3a to the Dnmt3b 

promoter is difficult to predict, given that Dnmt3a can interact with at least 68 

transcription factors (19), including c-Myc, Ets1, Gata1, Creb and NF-KappaB, all of 

which have predicted binding sites in the Dnmt3b promoter region. Thus, future studies 

need to address this point. 

It is also possible that rather than interacting with transcription factors, Dnmt3a 

interacts with histone-modifying enzymes to induce repressive histone modifications. For 

examples, the N terminal of Dnmt3a interacts with the histone methyltransferase 

SETDB1 to form a complex, which binds at a synthetic promoter region, and methylation 

of H3-K9 histones, but not of DNA, results in promoter inactivation (130).  

Finally, Dnmt3a was shown to directly interact with chromatin-remodeling factor 

Brg1, a subunit of the SWI/SNF complex that has a role in both activation and repression 

of gene transcription (17). Thus, this interaction could induce nucleosomal 

rearrangement in the Dnmt3b promoter that would inhibit gene transcription in a DNA 

methylation-independent manner. 

Whatever the precise mechanism of Dnmt3a-mediated repression is, the 

unexpected role of Dnmt3a in MTCL raises the possibility that some of the mutations in 

DNMT3A located outside of the methyltransferase domain may enhance biological 

processes contributing to methylation-independent repression. To our knowledge, this is 

the first report highlighting the distinct but interconnected roles of Dnmt3a and Dnmt3b in 

cancer through methylation-independent repressor activity of Dnmt3a. 
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CHAPTER 3: Tumor suppressor functions of Dnmt3a and Dnmt3b in 
the prevention of malignant mouse lymphopoiesis3 

 

Introduction 

DNA methyltransferases 3a (DNMT3A) and 3b (DNMT3B) are enzymes 

catalyzing the formation of methylcytosine in mammalian genomic DNA. Mutations in the 

coding sequence of DNMT3A are frequently found in human myeloid and lymphoid 

malignancies (131, 132). Allelic losses were recently reported in 48% of non-Hodgkin 

lymphomas (131). Long-term DNMT3A inactivation in mice impaired differentiation of 

hematopoietic stem cells (HSCs), resulting in accumulation of undifferentiated cells (45). 

Such findings indicate that DNMT3A loss may promote tumorigenesis in multiple 

hematopoietic lineages. 

Unlike DNMT3A, DNMT3B is rarely mutated in human hematologic malignancies. 

However, transcription of aberrant isoforms (for example, DNMT3B7) acting as negative 

regulators of Dnmt3b activity has been reported (133). Consistently, DNMT3B7 

overexpression accelerated MYC-induced B-cell lymphomas (133). Importantly, we and 

others have identified a tumor suppressor function for Dnmt3b in mouse T- and B-cell 

lymphomagenesis (13, 35).  

 

 

                                                           
3 The material presented in this chapter were previously published: Peters SL, Hlady RA, 

Opavska J, Klinkebiel D, Pirruccello SJ, Talmon GA, et al. Tumor suppressor functions of Dnmt3a 
and Dnmt3b in the prevention of malignant mouse lymphopoiesis. Leukemia. 2014;28(5):1138-
42. 
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Methods  

Mouse Studies: EμSRα-tTA, Dnmt3a2loxP, and Dnmt3b2LoxP mice were obtained 

from,  D.W. Felsher (Stanford University, Stanford, California, USA) R. Jaenisch 

(Whitehead Institute, Cambridge, Massachusetts, USA), and E. Li, (Novartis Institutes  

for Biomedical Research, Cambridge, Massachusetts, USA), respectively. ROSA26EGFP 

(79) and Teto-Cre mice (80) were acquired from The Jackson Laboratory. Mice were 

back-crossed onto the FVB/NJ background for five generations.  Transgenic mice used 

for these experiments were obtained by standard genetic crosses and genotypes were 

confirmed by PCR-based genotyping  using gDNA from tails (13, 134). Mice were 

carefully monitored for signs of tumor formation and harvested when terminally ill. 

Western Blot: Western blots were performed using the following antibodies: 

Dnmt3a (H-295, Santa Cruz), γ-Tubulin (H-183, Santa Cruz). Protein lysates were 

separated in SDS acrylamide gels and blotted into Immobilon P membranes (Millipore). 

Blots were incubated in blocking buffer (5% skim milk) at a concentration of 1 mg/mL. 

The primary antibody was then detected using horseradish-peroxidase-conjugated 

secondary antibodies and the ECL reagent as described by the manufacturer (Pierce).  

FACS analysis: All antibodies were obtained from eBioscience with the 

exception of Ig kappa and Ig lambda (Southern Biotech). Cell counts were performed 

using Count Bright Absolute Counting Beads (Invitrogen). Flow cytometry was 

performed using the LSR II (BD Biosciences) and analyzed using BD FACSDiva (BD 

Biosciences). Identification of fetal liver HCSs was performed using lineage markers 

against B220, CD3, CD5, CD8, Gr-1 and Ter119, followed by subsequent gating for 

Thy1.1lo,Sca-1+,CD11b+ cells.5 For experiments in mouse bone marrow lineage 

cocktails included antibodies against CD4, CD8, CD11b, B220, CD3, and TER119 to 
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define lineage positive populations. Sorting of the following population was 

accomplished used the FACS Aria: LSK cells (Lineage negative, Sca-1+,c-kit+), Pre-Pro 

B-cells (CD43+, CD25-, IgM-, B220+),  immature B-cells (CD43+, CD25-, IgM-, B220+), 

mature B-cells (CD43-, CD25-, IgM+, B220+), B-cells (B220+), CD11b cells (CD11b+), 

Ter119 cells (Ter119+), CD4 cells (CD4+), CD8 cells (CD8+). For methylation analysis, 

control B1 cells from 2 Dnmt3a+/+ mice were isolated by FACs sorting using B220, CD19 

and CD5 antibodies.  

Histology: H&E staining was performed using standard protocols by the 

University of Nebraska Medical Center Tissue Science Facility.  

Methyl-sensitive Cut Counting (MSCC) and data analysis: MSCC was 

performed as previously described (13, 81). Briefly, two independent enzymes, HpaII 

and HpyCh4IV, were used to assess the methylation landscapes. Next generation 

sequencing results in an output of tags where a higher number of counts correlate with 

hypomethylation and lower counts indicate hypermethylation. The R programming 

language bioconductor package “edgeR” was used for all statistical analysis (83, 112). 

Genes were only considered to by hypomethylated or hypermethylated if two or more 

independent HpaII/HpyCh4IV sites showed a 2-fold change or greater with a false 

discovery rate <0.05. The methylation heat map was generated by taking the averages 

for raw counts of all 2-fold or greater statistically significant changes within individual 

promoters between Dnmta3a+/+ B1 cells and Dnmt3a-/- tumors. The promoter is defined 

as -1500 to +500 base pairs relative to the transcription start site.  

Analysis of Sine and Line elements in was performed as previously described.3 In 

brief, MSCC tags associated with SINE and LINE elements were identified using a perl 

script (UNMC Center for Bioinformatics and Systems Biology and the Institute for 

System Biology [ http://www.repeatmasker.org; mm9, July 2007, RepeatMasker, 3.2.8, 

file:///C:/Users/Staci/AppData/Roaming/Microsoft/Word/ http:/www.repeatmasker.org
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Repeat Library 20090604]). The total number of tags specific to gene body (defined as 

500 base pairs from transcription start site to the 3’ end) or repeat elements obtained 

from next generation sequencing of MSCC libraries were summed. Average counts for 

control Dnmt3a+/+ B1 samples were used for normalization. As the number of MSCC 

tags inversely correlates with methylation levels the inverse values represent relative 

methylation levels. MSCC data is available upon request. 

Combined Bisulfite Restriction Analysis (COBRA): COBRA analysis was 

performed as previously described.3,6 Briefly, sodium bisulfite treatment of genomic DNA 

was carried out utilizing an EpiTect bisulfite kit (Qiagen). Primers for bisulfite PCR for 

both COBRA and bisulfite sequencing were designed through the use of MethPrimer 

(86). For COBRA, bisulfite PCR products were digested with TaqI, TaiI, or BstuI (NEB). 

The resulting fragments were then loaded onto an 8% PAGE gel, separated by 

electrophoresis, and detected with SYBR green Gold (Invitrogen). Primer sequences for 

promoter analysis are listed below: Hus1b: TTTTTTTATTAAAAGATTTGGAGTTTG 

(forward), AAAAAACACATTCATAACTTACTTTATCTC (reverse) Nfam1: 

GAAAAGGGTTAAAAGAAATTTTAGTTT (forward), 

CCCAATAAATAACTTATCACCTACAA (reverse) 

Quantitative Real-Time RT-PCR: cDNA was prepared from RNA using Bio-Rad 

iScript according to the manufacturer's protocol. cDNA was combined with SYBR green 

Supermix (Bio-Rad) with a final volume of 20 μl, and experiments were done in 

duplicate. Reaction conditions were optimized by the use of standard curves for each 

primer pair. Thermocycling was performed using a CFX96 system (Bio-Rad). Threshold 

cycle (CT) values were normalized based upon the expression of Gapdh.  Primer 

sequences used in these experiments are as follows: Hus1b: 

GCAAACCTCAATGGCAGAAT (forward), AAGGCCATTGTGGGGTTTAT (reverse) 
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Nfam1: GACGGAGGTCTACGCCTGTA (forward), CAAGTCTCGGAGCCTGTAGAA 

(reverse) 

Results 

To determine the impact of Dnmt3a on malignant hematopoiesis we utilized an 

EμSRα-tTA;Teto-Cre;Rosa26LOXPEGFP/EGFP tri-transgenic system (Figure 1a). In this 

system, the enhanced green fluorescent protein (EGFP) reporter is activated by Cre-

mediated excision of a transcriptional STOP cassette allowing for monitoring of tTA- and 

Cre-expressing cells by fluorescence activated cell sorting (FACS). Using this system we 

detected EGFP in HSCs (Lineage− Thy1.1lo,Sca-1+,CD11b+) in fetal liver cells from 

E15.5 embryos (Supplementary Figure 1a). Importantly, EGFP was expressed in bone 

marrow-derived LSK cells (Lineageneg,Sca-1+,c-kit+), a population enriched in 

hematopoietic cells and early progenitors (Supplementary Figure 1b and c). EGFP was 

also detected in 30–50% of hematopoietic lineages in the spleen and thymus 

(Supplementary Figure 1d). Altogether, these data suggest that EμSRα-tTA drives 

expression of Teto-Cre in both embryonic and adult stem and progenitor cells and 

thus—in connection with a conditional knockout allele—is capable of generating 

hematopoietic lineages deficient for the gene of interest. 

Using this system along with a conditional allele of DNMT3A (Dnmt3aF (134) we 

generated EμSRα-tTA;Teto-Cre;Rosa26LOXPEGFP/EGFP;Dnmt3a+/+ (Dnmt3a+/+) and 

EμSRα-tTA;Teto-Cre;Rosa26LOXPEGFP/EGFP;Dnmt3aF/F mice (Dnmt3a−/−). No significant 

difference in EGFP expression in LSK cells or hematopoietic lineages was observed 

among 21-day-old Dnmt3a+/+ and Dnmt3a−/− mice (Figure 1b and Supplementary Figure 

1b and c). Similarly, short-term loss of Dnmt3a had no impact on marker expression or 

cell numbers (Supplementary Table S1 and Supplementary Figure 2) despite efficient 

deletion of Dnmt3a in EGFP-positive LSK cells as well as lymphoid, myeloid and 
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erythroid cells from Dnmt3a−/− mice (Figure 1c). However, whereas control Dnmt3a+/+ 

mice remained healthy over 500 days, 100% of Dnmt3a−/− mice died, with a median 

survival of 371 days (Figure 1d). Terminally ill mice were lethargic and had enlarged 

abdomens due to splenomegaly (Figures 1e and f). Dnmt3a was efficiently deleted in 

splenic cells of terminally ill mice (Figure 1g and Supplementary Figure 3). Analysis of 

spleens from 10 terminally ill mice showed that splenomegaly was largely caused by 

expansion of EGFP+ mature B1 B cells. Cells expressed the surface markers B220, 

CD5, CD19, CD43, CD11b and immunoglobulin light chain kappa or lambda (Figures 1h 

and i, and Supplementary Table 1). These cells were also present in the peripheral 

blood, bone marrow and, occasionally, liver (Figure 1h and data not shown). 

Consistently, sections of the spleen showed diffuse involvement by a monomorphic 

population of small neoplastic lymphocytes, similar in size to resting lymphocytes 

(Supplementary Figure 4). The tumor cell nuclei had slightly irregular borders with 

clumped chromatin and indistinct nucleoli, morphologically similar to the cells of small 

lymphocytic lymphoma/chronic lymphocytic leukemia (CLL). Two of the B1 populations 

expressed only immunoglobulin lambda light chain, whereas the remaining eight 

expressed purely kappa light chain, indicating that the B-cell expansions are most likely 

clonal (Figure 1i). Sequencing analysis from two independent tumors showed identical 

rearrangement of VH alleles, further indicating clonal B-cell expansions (not shown). 

Upon intraperitoneal injection into FVB mice, splenic cells from terminally ill Dnmt3a−/− 

mice induced a phenotypically indistinguishable disease from donor mice over the 

course of 3 months, suggesting that Dnmt3a−/− cells have tumorigenic potential 

(Supplementary Figure 5a-c). Similarly, splenic cells from primary transplants induced 

disease in secondary FVB recipients, and the process could be successfully repeated at 

least five times, suggesting a long-term capability of these cells to self-renew and induce 

disease (Figure 1j and not shown). Altogether, our data indicate that, although loss of 
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Dnmt3a is insufficient to immediately induce cellular transformation of hematopoietic 

cells, long-term Dnmt3a deficiency results in the development of a B-cell malignancy. 

The obvious disease parallel in humans to the phenotype observed in the 

Dnmt3a−/− mouse model is CLL, which is the most common type of chronic leukemia in 

adults in the Western hemisphere. Owing to Dnmt3a’s role as a methyltransferase, we 

performed genome-wide methylation profiling in mouse CLL of HpaII and HpyCh4IV 

sites using methyl-sensitive cut counting, as described previously (13, 33). Comparison 

of Dnmt3a−/− CLL samples with B220+, CD19+, CD5+ splenocytes isolated from control 

Dnmt3a+/+ mice revealed promoter hypomethylation in 428 and hypermethylation in 37 

genes (Figure 1k). Combined bisulfite restriction analysis (COBRA) confirmed promoter 

hypomethylation of two randomly selected genes (Nfam1 and Hus1b) in CLL that was 

accompanied by upregulation of gene expression (Figures 1l and m). In addition to 

promoter hypomethylation, we observed an ~20% decrease in overall gene body 

methylation, as well as hypomethylation of repetitive elements (Supplementary Figures 

6a and b). Altogether these data suggest that inactivation of Dnmt3a results in profound 

methylation changes manifested mainly by hypomethylation, similar to that observed in 

human CLL, which effects expression in at least some genes. The effect of aberrant 

methylation on global transcription in CLL remains to be seen. 

 

 

 

 

 

 



99 

 

 
 

 

 

Figure 1. Loss of Dnmt3a induces CLL in mice. (a) The genetic setting for deleting a 

conditional allele of Dnmt3a. (b) EGFP expression as determined by FACS analysis of cells 

isolated from bone marrow, spleen, lymph node, thymus and blood of Dnmt3a+/+ (blue, n=5) 

and Dnmt3a−/− (red, n=4) 21-day-old mice. Data were analyzed by Student’s t-test and are 

presented as average percentages with error bars representing±s.e.m. (c) PCR-based 

genotyping of DNA isolated from unsorted (U) or FACS-sorted EGFP-positive (+) and EGFP-

negative (−) populations of cells obtained from the bone marrow (BM), spleen (Sp) and 

thymus (Th) of 6-week-old Dnmt3a−/− mouse. PCR reactions were perfomed on samples in 

the following order: U BM, +LSK BM, −LSK BM, U Sp, +Sp Pre-Pro B-cells, +Sp immature B-

cells, +Sp mature B-cells, −Sp B-cells, +Sp CD11b,−Sp CD11b, +SP Ter119, −Sp Ter119, U 

Th, +Th CD4, −Th CD4, +Th CD8, −Th CD8. Immunophenotypes of sorted populations are as 

follows: LSK cells (Lineage negative, Sca-1+, c-kit+), Pre-Pro B-cells (CD43+, CD25−, IgM−, 

B220+), immature B-cells (CD43+, CD25−, IgM−, B220+), mature B-cells (CD43−, CD25−, 

IgM+, B220+), B-cells (B220+), CD11b cells (CD11b+), Ter119 cells (Ter119+), CD4 cells 

(CD4+), CD8 cells (CD8+). Fragments from floxed (F) and knockout (KO) alleles are shown. 

Dnmt3a−/+ and Dnmt3aF/F genomic DNA served as a control. (d) Kaplan–Meier survival 

curves for Dnmt3a+/+ (black line) and Dnmt3a−/− (red line) mice. Median survival (MS), number 

of mice (n) and P-value (log-rank test) are indicated. (e) Representative spleens and average 

weight (f) of age-matched Dnmt3a+/+ (black) and Dnmt3a−/− (red) mice at 21 days (21 d), 250 

days (250 d) and at the terminally ill stage of disease (final). * denotes P<0.05. (g) Dnmt3a 

expression in spleens of Dnmt3a+/+ and Dnmt3a−/− mice as determined by immunoblot using 

anti-Dnmt3a antibody. γ-Tubulin serves as a loading control. 

 



100 

 

 
 

 

 

Figure 1 cont. Loss of Dnmt3a induces CLL in mice. (h) Expression of CD5 and B220 
markers as determined by FACS analysis in indicated tissues isolated from Dnmt3a+/+ mice 
(top panels) and terminally ill Dnmt3a−/− mice (bottom panels). (i) Expression of lambda and 
kappa light chains in selected CLL cases. (j) The time to CLL development for primary (1), 
secondary (2) and tertiary (3) serially transplanted FVB-recipient mice injected with Dnmt3a−/− 
CLL cells. Data are presented as average time to tumor development and were derived from 
three independent Dnmt3a−/− CLL samples. The number of mice (n) is shown. Error bars 
represent ±s.e.m. (P<0.05). (k) A heatmap displaying 428 hypomethylated and 37 
hypermethylated promoters in Dnmt3a−/− CLL samples (n=3) relative to control B1 cells (n=2) 
as determined by analysis of MSCC data (FDR<0.05, edgeR). A color bar is shown with blue 
representing a high degree of methylation and yellow representing lower levels. B1 indicates 
control B220+,CD19+ and CD5+ splenocytes isolated from Dnmt3a+/+ mice, whereas CLL 
denotes Dnmt3a−/− tumors. (l) COBRA analysis of the Nfam1 and Hus1b promoters using 
gDNA The percentage of positive cells for representative samples is indicated within the 
FACS quadrants isolated from splenic Dnmt3a+/+ B1 cells and Dnmt3a−/− CLL samples. PCR 
fragments were digested with restriction enzyme TaqI. Undigested {U} and digested {D} 
fragments correspond to unmethylated and methylated DNA, respectively. CpG indicates a 
fully methylated control. (m) qRT-PCR analysis of Nfam1 and Hus1b expression in splenic 
Dnmt3a+/+ B1 and Dnmt3a−/− CLL samples. Error bars represent ±s.e.m., P<0.05 (*). 
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Figure S1. Analysis of EGFP and cell surface marker expression in Dnmt3a+/+ and 
Dnmt3a-/- mice. (a) FACS analysis of EGFP expression in fetal liver cells isolated from 15.5 
day embryos with indicated genotypes. EGFP-positive cells were further analyzed for 
expression of B220, CD3, CD5, CD8, Gr-1, Ter119 lineage markers to define lineage-positive 
cells. Lineage-negative cells were analyzed for expression of Thy1.1, CD11b and Sca-1. 
Lineage-negative, Thy1.1lo, CD11b+, Sca-1+ represent fetal liver HSCs. The percentage of 
positive cells is indicated in the FACS diagrams. (b) Representative FACS analysis of EGFP+ 
LSK cells in the bone marrow of 21days old Dnmt3a+/+ and Dnmt3a-/- mice. Representative 
FACS diagrams show percentage of EGFP+ LSK cells identified as Lineage-
negative,Sca1+,c-kit+. Lineage-negative populations were identified by CD4, CD8, CD11b, 
B220, CD3, TER119 lineage marker expression.  (c) Total percentage of EGFP+ LSK cells in 
the bone marrow of 21 days old Dnmt3a+/+ (n=4) and Dnmt3a-/- (n=5) mice. Error bars 
represent the SEM. (d) Representative FACS diagrams showing expression of EGFP, 
Ter119, B220, CD11b, CD4 and CD8 in spleens (SP) and thymi (Th) of Dnmt3a+/+ mice.  
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Figure S2. Cellularity of Dnmt3a and Dnmt3a/Dnmt3b knockout mice. The average cell 
counts of aged-matched Dnmt3a+/+  (black), Dnmt3a-/- (red) Dnmt3a-/-;Dnmt3b-/- (green) 
spleens and bone marrow at age 21 days (21d). Error bars represent the SEM. 
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Figure S3. Deletion efficiency of Dnmt3a conditional knockout allele in Dnmt3a-/- 
tumors. PCR-based analysis of deletion efficiency of the Dnmt3a conditional knockout allele 
in DNA from splenic cells isolated from Dnmt3a-/- mice with CLL. Fragments derived from 
floxed (F) and knockout (KO) alleles are shown. Dnmt3aF/F genomic DNA served as a control. 
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Figure S4. Histological analysis of Dnmt3a-/- splenic tumors. (a) A spleen from a 
Dnmt3a+/+ mouse with normal architecture. White pulp (long arrow) and red pulp (short 
arrow) are indicated (H&E 100x). (b) Dnmt3a-/- tumors showing diffuse effacement of the 
splenic architecture with expansion of the white pulp (H&E 100x). (c) Dnmt3a-/- tumor 
showing neoplastic cell populations (long arrow), resting lymphocytes (short arrow) and 
prolymphocytes (block arrow) (H&E 400x). 
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Figure S5. Dnmt3a-/- splenic tumor cells induce splenomegaly and CLL disease in 
recipient mice. (a) A picture showing spleens from a Dnmt3a+/+ control and a Dnmt3a-/- 
recipient at 90 days post intraperitoneal injection. (b) A bar graph representing the 
average spleen weight in grams from Dnmt3a+/+ controls and Dnmt3a-/- recipients at 90 
day post i.p. injection. n denotes the number of mice. Error bars represent the SEM. (c) A 
representative flow diagram depicting B220 and CD5 expression in splenic tumor cells 
from Dnmt3a-/- recipient at 90 day post i.p. injection.  
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Figure S5. Dnmt3a-/- splenic tumor cells induce splenomegaly and CLL disease in 
recipient mice. (a) A picture showing spleens from a Dnmt3a+/+ control and a Dnmt3a-/- 
recipient at 90 days post intraperitoneal injection. (b) A bar graph representing the 
average spleen weight in grams from Dnmt3a+/+ controls and Dnmt3a-/- recipients at 90 
day post i.p. injection. n denotes the number of mice. Error bars represent the SEM. (c) A 
representative flow diagram depicting B220 and CD5 expression in splenic tumor cells 
from Dnmt3a-/- recipient at 90 day post i.p. injection.  

 

 
Figure S6. Methylation analysis of gene bodies and repetitive elements. Bar graphs 
depicting in silico analysis of relative methylation of gene body, Line/L1, Line/L2, and 
Sine/Alu repeats in Dnmt3a+/+ B1 cells and Dnmt3a-/- tumors (CLL) as determined by 
MSCC. The total number of tags obtained from next generation sequencing of MSCC 
libraries (HpaII and HpyCh4IV) generated from Dnmt3a+/+ B1 cells (n=2) and Dnmt3a-/- CLL 
samples (n=3) specific to gene body (defined as +500 base pairs from transcription start 
site to the end of the gene) or repeat elements were summed. Averages of B1 tags were 
used for normalization of the data. As the number of MSCC tags inversely correlates with 
methylation levels the inverse values represent relative methylation levels. Error bars 
represent ± SEM (* denotes P<0.05). 
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Loss of Dnmt3b accelerates CLL development in Dnmt3a−/− mice. 

In our previous studies, we have not observed any hematopoietic defects 

associated with long-term Dnmt3b deficiency (Figure 2a (13)). To determine whether 

loss of Dnmt3b affects CLL development in Dnmt3a−/− mice, we generated and 

monitored a cohort of EμSRα-tTA;Teto-Cre;Rosa26LOXPEGFP/EGFP;Dnmt3aF/F;Dnmt3bF/F 

mice (Dnmt3a−/−;Dnmt3b−/−, Supplementary Figure 7). The median survival of these mice 

(322 days) was significantly decreased relative to Dnmt3a−/− mice (371 days) (Figure 

2a). Consistent with decreased survival, 10-month-old Dnmt3a−/−;Dnmt3b−/− mice had 

more profound splenomegaly than Dnmt3a−/− mice, unlike 21-day-old mice that had no 

difference in spleen sizes, cell counts or marker expression (Figures 2b and c, 

Supplementary Figure 1 and Supplementary Table S1). Both Dnmt3a and Dnmt3b were 

efficiently deleted, as demonstrated by PCR-based genotyping (Figure 2d). Five out of 

eight analyzed Dnmt3a−/−;Dnmt3b−/− mice developed a CLL disease 

immunophenotypically identical to that observed in Dnmt3a−/− mice (Figures 2e and f and 

Supplementary Table S1). Importantly, the remaining three Dnmt3a−/−;Dnmt3b−/− mice 

developed CD8+, CD3+ and TCRβ+ T-cell malignancies (Figures 2e and f) that were 

also serially transplantable (not shown). Altogether, these data indicate that, in the 

absence of Dnmt3a, Dnmt3b functions as a tumor suppressor in CLL and T-cell 

malignancies. 
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Figure 2. Loss of Dnmt3b accelerates tumor development in Dnmt3a−/− mice and alters 

the disease spectrum. (a) Kaplan–Meier survival curves for Dnmt3a−/− mice (red line) and 

Dnmt3a−/−; Dnmt3b−/− mice (blue line). Median survival (MS), number of mice (n) and P-value 

(log-rank test) are indicated. The red line denoting Dnmt3a−/− mice is the same used in Figure 

1d. (b) Representative spleen images from Dnmt3a+/+;Dnmt3b+/+, Dnmt3a−/− and 

Dnmt3a−/−;Dnmt3b−/− mice at 10 months. (c) The average weight of age-matched Dnmt3a+/+ 

(black), Dnmt3a−/− (red) Dnmt3a−/−;Dnmt3b−/− (green) mice at 21 days (21 d) and 10 months 

(10 mo). * denotes P<0.05. n denotes the number of mice. (d) Deletion efficiency of 

conditional Dnmt3aF and Dnmt3bF knockout alleles as determined by PCR-based genotyping. 

Dnmt3aF/F and Dnmt3bF/F served as controls. (e) Representative flow cytometric profiles of 

surface marker expression for B- and T-cell malignancies from Dnmt3a−/−;Dnmt3b−/− mice. (f) 

Graphical presentation of the percentage of T- and B-cell malignanies in Dnmt3a−/− and 

Dnmt3a−/−;Dnmt3b−/− mice. 
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Figure S7. Schematic representation of the genetic setting to delete conditional alleles 
of Dnmt3a and Dnmt3b in hematopoietic system. 
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Discussion 

Our data suggest that lymphoid cells are more sensitive to Dnmt3a and Dnmt3b 

levels than are myeloid cells, perhaps because deregulation of cytosine methylation has 

a higher transformation potential in B- and T-cells. Indeed, genome-wide studies 

identified a higher number of differentially methylated regions during the development of 

lymphoid relative to myeloid lineages (135). As a result, their deregulation may 

preferentially promote transformation of lymphoid cells. Tumor suppressor functions of 

Dnmt3a and Dnmt3b in the prevention of mouse CLL are consistent with observations 

that both genes are in the top 1% of underexpressed genes, as determined by global 

gene expression profiling of 448 human CLL samples (63). Consistent with low Dnmt3a 

and Dnmt3b expression in CLL, recent genome-wide bisulfite sequencing of human CLL 

samples revealed a massive decrease in CpG methylation relative to normal control 

samples, suggesting that hypomethylation may play a role in the pathogenesis of CLL 

(64). A recent study also showed that the Tcl1 protein, whose transgenic overexpression 

induces CLL in Eμ-TCL1 mice, functions as an inhibitor of DNA methyltransferases 

Dnmt3a and Dnmt3b, resulting in hypomethylation in the early stages of CLL (65). These 

studies, along with our demonstration that loss of Dnmt3a alone or with Dnmt3b is 

sufficient to induce CLL in mice, which is characterized by large-scale genome-wide 

hypomethylation, suggest that CLL to a large extent is an epigenetic disease. Further 

functional studies will need to be perfomed to identify epigenetic drivers involved in the 

pathogenesis of CLL. 

Interestingly, we have not observed the development of myeloid malignancies in 

this model, despite the fact that Dnmt3a and Dnmt3b are conditionally ablated in all 

hematopoietic lineages and that Dnmt3a mutations are most common in the myeloid 

compartment (39). The preferential presence of Dnmt3a mutations in human acute 
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myeloid leukemia may reflect a necessity for tight collaboration with NPM1, FLT3 and 

IDH1 genes, which are co-mutated with Dnmt3a (136). Alternatively, such mutations in 

Dnmt3a may result not only in inactivation of methyltransferase activity but possibly also 

in gain of function. 

In studies performed by Challen et al. (45), a critical role for Dnmt3a in the 

differentiation of HSCs was observed utilizing Mx1-Cre-mediated excision of Dnmt3a. 

Although some bias toward B-cell differentiation was observed in Dnmt3a−/− cells, no 

tumor development was reported. Although the genetic settings in both studies are 

similar in the sense that Cre-mediated excision is achieved in HSCs/early progenitors, 

several differences may explain the development of CLL in EμSRα-tTA;Teto-Cre; 

Rosa26LOXPEGFP/EGFP; Dnmt3aF/F mice but not in Mx1-Cre;Dnmt3aF/F mice. First, we 

used FVB rather than C57BL/6 mice to inactivate Dnmt3a. As mouse strains differ in 

levels of gene expression, the Dnmt3a phenotypes may be strain specific. Second, we 

utilized a conditional Dnmt3a knockout allele targeting exons 18–20 (134) rather than 

exon 19 (137). Although in principle Cre-mediated excision of both alleles results in 

inactivation of Dnmt3a, we cannot rule out the possibility of allele-specific effects. Other 

differences may come from different experimental approaches—for example, use of 

primary Dnmt3a−/− mice versus recipients receiving Dnmt3a−/− cells in adoptive transfer 

experiments, length of observational period, etc. Despite differences in our studies, for 

the first time we provide evidence that Dnmt3a and Dnmt3b function as tumor 

suppressor genes in the prevention of lymphoid malignancies in mice. Thus, this mouse 

model will be a particularly useful tool for studying the acquired epimutations that 

functionally contribute to CLL development. 
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CHAPTER 4: Promoter hypomethylation and expression is conserved 
in mouse chronic lymphocytic leukemia induced by decreased or 

inactivated Dnmt3a 

 

Introduction 

DNA methyltransferase 3a (Dnmt3a) is an enzyme important for the generation 

and maintenance of 5-methyl-cytosine in mammalian genomic DNA. The methylation of 

gene promoters is typically associated with gene repression and plays an important role 

in silencing of endogenous retroviral elements, X-chromosome inactivation, imprinting 

and differentiation. In particular, cytosine methylation plays a critical role in 

hematopoiesis and its deregulation contributes to hematologic malignancies (138). This 

is highlighted by the presence of mutations in the DNMT3A gene in a wide variety of 

human hematologic malignancies of myeloid and T cell origin (138). Although the 

precise biological and molecular functions by which DNMT3A prevents cellular 

transformation are poorly understood, functional studies in mice have begun to uncover 

the role of Dnmt3a in hematopoiesis. Long-term Dnmt3a deficiency inhibits the ability of 

hematopoietic stem cells (HSCs) to differentiate into hematopoietic lineages, promoting 

the development of various hematologic malignancies, including myelodysplastic 

syndrome, acute myeloid leukemia, and acute lymphoblastic leukemia of T and B cell 

origin (37, 45, 139). Introduction of genetic alterations found in hematologic 

malignancies into a Dnmt3a deficient background often results in enhanced phenotypes. 

For example, Dnmt3a deficiency in combination with c-kit overexpression induces acute 

T and B cell leukemia (36), and when associated with KrasG12D/+ promotes progression 

of juvenile and chronic myelomonocytic leukemia (140). Given the multiple genome-wide 

activities associated with Dnmt3a, such as de novo methylation (5), maintenance 

methylation (14), and methylation-independent repression (17), it is not surprising that 
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under some circumstances Dnmt3a may promote the development of hematologic 

malignancies. For example, upregulation of Dnmt3a promotes AML/ETO induced 

leukemia through de novo hypermethylation (141) and methylation-independent 

repressor function enhances T cell lymphomagenesis (12). Such studies highlight the 

importance of context-dependent activities of Dnmt3a in hematologic malignancies. 

DNMT3A mutations in human hematologic malignancies are usually heterozygous and 

most commonly occur at amino acid 882. DNMT3A R882H mutants show both 

decreased methyltransferase activity (47) and dominant negative functions as its 

overexpression results in hypomethylation (108). Therefore, a partial, rather than 

complete inactivation of DNMT3A is likely more relevant in the pathogenesis of human 

hematologic malignancies. The effects of decreased levels of Dnmt3a in prevention of 

hematologic malignancies, however, are poorly understood. 

We have previously utilized EμSRα-tTA;Teto-Cre;Dnmt3afl/fl;Rosa26 LOXP 

EGFP/EGFP  quadruple transgenic mice (designated here as Dnmt3aΔ/Δ mice) to 

conditionally inactivate Dnmt3a in hematopoietic stem cells and hematopoietic lineages 

(34). Surprisingly, all Dnmt3aΔ/Δ mice developed disease similar to chronic lymphocytic 

leukemia (CLL) with a median survival of 371 days characterized by an expansion of 

EGFP+ mature B220+CD19+CD5+ B cells (B-1a cells) in hematopoietic organs. Here 

we asked whether Dnmt3a haploinsufficiency can result in the development of a CLL-like 

disease or other hematologic malignancies by observing Dnmt3a+/- mice. We show that 

whereas a decrease in Dnmt3a levels is insufficient to immediately induce cellular 

transformation of hematopoietic cells, long-term Dnmt3a decrease results in the 

development of a CLL-like disease in 65% of mice and myeloproliferative disease in 

15% of mice within 16 months. Whole-genome bisulfite sequencing (WGBS) and RNA-

seq revealed that a significant cohort of methylation and expression changes were 
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conserved in Dnmt3a+/- and Dnmt3aΔ/Δ CLL. Ingenuity Pathway Analysis (IPA) analysis 

revealed a signature of putative oncogenes that may drive CLL development.  

Altogether, our data demonstrate that a small reduction of Dnmt3a levels has profound 

phenotypic consequence on both cellular and molecular levels, identifying Dnmt3a as a 

critical gene preventing B-1a cell transformation.   

Methods 

Mouse Studies: All mice used in these studies were of the FVB/N background 

and were generated using standard genetic crosses. To obtain mice with a germline 

transmission of the Dnmt3a- allele, we crossed EμSRα-tTA;Teto-Cre;Dnmt3afl/fl mice with 

FVB mice, taking advantage of our observation that the EμSRα-tTA transgene is 

expressed in germ cells (data not shown). To generate Dnmt3a+/- we subsequently 

bread out transgenes by crossing obtained mice with FVB mice). PCR-based genotyping 

of genomic DNA isolated from the tails was used to confirm genotypes. Mice were 

harvested at the experimental end point of 16 months.  Transgenic mice used in these 

studies were obtained from the following laboratories: EμSRα-tTA (D.W. Felsher at 

Standford University), Dnmt3a2loxP (R. Jaenisch at the Whitehead Institute), 

ROSA26EGFP and Teto-Cre (The Jackson Laboratory). Transplantation studies were 

carried out by injecting splenic cells isolated from 16 month old Dnmt3a+/- mice into the 

intraperitoneal cavity of FBV/N mice. 

FACS analysis: FACS analysis was performed at the UNMC Flow Cytometry 

Facility. All antibodies used in these studies were purchased from eBioscience. Data 

was collected using the LSR II (BD Biosciences) and analyzed using BD FACSDiva 

software (BD Biosciences). B-1a cells used for methylation and expression analysis 

were isolated from the spleens of either FVB/N (controls), Dnmt3a+/Δ, Dnmt3a+/- or 

Dnmt3a Δ/Δ mice and sorted for CD19, B220, and CD5 positivity using the FACS Aria II 
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(BD Bioscience). Mice diagnosed with MBL had between 2 to 20% B-1a in the blood at 

time of harvest, while those diagnosed with CLL had greater than 20% B-1a in the blood. 

Mice diagnosed with MPD had profound expansion of CD11b+Gr-1+ cells in the blood 

(>70%), and spleen (>40%).  

Whole genome Bisulfite sequencing (WGBS): Splenic B-1a cells were isolated 

by FACS sorting from Dnmt3a+/+, Dnmt3a+/ Δ tumor, and Dnmt3a Δ/Δ tumor samples (n=1 

per genetic group). WGBS data is available for download through the NCBI Gene 

Expression Omnibus.  Details regarding the number of aligned sequencing reads per 

sample can be found in Table S9. Splenic B-1a cells (EGFP+CD5+CD19+B220+) were 

isolated by FACS sorting from Dnmt3a+/ Δ and Dnmt3a Δ/Δ suffering from with CLL (n=1 

per genetic group). Age-matched control B-1a cells were FACS-sorted from spleens of 

EμSRα-tTA;Teto-Cre;Dnmt3a+/+;Rosa26LOXPEGFP/EGFP mice (n=1). Genomic DNA was 

isolated using standard protocols. The WGBS libraries were prepared and sequenced in 

DNA Services facility at the University of Illinois at Urbana-Champaign, Roy J. Carver 

Biotechnology Center / W.M. Keck Center using two lanes for each sample on the 

Illumina HiSeq2500 sequencer with paired-end 160bp reads.  Each lane produced over 

310 million reads. Sequence tags were aligned with the mouse genome (Dec. 2011 mus 

musculus assembly mm10, Build 38) using the methylated sequence aligner Bismark 

(142) by the University of Nebraska Epigenomics Core facility.  The resulting data file 

contains the percent methylation at each CpG measured. Each individual CpG was 

retained and percent methylation determined only if it was represented by ≥ 5 individual 

sequences. Correlation based, average linkage hierarchical clustering of genome 

location matching CpG methylation percentages per sample was performed using the R 

software package RnBeads (143). Genome location matching differentially methylated 

loci (DMLs) and differentially methylated regions (DMRs) were determined using the R 
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software package DSS (144). DMLs were determined by first smoothing the raw percent 

methylation values based on a moving average algorithm and smoothing span of 500 

bases. DMRs were then determined based on average DML methylation change of 30 

percent or greater, at least 50 percent or greater individual DML P-values less than 0.05, 

minimum base pair length of 100, minimum of three DMLs represented, and the resulting 

DMRs were aveaged if they were closer than 50 bases. Circos plots (145) were 

generated to visualize DMRs that had at least a 100 base overlap with genomic 

promoters defined as 1500 bases upstream of the transcription start site (TSS) to 500 

bases downstream of the TSS. DMRs were aligned with the mouse genomic 

repeats.  Genomic repeats were acquired from the UCSC Genome table browser based 

on the RepeatMasker program (Smit et al., 1996-2000). The repeat was retained if the 

overlap between the DMR and repeat was more than 25 percent of the length of the 

repeat. WGBS data is available for download through the NCBI Gene Expression 

Omnibus.   

FACS and BrdU: Cell counts were obtained using Count Bright Absolute 

Counting Beads from Invitrogen. B-1 cells (B220+CD19+CD5+) B-2 cells 

(B220+CD19+CD5-), CD4+ T cell (CD4+CD3+), CD8+ T cells (CD8+CD3+), and 

myeloid cells (Cd11b+), were isolated from the spleens of 6 week old FVB mice and 

sorted for their corresponding marker expression using FACS. BrdU labeling of B-1a 

cells was performed by injecting BrdU (100 mg/g per body weight) into the IP cavity of 

mice 2 hours prior to harvest. B-1a cells were stained with fluorescently conjugated 

antibodies against CD19, B220, and CD5, and BrdU-positive cells were quantified using 

APC-conjugated anti-BrdU and FACS analysis. 
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Western Blot: Western blots were performed as previously described (13) with 

use of the following antibodies: Dnmt3a (H-295, Santa Cruz), γ-Tubulin (H-183, Santa 

Cruz). 

Combined Bisulfite Restriction Analysis (COBRA) and Bisulfite 

sequencing: COBRA and Bisulfite sequencing analysis were carried out as described 

previously (13, 33).  Briefly, genomic DNA from tumor and sorted cell populations was 

treated with sodium bisulfite and isolated using the Qiagen Epitech Bisulfite Kit.  PCR 

amplified products were digested with the restriction enzymes TaiI (Fermentas), TaqAI, 

or BstUI (New England Bioscience).  Digests were run on a TBE-polyacrylamide gel and 

stained with SYBR Gold (Invitrogen).  COBRA primers used in this study are presented 

in Table S10. 

RNA-seq: RNA was isolated as previously described (Hlady et al., 2012) from 

sorted splenic B-1a cells of FVB/N mice (n=2) and Dnmt3a +/Δ (n=1), Dnmt3a+/- (n=3) and 

Dnmt3a Δ/Δ (n=8) tumor mice. Library generation (TruSeq mRNA kit) and sequencing 

were performed by SeqMatic (Fremont, CA). The resulting libraries were sequenced on 

the Illumina HiSeq 2000 platform using paired-end 100bp runs . The sequencing data 

was first aligned using TopHat (version 1.0.0) and mapped to the Mus musculus UCSC 

mm10 reference genome using the TopHat 2 aligner. Cufflinks 2 was used to estimate 

FPKM of known transcripts, perform de novo assembly, of novel transcripts, and 

calculate differential expression. For differentially expressed genes, we considered those 

genes with a fold change ≥ 2 and a q-value < 0.05 to be significant. RNA-seq data is 

available for download through the NCBI Gene Expression Omnibus.  

RNA-seq analysis of human CLL data: Publically available RNA-seq data 

generated using human CLL (n=10) and normal B cells (n=5) samples was downloaded 

from the NCBI GEO database (GSE70830). These data were used to identify 
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significantly overexpressed HOC genes in Figure 7B. Only those genes with a p-value 

<0.05 (CuffDiff) were considered significant.  

Reduced Representation Bisulfite Sequencing (RRBS): Splenic B-1a cells 

were isolated by FACS sorting from two Dnmt3a Δ/Δ mice with CLL. Age-matched control 

B-1a cells were FACS-sorted from spleens of FVB/N mice (n=2). Genomic DNA was 

isolated using standard protocols. The RRBS libraries were prepared and sequenced at 

the Medical Genome Facility at the Mayo Clinic and ran on an Illumina HiSeq2500 

sequencer. The Streamlined Analysis and Annotation Pipeline for RRBS data (SAAP-

RRBS) was specifically designed to analyze RRBS data (Sun et al., 2012). This software 

was used to align and determine the methylation status of CpGs associated with this 

type of restriction digest high throughput method. Sequences were initially aligned with 

genome mm9 then converted to mm10 using the UCSC Genome Browser Batch 

Coordinate Conversion (liftOver) utility. Details regarding the number of sequencing read 

alignments can be found in Table S9. The methylation heat map was generated by 

taking the averages for all differentially methylated CpGs for a promoter (-1500 to +500 

base pairs relative to the transcription start site). Promoters were only considered to be 

differentially methylated if one or more CpG sites showed a 30% change in methylation.  

Methyl Sensitive Cut Counting (MSCC): Libraries were generated using gDNA 

from FACS sorted Dnmt3a+/+ splenic B-1a cells (n=2), and Dnmt3aD/DCLL cells (n=3) and 

ran on an Illumina HiSeq2500 sequencer at the Univeristy of Nebraska Medical Center 

Sequencing Core. Data were analyzed as described previously (13, 33). In brief, 

promoters were only considered to be differentially methylated if one or more 

independent HpaII/HpyCh4IV sites showed a 2-fold change or greater with a P-value 

<0.05. The methylation heat map was generated by taking the averages for raw counts 

for all significant change and calculating a fold change in methylation between 
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Dnmta3a+/+ B1 cells and Dnmt3a-deficient tumors. The promoter is defined as -1500 to 

+500 base pairs relative to the transcription start site. 

Quantitative Real-Time qRT-PCR: qRT-PCR was performed as previously 

described (13, 33). Primer sequences used in experiments presented here are as 

follows: mouse Dnmt3a: GCAAAGTGAGGACCATTACCA (forward), 

CTGTGTAGTGGACGGGGAAG (reverse). Human DNMT3A: 

CAATGACCTCTCCATCGTCAAC (forward), CATGCAGGAGGCGGTAGAA (reverse). 

Mouse Nfam1: GAAAAGGGTTAAAAGAAATTTTAGTTT (forward), 

CCCAATAAATAACTTATCACCTACAA (reverse). 

cDNA sequencing of Dnmt3a: RNA from three independent FACS sorted 

Dnmt3a+/- CLL tumors and pooled wild-type FVB splenic B1 cells was reverse 

transcribed into cDNA (BioRad iScript).  Using Phusion DNA polymerase (Thermo 

Scientific) and primers spanning the translational start and stop codons, Dnmt3a was 

PCR amplified.  The 2.7kb band representing the full length wild-type allele was gel 

extracted and sequenced.  Tumor sample sequences were compared to wild-type B1 

and NCBI reference cDNA gene sequences. The following primer sequences were used 

for amplification of the transcript from cDNA: ATGCCCTCCAGCGG (forward), 

TTACACACAAGCAAAATATTCCTTCAG (reverse), and confirmation by sequencing: 

TCGATGTTGGTCTGCTTCTG (reverse 1), CAGGAGAGGGCAAAGAACAG (forward 1), 

ACCAGGCCACCTACAACAAG (forward 2), GAACTGCTTCTTGGAGTGTGC (forward 

3), AGGGTACTGGCCGCCTCT (forward 4). 

Histology: H&E staining was performed using standard protocols by the 

University of Nebraska Medical Center Tissue Science Facility.  
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Results 

The majority of Dnmt3a+/- mice develop a CLL-like disease. 

During the course of our studies utilizing Dnmt3aΔ/Δ mice (Peters et al., Leukemia 

2014) we also observed an EμSRα-tTA;Teto-Cre;Dnmt3+/fl;Rosa26LOXPEGFP/EGFP mouse 

in which only one allele of Dnmt3a was conditionally inactivated (referred herein as 

Dnmt3a+/Δ or conditional heterozygous mouse). This mouse became moribund at 16 

months and analysis of the organs revealed expansion of EGFP-positive (EGFP+) 

B220+CD19+CD5+ (B-1a) cells in the spleen, suggesting that this mouse developed a 

CLL-like disease (Figure 1A). Serial transplantation of Dnmt3a+/Δ splenic cells induced 

CLL within 4 months in primary, secondary and tertiary transplanted mice, illustrating 

their selective advantage to grow and induce disease (Figures S1A and S1B). Dnmt3a+/Δ 

CLL cells showed reduced Dnmt3a protein and mRNA levels (Figures 1B and 1C), 

suggesting that decreased Dnmt3a dosage is sufficient to promote B-1a cell 

transformation. Dnmt3a+/Δ tumor cells incorporated BrdU in vivo less efficiently than 

Dnmt3aΔ/Δ cells (Figure S1C).  These data suggest that Dnmt3a haploinsufficiency in 

hematopoietic cells, like full Dnmt3a inactivation, might be sufficient to induce a less 

aggressive CLL-like disease in mice.  To test this we generated Dnmt3a+/- mice 

harboring a conventional Dnmt3a knockout allele (referred to herein as Dnmt3a-) via 

germline cre-mediated excision of Dnmt3a exons 18-20 (Figure S2A) (Dnmt3afl; Nguyen 

et al., 2007). Generation of the Dnmt3a- allele was confirmed by PCR-based genotyping 

(Figure S2B). Analysis of protein levels in normal thymus and spleen isolated from 6 

week-old Dnmt3a+/- mice showed ~50% reduction in Dnmt3a protein levels (Figure 1D). 

This decrease had no measurable effect on hematopoiesis in 6 week old Dnmt3a+/- mice 

(Figures S2C-2G).   
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At 16 months of age, all Dnmt3a+/+ control mice were healthy with no signs of 

deregulated hematopoiesis. In contrast, only 20% of Dnmt3a+/- mice were disease-free 

at 16 months (Figure 1E and data not shown). Five out of 20 Dnmt3a+/- mice developed 

a CLL-like disease, characterized by B-1a cell expansion greater than 20% in the blood, 

spleen and bone marrow (Figures 1E-1I, and data not shown). Eight Dnmt3a+/- mice 

showed signs of monoclonal B cell lymphocytosis (MBL) – a less progressed form of 

CLL – in which the percentage of B-1a cells in the blood are between 2% to 20%, with 

simultaneous expansion in the spleen and bone marrow (Figures 1E-1I and data not 

shown). Importantly, splenic cells either from mice with MBL or CLL were able to induce 

disease in recipient mice (Figures 1I-1J), demonstrating that both populations contain 

true leukemic cells. Therefore, we refer to both conditions as CLL-like disease. Similar to 

Dnmt3a+/Δ CLL, leukemic B-1a cells isolated from Dnmt3a+/- mice retained approximately 

50% expression of Dnmt3a, suggesting that the remaining allele is expressed in fully 

transformed cells (Figures 1K-L). Importantly, sequencing analysis of cDNA generated 

from three independent Dnmt3a+/- CLL revealed no mutations in the coding sequence of 

Dnmt3a (data not shown), demonstrating that the expressed Dnmt3a allele is in the wild-

type configuration. Altogether these data suggest that Dnmt3a is a haploinsufficient 

tumor suppressor gene in prevention of CLL in mice. 
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Figure 1.  Dnmt3a heterozygous mice develop CLL. A. Flow diagram of CD5 and CD19 
expression is shown for EGFP-negative (black) and EGFP-positive (green) cells from a 
Dnmt3a+/Δ spleen. The percentage of positive cells is indicated in quadrants. B. Dnmt3a 
expression in Dnmt3a+/Δ spleen as determined by immunoblot using anti-Dnmt3a antibody. N 
indicates Dnmt3a+/+ CD19+ splenic cells. +/Δ and Δ/Δ indicate splenic CLL cells from 
Dnmt3a+/Δ and Dnmt3aΔ/Δ mice, respectively. 3a represents a positive control in which 

Dnmt3a protein was overexpressed in Dnmt3a-/- cells. -tubulin served as a loading control. 
C. qRT-PCR analysis of Dnmt3a expression in normal splenic B-1a (B1) cells and Dnmt3a+/Δ 
(+/Δ) CLL. Average of two independent experiment is presented. Error bars represent ± 
standard deviation (SD). P<0.05, Student’s t-test. Statistically significant difference is 
indicated by (*). D. Dnmt3a expression in thymi (Th) and spleens of 6 week old Dnmt3a+/+ 
(+/+) and Dnmt3a+/- (+/-) mice as determined by immunoblot using anti-Dnmt3a antibody. (-/-) 

represents Dnmt3a-defficient cells. -tubulin served as a loading control. E. Disease spectrum 
observed in ~16 months old Dnmt3a+/- mice (n=20).  MBL/CLL – monoclonal B cell 
lymphopoiesis/CLL-like disease, MPD – myeloproliferative disease, no disease – disease free 
mice. F. Flow diagram of CD5 and CD19 expression in spleens of Dnmt3a+/- (+/-) and aged-
matched Dnmt3a+/+ (+/+) mice. 



123 

 

 
 

 

 

Figure 1 cont.  Dnmt3a heterozygous mice develop CLL.  
G. H&E stained sections of Dnmt3a+/+ (normal) and Dnmt3a+/- (CLL) spleens (200X). H. 

Percentage of B-1a cells in the spleens and blood of ~16 months old Dnmt3a+/+ (blue) and 

Dnmt3a+/- (red) mice as determined by FACS. Number of mice (n) is shown.  P<0.05 is 

indicated by (*), Student’s t-test. I. Flow diagram of CD5 and CD19 expression in the spleen 

of a Dnmt3a+/- mouse with Monoclonal B cell lymphopoeisis (MBL) (top) and terminally ill FVB 

recipient mouse injected with MBL splenic cells. J. Kaplan-Meier survival curves for FVB mice 

injected with Dnmt3a+/- MBL/CLL splenic cells (3 mice per line). Five primary MBL/CLL mice 

are shown. K. Dnmt3a expression in spleens of Dnmt3a+/ (+/) and Dnmt3aD/D (D/D) mice as 

determined by immunoblot using anti-Dnmt3a antibody. N indicates Dnmt3a+/+ CD19+ splenic 

cells. -tubulin served as a loading control. L. qRT-PCR analysis of Dnmt3a expression in 

normal and leukemic Dnmt3a+/- B-1a cells. Average of two independent experiment is shown.  
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Figure S1. Dnmt3a heterozygous mice develop CLL. A. The time to CLL development for 
primary (1), secondary (2) and tertiary (3) serially transplanted FVB-recipient mice injected 
with splenic cells isolated from a terminally sick Dnmt3a+/Δ mouse. Data are presented as 
average time to tumor development. The number of recipient mice is indicated within bars. B. 
FACS analysis of EGFP expression in splenic cells of a terminally sick primary FVB-recipient 
mouse injected with splenic cells from a Dnmt3a+/Δ mouse. Expression of CD5 and CD19 is 
shown for EGFP-negative (black) and EGFP-positive (green) cells. C. BrdU incorporation 
assay, as determined by FACS analysis, of B-1a splenic cells isolated from normal Dnmt3a+/+ 

(n=3), terminally sick Dnmt3a Δ/Δ (n=3) and Dnmt3a+/Δ (n=3) mice. Error bars represent ± 
standard deviation (SD).  
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Figure S2.  Normal hematopoiesis in 6-week old Dnmt3a+/- mice.  A. A graphical 
presentation of a generation of a conventional knockout allele of Dnmt3a using EµSRα-tTA; 
Tet-o-Cre; Dnmt3fl/fl  x FVB cross. A conditional knockout allele of Dnmt3a has exons 18 (E18) 
through exon 20 (E20) flanked by LoxP sites (Nguyen et al, Dev Dyn 2007). EµSRα-tTA; Tet-
o-Cre mice express Cre in germ cells. Cre-mediated excision of DNA between LoxP sites 
results in the generation of a conventional Dnmt3a knockout allele that lacks E18-
E20. B.  PCR of genomic DNA obtained from offspring of EμSRα-tTA;Teto-Cre;Dnmt3afl/fl 
crossed with FVB.  KO indicates a DNA fragment obtained from Dnmt3a conventional 
knockout allele, F indicates a DNA fragment obtained from Dnmt3a conditional knockout 
allele and W indicates a DNA fragment obtained from Dnmt3a wild-type allele. For C-G, cells 
were isolated from the organs of 6-weeks-old Dnmt3a+/+ (n=4) and Dnmt3a+/- (n=4) and 
analyzed by FACS. No significant differences were observed in any of comparisons shown on 
this figure. Data were analyzed using Student’s t test. The average number of cells is shown 
with + SEM. C. Organ weights of thymi (TH), spleens (SP) and lymph nodes (LN). D. The 
number of CD19+CD5- (B-cells), CD11b+ (Myeloid), and Ter119+ (erythroid) cells isolated 
from bone marrow of 6-weeks-old Dnmt3a+/+ (n=4) and Dnmt3a+/- (n=4).   
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Figure S2 cont. Normal hematopoiesis in 6-week old Dnmt3a+/- mice.  E. The number of 
cells with CD4+CD8-, CD4-CD8+ or CD4+CD8+ (DP) immunophenotypes isolated from thymi 
of 6-weeks-old Dnmt3a+/+ (n=4) and Dnmt3a+/- (n=4).  F. The number of cells with Lineageneg, 
Sca-1+, c-kit+ (LSK) immunophenotypes isolated from bone marrow of  6-weeks-old 
Dnmt3a+/+ (n=4) and Dnmt3a+/- (n=4). G. The number of cells with CD4+CD3+ (T-cells); 
CD8+CD3+ (T-cells); CD19+CD5- (B-cells), CD19+CD5+ (B-1a cells), Gr-1+CD11b+ 
(Myeloid cells), Ter119+ (erythroid cells) immunophenotypes isolated from spleens of 6-
weeks-old Dnmt3a+/+ (n=4) and Dnmt3a+/- (n=4). 
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Dnmt3a+/- mice also develop myeloproliferative disease. 

In addition to CLL, we also observed the development of a myeloproliferative 

disease (MPD) in 15% of Dnmt3a+/- mice (Figure 1E). These mice showed expansion of 

Gr-1+CD11b+ myeloid cells in the blood, spleen and bone marrow (Figure 2A-2C and 

data not shown). In contrast to CLL-like cells, Gr-1+CD11b+ splenic cells did not induce 

disease upon injection into sublethally irradiated FVB recipient mice, suggesting that this 

population of cells do not contain leukemia initiating cells (Figure 2D-E). Thus, our 

studies of Dnmt3a+/- mice show that long-term mono-allelic loss of Dnmt3a can induce a 

frank B cell malignancy, non-malignant myeloproliferative disorder with a combined 80% 

penetrance by 16 months of age. In order to understand why Dnmt3a heterozygosity 

affects primarily B-1a and myeloid cells, we measured Dnmt3a mRNA levels in FACS-

sorted normal Dnmt3a+/+ B-1a, B2, T cells and myeloid cells and found that Dnmt3a 

expression was lower in B-1a cells when compared to B2 cells and relatively equal when 

compared to T cells (Figure 2F). Thus, the preferential transformation of B-1a cells or 

myeloid cells does not seem to be associated with significantly different Dnmt3a levels 

relative to other normal hematopoietic cells. The reason why B-1a and, to some extent, 

myeloid cells are in particular sensitive to transformation upon decreased Dnmt3a levels 

therefore remains unclear. 

Given that Dnmt3a+/- mice develop CLL, we next asked whether or not DNMT3A 

deficiency is observed in human CLL. Previous analysis of available gene expression 

data (Haferlach et al., 2010) identified DNMT3A as belonging to the top 1% of under-

expressed genes in CLL (Peters et al., 2014). Our further analysis showed that in 4/5 

cases of primary human CLL, DNMT3A expression was significantly decreased relative 

to normal human CD19+ B cells (Figure 2G). These data support the idea that 



128 

 

 
 

decreased DNMT3A may promote the development of human CLL. Further investigation 

is needed to more carefully address this point. 
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Figure 2. Dnmt3a+/- mice also develop non-malignant myeloproliferative disorder. A. 
Flow diagram of CD11b and Gr-1 expression in spleens of normal Dnmt3a+/+ (+/+) and 
Dnmt3a+/- (+/-) mice with MPD. B. H&E stained sections of Dnmt3a+/+ and Dnmt3a+/- spleens 
(200x). C. H&E stained sections of Dnmt3a+/+ and Dnmt3a+/- femurs (200x). D. Flow diagram 
of Gr-1 and CD11b expression in spleen of Dnmt3a+/- mouse with MPD (left). Gr-1 and 
CD11b expression 9 months post injection (right). E. Kaplan-Meier survival curves for FVB 
recipients injected with two independent Dnmt3a+/- MPD lines (3 mice per line). F. qRT-PCR 
analysis of Dnmt3a expression in sorted B-1a, B2, CD4+ T cells, CD8+ T cells, and myeloid 
cells isolated from FVB spleen. Two biological replicates are shown. Data was normalized to 
Gapdh and error bars represent ± SD. G. qRT-PCR analysis of DNMT3A expression in five 
human CLL samples (1-5). Two biological replicates for CD19+ peripheral blood from healthy 
donors were used as controls. Average of two independent experiments is shown. Error bars 
represent ± SD. 
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DNA methylome and transcriptome of normal mouse B-1a cells. 

To identify DNA methylation and transcriptional changes associated with CLL 

development, we performed global methylation profiling by WGBS and gene expression 

profiling by RNA-seq of B-1a cells isolated from normal Dnmt3a+/+ spleens, as this 

cellular population is immunophenotypically the closest normal counterpart of CLL cells. 

We focused on splenic B-1a cells rather than B-1a cells residing in the intraperitoneal 

cavity because: a.) the observed CLL disease consistently presented with splenomegaly 

and the spleen served as a source of tumor cells b.) the microenvironment can effect 

gene expression and presumably methylation patterns. WGBS analysis of normal B-1a 

cells revealed that out of 22,452,960 CpG dinucleotides covered by our analysis 

20,316,133 CpGs were methylated > 50%, whereas only 2,136,827 CpGs were 

methylated < 50% and only 133,765 CpGs ≤ 20% (Figure 3A). When we analyzed only 

CpG dinculeotides that aligned to core promoter regions (-300 to +150bp relative to 

transcription start site; TSS) we found that from the 25,742 promoters analyzed, 15,203 

were methylated at > 50%. (Figure 3B; Table S1) and only 7,436 promoters were 

methylated at ≤ 20%. A combined analysis of gene expression and methylation revealed 

that 50% of genes with ≤ 20% promoter methylation were expressed (FPKM > 5; Figure 

3C, Table S2). In contrast, 84% of genes with promoter hypermethylation (≥ 50%) were 

not expressed (FPKM ≤ 5; Figure 3C, Table S2). Consistently, the degree of promoter 

methylation inversely correlated with gene expression (Figure 3D). For example, 

promoters with less than 25% methylation were expressed at significantly higher levels 

than promoters with higher levels of methylation (Figure 3D). IPA of 3,700 highly 

expressed genes (FPKM ≥ 10) revealed a significant enrichment in genes relating to 

hematopoiesis and lymphoid tissue structure and development (Figure 3E). Altogether, 

these data demonstrates that most gene promoters in normal splenic B-1a cells are 
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hypermethylated and silenced whereas promoters that are hypomethylated are largely 

expressed and their physiological relevance is linked to the hematopoietic system. 
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Figure 3.  DNA methylome and transcriptome of normal mouse B-1a cells. A. 
Methylation status of 22,452,960 CpG dinucleotides in normal B-1a cells as determined by 
whole-genome bisulfite sequencing (WGBS). B. A heat map displaying methylation status of 
25,742 promoters as determined by WGBS. Methylation percentage for individual CpGs were 
annotated to the promoter regions -300bp to +150bp relative to the transcription start site 
(TSS).  Methylation percentages for all CpGs across the 450bp region were averaged to give 
a mean methylation value for each gene promoter. C. Heat map presentation of promoter 
methylation (analyzed as in Figure 2B) and corresponding gene expression (average FPKM 
values from RNA-seq) in mouse splenic B-1a cells for 16,770 genes. Genes with high FPKM 
values are shown in red and genes with low FPKM values are shown in green. Upper limit for 
color-coding in gene expression heat map is FPKM ≥ 5 as indicated. Heat maps are 
organized in the same gene order to match data for methylation and gene expression. D. 
Analysis of promoter (-300 to +150bp) methylation in relation to gene expression in mouse 
splenic B-1a cells for 16,770 genes. Genes were divided into four groups based on 
percentage of promoter methylation (0-25%, 26-50%, 51-75% and 76-100%).  P<0.05 for all 
pair-wise comparisons except 51-75 to 76-100 group (Bonferroni's multiple comparison test). 
E. Ingenuity Pathway analysis of 3,700 highly expressed genes (FPKM ≥ 10). The top 
subcategories obtained in “Physiological System, Development and Functions” are shown 
with the number of genes indicated above individual bars (P<0.05, for all subcategories).  
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DNA methylome of Dnmt3a+/Δ and Dnmt3aΔ/Δ CLL.  

We next performed WGBS on DNA isolated from Dnmt3a+/Δ CLL cells and 

Dnmt3aΔ/Δ CLL cells to determine the effects of loss of Dnmt3a on the CLL methylome. 

Mono-allelic loss of Dnmt3a resulted in a ~1% relative hypomethylation and a 0.1% 

hypermethylation in individual CpGs relative to B-1a (Figure 4A, Table S3). Bi-allelic loss 

of Dnmt3a resulted in a substantial 4.1% decrease and a 0.1% increase CpG 

methylation (Figure 4A, Table S3). Relative to Dnmt3a+/Δ CLL, hypomethylation in the 

Dnmt3a-deficient CLL genome was most pronounced in repetitive elements and gene 

bodies (3.5 to 5.5 fold) (Figures 4B, S3A and B). In contrast, the increased incidence of 

hypomethylated long promoters (-1500 bp to +500 bp relative to TSS) was only 2.2 fold 

greater in Dnmt3aΔ/Δ CLL compared to Dnmt3a+/Δ CLL (Figures 4C, S3B, Table S4). This 

ratio was even smaller (1.9 fold) when analysis was restricted to core promoters (-300 

bp to +150 bp) (Figures 4C, S3B, Table S4). These data suggest that Dnmt3a levels are 

more critical for promoter methylation than other parts of the genome, such as repetitive 

elements or gene bodies and that 699 hypomethylated promoters in Dnmt3a+/Δ are likely 

hypersensitive to levels of Dnmt3a (Figure 4C). Overall, 386 hypomethylated promoters 

and 43 hypermethylated promoters were shared between Dnmt3a+/Δ and Dnmt3aΔ/Δ CLL 

(Figure 4D and Table S4). Differentially methylated promoters were equally distributed 

across the genome, with exception of the X chromosome in which no hypo- or 

hypermethylated promoters were shared between Dnmt3a+/Δ and Dnmt3aΔ/Δ CLL cells 

relative to B-1a control cells (Figure 4D, Table S5).  In contrast, chromosome 11 and 19 

had the highest number of commonly hypomethylated promoters, with 48 and 23, 

respectively (Figure 4D, Table S5). Commonly hypomethylated promoters likely 

represent targets of Dnmt3a maintenance methylation function, whereas 
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hypermethylated promoters in Dnmt3aΔ/Δ CLL are likely de novo methylated by other 

Dnmts.  

To determine whether the methylation landscape generated by WGBS is specific 

to the CLL samples profiled or rather represents common changes that occur in Dnmt3a-

deficient CLL, we validated hypo- and hypermethylated promoters using locus-specific 

Combined Bisulfite Restriction Analysis (COBRA) assays, as well as two global methods 

– methyl sensitive cut counting (MSCC) and reduced representation bisulfite sequencing 

(RRBS). COBRA analysis of 6 promoters confirmed the hypomethylation identified by 

WGBS, suggesting that changes in promoter methylation likely represent common 

events occurring in mouse CLL (Figure 4G, Figure S3C). Next, we validated hypo- and 

hypermethylated promoters using two global methods – MSCC and RRBS. The choice 

of two independent approaches was driven by the fact that each method has lower 

genome-wide coverage and is biased against regions with low-CG content (146). Thus, 

their concurrent use allowed us to obtain a more comprehensive and complementary 

methylation dataset. Importantly, were confirmed 53% of hypomethylated and 98% of 

hypermethyated DMRS in promoters in Dnmt3aΔ/Δ CLL identified by WGBS using one or 

both methods (Figure 4G, Table S6). These data demonstrate that methylation changes 

detected by WGBS on a small sample set likely represent events shared among larger 

sets of Dnmt3aΔ/Δ CLL.  
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Figure 4.  DNA methylome of CLL induced by decrease or absence of Dnmt3a. A. A 
graphical presentation of differentially methylated cytosines (DMCS) in Dnmt3a+/Δ and 
Dnmt3aΔ/Δ CLL relative to B-1a control.  Methylation changes were evaluated in 15,533,510 
CpGs and are shown in both absolute numbers and percentages.  B. The number of 
differentially methylated regions (DMRS) associated with gene bodies in Dnmt3a+/Δ and 
Dnmt3aΔ/Δ CLL samples when compared to B-1a control sample. C. The number of DMRs 
associated with long promoters (-1500 to +500 bp relative to the TSS) and core promoters 
(TSS; -300 to +150bp relative to the TSS) in Dnmt3a+/Δ and Dnmt3aΔ/Δ CLL relative to B-1a 
control. D. Circos plot of DMRs associated with long promoters in Dnmt3a+/Δ or Dnmt3aΔ/Δ 
CLL. Outer circle is a graphical presentation of mouse chromosomes and inner circles 
indicate DMRs and their positions on mouse chromosomes observed in Dnmt3a+/Δ (+/Δ) or 
Dnmt3aΔ/Δ CLL (Δ/Δ) relative to B-1a control. Yellow lines indicate hypomethylated promoters 
whereas blue lines indicate hypermethylated promoters. Circle ‘C’ represents hypo- (red 
lines) and hypermethylated (green lines) promoters commonly observed in both CLL 
samples. E. COBRA analysis of putative Dnmt3a target gene promoters in splenic B-1a cells 
(B1), Dnmt3a+/Δ CLL (+/Δ), Dnmt3a+/- CLL (+/-) and Dnmt3aΔ/Δ CLL (Δ/Δ) samples. 
Undigested (U) and digested (D) fragments correspond to unmethylated and methylated 
DNA, respectively. CpG and M indicates a fully methylated control and undigested PCR 
fragments, respectively. F. (left) Heatmap showing 249 hypomethylated and 104 
hypermethylated promoters identified through WGBS and confirmed by RRBS. Data is shown 
as an average percent methylation for Dnmt3a+/+ B-1a (n=2) and Dnmt3aΔ/Δ CLL (n=2) for 
differentially methylated CpGs (minimum 30% change in methylation) annotated to the 
promoter region (-1500 to +500bp). (right) Heatmap showing 336 hypomethylated and 34 
hypermethylated promoters identified through WGBS and confirmed by MSCC. Data is shown 
as a fold change in methylation for Dnmt3aΔ/Δ CLL (n=3) relative to Dnmt3a+/+ B-1a (n=2). 
Differentially methylated CpGs (fold change > 2 and a P < 0.05, negative binomial analysis) 
were annotated to the promoter region. G. RRBS and MSCC confirmation of differentially 
methylated promoters (red) identified through WGBS. The number and percent of confirmed 
hypomethylated (top) and hypermethylated (bottom) genes by RRBS (yellow), MSCC (blue) 
or both (green) is shown. Gray represents genes identified through WGBS not confirmed by 
MSCC or RRBS.  
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Figure S3. Related to Figure 4. Deregulated methylation in Dnmt3aΔ/Δ and Dnmt3a+/Δ 
CLL. A. The number of LINE, SINE and LTR Repeat Elements that are associated with 
DMRs in Dnmt3a+/Δ and Dnmt3aΔ/Δ CLL samples when compared to B-1a control. B. Ratio 
between the number hypomethylated genomic elements observed in Dnmt3aΔ/Δ CLL and in 
Dnmt3a+/Δ CLL calculated from values in panels A-C of Figure 4 and Figure S3A. C. Bisulfite 
sequencing of the HemT promoter region in normal B-1a , Dnmt3a+/Δ CLL  and Dnmt3aΔ/Δ 
CLL samples. Each line represents the sequence of an individual allele and circles denote 
individual CpGs, with black showing methylation and white shown lack of methylation.  
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Promoter hypomethylation in CLL is likely due to the lack of cancer-specific 

maintenance activity of Dnmt3a and is independent of proliferation.  

Promoter hypomethylation observed in Dnmt3a+/- and Dnmt3aΔ/Δ CLL could 

results from Dnmt3a inactivation in normal B-1a cells, either due to lack of Dnmt3a’s de 

novo or maintenance activity. In such a scenario, promoters would be hypomethylated in 

normal B-1a cells prior to CLL development. To address this, we performed COBRA 

assays to analyze promoter methylation of 14 genes in normal Dnmt3a+/+ and Dnmt3a+/- 

B-1a cells. Interestingly, we have not seen any evidence of decreased promoter 

methylation in any of loci tested in Dnmt3a+/- B-1a cells, suggesting that a partial 

inactivation of Dnmt3a does not affect the methylation status of promoters during the 

development of normal B-1a cells (Figure 5A). Thus, the decrease in methylation 

observed in Dnmt3a+/- and Dnmt3aΔ/Δ CLL appears to be tumor-specific.  

We next sought to determine if promoter hypomethylation observed in Dnmt3a+/- 

and Dnmt3aΔ/Δ CLL could be the result of increased proliferation of CLL cells rather than 

the result of Dnmt3a-deficiency. We therefore examined promoter methylation in 

selected loci in two independent mouse models of CLL, IRF4−/−;Vh11 and Eµ-TCL1 (147, 

148). In IRF4−/−;Vh11 CLL samples, no changes in Dnmt3a levels were observed by 

global gene expression (data not shown). To verify this, we measured transcript levels of 

Dnmt3a but did not observe changes in Dnmt3a transcript levels in IRF4−/−;Vh11 CLL 

(Figure 5B). Thus, this CLL model likely represent one in which Dnmt3a activity is not 

altered.  In contrast, it has been reported recently, that TCL-1 binds to and inhibits 

Dnmt3a activity, resulting in suppression of Dnmt3a activity and hypomethylation in the 

Eµ-TCL1 mice (65). Thus, Eµ-TCL1 CLL represents a model in which biochemical 

inhibition of Dnmt3a occurs. We analyzed promoter methylation of four genes found to 

be hypomethylated in Dnmt3a+/- and Dnmt3aΔ/Δ CLL using DNA from IRF4−/−;Vh11 and 
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Eµ-TCL1 CLL samples. This analysis revealed that all tested promoters were partially 

hypomethylated in Eµ-TCL1 CLL and not hypomethylated in IRF4−/−;Vh11 CLL samples 

(Figure 5C), suggesting that promoter hypomethylation in Dnmt3a+/- and Dnmt3aΔ/Δ CLL 

is directly linked to the lack of Dnmt3a rather than to increased cellular proliferation. 

Expression of Nfam1 correlated with its promoter methylation, as this gene was 

expressed in Dnmt3a+/- and Dnmt3aΔ/Δ CLL but not in IRF4-/-;Vh11 CLL, suggesting that 

at least some genes that become hypomethylated during CLL development  become 

overexpressed (Figure 5D). These data suggest that Dnmt3a may have a tumor-specific 

maintenance activity similar to the one we described previously for Dnmt3b in MYC-

induced T cell lymphomagenesis (13). 
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Figure 5. Dnmt3a has a cancer-specific maintenance function. A. COBRA analysis of 14 
putative Dnmt3a target gene promoters in splenic Dnmt3a+/+ and Dnmt3a+/Δ B-1a cells. 
Undigested (U) and digested (D) fragments correspond to unmethylated and methylated 
DNA, respectively. CpG and M indicates a fully methylated control and undigested PCR 
fragments, respectively. B. qRT-PCR analysis of Dnmt3a expression in normal B-1a and 
IRF4-/-;Vh11 CLL samples. Average of two independent experiments is presented. Error bars 
represent ± SD. C. COBRA analysis of 4 putative Dnmt3a target gene promoters in Dnmt3a+/Δ 

(+/D), Dnmt3aD/D (D/D), E-TCL1, and IRF4-/-;Vh11 CLL. D. qRT-PCR analysis of Nfam1 

expression in B-1a, IRF4-/-;Vh11, Dnmt3a+/- (+/-), and Dnmt3aD/D (D/D)CLL.  Average of two 
independent experiments is presented. Error bars represent ± SD. 
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Gene expression is conserved in Dnmt3a+/Δ and Dnmt3aΔ/Δ CLL.  

To better understand the molecular basis for CLL development, global gene 

expression profiles of normal B-1a cells, Dnmt3a+/- and Dnmt3aΔ/Δ CLL cells were 

determined by RNA-seq.  We identified 413 overexpressed and 282 underexpressed 

genes in Dnmt3a+/- CLL relative to B-1a cells (Figure 6A, Table S7). Inactivation of both 

Dnmt3a alleles in Dnmt3aΔ/Δ CLL resulted in overexpression of 790 genes and 

underexpression of 398 genes. Interestingly, the majority of genes upregulated in 

Dnmt3a+/- CLL were also upregulated in Dnmt3aΔ/Δ CLL cells (67%), whereas 

downregulated genes were less conserved between the two genetic settings (57%; 

Figure 6B, Table S7). To gain insight into the nature of deregulated processes in CLL 

induced by decreased levels of Dnmt3a, we next performed IPA analysis of differentially 

expressed genes between Dnmt3a+/- and Dnmt3aΔ/Δ CLL relative to control B-1a cells. 

Notably, the top five subcategories under “Disease and disorder” and “Physiological 

System Development and Functions” were identical in Dnmt3a+/- and Dnmt3aΔ/Δ CLL 

(Figure S4A). In addition, three out of five subcategories under “Canonical pathways” 

were conserved between Dnmt3a+/- and Dnmt3aΔ/Δ CLL. Altogether, this suggests that 

despite the higher number of differentially expressed genes present in Dnmt3aΔ/Δ CLL, 

similar pathways are affected in both settings. However, the physiological relevance of 

these categories to CLL development is less clear as this analysis did not provide clear 

links to pathways or molecules driving CLL development. 
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Figure 6. Decreased Dnmt3a levels result in deregulated transcription in Dnmt3a+/Δ CLL 
similar to Dnmt3aΔ/Δ CLL. A. Heat maps derived from RNA-seq analysis displaying 413 
overexpressed and 282 underexpressed genes in Dnmt3a+/ Δ  and Dnmt3a+/- CLL (n=4) 
relative to control B-1a cells (n=2) (left) and 790 overexpressed  and 398 underexpressed 
genes in Dnmt3aΔ/Δ CLL (n=8). Only genes with a fold change ≥ 2 and a q-value < 0.05 are 
shown (CuffDiff analysis). B. The number of genes differentially expressed in Dnmt3aΔ/Δ CLL 
(white box), Dnmt3a+/- CLL (black box) and genes common between Dnmt3aΔ/Δ and Dnmt3a+/- 
CLL (grey box).  
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Genes commonly hypomethylated and overexpressed in Dnmt3a+/- and Dnmt3aΔ/Δ 

CLL (HOC) are putative drivers of CLL.  

Since loss of one allele of Dnmt3a is sufficient to induce CLL, we hypothesized 

that genes most likely involved in pathogenesis of the disease are those whose promoter 

methylation affect gene expression in both Dnmt3a+/- and Dnmt3aΔ/Δ CLL. A comparison 

of promoter methylation and gene expression revealed that 10% of genes in both 

Dnmt3a+/- and Dnmt3aΔ/Δ CLL were hypomethylated and overexpressed (Figure 7A, 

Table S8). In contrast, only 3% and 1% of hypermethylated genes showed reduced 

expression in Dnmt3a+/- and Dnmt3aΔ/Δ CLL, respectively (Figure 7A). We next 

performed IPA using genes whose expression and methylation was commonly changed 

in both Dnmt3a+/- and Dnmt3aΔ/Δ CLL. This analysis identified a signature of 26 genes 

commonly hypomethylated and overexpressed in both Dnmt3a+/- and Dnmt3aΔ/Δ CLL 

(Hypomethylated and overexpressed in CLL; HOC genes; Figure 7B). With exception of 

Mgmt, promoter hypomethylation of all HOC genes was confirmed by locus-specific 

COBRA assay in the vast majority Dnmt3a+/- CLL and Dnmt3aΔ/Δ CLL samples tested, 

suggesting that HOC promoter hypomethylation is a conserved event in CLL induced by 

a decrease in Dnmt3a. These genes therefore may play a role in disease development.  

Consistently, IPA analysis placed twenty-four genes in the category ‘cancer’ (Figure 

S4B). In contrast to the strong association of HOC genes with the cancer category, IPA 

analysis of multiple randomly selected groups of 26 overexpressed genes in Dnmt3a+/- 

CLL did not identify the category of ‘cancer’ as top category and failed to yield a single 

gene associated with cancer (data not shown), further supporting the idea that HOC 

genes may promote the development of CLL. Thus, combined methylation and gene 

expression analysis identified genes likely regulated by Dnmt3a maintenance 
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methylation activity that have strong association to cancer and may contain oncogenic 

drivers of CLL. 
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Figure 7. Genes commonly hypomethylated and overexpressed in Dnmt3a+/- and 
Dnmt3aΔ/Δ CLL (HOC) are putative drivers of CLL. A. The number of genes differentially 
expressed and differentially methylated at the promoter region in Dnmt3aΔ/Δ CLL and 
Dnmt3a+/- CLL. The number of genes with corresponding methylation and expression 
changes are shown in the grey boxes. B. Promoter methylation for HOC genes in B-1a, 
Dnmt3a+/Δ CLL, and Dnmt3aΔ/Δ CLL is shown within boxes. Similarly, fold differences in gene 
expression between Dnmt3a+/Δ CLL relative to B-1a and Dnmt3aΔ/Δ CLL relative to B-1a is 
shown. (*) denotes genes overexpressed in human CLL. C.  COBRA analysis of 26 HOC 
gene promoters in Dnmt3a+/Δ CLL (+/Δ), Dnmt3a+/- CLL (+/-) and Dnmt3aΔ/Δ CLL (Δ/Δ) 
samples. Undigested (U) and digested (D) fragments correspond to unmethylated and 
methylated DNA, respectively. CpG and M indicates a fully methylated control and 
undigested PCR fragments, respectively. (*) denotes unconfirmed target.  
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Figure S4. Related to Figures 6 and 7. Ingenuity pathway analysis of differentially 
expressed genes. A. IPA analysis of genes differentially expressed between Dnmt3aΔ/Δ CLL 
and Dnmt3a+/  CLL when compared to B-1a cells. Most significant categories and are shown 
(P<0.05). B. IPA analysis of HOC genes. Most significant categories under disease and 
disorders are shown with a number of genes indicated on the top of the individual bars.   
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Discussion 

Identification of Dnmt3a’s molecular targets and understanding how they regulate 

cellular functions will enrich our understanding of the pathogenesis of human blood 

cancers given the broad scope of hematologic malignancies in which the function of 

Dnmt3a is altered.  Mouse models represent an invaluable tool in such efforts as they 

allow us to evaluate the phenotypic and molecular consequences of changes in levels of 

Dnmt3a in normal and malignant hematopoiesis. Through functional studies in mice, we 

have previously expanded the known disease spectrum in which Dnmt3a plays a role, as 

we showed that complete inactivation of Dnmt3a in cells of the hematopoietic system 

resulted in the development of a CLL-like disease: a malignancy of B cell origin that in 

humans is not known to harbor genetic alterations of DNMT3A locus. Rather, decreased 

levels of DNMT3A are a common feature of CLL (34, 63) and wide-spread promoter and 

gene-body hypomethylation is characteristic of the CLL methylome in humans (64). 

Similarly, in Eµ-TCL1 mice Dnmt3a levels are both decreased and inhibited in early 

stages of CLL development, suggesting a role for Dnmt3a in tumor initiation (65, 149). 

In this study, we asked whether a more physiologically relevant setting – a 

decrease in Dnmt3a, rather than complete deficiency – can drive the development of 

hematologic malignancies. By analysis of Dnmt3a+/- mice, we identified Dnmt3a as a 

haploinsufficient tumor suppressor gene in the prevention of CLL and MPD. The overall 

penetrance of disease in Dnmt3a heterozygotes (80%) might be even greater, as the 16 

month old healthy Dnmt3a+/- mice could have developed disease at a later time. We 

further demonstrate that Dnmt3a+/- CLL cells are fully transformed and capable of 

inducing disease in wild-type recipient mice, whereas MPD cells fail to engraft in 

recipients, and appear to represent an expanded population of non-tumorigenic cells.  
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To gain insight into the pathogenesis of CLL in mice with decreased or 

completely absent Dnmt3a protein, we analyzed high resolution methylomes and 

transcriptomes of normal splenic B-1a cells, Dnmt3a+/Δ (or Dnmt3a+/-), and Dnmt3aΔ/Δ 

CLL cells. These analyses resulted in several interesting observations. First, the 

methylome of normal B-1a cells consisted largely of hypermethylated promoters, most of 

which were associated with transcriptional repression. This observation could explain 

why only B-1a cells become fully transformed in Dnmt3aΔ/Δ or Dnmt3a+/- mice despite the 

decrease in Dnmt3a levels in all hematopoietic cells. We speculate that B-1a cells have 

a particularly high base-line level of DNA methylation relative to other normal 

hematopoietic cells, which is supported by our findings that 60% of promoters are 

hypermethylated in B-1a cells, as well as our unpublished data showing that normal B-

1a cells have higher levels of promoter methylation than normal CD8+ T cells. Thus, the 

degree of deregulated molecular changes in B-1a cells, in particular, overexpression 

induced by loss of promoter methylation, upon decrease in Dnmt3a levels can be greater 

than in other hematopoietic cells, thereby increasing the chance of cellular 

transformation. Unlike other terminally differentiated hematopoietic cells, B-1a cells are 

believed to maintain their population through self-renewal.  These added cell divisions 

further increase the chances for the accumulation of epi-mutations over time. This idea 

is supported by the recently identified maintenance methylation activity for Dnmt3a (14) 

and findings that all active DNA methyltransferases seem to have cancer-specific 

maintenance functions (12, 13, 33). Further studies focusing on molecular changes in 

other B cell subtypes need to be performed to clarify this point.  

Second, we observe that promoter methylation appears to be more dependent 

on high Dnmt3a expression levels than other parts of the genome. Loss of one allele of 

Dnmt3a induced hypomethylation of 699 2kb-long promoters (-1500 bp to +500 bp 
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relative to the TSS) in Dnmt3a+/Δ CLL.  The number of hypomethylated promoters was 

increased only 2.2 fold in Dnmt3aΔ/Δ CLL relative to Dnmt3a+/Δ CLL.  In contrast, 

hypomethylation of CpGs distributed across the genome, gene bodies and repetitive 

elements was much more pronounced in Dnmt3aΔ/Δ CLL (3.5-5 fold) relative to 

Dnmt3a+/Δ CLL. Such data suggest that a select number of promoters are particularly 

sensitive to Dnmt3a levels and that the complete absence of Dnmt3a is not necessary 

for hypomethylation to occur at these loci.  

Lastly, the number of hypomethylated promoters was 4.9 and 13.2 fold greater 

than the number of hypermethylated promoters seen in Dnmt3a+/Δ and Dnmt3aΔ/Δ CLL, 

respectively. Promoter hypermethylation was somewhat suppressed in Dnmt3aΔ/Δ CLL, 

suggesting that Dnmt3a might have tumor specific de novo activity. Interestingly, 

although 3% of hypermethylated promoters were associated with gene down-regulation, 

these events were not shared in Dnmt3a+/Δ and Dnmt3aΔ/Δ CLL, suggesting that 

promoter hypermethylation either contributes to their pathogenesis differently or it does 

not play a significant role. Unlike hypermethylation, promoter hypomethylation was 

highly conserved between methylomes of Dnmt3a+/Δ CLL and Dnmt3aΔ/Δ CLL (60% 

overlap) and the effects on gene expression were broader, as 10% of hypomethylated 

promoters were associated with overexpression. These data demonstrate that loss of 

Dnmt3a in CLL results in genome-wide deregulation of DNA methylation and this is 

primarily due to hypomethylation.   

Based on three simple points - Dnmt3a is a DNA methyltransferase, promoter 

methylation is associated with gene repression, and loss of one Dnmt3a allele is 

sufficient to induce CLL - we speculated that genes hypomethylated and overexpressed 

in both mouse Dnmt3a+/- and Dnmt3aΔ/Δ CLL likely represent oncogenic drivers. Using 
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statistical approaches, we identified a signature of 26 genes commonly hypomethylated 

and overexpressed in both mouse Dnmt3a+/- and Dnmt3aΔ/Δ CLL (HOC genes).   

The hypomethylation of HOC gene promoters in Dnmt3a+/- and Dnmt3aΔ/Δ CLL 

could be linked to Dnmt3a inactivation in normal cells either due to lack of Dnmt3a’s de 

novo or maintenance activity during normal development of B-1a cells. However, we 

found that HOC gene promoters are hypermethylated in both normal Dnmt3a+/+ and 

Dnmt3a+/- B-1a cells, suggesting that loss of one allele of Dnmt3a does not affect the 

methylation status of promoters in normal B-1a cells. Lack of promoter methylation could 

also result from increased proliferation of tumor cells without a direct link to Dnmt3a. 

However, analysis of promoter methylation of several HOC genes revealed while these 

promoters are hypomethylated in Dnmt3a+/- and Dnmt3aΔ/Δ CLL, they remain 

hypermethylated in IRF4−/−;Vh11 CLL. Such results strongly suggest that the lack of 

Dnmt3a maintenance methylation activity, rather than proliferation of tumor cells, is 

responsible for the promoter hypomethylation in HOC genes. 

Interestingly, IPA using expression data for the HOC signature placed 24 genes 

into the category of “cancer”.  A closer examination of this signature revealed a number 

of genes with potential to transform cells, including those of hematopoietic origin. For 

example, Zbtb32 belongs to a list of genes whose increased expression was recently 

identified to have positive-predictive value in determining whether patients will develop 

CLL later in life (150). Gas7, a growth arrest–specific gene is overexpressed in hairy cell 

leukemia, a slow growing malignancy thought to, like CLL, arise from memory B cells 

(151).  PVT1 gene locus encodes a long non-coding RNA and several microRNA’s with 

predicted oncogenic functions, as it is a target of tumorigenic translocations and 

retroviral insertions, and its overexpression correlates with upregulation of MYC. 

Specifically, PVT1 encodes miR-1206 and miR-1204.  The former, miR-1206, is 
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upregulated in tumors of B cell origin such as Burkitt’s lymphomas in humans and 

plasmacytomas in mice (152-154). In mice, miR-1204 is overexpressed in retrovirally 

induced T cell lymphomas (152).  PDCD1LG2 (PD-L2) is aberrantly upregulated in a 

significant number of patients with AML (155). We also found that several HOC genes 

were reported to be overexpressed in the Eµ-TCl1 mouse model as well as other mouse 

models of CLL. Slc7a7, Pstpip2, Pon3, Il5ra and the uncharacterized gene 

1810046K07Rik (C11orf53) are among the Top 25 overexpressed genes in the Eµ-TCL1 

mouse model of CLL (148). Slc7a7, Arid3b and Ppil1 are overexpressed in CLL/B cell 

malignancies that develop in Eµ-miR-17∼92 transgenic mice overexpressing miR-17∼92 

polycistronic microRNA (156). Some of these genes or their close relatives show 

putative oncogenic functions. For example, human PON3 is markedly overexpressed in 

a variety of human neoplasias and has antiapoptotic function (157). The role of another 

HOC gene, SLC7A7, is poorly understood but its relative SLC7A5 (LAT1) is associated 

with high proliferation and poor prognosis in newly diagnosed patients with multiple 

myeloma – a B cell malignancy (158).  Altogether, these data strongly suggest that HOC 

signature contains oncogenic drivers of CLL that contribute to the transformation of B-1a 

cells. However, the genes that are oncogenic drivers of CLL do not necessarily need to 

be limited to only hypomethylated and overexpressed genes.  Indeed, other cancer-

associated genes are found in gene expression profiles obtained from Dnmt3a+/- and 

Dnmt3aΔ/Δ CLL. Whatever the case, at a minimum, the HOC signature represents genes 

likely regulated by Dnmt3a-dependent methylation, providing an opportunity to study the 

nature of deregulated methylation during disease development and progression. Future 

functional studies will dissect the potential contribution of these genes to the 

development of CLL.  
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DISCUSSION 

While Chapters 1-4 represent independent lines of investigation, their results 

address several fundamental questions posed by the DNA methylation field.  

First, we have challenged the canonical de novo and maintenance 

classification for individual Dnmts, while identifying putative targets of Dnmt1 and 

Dnmt3a. In Chapter 1, our data indicate that even incomplete inactivation of Dnmt1 has 

a profound effect on the methylation and expression landscape of MTCLs. Using global 

methylation analysis, we compared the methylation patterns of normal thymocytes, 

MYC;Dnmt1flox/flox lymphomas, and MYC;Dnmt1−/− lymphomas, to identify a subset of 427 

putative targets of Dnmt1s de novo and maintenance methylation activity.  We found 214 

gene promoters that are hypomethylation in normal thymocytes and MYC; Dnmt1−/− 

lymphomas but hypermethylated in MYC; Dnmt1flox/flox tumors, indicating that they are 

likely targets of Dnmt1’s cancer-specific de novo activity. The remaining putative targets 

were methylated in normal thymocytes and MYC; Dnmt1flox/flox lymphomas but 

hypomethylated in MYC; Dnmt1−/− lymphomas, suggesting that Dnmt1 is involved in the 

cancer-specific maintenance methylation of these promoters. Furthermore, comparison 

of Dnmt1’s target genes to those identified in previous studies for Dnmt3b, found very 

little overlap (3%) in the targets of Dnmt1 and Dnmt3b (13). Similarly, de novo 

methylation of the H2-Ab1 promoter by Dnmt1 is independent of both Dnmt3a and 

Dnmt3b, as the H2-Ab1 promoter is heavily methylated in Dnmt3a and Dnmt3b-deficient 

lymphomas. The independent targets of Dnmt1 and Dnmt3b are perhaps not surprising 

given the striking differences in MYC;Dnmt1−/− and MYC;Dnmt3b−/− mice, as loss Dnmt3b 

was found to accelerate tumorigenesis, while loss of Dnmt1 delayed tumorigenesis.  

Another important finding from these studies is that Dnmt1 appears to have tissue-

specific targets. Comparison of promoters hypomethylated in Dnmt1-deficient MTCL to 
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those identified in Dnmt1-deficient HCT116 colon cancer cell line (88), found very little 

overlap (2%) in Dnmt1 target genes. This indicates that Dnmt1’s role in the 

establishment and maintenance of methylation patterns is likely cell-type specificity. The 

tissue specific activity of Dnmt1 is consistent with reports for Dnmt3a, which was found 

to have unique targets in myeloid versus T-cells (37). 

In Chapter 2, using global approaches we analyzed the methylation status of 

promoters in normal thymocytes, Dnmt3a-deficient thymocytes, and MYC;Dnmt3aΔ/Δ 

lymphomas. Out of the 370 promoters hypomethylated in MYC;Dnmt3aΔ/Δ lymphomas, 

353 were also hypomethylated when compared with either normal or Dnmt3aΔ/Δ 

thymocytes, implying that Dnmt3a is dispensable for their de novo methylation during 

normal development, but may have a role in the cancer specific maintenance 

methylation of these loci. In contrast, 17 promoters were specifically hypermethylated in 

MYC;Dnmt3aF/F tumors relative to normal thymocytes, suggesting that they may 

represent potential targets of Dnmt3a cancer-specific de novo methylation. Lastly, 10 

promoters were hypomethylated in normal Dnmt3a Δ/Δ thymocytes, likely due to lack of 

de novo or maintenance activity by Dnmt3a during normal development and thus their 

hypomethylation in MYC;Dnmt3aΔ/Δ lymphomas is not tumor-specific. Out of 370 

promoters hypomethylated in MYC;Dnmt3aΔ/Δ lymphomas, only 11 genes were 

hypomethylated in Dnmt3b-deficient lymphomas. These data indicate that Dnmt3a has 

distinct targets in MTCL. Collectively, these data show that Dnmt3a contributes to the de 

novo and maintenance methylation of tumor-specific methylation patterns in MTCL. 

In Chapter 4 we show that loss of Dnmt3a in HSCs results in the development of 

CLL in mice which is characterized by genome wide hypomethylation. Furthermore, we 

show that Dnmt3a is responsible for the cancer-specific maintenance methylation of a 

subset of 26 genes termed HOC. These genes were specifically hypomethylated in 
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Dnmt3aΔ/Δ and Dnmt3a+/- tumors, but were hypermethylated in normal B-1a cells, 

Dnmt3a+/- B-1a cells, and IRF4−/−;Vh11 CLL samples. This suggests that Dnmt3a is 

responsible for the maintenance methylation of these genes in CLL. Furthermore, the 26 

HOC genes were not hypomethylated in a Dnmt3a-deficient model of peripheral T cell 

lymphoma, indicating that HOC genes likely represent B cell specific targets of Dnmt3a. 

Importantly, the hypomethylation and subsequent over expression of HOC genes may 

contribute to leukemogenesis in mice, as discussed later on.  

Collectively, our data provides a list of putative Dnmt1 and Dnmt3a target genes 

in T and B cell malignancies. The contribution of Dnmt1 and Dnmt3a to the tumor-

specific methylation patterns consists of both de novo and maintenance activities. 

Furthermore, the activity of Dnmts to the establishment and maintenance of normal 

methylation patterns are likely non-overlapping and cell type specific.  

Second, we show that Dnmt3a can function as both an oncogene and a 

tumor suppressor in different mouse models. In Chapter 2 we show that loss of 

Dnmt3a in MTCL slows tumor cell proliferation and extends the survival of mice. This 

result is in contrast to our more recent findings that mono- or bi-allelic loss of Dnmt3a 

induces CLL in mice. We speculate that the opposing roles of Dnmt3a as an oncogene 

and tumor suppressor stem from Dnmt3a’s methylation-independent and methylation-

dependent repressor activities, respectively. This is supported by the fact that loss of 

Dnmt3a in MTCL results in the upregulation of 17 genes whose actions are predicted to 

suppress lymphomagenesis. Importantly, analysis of MSCC data showed no changes in 

the promoter methylation of these 17 genes, suggesting they may be regulated through 

Dnmt3a’s methylation independent function. These genes have been implicated as 

tumor suppressor in several relevant settings, including spontaneous B- and T-cell 

lymphomagenesis (Brca2, Dna2, Exo1, Prdm2, Smurf2 and Ssbp2 (99, 114-117)), p53-



156 

 

 
 

deficient or oncogene-provoked lymphomagenesis (Bcl2l11, E2f1, Xrcc2, Recql4 and 

Tyk2 (118-122)), including MTCL (Pten, E2f2 and Dnmt3b (13, 87, 123)), or other 

aspects of lymphomagenesis (Nqo1, Irf1 and Irf8 (124-126)). Whether upregulation of 

any of these genes play a causative role in the delayed lymphomagenesis observed in 

MYC;Dnmt3aD/Dmice remains to be seen; however, individual inactivation of E2f2, 

Dnmt3b and Pten accelerated MTCL in mice (13, 87, 123). The methylation independent 

repressor activity is further supported by evidence that both wild-type and catalytically 

dead Dnmt3a protein can inhibit the expression of Dnmt3b in MTCL cell lines. The 

inhibition of Dnmt3b is likely partially responsible for the delayed lymphomagenesis in 

Dnmt3a-deficient lymphomas, as concomitant deletion of Dnmt3b accelerated disease 

development in DKO mice, further illustrating Dnmt3b’s role as a tumor suppressor. 

While we do not yet know how Dnmt3a inhibits Dnmt3b expression, we speculate that 

Dnmt3a may recruit repressor proteins to the Dnmt3b locus to block gene transcription. 

Alternatively, Dnmt3a may inhibit transcription factor binding to the Dnmt3b promoter. 

The exact mechanism by which catalytically dead Dnmt3a inhibits Dnmt3b’s expression 

remains to be determined. 

Third, we show that Dnmt3a functions as a tumor suppressor gene in the 

prevention of B-cell transformation. Loss of Dnmt3a in the hematopoietic 

compartment results in the development of CLL around 1 year of age with 100% 

penetrance. Furthermore, leukemogenesis can be accelerated by concomitant deletion 

of Dnmt3b, further illustrating its tumor suppressor properties. In Chapter 4 we show that 

Dnmt3a is a haplo-insufficient tumor suppressor, as loss of a single allele is sufficient to 

induce CLL and MPD in mice by 16 months of age. The study presented in Chapter 4 is 

perhaps more physiologically relevant to human disease, as Dnmt3a activity is likely 

reduced but not entirely eliminated in human tumors. In patients, mutations in Dnmt3a 
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are commonly observed in myeloid and T-cell malignancies (138). Interestingly, we only 

observed the development of MPD in 15% of Dnmt3a+/- mice, and never in the Dnmt3a-/- 

mice, despite the fact we have conditionally deleted Dnmt3a in all hematopoietic 

lineages and that DNMT3A mutations present at high frequency in the myeloid 

compartment (39). In addition, the myeloid derived tumors that developed in Dnmt3a+/- 

mice could not be serially transplanted into wild-type recipients, suggesting that these 

cells do not contain leukemia initiating potential. It is possible that the preferential 

presence of Dnmt3a mutations in human AML may reflect a necessity for tight 

collaboration with commonly co-mutated genes, such as NPM1, FLT3 and IDH1 (136). 

Alternatively, mutations observed in human AML may have gain of function activity, and 

not loss of function. In addition, we have observed the development of T-cell lymphomas 

in both Dnmt3aΔ/Δ and Dnmt3a+/- mice, albeit at a lower frequency than CLL (data not 

shown). This result is consistent with human T-cell lymphomas in which DNMT3A is 

mutated at a frequency of ~11% (42) and indicate that Dnmt3a is critical for the 

prevention of T cell transformation.  

In studies performed by Mayle et al., and Celik et al., it was reported that Dnmt3a 

loss in the hematopoietic compartment results in the development of primarily myeloid 

malignancies, followed by T cell malignancies, and lastly by B cell malignancies which 

occur infrequently (36, 37). There are several reasons for the differences in disease 

spectrum observed in our Dnmt3a-deficient mice. First, the Dnmt3a phenotypes may be 

strain specific, as they use mice on a C57BL/6 background, while we use FVB/N.  

Second, differences may stem from variations in experimental approaches, such as 

design of the knockout allele or differences in the strategy which by Dnmt3a is deleted. 

In our system we use primary Dnmt3a−/− mice whereby Cre mediated excision of the 

Dnmt3a loci occurs very early in hematopoietic development. In their model, HSCs 
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isolated from Mx-Cre;Dnmt3aF/F mice are used for bone marrow adoptive transfer with 

subsequent pIpC injections to delete Dnmt3a. It is possible that such differences in 

experimental design could alter disease development in Dnmt3a-deficient mice. Despite 

differences in our studies, for the first time we provide evidence that Dnmt3a functions 

as tumor suppressor genes in the prevention of B cell malignancies in mice. This mouse 

model may serve as a particularly useful tool for studying the contribution of aberrant 

DNA methylation to CLL pathogenesis.  

Despite the lack of observable mutations in DNMT3A  and DNMT3B in B cell 

malignancies, the tumor suppressor function of Dnmt3a and Dnmt3b in the prevention of 

CLL is supported by several studies. Analysis of available expression data derived from 

microarray on 448 human CLL samples revealed that Dnmt3a and Dnmt3b are both in 

the top 1% of underexpressed genes (63). Furthermore, WGBS of the CLL methylome 

revealed massive genome-wide hypomethylation (64). Such loss of methylation may be 

attributable to a decrease in Dnmt3a or Dnmt3b maintenance activity in tumors, although 

such causal link has not been established. One study using the Eμ-TCL1 CLL mouse 

model, found that the Tcl1 protein binds to and inhibits Dnmt3a and Dnmt3b activity, 

resulting in hypomethyation at the early stages of tumorigenesis (65). These studies, 

along with our own demonstrating that loss of Dnmt3a is sufficient to induce CLL in mice, 

which is characterized by large-scale genome-wide hypomethylation, suggest that CLL 

to a large extent may be an epigenetic disease. Further evaluation of the tumor 

suppressor properties of Dnmt3a and Dnmt3b in the prevention of CLL are needed to 

fully understand the enzymes role in disease pathogenesis. In particular, functional 

studies investigating the oncogenic potential of genes hypomethylated and 

overexpressed in Dnmt3a-deficient CLL will need to be performed.  
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Lastly, for the first time using whole genome bisulfite sequencing we 

provide a high resolution DNA methylome for normal B-1a and CLL cells in mice. 

Given the broad scope of hematologic malignancies in which the activity of Dnmt3a is 

altered, identification of Dnmt3a’s molecular targets and understanding how they 

regulate cellular functions will enhance our understanding of the pathogenesis of human 

blood cancers.  In Chapter 4 we pose the question, can reduction in Dnmt3a levels 

induce cellular transformation in mice? We show that loss of a single allele of Dnmt3a is 

sufficient to induce CLL in 65% of mice and MPD in 15% of mice. It is important to note 

that the lower penetrance of disease may be due to the time frame of our mouse studies 

and that perhaps the remaining 20% of Dnmt3a+/- would have developed disease at a 

later age. While cells derived from myeloid tumors were incapable of engrafting, we 

show that CLL cells can induce leukemia following multiple rounds of injection, 

suggesting they are fully transformed cells. To understand the changes in the molecular 

landscape of Dnmt3a-deficient tumors we performed WGBS and RNA-seq on normal B-

1a cell, Dnmt3a+/- CLL and Dnmt3aΔ/Δ CLL samples.  

Analysis of high resolution methylomes and transcriptomes from B-1a cells 

revealed that the majority of promoters were hypermethylated and repressed. We 

speculate that B-1a cells may be more sensitive to changes in the activity of Dnmt3a due 

to their high baseline levels of methylation. In fact, our unpublished data show that B-1a 

cells have significantly higher levels of methylation than CD8+ T cells.  This observation 

could explain why B-1a cells are preferentially transformed upon loss or decrease in 

Dnmt3a levels, despite simultaneous inactivation in other hematopoietic lineages. Thus, 

the degree of deregulated molecular changes in B-1a cells, in particular, overexpression 

induced by loss of promoter methylation, upon decrease in Dnmt3a levels can be greater 

than in other hematopoietic cells, thereby increasing the chance of cellular 
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transformation. Furthermore, unlike other fully differentiated hematopoietic cells, B-1a 

cells are believed to maintain their population through self-renewal. Perhaps these 

additional rounds of cell divisions further increase the chances of acquiring epi-mutations 

with time. 

Overall, using WGBS we found that Dnmt3a+/- and Dnmt3aΔ/Δ tumors were 

characterized by genome wide hypomethylation, with very little hypermethylation 

observed. Promoters were uniquely sensitive to Dnmt3a levels, as mono-allelic loss of 

Dnmt3a was sufficient to induce the hypomethylation of 699 promoters in heterozygous 

mice. While full inactivation of Dnmt3a increased the number of hypomethylated 

promoters observed, the effect was minimal.  These data indicate that a subset of gene 

promoters are sensitive to changing levels of Dnmt3a, as complete ablation of Dnmt3a is 

not necessary for hypomethylation to occur at these loci. Unlike hypermethylation, there 

was a high 60% overlap in promoter hypomethylation between Dnmt3a+/Δ and Dnmt3aΔ/Δ 

methylomes. Also, the effects of hypomethylation on gene expression were broader, as 

10% of hypomethylated promoters were associated with overexpression, whereas only 

2% of hypermethylated promoters were silenced. These results lead us to investigate 

genes that were hypomethylated and overexpressed in both Dnmt3a+/-  and Dnmt3aΔ/Δ 

CLL (termed HOC genes), with the hypothesis that such genes likely play a role in 

oncogenesis. We identified 26 genes with hypomethylated DMRS in their promoter 

region that were also overexpressed in tumors. To gain insight into the biological 

function of HOC genes we performed Ingenuity Pathways Analysis. Interestingly, 24 out 

of 26 HOC genes were places in the category of “Cancer”, demonstrating they may play 

a role in CLL development in Dnmt3a-deficient mice. 

 In fact, reports from the literature support the oncogenic functions of many HOC 

genes. For example, overexpression of Zbtb32 was found to have a positive-predictive 
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value in determining whether patients will develop CLL later in life (150). The growth 

arrest–specific gene, Gas7, is highly overexpressed in hairy cell leukemia, which like 

CLL is a slow growing malignancy that arises from memory B cells (151).  PDCD1LG2 

(PD-L2) is aberrantly upregulated in a significant number of patients with AML (155).  

Likewise, PON3 is overexpressed in a variety of human neoplasias and has 

antiapoptotic function (157). PVT1 gene locus encodes a long non-coding RNA and 

several microRNA’s with predicted oncogenic functions, as it is a target of tumorigenic 

translocations and retroviral insertions, and its overexpression correlates with 

upregulation of MYC. Specifically, PVT1 encodes miR-1206 and miR-1204.  miR-1206 is 

upregulated in tumors of B cell origin such as Burkitt’s lymphomas in humans and 

plasmacytomas in mice (152-154). In mice, miR-1204 is overexpressed in retrovirally 

induced T cell lymphomas (152).  In the Eµ-TCl1 mouse model of CLL, we found that 

Slc7a7, Pstpip2, Pon3, Il5ra and 1810046K07Rik were reported to be in the top 25 

highly overexpressed genes (148). Similarly, Slc7a7, Arid3b and Ppil1 are 

overexpressed in CLL/B cell malignancies that develop in Eµ-miR-17∼92 transgenic 

mice overexpressing miR-17∼92 polycistronic microRNA (156). Collectively, these 

reports support the notion that HOC genes contain oncogenic modifiers that contribute to 

CLL pathogenesis in Dnmt3a-deficient mice. Furthermore, the HOC signature represents 

genes likely regulated by Dnmt3a-dependent methylation, providing an opportunity to 

study the nature of deregulated methylation during disease development and 

progression. Future functional studies will need to be done to address the oncogenic 

properties of these genes. However, putative oncogenic drivers of CLL do not need to be 

fully restricted to those that are hypomethylated and overexpressed in tumors.  Indeed, 

IPA analysis of all genes differentially expressed in Dnmt3a+/- and Dnmt3aΔ/Δ tumors 

identified numerous cancer-associated genes that likely contribute to tumorigenesis. 

Additional work with be needed to fully dissect the potential contribution of these genes 



162 

 

 
 

to the development of CLL. Specifically, we could simultaneously overexpress all 26 

HOC genes in wild-type hematopoietic stem and progenitor cells that would then be 

used for adoptive transfer experiments into lethally irradiated FVB/N mice. Recipient 

mice would then be monitored for signs of hematological disease to determine if HOC 

genes, either alone or in combination, have transforming potential in any hematopoietic 

lineage.   

Hypomethylation of HOC genes could be attributed to passive demethylation that 

arose as a results of tumor cell hyper-proliferation. In order to determine if HOC gene 

hypomethylation was a result of Dnmt3a inactivation in tumors, we analyzed the 

promoter methylation of HOC genes in two independent mouse models of CLL. Analysis 

of promoter methylation of several HOC genes revealed while these promoters are 

hypomethylated in Dnmt3a+/- and Dnmt3aΔ/Δ CLL, they remain hypermethylated in 

IRF4−/−;Vh11 CLL. Interestingly, these promoters were only partially hypomethylated in 

E-TCL1 CLL, which is consistent with recent findings that Dnmt3a is partially inhibited 

by Tcl1. Furthermore, COBRA analysis of normal pre-malignant B-1a cells isolated from 

Dnmt3a+/- mice revealed no changes in promoter methylation of 14 HOC genes, 

indicating that a lack of maintenance or de novo methylation event during development 

is not responsible for promoter hypomethylation in tumors. These results indicate that 

lack of Dnmt3a’s cancer-specific maintenance function is responsible for the 

hypomethylation of HOC genes.  

Collectively, these studies use relevant in vivo models to provide insight into the 

activities of Dnmts in cancer. In brief, we have shown that Dnmt1 is critical for T cell 

development and is required for tumor cell maintenance in MTCL. In addition, we 

identified putative de novo and maintenance targets for Dnmt1. We show that Dnmt3a 

functions as an oncogene in MTCL, likely through the methylation-independent 
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repression of several tumor suppressor genes, including Dnmt3b. Lastly, we 

demonstrate that mono- or bi-allelic loss of Dnmt3a alone is sufficient to induce CLL in 

mice, suggesting that Dnmt3a has tumor suppressor properties in B cells. Using 

comprehensive WGBS techniques, we found that the Dnmt3a-deficient CLL methylome 

is largely hypomethylated, and loss of methylation at promoter regions is associated with 

the upregulation of a subset of genes normally silenced in B-1a cells. This result is of 

importance to the CLL field because it provides evidence that epimutations, in particular 

promoter hypomethylation, likely plays a role in CLL pathogenesis. Altogether, the work 

presented in this dissertation demonstrate critical roles for Dnmt1 and Dnmt3a in mouse 

malignant hematopoiesis. 
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