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ABSTRACT 

DEFINING THE ROLE OF INTERFERON REGULATORY FACTOR 4 IN CHRONIC 

LYMPHOCYTIC LEUKEMIA 

VIPUL SHUKLA Ph.D. 

UNIVERSITY OF NEBRASKA, 2016 

 

SUPERVISOR: RUNQING LU, Ph.D. 

 

Chronic Lymphocytic Leukemia (CLL) represents the most common adult leukemia in the Western 

hemisphere. Despite considerable progress in our current understanding of CLL, this disease 

remains incurable and the molecular events underlying the complex pathogenesis of CLL are not 

fully elucidated. Interferon Regulatory Factor 4 (IRF4) belongs to the IRF superfamily of 

transcription factors that has been shown to play critical roles at multiple stages of B cell 

development. Interestingly, a Genome Wide Association Study identified Single Nucleotide 

Polymorphism (SNP) mediated IRF4 down regulation, as a major predisposing genetic event 

during the development of CLL. However, whether low levels of IRF4 are causally related to CLL 

development was unclear. In our studies here, we demonstrated that IRF4 deficient mice 

expressing immunoglobulin heavy chain Vh11 (IRF4-/-Vh11) developed spontaneous CLL with 

complete penetrance. Additionally, we also show that low levels of IRF4 dramatically accelerates 

CLL development in the New Zealand Black (NZB) mouse model of CLL. Together, these studies 

establish a causal role for IRF4 in the development of CLL. Furthermore, we used the IRF4-/-Vh11 

as a novel mouse model to CLL to define the molecular mechanism through which IRF4 suppresses 

CLL development. Our studies identified hyperactivation of Notch signaling pathway as a common 

feature of IRF4-/-Vh11 CLL cells. Intriguingly, deregulation of Notch signaling pathway has been 

identified as one of the most recurrent molecular anomalies in the pathogenesis of CLL. Yet, the 

role of Notch signaling as well as its regulation during CLL development remained unclear. Our 

studies further reveal that Notch signaling promotes survival and expansion of CLL cells and their 

precursors and is indispensable for CLL development in the IRF4-/-Vh11 mice. Moreover, we 

identify E3 ubiquitin ligase Nedd4, which target Notch for degradation, as a direct target of IRF4 

in CLL cells and their precursors. Collectively, our studies here establish a causal role for low levels 

of IRF4 in the development of CLL. These studies provide the first in vivo evidence for an essential 

role of Notch signaling in the development of CLL and establish IRF4 as a critical regulator of Notch 

signaling during CLL development. 
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1.1 CHRONIC LYMPHOCYTIC LEUKEMIA (CLL) 

1.1.1 Pathophysiology of CLL 

Chronic Lymphocytic Leukemia (CLL) is the most common adult leukemia in the western 

hemisphere that represents 30% of all the adult leukemias. CLL is marked by progressive 

accumulation of CD5+ mature B cells in blood, bone marrow and secondary lymphoid organs. CLL 

is primarily a disease affecting the elderly population, with a median age of diagnosis around 67 

years. In two-thirds of cases, CLL pathogenesis follows an indolent clinical course whereas in one-

third of the cases the disease follows an aggressive course (1). CLL in some cases is preceded by a 

distinct premalignant clinical stage characterized by a monoclonal expansion of mature B cells, 

known as Monoclonal B lymphocytosis (MBL) (1). Notably, CLL cells are known to have moderate 

proliferation rates while having severely impaired apoptosis (1). Moreover, the survival and 

proliferation of CLL cells critically depends on diverse signaling cues emanating from their unique 

tissue microenvironment known as proliferation centers (2). The proliferation centers in CLL 

patients are located in Bone Marrow and Lymph nodes where they are comprised of distinct 

cellular and molecular components (2). The cellular components promoting the proliferation and 

survival of CLL cells include the monocytic lineage derived Nurse like cells, Mesenchymal stem 

cells, T cells as well as Macrophages. The molecular components consists of various cytokines and 

growth factors like IL-10, BAFF, IL-6, IFN-γ etc (2). More recently, studies have described striking, 

stereotypy in the usage of B cell receptor (BCR) among CLL clones from human patients (3). These 

studies suggest the involvement of a putative antigen that may contribute to the survival and 

proliferation of CLL cells. In this regard, several different self-antigens and antigens derived from 

pathogenic agents have been linked to the pathogenesis of CLL (4, 5). However, the identity and 

source of these coveted antigens remain an active area of research in the field. Together, all these 
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factors constitutes the specialized microenvironment involved in the complex pathogenesis of 

CLL. 

CLL is a clinically heterogeneous disease that can be stratified into different subgroups that are 

associated with varied clinical outcomes (1). CLL cells carry different cytogenetic abnormalities 

that are shown to impact the survival of CLL patients. The 13q14 chromosomal deletion is one of 

the most common chromosomal alteration and is associated with deregulation of miRNA15a/16-

1 and better clinical outcomes (1, 6). The 17p deletion and 11q deletions are linked to disruption 

of p53 and ATM functions respectively and are associated with adverse clinical outcomes (1, 6). 

Trisomy 12 is a chromosomal anomaly associated with intermediate prognosis, however the 

underlying molecular pathogenesis remains ambiguous (1, 6). CLL can be further classified into 

two distinct subgroups, based on the Immunoglobulin Variable Heavy Chain (IgVH) mutational 

status of the transformed cells (1, 6). The IgVH mutational status in B cells is reflective of their 

prior antigen experience. The CLL subgroup with unmutated IgVH represents cells with no prior 

antigen experience (unmutated CLL). On the other hand, CLL subgroup with mutated IgVH 

(mutated CLL) represent cells that have undergone Germinal Center reaction and have probably 

had prior exposure to antigens. Importantly, CLL patients with unmutated IgVH have adverse 

clinical outcomes compared to CLL patients with mutated IgVH. Nevertheless, the molecular 

events that drive CLL pathogenesis in both of these subgroups are largely unknown. 

 

1.1.2 Cell of origin for CLL 

The cell of origin for human CLL remains unclear. Several different studies have implicated diverse 

B cell subsets, as the cell of origin for human CLL (7). However, none of these studies so far have 

provided clear consensus in defining the cell of origin for human CLL. On the other hand, in 

multiple murine models of CLL, a specialized B cell subset known as B1 cells are presumed as the 
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precursors of CLL (7). B1 cells originate in the first wave of fetal liver hematopoiesis and represents 

the dominant mature B cell subset in neonatal mice (8). B1 cells arise from specific B1 progenitors 

in bone marrow and fetal liver and they are also endowed with a unique ability to undergo self-

renewal to maintain their numbers (8). In adult mice, B1 cells primarily localizes to spleen, 

peritoneal and pleural cavities and represents only a small fraction of mature B cell population (1-

5%) (8). B1 cells express a highly specialized B cell receptor repertoire that recognizes self-antigens 

and particulate pathogens (8). Eventually, B1 cells follow their functional fate to differentiate into 

short-lived plasma cells that secrete antibodies.  

Until recently, the B1 cell counterparts in humans were not identified. Intriguingly, a recent study 

described B1 cell like B cell subsets in the peripheral blood of humans (9). Furthermore, this B1 

cell like subset in humans is particularly enriched in the umbilical cord blood, consistent with their 

B1 cell like ontogeny. Future studies should be aimed towards defining the role of this unique B1 

cell like subset, as the cell of origin for human CLL. In our studies here, we used distinct genetic 

models to elucidate the molecular regulation of B1 cell development and the mechanisms that 

lead to their transformation to CLL.   

 

1.1.3 Mouse Models of CLL 

Mouse models of CLL have contributed immensely to our current understanding of the 

pathogenesis of CLL. Mouse models are unique in providing a system to study CLL cells and their 

precursors and to follow the complete disease course which is otherwise not feasible in human 

CLL patients. Several different mouse models have provided valuable insights into the molecular 

pathogenesis of CLL. These include the well-studied New Zealand Black mouse, Dleu2/miR15a/16-

1 deletion mouse and the Eμ-TCL1 mouse (10-12). All these models share several features that 

are critical to the pathogenesis of human CLL as well.  
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The New Zealand Black (NZB) mouse strain represents a well-described naturally occurring, late-

onset model of CLL (11, 13). The NZB mice develop CLL at 30-40% penetrance by the age of 12 

months (11, 13). Moreover, the molecular pathogenesis of CLL in NZB mice has been shown to be 

associated with Single Nucleotide Polymorphisms (SNPs) that affects the processing and 

functional maturation of miRNAs 15a/16-1 (11). Interestingly, these miRNAs are also implicated 

in the pathogenesis of human CLL.  The deletion of 13q14 locus, is one of the most common 

chromosomal abnormality present in human CLL patients (10). The 13q14 chromosomal locus in 

humans span the Dleu2 gene locus that also harbors miRNA15a/16-1 in the intragenic region (10). 

The importance of this chromosomal locus is further highlighted by the fact that the deletion of 

14q13 locus in mouse which represents the region syntenic to human 13q14 leads to CLL 

development. The mice with 14q13 locus deletion containing the Dleu2 gene and miRNA 15a/16-

1 develops CLL at 40% penetrance by the age of 18 months (10). Together, these mouse models 

have provided evidence for a critical role for 13q14 chromosomal locus in the molecular 

pathogenesis of CLL. In our studies here we used the NZB mouse as a model to study the 

pathogenesis of CLL. 

The Eμ-TCL1 is the most widely-studied mouse model of CLL. The Eμ-TCL1 mouse carries a T cell 

lymphoma 1 (TCL1) oncogene under the control of μ Immunoglobulin (Ig) heavy chain enhancer 

(12). Even though, the Eμ-TCL1 mouse has been extensively used to study CLL, the role of Tcl1 

oncogene in human CLL remains an active area of investigation. Moreover, these mice develop 

CLL at near complete penetrance and have been used to extensively study the molecular 

pathogenesis and efficacy of therapeutic agents in CLL. The CLL clones arising from these mice 

display considerable BCR stereotypy, with the majority of clones expressing the Vh11 

Immunoglobulin heavy chain family (12, 14). Interestingly, the Vh11 Immunoglobulin heavy chain 

gene family is predominantly expressed by B1 cells in mice (15). In our studies here we used a 
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genetically engineered BCR knock-in mouse expressing the Vh11 Ig heavy chain as a model system 

to study the development of CLL precursors (B1 cells) and their transformation to CLL. 

 

1.1.4 Molecular Pathogenesis of CLL 

The molecular pathogenesis of CLL has not been fully elucidated. With the advent of Next 

Generation Sequencing, there is plethora of high resolution genetic information available that 

implicates multiple pathways in the pathogenesis of CLL. Additionally, several studies have also 

implicated multiple other factors in the molecular etiology of CLL. These include genetic 

predisposition, autoantigen stimulation, microRNAs (miRNAs), and cytogenetic abnormalities (6, 

16). However, only a few of these abnormalities have been conclusively linked to the pathogenesis 

of CLL. Therefore, supplementing these findings with additional experimental evidences is 

quintessential to fully understand the roles of these factors in CLL biology. In our studies here we 

aimed to identify the molecular components that are critical in the etiology of CLL. 

 

1.2 Interferon Regulatory Factor 4 and CLL 

Interferon Regulatory Factor 4 (IRF4) belongs to Interferon Regulatory Factor (IRF) superfamily of 

transcription factors that plays critical roles at multiple stages of B cell development. Studies 

spanning over more than the past decade have linked IRF4 to pathogenesis of CLL. An initial study 

described that low levels of IRF4 in CLL cells are correlated with poor disease prognosis (17). 

Additionally, a recent study also identified mutations in the DNA binding domain of IRF4 in a small 

subset of CLL patients (~1.5%) (18). However, the functional consequences of these mutations to 

IRF4 function in B cells remain ambiguous. Most intriguingly, a Genome Wide Association Study 

(GWAS) in CLL patients identified IRF4 as a major susceptible gene for CLL development (19). This 

study identified strong associations between the Single Nucleotide Polymorphisms (SNPs) in IRF4 
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gene locus and the risk of developing CLL (19). Moreover, functional analysis revealed that the 

risk alleles carrying these SNPs mediate the downregulation of IRF4 mRNA in Epstein-Barr Virus 

transformed B cells (19). Importantly, the SNPs in IRF4 gene locus were found to be highly 

prevalent, accounting for 86% of all the CLL cases (19, 20). The high incidence of occurrence of 

these SNPs in CLL patients are suggestive of an important function of IRF4 in CLL biology. Together, 

these studies provide evidence for a link between low levels of IRF4 and CLL development. Yet the 

precise role of IRF4 in CLL development was largely unknown. In our studies here, we used genetic 

approaches to examine the role of IRF4 in the pathogenesis of CLL. 

 

1.3 IRF4 and its role in B cell development  

Interferon regulatory factor 4 (IRF4) functions as a critical transcriptional regulator for 

development and function of several immune cell subsets. IRF4 is most homologous to an IRF 

family member, IRF8. Structurally, IRF4 contains a tryptophan pentad DNA binding domain (DBD) 

and an interferon association domain (IAD) through which it can homo- or hetero-dimerize with 

other members of the IRF family (21, 22). To perform its transcriptional regulatory functions, IRF4 

can form homo- or hetero-dimers with itself or with other members of the IRF family. The IRF4 

homodimers bind DNA with low affinity at canonical Interferon-Stimulated Response Elements 

(ISRE) represented as GAAANNGAAA (21, 22). Besides its interaction with other IRFs, IRF4 can also 

forms heterodimers with members of Ets family or AP-1 family of transcription factors (21, 22). 

The heterodimers formed between IRF4 and Ets members, PU.1 and Spi-B bind DNA at Ets 

Interferon Composite Elements (EICE) represented as GGAANN(N)GAAA. The EICE motifs were 

initially identified in immunoglobulin (Ig) light chain 3’ κ enhancer and λ enhancer regions 

mediating Ig light chain locus activation (23, 24). The IRF4-Ets hetero-dimers bind to DNA at EICE 
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motifs with much greater affinity than ISRE motifs (25). More recently, IRF4 has been shown to 

co-bind DNA with AP-1 family members on AP-1-IRF Composite Elements (AICE) represented as 

GAAATGAGTCA or GAAANNNNTGAGTCA in a variety of immune cell subsets (24-26). The 

formation of complexes between IRF4 with either Ets or Ap-1 transcription factors depends on 

the cell type and cellular context. For example, the Ap-1-IRF complexes are predominantly known 

to regulate cellular functions in T cells and dendritic cells while Ets/IRF complexes are critical for 

B cell development and functions. The cooperative DNA binding of IRF4 with members of IRF, Ets 

and AP-1 families represents an evolutionarily conserved mechanism to integrate diverse 

signaling inputs during immune system development and function (26). 

IRF4 is an important regulator of generation, differentiation and functions of several immune cell 

subsets.  IRF4 play key roles in generation and functions of T follicular helper cells (Tfh), Th1 cells, 

Th2 cells, Th9 cells, T regulatory cells, CD8+ T cells, Th17 cells, macrophages and dendritic cells 

(27-41). In B cells specifically, IRF4 is expressed at multiple stages to control important 

developmental decisions (21). At early stages of B cell development IRF4 functions redundantly 

with IRF8 to coordinate pre-B cell differentiation (42). On the other hand, at later stages of B cell 

development, IRF4 and IRF8 have been shown to function non-redundantly to regulate follicular 

versus marginal zone cell fate decisions, germinal center reaction (GC), class switch recombination 

(CSR) and plasma cell differentiation (21, 25, 43-46). 
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Figure 1 Schematic showing the various developmental aspects of Immune Cell subsets that are 
regulated by IRF4. 
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Consistent with a critical involvement of IRF4 in B cell development, deregulated expression of 

IRF4 is associated with pathogenesis of several B cell malignancies and diseases. IRF4 is known to 

play diverse yet distinctive roles in B cell malignancies. In early B cell derived acute lymphoblastic 

leukemia (B-ALL), IRF4 functions as a tumor suppressor (47, 48). Moreover, in multiple myeloma 

(MM) that originates from plasma cells, it acts as a survival factor (49). Furthermore, studies have 

linked low levels of IRF4 to CLL development. However, whether and how low levels of IRF4 

contributes to CLL development remained unknown. In our studies here we studied the role of 

IRF4 in the maintenance of B1 cell homeostasis and the development of CLL. 

 

Figure 2 A schematic showing the various B cell malignancies in which IRF4 is implicated.  

 

 

 



11 
 

1.4 Hypothesis and Approaches I 

Our studies here were aimed towards elucidating the role of IRF4 in the development of CLL. We 

hypothesized that low levels of IRF4 promotes the initiation and progression of CLL and are 

causally related to the development of CLL. To test our hypothesis we used distinct genetic 

approaches. First, we studied the role of low levels of IRF4 in the development of CLL in NZB mice. 

These studies allowed us to examine, how IRF4 collaborates with the preexisting genetic defects 

in the NZB mice to impact CLL development. Second, we used a Vh11 knock-in mouse that has 

been previously described as model system to study B1 cells (CLL precursors). These studies 

allowed us to investigate the role of IRF4 in the development of B1 cells and CLL initiation. 

 

Figure 3 Hypothesis. A schematic representation of the hypothesis that was tested in our studies. 

B1 cells originate from fetal liver or bone marrow precursors and have a unique property to self-

renew themselves. Mature B1 cells eventually differentiate to plasma cells, a process that 

absolutely requires IRF4. Low levels of IRF4 may affect the proliferation and survival of CLL cells 

and their precursors contributing to the initiation and progression of CLL. 
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1.5 Notch signaling and CLL development 

Recent Whole Genome Sequencing (WGS) studies have provided valuable insights into the 

molecular pathways deregulated during the pathogenesis of CLL (50-53). Intriguingly, multiple 

WGS studies have identified mutational activation of Notch signaling pathway as one of the most 

recurrent molecular events in human CLL (51, 53). Moreover, the CLL patients carrying mutations 

in Notch signaling pathway have poorer clinical outcomes and an increased tendency towards 

Richter transformation to Diffuse Large B cell Lymphoma (DLBCL) (50).  

Notch signaling is an evolutionarily conserved pathway that regulates a myriad of cellular 

processes (54). Notch family of proteins comprises of four different Notch receptors (Notch1 

through 4) in mammalian cellular systems. Notch signaling is activated upon engagement of Notch 

receptor on a signal receiving cell with its ligand on a signal sending cell (54). Following the ligand 

binding Notch receptor undergoes multiple proteolytic cleavages leading to translocation of 

intracellular domain of Notch to the nucleus (54). In the nucleus Notch intracellular domain 

functions as a transcriptional regulator to activate gene transcription of its target genes (54). In 

CLL patients, Notch signaling pathway is activated due to mutations primarily affecting the 

stability of Notch1 protein (51, 53). Notch mutations in CLL patients causes frameshift deletions 

leading to generation of protein without the PEST domain (51, 53). The PEST domain in Notch 

proteins are functionally important for ubiquitination and degradation of Notch proteins and 

hence for limiting the cellular responses to Notch signaling (54). Other than the mutational 

activation, studies have also reported constitutively high expression of Notch1 and Notch2 leading 

to activation of Notch signaling in human CLL cells (55). Moreover, In vitro studies relying on co-

culture of CLL cells with stromal cells have also provided evidence for a role of Notch signaling in 

promoting the survival and chemo-resistance of CLL cells (56, 57). Although, these studies have 

linked aberrant Notch signaling to the pathogenesis of CLL in vitro, whether Notch signaling is 
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critical for CLL development in vivo remains unknown. Furthermore, the molecular mechanism 

leading to the deregulation of Notch signaling in CLL is still ambiguous. 

A recent study described expansion of a specialized mature B cell subset known as Marginal Zone 

B cells (MZ B cells) in IRF4 deficient mice (45). Intriguingly, IRF4 deficient mature B cells were 

found to display higher levels of Notch2 receptor and associated Notch signaling leading to 

expansion of MZ B cells (45). Although, these studies identify IRF4 as a negative regulator of Notch 

signaling in mature B cells, the precise mechanism of modulation of Notch signaling by IRF4 

remains unclear. In our studies here, we tested the significance of IRF4-Notch axis in the 

development of CLL.  

1.6 Hypothesis and Approaches II 

These studies were aimed towards defining the importance of Notch signaling in the development 

of CLL. Furthermore, these studies were also directed towards establishing the role of IRF4 in 

inhibiting the responses of CLL cells and their precursors to Notch signaling. We hypothesized that 

IRF4 functions as an attenuator of Notch signaling to suppress CLL development. To test our 

hypothesis we used genetic approaches to study the significance of Notch signaling during CLL 

development in the presence of low levels of IRF4. Additionally, we used Next Generation 

Sequencing approaches to identify the molecular mechanisms by which IRF4 inhibits Notch 

signaling in CLL cells and their precursors. 

1.7 Significance 

The high prevalence of IRF4 risk alleles in CLL patients point towards a central role for IRF4 in the 

pathogenesis of CLL. However, the precise role of IRF4 in the development of CLL was unclear. 

Our studies here used distinct genetic models to elucidate the role of IRF4 in the development of 

CLL. 
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Notch signaling has been identified as one of the most recurrently mutated pathways in CLL. 

Furthermore, studies have identified constitutive activation of Notch signaling pathway as a 

hallmark of CLL. These studies provide evidence for an important role of Notch signaling in the 

pathogenesis of CLL. However, the significance of Notch signaling in the development of CLL in 

vivo is still unknown. Moreover, the molecular mechanisms underlying the deregulation of Notch 

signaling in CLL remains unclear. In our studies here we explored the role of IRF4 as an attenuator 

of Notch signaling during the development of CLL. 
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CHAPTER 2 
 
 

Accelerated development of chronic lymphocytic leukemia in New Zealand Black mice 
expressing low level of interferon regulatory factor 4. 

 

The material presented in this chapter has been previously published: Shibin Ma1#, Vipul 
Shukla1#, Fang Leilei1, Karen A Gould1, Shantaram S. Joshi1 and Runqing Lu1 “Accelerated 

development of CLL in NZB mice expressing low levels of IRF4.” Journal of Biological Chemistry 
(JBC) 2013 Sep 13;288(37):26430-40. doi:10.1074/jbc.M113.475913 # co-first authors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

 

 

2.1 INTRODUCTION 

Chronic lymphocytic leukemia (CLL) accounts for about 30% of all adult leukemias and is the most 

common hematologic malignancy in the Western world (1). CLL is an incurable B cell malignancy, 

featuring a progressive accumulation of CD5+ B lymphocytes in blood, bone marrow and lymph 

node. Many factors have been implicated in the molecular etiology of CLL, including genetic 

predisposition, autoantigen stimulation, microRNAs (miRNAs), and cytogenetic abnormalities (2). 

However, the molecular basis of CLL pathogenesis has not been fully elucidated, largely because 

few genetic abnormalities have been conclusively linked to the development of CLL. Among the 

common genetic defects in CLL, only 13q14 deletion has been conclusively linked to the 

pathogenesis of CLL.  13q14 deletion is the most common genetic abnormality in CLL and is found 

in 50 to 60% of cases (2). As such, 13q14 deletion is believed to be a major initiation event in CLL 

development. Indeed, deletion of a region syntenic to human 13q14 in mice is sufficient to cause 

late onset CLL (3). The miR-15a/16-1 cluster was initially thought to be the sole mediator of the 

tumor suppressive function in the 13q14 interval (4). However, a recent study indicated that the 

region adjacent to the miR15a/16-1 cluster may also play an important role in suppressing CLL 

development (5). 

Mouse models of CLL have been useful tools for dissecting pathogenesis of CLL and for testing 

therapeutic agents(6). New Zealand Black (NZB) mice are a well-described model of spontaneous 

late-onset CLL (7). Multiple genetic loci have been linked to the development of CLL in NZB mice 

(8). Interestingly, NZB mice were found to harbor point mutations in the 3’ flanking region of 

miR16-1 that affect its processing and hence its function (8). Restoring the expression of miR16-1 

in NZB CLL cells led to enhanced sensitivity to chemotherapeutic agents (9). Similar to other 

mouse models of CLL, the malignant CLL clones in NZB mice are derived from B1 cells (10). B1 cells 
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are a small B cell subset that normally resides in the peritoneal and pleural cavities. B1 cells are 

generated from precursors in fetal liver during embryogenesis and from precursors in bone 

marrow postnatally (11). Once generated, the B1 cell population in the peritoneal cavity (PC) is 

tightly regulated by factors that control their survival and self-renewal. B1 cells play an important 

role in host defense against microbial infection and are the major producers of natural antibodies 

in serum (12). Similar to human CLL cells, B cell receptors (BCR) expressed on B1 cells are 

polyreactive with a restricted immunoglobulin heavy chain (IgH) repertoire. 

Interferon regulatory factor 4 is a critical transcriptional regulator of immune system 

development and function (13). Previous studies from us and others have shown that IRF4 is 

essential for B cell development (14, 15). The role of IRF4 in B cell malignancies appears to be 

developmental stage specific. We and others have shown that IRF4 acts as a classical tumor 

suppressor to prevent pre-B cell transformation (16, 17). However, in plasma cells derived 

multiple myeloma, IRF4 behaves as an oncogene to promote the survival of tumor cells (18). A 

recent genome-wide SNP association study in CLL patients identified IRF4 as a major susceptible 

gene for CLL (19). Further analysis of the SNPs located in the 3’-UTR of the IRF4 gene has revealed 

that they are associated with a downregulation of IRF4 in CLL (20). Low levels of IRF4 in CLL cells 

were also found to be correlated with poor prognosis in CLL patients (21).  Finally, mutations in 

the DNA binding domain of IRF4 gene have also been identified in human CLL patients (22). 

Although emerging evidence has linked low levels of IRF4 to the development of CLL, it is unclear 

if low levels of IRF4 are critical for CLL development. In this report, we examined the effect of 

reduced levels of IRF4 in CLL development in NZB mice that are heterozygous for an IRF4 knockout 

allele (NZB IRF4+/-). Our results show that compared to wild type NZB mice (NZB IRF4+/+), CLL 

development was dramatically accelerated in NZB IRF4+/- mice. NZB IRF4+/- CLL cells expressed high 

levels of Bcl2 and Mcl-1 and were resistant to apoptosis. Additionally, survival, expansion and 
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differentiation of B1 cells were also defective in the NZB IRF4+/- mice. Finally, we provide evidence 

that high levels of IRF4 suppressed Akt and promoted apoptosis in CLL cells.  

 

2.2 MATERIALS AND METHODS 

Mice. IRF4 heterozygous mutant mice (IRF4+/-) have been previously described (23).  The Rag2 and 

common gamma chain double deficient mice (Rag2-/-γ-/-) mice were obtained from Taconic. NZB 

mice were obtained from Jackson lab. All mice were maintained under specific pathogen-free 

conditions. Experiments were performed according to guidelines from the National Institutes of 

Health and with an approved protocol from the Institutional Animal Care and Use Committee of 

University of Nebraska Medical Center. The mice aged from 5 to 30 weeks were used for this 

study.  

FACS analysis and cell sorting. Cells were isolated from NZB IRF4+/+ and NZB IRF4+/- mice, pre-

incubated with either 2% rat serum or Fc-Block (2.4G2), and stained with 15 nanograms of 

respective antibodies per million cells that were either biotinylated or directly fluorochrome-

conjugated. All the antibodies were purchased from BD Pharmingen. FACS analysis was performed 

with a FACS Calibur flow cytometer. 

Adoptive transfer of B1 cells. Cells were isolated from PCs of NZB IRF4+/+ and NZB IRF4+/- mice and 

were incubated in tissue culture dishes containing RPMI-1640 media for 4 hours to remove 

adherent macrophages.  The cells in suspension were collected and stained with CFSE dye and 

were injected into PCs of non-irradiated Rag2-/-γ-/- host mice. 105 cells were used for each injection 

and three host mice were used for each group. 10 days later, the transplanted cells were isolated 

for FACS analysis.  

Ki67 staining of CLL cells. Cells isolated from blood, lymph node and spleen of either NZB IRF4+/+ 

and NZB IRF4+/- mice were stained with antibodies against CD5, IgM and B220. After fixation, the 
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Ki67 positive cells were measured with a kit from BD Pharmingen following manufacturer’s 

instructions. The percentages of Ki67 positive cells were revealed by FACS analysis. 

In vivo BrdU labeling. The in vivo BrdU labeling assay was performed as described before(24). 

Mice were injected i.p. with 6 mg/ml BrdU (Sigma-Aldrich) and 12 hours later the cells were 

isolated for analysis. Three mice from each group were used for this assay. Cells from blood, bone 

marrow, lymph node and spleen were stained with antibodies against CD5, IgM and CD19. After 

fixation, the incorporated BrdU was detected with a BrdU flow kit (Pharmingen). The percentages 

of BrdU positive cells were detected by FACS. 

Assays to detect apoptosis (TUNEL, Caspase 3 and Annexin-V). The apoptosis status of CLL and 

control cells in mice was examined with terminal deoxynucleotidyltransferase-mediated dUTP-

biotin nick end labeling (TUNEL) assay. The TUNEL assay was conducted as previously described 

(17). The cells were isolated and stained with surface antibodies (CD5 and IgM). The TUNEL 

positive cells were revealed with an APO-direct kit (BD Pharmingen). The activated Caspase 3 and 

Annexin-V staining were also used to detect apoptotic cells. In this case, the assays were carried 

out with kits from BD Pharmingen. 

Assay to measure phospho-Akt. MEC-1 cells were fixed in 2% paraformaldehyde for 10 minutes 

and permeabilized in 100% methanol for 30 minutes. The permeabilized cells were incubated with 

anti-phopho-Akt S473 antibody (Alexa Fluor® 488 Conjugate, Cell signaling) for 1 hour at room 

temperature. After washing, the intracellular phospho-Akt activity was examined by FACS. 

Assay to measure miR15a/16-1. 

Total RNA was extracted from the cells with a microRNA isolation kit (Ambion). Total RNA was 

converted to cDNA using Taqman MicroRNA Reverse Transcription kit and Taqman RT primers 

(ABI). For miRNA quantification, TaqMan miRNA assays (ABI) were used according to the 

manufacturer's protocol. Expression levels were normalized to the U6 snRNA.  
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Transfection of CLL cells in vitro. CLL cells were isolated from spleens of NZB IRF4+/- mice and 

cultivated on top of S17 stromal layer in media containing RPMI-1640 with 10% FBS. To 

reconstitute expression of IRF4, NZB IRF4+/- CLL cells were mixed with either control vector 

(MigR1) or IRF4 expressing vector (MigIRF4). 10 x106 CLL cells and 20µg of plasmid were used for 

each transfection. The transfection was carried out in a Nucleofector (Lonza) with Soultion V using 

program G-016. The transfected cells were analyzed 48 hours later. For transfection of human 

MEC-1 cells, 2 x 106 cells and 20 µg of plasmid were used for each transfection. The condition for 

MEC-1 transfection is Solution V and program X-001. Expression plasmids MigR1, MigIRF4 and 

MigIRF8 have been described before (25). MigIRF4Del contains a truncated version of IRF4 lacking 

the N-terminal DNA binding domain (the beginning 150aa). 

Measurement of Calcium Influx. Splenocytes were isolated from NZB IRF4+/+ and NZB IRF4+/- mice 

and stained with antibodies against CD5 and B220. After washing, the stained cells were incubated 

with 1 M of Indo-1 AM (Molecular Probes) for 30 minutes at 37 C in RPMI 1640 media containing 

3 % FBS. The Calcium influx of loaded cells was analyzed with a LSR II flow cytometer. The baseline 

emission of fluorescence ratio (405:525 nm) of CLL or B1 cells was collected for 1 min. Then anti-

 antibody (Jacksonimmuno Res) at 5 g/ml was added and fluorescence ratio was recorded for 

another 4 minutes. The increase in the fluorescence ratio was used to reflect the intensity of 

calcium mobilization upon BCR activation. The data were analyzed with Flowjo software. 

Western Blot analysis. Splenic B cells were isolated via negative selection. Briefly, the splenocytes 

were first incubated with biotinylated antibodies against CD3, CD4, CD8, Ter119, Dx5 and Gr-1. 

After washing, the cells were incubated with streptavidin microbeads. The negatively selected B 

cells were incubated with 10 µg/ml goat F(ab)2 anti-mouse IgM (Jacksonimmuno) at 37ºC for 5 

minutes. The cells were lysed and proteins were separated by SDS-PAGE gel. The membranes 

were incubated with indicated antibodies and the signals were revealed with ECL detection 
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system (Pierce). The antibodies against Akt, phospho-AktS473, Erk, phosphor-Erk, Tcl-1, Bcl-2, Bcl-

xl and Mcl-1 were obtained from Cell Signaling. The antibody against IRF4 was purchased from 

Santa Cruz Biotech. 

 

2.3 RESULTS 

2.3.1 Precocious CLL development in NZB mice expressing low levels of IRF4. 

We have been using IRF4 deficient mice (C57B6) to study the role of IRF4 in B cell development 

and function (15). However, neither IRF4-/- nor IRF4+/- mice developed CLL (Fig.1A and data not 

shown). This observation indicates that low levels of IRF4 are insufficient by itself to cause CLL in 

mice. To determine whether reduced levels of IRF4 could synergize with other genetic defects to 

accelerate CLL development, we backcrossed the IRF4 deficient mice from C57B6 background 

onto NZB background for at least 7 generations to generate NZB IRF4+/- mice. To monitor CLL 

development, we collected blood monthly from saphenous veins of NZB IRF4+/- mice and NZB 

IRF4+/+ control mice. A total of ten mice from each group were used. The appearance and 

percentage of a monoclonal B220lowCD5+ in the peripheral blood mononuclear cells (PBMC) were 

used for the initial CLL diagnosis. The diagnostic criteria for CLL in NZB mice were a monoclonal 

population of B220lowCD5+ cells constituting over 20% of PBMC. If the percentage of the 

B220lowCD5+ clone was under 20% of the PBMC, a diagnosis of monoclonal B cell lymphocytosis 

(MBL).  

 

The latency to onset of CLL in NZB IRF4+/+ mice is typically around 12 months. Interestingly, two 

out of ten NZB IRF4+/- mice developed CLL after just three months (Fig. 1A). After five months, 

eight out of ten NZB IRF4+/- mice developed CLL while the remaining two developed MBL. The NZB 

IRF4+/- mice with MBL all progressed into CLL within 10 month. In contrast, none of the mice in 
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the NZB IRF4+/+ control group developed CLL or MBL within 10 months. Only three of 10 NZB 

IRF4+/+ mice developed CLL/MBL within 13 month (Fig. 1A). To characterize CLL development in 

NZB IRF4+/- mice, we analyzed CLL cells in PC, blood (BL), bone marrow (BM) and spleen (SPL) of 

five-month old NZB IRF4+/- by FACS (Fig. 1B). The control NZB IRF4+/+ mice were also examined. B1 

cells normally reside in the PC and like CLL cells, are B220lowCD5+ cells. However, presence of 

significant amount of B220lowCD5+ CLL cells was also detected in the blood, bone marrow and 

spleen of NZB IRF4+/- mice. In NZB IRF4+/- mice, 80% of splenocytes were B220lowCD5+ CLL cells 

(Fig.1B). The infiltrations of CLL cells in spleens of NZB IRF4+/- mice caused massive splenomegaly 

where an average accumulation of 3.6± 1.4 x 108 CLL cells was observed. Besides spleen, CLL cells 

were also detected in the lymph node of NZB IRF4+/- mice and caused moderate lymph 

adenopathy (data not shown). Together, our results show that CLL development is dramatically 

accelerated in the NZB IRF4+/- mice. 
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Figure 1 Precocious CLL development in NZB mice expressing reduced level of IRF4. A) Kaplan-
Meier CLL-free survival curve of IRF4+/+B6, IRF4+/-B6, NZB IRF4+/+ and NZB IRF4+/- mice. 10 mice 
from each genotype were used for the analysis. P value for pair-wise comparison (log rank test) 
between NZB IRF4+/+ and NZB IRF4+/- is 0.0001. Graphpad PRISM 5.03 was used to plot the survival 
curve and to calculate p value. B) Cells were isolated from peritoneal cavity (PC), blood (BL), bone 
marrow (BM), and spleen (SPL) of five-month old NZB IRF4+/+ and NZB IRF4+/- mice. The isolated 
cells were stained with antibodies against CD5 and B220 and analyzed by FACS. The numbers are 
frequency of CLL cells. 
 

 

 

 

 



31 
 

2.3.2 Phenotypical and histological characterization of NZB IRF4+/- CLL cells. 

To further characterize CLL cells in the NZB IRF4+/- mice, we stained the NZB IRF4+/- CLL cells with 

a panel of antibodies against B220, IgM, IgD, CD21, CD23 and CD43. IgD is a mature B cell marker 

which is normally expressed at higher levels on follicular B cells (FO B) but at low levels on B1 cells. 

CD21 and CD23 are markers for FO B cells but they are expressed at low levels on B1 cells. CD43 

is a B cell activation marker and is expressed at high levels on B1 cells but not on FO B cells. Our 

result shows that NZB IRF4+/- CLL cells were B220lowIgMhi IgDlowCD21-CD23-CD43+, a surface 

phenotype that resembles B1 cells from which they were derived (Fig.2A). We also performed 

histological analysis of spleens of NZB IRF4+/- mice. Histological examination of spleen of NZB 

IRF4+/- mice revealed a grossly distorted white pulp and red pulp, with larger, irregular lymphoid 

follicles (Fig. 2B). Under high magnification (40x), the splenic lymphocytes in NZB IRF4+/- mice 

(predominantly CLL cells) were slightly bigger than those in the NZB IRF4+/+ mice.  
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Figure 2 Phenotypical and histological characterizations of NZB IRF4+/- CLL cells. A) Splenocytes 
from NZB IRF4+/+ and NZB IRF4+/- mice were stained with antibodies against B220, CD21, CD23, 
IgM, IgD and CD43. The stained cells were analyzed by FACS. The data were presented as 
histogram under a B cell gate. Dark line: NZB IRF4+/- CLL cells; light line: NZB IRF4+/+ B cells. B) 
Spleens were isolated from five-month old NZB IRF4+/- and NZB IRF4+/+ mice. The tissues were 
fixed, sectioned, stained with hematoxylin and eosin (H&E). The stained tissues were examined 
under a ZEISS Axioplan 2 Microscope and analyzed with AxioVision software. The spleen sections 
are shown at 2.5x and 40x. 
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2.3.3 NZB IRF4+/- CLL cells expand predominantly in spleen and are resistant to apoptosis.  

The expansion of human CLL cells occurs in proliferation centers found predominantly in bone 

marrow and lymph node(26). Since CLL cells can be detected in several lymphoid organs and 

tissues, we wanted to identify the locations where expansion of NZB IRF4+/-CLL cells occurs. To 

address this question, we measured the expression of Ki-67 in CLL cells isolated from blood, bone 

marrow, lymph node and spleen of NZB IRF4+/- mice (Fig. 3A). Only 3± 0.8% NZB IRF4+/-CLL cells in 

blood were found to express Ki-67. Similarly, only 4.2± 1.4 % and 5.1± 1.9 % of CLL cells were Ki-

67 positive in bone marrow and lymph node. These results indicate that blood, bone marrow and 

lymph node are not the major sites of proliferation for NZB IRF4+/- CLL cells. In contrast, 15.3±4.1% 

of splenic CLL cells in NZB IRF4+/- mice was stained positively for Ki-67, indicating that the 

expansion of NZB IRF4+/- CLL cells occurs predominantly in spleen. This finding is consistent with 

result of BrdU pulse-labeling analysis which shows that 9% of CLL cells in spleen were BrdU 

positive while percentages of BrdU+ CLL cells in BL, BM and LN were only 3% or lower (Fig. 3B). 

We further analyzed the apoptotic status of NZB IRF4+/- CLL cells in blood and spleen and 

compared them with B cells in the NZB IRF4+/+ mice (Fig. 3C).  The percentages of TUNEL positive 

cells in both blood and spleen were found to be significantly lower in the NZB IRF4+/- mice than in 

the NZB IRF4+/+ control mice. Together, these results indicate that NZB IRF4+/-CLL cells proliferate 

predominantly in spleen and are resistant to apoptosis. 
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Figure 3 NZB IRF4+/- CLL cells expand predominantly in spleen and are resistant to apoptosis. A) 
CLL cells were isolated from BL, BM, lymph node (LN) and SPL of five-month old NZB IRF4+/- mice 
and stained with antibodies against CD5, IgM and Ki67. The Ki67 positive cells were revealed by 
FACS. The data were averages and standard deviations of three independent experiments. B) NZB 
IRF4+/- mice were pulse-labeled with BrdU for 12h. After staining, BrdU positive CLL cells in BL, 
BM, LN and SPL were revealed by FACS. C) Cells were isolated from BL and SPL of five-month old 
NZB IRF4+/- and NZB IRF4+/+ mice and stained with antibodies against CD5 and IgM. The apoptotic 
cells were revealed by TUNEL assay. The data were averages and standard deviations of three 
independent experiments. * p<0.01.  
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2.3.4 NZB IRF4+/-CLL cells show hyperresponsiveness to BCR stimulation. 

BCR signaling is critical for the survival and expansion of CLL cells (27). To study BCR signaling in 

NZB IRF4+/- CLL cells, we examined the calcium influx triggered by BCR cross-linking in isolated NZB 

IRF4+/- CLL cells. The splenic B1 cells of NZB IRF4+/+ mice were used as controls. The cells were 

stained with Indo-1 Am, stimulated with anti-IgM antibodies and analyzed by LSR flow cytometer. 

As shown in Fig. 4A, BCR signaling-induced Ca2+ influx was more potent in the NZB IRF4+/- CLL cells 

than in the IRF4+/+NZB splenic B1 cells, indicating that NZB IRF4+/- CLL cells are hyperesponsive to 

BCR stimulation. We further measured the activation of Akt and Erk, two important downstream 

mediators of BCR signaling, in isolated splenic CLL cells and control cells. Engagement of BCR led 

to enhanced phosphorylation of Akt and Erk. Anti-IgM cross-linking induced more robust 

phosphorylation of both Akt and Erk in NZB IRF4+/- CLL cells than in IRF4+/+NZB splenic B cells (Fig 

4B). Collectively, these results indicate that NZB IRF4+/- CLL cells are hyperresponsive to BCR 

stimulation.  We wanted to further determine whether BCR signaling can be regulated by 

expression level of IRF4. To this end, we raised the expression level of IRF4 in the NZB IRF4+/- CLL 

cells via transient transfection. MigR1 is a retroviral vector that co-expresses GFP. MigIRF4 and 

MigR1 control vector were transduced into NZB IRF4+/- CLL cells via a Nucleofector. The 

transfection efficiencies were about 10% in the MigR1 transduced cells but only 3% in the MigIRF4 

transduced cells. Two days after transfection, the cells were stained with Indo-1 Am and 

stimulated with anti-IgM antibodies. The Ca2+ influx in GFP+ cells was examined (Fig. 4C). Our 

result shows that the Ca2+ influx triggered by BCR signaling was comparable between MigR1 and 

MigIRF4 transduced cells, indicating that transient increase of IRF4 expression level cannot 

attenuate BCR signaling in the NZB IRF4+/- CLL cells.   
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Figure 4 NZB IRF4+/- CLL cells are hyperresponsive to BCR stimulation. A) Isolated splenocytes from 
NZB IRF4+/- and NZB IRF4+/+ mice were stained with antibodies against B220 and CD5. The stained 
cells were incubated with Indo-1 Am for 20 minutes at 37ºC. The Calcium influx induced by 5µg/ml 
anti-IgM antibodies were recorded by a LSRII flow cytometer. The Calcium influx by CLL cells and 
B1 cells were overlaid with Flowjo software. Dark line: NZB IRF4+/- CLL cells; light line: NZB IRF4+/+ 
B1 cells. B) Splenic CLL cells were isolated from NZB IRF4+/- mice via negative selection. The 
isolated cells were stimulated with anti-IgM antibody at 10µg/ml for 5 minutes. Splenic B cells 
isolated from NZB IRF4+/+ mice were analyzed as control. Western blot analysis was performed to 
detect phospho-Erk and Akt. C) CLL cells were isolated from spleen of NZB IRF4+/- mice and plated 
on top of S17 stromal cells in RPMI-1640 media containing 10% FBS. MigIRF4 and MigR1 vectors 
were transfected into cultivated CLL cells using a Nucleofector. Two days after transfection, the 
cells were stained with Indo-1 Am and stimulated with 5µg/ml anti-IgM. Ca2+ influx in GFP+ cells 
was examined. MigR1 and MigIRF4 transfected cells are indicated by arrows. 
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2.3.5 Molecular characterization of NZB IRF4+/- CLL cells. 

To further characterize NZB IRF4+/- CLL cells, we examined some common molecular signatures 

that are associated with human CLL cells, including abnormal expression of Bcl-2, Mcl-1, T cell 

leukemia/lymphoma 1 (Tcl1) and miR15a/16-1 microRNAs. Splenic CLL cells were isolated from 

six NZB IRF4+/- mice and expression of Bcl-2 family members Bcl-2, Bcl-xl and Mcl-1 was examined 

by Western blot. Splenic B cells from NZB IRF4+/+ mice were used as control. Similar to human CLL 

cells, expression of Bcl-2 and Mcl-1 was significantly elevated in all six CLL samples (Fig.5A). In 

contrast, expression of Bcl-xl was only moderately increased in some but not all samples. 

Expression of Tcl-1 can be detected in 90% human CLL cases and is found to be overexpressed in 

patients with aggressive CLL(28). Moreover, mice engineered to overexpress Tcl1 oncogene in B 

cells (EµTcl1) develop late onset, aggressive CLL (29). It has been shown that TCL1 oncogene can 

promote survival of CLL cells by directly interacting with Akt (30, 31). However, except for CLL cells 

isolated from EµTcl1 transgenic mice, expression of Tcl1 cannot be detected in samples derived 

from NZB IRF4+/- CLL cells, indicating that expression of Tcl1 is very low in those samples. 

Additionally, Total RNA was isolated from NZB IRF4+/- CLL cells and expression of miR15a and 16-

1 were measured by real time PCR. RNA isolated from splenic B cells of NZB IRF4+/+ mice was 

examined and used as control. Among the four CLL samples examined, expression levels of 

miR15a/16-1 were comparable with that of control (Fig.5B). In summary, our results show that 

expression of Bcl-2 and Mcl-1 are significantly elevated in the NZB IRF4+/- CLL cells, however, 

expression of Tcl1 and miR15a/16-1 are not deregulated in these cells. 
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Figure 5 Molecular characterization of NZB IRF4+/- CLL cells. A) Splenic CLL cells were isolated from 
six NZB IRF4+/- mice via negative selection and lysed for Western blot analysis with indicated 
antibodies. Splenic B cells from NZB IRF4+/+ mice were also isolated and analyzed as control (Con). 
Additionally, splenic CLL cells from EµTcl1 transgenic mice were used as positive control for Tcl-1 
expression. The numbers below each lane indicate the fold change in comparison to the control. 
The intensity of each protein was normalized initially to β-actin. B) Total RNA was also extracted 
from the isolated cells. Real-time TaqMan PCR to detect expression of miR15a/16-1 was done 
using a kit from Applied Biosystems. The data were normalized to U6 snRNA and were expressed 
fold change in comparison to the control.  
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2.3.6 B1 cells in NZB IRF4+/- mice show defects in survival, expansion and differentiation.  

Because NZB IRF4+/- mice developed early onset CLL, we wanted to examine the impact of reduced 

level of IRF4 on normal B1 cell development and function. For this study, we used 5-6 weeks old 

NZB IRF4+/- mice before they develop CLL.  Compared to NZB IRF4+/+ mice, the number of B1 cells 

in NZB IRF4+/- mice increased significantly in PC; the number of B1 cells were 8.2±3.8 x106 in NZB 

IRF4+/- mice but only 4.1±2.1 x 106 in the NZB IRF4+/+ mice (Fig. 6A). This is an indicative of defects 

in B1 cell homeostasis in the NZB IRF4+/- mice. We further analyzed the survival and expansion of 

B1 cells in IRF4+/-NZB mice. For survival analysis, we measured spontaneous apoptosis of B1 cells 

in vitro. B1 cells were isolated from PCs of NZB IRF4+/+ and NZB IRF4+/- mice and were cultivated in 

vitro for 24h. The apoptotic cells were revealed by Propidium Iodide (PI) staining. While 15±3.2% 

NZB IRF4+/+ B1 cells underwent apoptosis, only 5.8±1.7% NZB IRF4+/- B1 cells were apoptotic, 

indicating that NZB IRF4+/- B1 cells are more resistant to apoptosis (Fig. 6B). B1 cell homeostasis 

in the PC is regulated by a balance between survival and self-renewal. To measure B1 cell 

expansion (self-renewal), we isolated B1 cells from PCs of NZB IRF4+/+ and NZB IRF4+/- mice. The 

isolated B1 cells were stained with CFSE dye and transplanted into PCs of Rag2-/-γ-/- deficient host 

mice. Ten days later, the transplanted B1 cells were isolated and analyzed by FACS. Based on the 

dilution of CFSE dye, NZB IRF4+/- B1 cells expanded at a much faster rate in host mice than NZB 

IRF4+/+ B1 cells (Fig. 6C).  

Upon antigen encounter, B1 cells can differentiate into short-lived plasma cells. To determine 

whether reduced levels of IRF4 affect B1 cell differentiation, B1 cells were isolated from NZB 

IRF4+/- and NZB IRF4+/+ mice and incubated with lipopolysaccharide (LPS). Three days later, 

differentiated plasma cells (CD138+) were revealed by FACS. Whereas 26% of LPS treated NZB 

IRF4+/+ B1 cells were CD138+ plasma cells, only 14% of LPS treated NZB IRF4+/- B1 cells were 

CD138+ plasma cells (Fig. 6D). This result indicates that NZB IRF4+/- B1 cells have defects in 
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differentiation. Taken together, our results show that there are defects in the homeostasis of NZB 

IRF4+/- B1 cells, resulting in prolonged survival, enhanced self-renewal and decreased 

differentiation.  

 

Figure 6 Defects in B1 cell survival, expansion and differentiation in the NZB IRF4+/- mice. A) Cells 
were isolated from PCs of NZB IRF4+/+ and NZB IRF4+/- mice and were counted. The numbers are 
averages and standard deviations of five mice from each group. * p<0.01. B) Isolated B1 cells were 
cultivated in RPMI1640 media for 24h. PI staining was used to identify the apoptotic cells. * 
p<0.01. C) B1 cells were isolated from PCs of NZB IRF4+/+ and NZB IRF4+/- mice and stained with 
CFSE dye. The stained cells were injected into PCs of Rag2-/-γ-/- deficient mice at 105 cells per 
injection. 10 days later, the transplanted cells were isolated for FACS analysis. D) Isolated B1 cells 
from NZB IRF4+/+ and NZB IRF4+/- mice were cultivated in vitro in presence of LPS (5µg/ml). Three 
days later, the cells were stained with antibodies against CD138 and B220 and analyzed by FACS. 
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2.3.7 High levels of IRF4 expression inhibit survival of NZB IRF4+/- CLL cells. 

Expression level of IRF4 is presumably reduced by 50% in the NZB IRF4+/- mice. To confirm this, we 

measured the expression levels of IRF4 in isolated NZB IRF4+/- CLL clones. Compared to NZB IRF4+/+ 

B1 cells, the expression levels of IRF4 were reduced by 50 to 60 % in CLL clones isolated from NZB 

IRF4+/- mice (Fig. 7A). This result confirmed that IRF4 is expressed at reduced levels in the NZB 

IRF4+/- CLL cells. Our result shows that NZB IRF4+/- CLL cells were resistant to apoptosis. To 

determine the effect of expression levels of IRF4 on the survival of NZB IRF4+/- CLL cells, we raised 

the level of IRF4 in the NZB IRF4+/- CLL cells via Nucelofector (described in Fig. 4C). While 3.9±1.1% 

cells underwent apoptosis in control vector transfected CLL cells, 8.8±3.2 % of MigIRF4 transfected 

CLL cells were apoptotic (Fig.7B). We further sorted GFP+ cells from transduced cells and 

measured the expression levels of IRF4 transcripts by real time PCR. Our result shows that 

expression level of IRF4 transcript was about three-fold higher in the MigIRF4 transduced cells 

than in NZB IRF4+/+ B1 cells.   In summary, our finding indicates that survival of NZB IRF4+/- CLL cells 

is inversely correlated with the expression level of IRF4. 
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Figure 7 High levels of IRF4 inhibit the survival of NZB IRF4+/- CLL cells. A) Protein lysates from 
three independent NZB IRF4+/- CLL clones as well as three independent NZB IRF4+/+ B1 cells were 
used for Western blot analysis. The expression levels of IRF4 and β-actin control were examined 
with specific antibodies. B)  CLL cells were isolated from spleen of NZB IRF4+/- mice and plated on 
top of S17 stromal cells in RPMI-1640 media containing 10% FBS. MigIRF4 and MigR1 vectors were 
transfected into cultivated CLL cells using a Nucleofector. 48h later, the apoptotic cells in 
successfully transfected CLL cells (GFP+) were analyzed by detecting activated caspase3. The 
results were averages and standard deviations of three independent experiments. * p<0.01. C) 
Control and IRF4 transfected cells were isolated by sorting and expression levels of total IRF4 
transcript in these cells were measured by real time PCR. The values were presented as fold 
change in comparison to expression level of IRF4 in B1 cells isolated from NZB IRF4+/+ mice. 
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2.3.8 High levels of IRF4 expression suppress Akt activity and promote apoptosis in human CLL 

cells. 

Previous study has shown that low levels of IRF4 are associated with aggressive CLL in human 

patients (21). We wanted to examine the effect of IRF4 expression level on human CLL cells. MEC-

1 is the most widely used human CLL cells (32). Expression level of IRF4 is significantly lower in the 

MEC-1 cells than in multiple myeloma cell lines H929, U266 and RPMI8226 (Fig. 8A). To examine 

the effect of high levels of IRF4 on CLL cells, we transfected MEC-1 cells with MigR1 and MigIRF4 

expression plasmids.  Additionally, MEC-1 cells were also transfected with MigIRF8 and 

MigIRF4Del (IRF4 without its N-terminal DNA binding domain). IRF8 is closely related to IRF4 in 

terms of sequence homology and function (33).   Our previous studies have shown that IRF4 and 

IRF8 function redundantly to control pre-B cell development (25). Two days after transfection, the 

cells were stained with Annexin-V and analyzed by FACS. While only 4% of MigR1 transfected cells 

were Annexin-V positive, 18% of MigIRF4 transfected cell underwent apoptosis, indicating that 

high level of IRF4 promotes apoptosis (Fig. 8A). Interestingly, 15% of IRF4Del transduced cells were 

also stained positive for Annexin-V, indicating that IRF4 does not need its DNA binding domain to 

promote apoptosis in the MEC-1 cells. Unlike IRF4, high level of IRF8 did not affect the survival of 

MEC-1 cells. Since the target gene and GFP are translated from the same mRNA transcript through 

an internal ribosome entry site (IRES), the expression levels of GFP can be used as an indicator of 

target gene expression. Among the different plasmids, the percentages of GFP positive cells and 

the intensity of GFP appear to be inversely correlated with their effect on MEC-1 cells---MigR1 

and IRF8 transduced cells expressed the highest level of GFP whereas IRF4 and IRF4Del transduced 

cells expressed the lowest level (Fig. 8C).  

It has been shown that PI3 kinase (PI3K)/Akt pathway is critical for the survival of human CLL cells 

(34). Akt is activated by phosphorylation at multiple sites and among them; Akt phosphorylation 
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at Ser473 is required for its activation. A recent study has shown that Akt is constitutively 

phosphorylated (Ser473) in MEC-1 cells and inhibition of Akt phosphorylation dramatically reduces 

survival of MEC-1 cells (35). We wanted to examine the effect of high levels of IRF4 on Akt 

activation. To this end, we measured phosphorylated Akt (Ser473) in MEC-1 cells transfected with 

MigR1, IRF4 and IRF4Del. MEC-1 cells were also treated with PI3k inhibitor LY294002 and analyzed 

as control. As shown in Fig. 8D, LY294002 treatment decreased the percentage of phospho-Akt 

expressing cells from 83% in untreated cells to 29% in the treated cells. Additionally, LY294002 

treatment also led to enhanced cell apoptosis (data not shown). While 70% phospho-Akt 

expressing cells were found in the MigR1 transfected cells, the percentages of phospho-Akt 

expressing cells in cells transfected with IRF4 and IRF4Del were only 24% and 35%, respectively 

(Fig. 8D). The suppressive effect of IRF4 and IRF4del on Akt phosphorylation was confirmed by 

statistical analysis of three independent experiments (Fig. 8E). In summary, our results show that 

high levels of IRF4 suppress Akt and promote apoptosis in human CLL cells. Moreover, IRF4 can 

do so without its DNA binding domain, albeit less efficiently. 
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Figure 8 High levels of IRF4 inhibit AKT and promote apoptosis in human CLL cells. A) MEC-1 
human CLL cells, H929, U266 and RPMI8226 multiple myeloma cells were lysed for Western blot 
analysis to detect IRF4 expression. B) MEC-1 cells were transfected with MigR1, MigIRF4, 
MigIRF4Del or MigIRF8 expression plasmids. Two days later, the transfected cells were stained 
with Annexin-V antibody and analyzed by FACS. The percentages of GFP and Annexin-V double 
positive apoptotic cells were plotted with Graphpad PRISM software. The values were averages 
and SD of three independent experiments. ** p< 0.01. C) The percentage of GFP positive MEC-1 
cells transfected with MigR1, MigIRF4, MigIRF4Del and MigIRF8. The numbers indicate the 
percentage of GPF+ cells. D) MEC-1 cells were transfected with MigR1, MigIRF4 and MigIRF4Del 
and 48h after transfection, phospho-Akt and GFP double positive cells were measured by FACS in 
each group. Additionally, MEC-1 cells were treated with PI3K inhibitor LY294002 (50 µM). After 
two days, intracellular phospho-Akt was analyzed by FACS. The untreated cells were analyzed as 
control.  The numbers are percentages of phospho-Akt positive cells. E) Averages and SD of three 
independent experiments described above. ** p<0.01. 
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2.4 DISCUSSION 

A previous GWAS study has linked low levels of IRF4 with the development of CLL (19). In this 

study, we demonstrate for the first time a causal relationship between reduced level of IRF4 and 

the development of CLL. We used IRF4 heterozygous mutant NZB mice to mimic the effect of 

germline SNP variants in IRF4 gene and the associated low levels of IRF4 in CLL patients. Our 

results show that CLL development was dramatically accelerated in the NZB IRF4+/- mice. The 

average onset of CLL in NZB mice is around 12 month, but CLL cells could be detected in NZB 

IRF4+/- mice at 3 months of age. By 5 months of age, 80% NZB IRF4+/- mice developed CLL. In 

contrast to what is seen in human, our analysis reveals that spleen, but not lymph node and bone 

marrow, is the major site of the expansion for the NZB IRF4+/- CLL cells. The expansion of human 

CLL cells occurs in the proliferation center found predominantly in lymph node and bone marrow.  

It is generally believed that the survival and expansion of CLL cells in the proliferation center are 

dependent on the presence of antigen in a unique microenvironment that consists of nurse-like 

cells, stromal cells, follicular dendritic cells and helper T cells (26, 36). It is likely that splenic 

microenvironment provides the much-needed pro-survival/proliferation signals in this mouse 

model. Human CLL cells, like murine B1 cells, possess poly-reactive BCRs that recognize self-

antigen and microbial antigen and chronic autoantigen stimulation is believed to play a critical 

role in the development and progression of CLL (36, 37). Our result shows that NZB IRF4+/- CLL 

cells are hyperresponsive to BCR stimulation, a property that would render them more sensitive 

to autoantigen stimulation in vivo and thus confer survival advantage for the cells. However, 

reconstitution of IRF4 expression in NZB IRF4+/- CLL cells did not attenuate BCR signaling, 

suggesting that BCR signaling is not directly regulated by expression levels of IRF4.  
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Our results show that NZB IRF4+/- CLL cells express high levels of Bcl-2 and Mcl-1. Human CLL cells 

are known to overexpress Bcl-2 and Mcl-1 as well as other members of pro-survival Bcl-2 family 

proteins. Among the Bcl-2 family members, Mcl-1 is the major pro-survival factor for CLL cells 

(34). Clinically, Mcl-1 is found to be better than other Bcl-2 family members at predicting 

prognosis and clinical behavior of CLL patients (38). Elevated levels of Bcl-2 in CLL cells have been 

attributed to promoter hypomethylation and the loss of negative regulators miR15a/16 (39, 40). 

Our results show that in the NZB IRF4+/- CLL cells miR15a/16-1 are expressed at levels that are 

comparable to those in the NZB IRF4+/+ B cells, indicating that elevated level of Bcl-2 is not the 

result of deregulated expression of miR15a/16-1.  

 

Our results show that IRF4 is a critical regulator of B1 cell homeostasis. Although the cellular origin 

of human CLL remains unclear, CLL cells are believed to be derived from B1 cells in mice (10, 29, 

41). Our results show that B1 cells in the NZB IRF4+/- mice exhibit prolonged survival and enhanced 

self-renewal, resulting in a dramatic expansion of B1 cells. Upon antigen encounter, B1 cells can 

differentiate into short-lived antibody producing plasma cells. However, NZB IRF4+/- B1 cells are 

defective in plasma cell differentiation. It has been demonstrated that IRF4 is required for plasma 

cell differentiation (42, 43). Therefore, the defects in differentiation of NZB IRF4+/- B1 cells are 

most likely due to insufficient amount of IRF4 in those cells. Taken together, these observations 

support a scenario where prolonged survival, enhanced self-renewal and expansion together with 

defects in differentiation in NZB IRF4+/- B1 cells lead to expansion of precursor CLL cells and render 

them more susceptible to subsequent transformation events.  

Besides regulating survival and expansion of precursor CLL cells (B1), our results also show that 

IRF4 directly controls the survival of CLL cells. A rise in the levels of IRF4 in NZB IRF4+/- CLL cells 

promotes apoptosis. Moreover, raise the levels of IRF4 in MEC-1 human CLL cells reduces their 
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survival as well. In contrast, our result shows that an increase in the levels of IRF8 has no effect 

on the survival of CLL cells. A recent GWAS study identified IRF8 as a novel susceptibility gene for 

CLL (44). However, in this case, the SNPs located in the IRF8 gene are linked to high levels of IRF8 

in CLL patients (44). Our previous study has shown that IRF8 and IRF4 function in a redundantly 

fashion to control early stage of B cell development (15). However, it appears that IRF4 and IRF8 

play opposite role in the development of CLL. Further analysis of IRF4 effect reveals that high 

levels of IRF4 suppress Akt activity. Akt activity is regulated by PI3 Kinase (PI3K) downstream of 

BCR signaling and it controls the expression of several proteins that are critical for the survival of 

CLL cells. It has been shown that Akt can increase the expression of Mcl-1 by stabilizing Mcl-1 

protein and preventing its degradation (45, 46). Akt/Mcl-1 pathway has been shown to be critical 

for the survival of CLL cells (34). Besides inducing Mcl-1 expression, Akt has been shown to 

phosphorylate and inactivate the proapoptotic proteins BAD and caspase-9 (47, 48). 

Since high levels of IRF4 in NZB IRF4+/- CLL cells did not attenuate BCR signaling, the suppressive 

effect of IRF4 on Akt is unlikely a result of weakened BCR signaling in CLL cells.  How Akt activity 

is suppressed by IRF4 is unclear. Intriguingly, our result shows that truncated IRF4 without its DNA 

binding domain can still suppress Akt and promote apoptosis in CLL cells. These findings indicate 

that high levels of IRF4 inhibit the survival of CLL cells through means that are independent of its 

role as a transcriptional regulator. It is worth noting that our finding is in line with a recent study 

which shows that IRF4, without its DNA binding domain, can still suppress BCR/ABL oncogene 

induced myeloid leukemia (49). Their analysis further shows that it is the C-terminal IRF 

association domain that is critical for the tumor suppressive activity of IRF4. As DNA binding 

domain of IRF4 contains nuclear localization signal, the truncated IRF4 is localized predominantly 

in the cytosol (49, 50). How cytosolic IRF4 suppresses Akt activity remains unclear. Interestingly, 

it has been shown that cytosolic IRF4 can directly interact with MyD88 to inhibit its activity (51).  
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SNPs in the 3’UTR of the IRF4 gene were identified as a risk allele for both sporadic and familial 

CLL and at least one copy of the risk allele is present in over 86% of CLL cases (52). The prevalence 

of the risk allele in CLL patient indicates that it may play an important role in the initiation of CLL. 

Indeed, our finding that NZB IRF4+/- mice develop early onset CLL supports this assertion. Although 

the molecular mechanism through which IRF4 suppresses CLL development remains to be further 

elucidated, nevertheless, our findings presented here demonstrate that low level of IRF4 leads to 

deregulated homeostasis of precursor CLL cells (B1) and prolonged survival of CLL cells, thereby 

promoting CLL development. 
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A role for IRF4 in the development of CLL 
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3.1 INTRODUTION 

Interferon regulatory factor 4 (IRF4) is a transcriptional regulator of immune system development 

and function(1). In B cells, IRF4 is critical for their early stage development in the bone marrow as 

well as their functions in the periphery(2, 3). Previous works from our group have shown that IRF4 

and, its closely related family member IRF8, orchestrate the transition from the large pre-B cell to 

the small pre-B cells by regulating cell cycle exit and by promoting light chain rearrangement(4-

6). In mature B cells, IRF4 is essential for class-switching, germinal center exit and the 

differentiation into antibody secreting plasma cells(7-9).  The role of IRF4 in B cell malignancies 

appears to be developmental stage specific. We and others have shown that IRF4 acts as a 

classical tumor suppressor to prevent pre-B cell transformation(10, 11). However, in multiple 

myeloma, IRF4 behaves as an oncogene to promote the survival of those cells(12). 

 

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries and 

is characterized by a monoclonal accumulation of neoplastic CD5+ B cells in blood, bone marrow, 

and secondary lymphoid tissues (13). Multiple factors have been implicated in the molecular 

etiology of CLL, including genetic predisposition, autoantigen stimulation, microRNAs (miRNAs), 

and cytogenetic abnormalities(14).  The molecular pathogenesis of CLL has not been fully 

elucidated, largely because few genetic abnormalities have been conclusively linked to the 

pathogenesis of CLL. A recent genome-wide SNP association study (GWAS) in CLL patients 

identified IRF4 as a major susceptible gene for CLL(15). Fine-scale mapping analysis identified four 

SNPs mapped to a 3-kb region in the 3’-UTR of the IRF4 gene(16). Further analysis of IRF4 

expression in Epstein-Barr virus (EBV) transformed lymphocytes suggests that presence of the 
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SNPs was associated with a downregulation of IRF4(15). Low levels of IRF4 were also found to 

correlate with poor prognosis in CLL patients(17).  Mutations in the DNA binding domain of IRF4 

gene were identified in human CLL patients(18). It occurs only in 1.5% CLL cases with majority of 

the cases also carrying trisomy 12. It remains unclear whether and how these mutations impact 

the functions of IRF4.  

We used a naturally occurring, low penetrance model of CLL, the New Zealand Black (NZB) mouse 

to study the role of IRF4 in CLL development (19). We bred the IRF4+/- mice expressing low levels 

of IRF4 to the NZB mice (NZB IRF4+/-), to study how low levels of IRF4 affects the pathogenesis of 

CLL in this model (19). Interestingly, our results showed that CLL development is markedly 

accelerated in NZB mice expressing low levels of IRF4 (19). NZB IRF4+/- mice developed CLL at 4-5 

months of age with 100% disease penetrance, when compared with the NZB IRF4+/+ mice that 

developed CLL at 10-12 months of age with 30% disease penetrance (19). The pathogenesis of CLL 

in NZB mice has been linked to multiple genetic lesions, one of which is a SNP identified in the 

14q13 locus harboring miR15a/16-1 gene (20). The identified SNP interferes with the processing 

and functional maturation of the miRNA15a/16-1 that are known to be important for CLL (20). 

The 14q13 locus is syntenic to the 13q14 locus in humans, which is deleted in ~55-60% of CLL 

cases, most with indolent disease course (40, 45). Additionally, the deletion of this locus in its 

entirety or miRNAs alone leads to spontaneous CLL development at low penetrance in rodents 

(40, 45). Therefore, our studies show that low levels of IRF4 collaborate with the preexisting 

genetic defects in NZB mice to radically accelerate CLL development (19). However, the presence 

of preexisting genetic defects in the NZB mice precluded these studies from conclusively 

demonstrating a role for IRF4 in CLL initiation. 
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The cellular origin of human CLL remains unclear, however, CLL cells are believed to be derived 

from B1 cells in rodent(21). B1 cells are a small B cell subset that normally resides in the peritoneal 

(PC) and pleural cavities. B1 cells play an important role in host defense against microbial infection 

and are the major producers of natural antibodies in serum(22). B cell receptors (BCR) expressed 

on B1 cells are polyreactive with a very restricted immunoglobulin heavy chain (IgH) repertoire. 

Vh11 family of IgH gene is one of those unique Ig genes that are found only in B1 cells where it 

pairs with light chain to form the BCR that recognizes phosphatidylcholine (PtC) on senescent red 

blood cells (23). Analysis of Vh11 knock-in mice confirmed that B cell expressing Vh11 knock-in 

allele give rise to B1 cells, whose population is expanded dramatically in the Vh11 knock-in 

mice(24). Here, we report that IRF4 deficient mice expressing Vh11 knock-in allele (IRF4-/-Vh11) 

spontaneously developed early onset CLL at 100% penetrance. Moreover, reconstitution of IRF4 

expression in IRF4-/-Vh11 CLL cells inhibited their survival. 

 

3.2 MATERIALS AND METHODS 

Mice. IRF4 deficient mice (IRF4-/-) and Vh11 knock-in mice have been previously described(24, 25).  

The Rag2 and common gamma chain double deficient mice (Rag2-/-γ-/-) mice were obtained from 

Taconic. All mice were maintained under specific pathogen-free conditions. Experiments were 

performed according to guidelines from the National Institutes of Health and with an approved 

protocol from the Institutional Animal Care and Use Committee of University of Nebraska Medical 

Center. The mice age from 8 to 30 weeks were used for this study.  

 

Transplantation of CLL cells. CLL cells were isolated from spleens of IRF4-/-Vh11 mice via negative 

selection. The isolated CLL cells were injected via retro-orbital sinus into non-irradiated Rag2-/-γ-/. 
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106 cells were used for each injection. The CLL cells were monitored weekly through blood 

analysis.  

 

In vivo BrdU labeling. The in vivo BrdU labeling assay was performed as described before(26). 

Mice were injected i.p. with 6 mg/ml BrdU (Sigma-Aldrich) and 12h later the cells were isolated 

for analysis. Three mice from each group were used for this assay. Cells from blood, lymph node 

and spleen were stained with antibodies against CD5, IgM and CD19. After fixation, the 

incorporated BrdU was detected with a BrdU flow kit (Pharmingen). The percentages of BrdU 

positive cells were detected by FACS analysis. 

 

TUNEL and activated caspase 3 assays. The apoptosis status of CLL cells in mice were examined 

with terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) 

assay. The TUNEL assay was conducted as previously described(11). The cells were isolated and 

stained with surface antibodies (CD5 and IgM). The TUNEL positive cells were revealed with an 

APO-direct kit (BD Pharmingen). The activated caspase 3 was also used to detect apoptotic cells. 

In this case, the assay was carried out with a kit from BD Pharmingen. 

 

Transfection of CLL cells in vitro. CLL cells were isolated from spleens of IRF4-/-Vh11 mice and 

cultivated on top of S17 stromal layer in media containing RPMI-1640 with 10% FBS. To 

reconstitute expression of IRF4, IRF4-/-Vh11 CLL cells were mixed with either control vector or IRF4 

expressing vector. 10 x106 CLL cells and 20µg of plasmid were used for each transfection. The 

transfection was carried out in a Nucleofector (Lonza) with Soultion R using program U-016. The 

transfected cells were analyzed 48 hours later. 
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Assay to measure miR15a/16-1. 

Total RNA was extracted from the cells with a microRNA isolation kit (Ambion) and was converted 

to cDNA using Taqman MicroRNA Reverse Transcription kit and Taqman RT primers (ABI). For 

miRNA quantification, TaqMan miRNA assays (ABI) were used according to the manufacturer's 

protocol. Expression levels were normalized to the U6 snRNA.  

 

Western Blot analysis. Splenic B cells were isolated via negative selection. The isolated cells were 

lysed and the lysates were separated by SDS-PAGE gel. The membranes were incubated with 

indicated antibodies and the signals were revealed with ECL detection system (Pierce). The 

antibodies against Tcl-1, Bcl-2, Bcl-xl and Mcl-1 were obtained from Cell Signaling.  

 

3.3 RESULTS 

 3.3.1 Spontaneous CLL development in IRF4 deficient Vh11 knock-in mice. 

We have been using IRF4 deficient mice (C57B6) to examine the role of IRF4 in B cell development 

and function(3). However, we failed to observe an overt CLL development in these mice (data not 

shown). We reasoned that this may be caused by insufficient number of B1 cells in wild type 

background, as B1 cells consist of only 5% of total B lymphocytes in adult mice.  Therefore, we 

postulated that the effect of low levels of IRF4 on CLL development should be examined in mice 

that have an expanded B1 cell population. Since Vh11 knock-in mice have an expanded B1 cell 

population, we decided to generate IRF4 deficient mice expressing Vh11 knock-in allele. To this 

end, we backcrossed Vh11 mice (CB17) into IRF4-/-mice (C57B6) for at least six generations (IRF4-

/-Vh11). To monitor pathogenesis of CLL, we collected blood monthly from saphenous vein of IRF4-

/-Vh11, IRF4+/-Vh11, and IRF4+/+Vh11 littermate control mice.  The appearance of a monoclonal 

IgM+CD5+ population and its percentage among peripheral blood mononuclear cells (PBMC) were 
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used for initial CLL diagnosis. The diagnostic criterion for CLL in IRF4-/-Vh11 mice is the appearance 

of monoclonal IgM+CD5+ cells constituting over 20% of PBMC. If the percentage of the IgM+CD5+ 

clone is under 20% of the PBMC, the diagnosis is monoclonal B cell lymphocytosis (MBL).  

 

Interestingly, 7 out of 12 IRF4-/-Vh11 mice developed CLL after just 5 months while the rest 

developed MBL (Fig 1A). The mice with MBL all progressed into CLL within another 5 months.  In 

contrast, none of the IRF4+/+Vh11 control mice developed CLL or MBL within 12 month (Fig. 1A). 

We failed to observe overt CLL development in IRF4+/-VH11 mice. However, two IRF4+/-VH11 mice 

did develop MBL like disease at 10 months of age (Fig 1A). Among the CLL cases that emerged 

from IRF4-/-Vh11 mice, 70% resembled indolent CLL where the mice had no systemic symptoms 

and histological analysis revealed little infiltration of CLL cells into non-lymphoid organs and 

tissues. The other 30% exhibited aggressive behavior where the mice exhibited systemic 

symptoms accompanied by infiltrations of CLL cells into non-lymphoid organs and tissues. The 

mice in the latter case often succumbed to diseases within 12 months (Fig 1B). FACS analysis was 

carried out to characterize CLL cells in the IRF4-/-Vh11 mice (Fig. 1C). IgM+CD5+ CLL cells were 

detected in blood (BL), bone marrow (BM), lymph node (LN) and spleen (SPL) of IRF4-/-Vh11 mice 

(Fig. 1C). In Peritoneal Cavity (PC) where B1 cells normally reside, the IgM+CD5+ B1 cells were also 

detected in the IRF4+/+Vh11 control mice. The presence of significant numbers of CLL cells in LN 

and SPL of IRF4-/-Vh11 mice caused massive splenomegaly and lymph adenopathy. The 

splenomegaly and lymph adenopathy were more prominent in IRF4-/-Vh11 mice with CLL than 

those with MBL. The average numbers of IgM+CD5+ CLL cells in spleens of IRF4-/-Vh11 mice with 

CLL and MBL were 2.4±1.2x108 (n=6) and 0.6±0.4x108 (n=5), respectively. To understand the 

progression of CLL cells in IRF4-/-Vh11 mice, we calculated the frequencies of CLL cells among 

PBMC over a period of eight months. The IgM+CD5+ CLL cells typically started to appear in blood 
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of IRF4-/-Vh11 mice at 2 to 4 months of age (Fig. 1D). The frequencies of the CLL cells steadily 

increased over the next few months, reaching an average of 69% of PBMC at 8 months of age. In 

contrast, the frequencies of IgM+CD5+ cells were low and relatively stable in IRF4+/+VH11 and 

IRF4+/-VH11 mice throughout the entire period (Fig. 1D).  
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Figure 1 Spontaneous CLL development in IRF4 deficient Vh11 knock-in mice. A) Kaplan-Meier 
Event-free survival curve of IRF4+/+Vh11, IRF4+/-Vh11, and IRF4-/-Vh11 mice. 12 mice from each 
genotype were used for the analysis. P values are pair-wise comparison (log rank test) between 
IRF4+/+Vh11 and IRF4+/-Vh11, and between IRF4+/+Vh11 and IRF4-/-Vh11. Graphpad PRISM was 
used to plot the survival curve and to calculate p value. B) Kaplan-Meier Overall Survival curve of 
IRF4+/+Vh11 and IRF4-/-Vh11 mice. 10 mice from each genotype were used for the analysis. C) Cells 
were isolated from blood (BL), PC, bone marrow (BM), lymph node (LN) and spleen (Spl) of five-
months old IRF4+/+ Vh11 and IRF4-/-Vh11 mice. The isolated cells were stained with antibodies 
against CD5 and IgM and analyzed by FACS. D) Blood were collected from IRF4+/+Vh11, IRF4+/-

Vh11, and IRF4-/-Vh11 mice for FACS analysis.  The blood were collected from these mice every 
two months for a period of eight months. There were five mice in each group. The frequency of 
CD5+IgM+ cells among PBMC was calculated by FACS analysis. The average and SD of the 
frequency of CD5+IgM+ cells in each group at different time points were calculated (Fig. 1D top). 
A representative FACS analysis for each group at different time points was shown (Fig. 1D 
bottom).   
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3.3.2 Phenotypical and Histological analyses of CLL cells in IRF4-/-Vh11 mice. 

To further characterize CLL cells, we isolated splenic cells from IRF4-/-Vh11 and IRF4+/+Vh11 mice 

and stained them with a panel of antibodies against CD19, B220, CD23, CD21, IgD, CD1d, IgMa 

and IgMb. CD23, CD21 and IgD are expressed at high levels on Follicular B cells (major splenic B 

cell population) but at low levels on B1 cells. Marginal zone B cells express high levels of CD1d 

whereas other B cell subsets including B1 cells express intermediate level of CD1d (CD1dint). The 

knock-in Vh11 heavy chain is IgMa allotype which can be distinguished from endogenous Ig heavy 

chain (IgMb). When compared to splenic B cells in IRF4+/+Vh11 mice, IRF4-/-Vh11 CLL cells were 

CD19+, B220low/-, CD23-, CD21-, IgDlow and CD1dint (Fig. 2A). The surface phenotype of IRF4-/-Vh11 

CLL cells resembles B1 cells from which they are derived. Finally, IRF4-/-Vh11 CLL cells were 

IgMa+IgMb-, indicating that they express only Vh11 knock-in allele. In contrast, B cells in 

IRF4+/+Vh11 mice were a mixed populations where some B cell expressed the knock-in allele 

(IgMa+) while others expressed the product of rearranged endogenous heavy chain (IgMb+).  

 

IRF4-/-Vh11 mice exhibited splenomegaly and in cases of aggressive CLL, enlarged livers. These 

findings indicate that CLL cells infiltrate not only lymphoid organs and tissues but also 

nonlymphoid organs including livers. To verify this result, we performed histological analysis of 

spleens and livers of IRF4-/-Vh11 and IRF4+/+Vh11 mice. Histological examination of spleen of IRF4-

/-Vh11 mice revealed a grossly distorted white pulp and red pulp, with much larger, irregular 

lymphoid follicles (Fig.2B). H&E staining of liver revealed infiltration of lymphocytes around 

central vein in the IRF4-/-Vh11 mice (Fig.2B). Although the perivascular infiltrations were 

prominent in the liver of IRF4-/-Vh11 mice, infiltrating lymphocytes could also be detected in other 

regions of the liver.  
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Figure 2 Phenotypical and histological analyses of CLL cells in the IRF4-/-Vh11 mice. A) Splenocytes 
from IRF4+/+ Vh11 and IRF4-/-Vh11 mice were stained with antibodies against CD19, B220, IgMa, 
IgMb, CD21, CD23, IgD and CD1d. The stained cells were analyzed by FACS. The data were 
presented as histogram under a B cell gate. Dark line: IRF4-/- Vh11 CLL cells; light line: IRF4+/+ Vh11 
B cells. B) Spleens and livers were isolated from five-month old IRF4-/-Vh11 and IRF4+/+Vh11 mice. 
The tissues were fixed, sectioned, stained with hematoxylin and eosin (H&E). The spleen sections 
are shown at 2.5x and 40x; the liver sections are shown at 20x. Arrow indicates the infiltrated CLL 
cells in liver. 
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3.3.3 IRF4-/-VH11 CLL cells proliferate mainly in spleen and are resistant to apoptosis. 

We wanted to further characterize the behavior of IRF4-/-Vh11 CLL cells by examining their 

proliferation and survival in vivo. To determine their proliferating rate, IRF4-/-Vh11 mice were 

pulse-labeled with BrdU and the percentages of BrdU positive IgM+CD5+ cells in blood, spleen and 

lymph node were examined. IRF4+/+Vh11 mice were examined as control. In blood, the 

percentages of BrdU positive cells in IRF4+/+Vh11 and IRF4-/-Vh11 mice were at 1.1% and 1.3%, 

respectively (Fig.3A). The low percentage of BrdU positive cells in blood indicates that IRF4-/-Vh11 

CLL cells do not proliferate in blood. Similarly, only 2% of IRF4-/-Vh11 CLL cells were found to be 

BrdU positive in lymph node, indicating that Lymph node is not the major site for their expansion 

either. In contrast, 4.8% of splenic CLL cells in IRF4-/-Vh11 mice were stained positive for BrdU, 

indicating that spleen is the major organ for their expansion. To assess apoptotic status of IRF4-/-

Vh11 CLL cells, we performed TUNEL assay on isolated splenic CLL cells. While 4.5±1.12% of  

IgM+CD5+ splenic B1 cells were found to undergo apoptosis in IRF4+/+Vh11 mice, only 0.2±0.04% 

of IgM+CD5+ CLL cells in IRF4-/-Vh11 mice were TUNEL positive, indicating that IRF4-/-Vh11 CLL cells 

are resistant to apoptosis (Fig.3B). In addition, very few TUNEL positive CLL cells were detected in 

blood, lymph node and bone marrow (data not shown). In summary, these results show that 

expansion of IRF4-/-Vh11 CLL cells mainly occurs in the spleen and the CLL cells are resistant to 

apoptosis. 

 

 

 

 

 

 



68 
 

 
 
Figure 3 IRF4-/-Vh11 CLL cells proliferate mainly in spleen and are resistant to apoptosis. A) To 
characterize the proliferation of IRF4-/-Vh11 CLL cells in vivo, we pulse-labeled the mice with BrdU. 
12h later, cells were isolated from blood, spleen and lymph node and stained with antibodies 
against CD5, IgM and BrdU. The BrdU positive cells were revealed by FACS analysis. B) splenocytes 
were isolated from IRF4-/-Vh11 and IRF4+/+Vh11 mice and stained with CD5 and IgM. The apoptotic 
cells were detected by TUNEL assay. Values are averages and standard deviations of three 
independent experiments. * p<0.01 
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3.3.4 IRF4-/-Vh11 CLL cells are transplantable in immunodeficient host mice. 

To determine whether the CLL cells in the IRF4-/-Vh11 mice are transplantable, we isolated splenic 

CLL cells from IRF4-/-Vh11 mice and transplanted them into immunodeficient Rag2-/-gamma-/- host 

mice. The presence of IgM+CD5+ CLL was detected in the blood of host mice within a week of 

transplantation and the host mice (n=10) all succumbed to CLL within one month post-

transplantation. Three weeks after transplantation, CLL cells in the blood and spleen of host mice 

were analyzed by FACS (Fig. 4A). By this time, 95% of PBMC consisted of IgMa+ CD5+ CLL cells. 

The spleens of host mice were dramatically enlarged where 85% of splenic cells were CLL cells. 

H&E staining of the spleen revealed that the spleens had no discernible white and red pulps and 

CLL cells were evenly distributed throughout spleen (Fig. 4B). Similar to the donor CLL cells, 

transplanted CLL cells were resistant to apoptosis (Fig 4C). BrdU labeling study revealed that 

transplanted CLL cells are proliferating predominantly in spleen: 16 % of transplanted CLL cells in 

spleen were BrdU+ while only 4% of them were BrdU positive in blood.  Collectively, our results 

show that IRF4-/-Vh11 CLL cells are transplantable in immunodeficient host mice 
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Figure 4 IRF4-/-Vh11 CLL cells are transplantable in immunodeficient host mice. CLL cells were 
isolated from spleens of IRF4-/- Vh11 mice and transplanted into Rag2-/-γ-/- mice. 106 CLL cells were 
used for each injection. Three weeks after transplantation, the mice were analyzed. A) Blood (BL) 
and spleen (Spl) of the host mice were analyzed by FACS. B) H&E staining of spleen of transplanted 
host mice. C) CLL cells were isolated from spleens of host mice. TUNEL assay was used to detect 
apoptotic cells. Splenic B cells from IRF4+/+Vh11 mice were analyzed as control. D) Host mice were 
pulse-labeled with BrdU and examined 12h later. BrdU+ cells in blood and spleen of IRF4+/+Vh11 
mice were also examined and used as control.  * p<0.05, ** p<0.01. 
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3.3.5 Molecular signatures of IRF4-/-Vh11 CLL cells. 

To further characterize IRF4-/-Vh11 CLL cells, we examined some common molecular signatures 

that are associated with human CLL cells, including expression of Bcl-2 family members, T cell 

leukemia/lymphoma 1 (Tcl1) and miR15a/16-1 microRNAs. Splenic CLL cells were isolated from 

five IRF4-/-Vh11 mice and lysed. As controls, we also isolated splenic B cells from two IRF4+/+Vh11 

(Vh11) mice and one IRF4+/+ mice (B6). Expression of Bcl-2 family members Bcl-2, Bcl-xl and Mcl-

1 was examined by Western blot (Fig. 5A). Our results show that compared to controls, expression 

of Mcl-1 was significantly elevated in all five CLL samples (Fig.5A). In contrast, expression of Bcl-2 

was decreased in majorities of the CLL samples. Expression of Bcl-xl was moderately increased in 

some but not all CLL samples. Interestingly, compared to B cells in IRF4+/+ mice, expression of Bcl-

2 family members appears to be elevated in splenic B cells of IRF4+/+Vh11 mice. The reason behind 

this observation is not clear. Since expression of Bcl2, Mcl-1 and Bcl-xl can be induced by BCR 

signaling, it is possible that IRF4+/+Vh11 B cells were in an activated state due to the presence of 

high levels of PtC in spleen. Expression of Tcl-1 can be detected in 90% human CLL cases and is 

found to be overexpressed in patients with aggressive CLL(27). Moreover, mice engineered to 

overexpress Tcl1 oncogene in B cells (EµTcl-1) develop late onset, aggressive CLL(28). However, 

except for CLL cells isolated from EµTcl-1 transgenic mice, expression of Tcl1 could not be 

detected in samples derived from IRF4-/-Vh11 CLL cells, indicating that expression of Tcl1 was very 

low in those samples (Fig. 5A). Additionally, compared to their expressions in the control cells, 

miR15a/16-1 expression were slightly elevated in the CLL cells (Fig.5B). In summary, our results 

show that expression of Mcl-1 is significantly elevated in the IRF4-/- VH11 CLL cells, however, Tcl1 

and miR15a/16-1 expression are not deregulated in these cells. 
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Figure 5. Molecular characterization of IRF4-/-Vh11 CLL cells. A) Splenic CLL cells were isolated 
from five IRF4-/-Vh11 mice via negative selection and lysed for Western blot analysis with indicated 
antibodies. Splenic B cells from IRF4+/+Vh11(Vh11) and IRF4+/+ (B6) mice were also isolated and 
analyzed as controls. Additionally, splenic CLL cells from EµTcl1 transgenic mice were used as 
positive control for Tcl-1 expression. The numbers below each lane indicate the fold change in 
comparison to the control. The intensity of each protein was normalized initially to β-actin. B) 
Total RNA was also extracted from the isolated cells. Real-time TaqMan PCR to detect expression 
of miR15a/16-1 was done using a kit from Applied Biosystems. The data were normalized to U6 
snRNA and were expressed as fold change in comparison to controls (IRF4+/+Vh11).  
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3.3.6 Reconstitution of IRF4 expression inhibits the survival of IRF4-/-Vh11 CLL cells. 

Since IRF4-/-Vh11 CLL cells are resistant to apoptosis, we wanted to examine how IRF4 affects the 

survival of these CLL cells. To this end, we reconstituted the expression of IRF4 in the IRF4-/-Vh11 

CLL cells. Briefly, IRF4 expressing plasmid (co-expressing GFP) was transfected into cultivated IRF4-

/-Vh11 CLL cells using a Nucleofector. The effect of IRF4 reconstitution on CLL cells was examined 

after 48h. The control vector transduced CLL cells were analyzed as control. The transfection 

efficiency was around 10% for control transfected cells but only 3% in the IRF4 transduced cells. 

The apoptotic cells were detected with antibody against activated Caspase 3. Results of three 

independent experiments were shown (Fig. 6A). The averages and standard deviations of the 

three independent experiments were statistically analyzed (Fig. 6B). While the percentage of 

apoptotic cells in control transduced cells was only 2.3±0.6%, the percentage of apoptotic cells 

increased to 8.0±2.4% in the IRF4 transduced cells (Fig.6B). This result indicates that 

reconstitution of IRF4 promotes apoptosis in the IRF4-/-Vh11 CLL cells in vitro.   
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Figure 6 Reconstitution of IRF4 expression inhibits the survival of IRF4-/-Vh11 CLL cells. A) CLL cells 
were isolated from spleen of IRF4-/-Vh11mice and plated on top of S17 stromal cells in RPMI-1640 
media containing 10% FBS. IRF4 expressing vector and control vector were transfected into 
cultivated CLL cells using a Nucleofector. 48h later, the apoptotic cells in successfully transfected 
CLL cells (GFP+) were analyzed with a kit detecting activated Caspase 3 (BD Pharmingen). The 
results of three independent experiments were shown. B) Averages and standard deviations of 
three independent experiments. * p<0.02. 
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3.4 DISCUSSION 

The SNPs in the 3’UTR of IRF4 gene locus were identified as a risk allele for both sporadic and 

familial CLL and at least one copy of the allele is present in over 86% CLL cases(29). The prevalence 

of the risk allele in CLL patient indicates that it may play an important role in the initiation of CLL. 

Indeed, our finding that IRF4-/-Vh11 mice develop early onset CLL at 100% penetrance supports 

this assertion. In this study, we used IRF4 deficient mice to mimic the effect caused by germline 

associated SNPs in CLL patients. However, IRF4 germline deficient mice harbor developmental 

defects not only in B cells but also in other lineages of immune cells including T cells(1). CLL 

development and progression can be regulated by both B cell intrinsic and extrinsic factors(30). A 

recent study has further demonstrated that survival and expansion of transplanted human CLL 

cells are dependent on autologous T cells(31). However, our result shows that IRF4-/-Vh11 CLL cells 

were transplantable in immunodeficient host mice, indicating that survival and expansion of IRF4-

/-Vh11 CLL cells in the host mice are not dependent on other IRF4 deficient immune cells.  

 

Our results revealed that spleen is the major organ where IRF4-/-Vh11 CLL cells proliferate. It was 

initially thought that CLL cells have low proliferation index. However, heavy water experiment has 

demonstrated that a small fraction of CLL cells are actively cycling and about 2% of CLL cells are 

newly generated each day(32). In human, CLL cells proliferate in a unique structure called the 

proliferation center found predominantly in lymph node and bone marrow.  Human CLL cells, like 

murine B1 cells, possess polyreactive BCRs that recognize self-antigen and microbial antigen and 

chronic autoantigen stimulation is believed to play a critical role in the development and 

progression of CLL.(33, 34) Interestingly, PtC was also identified as a common antigen recognized 

by many CLL clones derived from EµTcl-1 mice(28). Moreover, a recent study further 

demonstrates that autoantigen PtC promotes CLL progression by selecting variants with enhanced 
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BCR signaling(35). The reason that IRF4-/-Vh11 CLL cells were found to proliferate predominantly 

in spleen could be due to the abundance of their cognate antigen there.  

   

Our results show that IRF4-/- Vh11 CLL cells express high levels of Mcl-1.  Human CLL cells are 

known to overexpress Mcl-1 as well as other members of pro-survival Bcl-2 family proteins. 

Among the Bcl-2 family members, Mcl-1 is the major pro-survival factor for CLL cells(36). Clinically, 

Mcl-1 is shown to be better than other Bcl-2 family members at predicting prognosis and clinical 

behavior of CLL patients(37). MiR15a/16 were initially thought to inhibit CLL development mainly 

by suppressing Bcl-2 expression(38). However, recent genetic analysis indicates that miR15a/16 

also regulate a group of proteins that are critical for cell cycle progression(39). Our results show 

that expression of miR15a/16-1 is not deregulated in the IRF4-/- Vh11 CLL cells. Expression of 

miR15a/16-1 also appears to be normal in the Tcl-1 transgenic mice. Only in Tcl-1 mice that are 

null for p53, expression of miR15a/16-1 was found to be dramatically reduced(40). High levels of 

Tcl-1 activate Akt and promote survival of CLL cells(41, 42). However, our results show that Tcl-1 

is expressed at low level in IRF4-/- Vh11 CLL cells. 

 

Several mouse models have been generated to mimic pathogenesis of human CLL. EµTcl-1 

transgenic mice develop lymphoproliferative diseases at 100% penetrance(43). CLL cells in EµTcl-

1 transgenic mice possess stereotype BCR and resemble aggressive human CLL(28). In this model, 

CLL cells can be detected at 7 to 8 months of age and the all mice eventually succumb to disease. 

Although Tcl-1 is overexpressed in subset of human CLL patients, EµTcl-1 transgenic mice are not 

associated with any genetic lesion commonly associated with human CLL. Deletion of 13q14 is 

detected in 50 to 60% of human CLL cases(14). Recent efforts to mimic this genetic lesion in mice 

led to generation of three mice lines: 1) the first mice line targeting only miR15a/16-1 located in 
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the intron of Dleu2; 2) the second mice line targeting minimal deletion region (MDR) containing 

miR15a/16-1 and the entire Dleu2 gene; 3) the third mice targeting the common deleted region 

(CDR) including MDR region and beyond(39, 44). All three mice lines develop late onset 

lymphoproliferative disease resembling indolent CLL. The severity of the diseases is proportional 

to the length of deleted genetic region. The disease penetrance in the three lines also varies: 67% 

for CDR mice, 42% for MDR mice and 26% for miR15a/16-1 deletion mice. The 13q14 deletion 

models mimic a major genetic lesion in human CLL and are clinically relevant models to study 

pathogenesis of human CLL. However, whether this model is suitable for therapeutic purposes is 

unclear. 

 

Our findings presented here establish IRF4-/-Vh11 mice as a novel mouse model of CLL. IRF4-/-Vh11 

mice have the following unique features: 1) IRF4-/-Vh11 mice carry a well-defined BCR which 

recognizes autoantigen PtC. It is worth pointing out that Vh11/Vk14 is a relevant BCR because 

anti-PtC IgMs have been found not only in normal individuals but also in CLL patients as well as 

patients with systemic lupus erythematosus(45-47); 2) IRF4-/-Vh11 mice mimic a predominant 

genetic predisposition to CLL and thus represent a clinically relevant CLL model. 3) In contrast to 

other models, IRF4-/-Vh11 mice develop early onset CLL with shortened disease latency; and 4) 

IRF4-/-Vh11 mice develop a broad spectrum of lymphproliferative diseases, from MBL, to indolent 

CLL and to aggressive CLL. Therefore, IRF4-/-Vh11 mice will be a useful model to dissect molecular 

pathogenesis of CLL. Epigenetic changes have been linked to CLL development and 

progression(48, 49). It would be interestingly to study the epigenetic changes that accompany CLL 

initiation and progression in the IRF4-/-Vh11 mice. In this study, IRF4-/-Vh11 mice were generated 

through backcrossing Vh11 mice in the CB17 background to IRF4-/- mice in the C57B6 background. 

The IRF4-/-Vh11 mice used in this study have been backcrossed for at least six generations which 
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should contain over 98% of C57B6 DNA. Ideally, Vh11 should be backcrossed to C57B6 background 

for at least 10 generations to rule out the potential effect of a mixed genetic background on the 

development of CLL. Whether IRF4-/-Vh11 mice would be useful for testing therapeutic drugs for 

CLL is unclear. In the future, in vivo evaluation with therapeutic agents such as Ibrutinib (Btk 

inhibitor) and Fostamatinib (Syk inhibitor) should be done to determine their effectiveness in this 

model. 
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CHAPTER 4 

Notch2 is Critical for CLL development in IRF4-/-Vh11 mice. 
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4.1 INTRODUCTION 

Chronic Lymphocytic Leukemia (CLL) is a clinically heterogeneous B cell malignancy that 

represents the most common adult leukemia in the western hemisphere. Despite considerable 

progress in our current understanding of CLL, the molecular events underlying the complex 

pathogenesis of CLL have not been fully elucidated. Recent Whole Genome Sequencing (WGS) 

studies have provided valuable insights into the molecular pathways deregulated during the 

pathogenesis of CLL. Intriguingly, multiple WGS studies have identified mutational activation of 

Notch signaling pathway as one of the most recurrent molecular event in human CLL (1-5). 

Moreover, the CLL patients carrying mutations in Notch signaling pathway have poor clinical 

outcomes and an increased tendency towards Richter transformation to Diffused Large B cell 

Lymphoma (DLBCL) (1, 2, 6). In CLL patients, Notch signaling pathway can be activated by 

mutations that primarily affect the stability of Notch1 protein (2, 5). Notch mutations in CLL 

patients cause frameshift deletions leading to generation of protein without the PEST domain (2, 

5). The PEST domain in Notch proteins are functionally important for ubiquitination and 

degradation of Notch proteins and hence for limiting the cellular responses to Notch signaling (7). 

Other than the mutational activation, studies have also reported constitutively high expression of 

Notch1 and Notch2 leading to activation of Notch signaling in human CLL cells (8). In vitro studies 

relying on co-culture of CLL cells with stromal cells have provided evidence for a role of Notch 

signaling in promoting the survival and chemo-resistance of CLL cells (9, 10). Although, these 

studies have linked aberrant Notch signaling to the pathogenesis of CLL in vitro, whether Notch 

signaling is critical for CLL development in vivo remains unknown. Furthermore, the molecular 

pathways that lead to the deregulated Notch signaling in CLL cases without Notch mutations are 

still poorly defined.  
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Interferon Regulatory Factor 4 (IRF4) belongs to the IRF superfamily of transcription factors and 

regulates multiple developmental stages and functional processes in B lymphocytes. IRF4 

functions redundantly with its homologous family member IRF8 at the early stages of pre-B cell 

differentiation (11). In mature B cells, IRF4 is required for terminal differentiation to plasma cells 

(12, 13). In distinct B cell malignancies, IRF4 has been shown to possess both tumor suppressive 

and pro-oncogenic functions (14, 15). Recent studies from our group and others have established 

an important role of IRF4 in the development of CLL (16-18). A Genome Wide Association (GWA) 

study linked single nucleotide polymorphisms (SNPs) in the 3’ untranslated region of irf4 gene 

locus to the development of CLL (16). The SNPs in the IRF4 locus were reported to be present in 

majority of human CLL patients (86%) and were linked to downregulation of IRF4 mRNA (16, 19). 

Using distinct mouse models we have recently established a causal link between low levels of IRF4 

and CLL development (17, 18). Vh11 knock-in (KI) mouse is a genetically engineered mouse which 

expresses a prearranged immunoglobulin heavy chain gene family Vh11. B cells expressing Vh11 

heavy chain predominantly develops into a specialized B cell subset known as B1 cells that are 

also the presumed precursors of CLL cells in rodents (20). Remarkably, our studies revealed that 

IRF4 deficient Vh11 KI (IRF4-/-Vh11) mice developed spontaneous CLL at complete penetrance 

(18). In contrast, neither the IRF4 deficiency nor the Vh11 KI background alone in mice led to CLL 

development (18). New Zealand Black (NZB) mouse is a well-described CLL model (21). 

Interestingly, our studies showed that low levels of IRF4 led to dramatically accelerated CLL 

development in NZB mice (17). Although our studies have established a causal relationship 

between low levels of IRF4 and CLL development, the molecular mechanism through which IRF4 

suppresses CLL development remains unknown.  

Interestingly, a recent study described expansion of a specialized mature B cell subset known as 

Marginal Zone B cells (MZ B cells) in IRF4 deficient mice (22). Moreover, the expansion of MZ B 
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cells were attributed to higher levels of Notch2 receptor and associated Notch signaling in the 

IRF4 deficient mature B cells (22). Although the precise mechanism through which IRF4 regulates 

Notch signaling remains unclear, this study identified IRF4 as a potential novel regulator of Notch 

signaling in mature B cells. Given the possible connection between Notch signaling and CLL 

development, we hypothesized that in the IRF4-/-Vh11 mice Notch signaling is also deregulated 

and the deregulation plays a critical role in CLL development. IRF4-/-Vh11 mouse is regarded as a 

novel mouse CLL model because it mimics a predominant genetic predisposition to CLL (23). 

Therefore, IRF4-/-Vh11 mice are very useful in understanding not only the molecular mechanism 

through which IRF4 controls CLL development but also the pathogenesis of CLL in general. In the 

present studies we examined the role of Notch signaling in the development of CLL in IRF4-/-Vh11 

mice. 

4.2 MATERIALS AND METHODS 

Animal Studies. IRF4-/-Vh11 mice were generated and monitored for CLL development as 

previously described (18). ERT cre, Notch2 floxed (24), Rosa-rtTA (25) and CD19cre (26) mice were 

generated as described previously and purchased from Jackson laboratory. NOD-scid gamma 

chain deficient mice were obtained from Jackson laboratory. TRE IRF4 transgenic mice were 

generated and treated with doxycycline as previously described (27). All experiments were 

performed according to the guidelines from National Institute of Health and with an approved 

protocol from Institutional Animal Care and Use Committee of the University of Nebraska Medical 

Center. 

Western Blotting. B cells and CLL cells from spleen were isolated by negative selection using MACS 

columns. Lysates were prepared and resolved using SDS-PAGE. The membranes were incubated 

with the indicated antibodies and Horse radish peroxidase (HRP) conjugated secondary 
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antibodies. The signals were generated using Enhanced Chemi-Luminescence (ECL) substrate 

solution from Thermo-Pierce. The antibodies against Notch1, Notch2, and Hes1 were purchased 

from Cell signaling Technologies. Direct HRP conjugated antibody against Beta Actin was 

purchased from Sigma. 

Flow cytometry and cell sorting. The cells were isolated from respective tissues and pre-

incubated with Fc-Block antibody. Flow cytometry staining was performed by incubation of cells 

with optimal amounts of biotinylated or directly fluorophore conjugated antibodies. Antibodies 

against mouse B220, IgM and CD5 proteins were purchased from BD-pharmingen. Anti-mouse 

Notch2 and the corresponding isotype control antibodies were purchased from Biolegend. 

Fluorescence activated cell sorter (FACS) analysis was performed using FACSCalibur flow 

cytometer. Cell sorting was performed using BD FACSAria flow cytometer. 

Tamoxifen Treatment. 50 mg Tamoxifen was dissolved in 1ml ethanol and diluted to 10ml in 

cornoil. NSG mice were given 3 tamoxifen injections intraperitoneally of 2 mg each on three 

consecutive days.  

Primary and Cell Cultures. All primary cells and Mec-1 CLL cell line were cultured in RPMI-1640 

media containing 10% fetal bovine serum, 50µM Beta mercaptoethanol, 2mM L-glutamine and 

100 U of penicillin and streptomycin. The B1 cells were isolated from peritoneal ascites following 

incubation in the tissue culture dishes for 6 hours to remove adherent macrophages. 

Proliferation and Survival Assays. Proliferation of cells was revealed by Bromodeoxyuridine 

(BrDU) incorporation assay. Cells were incubated in 10µM BrDU for 90 minutes to allow 

incorporation. BrDU positive cells were later detected using an Anti-BrDU staining kit from BD-

pharmingen according to the manufacturer’s instruction. Carboxyfluoroscein succinimidyl ester 

(CFSE) dye was purchased from Invitrogen to measure cell proliferation according to 
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manufacturer’s instructions. Apoptotic cells were detected using an Annexin V staining kit from 

BD pharmingen. 

Real-time PCR. Cell lysis was performed using Trizol reagent. The total RNA was reverse 

transcribed using the first strand cDNA synthesis kit from GE healthcare. Real-time PCR was 

performed using SYBR-green reagent from Applied Biosystems in ABI 7500 cycler. Primers specific 

to the gene or region of interest were used for the levels of mRNA or CHIP assay respectively. 

CLL transplantation. Whole splenocytes were isolated from mice with overt CLL. CLL was 

transplanted by intraperitoneal (IP) injections of 107 whole splenocytes into the sublethally 

irradiated (2 grays) NSG mice. 

Statistical Analysis. Each experiment was repeated at least three times unless otherwise 

indicated. The data in the bar graphs are represented with ± standard deviation. Two-tailed 

Student t-test was used to calculate p values to determine the significance. p value below 0.05 is 

considered statistically significant. Kaplan Meier survival analysis was performed using the log-

rank test. 

4.3 RESULTS 

4.3.1 IRF4-/-Vh11 CLL cells display hyperactive Notch signaling. 

We hypothesized that Notch Signaling plays a critical role in the development of CLL in IRF4-/-Vh11 

mice. To test our hypothesis, we performed western blot analysis to measure the levels of 

canonical Notch target gene Hes1. Interestingly, Hes1 was significantly upregulated in IRF4-/-Vh11 

CLL cells compared to IRF4+/+Vh11 B cells (Figure 1A). Notch protein family comprises of four 

different Notch paralogues from Notch1 through Notch4 in mammalian systems. We next wanted 

to identify the predominant Notch paralogue(s) expressed in the IRF4-/-Vh11 CLL cells. Using 
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western blot analysis our studies revealed Notch2 protein as the predominant Notch paralogue 

expressed in IRF4-/-Vh11 CLL cells (Figure 1B). The expression levels of Notch1 (Figure 1B), Notch3 

and Notch4 (data not shown) were barely detectable or undetectable in IRF4-/-Vh11 CLL cells. 

These findings are consistent with previous findings that described expression of Notch2 protein 

as the predominant Notch paralogue in mature murine B cells (28). Furthermore, the levels of 

Notch2 protein detected in IRF4-/-Vh11 CLL cells were significantly higher compared to IRF4+/+Vh11 

B cells (Figure 1B). Additionally, we also used a flow cytometry based assay to measure the cell 

surface levels of Notch2 protein on IRF4-/-Vh11 CLL cells. Consistent with western blot analysis, 

we identified a significant upregulation of Notch2 protein on cell surface of IRF4-/- Vh11 CLL cells 

(Figure 1C). It is worth pointing out that we did not observe a significant change in the Notch2 

mRNA expression suggesting that high levels of Notch2 protein in IRF4-/-Vh11 CLL cells is likely a 

result of a post-transcriptional regulation. This conclusion is consistent with the results of a recent 

study describing an increase in Notch2 protein expression in IRF4 deficient mature B cells without 

corresponding changes in mRNA expression (22). Collectively, our results show hyperactivation of 

Notch signaling as a common feature of IRF4-/-Vh11 CLL cells. Our results also specify Notch2 

protein as the predominant Notch paralogue that is overexpressed in IRF4-/- Vh11 CLL cells.   

To confirm Notch2 as the predominant Notch receptor in B cells we tested the effect of notch2 

gene deletion on the intensity of Notch signaling in vivo. Notch2 deletion in B cells was achieved 

by breeding the CD19cre mouse to mouse carrying conditional alleles for notch2 gene (CD19cre 

Notch2fl/fl). Our result shows that the CD19cre Notch2fl/fl mice underwent efficient Notch2 

deletion leading to a significant decrease in Notch2 protein levels in mature B cells compared to 

B cells from CD19cre control mice (Figure 1D). The decrease in Notch2 protein was also 

accompanied by a dramatic downregulation of Notch target gene Hes1 in mature B cells, an 

indication of weakened Notch signaling in vivo (Figure 1E). The B cell development in CD19cre 
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Notch2fl/fl mice was normal other than a defect in the generation of MZ B cell subset, as reported 

previously (28). Taken together, these results indicate that Notch2 protein is the major 

contributor of Notch signaling in mature B cells and its loss leads to a profound abrogation of 

Notch signaling in vivo. Moreover, the loss of Notch2 expression apparently is not compensated 

for by other Notch protein family members as indicated by a strong decrease in Hes1 levels in B 

cells from CD19cre Notch2fl/fl mice. 
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Figure 1 IRF4-/-Vh11 CLL cells display hyperactive Notch signaling and express high levels of 
Notch2 receptor. (A) Western blot analysis to detect the levels of Hes1 protein in IRF4-/-Vh11 CLL 
cells compared to IRF4+/+Vh11 B cells isolated from spleen. Each lane represents CLL cells from an 
IRF4-/-Vh11 mice. (B) Western blot to detect the levels of Notch2 and Notch1 proteins in IRF4-/-

Vh11 CLL cells. Each lane represents an individual CLL sample. Thymus is used as a positive control 
for Notch1 protein and actin is used as loading control. (C) Histograms showing Notch2 cell surface 
staining in IRF4-/-Vh11 CLL cells compared to IRF4+/+Vh11 B cells as detected by Flow cytometry. 
Left panel shows isotype control antibody (IgG) staining and right panel shows Notch2 staining. 
Gray line represents gating on IRF4+/+Vh11 B cells and black line indicates IRF4-/-Vh11 CLL cells. (D) 
Flow cytometry staining for IgG and Notch2 represented as histograms. Gray line represents IgG 
staining and black line represents Notch2 staining in B cells. Left panel indicates CD19cre control 
mouse and right panel shows CD19cre Notch2fl/fl mouse. (E) Western blots showing Hes1 protein 
in B cells isolated from CD19cre and CD19cre Notch2fl/fl mice. The data shown is representative of 
at least three independent experiments. 
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4.3.2 Notch signaling promotes the survival and proliferation of B1 cells and CLL cells. 

We wanted to determine the effect of Notch signaling on B1 cells (CLL precursors) and CLL cells. 

To this end, we used an in vitro co-culture system to examine the impact of Notch signaling on 

their survival and proliferation. Briefly, we retro-virally transduced S17 stromal cells with a vector 

containing the Notch ligand, Delta like 1 (S17-DL1) to trigger Notch signaling. S17 cells transduced 

with the empty vector were used as controls (S17-R1). We first assessed the activation of Notch 

signaling by measuring the levels of Hes1 protein (Figure 2A). As expected, B1 cells cultured on 

S17-DL1 stromal cells showed strong activation of Notch signaling compared to cells cultured on 

S17-R1 stromal cells (Figure 2A). We then isolated B1 cells from the peritoneal cavities (PC) of 

CD19cre Notch2+/+ and CD19cre Notch2fl/fl mice and cultured them on S17-R1 control or S17-DL1 

Notch ligand expressing stromal cells. Interestingly, the CD19cre Notch2+/+ B1 cells cultured on 

S17-DL1 stromal cells proliferated significantly faster compared to the cells cultured on S17-R1 

stromal cells as measured by BrdU incorporation assay (Figure 2B and 2C). This result indicates 

that Notch signaling promotes proliferation of B1 cells. Importantly, the increase in proliferation 

observed on wild type B1 cells was mostly abolished when Notch2 was deleted in B1 cells 

(CD19cre Notch2fl/fl) (Figure 2B and 2C). Similarly, we also observed a decrease in apoptosis of 

CD19cre Notch2+/+ B1 cells, cultured on S17-DL1 stromal cells (Figure 2D and 2E). The increase in 

survival observed on S17-DL1 stromal cells was again negated in B1 cells isolated from CD19cre 

Notch2fl/fl mice (Figure 2D and 2E). 

We next examined the effect of Notch signaling on CLL cells derived from IRF4-/-Vh11 mice. CFSE 

dilution assay revealed that IRF4-/-Vh11 CLL cells cultured on S17-DL1 stromal cells proliferated 

much faster than their counterparts cultured on S17-R1 stromal cells (Figure 2F). Also, the survival 

of IRF4-/-Vh11 CLL cells was enhanced when cultured on Notch ligand expressing (S17-DL1) stromal 
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cells (Figure 2G). In summary, these results demonstrate that CLL cells and their precursors are 

responsive to Notch signaling, which promotes their survival and proliferation. 
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Figure 2 Notch signaling promotes the survival and proliferation of B1 cells and CLL cells. (A) Western 
Blot analysis to measure Hes1 levels in B1 cells co-cultured with S17-R1 and S17-DL-1 stromal cells 
for 48 hours. (B) Flow cytometry analysis showing the BrDU incorporation assay for cell 
proliferation of CD19cre control and CD19cre Notch2fl/fl B1 cells co-cultured with S17-R1 and S17-
DL1 stromal cells for 48 hours. The numbers in the upper right quadrant of each dot plot 
represents the percentage of BrDU positive cells. (C) Bar graphs showing the statistical analysis of 
BrDU incorporation assay from three independent experiments. The data is represented as fold 
change in proliferation observed on S17-DL1 stromal cells compared to S17-R1 control stromal 
cells. (D) Flow cytometry analysis showing Annexin V staining to detect apoptotic cells among 
CD19cre and CD19cre Notch2fl/fl B1 cells cultured with S17-R1 and S17-DL-1 stromal cells for 48 
hours. The numbers in each dot plot represents the percentage of Annexin V positive cells in the 
upper right quadrant. (E) Bar graph showing the statistical analysis of Annexin V staining of 
CD19cre and CD19cre Notch2fl/fl B1 cells from five independent experiments. The data is 
represented as fold change in proliferation observed on S17-DL1 stromal cells compared to S17-
R1 control stromal cells. (F) Histograms representing CFSE dye dilution experiment to measure 
proliferation of IRF4-/-Vh11 CLL cells co-cultured with S17-R1 (black line) and S17-DL1 (gray line) 
stromal cells. Black line represents CLL cells cultured on S17-R1 stromal cells and gray line 
represents. (G) Bar graphs showing the percentages of Annexin V positive IRF4-/-Vh11 CLL cells co-
cultured with S17-R1 and S17-DL1 stromal cells from three independent experiments. *p value 
≤0.01. **p value ≤0.05. 
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4.3.3 Notch2 in critical for CLL development in IRF4-/- Vh11 mice. 

We next wanted to determine the role of Notch signaling in the development of CLL in IRF4-/-Vh11 

mice. To address this goal we utilized a genetic approach to delete Notch2 gene in the IRF4-/-Vh11 

mice. Briefly, we bred the IRF4-/-Vh11 mice with the CD19cre Notch2fl/fl mice to generate CD19cre 

Notch2fl/fl IRF4-/-Vh11 mice (Notch2fl/fl IRF4-/-Vh11). Blood was analyzed biweekly from Notch2fl/fl 

IRF4-/-Vh11 mice to monitor the emergence of CLL cells and CD19cre IRF4-/-Vh11 mice were also 

analyzed as control. Interestingly, compared to CD19cre IRF4-/-Vh11 mice (n=18) we observed a 

significant delay in the onset of CLL development in CD19cre Notch2fl/fl IRF4-/-Vh11 mice (n=11) 

(Figure 3A). The disease latency increased from 19.5 weeks in CD19cre IRF4-/-Vh11 mice to 28.8 

weeks in Notch2fl/fl IRF4-/-Vh11 mice (Figure 3A). Surprisingly, upon further analysis we observed 

that the CLL cells which emerged from Notch2fl/fl IRF4-/-Vh11 mice, continued to express high 

levels of Notch2 protein on their cell surface (Figure 3B right panel). In total, we analyzed 15 mice 

with Notch2fl/fl IRF4-/-Vh11 genotype and all of them eventually showed emergence of CLL cells 

which retained Notch2 expression on their cell surface. These results can have three plausible 

explanations. Firstly, these findings can be caused by insufficient CD19cre mediated Notch2 

deletion in B cells of the IRF4-/-Vh11 mice. Secondly, these findings can also be caused by a defect 

in B cell development upon Notch2 deletion that prevents the generation of CLL precursors (B1 

cells) in the IRF4-/-Vh11 mice. Thirdly, these findings can be explained by our hypothesis which 

implies that Notch2 is critical for CLL development and without it, CLL cells cannot be generated.  

To distinguish between these different scenarios, we analyzed Notch2 expression in Notch2fl/fl 

IRF4-/-Vh11 mice that were still at the early stages of CLL development. This allowed us to 

simultaneously evaluate a CLL population as well as a detectable population of untransformed 

normal B cells (B2 cells) in the same mice. Intriguingly, our analysis revealed that only the CLL cells 

from Notch2fl/fl IRF4-/-Vh11 mice expressed high levels of Notch2 protein while, the normal B cells 
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from the same mice displayed very low to undetectable levels of Notch2 protein (Figure 3B right 

panel). These findings were consistent in cells isolated from several tissue including peritoneal 

cavity (PC), spleen and blood (Figure 3B). Concurrently, we devised a real-time PCR based assay 

to precisely calculate the efficiency of Notch2 deletion among different cell populations. We 

specifically designed PCR primers in region within the Notch2 conditional allele that is flanked by 

the loxP sites. This approach allows for PCR amplification from Notch2 alleles that have not 

undergone cre mediated deletion. Furthermore, we also amplified a non-related region in the 

genome and used it as control to normalize the result. This method precisely calculates absolute 

deletion efficiencies for the notch2 alleles. To validate this method, we extracted genomic DNA 

from B cells of wildtype B6 and CD19cre Notch2fl/+ mice. As expected, the assay revealed a Notch2 

deletion efficiency of 47% in B cells isolated from CD19cre Notch2fl/+ heterozygous mice compared 

to wildtype B cells (Figure 3C). Using this assay we first wanted to rule out the possibility for any 

aberrant B cell developmental defect in Notch2fl/fl IRF4-/-Vh11 mice. To this end, we analyzed 

Notch2fl/fl IRF4-/-Vh11 mice of 2-3 months of age with no overt signs of CLL. Flow cytometry 

analysis showed efficient generation of CD5+IgM+ B1 cells in the peritoneal cavities of Notch2fl/fl 

IRF4-/-Vh11 mice at a frequency that is comparable to that of IRF4+/+Vh11 and IRF4-/-Vh11 mice 

(Figure 3D). Furthermore, the B1 and B2 (normal B cells) cells isolated from Notch2fl/fl IRF4-/-Vh11 

mice with no CLL displayed very high efficiencies of notch2 gene deletion (~90%) (Figure 3C Box1). 

These results indicate that Notch2 is not essential for B1 cell generation in the Notch2fl/fl IRF4-/-

Vh11 mice.  Together, our results rule out the first explanation by demonstrating that notch2 gene 

is efficiently deleted in all B cell subsets in the Notch2fl/fl IRF4-/-Vh11 mice. Additionally, our results 

also discredit the second explanation by showing that Notch2 is dispensable for the generation of 

B1 cells in the IRF4-/-Vh11 mice.  
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We next used FACS to sort CLL cells and normal B cells (B2 cells) from Notch2fl/fl IRF4-/-Vh11 mice 

and extracted genomic DNAs from sorted cells for analyzing the respective notch2 deletion 

efficiencies. The normal B cells (B2 cells) isolated from Notch2fl/fl IRF4-/-Vh11 displayed high 

efficiency of notch2 deletion (≥ 90%) (Figure 3C Box2). Whereas, the CLL cells from the same mice 

displayed significantly lower notch2 gene deletion efficiencies (Figure 3C Box2). It appears that 

CLL cells in some mice (mice 1 and 2) completely escaped notch2 gene deletion (close to 0% 

deletion efficiency) while, in other mice (mice 3 and 4) the CLL cells showed 30-40% notch2 gene 

deletion efficiencies (Figure 3C Box2). 30-40% deletion efficiency in these mice may reflect a 

mixed CLL population with heterozygous Notch2 deletion. However, it is worth pointing out that 

even in those mice, we did not observe a corresponding decrease in the Notch2 protein levels in 

the CLL populations (data not shown).  In summary, our studies here show that Notch2 is 

indispensable for the generation of CLL in IRF4-/-Vh11 mice, indicating that Notch signaling is 

critical for CLL development in IRF4-/-Vh11 mice. 
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Figure 3 Notch2 receptor is critical for CLL development in IRF4-/-Vh11 mice. (A) Kaplan Meier 
Survival analysis (log-rank test) for CLL development in CD19cre Notch2fl/fl IRF4-/-Vh11 mice (n=11) 
(dashed line) compared to CD19cre IRF4-/-Vh11 mice (n=18) (solid line). Blood was analyzed 
biweekly to monitor CLL development that is considered as an event represented on Y-axis. X-axis 
represents time in weeks. (B) Left panel shows flow cytometry staining of IgM and B220 in 
CD19cre Notch2fl/fl IRF4-/-Vh11 mice. Normal untransformed B cells are IgM+ and B220 high (Gate 
1) and CLL cells are IgM+ and B220 medium/dim (Gate 2). Right panel shows histograms 
representing IgG (gray line) or Notch2 (black line) staining in Normal B cells and CLL cells from 
Blood, Peritoneal Cavity (PC) and Spleen. (C) Bar graph showing qRT-PCR data representing 
absolute Notch2 deletion efficiencies. A deletion efficiency of 47 as observed in CD19cre Notch2fl/fl 
B cells signifies 47% notch2 gene deletion. Box1 contains B1 (CLL precursors) and B2 (normal B) 
cells from CD19cre Notch2fl/fl IRF4-/-Vh11 mice without overt signs of CLL.  Box2 encloses Notch2 
deletion efficiencies in CLL and B2 cells from four different CD19cre Notch2fl/fl IRF4-/-Vh11 mice 
with overt CLL. (D) Flow cytometry staining to detect IgM+ CD5+ B1 cells in peritoneal cavities of 
IRF4+/+Vh11, IRF4-/-Vh11 and CD19cre Notch2fl/fl IRF4-/-Vh11 (no CLL) mice. The numbers 
represents the frequency of B1 cells. *p value ≤0.001 **p value ≤0.01. 
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4.3.4 Notch2 is important for maintenance of CLL cells in IRF4-/-Vh11 mice. 

We next generated an inducible Notch2 deletion model to study the role of Notch Signaling in the 

maintenance of CLL cells in IRF4-/-Vh11 mice. To accomplish this, we used a genetic approach to 

delete Notch2 gene in IRF4-/-Vh11 CLL cells. We bred the IRF4-/-Vh11 mice with the 

ERTcreNotch2fl/fl to eventually generate ERTcreNotch2fl/flIRF4-/-Vh11 mice (Figure 4A). The blood 

of ERTcreNotch2fl/flIRF4-/-Vh11 mice was analyzed biweekly to monitor overt CLL development. 

Upon CLL development, the CLL cells from ERTcreNotch2fl/flIRF4-/-Vh11 were transplanted to NOD-

scid Gamma chain deficient (NSG) immunodeficient mice (Figure 4A). The transplanted NSG mice 

were then injected either with tamoxifen to activate cre recombinase or with corn oil (Figure 4A). 

After tamoxifen injections, blood was analyzed biweekly to monitor Notch2 protein expression. 

As expected, tamoxifen treatment led to a decrease in the cell surface expression of Notch2 

protein on CLL cell population by 3weeks (Figure 4B). Interestingly, the initial decrease was 

followed by restoration of Notch2 cell surface levels on CLL cells from NSG mice treated with 

tamoxifen by 5 weeks (Figure 4B). Concomitantly, we calculated the absolute Notch2 deletion 

efficiencies in tamoxifen treated and control NSG mice. Our results revealed a strong correlation 

between Notch2 cell surface expression and Notch2 deletion efficiencies in NSG mice treated with 

tamoxifen over the course of time (Figure 4C).  The CLL cells from NSG mice treated with 

tamoxifen showed ~ 70% Notch2 deletion by week 3 which decreased to ~10% by week 5 (Figure 

4C). However, only a few mice were used for these studies and further studies with a larger cohort 

of mice are needed to confirm these results. In summary, these studies indicate an important role 

Notch2 receptor and the associated Notch signaling in the maintenance of CLL cells in IRF4-/-Vh11 

mice. 
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Figure 4 Notch2 receptor is important for CLL maintenance in IRF4-/-Vh11 mice. (A) A schematic 
sowing the generation of ERTcreNotch2fl/flIRF4-/-Vh11 mice and the experimental design to induce 
Notch2 deletion upon tamoxifen treatment. (B) Histograms showing the Notch2 cell surface 
expression of CLL cells isolated from NSG mice transplanted with ERTcreNotch2fl/flIRF4-/-Vh11 CLL 
cells and treated with tamoxifen. Gray region in each panel indicates Notch2 cell surface before 
tamoxifen injections. Gray line and black line represents Notch2 expression 3weeks and 5 weeks 
post tamoxifen treatment respectively. Each panel represents cells CLL cells isolated from a 
different NSG mouse treated with tamoxifen(C) Bar graph showing qRT-PCR data representing 
absolute Notch2 deletion efficiencies. Gray bars represent Notch2 deletion efficiencies at 3 weeks 
and black bars represents deletion efficiency after 5 weeks. *p value ≤0.005. 
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4.4 DISCUSSION 

Genetic evidence point towards an important role for Notch signaling in the pathogenesis of CLL 

(2, 5). However, the significance of Notch signaling in the development of CLL in vivo has not been 

examined. Our studies here provide the first in vivo genetic evidence that Notch signaling is 

essential for development of CLL. IRF4-/-Vh11 mouse is a novel model to study the pathogenesis 

of CLL (18, 23). Our results show that similar to many human CLL cases, Notch signaling is 

hyperactive in IRF4-/-Vh11 CLL cells.  To examine the importance of Notch signaling in CLL 

development, we used a genetic approach to delete Notch2 gene in IRF4-/-Vh11 mice. Our studies 

reveal an absolute requirement of notch2 gene for the generation of CLL cells, as CLL cells which 

eventually emerged from Notch2fl/fl IRF4-/-Vh11 mice were always the ones that escaped cre-

mediated Notch2 deletion. Importantly, our findings are not caused by defects in B1 cell 

development, as B1 cells can still be generated in the Notch2fl/fl IRF4-/-Vh11 mice at relatively 

normal frequency. 

Our findings support a role of Notch signaling in CLL initiation. This conclusion is supported by our 

results showing a significant delay in the onset of CLL upon notch2 gene deletion. The Notch2fl/fl 

IRF4-/-Vh11 mice showed a significant increase in disease latency compared to CD19cre IRF4-/-

Vh11 mice. Moreover, our results show that Notch signaling promoted the survival and 

proliferation of CLL precursors (B1 cells) which may directly contribute to CLL initiation in vivo. A 

role for Notch in CLL initiation is further supported by a recent genomic analysis which shows that 

Notch mutations can be detected in early hematopoietic progenitor cells of CLL patients (29). The 

frequency of Notch mutations are dramatically increased in therapy-resistant CLL patients, 

indicating a role of Notch in disease progression (1, 2). Intriguingly, we also observed a 

detrimental effect on CLL cells survival and proliferation when notch2 gene was deleted in the 
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IRF4-/-Vh11 mice after onset of CLL with an inducible cre. This result would indicate that Notch 

signaling is also important for CLL maintenance. 

The survival and proliferation of CLL cells have been shown to depend on diverse signaling cues 

emanating from their specialized tumor microenvironment (30). Notch signaling presumably plays 

a role in these specialized microenvironmental sites to promote the survival and proliferation of 

CLL cells (10, 31). Our previous studies identified spleen as the primary site of proliferation for CLL 

cells in IRF4-/-Vh11 mice (18). Additionally, recent studies using patient derived xenograft models 

have also identified murine spleen as the primary site for the homing, survival and proliferation 

of human CLL cells (32). Intriguingly, murine spleen has been described as a specialized anatomical 

location expressing high levels of Notch ligands (33, 34). It is likely that the high concentrations of 

Notch ligands and subsequent activation of Notch signaling may contribute greatly to the 

enhanced survival and proliferation of IRF4-/-Vh11 CLL cells in the murine spleen.  

In summary, we show that Notch2 receptor and the associated signaling is upregulated in CLL cells 

from IRF4-/-Vh11 mice. We show that Notch signaling promotes the survival and proliferation of 

CLL cells and their precursors. We describe IRF4-/-Vh11 mice as a novel model system to study the 

role of Notch signaling in the pathogenesis of CLL. Our studies presented here uncover an 

important role of Notch signaling in the development of CLL in IRF4-/-Vh11 mice. However, the 

molecular mechanism that leads to deregulation of Notch signaling in IRF4-/-Vh11 mice was still 

unclear. 
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CHAPTER 5 

IRF4 attenuates Notch signaling by regulating the E3 ubiquitin Ligase Nedd4 
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5.1 INTRODUCTION 

Recent Whole Genome Sequencing (WGS) studies have provided valuable insights into the 

molecular pathways deregulated during the pathogenesis of Chronic Lymphocytic Leukemia (CLL). 

Intriguingly, multiple WGS studies have identified mutational activation of Notch signaling 

pathway as one of the most recurrent molecular event in human CLL (1-5). Moreover, the CLL 

patients carrying mutations in Notch signaling pathway have poor clinical outcomes and an 

increased tendency towards Richter transformation to Diffused Large B cell Lymphoma (DLBCL) 

(1, 2, 6). Notch signaling is an evolutionarily conserved pathway that regulates a myriad of cellular 

processes (7). Notch signaling is activated upon engagement of Notch receptor on a signal 

receiving cell with its ligand on a signal sending cell (7). Following the ligand binding Notch 

receptor undergoes multiple proteolytic cleavages leading to translocation of intracellular domain 

of Notch to the nucleus (7). In the nucleus Notch intracellular domain functions as a 

transcriptional regulator to activate gene transcription of its target genes (7). In CLL patients, 

Notch signaling pathway can be activated by mutations that primarily affect the stability of Notch1 

protein (2, 5). Notch mutations in CLL patients cause frameshift deletions leading to generation 

of protein without the PEST domain (2, 5). The PEST domain in Notch proteins are functionally 

important for ubiquitination and degradation of Notch proteins and hence for limiting the cellular 

responses to Notch signaling (7). Other than the mutational activation, studies have also reported 

constitutively high expression of Notch1 and Notch2 leading to activation of Notch signaling in 

human CLL cells (8). In vitro studies relying on co-culture of CLL cells with stromal cells have 

provided evidence for a role of Notch signaling in promoting the survival and chemo-resistance of 

CLL cells (9, 10). Although, these studies have linked aberrant Notch signaling to the pathogenesis 

of CLL in vitro, whether Notch signaling is critical for CLL development in vivo remains unknown. 
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Furthermore, the molecular pathways that lead to the deregulated Notch signaling in CLL cases 

without Notch mutations are still poorly defined.  

Interestingly, a recent study described expansion of a specialized mature B cell subset known as 

Marginal Zone B cells (MZ B cells) in IRF4 deficient mice (11). Moreover, the expansion of MZ B 

cells were attributed to higher levels of Notch2 receptor and associated Notch signaling in the 

IRF4 deficient mature B cells (11). Although the precise mechanism through which IRF4 regulates 

Notch signaling remains unclear, this study identified IRF4 as a potential novel regulator of Notch 

signaling in mature B cells. Given the possible connection between Notch signaling and CLL 

development, we hypothesized that in the IRF4-/-Vh11 mice Notch signaling is also deregulated 

and the deregulation plays a critical role in CLL development. IRF4-/-Vh11 mouse is regarded as a 

novel mouse CLL model because it mimics a predominant genetic predisposition to CLL (12). We 

used the IRF4-/-Vh11 mice in our previous studies to identify a critical role for Notch signaling in 

the development of CLL (Chapter 4). These studies provide the first in vivo evidence for an 

important role of Notch signaling in the development of CLL (Chapter 4). In the present studies 

we examined the molecular mechanism for regulation of Notch signaling by IRF4 during the 

development of CLL in IRF4-/-Vh11 mice. 

5.2 MATERIALS AND METHODS 

Animal Studies. IRF4-/-Vh11 mice were generated and monitored for CLL development as 

previously described (13). Notch2 floxed (14), Rosa-rtTA (15) and CD19cre (16) mice were 

generated as described previously and purchased from Jackson laboratory. NOD-scid gamma 

chain deficient mice were obtained from Jackson laboratory. TRE IRF4 transgenic mice were 

generated and treated with doxycycline as previously described (17). All experiments were 

performed according to the guidelines from National Institute of Health and with an approved 
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protocol from Institutional Animal Care and Use Committee of the University of Nebraska Medical 

Center. 

Human Studies. All the human samples were collected and processed according to an approved 

protocol from Institutional Review Board. An informed written consent was obtained from each 

participant. The cells were isolated as previously described (18). 

TABLE T1 

CLL Patient # Source Cytogenetics IgVH mutation status CD38 

positivity 

Monotypic B-

cells 

CLL 1 PB Trisomy 12 Unmutated Pos 93% 

CLL 2 PB 11q23, 13q14 del Unmutated Neg 95% 

CLL 3 PB 11q23 Not done Pos 74% 

CLL 4 PB 17p del, 13q Unmutated Pos 92% 

CLL 5 PB Normal Mutated Neg 82% 

CLL 6 PB 13q14 del Unmutated Neg 61% 

CLL 7 PB 13q14 del Not done Neg 53% 

CLL 8 PB 13q14 del Not done Neg 74% 

CLL 9 PB Normal Mutated Pos 78% 

CLL 10 PB 13q null Not done Neg 75% 

CLL 11 PB Normal Not done Pos 43% 

CLL 12 PB 11q23, 13q14 del Not done Neg 93% 
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CLL 13 PB Normal Not done Pos 85% 

CLL 14 PB Trisomy 12 Not done Neg 77% 

CLL 15 PB Normal Mutated Neg 97% 

CLL 16 PB 13q14 del Not Done Neg 80% 

CLL 17 PB 13q14 del Not Done Neg 85% 

CLL 18 PB 11q23, 13q14 del Unmutated Neg 67% 

 

Chromatin Immuno-precipitation (ChIP) Sequencing. B1 cells were isolated and fixed with 1% 

formaldehyde for 15 min and quenched with 0.125 M glycine. Chromatin was isolated by the 

addition of lysis buffer. Lysates were sonicated and the DNA sheared to an average length of 300-

500 bp. Genomic DNA (Input) was prepared by treating aliquots of chromatin with RNase, 

proteinase K and heat for de-crosslinking, followed by ethanol precipitation.  An aliquot of 

chromatin (30 ug) was precleared with protein G agarose beads (Invitrogen). Genomic DNA 

regions of interest were isolated using 4 ug of antibody against IRF4 (Santa Cruz, sc-6059,). 

Complexes were washed, eluted from the beads with SDS buffer, and subjected to RNase and 

proteinase K treatment. Crosslinks were reversed by incubation overnight at 65 C, and ChIP DNA 

was purified by phenol-chloroform extraction and ethanol precipitation. 

Illumina sequencing libraries were prepared from the ChIP and Input DNAs by the standard 

consecutive enzymatic steps of end-polishing, dA-addition, and adaptor ligation. After a final PCR 

amplification step, the resulting DNA libraries were quantified and sequenced on Illumina’s HiSeq 

2500 (50 nt reads, single end). Reads were aligned to the mouse genome (mm10) using the BWA 

algorithm (default settings). Duplicate reads were removed and only uniquely mapped reads 
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(mapping quality >= 25) were used for further analysis. Alignments were extended in silico at their 

3’-ends to a length of 200 bp, which is the average genomic fragment length in the size-selected 

library, and assigned to 32-nt bins along the genome. The resulting histograms (genomic “signal 

maps”) were stored in bigWig files. Peak locations were determined using the MACS algorithm 

(v1.4.2) with a cutoff of p-value = 1e-7. Signal maps and peak locations were used as input data 

to Active Motifs proprietary analysis program (19), which creates Excel tables containing detailed 

information on sample comparison, peak metrics, peak locations and gene annotations. The 

representative data is generated by analyzing the data using the Integrated Genome Browser 

(IGB). 

RNA preparation and next-generation sequencing: Total RNA was extracted from IRF4-/-Vh11 

CLL cells with or without IRF4 induction using Trizol Reagent, and submitted to Otogenetics 

Corporation (Norcross, GA USA) for RNA-Seq assays. Briefly, the integrity and purity of total RNA 

were assessed using Agilent Bioanalyzer or Tapestation and OD260/280. 1-2 μg of cDNA was 

generated from high quality total RNA using the Clontech SMARTer cDNA kit, polyA primer, 

(Clontech Laboratories, Inc., Mountain View, CA USA, catalog# 634926). The resulting cDNA was 

fragmented using Bioruptor (Diagenode,Inc., Denville, NJ USA), profiled using Agilent Bioanalyzer 

or Tapestation. Illumina libraries were made from qualified fragmented gDNA using SPRIworks HT 

Reagent Kit (Beckman Coulter, Inc. Indianapolis, IN USA, catalog# B06938) on the Biomek FXp 

liquid handler (robot). The quality and quantity and the size distribution of the Illumina libraries 

were determined using an Agilent Bioanalyzeror Tapestation. The libraries were then sequenced 

on Illumina HiSeq2500, using RapidRun V1 chemistry, paired-end 106 nucleotide reads, according 

to the standard operation. Reads were generated and checked for data quality using FASTQC 

(Babraham Institute, Cambridge, UK).  
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The data sets was mapped against reference genome mm10 with star 2.4.0j, and then analyzed 

with cufflinks (2.2.1) for expression level measurement on www.DNAnexus.com. Comparison of 

expression level between samples had been conducted with cufflinks.cuffdiff (2.2.1). 

CLL transplantation. Whole splenocytes were isolated from mice with overt CLL. CLL was 

transplanted by intraperitoneal (IP) injections of 107 whole splenocytes into the sublethally 

irradiated (2 grays) NSG mice. 

Western Blotting. B cells and CLL cells from spleen were isolated by negative selection using MACS 

columns. Lysates were prepared and resolved using SDS-PAGE. The membranes were incubated 

with the indicated antibodies and Horse radish peroxidase (HRP) conjugated secondary 

antibodies. The signals were generated using Enhanced Chemi-Luminescence (ECL) substrate 

solution from Thermo-Pierce. The antibodies against Notch1, Notch2, Itch, Nedd4 and Hes1 were 

purchased from Cell signaling Technologies. Antibodies against IRF4 and Pu.1 were obtained from 

Santa Cruz Biotechnology. Direct HRP conjugated antibody against Beta Actin was purchased from 

Sigma.   

Transfection of Mec-1 CLL and normal B cells. Mec-1 cells were transfected using the Solution V 

kit purchased from Lonza. The transfection were carried out in a Nucleofector (Lonza) using the 

program X-001. Normal human B cells were isolated from the peripheral blood of healthy donors 

using MACS magnetic beads separation. Transfections of normal human B cells were carried out 

in a Nucleofector (normal human B cell solution) using the program U-015. The siRNA against 

human IRF4 (on-target plus smart pool) were purchased from Dharmacon (L-019668-00-0005). 

The siRNA against human Nedd4 (on-target plus smart pool) were purchased from Dharmacon (L-

007178-00-0005). The ON-target plus Non targeting siRNA purchased from Dharmacon were used 

as controls (D001810-10-05). The cells were analyzed 48 hours post transfections. 
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Flow cytometry and cell sorting. The cells were isolated from respective tissues and pre-

incubated with Fc-Block antibody. Flow cytometry staining was performed by incubation of cells 

with optimal amounts of biotinylated or directly fluorophore conjugated antibodies. Antibodies 

against mouse B220, IgM and CD5 proteins were purchased from BD-pharmingen. Anti-mouse 

Notch2 and the corresponding isotype control antibodies were purchased from Biolegend. The 

anti-IRF4 antibody and the corresponding control antibody for intracellular staining were 

purchased from ebioscience. Fluorescence activated cell sorter (FACS) analysis was performed 

using FACSCalibur flow cytometer. Cell sorting was performed using BD FACSAria flow cytometer. 

Primary and Cell Cultures. All primary cells and Mec-1 CLL cell line were cultured in RPMI-1640 

media containing 10% fetal bovine serum, 50µM Beta mercaptoethanol, 2mM L-glutamine and 

100 U of penicillin and streptomycin. The B1 cells were isolated from peritoneal ascites following 

incubation in the tissue culture dishes for 6 hours to remove adherent macrophages. 

Real-time PCR. Cell lysis was performed using Trizol reagent. The total RNA was reverse 

transcribed using the first strand cDNA synthesis kit from GE healthcare. Real-time PCR was 

performed using SYBR-green reagent from Applied Biosystems in ABI 7500 cycler. Primers specific 

to the gene or region of interest were used for the levels of mRNA or CHIP assay respectively. A 

complete list of primers is included in the table 2 (Table T2). 

Table T2 

Primer Forward Reverse 

Notch2 Deletion ATGTCCAGAGGGCTTCTTGGGAG TGGCAGTCCTCTCCTGTGAATCC 

Control Deletion CTTCCTTTAGGGTAACTGGCCGCC CAGGATAAAGGACACTCCACCCAG 

Kappa CHIP  TAGCACAGAGTACCCACCCATATCTC CTATCTTGGTCCATGGGACACTCCC 

Nedd4 CHIP 2Kb TGTTTCGGCTCATAATCTCATGGG AACTGCACTACCACACCTGGCA 
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Nedd4 CHIP 4kb CTGCCAGTGAAGCAGGAGCCTTTAG GGGACCTAGAGTGGGCATCAAAA 

human Nedd4 mRNA ATGGCAACATTCAACTGCAA GGCCTGGTTGCTATACATGG 

human Fbxw7 mRNA GACGCCGAATTACATCTGTC GTAGCAGGTCTTTGGGTTC 

human Hes1 mRNA AGTGAAGCACCTCCGGAAC TCACCTCGTTCATGCACTC 

mouse Hes1 mRNA GTGTCAACACGACACCGGACAAACC GCTTGGAATGCCGGGAGCTATCT 

mouse Notch2 mRNA CAGCTCTAACCCGTGCCTGAATG GGGCCTTGCCTTTTCCTGAACAC 

mouse Nedd4 mRNA TCACTGCTGATCCGTACCTGGAGC GCTGGTAAGGATTCCACTCATCGGG 

mouse Fbxw7 mRNA TGCAAAGTCTCAGATTATACC ACTTCTCTGGTCCGCTCCAGC 

 

Statistical Analysis. Each experiment was repeated at least three times unless otherwise 

indicated. The data in the bar graphs are represented with ± standard deviation. Two-tailed 

Student t-test was used to calculate p values to determine the significance. p value below 0.05 is 

considered statistically significant.  

5.3 RESULTS 

5.3.1 IRF4 regulates the E3 ubiquitin ligase Nedd4 in IRF4-/-Vh11 CLL cells. 

Our results show that IRF4-/-Vh11 CLL cells express high levels of Notch2. A previous study also 

shows that Notch2 expression levels are high in IRF4 deficient B2 cells (11). However, how the 

expression levels of Notch2 are regulated by IRF4 remains unclear. In an attempt to decipher the 

molecular mechanism, we reconstituted the expression of IRF4 in CLL cells. To accomplish this, 

we used a previously described IRF4 transgenic line where the expression of IRF4 transgene is 

driven by a tetracycline response element (TRE-IRF4) (17). A transgenic mouse expressing a 

reverse tetracycline-controlled transactivator (rtTA) was used to drive the expression of IRF4 

transgene in vivo. The rtTA transgene along with an EGFP reporter were inserted in mouse Rosa 
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26 locus and can only be activated by cre recombinase (15). We bred mice containing rtTA and 

TRE IRF4 alleles to CD19cre mice to generate CD19cre rtTA TRE IRF4 mice which upon treatment 

with doxycycline (Dox), allow IRF4 transgene expression exclusively in B cells. Through further 

breeding we introduced these alleles (CD19cre rtTA TRE IRF4) into the IRF4-/-Vh11 mice to 

generate CD19cre rtTA TRE IRF4 IRF4-/-Vh11 mice hereafter referred to as IRF4-/-Vh11Tg in this 

manuscript (Figure 1A). The blood was analyzed regularly from IRF4-/-Vh11Tg mice. Upon CLL 

development in IRF4-/-Vh11Tg mice, the CLL cells were isolated from spleen and transplanted to 

NOD-scid gamma deficient (NSG) immunocompromised mice (Figure 1A). The blood from the NSG 

mice was screened for the development of overt CLL. Upon successful establishment of CLL in the 

NSG mice, some mice were fed with dox containing water to induce the expression of IRF4 (NSG 

(+) Dox) (Figure 1A). NSG mice fed with regular water without dox were used as controls (NSG (-) 

Dox). This approach allowed us to compare the effect of IRF4 on the same population of CLL cells. 

After three weeks of Dox treatment, we examined the effect of IRF4 reconstitution on the levels 

of Notch2 expression in IRF4-/-Vh11Tg CLL cells. Interestingly, compared to NSG control mice IRF4 

reconstitution led to a decrease in the cell surface levels of Notch2 receptor on CLL cells (Figure 

1B). This is evidenced by a leftward shift in Notch2 staining of CLL cells in dox treated NSG mice in 

both blood and spleen (Figure 1B). We further performed a western blot analysis to measure the 

total levels of Notch2 protein in IRF4-/-Vh11Tg CLL cells. Consistent with the result of FACS staining, 

we observed a decrease in total levels of Notch2 protein in CLL cells upon IRF4 induction (Figure 

1C). Furthermore, we did not observe a corresponding decrease in the mRNA expression of 

Notch2 upon IRF4 induction (Figure 1D). These results indicate that IRF4 downregulates 

expression of Notch2 and that the defect in Notch2 expression can be corrected upon IRF4 

reconstitution in IRF4-/-Vh11 mice.  
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We further performed RNA sequencing (RNA-seq) from CLL cells isolated from mice treated with 

or without Dox. Our objective was to identify differentially expressed genes that could affect 

Notch protein turnover. A previous study has linked reduced expression of an E3 ubiquitin ligase 

gene Fbxw7 to the increased Notch protein levels in the IRF4 deficient B cells (11). However, 

Fbxw7 expression was not significantly affected upon IRF4 reconstitution (Figure 1F).  Intriguingly, 

our RNA-seq data revealed an increase in expression of a different E3 ubiquitin ligase, Nedd4 upon 

IRF4 reconstitution (Figure 1E). Importantly, Nedd4 has been previously shown to ubiquitinate 

and degrade Notch receptors in drosophila and mammalian cellular systems (20-23). We were 

able to confirm RNA-seq results by real-time PCR (Figure 1F). Notably, reconstitution of IRF4 also 

led to a decrease in the expression of canonical Notch target gene Hes1 (Figure 1E and 1F). 

Western blot analysis further showed a profound increase in Nedd4 protein expression upon IRF4 

reconstitution whereas the levels of another E3 ubiquitin ligase, Itch which belongs to the same 

protein family as Nedd4, remained unchanged (Figure 1G). We further analyzed the mRNA and 

protein expression of Nedd4 in CLL cells. Compared to IRF4+/+Vh11 B cells, the mRNA and protein 

levels of Nedd4 were dramatically reduced in IRF4-/-Vh11 CLL cells (Figure 1H and 1I). Taken 

together, these studies identify Nedd4 as a potential IRF4 target gene and the major E3 ubiquitin 

ligase that is downregulated in the IRF4-/-Vh11 CLL cells. 
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Figure 1 IRF4 regulates E3 ubiquitin ligase Nedd4 in CLL cells. (A) A schematic showing the 
breeding scheme and experimental design for IRF4 reconstitution in IRF4-/-Vh11 CLL cells. (B) 
Histograms showing Notch2 staining in CLL cells isolated from blood and spleen of NSG mice fed 
with (black line) or without dox water for 3 weeks (gray line). (C) Western blot analysis to detect 
Notch and IRF4 levels in CLL cells isolated from NSG mice fed with or without dox water for 3 
weeks. The number below represents normalized relative expression. B cells isolated from B6 
mice are used as a measure of endogenous levels of IRF4. Actin is used as loading control. (D) Bar 
graph showing relative mRNA expression of Notch2 in CLL cells isolated from NSG mice fed with 
or without dox. (E) RNA sequencing data of CLL cells isolated from NSG mice fed with or without dox 

water. Each insert shows representative data for Hes1, Nedd4 and IRF4 genes. The numbers on the right 

corner represents relative expression in CLL cells from respective NSG mice. (F) Bar graph representing 
the relative mRNA expression of Hes1, Nedd4 and Fbxw7 in CLL cells isolated from NSG mice fed 
with or without dox water for 3 weeks. (G) Western blot analysis to measure Nedd4 and Itch 
protein levels in NSG mice fed with or without dox. (H) Bar graph showing the relative mRNA 
expression of Nedd4 in four different IRF4-/-Vh11 CLL samples compared to B cells isolated from 
wildtype B6 and IRF4+/+Vh11 mice. (I) Western blot analysis to measure the levels of Nedd4 
protein in IRF4-/-Vh11 CLL samples compared to IRF4+/+Vh11 B cells. The numbers at the bottom 
represents Nedd4 expression measured by densitometric analysis using ImageJ software. Actin is 
used as the loading control. *p value ≤0.01 **p value ≤0.05. 
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5.3.2 IRF4 directly binds to nedd4 gene.  

We performed Chromatin Immunoprecipitation sequencing (ChIP-seq) to identify genome wide 

binding sites for IRF4 in B1 cells. For this study, IRF4+/+Vh11 B1 cells were used to map IRF4 binding 

sites and IRF4-/-Vh11 B1 cells were used as control cells.  The binding profile of IRF4 on the Nedd4 

locus was analyzed. Strikingly, ChIP-seq revealed a robust binding of IRF4 in the promoter region 

of nedd4 gene (Figure 2A). Furthermore, the IRF4 binding peak was mapped to a region harboring 

a canonical Interferon-Stimulated Response Element (ISRE) represented by GAAANNGAAA DNA 

motif (Figure 2A). The ISRE element was present 2 kilobases (kb) upstream to the transcription 

start site (TSS) in the nedd4 gene promoter (Figure 2A). IRF4 has been previously shown to bind 

3’ enhancer in the kappa immunoglobulin light chain locus (24). Our ChIP-seq screen showed a 

strong binding peak for IRF4 in the 3’ kappa enhancer region, ascertaining the specificity of our 

assay (Figure 2B). The IRF4 binding to the ISRE motif in the nedd4 gene locus was further 

confirmed by the conventional ChIP assay, which showed significant enrichment of the ISRE motif 

in nedd4 gene promoter by anti-IRF4 antibody in IRF4+/+Vh11 B1 cells (Figure 2C). Notably, we did 

not observe an enrichment of IRF4 binding at a region 4kb upstream to the TSS (Figure 2C). In 

summary, our results indicate that Nedd4 is a direct target of IRF4 in B1 cells. 
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Figure 2 IRF4 directly binds to nedd4 gene. (A) ChIP-seq data showing endogenous IRF4 binding 
at nedd4 gene locus in B1 cells isolated from IRF4+/+Vh11 mice. Immunoprecipitation of DNA 
fragments using anti-IRF4 antibody from IRF4-/-Vh11 B1 cells is used as control. TSS represents 
transcription start site and ISRE represents Interferon Stimulated Response Elements located in 
nedd4 gene promoter. (B) ChIP-seq data showing IRF4 binding to the 3’ kappa light chain enhancer 
used as positive control in IRF4+/+Vh11 B1 cells. (C) Bar graph representing the data from 
conventional ChIP assay in B1 cells using IgG and anti IRF4 antibody. Kappa represents primers 
spanning the 3’ enhancer in the Kappa Ig light chain locus used as positive control for IRF4 binding. 
The data shown in (C) is representative of three independent experiments. *p value ≤0.01. 
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5.3.3 IRF4 regulates Nedd4 expression in B1 but not B2 cells. 

A previous study has suggested that IRF4 may regulate the expression of Fbxw7 in B2 cells (11). 

Our results show that IRF4 regulates Nedd4 but not Fbxw7 expression in CLL cells. It appears that 

expression of Nedd4 and Fbxw7 may be differentially regulated by IRF4 in different B cell subsets. 

To clarify this issue, we decided to measure the expression of Fbxw7 and Nedd4 in B cell subsets 

isolated from IRF4 proficient and deficient mice. We first analyzed the levels of Nedd4 in IRF4 

deficient B1 cells. Our result shows that IRF4 deficiency in B1 cells led to a significant decrease in 

expression of Nedd4 at the level of protein as well as mRNA (Figure 3A and 3B). The observed 

decrease in Nedd4 in IRF4-/- B1 cells was accompanied by an increase in Notch2 expression and a 

corresponding increase in Notch target gene Hes1 (Figure 3A). However, compared to IRF4 

proficient B1 cells we did not observe a significant change in the expression of E3 ubiquitin ligase, 

Fbxw7 in IRF4 deficient B1 cells (Figure 3B). We then measured the levels of Nedd4 and Fbxw7 in 

splenic B2 (normal B cells) cells. Surprisingly, IRF4 deficiency in splenic B2 cells was not associated 

with a significant change in the expression of Nedd4 (Figure 3C). Conversely, Fbxw7 levels were 

decreased in IRF4 deficient B2 cells (Figure 3C). These results confirm that expression of Nedd4 

and Fbxw7 are differentially regulated by IRF4 in distinct B cell subsets.  

IRF4 binds to DNA either as a homodimer or as a heterodimer with other transcription factors. It 

has been shown that DNA binding affinity of IRF4 for their target genes can be influenced by its 

own concentration as well as by the availability of its interacting partners (25). Pu.1 belongs to Ets 

family of transcription factor and is a key interaction partner for IRF4 in B cells (25). Therefore, to 

understand the observed discrepancy in the regulation of Nedd4 by IRF4 in B1 versus B2 cells, we 

assessed the levels of IRF4 and its interaction partner Pu.1. Intriguingly, the expression levels of 

Pu.1 were significantly higher in IRF4+/+ B2 cells than in IRF4+/+ B1 cells (Figure 3D). This finding is 

consistent with a previous report describing low levels of expression of Pu.1 mRNA in B1 cells (26). 
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The expression levels of Spi-b, which also belongs to the Ets family of transcription factors, were 

much lower and unaltered between B1 and B2 cells (data not shown). Interestingly, intracellular 

staining analysis further reveals that IRF4 was expressed at much higher levels in B1 cells than in 

B2 cells (Figure 3E). Collectively, these results show that IRF4 directly binds to nedd4 gene locus 

to regulate its expression in B1 cells but not B2 cells and that expression levels of IRF4 and Pu.1 

are distinct in B1 and B2 cells. 
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Figure 3 IRF4 regulates Nedd4 expression in B1 but not B2 cells. (A) Western blot showing the 
levels of Nedd4, Notch2, Hes1 and IRF4 in IRF4-/- B1 cells compared to IRF4+/+ B1 cells. The 
numbers below represent normalized relative expression calculated by densitometric 
quantification of respective proteins. (B) Bar graph showing the relative mRNA expression of 
Nedd4 and Fbxw7 in IRF4-/- and IRF4+/+ B1 cells. (C) Bar graph showing the relative mRNA 
expression of Nedd4 and Fbxw7 in IRF4-/- and IRF4+/+ B2 cells. (D) Western blot analysis to detect 
the levels of Pu.1 in B1 cells isolated from PC and B2 cells isolated from spleen of wild type mice. 
(E) Flow cytometry analysis using intracellular staining to measure the levels of IRF4 in PC B1 cells 
and splenic B2 cells. The histograms represents intracellular staining with isotype control antibody 
(left panel) and with IRF4 antibody (right panel). Gray line represents B2 cells and Black line 
represents B1 cells. Cells were gated specifically on B1 and B2 populations based on IgM and B220 
staining. *p value ≤0.01. 

 

 

 

 

 



128 
 

5.3.4 IRF4 regulates Nedd4 expression in human B cells and CLL cells to downregulate Notch 

protein. 

We next wanted to determine whether IRF4 regulates Nedd4 expression in human B cells. To 

study this, we manipulated the levels of IRF4 using siRNA mediated knockdown in normal human 

B cells isolated from peripheral blood of healthy donors. Normal human B cells were nucleofected 

with a pool of 4 siRNAs specific to IRF4 mRNA and with a pool of 4 scrambled siRNAs as control 

(Figure 4A). siRNAs specific to IRF4 led to a strong decrease in the expression of IRF4 in normal 

human B cells (Figure 4A). Further mRNA analysis reveals that IRF4 knockdown in human B cells 

led to a decrease in the expression of Nedd4 and a concurrent increase in the expression of Hes1 

(Figure 4B). Importantly, the levels of Fbxw7 remained unaffected by IRF4 knockdown in normal 

human B cells (Figure 4B). 

Effect of Nedd4 on Notch protein turnover has been mainly studied in drosophila. Here, we 

wanted to further determine whether Nedd4 can also regulate Notch protein turnover in CLL cells. 

We used a siRNA mediated knockdown approach to manipulate Nedd4 protein levels in human 

Mec-1 CLL cells. Mec-1 cells are an established human CLL cell line that expresses both Notch1 

and Notch2 proteins. A pool of 4 siRNAs specific to Nedd4 mRNA were nucleofected into the Mec-

1 cells, while a pool of 4 scrambled siRNAs were used as controls. Knockdown of Nedd4 for 48 

hours in Mec-1 cells indeed led to an increase in the expression of both Notch1 and Notch2 

proteins compared to knockdown with scrambled siRNA controls (Figure 4C). Importantly, the 

protein levels of Nedd4 protein family member Itch as well as IRF4 remained unaffected by Nedd4 

protein knockdown (Figure 4C). Therefore, we conclude that Nedd4 can regulate Notch proteins 

turnover in CLL cells.  In summary, our results indicate that IRF4 regulates expression of Nedd4 in 

human B cells to downregulate Notch receptors. 
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We also assessed the levels of IRF4 and Nedd4 in human CLL cells. As previously reported, the 

levels of IRF4 were generally lower in human CLL samples. However, some of the CLL samples 

predominantly belonging to patients with good prognosis based on their CD38 negativity 

expressed higher levels of IRF4 (Figure 4D and Table 1). Interestingly, the CLL samples expressing 

higher levels of IRF4, also expressed higher levels of Nedd4 (Figure 4D). The protein levels of IRF4 

showed a high degree of correlation to the protein levels of Nedd4 with a regression coefficient 

of 0.866 (Figure 4E). Furthermore, the expression of Nedd4 in a larger cohort of CLL samples from 

oncomine were reduced compared to peripheral blood mononuclear cells (Figure 4F). In 

conclusion, these studies establish the conservation of IRF4 and Nedd4 regulatory axis in human 

B cells and CLL cells. 
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Figure 4 IRF4 regulates Nedd4 expression in human B cells and CLL cells to downregulate Notch 
protein. (A) Western blot showing IRF4 knockdown using IRF4 specific or scrambled control siRNA 
in normal human B cells isolated from healthy donors. The number below represents normalized 
relative expression. (B) Bar graph showing relative mRNA expression of IRF4, Nedd4, Hes1 and 
Fbxw7 in normal human B cells in control versus IRF4 specific siRNA. (C) Western blot analysis of 
Nedd4, Itch, Notch1, Notch2 and IRF4 following Nedd4 knockdown using siRNA in human Mec-1 
CLL cells. Knockdown with scrambled siRNA is used as controls (con). The numbers below 
represent the normalized relative expression of respective genes measured by densitometric 
analysis. (D) Western blot analysis of Nedd4 and IRF4 expression in human CLL samples 
represented by each individual lane. (E) Scatter plot to show the correlation between IRF4 and 
Nedd4 protein expression in human CLL cells. The dotted line represents the linear trend line. 
Pearson coefficient (r) value is 0.866. (F) Box plot showing the Nedd4 mRNA expression in a large 
cohort of CLL samples compared to normal peripheral blood mononuclear cells (PBMCs). The 
dataset used for analysis was Haferlach leukemia dataset from oncomine. *p value ≤0.0001 **p 
value ≤0.01. 
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5.4 DISCUSSION 

Mutational and constitutive activation of Notch signaling is reported in patients without Notch 

mutations (8, 27). However, the molecular mechanisms leading to aberrant Notch signaling in CLL 

cells remain poorly defined. Our results presented here establish IRF4 as a critical regulator of 

Notch signaling during CLL development. Since, low levels of IRF4 is a common feature of CLL, the 

deregulated IRF4-Notch axis may represent a major pathway in the molecular pathogenesis of 

CLL. Nedd4 promotes ubiquitination and degradation of Notch receptors and has been shown to 

limit aberrant ligand independent activation of Notch signaling (21). Interestingly, we identify 

Nedd4 as a key IRF4 target gene involved in impeding the responses of CLL cells and their 

precursors to Notch signaling. Our studies show that expression of Nedd4 was defective in IRF4-/-

Vh11 CLL cells and their precursors. Additionally, we show that IRF4 directly bound to the 

promoter region of nedd4 gene. Moreover, reconstitution of IRF4 induced the expression of 

Nedd4 in IRF4-/-Vh11 CLL cells and downregulated Notch2. Notably, our data also show that Nedd4 

is regulated by IRF4 in normal human B cells and can downregulate Notch proteins in human CLL 

cells. Intriguingly, a recent GWA study identified SNPs upstream to the nedd4 gene locus to be 

strongly associated with CLL development in human patients (28). Although, the functional 

significance of these SNPs on Nedd4 expression remains to be determined, our in silico analysis 

using a large cohort of CLL samples showed a significant decrease in Nedd4 expression in CLL cells 

compared to normal peripheral blood mononuclear cells (Figure 4F). As an E3 ubiquitin ligase, 

Nedd4 may have many targets in CLL cells; however, our findings would indicate that Notch 

proteins are major targets of Nedd4 in the context of CLL development. 

Our studies show that IRF4 regulates expression of Nedd4 in B1 cells but not B2 cells. This 

apparent paradoxical findings, we believe, can be explained by a recently proposed “kinetic 

control” model,  which was put forth to explain the dynamic changes in the DNA binding abilities 
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of IRF4 at distinct B cell developmental stages (25). According to this model, the DNA binding 

landscape of IRF4 is influenced by the levels of IRF4 expression and the expression of its various 

interaction partners (25). IRF4 can hetero-dimerize with Ets family of transcription factors to bind 

EICE motifs (GGAANNGAAA), while upon homo-dimerization IRF4 binds to ISRE motifs 

(GAAANNGAAA). Notably, IRF4-Ets heterodimers binds EICE motifs with much higher affinity 

compared to the binding of IRF4 homodimers to ISRE sites (25). Moreover, this model may imply 

that binding of IRF4 homodimers to ISRE motifs may not occur efficiently in the presence of Ets 

transcription factors like Pu.1. Our results show that IRF4 is expressed at much higher levels in B1 

than B2 cells. In contrast, Pu.1 is expressed at much higher levels in B2 cells than B1 cells. 

Therefore, the high levels of IRF4 and low levels of Pu.1 would lead to preferential binding of IRF4 

to ISRE motifs present in nedd4 gene promoter in B1 cells. On the other hand, higher levels of 

Pu.1 and lower levels of IRF4 in B2 cells may sequester IRF4 to EICE motifs and away from the low 

affinity ISRE motifs thereby, preventing its binding to nedd4 gene promoter in B2 cells. Previous 

study has shown that Fbxw7 mRNA is downregulated in IRF4 deficiency B2 cells (11). Our result 

also shows that Fbxw7 expression was decreased in IRF4 deficient B2 cells. Surprisingly, unlike 

Nedd4, the Fbxw7 expression was not significantly affected in IRF4-/-Vh11 B1 and CLL cells. These 

results indicate that Fbxw7 is not the major E3 ubiquitin ligase responsible for increased Notch 

receptor expression and signaling in IRF4 deficient B1 and CLL cells. It is still possible that Fbxw7, 

not Nedd4, is the E3 ubiquitin ligase that controls Notch activity in B2 cells. More studies are 

needed to determine whether Fbxw7 is a direct target of IRF4 that regulates Notch turnover in B2 

cells. 

In summary, our studies presented here uncover a novel regulatory pathway that controls Notch 

activity and CLL development. The importance of this pathway is strongly supported by the 

evidence that components of this pathway IRF4, Nedd4 and Notch are themselves frequently 
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targeted during CLL development and progression (2, 5, 28, 29). Therefore, deregulation of this 

pathway may represent a major pathogenesis step during CLL development and progression. 

Identification of this novel regulatory pathway not only helps us better understand the biology of 

CLL but could also offer new targets for diagnosis and therapeutic intervention. 
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6.1 OVERALL CONCLUSIONS 

6.1.1 Low levels of IRF4 are causally related to CLL development 

The molecular pathogenesis of Chronic Lymphocytic Leukemia (CLL) is not fully elucidated. GWA 

study revealed high prevalence of SNPs in the Interferon Regulatory Factor 4 (IRF4) gene locus, 

insinuating a central role for IRF4 in the development of CLL (1, 2).In our studies here we 

deciphered the role of IRF4 in the development of CLL. At first, we used a naturally occurring, low 

penetrance model of CLL, the New Zealand Black (NZB) mouse. We bred the IRF4+/- mice 

expressing low levels of IRF4 to the NZB mice (NZB IRF4+/-), to study how low levels of IRF4 affects 

the pathogenesis of CLL in this model. Interestingly, our results showed that CLL development is 

markedly accelerated in NZB mice expressing low levels of IRF4 (3). NZB IRF4+/- mice developed 

CLL at 4-5 months of age with 100% disease penetrance, when compared with the NZB IRF4+/+ 

mice that developed CLL at 10-12 months of age with 30% disease penetrance (3). The 

pathogenesis of CLL in NZB mice is linked to a SNP that interferes with the processing and 

functional maturation of the miRNA15a/16-1 (4). The chromosomal locus harboring 

miRNA15a/16-1 in humans is important for CLL development and is deleted in ~55-60% of CLL 

cases (5). Therefore, our studies show that low levels of IRF4 collaborate with the preexisting 

genetic defects in NZB mice to radically accelerate CLL development (3). However, the presence 

of preexisting genetic defects precluded these studies from conclusively demonstrating a role for 

low levels of IRF4 in CLL initiation. 

To study the role of IRF4 in CLL initiation we used a different genetic approach. We used a 

genetically engineered Vh11 knock-in (KI) mouse that expresses a prearranged immunoglobulin 

heavy chain gene family, Vh11. B cells expressing Vh11 heavy chain predominantly develops into 

a specialized B cell subset, known as B1 cells (6). Although, the cellular origin of human CLL 
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remains unclear, in rodents, B1 cells are believed to be the precursors of CLL cells (7). Moreover, 

the molecular mechanisms regulating the homeostasis of B1 cell development are largely 

unknown. In adult mice, B1 cells represent only a small fraction of mature B cell population making 

them a difficult cellular population to study (1-5%) (8). However, the Vh11 KI mice have elevated 

numbers of B1 cells and therefore, we used these mice to study the role of IRF4 in the regulation 

of B1 cell development and how it affects the development of CLL. To this end, we bred the IRF4 

deficient mice (IRF4-/-) with the Vh11 KI mice to generate IRF4-/-Vh11 mice. Remarkably, IRF4-/-

Vh11 mice developed CLL spontaneously at 100% penetrance (9). Notably, neither the IRF4 

deficient mice nor the Vh11 KI mice developed CLL independently (9). Furthermore, the CLL cells 

arising from the IRF4-/-Vh11 mice were transplantable to the immunodeficient host mice (9). 

These studies show that low levels of IRF4 deregulates B1 cell development and are consequently 

involved in the initiation of CLL. Our studies describe NZB IRF4+/- and IRF4-/-Vh11 mice as novel 

mouse models that mimics a major genetic predisposition for the development of human CLL (3, 

9). Together, these studies here provide unequivocal evidence for a causal role of low levels of 

IRF4 in the initiation and progression of CLL.  

 

6.1.2 Notch signaling is critical for CLL development in IRF4-/-Vh11 mice 

To elucidate the molecular mechanism through which IRF4 suppresses CLL development, we 

performed Gene Expression profiling of CLL cells derived from IRF4-/-Vh11 mice. Our molecular 

analysis revealed the activation of Notch signaling pathway as a characteristic feature of IRF4-/-

Vh11 CLL cells. Moreover, our functional studies showed an important role of Notch signaling in 

promoting the proliferation and survival of B1 and CLL cells. These results were particularly 

intriguing because mutational activation of Notch signaling pathway has been identified as one of 

the most recurrent molecular events in CLL and is associated with poor disease outcomes (10-12). 
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The mutations identified in the Notch signaling pathway primarily leads to increased stability of 

Notch1 protein in CLL cells (10-12). Other than the mutational activation, studies have reported 

constitutive activation of Notch signaling pathway in human CLL cells (13). Additionally, In vitro 

studies relying on co-culture of CLL cells with stromal cells have also provided evidence for a role 

of Notch signaling in promoting the survival and chemo-resistance in human CLL cells (14, 15). 

Altogether, these studies have linked aberrant Notch signaling to the pathogenesis of CLL in vitro, 

however, whether Notch signaling in critical for CLL development in vivo remains unknown. 

Furthermore, the molecular mechanism leading to the deregulation of Notch signaling in CLL is 

still ambiguous.  

In our studies here, we first used the IRF4-/-Vh11 mice to study the role of Notch signaling in the 

development of CLL in vivo. Notch family of proteins in mammalian system consists of four Notch 

paralogues from Notch1 through Notch4. Our studies revealed that Notch signaling is 

hyperactivated as a result of upregulation of Notch2 protein expression in IRF4-/-Vh11 CLL cells. 

Interestingly, a recent report described expansion of a specialized B cell subset, known as 

Marginal zone B cells in IRF4 deficient mice that was also attributed to increased expression of 

Notch2 protein (16). We next used genetic approaches to delete Notch2 gene in IRF4-/-Vh11 mice, 

to examine the contribution of Notch signaling in CLL development in vivo. We genetically deleted 

the Notch2 gene specifically in B cells of IRF4-/-Vh11 mice (CD19creNotch2fl/flIRF4-/-Vh11). Notably, 

we observed a significant delay in the onset of CLL in CD19creNotch2fl/flIRF4-/-Vh11 mice compared 

with CD19creNotch2+/+IRF4-/-Vh11 mice. Moreover, our studies further showed that Notch2 gene 

is absolutely required for the generation of CLL cells in IRF4-/-Vh11 mice. The CLL cells which 

emerged from CD19creNotch2fl/flIRF4-/-Vh11 mice, invariably expressed high levels of Notch2 on 

their surface and were apparently derived from B1 cells that escaped cre-mediated deletion. We 

also generated a Tamoxifen inducible Notch2 deletion model to study the role of Notch Signaling 
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in maintenance of CLL cells in IRF4-/-Vh11 mice (ERTcreNotch2fl/flIRF4-/-Vh11). In line with the 

findings above, Notch2 deletion had a detrimental effect on the survival and proliferation of IRF4-

/-Vh11 CLL cells. Taken together, our results show that Notch signaling is important for both the 

initiation and maintenance of CLL in IRF4-/-Vh11 mice. In summary, we provide the first in vivo 

genetic evidence for a critical role of Notch signaling in the development of CLL. 

Multiple studies have linked Notch signaling to the pathogenesis of CLL, yet, till now the role of 

Notch signaling as well as its regulation during CLL development remained poorly understood. 

Notch signaling is activated upon engagement of Notch receptor with its ligand on the cell surface 

that ultimately leads to the translocation of Intracellular domain of Notch (ICN) to the nucleus, 

where it transcriptionally activates its target genes. The genetic models developed and used thus 

far to investigate the role of hyperactive Notch signaling in B cells in vivo, have overexpressed the 

ICN in a transgenic system (17).  These models trigger supra-physiological, ligand-independent 

activation of Notch signaling that disrupts normal B cell development and have therefore 

hampered studies from drawing meaningful conclusions. On the other hand, hyperactivation of 

Notch signaling displayed by CLL cells derived from IRF4-/-Vh11 mice represents a state that is 

more physiological. Hence, the IRF4-/-Vh11 mice by themselves represent a unique and novel 

model system to study the role of deregulated Notch signaling in the pathogenesis of CLL. We 

used this novel strategy in our studies here to show for the first time that Notch signaling is critical 

for CLL development in vivo. 

6.1.3 IRF4 regulates Nedd4 to attenuate Notch signaling for suppression of CLL development. 

We next used Next Generation Sequencing approaches to decipher the mechanism by which IRF4 

attenuates Notch signaling in CLL. To accomplish this, we used a doxycycline inducible model to 

reconstitute the expression of IRF4 in IRF4-/-Vh11 CLL cells in vivo. We observed a decrease in 
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Notch2 protein expression and a concomitant attenuation of Notch signaling upon IRF4 

reconstitution in IRF4-/-Vh11 CLL cells. We performed RNA sequencing of IRF4-/-Vh11 CLL cells 

reconstituted with IRF4 expression to delineate the molecular mechanism by which IRF4 controls 

the stability of Notch proteins. Interestingly, our studies identify an E3 ubiquitin ligase, Nedd4 

that promotes the degradation of Notch proteins, as an IRF4 target gene in CLL cells and their 

precursors (B1 cells). Furthermore, using Chromatin Immunoprecipitation sequencing (ChIP-seq) 

our studies revealed direct transcriptional regulation of Nedd4 expression by IRF4 in CLL 

precursors. Moreover, we also observed a strong correlation between the expression levels of 

IRF4 and Nedd4 in human CLL cells. Interestingly, a recent GWA study has linked SNPs in the 

Nedd4 gene locus to the development of CLL (18). Although, the functional significance of these 

SNPs on Nedd4 expression remains to be determined, our in silico analysis using a large cohort of 

CLL samples showed a significant decrease in Nedd4 expression in human CLL cells. Together, 

these studies show that IRF4 attenuates Notch signaling in CLL cells and their precursors by 

directly regulating the expression of Nedd4. 

Our studies here uncover a novel regulatory pathway that controls Notch activity and CLL 

development. The importance of this pathway is strongly supported by the evidence that 

components of this pathway; IRF4, Nedd4 and Notch are themselves frequently targeted during 

CLL development and progression (2, 11, 12, 18). Therefore, deregulation of this pathway may 

represent a major pathogenesis step during CLL development and progression. Identification of 

this novel regulatory pathway not only helps us better understand the biology of CLL but could 

also offer new targets for diagnosis and therapeutic intervention.  

In summary, our studies here progressed our current understanding of the biology of CLL and 

provided strong evidence for a causal role of IRF4 in the development of CLL. In the process we 

developed a novel mouse model of CLL (IRF4-/-Vh11) that mimics a major genetic predisposition 
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for human CLL. Also, the IRF4-/-Vh11 mice presents the full spectrum of clinico-pathological 

features associated with human CLL. We use this mouse model to further provide the first in vivo 

genetic evidence for a critical role of Notch signaling in the development of CLL. We delineate the 

molecular mechanism that causes deregulation of Notch signaling in CLL. We establish IRF4 as an 

attenuator of Notch signaling that is critical to suppress CLL development. We further identify 

Nedd4 as an important IRF4 target gene that suppresses Notch signaling in CLL cells and their 

precursors. 

 

 

Figure 1 A diagrammatic depiction of our findings. Our studies show that IRF4 directly regulates 
the expression of Nedd4 in CLL precursors. Nedd4 in CLL precursors promote ubiquitination 
mediated degradation of Notch receptors which in turn leads to limited and controlled activation 
of Notch signaling. In CLL cells, SNP mediated IRF4 downregulation leads to lower levels of Nedd4. 
Low levels of Nedd4 leads to decreased degradation of Notch receptors and hyperactivation of 
Notch signaling in CLL cells. 
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6.2 FUTURE DIRECTIONS 

6.2.1 Canonical and Non-Canonical Notch signaling in the pathogenesis of CLL 

Recent studies have identified novel molecular aspects of Notch signaling that were previously 

unrecognized. These include, Non-Canonical features of Notch signaling that involves 

transcription independent roles of Notch protein that leads to activation of downstream signaling 

pathways in a ligand dependent or independent manner (19, 20). Although, the precise molecular 

mechanisms through which Non-Canonical Notch signaling operates is still not fully understood, 

this mode of signal transduction differs significantly from the Canonical Notch signaling (19). 

Canonical Notch signaling is activated upon ligand mediated proteolytic cleavage and release of 

ICN to the nucleus for transcriptional activation (21). Our studies here demonstrate a critical role 

for Notch signaling in the development of CLL in vivo. We genetically deleted Notch2 in mature B 

cells that leads to suppression of both the Canonical and Non-Canonical Notch signaling. This 

approach thereby prevents our studies to discriminate between the distinct roles Canonical and 

Non-Canonical Notch signaling may have in the pathogenesis of CLL. The distinction between the 

roles of these alternative aspects of Notch signaling pathway is quintessential for designing 

specific and effective therapies to target aberrant Notch signaling in CLL.  

To this end, we are using an alternate genetic approach that involves deletion of the 

transcriptional regulator, Rbp-JƘ in mature B cells of IRF4-/-Vh11 mice. Rbp-JƘ is the critical DNA 

binding component of the transcriptional activation complex assembled by ICN in the nucleus 

(21). Therefore, deletion of Rbp-JƘ would disrupts Canonical Notch signaling without affecting the 

Non-Canonical Notch signaling. Monitoring the pathogenesis of CLL in CD19creRbpJƘfl/flIRF4-/-

Vh11 mice will provide valuable insights into the role of Canonical Notch signaling in CLL 

development. In case the pathogenesis of CLL remains unaffected in CD19creRbpJƘfl/flIRF4-/-Vh11 
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mice, it would mean that the Canonical Notch signaling is dispensable for CLL development. These 

results would also help in understanding the role of Non-Canonical Notch signaling in the 

pathogenesis of CLL. 

6.2.3 The role of Nedd4 in the pathogenesis of CLL 

The role of Nedd4 in the pathogenesis of human CLL is unexplored. Recently, a GWA study 

identified strong associations of SNPs upstream in the nedd4 gene locus to the development of 

CLL in human patients (18). However, the functional significance of these SNPs remain ambiguous. 

Our in silico analysis using a large cohort of CLL samples from oncomine dataset revealed 

downregulation of Nedd4 expression in CLL cells compared to normal peripheral blood 

mononuclear cells. Moreover, we identify an important role of Nedd4 in the degradation of Notch 

receptor and limiting Notch signaling in B1 cells and CLL cells. As an E3 ubiquitin ligase, Nedd4 

may have several other targets as well that may affect the pathogenesis of CLL. These findings 

together warrant further investigation to study the role of Nedd4 in CLL development. It will be 

of considerable interest to study the impact of manipulating the levels of Nedd4 expression on 

CLL development and progression in IRF4-/-Vh11 mice. 

6.2.2 IRF4 as an attenuator of Notch signaling in other B cell malignancies 

Mutational and constitutive activation of Notch signaling occurs frequently in several other B cell 

malignancies including Mantle Cell Lymphoma, Splenic Marginal Zone Lymphoma and Diffused 

Large B Cell Lymphoma (10, 22-24). Therefore, it is paramount to understand the molecular 

mechanism that leads to aberrant Notch signaling in normal and malignant B cells. Our studies 

here describe an important role of IRF4 in attenuation of Notch signaling. It is reasonable to 

speculate that the IRF4 mediated attenuation of Notch signaling may play an important role in 

the molecular pathogenesis of other B cell malignancies as well. Together, our studies here 
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provide valuable insights into the molecular pathogenesis of CLL and warrant further studies to 

test and validate this molecular network in other B cell malignancies with deregulated Notch 

signaling and aberrant IRF4 expression. 
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IRF4 and IRF8: governing the virtues of B lymphocytes
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Abstract Interferon regulatory factor 4 (IRF4) and IRF8 are critical regulators of immune system development and
function. In B lymphocytes, IRF4 and IRF8 have been shown to control important events during their development and
maturation including pre-B cell differentiation, induction of B cell tolerance pathways, marginal zone B cell
development, germinal center reaction and plasma cell differentiation. Mechanistically, IRF4 and IRF8 are found to
function redundantly to control certain stages of B cell development, but in other stages, they function nonredundantly
to play distinct roles in B cell biology. In line with their essential roles in B cell development, deregulated expressions of
IRF4 and IRF8 have been associated to the pathogenesis of several B cell malignancies and diseases. Recent studies have
elucidated diverse transcriptional networks regulated by IRF4 and IRF8 at distinct B cell developmental stages and
related malignancies. In this review we will discuss the recent advances for the roles of IRF4 and IRF8 during B cell
development and associated diseases.

Keywords IRF4, IRF8, B lymphocytes, transcriptional regulation, leukemia and lymphoma, B cell development

Introduction

Interferon regulatory factor 4 (IRF4) and interferon regulatory
factor 8 (IRF8) are highly homologous proteins that belong to
the interferon regulatory factor (IRF) superfamily of tran-
scription factors. Physiologically, IRFs are important media-
tors of anti-viral responses (Tamura et al., 2008). In addition
to their role in antiviral responses, IRF4 and IRF8 also act as
critical regulators of immune system development and
function. This suggests that IRF4 and IRF8 have presumably
arisen as a result of divergent evolution from a common
ancestor belonging to the IRF superfamily. IRF4 and IRF8
were initially thought to be exclusively expressed in cells of
immune lineages. However, recent reports have also
identified IRF4 and/or IRF8 expression in melanocytes,
adipocytes, smooth muscles, cardiac muscles and neurons
where they perform diverse functions (Eguchi et al., 2011;
Jiang et al., 2013; Praetorius et al., 2013; Guo et al., 2014;
Jiang et al., 2014a; Xiang et al., 2014; Yoshida et al., 2014;
Zhang et al., 2014).

IRF4 is induced in response to pathways activating NF-κB

signaling while IRF8 is induced by type II interferon (Tamura
and Ozato, 2002; Saito et al., 2007). Structurally, IRF4 and
IRF8 are similar to other IRFs in having a tryptophan pentad
containing DNA binding domain (DBD) and an interferon
association domain (IAD) through which they can homo- or
hetero-dimerize with other members of the family. To perform
their transcriptional regulatory functions, IRF4 and IRF8 can
form homo- or hetero-dimers with each other and with other
members of the family. These homo- or hetero-dimers bind
DNA with low affinity at canonical interferon-stimulated
response elements (ISRE) represented as GAAANNGAAA.
Besides their interaction with other IRFs, IRF4 and IRF8 can
also form heterodimers with members of Ets family or AP-1
family of transcription factors (Escalante et al., 2002;
Glasmacher et al., 2012; Li et al., 2012; Tussiwand et al.,
2012). The heterodimers formed between IRF4/8 and Ets
members, PU.1 and Spi-B bind DNA at Ets interferon
composite elements (EICE) represented as GGAANN(N)
GAAA. The EICE motifs were initially identified in
immunoglobulin (Ig) light chain 3′ κ enhancer and λ enhancer
regions mediating Ig light chain locus activation (Brass et al.,
1996; Brass et al., 1999). The IRF4/8-Ets hetero-dimers bind
to DNA at EICE motifs with much greater affinity than ISRE
motifs (Ochiai et al., 2013). More recently, IRF4 and IRF8
have been identified to co-bind DNA with AP-1 family
members on AP-1-IRF composite elements (AICE) repre-
sented as GAAATGAGTCA or GAAANNNNTGAGTCA in
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a variety of immune cell subsets (Glasmacher et al., 2012; Li
et al., 2012; Tussiwand et al., 2012). The formation of
complexes between IRF4/IRF8 with either Ets or Ap-1
transcription factors depends on the cell type and cellular
context. For example, the Ap-1-IRF complexes are predomi-
nantly known to regulate cellular functions in T cells and
dendritic cells while Ets/IRF complexes are critical for B cell
development and functions. The cooperative binding of IRF4
and IRF8 to DNA with members of IRF, Ets and AP-1
families represents evolutionary conserved mechanisms to
integrate diverse signaling inputs during immune system
development and function (Glasmacher et al., 2012). More-
over, IRF4 and IRF8 have been shown to interact with
transcription factors NFATs and E2A to regulate transcription
in different cell types (Rengarajan et al., 2002; Hodawadekar
et al., 2012).

IRF4 and IRF8 are important regulators for generation,
differentiation and functions of several immune cell subsets.
IRF4 play key roles in generation and functions of T follicular
helper cells (Tfh), Th1 cells, Th2 cells, Th9 cells, T regulatory
cells, CD8+ T cells, Th17 cells, macrophages and dendritic
cells (Mittrücker et al., 1997; Lohoff et al., 2002; Brüstle et
al., 2007; Kwon et al., 2009; Zheng et al., 2009; Satoh et al.,
2010; Staudt et al., 2010; Cretney et al., 2011; Bollig et al.,
2012; Tussiwand et al., 2012; Gao et al., 2013; Man et al.,
2013; Persson et al., 2013; Schlitzer et al., 2013; Vander Lugt
et al., 2014). Similarly, IRF8 is important for Th1, Th2, Th17,
macrophage and dendritic cell development and function
(Giese et al., 1997; Wu et al., 1999; Ouyang et al., 2011;
Becker et al., 2012; Xu et al., 2012; Schönheit et al., 2013). In
B cells specifically, IRF4 and IRF8 are expressed at multiple
stages to control important decisions affecting their differ-
entiation, function and transformation (Lu, 2008) (Fig. 1). At
early stages of B cell development IRF4 functions redun-
dantly with IRF8 to coordinate pre-B cell differentiation (Lu
et al., 2003) (Fig. 1). On the other hand, at later stages of B
cell development, IRF4 and IRF8 have been shown to
function non-redundantly to regulate follicular versus mar-
ginal zone cell fate decisions, germinal center reaction (GC),
class switch recombination (CSR) and plasma cell differ-
entiation (Klein et al., 2006; Sciammas et al., 2006; Lu, 2008;
Feng et al., 2011; Ochiai et al., 2013; Simonetti et al., 2013)
(Fig. 1). In this review we will focus on describing the recent
advances on the roles of IRF4 and IRF8 in B cell development
and associated diseases.

IRF4 and IRF8 in early B cell development

Early pro-B cells arise from multi-potent hematopoietic
progenitors in bone marrow upon coordinated expression of
transcription factor E2A, Ebf1 and the B cell commitment
gene Pax5 (Busslinger, 2004). An early study investigating
the role of IRF8 in HSCs identified defects in early

commitment to B lineage in IRF8 deficient HSCs (Wang et
al., 2008). IRF8 deficiency leads to a skewed development of
HSCs toward myeloid lineages at the expense of B cells
(Wang et al., 2008). Furthermore, IRF8 was shown to directly
bind and repress PU.1 which is known to be critical for
myeloid development (Wang et al., 2008). Additionally, to
reinstate B cell fate decisions IRF8 was shown to directly
activate Ebf1 transcription (Wang et al., 2008). Nevertheless,
HSCs can still differentiate into B lineage even in the absence
of IRF8, indicating that IRF8 only modulates but is not
essential for these cell fate decisions. Pro-B cells undergo
immunoglobulin (Ig) heavy chain rearrangements as a first
step to generate B cell receptors (BCRs). These events are
mediated by several transcription factors including Pax5.
IRF4 and IRF8 were initially identified as direct targets of
Pax5 in early B cell development at the pro-B cell stage
(Pridans et al., 2008). Intriguingly, IRF4 and IRF8 along with
PU.1 have been recently identified to bind a putative enhancer
region in Pax5 locus to regulate its expression (Decker et al.,
2009).

At the pre-B cell stage, developing B cells undergo light
chain rearrangements to generate functional B cell receptors
(BCR) as they transition to the immature B cell stage. Early
studies identified IRF4 and IRF8 as transcription factors that
bind the 3′ κ enhancer and λ enhancer to regulate the
rearrangement and expression of immunoglobulin light chain
at the pre-B cell stage (Brass et al., 1996; Brass et al., 1999;
Ma et al., 2006). IRF4 and IRF8 are required for differentia-
tion of pre B cells to immature B cells as B cell development
is blocked at the pre-B cell stage in IRF4 and IRF8 (IRF4,8–/–)
double deficient mice. Furthermore, IRF4,8–/– pre-B cells
were shown to have a hyper-proliferative phenotype. Further
analysis showed that the defects in the IRF4,8–/– pre-B cells
can be rescued by reconstitution of either IRF4 or IRF8 (Ma

Figure 1 Regulation of B cell development by IRF4 and IRF8.
The stages of B cell development regulated jointly by IRF4 and
IRF8 are indicated by black arrows. Other stages of B cell
development regulated exclusively by IRF4 or IRF8 are indicated
by green or red arrows, respectively.
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et al., 2006). These results indicate that IRF4 and IRF8
function redundantly to orchestrate pre-B cell development.

Pre-B cell development can be further divided into two
distinct stages; the cycling large pre-B cells that transition to
generate resting small pre-B cells. In cycling pre-B cells a
primitive BCR called the pre-B cell receptor (pre-BCR) is
assembled, that functions to mediate initial expansion and
eventual differentiation of large pre-B cells to small pre-B
cells (Clark et al., 2014). Interestingly, IRF4 has been shown
to be induced downstream to pre-BCR signaling (Thompson
et al., 2007). Large pre-B cells also depend on IL-7 receptor
signaling for their proliferation in vivo. Moreover, IL-7 has
also been shown to impede pre-B cell differentiation by
directly inhibiting light chain rearrangements (Mandal et al.,
2011). We and others have shown that IRF4 and IRF8 limits
pre-B cell expansion by negatively regulating both pre-B cell
receptor and IL-7 receptor signaling (Johnson et al., 2008; Ma
et al., 2008).

Expression of IRF4 and IRF8 at the pre-B cell stage occurs
downstream to pre-B cell receptor signaling (Fig. 1). Upon
induction, IRF4 and IRF8 further induces the expression of
transcription factors ikaros and aiolos that functions as
negative regulators of pre-B cell receptor signaling and cell
cycle progression (Ma et al., 2008) (Fig. 2). Ikaros and aiolos
repress the expression of surrogate light chain (SLC), which
is an essential component of the pre-B cell receptor complex
(Ma et al., 2008). We further showed that ikaros and aiolos
inhibit large pre-B cell expansion by directly binding and
repressing c-myc (Fig. 2) (Ma et al., 2010). Notably, ikaros
deficient pre-B cells fail to undergo growth arrest even upon
IL-7 withdrawal (Heizmann et al., 2013). These results
indicate a direct role of ikaros in inhibiting the pre-B cell
expansion. Intriguingly, two recent reports have identified a
novel mechanism for inhibition of cell cycle by ikaros in pre-
B cells (Joshi et al., 2014; Schwickert et al., 2014). Ikaros
directly suppresses the expression of several integrins (Fig. 2)
including Itga1, Itga5 and Itgb1 as well as components

mediating focal adhesions like Ptk2, Dock1 and Vcl.
Therefore, increased expressionof integrin and focal adhesion
components in ikaros deficient pre-B cells allow them to
strongly adhere to stromal cells. The adhesion of ikaros
deficient pre-B cells to stromal cells in turn provides them
with essential growth factors including IL-7 and SCF,
promoting their survival and proliferation. These results
suggest an indirect role for ikaros in limiting pre-B cell
expansion via inhibiting their adhesion to the stromal cells. In
summary, Ikaros employs multiple mechanisms to promote
pre-B cell differentiation and these mechanisms may function
concurrently and may not be mutually exclusive.

IRF4 has also been shown to limit the pre-B cell expansion
by attenuating IL-7 receptor signaling (Johnson et al., 2008).
IRF4 was shown to regulate the expression of chemokine
receptor CXCR4 in pre-B cells (Fig. 2) (Johnson et al., 2008).
CXCR4 induction by IRF4 drives pre-B cells toward
CXCL12 expressing stromal cells and away from the IL-7
secreting stromal cells (Tokoyoda et al., 2004). Importantly,
IL-7 signaling is known to inhibit pre-B cell differentiation by
directly repressing light chain rearrangements (Mandal et al.,
2011). Therefore, the chemotaxis of pre-B cells to niches
bearing low levels of IL-7 would be important to limit their
expansion and to initiate productive light chain rearrange-
ments (Johnson et al., 2008; Mandal et al., 2011) (Fig. 2).
These results support an indirect role for IRF4 in limiting the
pre-B cell expansion and promoting their differentiation.

IRF4 and IRF8 in regulation of B cell
tolerance

Upon assembly of a functional B cell receptor (BCR),
immature B cells exit the bone marrow and enter into the
peripheral lymphoid organs. However, prior to their migra-
tion to the peripheral lymphoid organs, the BCRs of the newly
generated B cells are tested for their self-reactivity. The entry
of the self-reactive B cells into the periphery is abolished by

Figure 2 IRF4 and IRF8 utilize multiple mechanisms to control pre-B cell Development. Pre-BCR signaling leads to expression of
IRF4 and IRF8 that directly promotes light chain rearrangement. IRF4 and IRF8 also induce Ikaros and aiolos to inhibit pre-B cell
proliferation. Ikaros directly suppresses expression of c-myc, surrogate light chain and integrins. Moreover, IRF4 regulates the expression
of CXCR4, which leads to migration of pre-B cells toward CXCL12 expressing stromal cells and away from IL-7 expressing stromal cells.
This leads to attenuation of IL-7 signaling.
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Central and Peripheral tolerance mechanisms that function at
the immature and transitional B cell stages. The central
tolerance mechanism in bone marrow is primarily constituted
of Receptor Editing, wherein the self-reactive BCRs on newly
developed B cells are edited by secondary Ig rearrangements.
Self-reactive B cells that fail to surmount self-reactivity
following receptor editing undergoes eventual deletion, as a
default pathway. The peripheral tolerance mechanisms may
render a self-reactive B cell unresponsive to antigen
stimulation by a process called anergy. These tolerance
mechanisms help curtail self-reactive B cells which may
otherwise lead to development of systemic autoimmune
diseases.

We have shown that IRF4 is involved in central tolerance
mechanisms by promoting receptor editing (Pathak et al.,
2008). Using a BCR transgenic mice and a membrane bound
antigen we demonstrated that IRF4 is critical for secondary
rearrangements at the immature B cell stage (Pathak et al.,
2008). We showed that secondary rearrangement is impaired
in IRF4 deficient mice. Moreover, we found IRF4 to be more
critical for λ rearrangements than κ rearrangements. Con-
sistent with our findings, a recent study also showed that
elevated levels of IRF4 in pre-B cells leads to more efficient
activation and rearrangements at λ locus (Bevington and
Boyes, 2013). Remarkably, premature induction of IRF4
using the surrogate light chain promoter in pro-B cells was
capable of triggering the entire cascade of events required for
light chain rearrangements (Bevington and Boyes, 2013).
Another recent report described activated NF-κB signaling as
a feature of cells engaged in receptor editing (Cadera et al.,
2009). Importantly, the cells undergoing receptor editing in
this study also expressed high levels of IRF4 (Cadera et al.,
2009). These studies have identified a critical role for IRF4 in
central tolerance mechanisms as a regulator of receptor
editing.

Unlike during pre-B cell development, IRF8 cannot
compensate for loss of IRF4 in receptor editing (Pathak et
al., 2008). However, we have recently identified a novel role
for IRF8 in regulating peripheral tolerance by maintaining the
anergic state of self-reactive B cells. Using a double
transgenic mouse model expressing a transgenic BCR and
the secreted cognate auto-antigen, we showed that B cell
anergy is breached in IRF8 deficient mice (Pathak et al.,
2013). We further showed that both germline and B cell
specific IRF8 deficient mice produce anti-dsDNA antibodies
(Pathak et al., 2013). It is known that anergic B cells fail to
undergo complete maturation and are stalled at the transi-
tional stage. Intriguingly, we showed that IRF8 negatively
regulates the survival of these anergic B cells at transitional B
cell stage (Pathak et al., 2013). These studies identified IRF8
as a novel regulator of B cell anergy. However, the underlying
molecular events controlled by IRF8 in maintenance of B cell
anergy remain unclear. Collectively, these studies have
demonstrated that IRF4 and IRF8 are critical for regulating
different arms of B cell tolerance induction pathways.

IRF4 and IRF8 in Follicular, Marginal Zone
and B1 B cell development

Mature B cells in mouse can be subdivided into two main
subsets: the major B2 cells and the minor B1 cells. B2 cells in
murine spleen can either differentiate to a predominant
Follicular B cell population (FO B) or can give rise to a minor
Marginal Zone B cell population (MZ B). FO B cells are
primarily localized to B cell follicles situated in the splenic
white pulp and are responsible for T cell dependent humoral
responses. MZ B cells on the other hand, are located at the
border of splenic white pulp and are required for rapid T cell
independent responses against blood borne pathogens and
particulate antigens. These cell fate decisions are primarily
influenced by BCR specificity, BCR signaling strength and
Notch signaling (Pillai and Cariappa, 2009). Both IRF4 and
IRF8 have been identified as transcriptional regulators known
to affect these alternative cell fate decisions in mature B cells.

In a recently published report, IRF4 was found to restrict
the MZ B cell pool in a B cell intrinsic manner. IRF4
deficiency in mature B cells lead to retention of mature B cells
preferentially to the splenic MZ. These defects were
mechanistically attributed to the elevated levels of Notch2
protein in IRF4 deficient mature B cells (Simonetti et al.,
2013). Importantly, activated notch signaling is one of the
pathways obligatory required for generation and maintenance
of MZ B cells (Pillai and Cariappa, 2009). Furthermore,
inhibition of Notch2 by an inhibitory antibody reverses the
MZ B cell defects in IRF4–/– mice. Interestingly, regulation of
Notch proteins by IRF4 occurs at a post-transcriptional level
and is linked to the reduced levels of an E3 ubiquitin ligase
Fbxw7 (Simonetti et al., 2013). Additionally, IRF4 deficiency
also lead to altered expression of integrins and chemokine
receptors known to mediate migration and retention of mature
B cells to specific anatomical sites (Simonetti et al., 2013). It
is noteworthy that the expansion of MZ B cells in IRF4–/–

mice can only be detected by immunohistochemistry staining
but not by conventional flow cytometry analysis (Simonetti et
al., 2013). This suggests that the expanded B cell population
in the marginal zone of IRF4–/– mice is not comprised of bona
fide MZ B cells and may simply represent FO B cells that are
aberrantly mislocalized.

IRF8 was also identified as a regulator of FO or MZ cell
fate decisions (Tailor et al., 2008; Wang et al., 2008;Feng et
al., 2011). Both germline and B cell specific deficiency of
IRF8 cause an expansion of MZ B cells with a concomitant
decrease in the frequency of FO B cells (Tailor et al., 2008;
Feng et al., 2011). Interestingly, a BXH2 mouse harboring a
point mutation in the interferon association domain (IAD) of
IRF8 (R294C) phenocopies the IRF8–/– mice in their MZ
expansion features (Tailor et al., 2008). Although, these
studies have identified a role for IRF8 in MZ B cell
development, the molecular mechanism by which IRF8
restricts MZ B cell pool is still unclear.

B1 cells represent a minor B cell subset that primarily
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occupies peritoneal and pleural cavities in rodents. Addition-
ally, a small fraction of B1 cell population is also present in
murine spleen. B1 cells recognize natural antigens and
spontaneously differentiate to plasma cells without requiring
T cell help. B1 cells are also unique in displaying properties to
self-renew themselves (Hardy, 2006). On the basis of CD5
expression, B1 cells are divided into the CD5 (+) subset
called B1a cells and the CD5 ( – ) B1b cells. IRF8 was shown
to regulate the B1 cell numbers in a B cell intrinsic manner.
B1b cells particularly, undergo an expansion in peritoneal
cavity in the absence of IRF8 (Feng et al., 2011). Whether
IRF8 regulates B1 cell numbers in peritoneal cavity by
altering their self-renewal or differentiation still remains
unknown. On the other hand, we have recently shown that
New Zealand Black (NZB) mice expressing low levels of
IRF4 (IRF4+/– ) exhibit defects in B1 cells. NZB IRF4+/– B1
cells exhibit enhanced proliferation and survival while having
decreased ability to differentiate to plasma cells (Ma et al.,
2013). All of these defects cumulatively contribute to an
accumulation of B1a cells in peritoneal cavities of these mice.
Further studies are needed to identify the molecular events
regulated by IRF4 and IRF8 in limiting the B1 cell pool.

Germinal center reaction, class switch
recombination and plasma cell
differentiation

Germinal centers represent specialized sites in secondary
lymphoid organs that are induced during T cell dependent
immune responses. Anatomically, germinal centers are
constituted of a peripheral dark zone and an inner light
zone. Centroblasts present in dark zone of germinal centers
(GCs) represent the early arriving B cells that eventually give
rise to the more mature centrocytes in the light zone. B cells in
GCs undergo somatic hypermutation (SHM) to generate high
affinity B cell receptors. B cells expressing high affinity
BCRs bind to their cognate antigens present on antigen
presenting cells (APCs) and to co-stimulatory molecules on T
cells to differentiate to antibody secreting plasma cells and
memory B cells. IRF4 is well defined as a transcription factor
obligatory required for terminal differentiation of B cells to
plasma cells (Klein et al., 2006; Sciammas et al., 2006). In
GCs, IRF4 and IRF8 follow a reciprocal expression pattern
(Cattoretti et al., 2006). IRF8 is shown to be highly expressed
in centroblasts of GCs that are negative for IRF4 expression
(Fig. 3). On the other hand, the more mature centrocytes
differentiating toward plasma cells are positive for IRF4
expression (Cattoretti et al., 2006). These findings initially
supported the notion that IRF4 may be dispensable for early
stages of GC reaction while IRF8 may be obligatory required.
In line with the notion, an early report identified severely
impaired GC formation in mice globally lacking IRF8 (Lee et
al., 2006). However, a recent report from the same group
identified normal GC formation in mice lacking IRF8
specifically in B cells (Feng et al., 2011). These latest

findings indicate that IRF8 deficiency specifically in B cells is
dispensable for GC reaction.

Contrary to IRF8, studies have shown that IRF4 is
indispensable for early stages of GC reaction (Ochiai et al.,
2013; Willis et al., 2014). Mice lacking IRF4 specifically in B
cells fail to form GCs due to insufficient induction of Bcl6,
Obf1 and AID (Fig. 3) (Ochiai et al., 2013). Bcl6 is a master
regulator for GC reaction while, AID is critical for somatic
hypermutation and class switch recombination (CSR) in GC
B cells. Interestingly, using an inducible IRF4 transgene it
was shown that a short pulse of IRF4 (for 2 days) was both
required and sufficient for GC induction in IRF4–/– mice
(Ochiai et al., 2013). Furthermore, a recent report also
identified a B cell intrinsic role for IRF4 in GC formation in
response to a wide variety of antigens (Willis et al., 2014). T
follicular helper (Tfh) cells represent a T cell subset that is
critical for GC formation (Ramiscal and Vinuesa, 2013).
Interestingly, IRF4 is recently described to be important for
Tfh cell differentiation as well (Kwon et al., 2009; Bollig et
al., 2012). IRF4 is shown to be critical for induction of Bcl6
that is required for generation of Tfh cells (Bollig et al., 2012).
These results suggest that regulation of GC reaction may
require both B cell intrinsic and extrinsic activities of IRF4.

Studies have shown that IRF4 levels undergo dynamic
changes during germinal center reaction (Cattoretti et al.,
2006; Ochiai et al., 2013). To rationalize these dynamic
changes, Ochiai et al. have proposed a “kinetic control”
model to explain how distinct stages of GC reaction are
controlled by IRF4 expression (Sciammas et al., 2011; Ochiai
et al., 2013). According to the “kinetic control” model,
differential levels of IRF4 allow the regulation of mutually
antagonistic GC and plasma cell programs in GC B cells
(Ochiai et al., 2013). IRF4 at low levels co-operate with Ets
and AP-1 family members to co-bind EICE and AICE motifs
respectively to initiate GC program (Fig. 3). At later stages
high levels of IRF4 cause a shift in binding to low affinity
ISRE motifs to execute plasma cell differentiation program
(Fig. 3). Several lines of evidences support the “kinetic
control” model. First, in plasma cells containing low levels of
Ets family members, IRF4 was shown to regulate Blimp-1
expression by binding to its locus at sites with ISRE motifs
(Sciammas et al., 2006; Ochiai et al., 2013). Secondly, in
plasma cells expressing high levels of IRF4, AID expression
is repressed by IRF4; although IRF4 was not shown to bind
AID locus (Sciammas et al., 2006). Thirdly, in GC B cells and
Diffuse large B cell lymphoma cell (DLBCL) lines, IRF4 was
shown to suppress Bcl6 expression by primarily binding to
regions rich in ISRE motifs (Saito et al., 2007). Presumably,
at lower levels in early GC B cells; IRF4 co-operate with Ets
and Ap-1 family members to induce Bcl6 and AID whereas,
at later stages IRF4 predominantly binds to ISRE motifs to
shut down their expression. This would also explain the
seemingly contradictory findings on role of IRF4 on Bcl6
expression in B cells (Saito et al., 2007; Ochiai et al., 2013).

IRF4 is induced in B cells upon BCR engagement to their
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cognate antigens and binding to co-stimulatory receptor on T
cells. Presumably, the BCR signaling strength will directly
determine the expression levels of IRF4. Therefore, naïve B
cells expressing high avidity BCRs capable of inducing high
levels of IRF4 can suppress conventional GC reaction and
spontaneously differentiate to plasma cells. On the other
hand, in naïve B cells expressing low avidity BCRs, a GC
program is initiated due to low levels of IRF4. Low levels of
IRF4 in these cells cooperate with Ets and Ap-1 family
members to directly induce Bcl6 and AID expression and
give rise to GC founder cells (Fig. 3). Upon ingression to the
GCs, the GC founder cells in Dark Zone (centroblasts)
undergo SHM events to generate high avidity BCRs. The
downstream signals from the high avidity BCRs and co-
stimulatory receptors on T cells can now sufficiently induce
IRF4 in centrocytes to then execute a plasma cell differentia-
tion program. To initiate a plasma cell differentiation
program, high levels of IRF4 induces the expression of
Blimp-1 that further suppresses Bcl6 expression to terminate
GC program (Fig. 3). Thus, IRF4 levels in GC cells represent
a critical checkpoint that determines the exit from a GC
program and initiation of a plasma cell differentiation
program. Therefore, IRF4 plays deterministic roles in
initiating GC program, executing the exit from GCs and
eventual plasma cell differentiation. The plausible flow of
events summarized here are similar to the model proposed by
Sciammas et al. in which IRF4 functions as a determinant of
BCR signaling strength to direct these B cell fate decisions
(Sciammas et al., 2011). It is worth noting that although initial
studies identified IRF4 expression in centrocytes, subsequent
studies have notably failed to detect IRF4 expression in any B
cell population undergoing GC reaction (Willis et al., 2014).

Hence, it appears that IRF4 is expressed at high levels in B
cells only upon exit from GCs. However, it is also possible
that IRF4 is expressed only transiently or at a low level in
centrocytes making it difficult to detect.

B cell malignancies and diseases

Consistent with critical involvement of IRF4 and IRF8 in B
cell development, deregulated expression of IRF4 and IRF8 is
associated with pathogenesis of several B cell malignancies
and diseases. IRF4 is known to play distinct roles in B cell
malignancies. In early B cell derived acute lymphoblastic
leukemia (B-ALL) and mature B cell derived Chronic
lymphocytic leukemia (CLL), IRF4 functions as a tumor
suppressor (Fig. 4) (Pathak et al., 2011; Shukla et al., 2013).
However, in multiple myeloma (MM) originated from plasma
cells, it acts as a survival factor (Fig. 4) (Shaffer et al., 2008).
The role of IRF8 in B cell related anomalies is not well
studied. IRF8 is implicated as a tumor suppressor in myeloid
lineage derived neoplasms while, in B cells it has been
recently linked to the pathogenesis of Follicular lymphoma
(FL) and CLL (Fig. 4) (Konieczna et al., 2008; Slager et al.,
2011; Bouamar et al., 2013; Li et al., 2014).

B cell acute lymphoblastic leukemia
(B-ALL)

B-ALL is a precursor B cell derived malignancy, predomi-
nantly affecting children and having an aggressive clinical
course. Although, clinical studies have not demonstrated a
clear correlation between IRF4 and B-ALL, the role of IRF4

Figure 3 Role of IRF4 in germinal center (GC) reaction. At low levels, IRF4 (IRF4low) binds cooperatively with Ets and AP-1 family
members at EICE/AICE motifs and is critical for induction of Bcl6, Obf1 and AID to initiate GC reaction. In centrocytes located in light
zone, high levels of IRF4 (IRF4hi) is induced by antigen binding to high avidity BCRs. High levels of IRF4 cause a shift in binding of
IRF4 from EICE/AICE motifs to low affinity ISRE motifs. IRF4 binding to ISRE induces Blimp-1 and represses Bcl6 to end GC reaction
and to initiate plasma cell differentiation program.
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has been well-studied in murine models of the disease.
Consistent with its role in pre-B cell differentiation, IRF4 acts
as tumor suppressor in murine models of B-ALL. Using an
Eµ-myc model of ALL, we have recently highlighted the
importance of IRF4 in the development of ALL. IRF4+/– Eµ-
myc mice develop ALL with an extremely short disease
latency (~8 weeks) compared to the IRF4+/+ Eµ-myc mice
(~20 weeks) (Pathak et al., 2011). Similarly, IRF4 was shown
to suppress the proliferation BCR-ABL1 derived mouse B-
ALL clones (Acquaviva et al., 2008). Furthermore, IRF4 but
not IRF8 was induced upon treatment of B-ALL cells with
imatinib that inhibits the oncogenic fusion protein BCR-
ABL1 (Acquaviva et al., 2008). Therefore, IRF4 functions in
impeding the development and progression of B-ALL in
mouse models of the disease. However, the exact molecular
mechanism for tumor suppressive role of IRF4 in B-ALL
needs further investigation.

Diffuse large B cell lymphoma (DLBCL)

DLBCL represents a diverse group of B cell malignancy that
can be divided into several subgroups including germinal
center B cell type DLBCL (GCB type) and activated B cell
type DLBCL (ABC type) (Alizadeh et al., 2000). IRF4
expression is high in ABC type DLBCL, while GCB type
DLBCL is negative for IRF4 expression (Cattoretti et al.,
2006). However, the functional significance of IRF4 expres-
sion in ABC type DLBCL is ambiguous. Initial studies
identified IRF4 as a suppressor of Bcl6 in GC B cells as well
as DLBCL cell lines, where Bcl6 functions as an oncogene
(Saito et al., 2007). Strikingly, DLBCL cell lines were shown
to harbor mutations in the IRF4 binding sites, generating Bcl6
alleles that do not respond to IRF4 mediated suppression

(Saito et al., 2007). Consequently, these mutations allow high
expression of Bcl6 in the presence of IRF4. Furthermore, the
plasma cell differentiation regulator Blimp-1 is inactivated by
multiple mechanisms in ABC type DLBCL (Mandelbaum et
al., 2010). These findings indicate that the genetic alterations
carried by ABC type DLBCL leads to an abortive plasma cell
differentiation program.

IRF4 and Spi-B have been identified as survival factors for
ABC type DLBCL. In these studies IRF4 functions with Ets
family member Spi-B to repress type I interferon responses in
DLBCL cell lines (Yang et al., 2012). IRF4 and Spi-B co-bind
to EICE motifs to suppress IRF7 causing subsequent
inhibition of interferon β production and interferon response
mediated cell death (Yang et al., 2012). Furthermore, the drug
lenalidomide was shown to inhibit the survival of ABC
DLBCL cells by downregulating Spi-B and IRF4 levels. It is
noteworthy that Spi-B is amplified and overexpressed in
~25% of DLBCL cases (primarily ABC type) (Lenz et al.,
2007; Lenz et al., 2008). Moreover, the ABC DLBCL cell
lines are shown to be sensitive to knock down of Spi-B (Lenz
et al., 2008). Furthermore, IRF4 is shown to execute normal
plasma cell differentiation without cooperative binding with
Spi-B (Ochiai et al., 2013). Therefore, Spi-B overexpression
due to genetic alterations may derail the transcriptional
network critical for differentiation of activated B cells. Since
IRF4 interacts with Spi-B, it is reasonable to speculate that
Spi-B overexpression may alter the DNA binding landscape
of IRF4 and obstruct its normal functions in plasma cell
differentiation. Hence, the pro-survival effects of IRF4
observed in these studies may result from modulation of
IRF4 DNA binding activity by Spi-B. IgH-IRF4 transloca-
tions are recently identified in ~4.5% of pediatric DLBCL
cases further indicating an active role of IRF4 in pathogenesis
of DLBCL (Salaverria et al., 2011). Surprisingly, the cases
with IRF4 translocations have favorable outcomes. Never-
theless, further mechanistic insights are needed to fully
delineate the role of IRF4 in the etiology of different
subgroups of DLBCL.

Consistent with their GC B cell origin, IRF8 is expressed in
GCB type DLBCL. A recent report identified IRF8 mutations
in ~6% of follicular lymphoma cases. The mutations
identified predominantly mapped to the c-terminus region
of IRF8 with still unidentified functional consequences (Li et
al., 2014). Similar to IRF4, IRF8 is also identified as a fusion
partner with IgH locus in small subgroup of DLBCL patients
(Bouamar et al., 2013). However, the precise role of IRF8 in
these malignancies is still ambiguous. The identification of
genetic alterations targeting IRF8 in DLBCL warrant further
studies in order to elucidate its role in pathogenesis of
DLBCL.

Chronic lymphocytic leukemia (CLL)

CLL is a mature B cell derived malignancy marked by

Figure 4 Role of IRF4 and IRF8 in B cell Malignancies. Green
arrows indicate malignancies associated with deregulated IRF4
expression. Red arrows indicate malignancies associated with
deregulated expression of IRF8. Black arrows indicate malig-
nancies associated with deregulated expression of both IRF4 and
IRF8, however; their roles in these malignancies are not
essentially redundant.
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progressive accumulation of CD5+ CLL cells. An initial
study identified higher IRF4 expression to correlate with
better prognosis in CLL patients (Chang et al., 2002). More
recently a genome wide association study (GWAS) identified
single nucleotide polymorphisms (SNPs) in the 3′ untrans-
lated region (UTR) of IRF4 locus in sporadic and familial
CLL cases (Di Bernardo et al., 2008). The SNPs in the IRF4
locus are associated with strongest susceptibility for devel-
oping CLL. The risk alleles harboring the SNPs are linked to
downregulation of IRF4 and poor patient outcomes (Di
Bernardo et al., 2008; Allan et al., 2010; Crowther-Swanepoel
et al., 2010). Another recent study identified mutations in the
DNA binding domain of IRF4 in a small subset (~1.5%) of
CLL patients (Havelange et al., 2011). However, the
functional consequences of these mutations in B cells remain
undetermined. Recently, using two distinct genetic models we
have shown that low levels of IRF4 promote CLL develop-
ment. New Zealand Black (NZB) mice are natural occurring,
late onset mouse model of CLL. Interestingly, low levels of
IRF4 dramatically accelerated CLL development in the NZB
IRF4+/– mice (Ma et al., 2013). Vh11 knock-in (Vh11 KI)
mice contains a pre-arranged Vh11 family Ig heavy chain
inserted into the heavy chain locus and Vh11 KI mice have an
expanded B1 cell population (Wen et al., 2005). Since CLL
cells are derived from B1 cells in rodents; we also used Vh11
KI mice to study the effect of IRF4 on CLL development.
Strikingly, IRF4 deficiency mice expressing Vh11 transgene
(IRF4–/– Vh11) developed spontaneous CLL with 100%
penetrance (Shukla et al., 2013). Importantly, neither the
IRF4 deficient nor the Vh11 KI mice develops CLL
independently. These studies have established a causal
relationship between low levels of IRF4 and CLL develop-
ment. Further studies are needed to elucidate the molecular
mechanism through which IRF4 controls CLL development.

A recent GWAS study identified SNPs in the IRF8 locus to
be associated with the risk of developing CLL (Slager et al.,
2011). However, unlike IRF4 the SNPs in the IRF8 locus are
linked to an increased expression of IRF8 among CLL
patients. Future studies are needed to fully decipher the
functions of IRF8 in the etiology of CLL.

Hodgkin’s lymphoma (HL)

HL is a B cell malignancy presumably derived from GC B
cells. Classical HL patients accumulate Hodgkin Reed-
Sternberg (HRS) tumor cells that have been shown to express
IRF4, whereas the expression of IRF8 has not yet been
reported (Tsuboi et al., 2000; Aldinucci et al., 2010). Contrary
to the role of IRF4 in CLL, HL cells require IRF4 as a survival
factor and HL cell lines are sensitive to IRF4 knockdown
(Aldinucci et al., 2011). Furthermore, in HRS cells IRF4 is
upregulated in response to survival signals while, IRF4 is
repressed upon activation of apoptotic pathways (Aldinucci et
al., 2010). A recent study categorized HL cases into two

molecular subgroups based on their strength of Myc, Notch1
and IRF4 activation (Tiacci et al., 2012). Interestingly, the HL
cases with myc activation signature were also enriched for
upregulation of Notch1 and IRF4 target genes. These studies
indicate a myc, Notch1 and IRF4 target genes to be active in a
subgroup of HL cases potentially contributing to HL
pathobiology (Tiacci et al., 2012). Moreover, according to
these studies IRF4 mediated survival of HRS cells may be
important for at least a subset of HL cases. Surprisingly, a
recent study identified SNPs associated with the risk for
developing CLL to be also associated with HL susceptibility
(Broderick et al., 2010). However, the effect of these SNPs on
IRF4 expression in HL cells has not yet been evaluated.
Nevertheless these studies collectively point to a pro-survival
role for IRF4 in IRF4 HL however; further studies are
required to elucidate the mechanistic details for the functions
of IRF4 in the pathobiology of HL.

Multiple myeloma (MM)

MM is an aggressive malignancy derived from plasma cells.
Consistent with their plasma cell origin, MM cells express
high levels of IRF4 while their IRF8 expression is low. IRF4
was initially identified to be translocated to the IgH locus and
overexpressed in MM for which it was named multiple
myeloma oncogene 1 (Mum1) (Iida et al., 1997). More
recently, an immunomodulatory drug lenalidomide known to
target IRF4 is shown to inhibit the survival and proliferation
of MM cells (Lopez-Girona et al., 2011). Given the essential
role of IRF4 in plasma cell differentiation, it is rather
paradoxical that IRF4 functions as a survival factor in MM.
Shaffer et al. have put forward the concept of “non-oncogene
addiction” to explain the role of IRF4 in MM (Shaffer et al.,
2008; Shaffer et al., 2009). “Non-oncogene addiction” of
IRF4 describes the unusual abilities of IRF4 to direct plasma
cell differentiation on one end and to function as a survival
factor for MM cells on the other end. Studies aiming to
identify the molecular basis for IRF4 addiction in MM have
identified myc as a direct target of IRF4 (Shaffer et al., 2008).
Intriguingly, myc was also shown to positively regulate IRF4
expression in MM cells thereby establishing an autoregula-
tory loop between the two proteins (Shaffer et al., 2008).
Other IRF4 target genes in MM cells include genes involved
in glucose metabolism and ATP production that are also
known to be regulated by myc (Shaffer et al., 2008). This
suggests that IRF4 may also be involved in metabolic
adaptations associated with myc induced transformation of
MM cells. Myc was initially identified to be translocated and
amplified in 16% of MM cases however, a recent report has
identified ~50% of MM cases to harbor myc rearrangements
(Affer et al., 2014; Shou et al., 2000). These studies indicate
that myc deregulation is central to the pathogenesis of MM
and IRF4 in part functions as a survival factor by directly
regulating myc expression. It is possible that MM may
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represent a condition in which normal plasma cell differentia-
tion program is disrupted due to sustained myc expression. It
is also worth noting that myc is overexpressed by multiple
mechanisms in MM cells that do not involve IRF4 (Affer et
al., 2014). This means that myc functions as an oncogene in
MM cells by IRF4 independent mechanisms as well.

Besides regulating myc expression, IRF4 has been recently
shown to tweak the autophagy pathways in MM cells (Lamy
et al., 2013). Using a RNA interference screen, caspase-10
was found to be essential for viability of MM cells
irrespective of their underlying genetic alteration landscapes.
Caspase-10 along with capase like protein (cFLIP) was
demonstrated to partially cleave and inhibit the Bcl2
interacting protein (Bclaf1). Furthermore, Bclaf1 functions
as an inducer of autophagy by directly binding and displacing
Bcl2 from Beclin1. Interestingly, IRF4 was shown to induce
the expression of caspase-10 and cFLIP in MM cells (Lamy et
al., 2013). Therefore, IRF4 attenuates hyperactive autophagy
induction which promotes apoptosis in MM cells. Intrigu-
ingly, the same study identified a dependence of MM cells on
a basal level of autophagy for their survival. Inhibition of the
basal level autophagy by targeting essential autophagic
machinery in MM cells leads to spontaneous decrease in
viability (Lamy et al., 2013). Therefore it appears that IRF4
only inhibits the hyperactivation of autophagy pathways in
MM cells but not the basal autophagy activity.

Viral infections and associated
malignancies

Kaposi Sarcoma associated Herpes Virus (KSHV) infection is
associated with primary effusion lymphoma (PEL) and
Epstein Barr Virus (EBV) infection is associated with several
B cell malignancies including B lymphoblastoid lymphoma
(LBL). Similar to the induction of IRF4 by NF-κB signaling
in normal B cells, viral proteins modulate NF-κB signaling to
regulate IRF4 expression (Forero et al., 2013). For example,
the KSHV encoded viral FLICE inhibitory protein (vFLIP)
induces IRF4 expression by activation of NF-κB signaling
(Forero et al., 2013). During KSHV replication, the cellular
form of IRF4 (cIRF4) is inhibited by viral IRF4 (vIRF4)
which subsequently suppresses c-myc expression to induce
viral lytic cycle (Lee et al., 2014). Furthermore, IRF4 is
expressed in PEL however; the functional significance of
IRF4 expression in KSHV associated PEL is still ambiguous
(Arguello et al., 2003).

A recent study has identified a role of EBV encoded EBV
associated nuclear antigen 3C (EBNA3C) in counter-regulat-
ing IRF4 and IRF8 in EBV transformed cell lines. EBNA3C
was found to stabilize IRF4 by direct interaction causing
subsequent degradation of IRF8 in a proteasome dependent
manner (Banerjee et al., 2013). Furthermore, EBV trans-
formed lymphoblastoid cell lines showed reduced prolifera-
tion and enhanced apoptosis upon IRF4 knock-down

(Banerjee et al., 2013). IRF4 was further shown to be
phosphorylated in a c-src dependent manner which interfered
with the DNA binding ability of IRF4 in EBV transformed
cells (Wang and Ning, 2013). Furthermore, EBNA3C was
shown to bind AICE and EICE sites in p14 (ARF)/CDKN2A
locus, to repress its expression (Portal et al., 2013; Jiang et al.,
2014b). These studies collectively indicate that viral proteins
mediated phosphorylation of IRF4 may lead to suppression of
its normal cellular functions. Additionally, the EBV viral
proteins may bind DNA at usual IRF4 and IRF8 binding sites
to perform their oncogenic functions.

Concluding remarks

IRF4 and IRF8 act as quintessential regulators at several
stages of B cell development. IRF4 and IRF8 are co-opted to
execute specific transcriptional programs at certain B cell
stages while, at others they independently and distinctively
govern critical developmental decisions. Interactions of IRF4
and IRF8 with Ets family members, NFATs, E2A, and
recently identified AP-1 family members have highlighted
them as molecular rheostats integrating diverse signaling
inputs (Rengarajan et al., 2002; Glasmacher et al., 2012;
Hodawadekar et al., 2012; Li et al., 2012; Tussiwand et al.,
2012). Moreover, the “kinetic control” model provides the
molecular basis for understanding diverse effects of IRF4 on
B cell development and function (Ochiai et al., 2013). Similar
themes highlighting IRF4 as a determinant of T cell receptor
(TCR) signaling strength involved in mediating effector T cell
differentiation have also been described (Man et al., 2013;
Yao et al., 2013). Recent studies have further identified genes
involved in cellular metabolism and cell cycle as some of the
direct targets of IRF4 in effector T cells (Shaffer et al., 2008;
Man et al., 2013; Yao et al., 2013). Future studies aiming
towards identifying key target genes regulated by IRF4 and
IRF8 in diverse B cell malignancies will be useful to define
disease pathogenesis and to design specific therapeutic
interventions.
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