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ABSTRACT: 

Recent studies have identified a cholestatic variant of NAFLD with portal inflammation 

and ductular reaction. Increased circulating free fatty acids in NAFLD are thought to 

contribute to injury and disease. Based on reports of biliary damage in NAFLD, we 

hypothesized the involvement of cholangiocyte lipoapoptosis as a mechanism of cellular 

injury. Here, we demonstrate that the saturated free fatty acids palmitate and stearate 

induced robust and rapid cell death in cholangiocytes. Palmitate and stearate induced 

cholangiocyte lipoapoptosis in a concentration-dependent manner in multiple 

cholangiocyte-derived cell lines. The mechanism of lipoapoptosis relied on the 

activation of caspase 3/7 activity. There was also a significant up regulation of the pro-

apoptotic BH3-containing protein, PUMA. In addition, palmitate-induced cholangiocyte 

lipoapoptosis involved a time-dependent increase in the nuclear localization of FoxO3. 

We show evidence for post-translational modification of FoxO3, including early (6 h) 

deacetylation and dephosphorylation that coincide with localization of FoxO3 in the 

nuclear compartment. By 16 h, nuclear FoxO3 is both phosphorylated and acetylated. 

Interestingly, cultured cholangiocyte-derived cells did not accumulate appreciable 

amounts of neutral lipid upon free fatty acid treatment. In conclusion, our data show that 

the saturated free fatty acids palmitate and stearate induce cholangiocyte lipoapoptosis 

via caspase activation, nuclear translocation of FoxO3 and increased proapoptotic 

PUMA expression. These results suggest that cholangiocyte injury may occur through 

lipoapoptosis in NAFLD and NASH patients.   
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INTRODUCTION 

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic 

syndrome (1). NAFLD is a spectrum of liver disease including simple steatosis, non-

alcoholic steatohepatitis (NASH), advanced hepatic fibrosis, liver cirrhosis, and 

hepatocellular carcinoma (1). NAFLD is the most common liver disease among western 

countries and it is highly associated with obesity, diabetes, dyslipidemia and 

hypertension (1). Recently, a cholestatic presentation of NAFLD with ductular 

inflammation, bile duct loss and swelling, and bile duct proliferation was reported (2). 

They also showed that bridging fibrosis or cirrhosis was more common in patients with 

biliary injury (2). This suggests the involvement of biliary epithelial cell injury as a 

possible contributor to the severity of NAFLD or NASH (2, 3). Bile duct epithelial cell 

expansion, termed the ductular reaction, is a response to injury and has been observed 

in NAFLD (3). For instance, staining for keratin 19, a biliary epithelial cell marker, was 

increased in the liver of NAFLD patients containing portal inflammation and advanced 

fibrosis (3). Furthermore, the increased number of bile ducts in NAFLD with stage 4 

fibrosis was due to the proliferation of hepatic bipotential progenitor cells (3). Injured 

biliary ductular cells produced higher levels of monocyte chemoattractant protein (MCP-

1) (3, 4), and increased MCP-1 has been well documented to attract extracellular-matrix 

producing cells, such as activated myofibroblasts and hepatic stellate cells to the portal 

traid (3, 4). 

NAFLD patients have elevated concentrations of circulating saturated free fatty 

acids (FFAs). FFA-induced hepatocyte lipoapoptosis is a recognized hallmark of NAFLD 

and includes the activation of c-Jun N-terminal kinase (JNK), mitogen activated protein 
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kinase (MAPK) and extracellular signal-regulated kinase (ERK) (5). FFAs have also 

been shown to induce apoptosis in other cell types like cardiomyocytes (6), and 

pancreatic β-cells (7). While, hepatocyte lipoapoptosis due to FFAs has been 

established and implicated in the pathogenesis of NAFLD or NASH (5, 8, 9), the 

occurrence of cholangiocyte lipoapoptosis due to FFAs has not been thoroughly tested. 

The present study explores cholangiocyte lipoapoptosis using cholangiocyte cell culture 

models. The data are consistent with saturated FFA-induced cholangiocyte 

lipoapoptosis via activation of the forkhead family of transcription factor member, FoxO3 

and upregulation of the proapoptotic BH3-containing protein PUMA. 

EXPERIMENTAL PROCEDURES 

Materials 

 Palmitic acid (#P5585), stearic acid (#S4751), oleic acid (#O1008) and fatty acid-

free bovine serum albumin (BSA); (#A3803) were obtained from Sigma-Aldrich. The 

pan-caspase inhibitor Z-VAD-fmk was from Santa Cruz (#sc3067) and the JNK inhibitor 

SP600125 (#420119) was from Calbiochem. Magnetic protein G beads (#S1430S) were 

purchased from New England Bio Labs.  

Antibodies 

Rabbit antisera against phospho-FoxO3 (Thr32) (#9464), acetylated-lysine (#9441), 

FoxO3 (#2497), FoxO1 (#2880), phospho- p38-MAPK (#9211), MAPK (#9212), 

phospho-ERK1/2 (#9101), ERK1/2, phospho-JNK (#9251), and JNK (#9252) were from 

Cell Signaling. Rabbit antiserum against PUMA (#ab54288) was from Abcam. Goat anti-

Lamin B (#sc-6216) and rabbit anti-actin (#sc-1615) were purchased from Santa Cruz 
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Biotechnology, Inc. Peroxidase-conjugated secondary antibodies were obtained from 

Jackson Immuno Research lab. 

Cell lines and treatment 

 H69, a human immortalized cholangiocyte cell line, was grown in Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) 

and penicillin-streptomycin (100 U/ml), insulin (5 µg/ml), adenine (24.3 µg/ml), 

epinephrine (1 ug/ml), tri-iodothyronine (T3)- transferrin (T), [T3- 2.23 ng/ml, T-8.19 

µg/ml], epidermal growth factor (9.9 ng/ml) and hydrocortisone (5.34 µg/ml). KMCH, Mz-

ChA-1 and HuCCT-1, human cholangiocarcinoma cell lines, were grown in DMEM 

supplemented with 10% FBS, penicillin-streptomycin (100 U/ml), insulin (0.5 µg/ml) and 

G418 (50 µg/ml). BDEneu cells were a kind gift from Dr. Alphonse Sirica (Virginia 

Commonwealth Univerisity) and were grown in DMEM supplemented with 10% FBS, 

penicillin-streptomycin (100 U/ml), human transferrin (5 µg/ml), and insulin (0.5 µg/ml) 

as described (10). H69, KMCH, HuCCT-1, Mz-ChA-1, and BDEneu cells were treated 

with the indicated concentrations of FFAs (400-800 µM) dissolved fresh in isopropanol 

and added to media containing 1% fatty acid-free BSA for 24 h. Vehicle treatment was 

isopropanol with final concentration of <1% in the medium.  

Measurement of apoptosis 

Percent apoptosis was quantified by characteristic nuclear morphology and 

visualized by treatment with the fluorescent DNA-binding dye, DAPI (4’, 6-diamidine-2’-

phenylindole dihydrochloride) as described before (8). Briefly, cells were stained with 5 

µg/ml of DAPI for 20-30 min at 37°C. Apoptotic nuclei (condensed, fragmented) were 
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counted and presented as a percent of total nuclei. At least 100 cells were counted per 

well and experiments were performed in triplicate. Caspase 3/7 activity was measured 

by enzymatic fluorophore release (Apo-One) according to the manufacturer’s 

instructions (Promega) with experiments performed in quadruplicate.  

 Oil red O staining 

 Intracellular lipid droplets were stained using oil red O dye as previously 

described (11). Briefly, cells were treated with 600 µM of the indicated free fatty acids 

for 24 h. Cells were washed with PBS and fixed with 10% buffered formalin for 10 min. 

Oil red O (2 mg/ml) staining solution was added for 15 min, and washed with water. 

Cells were mounted using Fluoromount G (Electron Microscopy Services). Images were 

obtained by Olympus 1X71 fluorescent microscopy using the rhodamine channel. 

Immunoblot and immunofluorescence 

 Cell lysates containing 25-30 µg of protein were resolved by SDS-PAGE. 

Proteins were transferred to a nitrocellulose membrane and visualized by 

immunoblotting. Mz-ChA-1 cells were labeled with anti-FoxO3 antibody and visualized 

by alexafluor 488 secondary staining.  

Nuclear isolation 

 Cells were rinsed once with ice cold PBS, then scraped in a buffer containing 10 mM 

4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid, (HEPES), pH 7.9, 10 mM KCl, 0.1 

mM EDTA, 0.1 mM DTT and 0.5% nonidet-P40 substitute (Sigma) along with the 

addition of complete protease inhibitor (Roche). Lysates were centrifuged at 15,000 x g 
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for 3 minutes to pellet nuclei. Pellets were suspended in buffer containing 20 mM 

HEPES, pH 7.9, 0.4 M NaCl, 1 mM EDTA, 0.05 mM DTT, 10 % glycerol and protease 

inhibitor cocktail and incubated for 40 minutes on ice with occasional vigorous vortexing. 

Extracts were centrifuged a final time at 15,000 x g and probed for FoxO transcription 

factors.  

Statistics 

 Statistical analysis was performed using one-way analysis of variance (ANOVA) 

with bonferroni post hoc correction, unless indicated otherwise. 

RESULTS  

FFAs induced cholangiocyte lipoapoptosis 

Biochemical characteristics of apoptosis include nuclear morphology changes 

and activation of the caspase cascade. We tested the effect of 400, 600, and 800 µM 

FFAs on cholangiocyte lipoapoptosis. These concentrations were chosen based on 

circulating levels of total FFAs found in NAFLD or NASH patients (12, 13) and previous 

studies (5, 8). The saturated FFAs palmitate (PA) and stearate (SA) induced 

cholangiocytes to undergo lipoapoptosis in a concentration-dependent manner. (Fig 1). 

Both PA and SA resulted in 25% - 60% apoptosis in H69 cells (Fig 1A). The 

monounsaturated fatty acid, oleate (OA) showed no apoptosis at 400 µM and 600 µM. 

In contrast, 800 µM of OA-treated H69 cells showed minimal apoptosis compared with 

800 µM of PA-or SA- treated cells. To confirm the apoptotic nuclear changes, we tested 

the activation of caspase 3/7 in FFA-treated cells. PA and SA treatment of 

cholangiocytes resulted in significantly increased caspase 3/7 activity in a 
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concentration-dependent manner. Indeed, 600 µM and 800 µM PA resulted in 4- and 6-

fold increased caspase 3/7 activity in H69 cells, whereas 600 µM and 800 µM SA 

resulted in 5- and 8-fold increased caspase 3/7 activity, respectively (Fig 1A). H69 cells, 

upon OA treatment again showed a significant increase in caspase activity only at 800 

µM OA (Fig 1A). FFA-induced cholangiocyte lipoapoptosis was then tested in additional 

cholangiocyte-derived cell lines. PA induced an increase in the number of apoptotic 

nuclei in KMCH cells at 600 µM and 800 µM, whereas SA induced increased 

lipoapoptosis starting from 400 µM to 800 µM. Increased caspase activity was observed 

with increasing concentrations of both PA and SA in KMCH cells (Fig 1B). Treatment of 

KMCH cells with OA did not induce apoptosis (Fig 1B). Both Mz-ChA-1 and HuCCT cell 

lines showed similar FFA-induced apoptosis with increasing concentrations of PA and 

SA, but not with OA (Fig 1C & D). Together, these results suggest that saturated FFAs 

SA and PA induced cholangiocyte lipoapoptosis. 

Caspase-dependent cholangiocyte lipoapoptosis 

 Since caspase activation was observed in FFA-induced cholangiocyte cell death, 

we tested whether inhibition of caspases using a cell permeable, pan-caspase inhibitor 

Z-VAD-fmk, would prevent FFA-induced cell death. In KMCH cells, addition of Z-VAD-

fmk (50 µM) resulted in complete prevention of caspase 3/7 activity induced by PA and 

SA treatments (Fig 2A). In parallel, addition of the caspase inhibitor to PA- or SA-treated 

cells resulted in a significantly decreased percentage of apoptotic nuclei (Fig 2B). In 

Mz-ChA-1 cells, Z-VAD-fmk treatment also dramatically reduced PA- or SA-induced cell 

death (Fig 2C). Z-VAD-fmk was also protective against lipoapoptosis in H69 and 

HuCCT cells (Fig 2D and 2E).  
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 To check the generality of cholangiocyte lipoapoptosis across species, we tested 

BDEneu cells, an immortalized tumorigenic rat cholangiocyte which has constitutive 

overexpression of the rat neu/her2 oncogene (10). BDEneu cells treated with vehicle 

showed 2.39 ± 0.8 percent apoptotic nuclei and 600 µM PA resulted in significantly 

increased levels of apoptotic nuclei to 35 ± 2.2 percent (Fig 3A). Treatment with 

caspase inhibitor plus PA significantly decreased the percentage of apoptotic nuclei to 

16 ± 0.7. In addition, BDEneu cells treated with 600 µM PA showed a 2.5-fold increase 

in caspase 3/7 activity, which was blocked by Z-VAD-fmk (Fig 3B).  

FFAs induced JNK, ERK1/2 and p38-MAPK activation 

 Activation of JNK in patients with NAFLD (14) and JNK-dependent hepatocyte 

lipoapoptosis has been well documented (5, 8). Here we tested whether activation of 

JNK was also involved in cholangiocyte lipoapoptosis. Indeed, JNK is activated by 

phosphorylation after 1 h of PA treatment as compared to vehicle-treated KMCH cells. 

Phospho-JNK levels stayed elevated up to 16 h of PA treatment, with peak activation 

observed at 8 h of PA (Fig 4A). Similar to JNK activation, PA treatment also resulted in 

activation of ERK and p38-MAPK via phosphorylation. KMCH cells have some 

constitutively phosphorylated ERK, as seen in vehicle-treated cells, and 2 h of PA 

treatment resulted in further activation of ERK. The increase in phospho-ERK levels 

with PA was time-dependent with peak activation time between 4-8 h (Fig 4A). 

Increased levels of phospho-p38-MAPK were apparent after 1 h of PA and remained 

elevated until after 24 h of PA treatment (Fig 4A). PA-induced activation of JNK, ERK 

and p38-MAPK were also evident in another cholangiocyte, Mz-ChA-1 cells. Here, PA-

treated cells showed activation of JNK after 1.5 h of treatment as compared with 
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vehicle-treated cells and phospho-JNK levels returned to basal levels after 3 h of PA 

treatment (Fig 4B). Phospho-ERK and phospho-p38-MAPK levels were also increased 

after 1.5 h of PA treatment and stayed elevated until after 6 h in PA-treated cells. The 

increased levels of phospho-JNK, phospho-ERK and phospho-p38-MAPK returned to 

control levels after 8 h of PA treatment in Mz-ChA-1 cells (Fig 4B). JNK was the main 

MAPK identified to contribute to hepatocyte lipoapoptosis (5). We next tested the small 

molecule inhibitor for JNK, SP600125, to see whether PA-induced cholangiocyte 

lipoapoptosis is JNK dependent. Inhibition of JNK did not alter cholangiocyte 

lipoapoptosis caused by PA in KMCH cells (Fig 4C). Inhibition of JNK was confirmed by 

the loss of phospho-JNK levels with 50 µM of SP600125 treatment (data not shown). 

These results suggest that FFAs induced activation of stress kinases JNK, ERK and 

p38-MAPK and that inhibition of JNK did not alter cholangiocyte lipoapoptosis.  

Palmitate induced FoxO3 nuclear localization 

 We next tested whether FoxO transcription factors (FoxO1 and FoxO3) were 

involved in palmitate-induced cholangiocyte lipoapoptosis. Nuclear accumulation of 

FoxO1 and FoxO3 has been shown to induce apoptosis. Nuclear extracts were isolated 

to analyze FoxO levels in KMCH cells treated with 800 µM of PA. Increased FoxO3 was 

observed in the nucleus after 3 h of PA as compared to vehicle-treated cells and 

nuclear FoxO3 levels stayed elevated until after 24 h. Lamin B was used as a loading 

control (Fig 5A). Nuclear levels of FoxO3 were also increased in H69 and Mz-ChA-1 

cells treated with PA for 16 h (Fig 5B). FoxO1 expression in the nuclear extracts was 

high in H69 cells. However, FoxO1 levels were not altered with PA treatment in either 

H69 or Mz-ChA-1 cells (Fig 5B). To further confirm nuclear localization, we performed 
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immunofluorescent analysis for FoxO3 in Mz-ChA-1 cells. FoxO3 is clearly localized to 

the nucleus after 16 h of PA treatment as compared to the cytosolic staining observed in 

vehicle-treated cells (Fig 5C). Quantitation of nuclear FoxO3 levels showed a 7-fold 

increase after 16 h of PA treatment relative to vehicle-treated cells (Fig 5D). In addition 

to the increased levels of nuclear FoxO3, a slight change in migration of FoxO3 was 

noted on SDS-PAGE compared to vehicle-treated cells in both H69 and Mz-ChA-1 cells 

(Fig 5B). This altered migration pattern led us to test the post translational modifications 

like acetylation and phosphorylation in nuclear extracts from KMCH cells treated with 

PA. FoxO3 was immunoprecipitated from nuclear extracts and probed using an anti-

acetyl-lysine antibody. We observed a dramatic decrease in levels of acetylated FoxO3 

(Fig 5E). Note there is no obvious increase in total nuclear FoxO3 in this pull-down 

experiment; this is likely a technical issue, as Immunoprecipitation is not the most 

suitable method to detect an increase in total FoxO3 (c.f. Fig 5A). At the same time, 

FoxO3 was also observed to be un-phosphorylated (Fig 5E). At a later time point, PA 

treatment of HuCCT and H69 cells resulted in an increase in the levels of acetylated 

FoxO3 and phosphorylated FoxO3 (Fig 5F). These results suggest that FoxO3 was 

deacetylated and dephosphorylated at early time points, when it first translocated to the 

nucleus, and at the later time points, FoxO3 is getting modified via acetylation and 

phosphorylation. 

Palmitate increases PUMA protein expression in cholangiocytes 

PUMA is a downstream target of FoxO3 (15), thus we assessed the expression 

of PUMA protein in KMCH cells at various time points after treatment with 800 µM PA. 
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PA-treated KMCH cells showed elevated levels of PUMA after 2 h as compared to 0 h 

treated cells and the increased PUMA levels were sustained even after 48 h (Fig 6).  

Cholangiocytes do not develop steatosis with FFA treatment 

 Treatment of hepatocytes with FFAs was previously shown to increase lipid 

storage as triglycerides in cytoplasmic lipid droplets (5). We tested cholangiocytes such 

as H69, Mz-ChA-1, KMCH and hepatoma cells, Huh7 for lipid droplet formation after 

treatment with 600 µM PA, SA, or OA by staining with oil red O dye. H69 cells showed 

background of minimal lipid droplet staining and this did not increase with PA or SA 

treatment, whereas OA-treated cells showed a slight increase in lipid droplet formation 

(Fig 7). Mz-ChA-1 and KMCH cells did not show accumulation of lipid droplets with 600 

µM of PA, SA, or OA treatment after 24 h. In contrast to cholangiocytes, Huh7 

hepatoma cells showed a dramatic increase in the accumulation of lipid droplets with all 

of the FFAs. These results suggest that cholangiocytes do not develop steatosis, in 

contrast to hepatocytes. 

DISCUSSION  

 Circulating saturated FFAs are reported to be elevated in patients with metabolic 

syndrome as well as in patients with NAFLD or NASH (12, 13). The principal finding of 

this study is that FFAs can induce biliary epithelial cell lipoapoptosis. Our data suggest 

four important findings in biliary cell damage induced by FFAs, termed cholangiocyte 

lipoapoptosis: a) FFAs induced caspase activation and cholangiocyte apoptosis; b) 

cholangiocyte lipoapoptosis was associated with the activation of FoxO3, a transcription 

factor known to induce apoptosis; c) cholangiocyte lipoapoptosis appears to involve the 
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activation of PUMA, a proapoptotic BH3-containing protein; and d) unlike hepatocytes, 

cholangiocytes did not accumulate lipid droplets. These results will be discussed below.  

 Are cholangiocyte cell culture models, a clinically relevant model to study biliary 

epithelial cell lipoapoptosis? In the present study, we used normal immortalized 

cholangiocyte cell line, H69 and cholangiocarcinoma-derived cell lines, KMCH, Mz-ChA-

1, and HuCCT. H69 cells have been shown to contain similar characteristics to human 

primary cholangiocytes. H69 cells can produce primary cilia from the apical plasma 

membrane during in vitro culture conditions(16). Both normal cholangiocytes and 

cholangiocarcinoma-derived cell lines used in this study were shown to express keratin 

7, keratin 19, and gamma-glutamyl transpeptidase activity, similar to cholangiocytes in 

vivo and primary human cholangiocytes (17, 18). Additionally, both Mz-ChA-1 cells and 

normal cholangiocytes express HMG-CoA reductase (19). Thus, the cell lines employed 

in the current study share phenotypic features with biliary epithelial cells and are a 

useful culture model of cholangiocytes. 

Saturated FFAs, like PA and SA have been shown to cause lipotoxicity and 

induce lipoapoptosis due to the activation of caspases in various mammalian cells 

including pancreatic β-cells (7), cardiomyocytes (20), and hepatocytes (5, 8)and other 

cell types. Hepatocytes and cholangiocytes have a common precursor cell, termed the 

bipotential hepatic progenitor cell (21). In the present study, we report lipotoxicity due to 

saturated FFAs in biliary epithelial cells. This is a caspase-dependent process, 

consistent with previous studies in other cell types. The monounsaturated fatty acid, 

OA, showed slight toxicity at the highest concentration. This agrees with a previous 

study in which OA-induced lipotoxicity in renal proximal tubule cells (22). Treatment with 
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a pan-caspase inhibitor protected against cholangiocyte lipoapoptosis caused by 

saturated FFAs. Biliary injury has been reported in a subset of patients with NAFLD 

compared to a population with similar steatosis (2, 3). Our data suggest that in patients 

with metabolic syndrome, higher circulating FFAs may contribute to biliary tree damage. 

Further studies will be needed to determine if cholangiocyte lipoapoptosis contributes to 

the progression of disease from simple steatosis to NASH to liver fibrosis, at least in a 

subset of patients. 

JNK is one of the major cellular stress signaling kinases that is activated during 

FFA-induced apoptosis. In particular, hepatocyte lipoapoptosis is dependent on JNK 

activation (5, 8). However, we found that inhibition of JNK using a small molecule 

inhibitor did not prevent cholangiocyte lipoapoptosis, suggesting a mechanism of 

apoptosis beyond JNK activation. A recent study in pancreatic β-cells showed that FFA-

induced JNK activation is not critical for apoptosis; but JNK activation was involved in 

mediating ER-stress signaling pathways (7). Several studies have also demonstrated 

that p38-MAPK and ERK can also induce apoptosis in pancreatic β-cells (23, 24), but 

the activation of p38-MAPK and ERK has been shown not to be critical for FFA-induced 

hepatocyte lipoapoptosis (5).  

Since JNK was not a critical mediator of FFA-induced cholangiocyte 

lipoapoptosis, our focus was next on FoxO3. FoxO3, a forkhead family transcription 

factor, has been shown to activate cell death pathways by inducing the expression of 

proapoptotic proteins such as PUMA, Bim, p27, and TRAIL (6, 15). Several studies 

have confirmed that FoxO3 has direct transcriptional activity on the PUMA promoter and 

induces the expression of PUMA protein (15, 25). Increased PUMA can also induce Bax 
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and Bak oligomerization, which further results in activating mitochondrial intrinsic 

pathways of apoptosis by releasing cytochrome c resulting in caspase activation (26). 

FoxO3 can also be regulated by the Akt signaling pathway, protein phosphatases, and 

protein deacetylases (Sirt1) (27-29). Phosphorylation and acetylation of FoxO3 have 

been shown to alter the cell death pathways towards cell survival by promoting export of 

FoxO3 from the nucleus to the cytoplasm (27). Sirt1 interacts with FoxO3 in the nucleus 

resulting in deacetylation and altered transcriptional activity (30). In the present study, 

deacetylation and dephosphorylation of FoxO3 were observed at the early time points 

after PA treatment in KMCH cells. After 16 h of PA treatment, the levels of acetylated 

FoxO3 and phosphorylated FoxO3 were increased. Although phosphorylation has been 

reported to promote nuclear export, we observed increased nuclear localization of 

FoxO3 even after 16h of PA. We conclude that in PA-treated cholangiocytes, 

phosphorylation of FoxO3 at Thr32 is not sufficient to cause nuclear export and FoxO3 

inactivation. Previously, PA has been shown to decrease the expression of Sirt1 in 

pancreatic β-cells (31) and cardiomyocytes (20). Overexpression of Sirt1 has been 

shown to protect against FFA-induced pancreatic β-cell apoptosis (32). Consistently, 

acetylated FoxO1 has been shown to induce Bim expression and promote apoptosis 

(33). FFAs have been shown to induce the expression of miR-195 and miR-34a in 

cardiomyocytes and pancreatic β-cells, respectively, and both miR-195 and miR-34a 

have been shown to target Sirt1, resulting in an increase in the acetylated form of 

transcription factors (34). At present, we cannot exclude the possibility of microRNA 

regulation of FFA-induced cholangiocyte lipoapoptosis, which merits our future 

investigation.  
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As noted, PUMA is important in lipoapoptosis, and is a downstream target of 

FoxO3 (15). Expression of PUMA was found to be up-regulated in human liver biopsies 

taken from NASH patients as compared to control subjects (8). In our experiments, 

PUMA expression was up regulated by FFAs in cholangiocytes. Our time-course of 

PUMA expression revealed a rapid increase in PUMA protein that is sustained through 

48 h. Because of the rapid induction, it is likely the early increase is due, in part, to post-

transcriptional mechanisms. The sustained increase in expression may be the result of 

FoxO3-mediated transcriptional activation or alternate signaling mechanisms.  

Furthermore, we measured cellular steatosis, i.e., accumulation of triglycerides in 

lipid droplets, which has been reported in many non-adipose tissues including 

pancreatic β-cells, cardiomyocytes, and hepatocytes (5, 35). In the liver, there is 

controversy over whether lipid droplets in hepatocytes treated with FFAs promote 

lipotoxicity or serve as a protective mechanism for detoxifying FFAs (35-40). In the 

present study, FFA treatment of cholangiocytes did not induce cellular steatosis. These 

results are consistent with the clinical observation of hepatocyte lipid accumulation 

without biliary cell steatosis in NAFLD (41-43). Lipid droplet accumulation in 

cholangiocytes has been reported in mice with liver-specific deficiency of adipose 

triglyceride lipase (ATGL), a major lipase in cholangiocytes (21). Together, 

cholangiocytes undergo lipoapoptosis with FFA treatment, but unlike hepatocytes, 

cholangiocytes did not accumulate lipid droplets with FFA treatment.  

 In conclusion, our study shows that saturated FFAs induce cholangiocyte 

lipoapoptosis via caspase activation, nuclear translocation of FoxO3 and proapoptotic 

PUMA expression. Post-translational modifications of FoxO3 may be involved in 
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cholangiocyte lipoapoptosis. Further studies are required to elucidate the contribution of 

cholangiocyte lipoapoptosis to NAFLD or NASH patients with metabolic syndrome. 
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Fig 1. Free fatty acids induce cholangiocyte lipoapoptosis. (A) H69 cells were 
treated with 400, 600, or 800 µM palmitate (PA), stearate (SA) or oleate (OA) for 24 h. 
Apoptotic nuclei were counted and expressed as a percent of total nuclei (left panel). 
H69 cells were treated in parallel as above for 24 h, followed by quantitation of caspase 
3/7 activity (right panel), and results are expressed as fold-change over isopropanol-
treated cells (Veh). The same conditions were employed to assess apoptotic nuclei and 
caspase 3/7 activity in KMCH cells (B), Mz-ChA-1 cells (C), and HuCCT cells (D). Each 
value represents the mean ± SEM of separate experiments (n = 6). *p<0.001 and 
#p<0.05, compared to vehicle-treated cells.  



25 
 

 
Fig 2. Caspase-dependent cholangiocyte lipoapoptosis. (A) KMCH cells were 
treated for 24 h with 800 µM palmitate (PA) or stearate (SA), and 50 µM caspase 
inhibitor, Z-VAD-fmk (ZVAD) or DMSO as a control. Results are expressed as fold 
change of caspase 3/7 activity compared to vehicle treatment (Veh). (B) KMCH cells 
were treated in parallel as above for 24 h, followed by measurement of apoptotic nuclei. 
Apoptotic nuclei were counted and expressed as a percent of total nuclei; at least 100 
cells per replicate were counted. The same conditions were employed to assess 
apoptotic nuclei in Mz-ChA-1 cells (C), H69 cells (D), and HuCCT cells (E). Each value 
represents mean ± SEM of separate experiments (n = 6). *p<0.001, compared to 
vehicle, #p<0.05, compared to 800 µM PA or SA treated cells.  
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Fig 3. FFA-induced rat cholangiocyte lipoapoptosis was also caspase dependent. 
(A) BDEneu cells were treated with 600 µM palmitate (PA) or PA plus 50 µM caspase 
inhibitor, Z-VAD-fmk (ZVAD) for 24 h. Vehicle for PA was isopropanol (Veh’ <1% final) 
and control for Z-VAD-fmk was DMSO (<1% final). Apoptotic nuclei were counted and 
expressed as a percent of total nuclei, at least 100 cells per replicate were counted. (B) 
BDEneu cells were treated in parallel as above for 24 h, followed by quantitation of 
caspase 3/7 activity, and results are expressed as fold-change over isopropanol-treated 
cells (Veh). Each value represents the mean ± SEM of separate experiments (n = 6). 
*p<0.001, compared to vehicle treated cells and #p<0.001 compared to PA-treated 
cells. 
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Fig 4. FFAs induced JNK, ERK1/2 and p38-MAPK activation. (A) Cell lysates were 
prepared from KMCH cells treated with either 800 µM palmitate (PA) or vehicle (V) for 
different time points. Immunoblot analysis was performed for phospho-JNK (P- JNK), 
phospho-ERK (P- ERK), and phospho-p38-MAPK (P-p38), and compared with total JNK 
(T-JNK), total ERK (T-ERK) and total p38-MAPK (T-p38), respectively. (B) Mz-ChA-1 
cells were treated with either 800 µM PA (PA) or vehicle (V), for different time points. 
Immunoblot analysis was performed in Mz-ChA-1 cells for phosphorylated proteins, and 
compared with total JNK, ERK, and p38, respectively. The images shown here are 
representative images. (C) KMCH cells were treated with vehicle (Veh) or 800 µM 
palmitate (PA), with or without 50 µM SP600125 24 h. Apoptotic nuclei were counted 
and expressed as a percent of total nuclei, at least 100 cells per replicate were counted. 
Each value represents the mean ± SEM of separate experiments (n = 6). *p<0.001, 
compared to vehicle treated cells and n.s., non-significant.  



28 
 

  



29 
 

 
Fig 5. Palmitate induced FoxO3 nuclear localization. (A) Nuclear extracts were 
prepared from KMCH cells treated with either 800 µM palmitate (PA) at different time 
points or vehicle (Veh) for the indicated times. Immunoblot analysis was performed for 
FoxO3 and Lamin B was used as a loading control. (B) H69 and Mz-ChA-1 cells were 
treated with 800 µM palmitate (PA) or vehicle (V) for 16 h. Nuclear extracts were 
analyzed for FoxO3, FoxO1, and Lamin B as a control. (C) Immunofluorescence 
analysis of FoxO3 nuclear localization after 16 h of 800 µM palmitate (PA) or vehicle 
treatment in Mz-ChA-1 cells and nuclei were counter stained with DAPI. (D) Quantified 
levels of nuclear FoxO3 after 16 h of 800 µM palmitate (PA) or vehicle treatment in 
Mz-ChA-1 cells. Relative fluorescent intensity was quantified using ImageJ software. 
Atleast 30 cells were quantified per treatment conditions. *p<0.001 compared to vehicle-
treated cells, students t-test. (E) Immunoprecipitation of total FoxO3 from nuclear 
extracts of KMCH cells treated with palmitate (PA) or vehicle (V), for 6 h. Immunoblot 
analysis was performed for acetylated FoxO3, phospho-FoxO3 and total FoxO3. Heavy 
chain of the IP antibody is indicated as IgG. (F) Immunoprecipitation of total FoxO3 from 
nuclear extracts of HuCCT, and H69 cells treated with 800 µM palmitate (PA) or vehicle 
(V) for 16 h. Immunoblot analysis was performed for acetylated FoxO3, phospho-FoxO3 
and total FoxO3. The images shown here are representative images.   



30 
 

 

Fig 6. Palmitate increased PUMA protein expression in cholangiocytes. KMCH 
cells were treated with 800 µM palmitate (PA) or vehicle (Veh). Cell lysates were 
collected at different time points after PA treatment, as indicated. Immunoblot analysis 
was performed for PUMA and actin was used as a loading control. 
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Figure 7 

 
Fig 7. Cholangiocytes do not develop steatosis with saturated free fatty acid 
treatment. H69, Mz-ChA-1, KMCH cholangiocytes or Huh7 hepatoma cells were 
treated with 600 µM palmitate (PA), stearate (SA), or oleate (OA) for 24 h. Vehicle-
treated cells were used as control (Veh). Red fluorescence was captured and images 
are displayed in greyscale. The images shown here are representative images and all 
micrographs were taken at the same magnification (bar = 25 μm). 
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