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EXPRESSION AND FUNCTION OF INFLAMMATION-ASSOCIATED MICRORNAS IN 

TRAUMATIC BRAIN INJURY 

Emily Brooke Harrison, Ph.D. 

University of Nebraska, 2016 

Advisor: Dr. Howard S. Fox., M.D., Ph.D.  

MicroRNAs (miRNAs) are important regulators of gene expression. Many neurological diseases, 

including traumatic brain injury alter expression of miRNAs in the brain. However, the function 

of these molecules in the context of TBI is largely unknown. Here we report multiple potential 

roles for miRNAs in TBI, some of which extend beyond the traditional model of post-

transcriptional regulation, highlighting that these RNA molecules may have broader implications 

for the neurobiology of disease. We found that miR-155 plays an essential role in interferon 

expression after CCI and that miR-155 contributes to TBI induced anxiety, potentially through 

regulation of interferons. Expression of miR-155 was identified in neuronal nuclei, suggesting 

additional roles for miR-155 in the neuronal response to injury that may be outside of traditional 

gene silencing. Similarly, we found that miR-21 was also expressed in neurons. In addition, miR-

21 levels were elevated in extracellular vesicles (EVs). Novel roles have recently been elucidated 

for miRNAs carried in EVs, including stimulation of toll-like receptor 7/8 (TLR 7/8). We 

identified 3 differentially expressed EV-associated miRNAs with motifs known to mediate TLR 

7/8 binding. This suggests that EV-associated miRNAs may act as damage associated molecular 

patterns (DAMPs) in TBI. Overall, we have identified multiple potential roles for miRNA in TBI 

that warrant further study.  

 In other studies we found that neurotrophic cytokines IL-6 and CNTF could elicit both 

Stat3 phosphorylation and miR-21 induction in human neurons, providing a possible mechanism 

for miR-21 induction in many models of neuronal injury. Additionally, we identified disinhibition 

and hyperactivity as chronic phenotypes of a mouse model of TBI. This finding will allow for 

future mechanistic studies of TBI induced impulsivity.  
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Chapter 1: Introduction 

 

The last decade has bought the eye of the public on traumatic brain injury (TBI). TBI has 

been called the signature injury of the wars in Iraq and Afghanistan, with millions of 

veterans suffering a distinctive set of symptoms caused by both penetrating and blast 

injuries [1, 2]. Meanwhile, a major class action lawsuit against the National Football 

league was prompted by the discovery of chronic traumatic encephalopathy in American 

football players. Together these circumstances have heightened public awareness and 

bought to light that even relatively mild brain injuries, such as concussions, can have 

severe consequences.  

In the midst of all the media and public attention, many scientific advances are 

being made in our understanding of the brain and how it responds to injury. One element 

that unifies all TBI from mild to severe is the presence of neuroinflammation. As in all 

types of injury, inflammation plays a reparative role to clear damaged tissue and fight 

potential infection, but excessive inflammation can result in tissue damage and 

dysfunction.  

This work is an investigation into the regulation of neuroinflammation in the 

context of traumatic brain injury. Though several molecular classes coordinate to 

produce an inflammatory response, we have chosen to focus on post-transcriptional 

regulation by microRNAs (miRNAs). Functionally, miRNAs bind to their messenger RNA 

targets reducing production of corresponding proteins. Translational silencing by 

miRNAs is accomplished by complimentary base pairing to target transcripts, typically 

found in the 3’ UTR. Using this mechanism a single miRNA can bind multiple targets. 

These targets can range in the hundreds, making miRNAs powerful regulators of the cell 

proteome. Recent studies in knockout mice have revealed that ablating certain miRNAs 
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can result in impaired or overactive immune function, showing that these molecules are 

critical regulators of the immune response [3]. While the importance of miRNAs in the 

peripheral immune response is increasing recognized, what role they play in the unique 

immune environment of brain injury remains largely unexplored. The overall aim of this 

work was to characterize the regulatory role of inflammation-associated miRNAs in the 

injured brain and determine their effect on brain recovery and cognitive function after 

TBI.  

 

1.1 Traumatic brain injury  

Traumatic brain injury is a leading cause of death and disability worldwide [4]. In 2009, 

the Center’s for Disease Control and Prevention (CDC) estimated that 2.4 million people 

were diagnosed with TBI [5]. This is likely an underestimate as many TBIs, especially 

mild injuries, go unreported. Broadly defined TBI is any injury to the head that disrupts 

brain function. This includes closed head injuries where the head is struck by or against 

an object as well as jolts to the head that cause forward/reverse or rotating movement of 

the brain within the skull. Approximately 75% of TBIs are mild; concussions being 

included in this category [6]. Often mild TBI are left unreported and untreated. However, 

as is now realized with sports concussion, repeated mild TBI can cause motor and 

cognitive deficits. More severe forms of TBI are those that cause skull fractures or result 

from penetration of the brain with an object, such as a bullet. Although the most severe 

injuries are associated with penetration of the brain, diffuse axonal injury can also be 

severe and sometimes fatal.   

The immediate consequences of traumatic brain injury include loss of 

consciousness, hemorrhage, edema, and ischemia. Surgical intervention is sometimes 

required and improvements in surgical techniques and more informed treatment 

guidelines have resulted in increasing survival rates [7]. But still, a diagnosis of TBI was 
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found in 30.5% of injury rated fatalities [6]. Even when patients survive a TBI, the long 

term effects can be disabling. It is estimated that 5.3 million people in the U.S. alone are 

living with TBI associated disabilities including cognitive and psychological dysfuntion 

[8].  

The evaluation of TBI takes many forms and is highly dependent on the timing of 

evaluation. Severity of brain injury in the acute period is traditionally classified by the 

Glasgow comma scale (GCS), which takes into account impairment in speech, motor 

function, and loss of consciousness [9]. Several retrospective studies have called into 

question the reliability of the GCS, yet it is still a common tool for describing the severity 

of TBI [10]. Since the introduction of the GCS in 1974 [9], new technologies, such as 

computed tomography (CT) scans, have allowed for more physiological and reliable 

indicators of injury severity [11]. Other measures are more useful during the in-patient 

rehabilitation, also called the sub-acute phase. The functional independence measure 

(FIM) is most useful during this period. Scores on the FIM range from “complete 

independence to “total assistance” [12]. Another outcome measure with utility during the 

sub acute phase is the Craig handicap assessment and reporting technique (CHART) 

which measures physical independence, cognitive independence, mobility, social 

integration, occupation, and economic self sufficiency [13]. During the chronic phase 

after patients have been discharged the expanded Glasgow outcome scale (GOS) is the 

most commonly used outcome measures in clinical trials [14]. GOS is useful to 

determine positive or negative outcome (Table 1.1). The community integration 

questionnaire (CIQ) is also helpful to determine community integration after TBI [15]. 

One measure that can be useful to span the acute through chronic phases of TBI is the 

disability rating scale (DRS), which includes measures that range from “eye opening” 

and “motor response” to “toileting” and “employability [16].” To determine the 

neuropsychological impairment the composited neuropsychological score (CNPS) is  
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Table 1.1 

  

Glasgow Outcome Scale (GOS) 
1 Good Recovery  Return to normal life and employment. Some deficits, but 

lack of disability 
2 Moderate Disability  Disabled, but independent. Return to work is dependent on 

special arrangements 
3 Severe Disability Dependent on daily support due to mental or physical 

disability or a combination of the two 
4 Vegetative State Unaware with only reflex responses.  
5 Death Self described 
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used. This test measures visuoconstruction and memory, oral fluency, sustained 

attention, and fine motor dexterity [17]. While many of the measures describe here show 

better accuracy then the GOS or measure different aspects of outcome, this is the 

primary measure used for research purposes and clinical trials.  

The physical damage caused by a TBI can be divided into two categories the 

immediate mechanical damage (primary injury) and the events that occur in the wake of 

that primary injury (secondary injury). Primary damage can further be separated into 

focal damage that consists of contusion, laceration, and intracranial hemorrhage and 

diffuse damage resulting from acceleration/deceleration events, including diffuse axonal 

injury. Secondary damage includes ischemia and increased intracranial pressure as well 

as changes in neurochemistry, metabolism, and inflammation that can lead to neuronal 

cell death and dysfunction [18]. After survival of the primary insult any further decrease 

in neurological function or consciousness is due to secondary injury mechanisms. While 

eliminating or reducing primary damage is the goal of preventative efforts, once a 

traumatic brain injury has occurred, little can be done to reduce the primary damage. 

Instead therapeutic efforts are focused on the secondary damage that occurs after TBI. 

However, despite extensive research, there has not been any proven therapeutic 

treatment developed to reduce secondary damage after TBI. Many excellent reviews 

cover in detail the various secondary injury mechanisms [19, 20], but for our purposes 

here, we will focus on inflammation.  

 

1.2.1 Neuroinflammation and TBI 

After TBI there is marked elevation of activated resident glia including microglia and 

astrocytes. Increased cytokines and chemokine release from these resident cells in the 

acute time frame after TBI recruits peripheral immune cells such as neutrophils, 

macrophages, and T cells. Other than perivascular macrophages and resident microglia 
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the brain is normally free of other immune cells, however the damage caused by TBI, 

including disruption of the blood-brain barrier (BBB), allows the infiltration of peripheral 

immune cells. The multicellular response to TBI is described in figure 1.1. As in other 

types of injury, inflammation in TBI plays a dual role [21]. The phagocytic properties of 

microglia, neutrophils and macrophages helps to clear damaged tissue and these and 

other leukocytes reduce the risk of infection. Activated glia, including microglia and 

astrocytes, can also produce neuroprotective and neuroregenerative factors. However, 

the production of inflammatory molecules by infiltrating peripheral immune cells as well 

as glia, including cytokines and chemokines, nitric oxide (NO), and reactive oxygen 

species can also have detrimental effects on neuronal function. Even though both 

negative and positive components are present, generally anti-inflammatory agents 

improve TBI outcomes in animal models [22].  

The front line of the cellular response to TBI is resident microglia. Microglia are 

highly sensitive to even subtle changes in the local environment. For example, microglia 

can be activated by molecules usually confined to the cellular compartment such as 

purine nucleotides [23], as well as neurotransmitters [24], and even changes in ion 

homeostasis [25]. First described by Rio-Hortega in 1932, resting microglia in a non-

pathological brain have a small cytoplasm relative to other cells in the brain and delicate, 

ramified processes. Recent two-photon microscopy experiments have shown that 

microglial processes are constantly moving, surveying the local environment [26]. Upon 

activation microglial morphology rapidly changes, processes become stumpy or “bushy” 

and the cell body can even become amoeboid to the point were it is undistinguishable 

from a peripheral mononuclear cell [27].  

Activation of microglia results in proliferation, migration, secretion of soluble 

factors and electrophysiological changes [22]. Proliferation and migration result in  
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Figure 1.1 
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Figure 1.1 Inflammatory response to TBI. This figure demonstrates the time course of 

inflammation, activation of resident glia and recruitment of peripheral immune cells to the 

lesion site following TBI (A). Within minutes to hours cytokines, damps, and chemokines 

are released from the damaged tissue and neutrophils are recruited to the injury stie (B). 

By 1 day post injury (dpi) neutrophils have invaded the brain tissue and monocytes are 

being recruited to the brain tissue (C). By 3 dpi peripheral monocytes have begun 

differentiation into macrophages and activated microglia and astrocytes are present at 

the lesion site, but the neutrophils are now nearly undetectable (D). At 10 dpi the 

immune response has largely subsided, however activated astrocytes and macrophages 

are still present at the lesion site [28].   
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increased numbers of microglia at sites of injury. Factors secreted by microglia upon 

activation include inflammatory cytokines, proteases, free-radicals and growth factors.  

Primary among microglia-secreted cytokines is IL-1β, which in turn, can induce of 

IL-6 and TNFα in an autocrine and paracrine manner [29]. In addition to glial cells, 

neurons carry receptors for IL-6, TNFα, and IL-1β, which can mediate effects in neurons 

[30, 31]. Although classically neurons are thought to be damaged by inflammatory 

cytokines [32], there is growing evidence that these same cytokines may be necessary 

for neuroprotective and neuroregenerative effects likely in a concentration dependent 

manner [33]. In addition to cytokines, free radicals such as NO are secreted by microglia 

and likewise cause both beneficial and detrimental effects to their neuronal neighbors 

[34]. To add further complexity microglia secrete neurotropic factors such as NGF, 

BDNF, and NT3 [35-37] in addition to proteases, which can clear the damaged 

extracellular matrix but can also exacerbate BBB dysfunction [38].  

Overall, the interaction between neurons and microglia is complex and multi-

faceted. There is no doubt that the conversation is two-sided with neurons signaling 

microglia, which in turn modulate neuronal function [39]. While inhibiting inflammation 

can improve outcomes in brain injury models, the effects of anti-inflammatory agents are 

not specific to microglia [22]. One clue to the balance of microglial effects in 

neuroinflammation is the work of Heppner et al. in experimental autoimmune 

encephalitis, a mouse model of multiple sclerosis [40]. In this study a mice were 

genetically altered to “paralyze” microglial activation. This microglial paralysis repressed 

the development of experimental autoimmune encephalitis. While similar studies are yet 

to be performed in studies of TBI, accumulating evidence suggests a detrimental 

pathological role for microglia in neuroinflammation.   
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Astrocytes also undergo morphological changes and activation, but they have a 

distinctly different role from microglia in CNS pathology. In the non-diseased CNS 

astrocytes control homeostasis of ions, neurotransmitters, water, and blood flow and 

play a role in neural circuit formation. The morphology of protoplasmic astrocytes, the 

type that predominates in the grey mater, consists of short, branched processes in close 

proximity neuronal synapses [41]. Unbranched, fibrous astrocytes are found in the white 

mater and function to maintain mylenated axons [42]. Astrocytes also regulate the BBB, 

completely ensheathing capillaries [43]. Interestingly, astrocytes do not function as 

indepent cells, but are connected in a vast network by gap junctions [44]. The primary 

pathological marker of a reactive astrocyte in neuroinflammatory conditions is the 

increased expression of intermediate glial fibrillary acidic protein (GFAP) [45]. Evidence 

points to mechanical forces as the impetus for astrocyte activation after TBI [46]. The 

activation of astrocytes occurs very early after injury, causing ATP release and 

subsequent microglial activation [47]. However, astrocytes also serve to wall-off inflamed 

tissue from healthy or salvageable tissue by formation of a glial scar [48]. Glial scar 

formation is also required for repairing the damaged BBB after TBI. As important players 

in the synapse, astrocytes also maintain neural circuits and promote synaptic remolding 

after injury [46]. This beneficial effect also has a counter-point in that through their effect 

on synapses after TBI, astrocytes may also promote epileptogenesis [46].  As with 

microglia, astrocytes have duplicitous role in TBI pathology. And again genetic studies in 

mouse models are beginning to elucidate whether these cell types provide net benefit or 

detriment. An elegant genetic study in a mouse model of TBI showed exacerbated tissue 

loss with ablation of reactive astrocytes [49]. All together evidence points to a net 

protective role for reactive astrocytes in TBI. 
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While activation of resident neuroglia occurs almost instantaneously after TBI, in 

the subsequent hours and days peripheral immune cells are also recruited to the site of 

injury. The recruitment of peripheral immune cells is a result of several factors, increased 

permeability of the BBB, secretion of cytokines and chemokines by neural cells, and 

increased expression of adhesion molecules. The integrity of the BBB relies on tight 

junctions between epithelial cells and is reinforced by astrocytic end-foot processes [50]. 

After TBI the BBB is damaged by both primary and secondary injury mechanisms. 

Mechanical forces can affect the physical integrity of the BBB and activation of 

astrocytes can reduce their contribution to the stability of the BBB [51]. The leakiness of 

the BBB allows for infiltration of peripheral immune cells and these cells are attracted to 

the lesion site by cytokines and chemokines secreted by brain resident cells. Primary 

among TBI induced chemokines are CXCL8, CCL2, CXCL12, CXCL10, CX3CL1, and 

CCL5, though this is not a complete list [28]. In addition to permeability and increased 

chememotactic agents, adhesion molecules are upregulated by TBI. Adhesion 

molecules, such as glycoproteins and intergrins are upregulated by cytokines IL-1β, 

TNFα, and IL-6 [52]. Together BBB permeability, chemoattractants and adhesion 

molecules result primarily in recruitment of neutrophils and mononuclear cells, though 

small populations of T cells and natural killer cells call also be detected after TBI [28].  

Neutrophils arrive at the lesion site within 12 hours of injury [53], while peak 

levels of mononuclear cells are found 3 days after injury [54]. Tissue destruction after 

TBI is predominately due to neurotrophils and this cell type causes significant toxicity 

through respiratory burst [55]. However, attempts to block neutrophil accumulation have 

not shown any benefit in animal models of TBI [56-58]. Therefore focus has shifted to 

targeting monocyte recruitment. One chemokine, chemokine receptor target for 

intervention in monocyte infiltration into the brain is CCL2/CCR2. Early studies targeting 
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the CCL2/CCR2 chemokine and receptor axis have shown both histological and 

functional improvements in rodent models and reduced monocyte levels in the brain [59, 

60]. While other chemokine and chemokine receptor systems are altered after TBI in 

humans and in rodent models, their functions in TBI are not well studied. Of note are 

CXCL10 and CCL5, which are elevated after TBI. Both CCL5 and CXCL10 are known to 

play a role in T-cell recruitment, but their importance for TBI pathophysiology is still 

unknown [28].   

 Taken as a whole the immune response to TBI has several distinct elements 

that are highly interconnected. The release of DAMPs together with mechanical shear 

forces disrupts brain homeostasis, this sets off the activation of resident glia which 

secrete a suite of cytokines, chemokines, reactive oxygen species, proteases, and 

growth factors. These factors, particularly chemokines, recruit peripheral immune cells to 

cross the damaged BBB. Once in the brain, these neutrophils, monocytes, T cells and 

dendritic cells assist in clearing damaged tissue and preventing infection, meanwhile 

releasing neurotoxic inflammatory cytokines and reactive species that further exacerbate 

neuronal injury. In rodent models genetically ablating or targeting different molecules or 

cell types within this orchestral production has a variety of effects. Reducing microglial 

activation generally improves outcomes, while inhibiting reactive astrocytes worsens 

them. Inhibiting neutrophil migration and infiltration seems to have little effect, but 

targeting monocyte recruitment reduces neurological deficits. It is evident that 

inflammation following TBI has a large impact on TBI pathophysiology. A clearer 

understanding of the role of individual cell types and molecules in the inflammatory 

response to brain injury may provide potential therapeutic targets for TBI.  

 

1.1.2 Long-term consequences of TBI  
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While therapeutic strategies are currently focused on the acute period after TBI there are 

millions of people in the U.S. alone already living with long-term disabilities related to a 

TBI [8, 61]. A 2008 literature survey by the National Academy of Sciences concluded 

that there was a strong association between moderate to severe TBI and dementia, 

Parkinsonism, endocrine dysfunction, growth hormone insufficiency, depression, anxiety, 

aggression, and social dysfunction [62]. TBI is also associated with an increased risk of 

epilepsy [63]. A moderate to severe TBI increases the odds of developing a psychiatric 

illness 4 fold in the following 6 months [64]. Among psychiatric disorders depression is 

the most common, with estimates that 33% of TBI patients experience depression [65]. 

Moreover, TBI is often associated with aggression, social isolation, and joblessness [66, 

67]. It is likely that these outcomes are linked to increased impulsivity observed in TBI 

patients [68]. While most of the available literature draws strong associations with severe 

and penetrating injuries and subsequent neuropsychological dysfunction we now know 

that repeated mild concussions can also produce increased aggression, motor 

dysfunction, and suicidality, now recognized as chronic traumatic encephalopathy (CTE) 

[69-71]. A handful of recent reports have also identified increased levels of Attention-

deficit/hyperactivity disorder ADHD in both children [72] and adults [73]. There is no 

doubt that TBI can have negative life long consequences which cause great burdens to 

the individual, their families, and society as a whole. However, the pathophysiology 

behind these long-term neuropsychological changes and increased risk of 

neurodegeneration is only beginning to be understood.  

 The pathological hallmark of CTE is progressive tauopathy [71]. Many 

neurodegenerative diseases are considered tauopathies, most prominent among them 

Alzheimer’s disease [74]. One marked difference between Alzheimer’s pathology and 

that of CTE is the localization of tau tangles. While in Alzheimer’s disease these 

pathological features are found concentrated in the hippocampus, in CTE they are found 
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in the sulci, superficial cortical layers, and often in a perivascular arrangement; all points 

of mechanical trauma. Recent work by Johnson et al. Identified tau and amyloid-β 

pathology in post-mortem brains decades after a single TBI [75]. This work suggests that 

tau accumulation may contribute to the cognitive dysfunction and neurodegeneration 

associated with a single TBI, not only repetitive mild TBI as seen in CTE. Aside from tau 

deposition, pathological hallmarks of long-term survivors of TBI are reactive microglia 

and white matter degeneration that persists for as long as 18 years after a single TBI 

[76]. It is unclear whether the inflammatory response causes the white matter 

degeneration, or vise versa and what relationship both may have to tauopathy in 

survivors of TBI.  

Interestingly, inflammation is associated with both neuropsychological 

dysfunction and neurodegeneration outside the context of TBI [77]. It is generally 

accepted that inflammation can cause or exacerbate not only depression, but anxiety, 

and schizophrenia [78-81]. Early studies of the link between inflammation and 

depression after TBI show that inflammatory markers may be associated with risk of 

post-traumatic depression [82, 83]. Further mechanistic and epidemiological studies are 

necessary to understand the link between persistent neuroinflammation and post-

traumatic neuropsychiatric dysfunction. 

 

1.1.3 Modeling of TBI in rodents 

To date there are no drugs proven in clinical trials to ameliorate the effects of TBI. In 

order to discover novel drug targets and test the efficacy of therapeutic approaches pre-

clinical models are necessary. While some models in large mammals such as pigs are 

being developed to better replicate the mechanical features of the human brain, most 

pre-clinical studies are performed in rodents. In general, rodent models replicate 

pathological features of human TBI including reactive glia, peripheral cell infiltration, 
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contusion, edema, hemorrhage, and white matter damage. Rodent models of TBI can 

also recapitulate some of the behavioral and cognitive changes observed in TBI patients. 

One difficulty in any clinical study of TBI is the heterogeneity of injuries found in patients. 

Injuries can be caused by different types of impact with differing amounts of force and be 

localized to different areas of the brain. To represent these diverse injury types a large 

number of animal models have been developed.  

While subtle variations of each model exist four primary models are prominent in 

the field. These are the fluid percussion injury (FPI), controlled cortical impact (CCI), 

weight-drop, and blast models [84]. For the FPI model a craniotomy is performed to 

expose the dura and then a fluid reservoir is placed into the opening and struck with a 

pendulum [85]. The CCI model also employs a craniotomy, but is followed by a 

mechanical impact driven pneumatically or electromagnetically [86]. Relative to the FPI, 

CCI offers more control of injury parameters and thus injury severity. The depth, dwell 

time, and speed of the impact can be controlled with a CCI injury, while only the height 

of the pendulum can be adjusted in the FPI model. One commonality of FPI and CCI is 

the use of both unilateral and bilateral injury models. Interestingly, unilateral injury 

models tend to consistently injure the left hemisphere, most often in the parietal 

sensory/motor cortex. While there does not seem to be any compelling reason for this 

practice, it is standard in the field. Our studies utilized the CCI model to create a 

unilateral injury to the parietal cortex (Fig 1.2) In contrast to FPI and CCI, the weight 

drop model can be either an open or closed head injury. One draw back of this model is 

its use of a gravity driven weight dropped down a guide. Therefore, the mechanical 

parameters can only be altered by changing the height at which the weight is dropped. 

One advantage of this method is the ability to model closed head injury in human 

patients and produce varying degrees of diffuse axonal injury. Blast injury models are  
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Figure 1.2 
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Figure 1.2 Description of controlled cortical impact (CCI) model of TBI. Mice are 

anesthetized and placed in a sterotactic frame. A craniotomy is performed exposing the 

intact dura. A piston driven by either air pressure or electromagnetic force is used to 

impact the brain. The speed, depth, and dwell time of the piston can be adjusted to 

create different severities of injury. This injury can be either unilateral of bilateral 

depending on placement of the craniotomy. Depending on injury severity CCI causes 

cortical or cortical and hippocampal tissue loss, shown here at 5 days after injury.  
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growing in popularity as these are able to mimic the diffuse axonal injury, changes and 

intracranial pressure, and cognitive deficits seen in human blast trauma [87, 88].  

Although these are the primary models, several lesser-used variations are worth 

noting. The penetrating ballistic-like brain injury is designed to have similar pathology to 

a gunshot wound or other projectiles with high energy and a leading shockwave [89]. 

Additionally a number of mild repetitive injury models have also been devised. One such 

model modified a closed-head weight drop approach, but used repeated mild impacts. 

Even this relatively mild trauma showed both histological and behavioral signs of brain 

damage [90]. The incredible diversity of human TBI is reflected in the many animal 

models of TBI. However, this diversity of models is also problematic for the field. 

Conducting reproducible animal behavior experiments across labs is already difficult 

[91], and in TBI research this issue is compounded by the fact that many labs have their 

own unique injury model. Differences in species and strain, gender, and age all add up 

to a large degree of variation in TBI outcomes. Therefore, finding a pharmacological or 

therapeutic approach that is effective across multiple models presents a high bar for pre-

clinical testing. The benefit of this high diversity is that it more accurately models the 

human condition and will hopefully lead to development of new agents that will prove 

effective in clinical trials. This is the goal of Operation Brain Trauma Therapy (OBTT), a 

consortium consisting of multiple TBI preclinical groups. The goal of this consortium is to 

test the efficacy of agents that have shown promise in pre-clinical testing across a large 

number of models and institutions to identify the most promising candidates for clinical 

trials [92].  

In addition to a large diversity of injury models, there are also a myriad of 

outcome measures used by various laboratories. The main themes among these 

measures are lesion size, motor dysfunction, and cognitive dysfunction (Fig 1.3). Several 

of the injury models mentioned above result in brain tissue loss that can be measured  
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Figure 1.3 
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Figure 1.3. Outcome measures for clinical and pre-clinical testing at different 

phases after TBI. Several outcome measures are available to measure deficits in 

patients after TBI. However, the Glagow Outcome Scale is by far the most common for 

clinical trials. In rodent models of TBI outcome is measured primarily during the acute 

(hours to days) and sub acute (weeks) phases and relies heavily on motor function. Both 

human clinical trials and mouse pre-clinical trials have struggled to show any 

improvement in TBI outcomes. One possible cause is the lack of sensitive outcome 

measures. In rodents, preclinical modeling of the chronic phase is still underdeveloped. 

Developing meaningful outcome measure for chronic TBI in rodents may provide a more 

representative model for the human condition.       
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histologically or by magnetic resonance imaging (MRI). Tissue loss, or lesions, are found 

in the FPI and CCI models and some versions of the weight-drop model, but are absent 

in blast injury. Tissue loss is a result of apoptosis and necrosis of brain tissue as well as 

destruction of tissue by immune cells. In these models, lesion size correlates to 

behavioral deficits [93, 94].  

Behavior assessment can occur anytime spanning the acute, sub acute, and 

chronic phases of TBI and most measures change dynamically within this time frame. 

The neurological severity score or NSS was developed as a counterpart to the Glasgow 

outcome scale, and has several iterations. Generally this is a mix of various motor skills, 

such as the ability to walk on various size beams, startle response, ambulation, hemi-

paresis. Other motor behaviors often used in the literature include beam walking tasks 

and rotarod testing [95]. The most common cognitive test used in TBI models is the 

Morris water maze, though novel-object testing and Barnes maze have also been used 

[96]. While there is a wealth of literature on lesion size, motor, and cognitive function in 

the acute (< 7 d) and sub-acute (7 d-28 d) time period, relatively little is know about the 

persistence of chronic (> 28 d) deficits in rodent models. Also, considering that 

neuropsychiatric dysfunction is linked to TBI, little is known about the presence of 

neuropsychological changes in TBI models, especially in the chronic period. 

Identification of depression, anxiety, impulsivity, or aggressive phenotypes in TBI models 

could not only provide a tool for testing treatment strategies, it would also provide insight 

into the pathophysiology of these conditions. For example, is inflammation related to 

post-traumatic depression? Does white matter degeneration contribute to 

neuropsychiatric dysfunction? Clearly, given the personal and economic burden of TBI 

associated personality changes and neuropsychiatric dysfunction this is an area 

demanding further research.  
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1.2 The biology of miRNAs 
 

The 1990s brought about several landmark discoveries regarding non-coding, 

but functional RNA. Xist RNA was shown to regulate X chromosome inactivation [97] 

and the first long non-coding RNA, murine H19 was discovered [98]. During this time, 

work in C. elegans uncovered that a crucial developmental gene, lin4, encoded a 22bp 

RNA that was responsible for post-transcriptional regulation of mRNA transcripts. Soon 

after several genes exhibiting this pattern emerged and were named microRNA (miRNA) 

for their small size. Lin-4, the first miRNA discovered, shows many features that we now 

understand to be typical of miRNA. Lin-4 regulates lin-14 through anti-sense sequences 

in the 3’ UTR of lin-14, but does not decrease levels of Lin-14 transcript, suggesting that 

it prevents translation without causing mRNA degradation. Also, there are long (60 nt) 

and short (22 nt) gene products, which correspond to different stages of microRNA 

processing.  Since this initial publication more than 28,500 miRNA have been discovered 

in a wide variety of species (miRNbase.org) many, like let-4, are involved in 

development; however, miRNAs are known to regulate many diverse physiological 

processes. The essential nature of miRNAs is highlighted by the fact that mice lacking 

the Dicer enzyme necessary for processing miRNA die at embryonic day 7.5 [99]. 

The transcription and processing of miRNA is complex, and can be regulated at 

many levels.  Some miRNA genes are found within non-coding regions of host-genes, 

while others carry their own promoter sequences. RNA polymerase II is the primary 

polymerase for miRNA transcription. Once a miRNA is transcribed, the primary miRNA 

forms a stem-loop structure, which is cleaved within the nucleus by a multiunit complex 

containing Pasha and Drosha to form an ~70 nt pre-miRNA product [100]. Once 

exported from the nucleus, the pre-miRNA is further processed into its mature form by 

the enzyme Dicer as part of the RNA-induced silencing complex (RISC) loading complex 

(RLC). Aside from Dicer the RLC includes Tar RNA binding protein (TBP), protein 
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activator of of PKR (PACT) and Argonaut 2 (Ago2). After cleavage occurs and the 

mature miRNA is formed Dicer, TBP, and PACT dissociate from the RLC, leaving the 

active RISC, which mediates gene silencing [101]. RISC stabilizes the miRNA and helps 

guide it to complimentary sequences on target mRNA molecules. Once bound to its 

mRNA target miRNA induces either degradation or sequestration of the target transcript 

causing a reduction in protein production [102]. A single microRNA is capable of 

targeting hundreds of mRNA and a single mRNA can be targeted by multiple miRNA. 

This creates a highly complex system for regulating the proteome of the cell [103]. While 

this scenario represents the canonical view of miRNA function, the picture becomes 

increasingly complex with further investigation. Reports of miRNA increasing protein 

translation in certain circumstances [104] and regulating transcription in the nucleus 

[105] open the possibility for many nontraditional functions for these molecules. 

The expression of mature miRNA molecules can be regulated transcriptionally or 

at the stage of processing. Transcriptionally, miRNA can be regulated by the promoter 

sequences that control the host gene, or by independent promoters. Often miRNA are 

regulated temporally by negative feedback loops where the transcription factor inducing 

miRNA expression is also targeted by the miRNA. It is increasingly evident that post-

transcription regulation is essential to miRNA biology. Many molecules are known to 

both positively and negatively regulate Drosha, Dicer, and RISC complexes. For 

example, double stranded RNA binding proteins (dsRBP) such as DGCR8 and TRBP 

associate with these complexes and their levels affect the rate of miRNA processing. 

The stability of the miRNA is also regulated. Therefore, some stimuli and developmental 

processes can affect the levels of many microRNA simultaneously [100]. 

Levels of miRNA expression are highly dependent on cell type, creating a type of 

miRNA signature. When a cell transitions from one state to another is also shifts its 

miRNA profile. For example, shifts from a multipotent to a differentiated state are 



	   	   	  24 

accompanied by corresponding shifts in miRNA levels [106]. The same is true for 

changes in cells as they shift from healthy to diseased, from normal to cancerous [107], 

or from a resting to activated state [108]. In these cases miRNA may be acting to 

effectively shut off protein production of targets that are no longer beneficial for the new 

state of the cell [103]. In this way, one can conceptualize miRNA as important mediators 

of change in the biological world.  

 

1.2.1 Inflammation and miRNAs 

In the immune system, miRNAs are critical regulators of both immune system 

development and activation. Studies of miRNA knock-out mice have revealed roles for 

miRNA in the development of specific immune cell subsets [109]. Additionally 

inflammatory stimuli induce a specific subset of miRNA that can play pro or anti-

inflammatory roles by acting on cytokine signaling pathways. Disturbing the delicate 

balance between these pro and anti-inflammatory functions can on one side disable the 

immune system leaving the organism open to infection or on the other side create 

excessive inflammation leading to autoimmunity. We will cover the relevant inflammatory 

signaling pathways, then delve into their regulation by miRNAs. Subsequent sections will 

discuss the role of miRNAs in the regulation of neuroinflammation. 

The first phase of the innate immune response is recognizing possible 

pathogens. This is accomplished through the use of pattern-recognition receptors 

(PRRs) that recognize unique molecular motifs present in pathogens such as bacterial 

lipopolysaccharides. These molecular motifs are called pathogen associated molecular 

patterns (PAMPS). When PRRs bind PAMPs they alert innate immune cells such as 

macrophages and dendritic cells, inducing an inflammatory response. The most well 

characterized class of PRRs are the Toll-like receptors (TLRs) named after the Toll 

protein of drosophila. TLRs that are expressed both on the surface (TLR1-6 and TLR10) 
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of the cell and in the interior compartment of the endosome (TLR3 and TLR7-9). There is 

a large family of TLRs that can be subdivided into categories based on the type of 

PAMPS they recognize. TLR 1, TLR2, TLR4, and TLR 6 recognize lipids, while TLR3, 

TLR7, TLR8, and TLR9 recognize nucleic acids. Therefore one pathogen can stimulate 

multiple TLRs depending on which PAMPs it expresses. For example a virus expresses 

glycoproteins that can be recognized by TLR2 and TLR4, but also DNA, which 

stimulates TLR9 or RNA, which stimulates TLR3, TLR7, and TLR8. This diverse array of 

PRR/PAMP pairings ensures that there is a robust inflammatory response to a pathogen 

[110]. However, when tissue damage occurs, cells release components that are normally 

sequestered, these are termed damage associated molecular patterns (DAMPs) and 

they can also bind to TLRs. Intracellular protein, DNA, RNA, and nucleotides can all 

serve as DAMPs [111]. This system is the reason that tissue damage causes an 

inflammatory response strikingly similar to a pathogen. Practically speaking tissue 

damage, such as a cut, is often accompanied by an increased risk of infection. This 

association may be the underlying evolutionary reason for ability of PRRs to recognize 

DAMPs. The ability of DAMPs to elicit an immune response is not without drawbacks. 

Recently associations have been made between chronic inflammatory conditions and 

DAMPs. A small list includes arthritis [112], psoriasis [113], atherosclerosis, and 

systemic lupus erythematosus [114], though others are being added with increasing 

frequency. As discussed here, TLR signaling was first characterized in the peripheral 

immune system, but these receptors and signaling pathways are also present in nervous 

system infection and damage [115]. In TBI specifically, TLRs are expressed on both 

resident and invading immune cells, which respond to DAMPs such as heat shock 

protein 70 (HSP70) released from neurons and other damaged cells in the brain [116]. 

Laird et al. showed that the DAMP high mobility group box protein-1 (HMGB1) 
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exacerbates TBI associated edema [117]. Therefore, TLRs and TLR signaling pathways 

show promise as therapeutic targets for TBI.  

 Once a DAMP or PAMP binds to a TLR, one or more adaptor proteins is 

recruited to the intracellular portion of the TLR. The four know adapters are MyD88, 

TRIF, TRAM and Mal. All TLRs are capable of interacting with MyD88, the first adapter 

discovered. Down stream of these adaptor proteins are pro-inflammatory transcription 

factors, primarily NF-κB. MyD88 dependent signaling from TLR2, TLR4, and TLR5 

results in pro-inflammatory gene expression, while TLR7 and TLR9 MyD88 dependent 

signaling specifically induces type I IFN production [110].  

 Profiling studies of miRNA during the immune response has shown that many 

miRNAs are induced by TLR signaling. The primary miRNA induced by TLR signaling 

are miR155, miR-146, and miR-21, but several others have also been cited [118]. The 

expression of these miRNAs seems highly dependent of NF-κB, but changes in miRNA 

processing may be an additional layer of regulation [119]. Once miRNAs are induced by 

TLR signaling they target various levels of the pathway. miRNAs can target TLR 

signaling proteins, transcription factors, regulators, downstream cytokine products, and 

even TLRs themselves. Generally speaking the role of several miRNAs in TLR signaling 

is to provide feed-back inhibition. TLRs stimulate NF-κB, which induces mRNA 

expression. Mature miRNA bind to the mRNA of signaling proteins and transcription 

factors involved in TLR signaling. As proteins are turned over, without active translation 

of target miRNA levels gradually decrease, thereby contributing to the resolution of 

inflammation. Two signaling molecules, IRAK1 and TRAF6, involved in MyD88 

dependent responses are directly targeted by miR-146. Therefore miR-146 expression 

reduces MyD88 dependent TLR signaling [120]. Similarly miR-155 directly targets TAB2, 

an important downstream signaling molecule of TLRs that induces the MAPK pathway 

[121]. Several important downstream transcription factors of TLRs are also targeted by 
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miRNA. CCAAT/enhancer-binding protein-β (C/EBPβ) is a target of miR-155 [122, 123]. 

Alternatively, induction of miR-27b by NF-κB, leads to decreased levels of target 

proliferator-activated receptor-γ (PPARγ). PPARγ is anti-inflammatory and targeting by 

miR-27b would increase inflammatory signaling [124]. Additionally, the transcriptional co-

activator p300 is a target of miR-132 and is required for the induction of anti-viral genes 

[125]. While the general trend is for miRNAs induced by TLR signaling to provide feed-

back inhibition, there are some notable exceptions. Src homology 2 (SH2) domain-

containing inositol-5’-phosphatase1 (SHIP1) is a negative regulator of TLRs and also a 

target of miR-155, a TLR induced gene [126] [127]. Another important target of miR-155 

is suppressor of cytokine signaling 1 (SOCS1). SOCS1 inhibits the function of STAT1 an 

important transcription factor for type I, type II, and type III interferons. The complex 

nature of miRNA regulation of TLR signaling suggests that effects may be cell-type and 

context dependent. A summary of some of the targets and associated signaling 

pathways is shown in figure 1.4. In vivo studies using miRNA knockout mice are 

beginning to show the balance of pro and anti-inflammatory effects in TLR responses. 

Mice deficient in miR-146a have excessive pro-inflammatory responses to LPS causing 

a severe increase in lethality of an intraperitoneal injection of LPS and an autoimmune 

phenotype [128]. Alternatively, miR-155 knockout mice have diminished immune 

responses, which make them more susceptible to various infections [129, 130], but 

causes reduced tissue damage in injury models [131, 132]. Together studies on miR-155 

and miR-146 knockout mice herald a growing appreciation for the importance of miRNAs 

in the innate immune response. What role inflammation-associated miRNAs have in the 

regulation of immune responses in the brain is still being discovered and the expression 

and function of inflammation-associated miRNAs in TBI has not been characterized.  

 

1.2.2 Neuroinflammation and miRNAs 
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Figure 1.4 
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Figure 1.4 Roles for miRNAs in inflammatory signaling pathways. 

A limited diagram of the pattern recognition receptor (PRR) signaling and cytokine 

signaling pathways highlighting the role of miR-155 and miR-146 in modulating the 

immune response. Shown in green are miR-146 and its targets and shown in red are 

miR-155 and its target. Pathogen associated molecular patterns (PAMPs) and damage 

associated molecular patterns (DAMPs) bind to PRRs including the TLR family. TLR 

signaling is dependent on Myeloid differentiation primary response gene 88 (MyD88), 

interleukin-1 receptor-associated kinases (IRAKs), and TNF receptor associated factors 

(TRAFs).  Eventually the cascade initiated by the binding to the PRR induces activation 

of pro-inflammatory transcription factors such as nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) and adaptor protein 1 (AP-1). Activation of pro-

inflammatory transcription factors causes increased gene expression of pro-

inflammatory cytokines and other genes involved in the immune response. Cytokines 

can then bind to their cognate cytokine receptors and induce further signaling cascades. 

Many cytokines receptors are receptor tyrosine kinases which rely on janus kinase (JAK) 

and signal transducer and activator of transcription (STAT) for signal transduction.  The 

expression of miR-146 and miR-155 is also induced by NF-κB. IRAK and TRAF 

molecules are targeted by miR-146 leading to feed back inhibition of the PRR response. 

Alternatively miR-155 inhibits suppressor of cytokine 1 (SOCS1), an inhibitor of STAT1 

activation. Therefore miR-155 promotes the antiviral response induced by STAT1. P 

represents phosphorylation events. IFN, interferon; IL, interleukin; TNF, tumor necrosis 

factor. 
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Considering the widening base of literature on miRNAs in inflammation, comparatively 

less is know about the role miRNAs might play in the unique immune environment of the 

brain. Few reports have highlighted a role for miRNAs both in the activation of resident 

glia calls and the recruitment of immune cells to the brain. Cardoso et al. found that miR-

155 is induced by LPS in microglia [133], similar to what had been shown in  

macrophages [134]. They also validated that SOCS1 was a target of miR-155 in 

microglia and that miR-155 inhibition decreased levels of pro-inflammatory cytokines 

secreted by microglia. Additionally miR-155 increased levels of iNOS and contributed to 

the toxicity of microglial supernatants on cultured neurons. In vivo experiments on the 

superoxide dismutase 1 (SOD1) model of amyotrophic lateral sclerosis (ALS) ablating 

miR-155 restored aberrant microglia and prolonged survival [135]. Interestingly, 

Alzheimer’s 3x transgenic model showed upregulation of miR-155. Furthermore, 

induction of miR-155 in astrocytes and microglia treated with Aβ fibrils was mediated by 

C-Jun. Increased miR-155 in transgenic mice also correlated with a decrease in SOCS1 

levels [136]. Yet another study on alcohol induced neuroinflammation showed increased 

levels of miR-155 in the brain; in TLR4 knockout mice miR-155 was not induced. In miR-

155 knockout mice alcohol induced TNFα, CCL2, and Pro-1L-1β were decreased. In 

another report of miR-155 in neuoroinflammation, miR-155 was shown to regulate the 

alpha synuclein induced inflammatory response in a model of Parkinson’s disease [137]. 

Together these studies suggest a pro-inflammatory role for miR-155 in 

neuroinflammation, likely through inhibition of SOCS1 in microglia. Interestingly miR-155 

is important for inflammation induced deficits in neurogenesis. Microglial activation is 

balanced by two miRNAs. Expression of miR-155 polarizes microglia to an activated 

phenotype, while miR-124 promotes a resting phenotype. The expression of miR-124 is 

brain specific. Ponomarev et al. showed that in experimental autoimmune encephalitis, 
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an animal model of multiple sclerosis, miR-124 levles were decreased. Additionally, 

inhibiting miR-124 in microglia resulted in an activated phenotype [138]. However, 

studies in post-mortem brains from multiple sclerosis patients found increased levels of 

miR-124 in demyelinating hippocampi which targeted AMPA receptors. More functional 

studies are needed to understand the role of miRNA in regulation of microglial activation. 

It is possible that miRNAs like miR-124 may play alternative roles in different neural cell 

types, complicating the understanding of their overall role in the brain. Interestingly, 

although miR-155 is a known regulator of the peripheral immune response, miR-124 is 

brain specific, highlighting the fact that there may be important differences between 

miRNA regulation of the peripheral immune system and neuroinflammation.  

 Although microglia are the primary immune cells of the brain, astrocytes also 

become activated by an immune challenge. In astrocytes miR-146 is induced by pro-

inflammatory cytokines and serves as a negative feedback mechanism to lower the 

levels of pro-inflammatory cytokines. Levels of miR-146 correlated negatively with 

protein expression of IRAK-1 [139]. Work by Tarassishin et al. also points to a role for 

miR-155 in astrocyte responses [140]. As in most other cell types, miR-155 in astrocytes 

is pro-inflammatory and causes down regulation of SOCS1. In summary, both miR-146 

and miR-155 have roles in regulating the inflammatory response to astrocytes and these 

roles reflect their function in the peripheral immune response. Interestingly, miR-21 is 

also involved in the astrocytic response to injury, promoting hypertrophy after spinal cord 

injury [141]. The body of research on miRNA regulation of the astrocytic response to 

injury is still very small. Whether additional research will identify unique miRNA involved 

in the astrocytic response remains to be seen. 

 In addition to regulating the inflammatory response of glial cells, a small number 

of reports have also identified roles for miRNAs in the recruitment of peripheral immune 

cells. In one study TNFα induced expression of miR-17 and miR-126. These miRNAs 
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targeted adhesion molecules E-selectin and ICAM1 respectively. Reduction in E-selectin 

and ICAM1 by miR-17 and miR-126 lead to decreased endothelial adhesion of 

neutrophils [142]. This suggests an interesting feedback loop that self-limits the 

recruitment of neutrophils to sites of injury or inflammation. Neutrophils are recruited to 

the brain after TBI [28], so miRNAs that regulate this process may be relevant to TBI. In 

the periphery it has been shown that CCL2 is  also target for miR-126, affecting 

macrophage recruitment [143]. If miR-126 regulated CCL2 in the brain, it may be a 

mechanism for reducing monocyte recruitment and subsequent inflammation. Overall, it 

is clear that miRNAs do have roles in neuroinflammation. As in the peripheral immune 

response miR-155 acts as a proinflammatory miRNA, while miR-146 has an anti-

inflammatory effect. However, the neural immune response is not identical to that of the 

periphery and involves additional players, such as miR-124. While knowledge about 

miRNA regulation of neuroinflammation is still sparse, it is a growing area of research 

that holds promise for enhancing our understanding of neuroinflammation. 

 

1.3 TBI and miRNAs 

At this time, 6 miRNA profiling experiments have been performed in animal models of 

TBI [144-149]. While all of these studies identified changes in miRNA after TBI, the 

specific model and time course of each study varied. Consequently there was very little 

agreement on miRNA expression between the studies. Additionally, most did not 

perform any functional studies of miRNA in TBI. One notable exception has been the 

emerging functional role for miR-21 in TBI. Elevated expression of miR-21 was found in 

four of the profiling experiments [144, 145, 147, 148]. Redell et al. showed that levels of 

miR-21 targets PDCD4 and Tiam1 showed an inverse relationship with miR-21 

expression after TBI [150]. In an in vitro model of TBI, primary cortical neurons exposed 

to scratch injury exhibited elevated levels of miR-21, which had a neuroprotective effect. 
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Increasing miR-21 decreased PTEN, a negative regulator of the Akt cell survival 

pathway [151]. Additionally, increasing levels of miR-21 in TBI using an miR-21 agomir 

improved motor and cognitive function as well as reducing lesion size. Increasing miR-

21 reduced apoptosis and increased angiogenesis likely through regulation of the Akt 

pathway [152]. Expression of miR-21 also increased BBB integrity [153]. These studies 

point to a critical neuroprotective role for miR-21 in TBI. Interestingly, both exercise and 

aging affected the expression of miR-21 after TBI. For example, aged mice show 

decreased induction of miR-21 and increased levels of targets PTEN, PDCD4, TIMP3, 

and RECK [154]. This suggests that decreased miR-21 induction during aging may 

contribute to worse prognosis for TBI recovery with increasing age. Conversely exercise 

improves TBI outcomes, which is associated with increased levels of miR-21. Altogether 

miR-21 seems to be a promising target for improving TBI recovery. However, the 

delivery and pharmacokinetic properties of miRNA remain challenging, so future work on 

miR-21 in TBI will need to take into account these factors. 

 While the function of other miRNAs in TBI has not yet been evaluated, some 

factors do alter miRNA expression after experimental TBI. For example hypothermia 

increases levels of miR-874 and miR-451 [155]. Given that hypothermia is protective 

after TBI [156, 157], these temperature sensitive miRNA may play a role in the beneficial 

effect of hypothermia on TBI outcomes. Interestingly, two miRNAs are upregulated in 

mitochondria after TBI. These were miR-223 and miR-155, both of which have known 

roles in inflammation [158].  

 Another area of active research regarding miRNA and TBI is the search for 

biomarkers. The TBI field is still in need of novel biomarkers, preferably ones that are 

unique to TBIs, which are commonly accompanied by peripheral injuries, and can predict 

TBI outcomes [159].  Early studies indicate that serum levels of miR-16, miR-92a, an 

miR-765 can predict both mild and severe TBI in human patients [160]. Studies in a rat 
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model of blast induced TBI identified increased levels of let-7i in both the CSF and in 

serum, suggesting that let-7i is a likely candidate for further biomarker studies in blast 

induced TBI. 

 Though the functional roles of miRNA in TBI are just beginning to be uncovered, 

miR-21 is a striking example of a miRNA that can alter TBI outcomes. Profiling 

experiments have shown that miRNA levels are altered by TBI in mouse models, but the 

function of these miRNAs in TBI is largely unknown. Functional experiments on miRNA 

in TBI could lead to a better understanding, not only of the pathophysiology of TBI, but 

also the importance of miRNAs in neurological disorders.  

 

1.4 Overview 

TBI is a prominent health concern, with a large burden on society. The effects of TBI on 

an individual can be devastating and life long. Even in the absence of physical or 

cognitive disability, neuropsychological impairment can result in social exclusion and 

joblessness. Many recent advances in trauma care have improved survival and TBI 

outcomes. However, despite significant efforts in TBI research, no pharmacological 

strategies have been proven to provide therapeutic benefit after TBI. There is an urgent 

need for identification of new drug targets that could alter TBI outcomes.  

 Inflammation plays a critical role in TBI pathophysiology. The activation of 

resident glia by DAMP released from damaged tissue and the recruitment of peripheral 

immune cells to the brain provides many possible levels of therapeutic interventions. 

One class of molecules that has an important regulatory role in both neuroinflammation 

and peripheral immune responses are miRNAs. These post-transcriptional regulators 

can serve to augment or restrict the inflammatory response. Levels of miRNAs are 

altered following TBI and at least one miRNA has been shown to alter TBI outcomes in 

animal models. Further studies on the role of miRNAs, and inflammation-associated 
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miRNAs in particular, will further our understanding of TBI, neuroinflammation, and 

miRNA function and could provide novel therapeutic targets for TBI.  
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Chapter 2: Materials and Methods 
 

2.1 Animals: Mouse strains used are described in Table 2.1. Mice were fed ad libitum 

and housed with a 12 hour light-dark cycle. All procedures and protocols were approved 

by the Institutional Animal Care and Use Committee of the University of Nebraska 

Medical Center and conducted in accordance with the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals. 

 

2.2 Controlled cortical impact (CCI): CCI surgery was similar to previous reports [161, 

162]. For all experiments seven to nine week-old male mice were anesthetized using 

inhaled isofluorane. For long term behavioral studies (Chapter 7) mice were injected IP 

with 3 µg buprenorphine for analgesia before surgery. For all experiments mice were 

given 3.75 µg bupivacaine SC at the incision site prior to surgery for analgesia. Once 

anesthetized the head of the animal was shaved and placed in a Kopf stereotactic head 

frame. During surgery anesthesia was maintained with 2% inhaled isofluorane. An 

incision was made in the scalp and a 4-mm trephine was used to mark the skull 1 mm 

from the midline midway between lambda and bregma  on the left side. A drill was then 

used to create a craniotomy. The impact was delivered by a Precision Systems and 

Instrumentation TBI-0310 (Fairfax Station, VA) at a 45° angle from the midline. For all 

injuries the speed was set to 3.5 m/s with a dwell time of 200 ms. In order to represent 

different injury severities different depths of injury were used 0.5 mm (moderate) or 1.0 

mm severe. After injury a 4 mm square of Surgicel (Johnson & Johnson, Dallas) was 

placed over the injury site, the removed skull was replaced and adhered with dental 

cement. The wound was closed with tissue clips and mice were placed on a warming 

pad until they regained sternal decumbency. For sham controls craniotomy was 

performed, but no impact was delivered. Naïve animals were not exposed to surgery,  
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Table 2.1 Information regarding mouse stains 
 

  

Mouse  Strain Supplier Background  Controls Origin  

Wild type C57Bl/6 Charles River, 
Wilmington 

C57Bl/6 Na Na 

miR-155 
KO 

B6.Cg-
Mir155tm1.1Rsky/J  

Jackson Laboratory, 
Bar Harbor  

C57Bl/6 C57Bl/6 Rajewsky 
[163] 

miR-21 
KO 

129S6-
Mir21tm1Yoli/J 

Jackson Laboratory, 
Bar Harbor 

C57Bl/6 and 
129S 

WT littermates 
or offspring of 
WT littermates 

Li 
[164] 

miR-21 
knock-out 
first 

Mir21atm1Mtm 

 

Jackson Laboratory, 
Bar Harbor  

Mixed Na McManus 
[165] 

FLP  ROSA26::FLPe 
knock in 

Jackson Laboratory, 
Bar Harbor 

C57Bl/6 Na Raines and 
Wilson 
[166] 
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drugs, or anesthesia. For long-term experiments (Chapter 3) sham, moderate, and 

severe animals were administered 3 µg buprenorphine every 8-12 hours for 48 hours 

post surgery. Animals were randomly chosen for each condition. 

 

2.3 Collection of hippocampal tissue for RNA and protein isolation: Animals were 

sacrificed at the indicated times by isofluorane overdose followed by decapitation. Brains 

were removed from the skull and the left and right hippocampi dissected. Samples were 

frozen in liquid nitrogen and stored at -80°C until RNA isolation was performed. One mL 

Trizol (Life Technologies, Carlsbad) was added to each hippocampus and samples were 

homogenized at RT for 5 sec. RNA and protein were then purified as described below. 

 

 2.4 RNA and protein isolation: Tissue or cells were homogenized in Trizol (Life 

Technologies, Carlsbad), followed by addition of 200 µL of chloroform to each sample. 

Samples were shaken and incubated at RT for 2 min, and centrifuged for 15 min at 

12,000 x g at 4°C. The aqueous phase was removed and RNA was precipitated with 

isopropanol. To pellet RNA samples were centrifuged for 10 min at 12,000 x g at 4°C. 

The supernatant was removed and pellets were washed with 75% EtOH. After air drying 

the RNA pellet was resuspended in RNase free water and analyzed by NanoDrop 8000 

(Thermo, Waltham) to determine purity and concentration. To isolate protein the phenol 

phase above was used. First 300 µL of 100% EtOH was added to precipitate DNA and 

sample was centrifuged 5 min at  7,500 x g and 4°C. The supernatant was then removed 

and stored at -80°C until protein isolation was performed. 2 mL of 0.3 M GuHCl in 95% 

EtOH was added and the sample and incubated fro 20 min at RT then centrifuged at 

7,500 x g for 5 min at 4°C. The protein pellet was washed three times in GuHCL and 

once with 100% EtOH then air dried and resuspended in 4% SDS, 100 mM Tris/HCL, 

0.1 M DTT pH = 7.6. Samples were sonicated and centrifuged at 10,000 x g for 10 min 
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at 4°C. Protein samples were stored at -80°C. Protein quantification was performed with 

Pierce 660 nm protein assay (Thermo, Waltham) according to manufacturers directions. 

 

2.5 cDNA synthesis and real time PCR: For miRNA qPCR TaqMan MicroRNA and 

Gene Expression Assays (Thermo, Waltham) were used for cDNA synthesis and real 

time PCR according to manufacturers instructions. For mRNA cDNA synthesis 

SuperScript III Reverse Transcriptase (Life Technologies, Carlsbad) was used according 

to manufacturers directions. TaqMan Gene Expression Assays (Thermo, Waltham) were 

used for qPCR fro mRNA. To normalize gene expression snRNA U6 and GAPDH were 

used for miRNA and mRNA analyses respectively. Real time PCR and Ct determination 

was performed using a One Step StepOne Real-Time PCR System (Thermo, Waltham). 

Fold change was calculated using the delta-delta Ct method. (2 ^ -((CtmiRNA – CtU6)exp -

(CtmiRNA – CtU6)control )) or (2 ^ -((CtmRNA – CtGAPDH)exp -(CtmRNA – CtGAPDH)control )). A minimum 

of three biological replicates was used for all experiments. Values are reported as the 

mean ± SEM. Statistical analysis was determined using Ct values or fold change where 

appropriate. For experiments with multiple variables statistical analysis was performed 

using two-way ANOVA, test statistic .05 followed by Bonferroni post hoc testing. For 

experiments with more than two conditions one-way ANOVA was used, test statistic .05, 

followed by Dunnett’s Multiple comparison test. When comparing two conditions a 

student’s T-test was used, test statistic, .05. Matching was used where appropriate when 

samples were obtained from the same donor or the same animal.  

 

2.6 SDS-PAGE and Western Blot: Protein samples were loaded onto a 4-12% bis-tris 

gel and transferred to a nitrocellulose membrane using a semi-dry transfer. The 

membrane was blocked and incubated overnight at 4°C with primary antibodies (see 

table 2.2 for antibody sources and concentrations). After washing secondary antibodies  
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Table 2.2 Antibody information 
 
Antigen Manufacturer Host species Dilution 
For immunostaining  
Iba1 Wako Rb 1:500 
GFAP Dako Rb 1:500 
MAP2 (for ICC) Sternberger Ms 1:1000 
MAP2 (for IHC) Abcam Ckn 1:1000 
Synaptophysin Synaptic Systems Ms 1:1000 
SMI-32 Sternberger Ms 1:1000 
SOX2 Millipore Rb 1:1000 
Nestin Millipore Ms 1:1000 
For Western  
P-STAT3 (Y705) Cell Signaling Rb  1:2000 
STAT3 Millipore Rb 1:1000 
PTEN Cell Signaling Rb 1:1000 
P-Akt (Ser 473) Cell Signaling Rb 1:1000 
Akt 1/2/3 Santa Cruz  Rb 1:1000 
SOCS1 Thermo Rb 1:1000 
Caspase 3 Cell Signaling  Rb 1:1000 
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were incubated for 1 hour at RT. For peroxidase secondary antibodies ECL substrate 

was used to develop the membrane, imaging and analyses was performed using a 

Carestream Imaging system (Carestream, Rochester). For secondary antibodies labeled 

with infrared dyes, imaging and analysis was performed with an Odyssey Imaging 

System (LI-COR, Lincoln). Significance was calculated using a student’s T-test, test 

statistic .05. 

 

2.7 Histology on formalin fixed paraffin embedded tissue: Animals were sacrificed at 

indicated times after injury. Brains were removed and fixed in 4% paraformaldehyde. 

overnight, paraffin embedded, and cut into 5-µm slices using a microtome. Before 

staining slides were warmed to 60°C for one hour then allowed to cool. Slides were 

cleared with xylene then dehydrated through graded ethanol washes.  

 

2.7.1 Luxol fast blue staining: After hydration to 95% ethanol slides were stained with 

filtered 0.1% Luxol fast blue in a solution of 0.5% acetic acid at 60°C overnight. The next 

day slides were rinsed in 95% ethanol followed by distilled water then differentiated in 

0.05% lithium carbonate for one min and 70% ethanol for 1 min. Slides were 

counterstained with 0.5% cresyl violet for 30 min at 60°C, rinsed in distilled H2O, and 

differentiated in 95% ethanol for 5 min. Coverslips were mounted using Cytoseal 

(Thermo, Waltham). Slide scanning was performed by the UNMC tissue sciences facility 

using a Ventana’s Coreo Au Slide Scanner at 40x magnification.  

 

2.7.2 Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL): 

ApopTag Peroxidase In situ apoptosis detection kit (Millipore, Temecula) was used for 

TUNEL staining according to manufacturer’s directions in conjunction with TSA plus 

cyanine 5 kit (PerkinElmer, Waltham). Briefly, hydrated slides were treated with 20 
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µg/mL proteinase K, then terminal deoxynucleotidyl transferase (TdT) was used to 

transfer digoxigenin (DIG) labeled nucleotides onto fragmented DNA. The tail of DIG 

labeled nucleotides was then detected using an anti-DIG antibody conjugated to 

peroxidase. A TSA plus cyanine 5 kit (PerkinElmer, Waltham) was used to develop the 

fluorescent stain. Coverslips were mouned onto slides using prolong Gold Antifade 

Mountant with DAPI (Life Technologies, Carlsbad) and imaged using a Zeiss 

Observer.Z1 microscope. 

 

6.7.3 Immunohistochemistry: Staining was performed as described by Yelamanchili et  

al. [167]. Tissue was hydrated with a graded alcohol series. Antigen retrieval was 

performed with citrate buffer pH 6 at 90° C for 40 min and washed. Tissue was blocked 

in a solution of 1% BSA and 3% NGS in PBS, and incubated with primary antibody 

overnight at 4°C. Primary antibodies used are described in Table 2.2. The following day 

tissue was washed with TBS and incubated with 3% H202 in PBS for 10 min. After 

thorough washing tissue was incubated with anti-Rabbit secondary labeled with a 

peroxidase enzyme (ImmPRESS, Vector labs, Burlingame) for one hour, rinsed, and 

developed with DAB Plus substrate system (Thermo, Waltham) for 10 min. Tissue was 

then washed with TBS, stained with haematoxylin, and dehydrated. Coverslips were 

mounted with cytoseal (Thermo, Waltham).    

 

2.7.4 In situ hybridization: In situ hybridization procedure was similar to that described 

by Chaudhuri et al. [168] Care was taken at all steps to avoid RNase contamination and 

solutions were all made with Diethylpyrocarbonate (DEPC) treated water. Tissues were 

first cleared with xylene and hydrated with a graded ethanol series, and then citrate 

antigen retrieval was performed. To crosslink miRNA and improve stability, tissue was 

treated with 0.16 M ethylcarbodiimide (EDC) in 0.13 M 1-methylimidazole, 300 mM NaCl 
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pH 8.0. After several washes, tissue was incubated in hybridization buffer (50% 

deionized formamide, 10 mL Tris-HCl, .25% SDS, 1 x Denhardt’s solution, 600 mM 

NaCl, 1 mM EDTA and 200 µg/mL yeast tRNA) at 37°C. Afterwards, tissue was 

hybridized with 5’ and 3’ digoxin labeled locked nucleic aced probes (Exiqon,Vedbæk) at 

a concentration of 4 pM per 100 µM overnight at 37°C. Tissues were then washed with 2 

x and .2 x saline sodium citrate buffer at 42°C. To quench endogenous peroxidase 

tissues were treated with 3% H2O2 in PBS for 10 min. After thorough washing tissue was 

blocked with 1% bovine serum albumin (BSA) and 3% goat serum in phosphate buffered 

saline (PBS). Tissues were incubated at 4°C overnight with anti-digoxigenin-POD, Fab 

fragments (Roche, Basel) at a concentration of 1:100. In experiments where dual 

immunohistochemistry and in situ hybridization were used antibodies to cell-type specific 

markers were included in the overnight incubation. Antibodies used were MAP2 (Abcam, 

Cambridge) (1:1000), GFAP (Dako, Brasschaat) (1:500) and Iba1 (Wako, Kampenhout) 

(1:500). Corresponding Alex Fluor secondary antibodies (Invitrogen, Carlsbad) were 

incubated for one hour. Afterwards the peroxidase signal was amplified using the TSA 

plus cyanine 5 (PerkinElmer, Waltham). Tissues were stained with DAPI and coverslips 

mounted with proLong Gold Antifade Mountant with DAPI (Life Technologies, Carlsbad) 

and imaged using a Zeiss Observer.Z1 microscope. 

 

2.8 Cryosectioning: At indicated times after injury animals were anesthetized with 

isofluorane followed by transcardial perfusion. First animals were perfused with PBS with 

2.5% sucrose. Then animals were perfused with 4% paraformaldehyde (PFA), 2.5% 

sucrose, and PBS. After perfusion brains were post-fixed in 4% PFA with 2.5% sucrose 

in PBS. After 24 hours brains were transferred to 30% sucrose and stored at 4°C until 

they sunk, ~3 days. Brains were frozen using 2 methyl butane on dry ice and stored at -

80°C until they were sectioned on a cryostat. A 4 mm coronal section, including the 
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injury site was sectioned into 50 µM slices and every fifth section was collected in 0.1 M 

phosphate buffer.  

 

2.9 Fluoro-Jade C staining: Free-floating cryosections were mounted on gelatin coated 

slides and air dried overnight. Slides were incubated in .06% potassium permanganate 

followed by .0001% Fluoro-Jade C (Histochem, Jefferson) and .0001% DAPI (Sigma, St. 

Louis) in 1% acetic acid. Tissue was then dried in a 60°C oven and incubated in zylene 

for 1 min, then coverslips were mounted with DPX (Sigma, St. Louis). A Zeiss 

Observer.Z1 microscope was used for imaging. Three slices between bregma -2.5 and -

1.5 were imaged for quantification. For cortex three images were taken in the boundary 

zone for each slice. For the hippocampus each of the three slices per slide images were 

taken of the dentate gyrus, CA3, and CA1 regions. Fluorojade C positive cells were 

counted using Image J[169] by a blinded observer. The average number of fluorojade 

positive cells per slice is reported. Significance was calculated using a student’s T-test, 

test statistic .05. 

 

2.10 Immunohistochemisty: Free-floating cryosections were incubated with 3% H2O2 

to quench endogenous peroxidase. After thorough washing sections were blocked with 

10% NGS + 0.3% TX in PBS. Tissues were incubated with Iba1 (Wako, Kampenhout) (1:500) 

in 0.3% TX +3% NGS in PBS at 4°C overnight. ImmPRESS HRP Anti-Rabbit IgG (Vector labs, 

Burlingame) was used as a secondary and DAB Plus substrate system (Thermo, Waltham) was 

used for developing. Sections were then mounted on gelatin-coated slides, allowed to dry 

overnight, incubated in xylene for 1 min, and mounted with cytoseal (Thermo, Waltham). 

Slides were imaged using a light microscope at 100 x magnification. Images were 

quantified using Image J [169] to calculate the percent area covered by Iba1 staining in 
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the hippocampus and cortex. Student’s t-test was used to calculate significance, test 

statistic of .05.  

 

2.11 Behavioral testing: Mice were allowed to acclimate to the testing room for 30 min 

prior to any behavioral testing. All testing was performed between the hours of 10:00 and 

16:00 by a single technician. Whenever possible testing was arranged so that the least 

stressful tests were done first to reduce confounding factors. Values are reported as the 

mean ± SEM. For experiments with multiple variables statistical analysis was performed 

using two-way ANOVA, test statistic .05 followed by Bonferroni post hoc testing. For 

experiments with more than two conditions one-way ANOVA was used, test statistic .05, 

followed by Tukey’s post hoc testing. When comparing two conditions a student’s T-test 

was used, test statistic, .05.  

 

2.11.1. Rotarod: Testing of mice on the accelerating rotarod apparatus was performed 

with or without training before injury. A seven cm rotarod was used. For testing in the 

acute to sub-acute phase, mice were trained on the rotarod for 3 days, injury then 1, 3, 

5, and 7 days post injury. For testing in the chronic phase testing was performed without 

training on 3 consecutive days. On the first day of training (acute phase) or testing 

(chronic phase) mice were allowed to habituate to the rotarod apparatus for 5 min prior 

to the first trial. For all studies the rotarod apparatus was set to accelerate from 0-35 rpm 

in 2 min, testing was stopped after 2 min. Mice were tested 3 times a day and allowed to 

rest for a minimum of 30 min between tests. The latency to fall was detected by weight-

based sensors and recorded. The average latency to fall for three trials was averaged 

for each day. Procedure was similar to that performed by O’Connor et al.[170]  
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2.11.2. Elevated zero maze: The behavior of mice in an open field maze (34 cm inner 

diameter, 46 cm outer diameter, on 4 braced legs 40 cm off the ground) was recorded 

for 6 minutes. Between trials the equipment was cleaned with 70% EtOH. Testing was 

similar to that described in Heisler et al [171]. 

 

2.11.3. Open field: individual mice were placed into a white 50 x 50 x 38 cm arena and 

their behavior was recorded for either 20 min for testing in the chronic phase or for 10 

min for acute phase testing. The arena was cleaned with 70% EtOH between trials. 

 

2.11.4. Novel object: Novel object testing was performed in the same 50 x 50 x 38 cm 

white arena as used for open field testing. Novel object testing was always performed 

after open field testing so that mice would be acclimated to the arena. First the mouse 

was placed into the arena with two identical objects placed in different corners and 

recorded for 5 min. Second, the mouse was moved back to its home cage for an interval 

of 3 hours. Third, the mouse was placed back into the arena, but one of the two identical 

objects was replaced with a novel object. Again the exploratory behavior of the mouse 

was recorded for 5 min. Before the first round of testing and between each round, both 

the objects and arena were cleaned with 5% acetic acid followed by water to reduce the 

scent of previous test subjects. 

 

2.11.5. Social interaction: Experimental mice were matched with a same-sex 

conspecific of similar size. The experimental mouse and then the test mouse were 

placed in opposite corners of a neutral cage with clean bedding. The interactions 

between the two mice were recorded for 20 min. Bedding was replaced and cage 

cleaned with 70% EtOH between each trial. A blinded observer recorded duration of time 
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spent in proximity as well as frequency of proximity, genital sniff, face sniff, chase, 

wrestle, and tail rattle using Stopwatch software (Georgia State University). 

 

2.11.6. Tail suspension: Mice were suspended from the tail from a 1.2 cm diameter 

metal bar 30 cm off the table for 6 min and their behavior recorded. Time spent mobile 

versus immobile was scored by a blinded observer using Stopwatch software (Georgia 

State University). Procedure was similar to that reported by Heisler et al.[171] 

 

2.11.7. Neurological Severity Score Testing. Mice were tested 3 days post injury as 

described in Flierl et al. [172]. Mice were scored on their ability to perform the described 

tasks. Inability to complete the task resulted in a score of one. These scores were added 

together to give the neurological severity score [87] with a maximum score of 10. For the 

beam walking component the mice were placed on a platform connected to another 

platform by a 3 cm beam and given three min to cross to the opposite platform. Failure 

to do so resulted in a score of 3. If the mouse successfully crossed the first beam, it was 

replaced with a second beam, this time of 2 cm width. If the mouse was not able to cross 

the 2 cm beam it was given a score of 2. If the mouse was able to cross the 2 cm beam, 

the beam was replaced by a 1 cm beam. Failure to cross this beam resulted in a sore of 

1. Ability to cross all three beams resulted in a score of 0.  

 

2.12 Human NPC and Neuronal culture: Cells were obtained from UNMC tissue core 

facility. This work is in accordance with IRB and ESGRO guidelines, approval number 

546-11-ES. Culture conditions were similar to reported previously [173]. Cells were 

plated either in suspension with growth factor rich medium to generate human neural 

progenitor cell (hNPC) cultures or on poly-D-lysine coated plates with neuronal medium 

for human neuronal cultures (hNeu). Both culture were grown at 37°C, with 5% O2 and 
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5% CO2 in a humidified incubator Media components are listed in Table 2.3. For 

neuronal cultures, media was half exchanged every 3-4 days. For hNPC, media was 

changed every other day. NPC cultures were characterized by immunocytochemistry for 

NPC markers Nestin (Millipore, Billerica) and Sox2 (Millipore, Billerica). To verify 

multipotency neurospheres were dissociated and plated onto Matrigel (Corning, Corning) 

coated coverslips, then cultured in a minimal media of X-VIVO-15 (Lonza, Basel)  and 

N2 (Life Technologies, Carlsbad) for 14 days, presence of astrocyte marker GFAP 

(Dako) and neuronal marker MAP2 (Sternberger) was verified by immunocytochemisty. 

For comparison of hNPC and hNeu, RNA was isolated from NPC after 7 div and neurons 

after 14 div. Neurons were treated with 10 ng/mL of IL-6 or CNTF at 13 div. and 

harvested 24 hours later for RNA purification. For measurement of P-STAT3 hNeu were 

treated with 10 ng/mL IL-6 or CNTF for 0, 15, or 30 min on div 14. For inhibitor 

experiments hNeu were treated with 1 µM Stattic (Sigma, St. Louis) 30 min prior to 

cytokine treatment, then harvested 24 hours later. Before cytokine or inhibitor treatments 

hNPC were dissociated from neurospheres and plated onto Matrigel (Corning, Corning) 

coated coverslips. To measure STAT3 activation hNPC were treated with 10 ng/mL 

CNTF for 30 min. For inhibitor experiments hNPC were treated with 2.5 µM Stattic or .6 

nM Jak1 inhibitor for 48 hours.  

 

2.13 Mouse NPC and neuronal culture: E14 mouse brains were digested with trypsin, 

mechanically dissociated and plated in suspension culture in growth media for mouse 

NPC culture (mNPC) or on poly-D-lysine coated plates in neuronal media for neuronal 

cultures. Media are listed in Table 2.3. Media was supplemented every 3rd day and after 

7 days neurospheres were harvested for RNA purification. mNeu were grown in vitro 14 

days before harvesting for RNA purification. Both culture were grown at 37°C, with 5% 
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O2 and  5% CO2 in a humidified incubator. Cells were harvested for RNA purification 

using Trizol (Life Technologies, Carlsbad) and stored at -80°C. 

 

2.14 SH-SY5Y culture. SH-SY5Y cells were grown in DMEM/F12 with GlutaMAX 

(Thermo, Waltham) and 10% FBS at 37°C at 5% CO2 in a humidified incubator. For 

differentiation, cells were treated for 4 days with 10 µM retinoic acid. Cells were 

harvested for RNA purification using Trizol (Life Technologies, Carlsbad) and stored at  

-80°C.  

 

2.15 Preparation of hippocampal slices for electrophysiology: Hippocampal slices 

were prepared as reported previously [174]. Four to six-week old male miR-21 KO and 

WT littermates were anesthetized with isofluorane. Brains were quickly removed and 

placed in oxygenated artificial cerebrospinal fluid (ACSF). Components of cutting-ACSF 

(in mM): C5H14ClNO (110.0), NaH2PO3 (1.25), KCl (2.5), MgSO4 (7.0), CaCl2 (0.2), 

C6H7NaO6 (11.6), C3H3NaO3 (3.1),  NaHCO3 (25.0), Dextrose (25.0), equilibrated with 

95% O2 and 5% CO2, osmolarity 310 ± 10. Hippocampi were dissected and 400 µm-

transverse slices were made using a tissue chopper. Hippocampi were placed on a  

mesh support and equilibriated to oxygenated recording-ACSF for at least one hour prior 

to recording. Components of recording-ACSF (in mM): NaCl (125.0), KCl (3.0), CaCl2 

(2.0), MgCl2 (1.2), NaH2PO3 (1.25), NaHCO3 (26.0) and glucose (10.0), osmolarity 300 ± 

10. Before recording, individual slices were transferred to the recording chamber. The 

recording chamber was perfused with recording 30 ± 1°C ACSF at a rate of 2 mL/min.  

 

2.16 Recording of long-term potentiation: Recording was performed as reported 

previously [174]. Constant current stimulation (0.05 Hz, 50–400 µA) was applied to the 

Schaffer collateral-commissural fibers using an insulated bipolar tungsten electrode to  
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Table 2.3 Media for primary neural cultures 
 
Species  Neuron NPC 
Mouse 50% DMEM/F12 w/ GlutaMAX 

50% DMEM 
1x B27 

DMEM/F12 w/ GlutaMAX 
1 x N2 
20 ng/mL bFGF2 

Human  Neurobasal  
1 x B27-AO 
0.5 mM L-Glutamine 

X-VIVO-15 
20 ng/ mL bFGF2 
20 ng/ mL EGF 
10 ng/ mL LIF 
60 ng/ mL N-acetyl cysteine 
1 x NSF1 
1 x N2   
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elicit a field excitatory post-synaptic potential (fEPSP) in the CA1 stratum radium. 

fEPSPs were recorded using glass recording electrodes with a diameter of 2.5 – 5 µm 

and an Axopatch-1D amplifier (Molecular Devices, Sunnyvale). Intensity of stimulation 

was adjusted to generate 50% maximal response. Baseline response was recorded for 

at least 20 min prior to high frequency stimulation (HFS). HFS was 100 Hz, 500 ms 

delivered twice in a 20 s interval. After HFS response was recorded for 40 min to 

determine LTP. Three sweeps were averaged for each recording. Electrical signals were 

filtered at 1kHz and digitized at 3.5 kHz using a Digidata 1320 interface (Molecular 

Devices). Data were analyzed with pCLAMP 10 software (Molecular Devices). The initial 

slope of the fEPSP was determined and the average fEPSP for baseline recordings was 

set as 100. Data expressed as the mean ± SEM.  

 

2.17 Excitotoxicity assays: Hippocampal neurons were isolated from miR-21 KO and 

WT P0 mouse pups as described by Beaudoin et al. [175]. Briefly, hippocampi were 

dissected and digested with .25% trypsin in HBSS for 20 min at 37°C, then washed and 

triturated. Cells were filtered with a 70 µm filter and plated in neuronal media consisting 

of Neurobasal media (Thermo, Waltham), 1x B27 (Thermo, Waltham), and 0.5 mM L-

glutamine. A full media exchange was done 15 min after plating on poly-D-lysine coated 

plates to remove cell debris. 1/3 media exchange was performed every 3-4 days. On div 

13 neurons were treated with NMDA at specified concentrations with 10 µM glycine in  

artificial CSF (1.3 mM CaCl2, 5.4 mM KCl, 140 mM NaCl2, 33 mM glucose, 25 mM 

HEPES acid, pH 7.35) for 30 min at 37°C. After 30 min conditioned media was returned 

to the wells. To determine toxicity alamarBlue (Invitrogen, Carlsbad) and lactate 

dehydrogenase [176] assays were used. 24 hours after treatment positive control wells 

were treated with 2% triton-X for 15 min at 37°C, 100 µL of neuronal medium was 

removed and 50 µL was used for LDH assay using the Cytotoxicity Detection Kit (Roche, 
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Basel) according to manufacturers directions. Percent Cytotoxicity was calculated by 

subtracting the no treatment control from the experimental and dividing by the triton-x 

positive control. For alamarBlue assay 10 µL alamarBlue (Invitrogen, Carlsbad) was 

added to the100 µL remaining in each well. After 2 hours at 37°C fluorescence was 

measured at 540 nm excitation and 590 nm emission for 5s. Percent viability was 

calculated by dividing the fluorescence at 590 of the experimental condition by the no 

treatment control. Values are reported as the mean ± SEM. Statistical analysis was 

performed using two-way ANOVA, test statistic .05. 

 

2.18 Extracellular vesicle isolation: Extracellular vesicles were isolated from brains as 

described previously [177] using a method adapted from Perez-Gonzalez et al. [178]. 

Seven days after injury animals were anesthetized with isoflurane and decapitated. 

Brains were extracted, cerebellum and brain stem were removed and the two 

hemispheres separated. For each sample 4 ipsilateral or 4 contralateral hemispheres 

were pooled. In total 12 mice for each condition were utilized. This resulted in 3 pooled 

samples of each hemisphere from TBI mice and 3 pooled samples of each hemisphere 

from sham surgery controls, for a total of 12 samples altogether. After removal, tissue 

was snap frozen in liquid nitrogen and stored at -80°C. Samples were thawed and 

digested in 20 units/ml papain in Hibernate A (Life Technologies, Carlsbad), enzymatic 

digestion was stopped by addition of cold Hibernate A, and the solution was further 

homogenized by trituration. Tissue fragments were removed by centrifugation and the 

supernatant passed through a series of successively finer filters (40 µm, 5 µm, and 0.2 

µm). Remaining cell fragments were removed by centrifugation and the EV containing 

supernatant was submitted to several PBS washes followed by ultra-centrifugation. A 

sucrose gradient was established using five concentrations of sucrose ranging from 0.25 

M to 2 M. The extracellular vesicle pellet was re-suspended in the middle concentration 
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(0.95 M), inserted into the gradient, and centrifuged at 200,000 × g for 16 hours at 4°C. 

The extracellular vesicle containing central sections of the sucrose gradient were 

removed and re-suspended to a total volume of 30 ml with PBS.  

 

2.19 EV-RNA isolation and sequencing: The suspensions from the EV isolation were 

subjected to ultra-centrifugation to pellet the EV. The pellets were then subjected to 

miRNA extraction using the mirVana miRNA Isolation Kit (Life Technologies, Carlsbad) 

following the manufacturer’s instructions. RNA samples were then sent to LC Sciences 

(Houston) for miRNA sequencing. Venny (http://bioinfogp.cnb.csic.es/tools/venny/) was 

used to create Venn diagrams 

 

2.20 Electron Microscopy: To validate the purity of EV isolation three hemispheres 

from three mice were pooled and snap frozen in liquid nitrogen and stored at -80°C. EV 

isolation was performed as described above and the sample was submitted to the 

University of Nebraska Medical Center Electron Microscopy Core Facility to undergo 

microscopy by a FEI Tecnai G2 Spirit transmission electron microscope.  
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Chapter 3: Expression of inflammation-associated miRNA in a controlled cortical 

impact (CCI) model of TBI 

 

3.1 Background: Neuroinflammation contributes to neurological dysfunction after TBI 

[179]. However, to date clinical trials targeting neuroinflammation in TBI have been 

unsuccessful. Identifying new regulators of neuroinflammation in TBI would provide a 

better understanding of TBI pathophysiology and provide possible therapeutic targets. It 

has recently been discovered that in peripheral immune responses miRNAs play  critical 

role in modulating inflammation [180, 181]. However, the expression of inflammation-

associated miRNA has not been examined in TBI. Several profiling studies have 

examined the expression of miRNA after TBI in various models [144-149], but very little 

is known about the functional role of miRNAs in TBI. Well-known miRNA regulators of 

the immune response, miR-155 and miR-146, miR-223 and miR-21 were all elevated in 

at least one report describing miRNA profiling following TBI; but there is a large degree 

of inconsistency due to differences in models, species, and times after injury [144-149]. 

The aim of this work was to determine whether inflammation-associated miRNAs were 

elevated in our CCI mouse model, characterize their temporal expression after CCI and 

examine their relationship to pro-inflammatory cytokine expression. 

 

3.2 Results: 

3.2.1 Identification of appropriate anatomical region for studies of inflammation-

associated miRNAs 

Before examining miRNA levels a survey of CCI pathology was performed. These 

studies allowed us to determine the temporal profile of glial activation, cell death, 

neuronal degeneration, and axonal injury after TBI. The overall aim was to determine 

appropriate anatomical regions and time points for examination of inflammation-
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associated miRNAs. Many inflammation-associated miRNAs also have roles in 

apoptosis, especially miR-21 [182] and miR-155 [183, 184]. Therefore we wanted to 

identify areas of the injured brain that: 1) lacked significant apoptotic cell death and 

tissue loss, 2) showed robust inflammation and 3) had evident neuronal pathology. To 

achieve this we examined the brains of mice 1, 3, and 7 days after CCI using various 

histological methods.  

In the unilateral model of CCI used for these studies the injury was induced in the 

parietal cortex between lambda and bregma on the left side. The hippocampus is just 

deep to this injury site. To visualize tissue loss and white matter pathology in various 

neuroanatomical regions we performed luxol fast blue staining in conjunction with cresyl 

violet. Luxol fast blue is a myelin stain used to show demyelination and cresyl violet 

stains the Nissl substance, or rough endoplasmic reticulum, found at high concentrations 

as a granular mass in neuronal cell bodies. After both moderate (0.5 mm injury depth) 

and severe (1.0 mm injury depth) CCI there was significant damage to the corpus 

callosum, particularly at 7 days after injury (Fig. 3.1). Severe injury showed a greater 

amount of cortical loss and more hippocampal involvement as well as enlargement of 

the lateral ventricle. Even in craniotomy only controls some cortical tissue loss was 

observed. This is consistent with reports of other groups showing that craniotomy alone 

can induce mild traumatic brain injury [185, 186]. To determine sites of apoptotic cell 

death after CCI terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) 

was performed. The majority of TUNEL positive cells were found in the cortical boundary 

zone at the edge of the lesion (Fig. 3.2). Combined, the loss of cortical tissue and the 

concentration of TUNEL positive cells in the cortex raised serious concerns for 

examination of inflammation-associated miRNA in this region. Several inflammation-

associated miRNAs also have roles in regulation of apoptotic signaling. Therefore, it 

would be difficult to differentiate these two functions in lesioned cortical tissue. In  
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Figure 3.1 
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Figure 3.1 Anatomical characterization of CCI. Myelin (Blue) and Nissl (Purple) 

staining of mouse brains 1, 3, or 7 days after craniotomy only (Sham), Moderate CCI 

(0.5 mm), and Severe CCI (1.0 mm). Naïve brain is shown for comparison. Staining was 

performed in duplicate, representative images are shown.  



	   	   	  58 

Figure 3.2 
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Figure 3.2 Apoptotic cell death in the hippocampus and cortex after moderate CCI. 

Staining for apoptotic cells using TUNEL (magenta). DAPI was used to stain the nucleus 

(blue). Images were from ipsilateral hemisphere 1 day after moderate CCI (0.5 mm) in 

the sub regions of the hippocampus (dentate gyrus (DG), CA1, and CA3) and the lesion 

boundary of the cortex. Original magnification 400x.   
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contrast, the hippocampus had barely detectable levels of TUNEL positive cells and did 

not show tissue loss. While lack of tissue loss and apoptotic cells satisfied the first 

criteria, it was also important that the anatomical region used for analyses showed 

evidence of a robust inflammatory response. 

Next, to identify anatomical regions that met the criteria of robust glial activation 

we examined expression of ionized calcium binding adaptor molecule 1 (Iba1) and glial 

fibrillary acidic protein (GFAP) by immunohistochemistry. Reactive microglia were 

identified by increased Iba1 staining and bushy or ameboid morphology (Fig. 3.3). It is 

important to note that activated microglia cannot be differentiated from invading 

mononuclear cells using this method. Increased staining with Iba1 was seen in the 

ipsilateral cortex and hippocampus 1 and 3 days after injury. To identify activated 

astrocytes we used glial GFAP staining (Fig. 3.4). Both protoplasmic astrocytes in the 

cortex and hippocampus and fibrous astrocytes in the corpus callosum showed 

increased GFAP expression. The GFAP staining in the ipsilateral cortex and 

hippocampus was highest 3 and 7 days after injury. Interestingly, GFAP expression was 

also increased in the ipsilateral cortex of craniotomy only animals 1 day after injury, 

suggesting again that craniotomy induces a mild traumatic brain injury. Also striking was 

increased GFAP expression in the contralateral corpus callosum after TBI. Increased 

Iba1 and GFAP staining was seen in both the ipsilateral cortex and hippocampus. 

Contralateral hemispheres also showed some increase in glial activation, however, it 

was much less dramatic. While the cortex of craniotomy only controls showed increased 

astrocyte reactivity, the hippocampus did not. Therefore, both the cortex and 

hippocampus meet the criteria of robust glial response after CCI.  

In addition to changes in glial activation, we wanted to determine regions of 

evident neuronal pathology. Staining of neurons with microtubule associated protein 2 

(MAP2) and synaptophysin revealed loss of these important neuronal markers in the  
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Figure 3.3 
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Figure 3.3 Microglial and macrophage activation at various times after moderate 

CCI in the hippocampus and cortex. Staining for Iba1 positive microglia and 

macrophages (green). DAPI was used to stain the nucleus (Blue). Images were taken 

from ipsilateral (IPSI) and contralateral (CONTRA) hemisphere. Mice were sacrificed 1, 

3, or 7 days after moderate CCI (0.5 mm) or 1 day after craniotomy (SHAM) and 

compared to naïve controls. Hippocampus sub regions (dentate gyrus (DG), CA1, and 

CA3) and the lesion boundary of the cortex are shown. Original magnification 400x. 

Staining was performed in duplicate, representative images are shown.   
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Figure 3.4 
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Figure 3.4 Astrocyte activation at various times after moderate CCI in the 

hippocampus and cortex. Staining for GFAP positive astrocytes (green). DAPI was 

used to stain the nucleus. Images were taken from ipsilateral (IPSI) and contralateral 

(CONTRA) hemisphere. Mice were sacrificed 1, 3, or 7 days after moderate CCI (0.5 

mm) or 1 day after craniotomy (SHAM) and compared to naïve controls. Hippocampus 

sub regions (dentate gyrus (DG), CA1, and CA3) and the lesion boundary of the cortex 

are shown. Original magnification 400x. Staining was performed in duplicate, 

representative images are shown.   
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injury boundary zone after CCI but not in craniotomy only controls (Fig. 3.5). Interestingly 

CCI increased the expression of both MAP2 and synaptophysin in the cortex and 

hippocampus not directly involved in the lesion (Fig. 3.6) Interestingly, increased 

synaptophysin staining was also seen by Shojo and Kibayashi after fluid percussion 

injury [187]. They concluded that increased synaptophysin staining was due to 

accumulation of synaptic vesicles and corresponded with neurodegeneration. Finally, 

white matter damage was visualized using SMI-32, an antibody that recognizes 

dephosphorylated neurofilament-H and serves as a marker of white matter damage 

[188]. A strong increase in SMI-32 staining was observed in the corpus callosum and 

hippocampal alveus both white matter tracts which are deep to the injury site at all time 

points after CCI, while little to no staining was observed in craniotomy only controls (Fig 

3.7). While not as profound, SMI-32 reactivity was also found in the contralateral 

hemispheres. Interestingly, SMI-32 staining increased from 3 to 7 days in the ipsilateral 

white matter tracts. Other groups have also reported progressive increase in SMI-32 

staining from 3-7 days after CCI [189]. Together with the progressive white matter 

damage at seen at day 7 shown with luxol fast blue staining, increased SMI-32 staining 

at day 7 suggests progressive white matter damage. The combination of white matter 

degeneration and changes in expression of neuronal proteins is sufficient to suggest 

evident neuropathology in both the cortex and hippocampus. Therefore both these 

regions satisfy the third critera for examination of inflammation-associate miRNAs.  

Overall, these data paint a portrait of CCI induced pathology and allowed us to 

determine an appropriate anatomical region for the study of inflammation-associated 

miRNAs. For the study of inflammation-associated miRNAs we proposed that an 

anatomical region meet three criteria: 1) lack significant apoptotic cell death and tissue 

loss, 2) show robust inflammation and 3) have evident neuronal pathology. While both 

the cortex and hippocampus showed increases in activated glia, the cortex was the site 
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Figure 3.5 
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Figure 3.5 Loss of neuronal markers at the lesion site. Staining for neuronal markers 

MAP2 (red) and Synaptophysin (green). DAPI was used to stain the nucleus. Images 

were taken at the edge of the lesion and the lesion boundary in the injured hemisphere. 

Mice were sacrificed 1, 3, or 7 days after moderate CCI (0.5 mm) or 1 day after 

craniotomy (SHAM). Original magnification 400x. Staining was performed in duplicate, 

representative images are shown.   
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Figure 3.6 
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Figure 3.6. Increase in neuronal markers after moderate CCI. Staining for neuronal 

markers MAP2 (red) and Synaptophysin (green). DAPI was used to stain the nucleus. 

Images were taken from ipsilateral (IPSI) and contralateral (CONTRA) hemisphere. Mice 

were sacrificed 1, 3, or 7 days after moderate CCI (0.5 mm) or 1 day after craniotomy 

(SHAM) and compared to naïve controls. Hippocampus sub regions (dentate gyrus 

(DG), CA1, and CA3) and the lesion boundary of the cortex are shown. Original 

magnification 400x. Staining was performed in duplicate, representative images are 

shown.   
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Figure 3.7 
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Figure 3.7. White matter damage after moderate CCI. Staining with SMI-32, a marker 

of axonal damage (green). DAPI was used to stain the nucleus. Images were taken from 

ipsilateral (IPSI) and contralateral (CONTRA) hemisphere. Mice were sacrificed 1, 3, or 

7 days after moderate CCI (0.5 mm) or 1 day after craniotomy (SHAM) and compared to 

naïve controls. Hippocampus sub regions (dentate gyrus (DG), CA1, and CA3) and the 

lesion boundary of the cortex are shown. Original magnification 400x. Staining was 

performed in duplicate, representative images are shown.   
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of the majority of cell death, tissue loss and neuronal degeneration. In addition, we 

observed progressive white matter damage and increased levels of MAP2 and 

synaptophysin in both the cortex and hippocampus. Therefore, based on our three 

criteria we chose to focus or study of inflammation-associated miRNAs on the 

hippocampus. 

 

3.2.2. Temporal expression of inflammation-associated miRNAs in the 

hippocampus after moderate CCI. 

To determine whether inflammation-associated miRNAs were elevated after TBI and 

examine their temporal profile RNA was extracted from injured (ipsilateral) and uninjured 

(contralateral) hippocampi from the same animal at times spanning the acute and sub-

acute phase after injury and in naïve and sham controls. Levels of miR-155, miR-146a, 

miR-21, and miR-223 were examined by qPCR. These miRNA were chosen based on 

their importance in regulating inflammatory responses and being positively identified in 

at least one profiling study of TBI. Levels of miRNAs examined did not change between 

hemispheres in naïve or sham controls. We found that miR-155, miR-21 and miR-223 

were all elevated after TBI (Fig. 3.8A-C). No change was observed in miR-146 levels 

(Fig. 3.8D). The expression of miR-155 was significantly increased at 1, 3, and 7 days 

after injury between ipsilateral and contralateral hippocampi, and returned to baseline by 

14 days (Fig. 3.8A). Expression of miR-21 showed a complementary trend, only elevated 

significantly at 14 days after injury relative the uninjured hemisphere, but not at 1, 3, or 7 

days (Fig. 3.8B). Expression of miR-223 was significantly elevated in the ipsilateral 

hippocampus only at 1 day after injury relative to the contralateral hemisphere (Fig. 

3.8C). Overall, changes were observed in three of the four inflammation-associated 

miRNA examined, but each showed a distinct temporal profile.  
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Figure 3.8 
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Figure 3.8 Expression of inflammation-associated miRNAs in the hippocampus 

after CCI. Levels of miR-155 (A), miR-21 (B), miR-223 (C), and miR-146 (D) in the 

ipsilateral (IPSI) and contralateral (CONTRA) hippocampus were measured 1, 3, 7, and 

14 days after CCI by qPCR at 0.5-mm injury depth and in naïve animals and sham 

surgery controls. Data are expressed as fold change relative to naïve mice normalized to 

snRNA U6. The mean ± SEM from three animals are shown. Statistical analysis was 

performed on ΔCt values using a two-way ANOVA, difference between hemispheres 

was significant for miR-155 (p < .0001), miR-21 (p < .001), and miR-223 (p < .05). 

Bonferroni post-hoc tests were performed on each time point, *, P < .05, relative to the 

contralateral hemisphere.  
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3.2.3 Temporal expression of pro-inflammatory cytokines in the hippocampus 

after moderate CCI. 

Increases in pro-inflammatory cytokines after TBI are found in both patients [190] and 

rodent models [191]. To examine the relationship between inflammation-associated 

miRNA and neuroinflammation, we examined the temporal expression profile of pro-

inflammatory cytokines in the hippocampus after CCI. Expression of pro-inflammatory 

cytokines IL-1β, TNFα, and IL-6 were measured in the ipsilateral and contralateral 

hippocampus from the same animal 1, 3, 7, and 14 days after injury and in naïve and 

sham controls. The same RNA samples were used for both miRNA and mRNA analysis. 

Expectedly, levels of proinflammatory cytokines increased in the ipsilateral hemisphere 

after CCI (Fig. 3.9). All the three cytokines examined showed increased levels in the 

ipsilateral compared to the contralateral hippocampi, with peak expression 1 day post 

injury. Both IL-1β (Fig. 3.9A) and IL-6 (Fig. 3.9C) were not elevated in the sham controls 

and did not change 3, 7, or 14 days after injury. In contrast, increase in TNFα expression 

persisted at 3 days after injury (Fig. 3.9B). Additionally, TNFα expression was increased 

in the ipsilateral hemisphere of sham animals. Other groups have also reported 

increased inflammation in sham controls [185, 186]. We also note that the 8-fold 

increase between naïve and the ipislateral sham cortex is only a fraction of the CCI 

induced increase (~60 fold). These data suggest that TNFα is highly sensitive to CNS 

damage and that relative to other cytokines; its increased expression persists for several 

days after injury. The main finding here was an acute increase in gene expression of the 

pro-inflammatory cytokines after TBI.  

 

3.2.4. Correlation between expression of inflammation-associated miRNAs and 

pro-inflammatory cytokines.  
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Figure 3.9
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Figure 3.9 Expression of inflammatory cytokines in the hippocampus after CCI. 

Levels of IL-1β (A), TNFα (B), and IL-6 (C) in the ipsilateral (IPSI) and contralateral 

(CONTRA) hippocampus were measured 1, 3, 7, and 14 days after CCI by qPCR at 0.5-

mm injury depth and in naïve animals and sham surgery controls. Data are expressed as 

fold change relative to naïve mice normalized to GAPDH. The mean ± SEM from three 

animals are shown. Statistical analysis was performed on ΔCt values using a two-way 

ANOVA, difference between hemispheres was significant for IL-1β (p < .0001), TNFα (p 

< .0001), and IL-6 (p < .0001). Bonferroni post-hoc tests were performed on each time 

point, *, P < .05; **, P < .01; ***, P < .001; ****, P < .0001; relative to the contralateral 

hemisphere.  
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In the peripheral immune system levels of miR-155 correlate with expression of IL-1β 

and TNFα suggesting a relationship between these two classes of molecules [192]. To 

examine the relationship between the inflammation-associated miRNA and pro-

inflammatory cytokines after CCI we performed a Pearson’s correlation analysis (Fig. 

3.10). The strongest association was between miR-155 and IL-1β, r = .72 (Fig. 3.10A). 

The second strongest association was found between miR-155 and TNFα (r = .63), 

followed by miR-21 and IL-1β (r = .55). The only cytokine-miRNA pair that did not show 

any correlation was IL-6 and miR-21 (p = .38) (Fig. 3.10B). This was surprising as miR-

21 is known to be induced by IL-6 in the periphery [193]. In summary, there was a clear 

association between inflammatory cytokines and inflammation-associated miRNAs 

indicating that there is a strong relationship between these two classes of molecules.  

 

3.2.5 Localization of miR-155, miR-21, and miR-223 in the brain after CCI. 

To validate qPCR findings that expression of inflammation-associated miRNAs was 

increased after CCI and to further describe their localization in different anatomical 

regions we performed in situ hybridization (Fig. 3.11). Brains from mice 1, 3, and 7 days 

after CCI as well as naïve and sham controls were analyzed. Similar to results from 

qPCR experiments, we found increased levels of miR-155, miR-21, and miR-223 in the 

hippocampus after TBI. We also found increased expression in the boundary zone of the 

cortex. Expression of inflammation-associated miRNAs was not observed in the brains 

of naïve mice. The ipsilateral hemisphere of sham mice was positive for miR-155, but 

not miR-21 or miR-223. The contralateral hemisphere at day 1 and 3 was also positive 

for miR-155 in contrast to qPCR results (Fig. 3.11A). One striking feature of miR-155 

expression was its nuclear localization as evidenced by co-localization with DAPI 

staining of the nucleus. As was seen in qPCR experiments, miR-21 expression was 

more delayed. Of the timepoints examined the highest levels of miR-21 expression were  
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Figure 3.10 
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Figure 3.10 Correlation of inflammation-associated miRNAs with expression of 

pro-inflammatory cytokines. Correlation was calculated using ΔCt values for cytokines 

and miRNAs measured from the same hippocampal RNA. Correlation of TNFα, IL-1β, 

and IL-6 with miR-155 (A), miR-21 (B), and miR-223 (C) are shown. Pearson’s r and p 

values as indicated. Thirty-six paired values from 1, 3, 7, and 14 days after CCI at 0.5-

mm injury depth, naïve animals, and sham controls were used to determine correlation. 

Trend line (dashed) based on linear regression.    
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Figure 3.11 
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Figure 3.11 Localization of inflammation-accociated miRNAs after CCI in the 

hippocampus and cortex. Expression of miR-155 (A), miR-21 (B), and miR-223 (C) 

after CCI. Fluorescence in situ hybridization was performed on tissue sections from mice 

1, 3, and 7 days after .05 mm CCI or 1 day after sham surgery. The cortical boundary 

zone and the dentate gyrus (DG), CA1, and CA3 of the hippocampus on the ipsilateral 

(IPSI) and contralateral (CONTRA) hemisphere are shown. Stratum moleculare (M), 

stratum granulosum (G), hilus (H), stratum radiatum (R), stratum pyramidale (P), and 

stratum oriens (O). Nuclei are stained with DAPI are shown in blue; miRNAs are shown 

in magenta. Staining was performed on tissues from two animals and representative 

images are shown. 

  



	   	   	  83 

observed at 7 days after CCI. The localization of miR-21 was not nuclear as was seen 

with miR-155. Interestingly, miR-21 expression was high in the laminar layers of the 

hippocampus, regions densely populated with neurons. In the dentate gyrus expression 

of miR-21 was detected in the stratum molecular, which is composed primarily of 

neuronal projections and the stratum granulosum, which contains the neuronal cell 

bodies (Fig. 3.11B). Additionally in the CA1 region the stratum pyramidale is composed 

of pyramidal neurons and shows miR-21 expression as does the stratum radiatum, 

which contains both neuronal projections such as the Schaffer collateral as well as 

interneurons. The expression of miR-223 is unique from both miR-155 and miR-21 in 

that it was only detected at day 3 after injury and predominantly in the ipsilateral 

hemisphere (Fig. 3.11C).  

In summary, the expression of inflammation-associated miRNAs is detectable in 

the hippocampus and boundary zone of the cortex after CCI. As found in qPCR 

experiments miR-155 was expressed at several time points after CCI, in contrast to miR-

21 which showed a delayed expression pattern. As with qPCR miR-223 showed a short 

duration of expression in the acute period. Several differences do exist between qPCR 

and in situ results. For example, miR-155 expression was not increased in sham or 

contralateral hemispheres by qPCR, but was detected by in situ. This could be due to 

sampling differences between these two methods. RNA isolation from the entire 

hippocampus could dilute the expression of miRNA concentrated near the lesion to 

undetectable levels by qPCR. While differences between these two methods exist, both 

showed increased levels of inflammation-associated miRNAs after CCI.  

 

3.2.6. Expression of inflammation-associated miRNAs with increasing injury 

severity in the hippocampus.  



	   	   	  84 

To gain a better understanding of the interaction between injury severity and expression 

of inflammation-associated miRNA and identify the ideal conditions for functional studies 

of miRNA, we examined the expression of miRNAs after moderate and severe TBI. In 

the CCI model injury severity can be altered by changing injury depth; with increased 

depth leading to increased lesion size and greater cognitive impairment [194]. In order to 

examine the effect of injury severity on the expression of inflammation-associated 

miRNA, levels of miR-21, miR-155, and miR-223 were measured in animals 3 days after 

sham surgery, moderate (0.5 mm depth) CCI, or severe (1.0 mm depth) CCI as well in 

naïve animals (Fig. 3.12). Injury depth was significant for miR-21 (P < .01) and miR-155 

(P < .01), but not for miR-223 based on a two-way ANOVA. Consistent with Fig. 3.1, CCI 

at the 0.5 mm injury depth increased miR-155 at 3 days, but levels of miR-21 and miR-

223 were not increased in these conditions. In contrast, CCI at 1.0 mm injury depth 

increased miR-21, miR-155 and miR-223 levels in the ipsilateral compared with the 

contralateral hippocampus. Given that the expression of all three miRNAs was present 

at 3 days after severe (1.0 mm) CCI, we chose to use this time point and severity for 

functional analysis of inflammation-associated miRNAs.  

 

3.2.7. Targeted expression profiling of cytokines, chemokines, and growth factors 

at 3 days after CCI.  

One area of interest for functional studies of inflammation-associated miRNAs is their 

ability to regulate the downstream expression of cytokines, chemokines, and growth 

factors after TBI. Based on the data above, 3 days after severe CCI was chosen as the 

ideal conditions for examining miRNA function. In moderate CCI, expression of TNFα 

was significantly elevated 3 days after CCI in the ipsilateral hemisphere, but IL-6 and IL-

1Β were not. To determine whether cytokine expression was a measurable outcome at 3 

days after severe TBI we measured inflammatory cytokine expression in animals 3 days  
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Figure 3.12 
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Figure 3.12 Expression of inflammation-associated miRNAs in the hippocampus 

after moderate and severe CCI. Levels of miR-155 (A), miR-21 (B), and miR-223 (C) in 

the ipsilateral (IPSI) and contralateral (CONTRA) hippocampus were measured 3 days 

after CCI by qPCR at 0.5-mm injury depth, 1.0-mm injury depth and in naïve animals 

and sham surgery controls. Data are expressed as fold change relative to naïve mice 

normalized to snRNA U6. The mean ± SEM from 3-4 animals are shown. Statistical 

analysis was performed on ΔCt values using a two-way ANOVA, Injury severity was 

significant for miR-155 (p < .01) and miR-21 (p < .01), but not miR-223. Bonferroni post-

hoc tests were performed on each time point, *, P < .05, ***, P < .001 relative to the 

contralateral hemisphere.  
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after sham surgery, moderate (0.5 mm depth) CCI, or severe (1.0 mm depth) CCI as 

well in naïve animals. In addition we broadened the list of signaling molecules to include 

other cytokines, chemokines, and growth factors important in neuroinflammation. 

Cytokines IL-1β and TNFα, as well as chemokine CXCL10 were increased 3 days after 

CCI (Fig. 3.13). The expression of IL-1β was elevated in moderate injury in both the 

ipsilateral and contralateral hippocampi and in the severely injured ipsilateral 

hippocampus relative to naïve. TNFα expression was elevated in ipsilateral hippocampi 

of both moderate and severe injury and in the contralateral hippocampus of severe injury 

relative to naïve. Interestingly, we also found increased levels of CXCL10 in both the 

moderately and severely injured ipsilateral hippocampi relative to naive. In conclusion, 

the expression of IL-1β, TNFα, and CXCL10 was elevated in at least the ipsilateral 

hippocampi after TBI and can be used as an outcome measure for future functional 

studies of inflammation-associated miRNAs.    

 

3.3 Discussion 

These studies addressed 3 major questions: 1) which anatomical regions are 

appropriate for studying the expression and function of inflammation-associated miRNAs 

after CCI? 2) Are inflammation-associated miRNAs increased by CCI? 3) What is the 

relationship between inflammation-assoicated molecules and pro-inflammatory 

cytokines?  

 By characterizing the pathophysiology of CCI in the mouse model we identified 

the hippocampus as an appropriate region for studying changes in inflammation-

associated miRNAs. The hippocampus showed evident neuropathology and robust glial 

activation without frank tissue loss or high levels apoptotic cell death. The inflammation-

associated miRNAs examined here all have known roles in apoptosis [182, 184, 195, 
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196]. Therefore, we wanted to avoid examining tissues with high amounts of apoptotic 

signaling after CCI. In CCI animals we found cortical tissue loss and TUNEL positive  

apoptotic cells concentrated in the lesion boundary zone of the cortex. These findings 

are in agreement with multiple studies describing apoptosis in cortical tissue after CCI 

[197, 198]. Alternatively, the hippocampus showed negligible tissue loss and very few 

apoptotic cells. We also wanted to ensure that the anatomical region studied showed 

robust glial activation. Immunohistochemisty revealed increases in both Iba1 and GFAP 

staining in the hippocampus suggesting that either anatomical region would be 

appropriate to study the inflammatory response after CCI. To study the complex 

interaction between neuroinflammation and neuronal injury and regeneration we wanted 

to examine a region where neuronal pathology was evident. We found that SMI-31, a 

marker of phosphorylated neurofilament was present in two distinct white matter tracts, 

the corpus callosum and hippocampal alveus [199]. Staining with MAP2 and 

synaptophysin was absent in the lesioned cortex, but was upregulated in both the 

cortices not directly involved in the lesion and in the hippocampus. This increase in 

important neuronal markers suggests a regenerative response to CCI. Based on these 

findings we directed further experiments in inflammation-associated miRNA after CCI 

towards the hippocampus.  

 Both qPCR and in situ hybridization showed increases in three out of the four 

inflammation-associated miRNAs examined in the hippocampus after CCI. Expression of 

miR-155, miR-21, and miR-223 were all increased in the ipsilateral hippocampi after 

CCI. Sustained eleveation of miR-155 was observed in the acute period 1, 3, and 7 days 

after TBI. Conversely, miR-21 showed increased expression in the sub acute phase (day 

7 and 14) by either pPCR or in situ. The expression of miR-223 showed a less sustained 

increase in the acute period. Somewhat surprisingly levels of miR-146 remained 

unchanged by CCI. In peripheral immune responses [120] and in microglia [200] miR- 



	   	   	  89 

Figure 3.13 
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Figure 1. Expression of cytokines, chemokines, and growth factors in the 

hippocampus after moderate and severe CCI. Levels of cytokines, chemokines, and 

growth factors in the ipsilateral (IPSI) and contralateral (CONTRA) hippocampus were 

measured 1, 3, 7, and 14 days after CCI by qPCR at 0.5-mm injury depth or 1.0-mm 

injury depth and in naïve animals and sham surgery controls. Data are expressed as fold 

change relative to naïve mice normalized to snRNA U6. The mean ± SEM from 3-4 

animals are shown. Statistical analysis was performed on ΔCt values using a two-way 

ANOVA, Bonferroni post-hoc tests were performed on each time point, *, P < .05; **, P < 

.01; ***, P < .001; relative to naïve.  
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146 participates in feedback inhibition, limiting the duration and magnitude of the 

immune response. Therefore, the lack of miR-146 could be a pathological feature of 

CCI.  

 Even though both qPCR and in situ hybridization identified the same general 

expression pattern, several differences between the regional and temporal expression of 

inflammation-associated miRNAs was found between these methods. One example 

being the detection of miR-155 in both sham and contralateral hemisphers. One possible 

explanation for this could be sampling differences between the two methods. The 

dilution of changes in miRNA levels near the injury site in RNA from the entire 

hippocampus might result in qPCR being a less sensitive measure of miRNA 

expression.  

 As expected, our CCI model showed striking increases in pro-inflammatory 

cytokines IL-1β, TNFα, and IL-6 in the injured hippocampi that peaked 1 day after injury. 

TNFα was elevated in craniotomy only sham controls and showed sustained elevation at 

3 days after injury, indicating that it is a sensitive indicator of neuronal injury and 

inflammation. The expression of inflammation-associated miRNAs showed high levels of 

correlation with the three pro-inflammatory cytokines. These data indicated a strong  

relationship between these two classes of molecules, however, the nature of this 

relationship cannot be determined by the studies described here.  

 To determine the ideal conditions for future studies of the function of 

inflammation-associated miRNAs in CCI, we examined levels of miRNAs in both 

moderate and severe CCI. While in moderate CCI only miR-155 was elevated relative to 

the contralateral hemisphere, in severe CCI increases in miR-21 and miR-223 were 

detected. Additionally, increases in three inflammatory signaling molecules, IL-1β, TNFα, 

and CXCL10 could also be detected 3 days after severe injury. Together these studies 

were designed to identify the ideal circumstances for studying the functional role of 
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inflammation-associated miRNAs in TBI. Based on our findings we will focus our efforts 

on studying the function of inflammation-associated miRNAs in the hippocampus 3 days 

after severe injury.  

 Another important finding of this work was the marked elevation of miR-155 

expression in the CCI model of TBI. Redell et al. also found that levels of miR-155 were 

elevated 24h after CCI [145]. However, no studies have examined the localization, 

association with inflammation, or function of miR-155 in TBI. Given the importance of 

miR-155 in other neurological conditions, further exploration of miR-155 function of TBI 

is warranted.  

 While miRNA-21 is the most studied miRNA in TBI, the late expression pattern 

and seemingly neuronal localization of miR-21 suggest that it may have additional roles 

besides regulating neuronal apoptosis, which occurs in the acute phase of injury. 

Several independent reports of miR-21 promoting neurite outgrowths may point to a role 

for miR-21 in the regenerative process after TBI [201-203].  

 The expression of miR-223 showed an acute increase after CCI in the ipsilateral 

hemisphere. Recently a report by Izumi et al. showed expression of miR-223 after spinal 

cord injury (SCI) that localized to neutrophils [204]. Given the acute increase and 

decrease of neutrophils in TBI lesions,[205] expression of miR-223 in neutrophils could 

explain the acute expression pattern seen for miR-223 in TBI.  

 

3.4 Summary: 

Several interesting inflammation-associated miRNAs were increased by TBI. Expression 

of miR-155, miR-21, and miR-223 were all elevated in ipsilateral hippocampi relative to 

contralateral hippocampi by both qPCR and in situ hybridization. Of the miRNA 

examined, miR-155 showed the largest and most consistent increase. Interestingly miR-

21 had a delayed expression pattern, suggesting that it may play a role the sub-acute 
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phase of injury. The roles of miR-155 in inflammatory signaling in the acute phase and 

miR-21 in regenerative phase of CCI warrant further study. Based on our findings the 

ideal conditions for studying the roles of inflammation-associated miRNAs are three days 

after CCI in the hippocampus.   
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Chapter 4: Function of miR-155 in the controlled cortical impact (CCI) model of TBI 
 
4.1 Background: 
 
Expression of inflammation-associated miR-155 was induced by TBI. Additionally, 

expression of miR-155 was highly correlated with pro-inflammatory cytokines. Based on 

the known roles of miR-155 in the peripheral immune response [121, 122, 206, 207] we 

hypothesized that miR-155 could regulate neuroinflammation after TBI. In vitro studies of 

miR-155 in microglia support a pro-inflammatory role in the brain [133]. However, in vivo 

studies are still lacking. In order to examine the function of miR-155 in TBI we obtained 

miR-155 knockout (KO) mice and induced TBI using a controlled cortical impact (CCI) 

model. Using a combination of RNA and protein analysis, histological characterization, 

and behavioral testing we compared TBI induced changes between miR-155 KOs and 

WT mice. 

 

4.2 Results: 

4.2.1 Validation of miR-155 KO by in situ hybridization 

Our previous studies showed increased miR-155 after CCI by both qPCR and in situ 

hybridization in wild-type mice. To examine it’s role in TBI we obtained miR-155 

knockout (KO) mice from the Jackson Laboratory. To confirm that expression of miR-155 

was absent from miR-155 KO mice and to localize miR-155 after severe injury we 

performed in situ hybridization on the brains of miR-155 KO and WT control mice 

sacrificed 3 days after CCI (Fig. 4.1). As observed previously in moderate injury, miR-

155 was detected in the hippocampus and cortex in the ipsilateral hemisphere after CCI 

and primarily localized to the nucleus. No staining was observed in miR-155 KOs 

confirming that miR-155 expression was absent in these animals.  
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Figure 4.1 
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Figure 4.1 Expression of miR-155 after CCI WT and miR-155 KO. Detection of miR-

155 expression (magenta) after CCI by fluorescence in situ hybridization performed on 

tissue sections from WT and miR-155 KO mice 3 days after 1.0-mm CCI. Nuclei are 

stained with DAPI (blue). Images are from the ipsilateral lesion boundary of the cortex 

and the dentate gyrus (DG) of the hippocampus. Original magnification 200x. 
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4.2.2 Ablation of miR-155 alters the expression of cytokines, chemokines and 

growth factors after CCI.  

In order to understand the function of miR-155 in regulating the immune response in TBI, 

we subjected miR-155 KOs and wild type mice to CCI. Three days after CCI, RNA was 

isolated from ipsilateral and contralateral hippocampi and levels of cytokines, 

chemokines, and growth factors were measured by qPCR (Fig. 4.2). No changes were 

found in naïve miR-155 KO compared to WT mice using two-way ANOVA followed by 

Bonferroni post-hoc tests. Changes were found between CCI injured miR-155 KO and 

wild type mice. Both type I and type II interferon (IFN) expression was altered. In the 

ipsilateral hemisphere IFN-β was reduced in miR-155 KOs. In the contralateral 

hemisphere IFN-γ was reduced in miR-155 KO mice compared to wild-type. 

Unexpectedly, there were no differences in the expression of IL-1β or TNFα, which are 

regulated by miR-155 in other systems [121, 192]. In our previous profiling experiments 

we had seen large increases in the expression of chemokine CXCL10. We again saw a 

large increase in CXCL10 expression due to TBI, which was significantly reduced in the 

ipsilateral hippocampi of miR-155 KO mice compared to WT. Additionally, we saw a 

decrease of brain-derived neurotropic factor (BDNF) in the contralateral hippocampus of 

miR-155 KO mice. The main findings of this work were the decreased expression of IFN-

β, IFN-γ, CXCL10 and BDNF in miR-155 KO hippocampi after CCI. CXCL10 is induced 

by both type I and type II IFN [208], and therefore the decrease in CXCL10 seen here 

may be secondary to the reduction in IFN.  

 

4.2.3 Regulation of SOCS1 by miR-155 in CCI.  

To further examine the changes in IFN signaling after CCI in miR-155 KO mice we 

examined the levels of known miR-155 target suppressor of cytokine signaling 1 

(SOCS1) [206]. IFN signaling relies on signal transducer and activator of transcription 1  
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Figure 4.2 
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Figure 4.2 Expression of cytokines, chemokines, and growth factors in the 

hippocampus after CCI in miR-155 KO and WT mice. Levels of cytokines, 

chemokines, and growth factors in the ipsilateral (IPSI) and contralateral (CONTRA) 

hippocampus were measured 3 days after CCI by qPCR at 1.0-mm injury depth and in 

naïve mice. Data are expressed as fold change relative to WT-naïve mice normalized to 

GAPDH. The mean ± SEM from 4 WT and 5 miR-155 KO mice are shown. Statistical 

analysis was performed on fold change values using a two-way ANOVA for each 

cytokine, Bonferroni post-hoc tests were performed on each time point, *, P < .05; **, P < 

.01; ***, P < .001.  
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(STAT1), which is inhibited by SOCS1 [209]. Therefore we hypothesized that removing 

miR-155 would increase levels of SOCS1, which in turn could decrease STAT1 

activation leading to a decreased response to IFN. In order to determine whether 

SOCS1 was in fact increased in miR-155 KO mice we measured levels of SOCS1 

protein and mRNA in miR-155 KO and WT ipsilateral hippocampi 3 days after CCI. 

There was no difference in SOCS1 protein level between miR-155 KO and WT 

hippocampi (Fig. 4.3). The lack of a change in SOCS1 protein levels could indicate that 

SOCS1 was not regulated by miR-155 in the brain after CCI. Alternatively the change in 

SOCS1 was not detectable because only a subset of cells had increased expression of 

miR-155 and corresponding reduction in SOCS1. If SOCS1 was decreased in a fraction 

of the total cells, the effect may have been diluted and immeasurable in hippocampal 

homogenate.  

 The expression of SOCS1 mRNA in the hippocampus after CCI was also 

measured. Surprisingly, the mRNA expression of SOCS1 was decreased in miR-155 KO 

mice (P = .028) (Fig. 4.4). Since SOCS1 is a target of miR-155; we hypothesized that its 

levels would increase in miR-155 KO hippocampi. The decreased mRNA levels, but 

unchanged protein levels could indicate compensatory effects. Alternatively, the effects 

could be cell type specific and unable to be detected in RNA or protein purified from 

tissue homogenates. There was a significant change in SOCS1 mRNA by condition (P < 

.001) with ipsilateral hippocampi showing a 2 fold increase in SOCS1 expression relative 

to naïve. This is the first report of increased SOCS1 expression in TBI and suggests that 

SOCS1 may be important for limiting the immune response after TBI.  

 

4.2.4 Increased microglial activation in miR-155 KO after CCI.  

Comparison of gene and protein expression between miR-155 KO and WT mice after 

CCI revealed changes in the IFN response. Several studies have shown that ectopic  
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Figure 4.3  
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Figure 4.3. Suppressor of cytokine signaling (SOCS1) is elevated in miR-155 KO 

mice. (A) Levels of SOCS1 were analyzed by SDS-PAGE and Western blot in WT (+) 

and miR-155 KO (-) mice 3 days after 1.0 mm CCI. (B) Level of SOCS 1 was quantified 

by densitometry and normalized to β-actin. The mean relative density ± SEM from 4 

animals are shown. Student’s t-test was used to determine significance. *, P = .042. 
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Figure 4.4 
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Figure 4.4 Expression of SOCS1 mRNA in the hippocampus after CCI in miR-155 

KO and WT mice. Levels of SOCS1 mRNA in the ipsilateral (IPSI) and contralateral 

(CONTRA) hippocampus were measured 3 days after CCI by qPCR at 1.0-mm injury 

depth and in naïve mice. Data are expressed as fold change relative to WT-naïve mice 

normalized to GAPDH. The mean ± SEM from 4 WT and 4 miR-155 KO mice are shown. 

Statistical analysis was performed on fold change values using a two-way ANOVA 

(condition P < .0001; genotype, P = .028). Bonferroni post-hoc tests were performed on 

each time point, but no significant changes were found. Student’s T-test between 

ipsilateral WT and miR-155 KO was significant **, P = .0058.  
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expression of miR-155 promotes microglial activation and cytokine production [210-213]. 

We hypothesized that microglial activation would be reduced in miR-155 KO mice. In 

order to characterize changes in microglial activation between miR-155 KO and WT 

mice we performed immunohistochemistry for microglial activation marker ionized 

calcium-binding adapter molecule 1 (Iba1) in the hippocampi after CCI. We hypothesized 

that increased SOCS1 in miR-155 KOs would reduce microglial activation. Surprisingly, 

we found the opposite effect (Fig. 4.5). Iba1 expression was increased in the ipsilateral 

hippocampus of miR-155 KOs relative to WT after CCI (P = .046). Increased expression 

of SOCS1 is discordant with an increase in microglial activation.  We speculate that 

SOCS1 is not the only target of miR-155 involved in the inflammatory response and that 

increased microglial activation could be related to other miR-155 targets.  

 

4.2.5 Neuronal localization of miR-155 after CCI. Surprisingly, microglial activation 

was increased after CCI in miR-155 KO mice. Additionally, we did not see changes in 

hippocampal SOCS1 protein after CCI. Interestingly, STAT1 can be activated in neurons 

after ischemic injury and contributes to cell death [214]. Also several reports have 

identified neuronal CXCL10 expression, which is also linked to neuronal cell death [215-

217]. To determine whether miR-155 plays a role in the neuronal regulation of STAT1 

and CXCL10, fluorescent in situ hybridization (FISH) was combined with 

immunohistochemistry (IHC) for neuronal marker MAP2 (Fig. 4.6) In the lesion boundary 

of the injured cortex we observed miR-155 staining in the nucleus of MAP2 positive 

cells. This indicated that neurons expressed miR-155 after CCI. We therefore proceeded 

to examine the role of miR-155 in neuronal cell death and degeneration.  

 

4.2.6 Apoptosis after CCI is unaffected by miR-155 KO 
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Figure 4.5  

 
  



	   	   	  107 

Figure 4.5 Iba1 staining is increased in the hippocampus of miR-155 KO mice after 

CCI. (A) Brains from WT (+) and miR-155 KO (-) mice were stained for Iba1 3 days after 

1.0-mm CCI. Representative images are shown. (B) The area of the hippocampus 

stained with Iba1 was quantified. The mean ± SEM from 5 WT and 6 miR-155 KO 

animals are shown. Student’s t-test was used to determine significance. *, P = .046. 
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Figure 4.6 
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Figure 4.6 Localization of miR-155 after CCI. Detection of miR-155 expression 

(magenta) after CCI by fluorescence in situ hybridization performed on tissue sections 

from WT mice 3 days after 1.0-mm CCI. Co-immunohistochemisty was performed for 

neuroanal marker MAP2 (green). Nuclei are stained with DAPI (blue). Images are from 

the ipsilateral lesion boundary of the cortex. Original magnification: 630x (bar = 20 µM). 
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Deletion of miR-155 in the KO mice caused decreased IFN response after CCL, but 

increased microglial activation. Aside from its role in inflammation miR-155 can regulate 

apoptosis [183]. To determine whether miR-155 ablation altered levels of apoptosis in 

the hippocampus after CCI, we measured total and cleaved caspase 3 by Western blot 

(Fig. 4.7). There were no changes in cleaved caspase 3 in the injured hippocampus 

between WT and miR-155 KO mice (P = .20). These data indicate that miR-155 does not 

alter levels of apoptosis in the hippocampus after CCI. As we had shown previously with 

TUNEL staining, there was very little apoptotic cell death in the hippocampus after CCI. 

It is possible that although apoptosis and thus cleaved caspase 3 levels were low in the 

hippocampi, measureable differences could be found closer to the lesion site.  

 

4.2.7 Neurodegeneration after CCI is unaffected by miR-155 deletion 

To examine the effect of miR-155 KO on neuronal degeneration after CCI we used 

fluorojade staining. Fluorojade is specific to degenerating neurons and can be used to 

quantify neurodegeneraton after CCI [218]. Three days after CCI brains from miR-155 

KO and WT mice were stained with fluorojade. Fluorojade positive cells in the cortex and 

hippocampus were counted. No changes were observed in fluorojade cell counts 

between genotypes in the hippocampus (P = .20) or cortex (P = .07) after CCI (Fig. 4.8). 

This indicates that miR-155 does not directly or indirectly influence neuronal 

degeneration 3 days after CCI.  

 

4.2.8 Motor function is impaired by CCI, but not altered by miR-155 deletion 

Deletion of miR-155 resulted in a reduced IFN response and increased microglial 

activity. To determine whether these changes have an affect on CCI outcome we 

performed accelerating rotarod testing. Accelerating rotarod is a common measure of 

motor dysfunction after CCI and in other models of TBI [95]. Animals of both genotypes  



	   	   	  111 

Figure 4.7 

  



	   	   	  112 

Figure 4.7 Cleaved-caspase 3 levels in the hippocampus do not change in miR-155 

KO after CCI. (A) Levels of caspase 3 were analyzed by SDS-PAGE and Western blot 

in WT (+) and miR-155 KO (-) mice 3 days after 1.0-mm CCI. (B) Cleaved-caspase 3 

and full-length caspase-3 was quantified by densitometry. The ration of cleaved to full-

length caspase 3 was multiplied by 100 to determine % cleaved caspase 3. The mean ± 

SEM from 4 animals are shown. Student’s t-test was used to determine significance P = 

.20. 
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Figure 4.8 
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Figure 4.8 Levels of neurodegeneration are similar between miR-155 KO and WT 

mice after CCI. (A) Degenerating neurons were stained with fluorojade (green) and 

DAPI (blue) 3 days after 1.0-mm CCI in the brains of WT and miR-155 KO mice. Images 

from the ipsilateral dentate gyrus (DG) and the lesion boundary of the cortex are shown. 

(B) Fluorojade cells were counted in three fields of the cortex, or in the DG from three 

slices between bregma -2.5 and -1.5. The mean ± SEM of total fluorojade cells in 5 WT 

and 6 miR-155 KO mice are shown. No significance was found by student’s t-test, DG (P 

= .20), cortex (P = .07). 
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were trained for 3 days prior to CCI procedure. There was no difference between groups 

in the baseline performance on the rotarod. CCI induced changes in rotarod 

performance were measured at 1, 3, 5 and 7 days post injury (Fig. 4.9). The effect of 

injury type was significant by two-way ANOVA (P < .0001), but no differences between 

genotype were found (P = .40). These data show that miR-155 does not play a critical 

role in motor dysfunction after CCI.  

 

4.2.9 Memory dysfunction in miR-155 KO and control mice after CCI 

No changes were found in CCI induced motor dysfunction between miR-155 KO and WT 

mice. Given that our previous studies had focused on the expression and function of 

miR-155 in the hippocampus after CCI, and that the hippocampus functions in memory 

formation and retention, we tested memory function in miR-155 KO and WT mice after 

CCI. To test memory function a novel object test was used. In this test an animal is 

exposed to identical two objects and allowed to explore them for 5 min. After a 3 hour 

interval one object was replaced with a novel, unfamiliar object. Again the mouse was 

given 5 min to explore these two objects. The time spent exploring the novel versus 

familiar object was determined. If the mouse did not recognize the familiar object, then it 

would spend equal time with both objects. Alternatively, if the mouse recognized the 

familiar object it would spend more time exploring the novel object. The outcome 

measure of the novel object test is the recognition index, a recognition index of .5 

indicates that there is no preference for the novel object. This is a standard test of 

mouse memory [219] and has been used to examine memory function in rodent models 

of TBI [220]. In this study, both genotypes showed no preference for the novel object in 

this test indicating memory impairment (Fig. 4.10). However, no differences were 

observed between the two genotypes (P = .29). This shows that ablation of miR-155 did 

not improve memory function. A floor effect was observed, since WT mice showed no  
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Figure 4.9 
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4.9 Motor function is similar in miR-155 KO and WT mice. Mice were trained on the 

rotarod apparatus for 3 days prior to CCI surgery the average latency to fall of 3 trials on 

the final day of training is shown as day -1. Rotarod testing began 1 day after 1.0 mm 

CCI and was repeated on days 3, 5, and 7 after surgery. The mean latency to fall ± SEM 

is shown. WT, n = 18, KO n = 20. Time after injury was significant by two-way ANOVA 

(P < .0001), but no effect of genotype was found (P = .40).    
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Figure 4.10  
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4.10 Cognitive function is similar in miR-155 KO and WT mice. Cognitive function 

was measured by novel object testing in miR-155 KO (KO) and wild type (WT) mice 11 

days after 1.0-mm CCI. The mouse was familiarized to two identical objects, after 3 

hours one of the familiar objects was replaced with a novel object. Exploration of the two 

objects was measured using Ethovision software (Noldus) and defined as the nose of 

the mouse within 2 cm of the object. The ratio time spent exploring the novel object to 

time spent exploring both objects is shown as the recognition index. A recognition index 

of .5 indicates no preference for the novel object. The mean ± SEM of WT (n = 18) and 

miR-155 KO (n = 20) are shown. No significance was found by student’s t-test, P = .29.   
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measurable preference for the novel object, we could not measure negative changes in 

memory function in miR-155 KO mice. In summary, no evidence was found for a 

difference in memory function between miR-155 KO and WT mice after CCI.  

 

4.2.9 Anxiety was decreased in miR-155 KO mice after CCI.  

As an additional measure of both motor activity and as a test for anxiety, open-field 

testing was performed. This test has been used to evaluate both motor activity [221] and 

anxiety [220] in TBI models. For open field testing a mouse was placed in an unfamiliar 

arena and allowed to explore it for 10 min. During this time the behavior was recorded 

and the overall distance traveled was measured. Using this outcome measure, there 

were no changes in overall distance moved between miR-155 KO and WT mice (P = 

.28)(Fig. 4.11A). This finding agreed with the results of the rotarod test (Fig. 4.9), which 

found no changes in motor function between the two groups. Another use of the open 

field test is measurement of anxiety in rodents [222]. As prey animals rodents prefer to 

avoid open spaces. The center of the open field is relatively exposed compared to the 

walls. To measure anxiety, the number of times the mouse entered the center quadrant 

was measured. Comparing the two genotypes using this measure we found an increase 

in center entries in miR-155 KO mice after TBI (P = .049)(Fig. 4.11B). This indicated that 

miR-155 KO mice had decreased anxiety compared to controls after CCI, without 

evident motor dysfunction.  

 

4.3 Discussion:  

In previous work we had identified that miR-155 was elevated in the hippocampus after 

CCI in mice. Due to its known role in inflammation and cytokine signaling, we 

investigated its function in CCI induced neuroinflammation. Changes were found in the 

levels of inflammatory cytokines and in glial activation in miR-155 KO mice compared to  
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Figure 4.11 
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4.11 Anxiety is reduced miR-155 KO compared to WT mice after CCI. Activity and 

anxiety was measured by novel object testing in miR-155 KO (KO) and wild type (WT) 

mice 10 days after 1.0-mm CCI. Each mouse was allowed to explore a open arena for 

10 min. (A) The overall movement over the 10 min interval was measured (B) The 

number of times each mouse entered the center quandrant was also measured. 

Movement of animals within the arena was recorded and movement and center 

frequency were calculated using Ethovision software (noldus) The mean ± SEM of WT 

(n = 18) an miR-155 KO (n = 20) are shown. Center frequency (P = .049), but not overall 

movement (P = .28), was significant by student’s t-test. *, P < .05. 
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controls after CCI.  In miR-155 KO mice levels of IFN-β and IFN-γ were reduced. 

Additionally, IFN induced chemokine CXCL10 was also reduced in miR-155 KO 

compared to WT mice. Together these findings showed an important role for miR-155 in 

the promotion of the IFN response. Interestingly, we also identified decreased BDNF 

expression in miR-155 KO mice. BDNF was predicted to be a miR-155 target through in 

silico methods [223]. But regulation of BDNF by miR-155 has not been reported in vitro 

or in vivo.  

We found that levels of protein SOCS1, an important negative regulator of IFN 

signaling, were unchanged in miR-155 KO mice. SOCS1 is a validated target of miR-155 

[206] that functions to inhibit STAT1, a key transcription factor for IFN signaling [209]. 

We expected to see decreased levels of SOCS1 in miR-155 KO mice, but detected no 

change in SOCS1 protein level in the injured hippocampi of miR-155 KO mice. 

Furthermore, there was an increase in SOCS1 mRNA in miR-155 KO mice. SOCS1 is a 

critical regulator of the immune response and deletion of SOCS1 is neonatal lethal [224]. 

Compensatory mechanisms could be responsible for decreasing SOCS1 mRNA and 

maintaining SOCS1 protein levels in miR-155 KO mice. Until this report, the effect of 

miR-155 ablation on SOCS1 or IFN signaling had not been investigated in the brain or in 

TBI. A handful of studies have highlighted a role for miR-155 in neuroinflammation. In 

experimental autoimmune encephalitis, a model of multiple sclerosis, mice lacking miR-

155 were resistant to the progression of this inflammatory disease, primarily through 

reducing T-cell mediated responses [126] Also, integrity of the BBB is diminished by 

miR-155 [225]. However, we are the first to identify changes in IFN and CXCL10 

expression in brain tissues from miR-155 KO mice.  

Normally expression of IFN cytokines and CXCL10 in the brain is very low. 

Interestingly, CXCL10 is strongly upregulated in both rodent models and human patients 

after TBI [176]. The expression of CXCL10 is found in clusters of cells in the brain of TBI 
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models that appear to be dendritic cells [226]. Interestingly, CXCL10 is strongly induced 

in viral infections of the brain [227]. For example CXCL10 is induced in neurons by West 

Nile virus infection [215] and in simian-human immunodeficiency virus encephalitis 

where it induces neuronal apoptosis [216]. These studies suggest a potential 

pathological role for CXCL10 in the brain.  

We found that after CCI miR-155 KO mice had an increase in Iba1 expression. 

This is counterintuitive based on in vitro studies suggesting miR-155 has a pro-

inflammatory response in microglia [210, 211]. It is unclear why we see an increased 

expression of Iba1 in miR-155 KO mice, but this could be due to differences in miRNA 

function between cell types. However by in situ hybridization we did not find an increase 

of miR-155 in microglia, rather it was in neurons. Interestingly, the induction of miR-155 

expression in neurons appeared to be largely nuclear.. While this is a unique finding, 

both Stat1 and CXCL10 are found in neurons and contribute to neuronal cell death [215-

217]. However, if these IFN induced molecules were neurotoxic, we would expect to see 

decreased neurotoxicity in miR-155 KO mice, where IFNs are decreased. However, our 

findings did not show any significant effects of miR-155 ablation on caspase 3 cleavage 

or degeneration measured by fluorojade, although we could be limited by group size or 

by the particular time points examined.  

We observed a decreased IFN response to CCI and increased microglial 

activation in miR-155 KO mice. We also found neuronal expression of miR-155, but no 

difference in apoptosis or neurodegeneration. To determine what the overall balance of 

these effects had on TBI outcomes, we performed behavioral testing. No changes were 

detected between miR-155 KO and WT mice in motor or cognitive function after CCI. 

Interestingly miR-155 KO mice showed reduced anxiety compared WT. Recently Fonken 

et al. identified reduced anxiety in miR-155 KO mice without TBI [228]. Future work 

should identify whether there is an interaction between miR-155 and TBI or whether 
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decreased anxiety is a function of genotype alone. The mechanism by which miR-155 

ablation relates to decreased anxiety is not clear. However, interferons are known to 

induce sickness behaviors including mood disturbances as is seen in patients being 

treated with high doses of IFNα for viral infections or cancers [229].  

 One scenario not addressed in these studies is the role of miR-155 in defense 

against pathogens. It has been proposed that the evolutionary advantage of stimulation 

of the immune response by tissue damage is to prevent infection by pathogens at the 

site of injury [230]. Recent reports have identified a critical role for miR-155 in the 

antiviral responses [129, 206]. One function of miR-155 and IFN induction could be to 

facilitate an appropriate immune response to potential infections in the damaged tissue. 

Studies of pathogen challenge in the context of TBI may be able to address this 

question.  

 

4.4 Summary: We have identified a critical role for miR-155 in regulating the interferon 

response to TBI. As part of the IFN response miR-155 regulates levels of CXCL10, a TBI 

induced chemokine. In contrast to decreased IFN response, we saw an increase in Iba1 

staining, suggesting increased microglial activation in miR-155 KO mice. Despite clear 

changes in the immune response to TBI, no changes were found in apoptosis or 

neurodegeneration in miR-155 KO mice. Similarly, miR-155 KO mice showed no 

changes in motor or cognitive function after CCI. One unexpected effect of miR-155 KO 

was that it reduced anxiety after CCI, which is consistent with IFN induced sickness 

behavior. Future studies should examine the link between TBI induced miR-155, 

neuroinflammation, and sickness behaviors.  
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Chapter 5: The role of miR-21 in neuronal function, injury, and repair 

 

5.1 Background: Previous studies have identified increased miR-21 in the sub-acute 

phase of CCI. Additionally, miR-21 is elevated in many neurological disorders (Table 

5.1). In vitro studies have proposed a role for miR-21 in neurite outgrowth [202], 

neuroprotection [151], and in neuronal dysfunction [231]. To characterize the role of 

miR-21 in the brain we obtained miR-21 KO mice. The study of miR-21 in the brain has 

so far focused on pathological states. However, whether or not miR-21 has a role in the 

function of the healthy nervous system has not been examined. The studies outlined 

here examine both the normal and pathological function of miR-21 in the brain.  

 

5.2 Results: 

5.2.1 Expression of miR-21 in the brain during development. 

Before examining the function of miR-21 in the brain, we set out to determine its 

expression during development. Levels of miR-21 were detected using qPCR and in situ 

hybridization. For qPCR experiments brains were removed from mice at embryonic day 

14 and 18, and at postnatal day 1, 8, and 14. Brains were homogenized and RNA 

extracted. There was a steady increase in miR-21 levels with increasing age (Fig 5.1). 

To address the function of miR-21 during development we measured miR-21 levels in 

differentiated and undifferentiated neuronal cells from various sources. Cultures of 

human neural progenitor cells (NPC) were grown in suspension creating neurospheres 

(Fig. 5.2A) then plated onto matrigel-coated dishes (Fig 5.2B). Neurosheres and 

dissociated NPCs showed the presence of SOX2 and Nestin, NPC markers [232]. 

Additionally, NPC could be differentiated into both astrocytes and neurons indicating that 

they were multipotent (Fig 5.2C).  
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Table 5.1. A list of neurological conditions that show increases in miR-21 expression. 
 

 
 A list of neurological conditions that show increases in miR-21 expression. Some fields were not 
addressed (NA) in all studies   

Condition Cell 
type/location 

Downstream effect Upstream regulation Citation 

Nerve injury  Primary 
sensory 
neurons 

Neuropathic pain IL-1B Sakai and 
Suzuki, 2013 
[233] 

Axotomy  Dorsal root 
ganglion 
neurons 

Targets Sprouty2 
Increasing axon growth 

Nerve transection Strickland et 
al., 2011 
[234] 

Spinal 
Chord injury 
(SCI) 

Astrocytes Reduces hypertrophy SCI in mouse Bhalala et 
al., 2012 
[141] 

Prion Exosomes 
from neurons 

NA Prion infection Bellingham 
et al., 2012 
[235] 

Stroke, 
Hypoxia,  
and 
ischemia 

Neurons and 
astrocytes 

NA Ischemia Ziu et al., 
2011 [236] 

Neurons in 
ischemic 
boundary  

Suppresses cell death in vitro 
after OGD by targeting 
FASLG 

Middle cerebral artery 
occlusion (MCAO) 

Buller et al., 
2010 [237] 

microglia Represses FasL Hypoxia Zhang et al., 
2012 [238] 

Brain tissue Negatively correlated with 
PDCD4 expression 

Embolic stroke mouse 
model 

Liu et al., 
2013 [239] 

Hippocampus Increased MMP9, possibly by 
targeting RECK 

Transient ischemia, 
MAPK/ERK signaling 

Deng et al., 
2013 [240] 

Ionizing 
radiation 

Hippocampal 
neurons 

Up regulation of EGFR  EGFR/Stat3 positive 
regulatory loop 

Shi et al., 
2012 [231, 
241] 

HIV 
encephalitis 
(HIVE) 

Hippocampal 
neurons 

Targets MEF2C  NMDA   Yelamanchili 
et al., 2010 
[231] 

Traumatic 
Brain injury 
(TBI) 

Hippocampus 
and cortex 

NA Rodent TBI Redell, 
Zhao, and 
Dash, 2011 
[242] 

Cerebral 
cortex 

NA Fluid-percussion injury Ping et al., 
2009 [144] 

Epilepsy Hippocampus NA Mesial temporal lobe 
epilepsy 

Peng et al., 
2013 [243] 

Multiple 
Sclerosis 
(MS) 

Active lesions NA Human MS patients, 
experimental autoimmune 
encephalitis (EAE) 

Lescher et 
al., 2012 
[244] 
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Figure 5.1  
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Figure 5.1 Expression of miR-21 increases during mouse development. Levels of 

miR-21 were measured by qPCR in mice at embryonic day 14 (E14), embryonic day 18 

(E18), postnatal day 1 (P1), postnatal day 8 (P8) and postnatal day 14 (P14). Expression 

of miR-21 was normalized to snRNA U6 and shown as fold change relative to E14. 

Shown is the mean ± SEM for two replicates.  
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Figure 5.2 
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Figure 5.2 Characterization of human neural progenitor cell (NPC) cultures. (A) 

NPCs were grown in suspension with growth factors FGF, EGF, and LIF. (B) For 

treatment with cytokines or inhibitors and for differentiation experiments NPC were 

plated onto matrigel coated plates. NPC were stained for markers SOX2 (red) and 

Nestin (green). (C) NPC were differentiated by withdrawl of growth factors. Differentiated 

cells showed both neuronal marker MAP2 (green) and astrocyte marker GFAP (green). 

Nuclei in all panels were stained with DAPI.  

  



	   	   	  132 

We found that in human neural progenitor cells (NPC) miR-21 levels were higher than in 

neurons from the same donor (Fig 5.3A) (P = .032). Similarly cultures of mouse NPC 

showed a trend towards higher levels of miR-21 than mouse neurons (P = .28), but 

levels of miR-21 were highly variable (Fig. 5.3B) In an attempt to find a more consistent 

model for studying miR-21 during neuronal differentiation, we measured miR-21 

expression in differentiated and undifferentiated SH-SY5Y human neuroblastoma cells 

(Fig. 5.3C). However, in contrast to primary neurons, miR-21 was higher in differentiated 

cells than in undifferentiated cells (P = .0051). This inconsistency between methods and 

model systems and in vitro and in vivo findings made it difficult to address any 

mechanistic questions related to miR-21 during development. The culture conditions of 

each of these differentiated and undifferentiated cell types varied greatly. Human NPC 

for example were grown with epidermal growth factor (EGF), fibroblast growth factor 

(FGF), and leukemia inhibitory factor (LIF). In contrast mouse NPC, which were grown in 

FGF, but not EGF of LIF. It is likely that these different culture conditions would influence 

the expression of miRNA-21. Due to the clear difference between human neurons and 

NPC, and the more translational nature of human primary cells future experiments were 

performed in human primary neurons and NPC.  

 

5.2.2 Induction of miR-21 by STAT3 acting growth factors and cytokines. 

Expression of miR-21 is induced in many types of neuronal injury, and some reports 

indicate this increased expression is in neurons [201, 233, 236]. To examine possible 

factors responsible for miR-21 induction in neurons after injury we treated primary 

human neurons with cytokines and growth factors. Rather than testing all cytokine 

families we focused on those that are induced by neuronal injury and signal through 

signal transducer and activator of transcription 3 (STAT3) STAT3 binds to  miR-21 

promoter through two validated binding sites [193]. This led us to focus on the   
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Figure 5.3 
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Figure 5.3 Expression of miR-21 in differentiated and undifferentiated neuronal 

cell types. Expression of miR-21 was measured by qPCR and normalized to snRNA U6. 

(A) miR-21 expression human NPC (nNPC) and human neurons (hNeu) from 4 donors 

shown as fold change from hNeu (P = .032). (B) miR-21 expression in mouse NPC 

(mNPC) and mouse neurons (mNeu) cultured from embryonic day 14 (E14) mice shown 

as fold change from mNeu (P = .28). (C) miR-21 expression in undifferentiated SH-SY5Y 

cells (Undiff) and SH-SY5Y cells differentiated (Diff) for 4 days with retinoic acid, shown 

as fold change from undiff (P = .0051). The mean fold change ± SEM is shown. 

Significance calculated by students T-test using fold change values, **, P < .01; ***, P < 

.001.    
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neurotrophic cytokines interleukin-6 (IL-6) and ciliary neurotrophic factor [245, 246]. Both 

IL-6 and CNTF are known to signal through STAT3 [247, 248] and have roles in 

neuronal injury [249, 250]. There are conflicting results regarding the expression of IL-6 

receptors in neurons, some reports show that soluble IL-6 receptor is necessary for IL-6 

mediated neuronal effects [251], while others report IL-6 receptor expression in neurons 

[252]. The expression of IL-6 receptor in cultured fetal human neurons has not been 

characterized, but in vivo fetal neurons do express at least modest amounts of IL-6 

receptor. To establish induction of STAT3 activation in human neurons with IL-6, 

neurons were treated with 10 ng/mL IL-6 and proteins purified from the cells 0, 15, and 

30, min after treatment. Sodium dodecyl sulfate poly acrylamide gel electrophoresis 

(SDS-PAGE) and Western blot analyses were used to measure levels of phosphorylated 

STAT3 (Fig 5.4). We found high levels of phosphorylated STAT3 at 30 min after IL-6 

stimulation in neuronal cultures thereby suggesting that these neurons do indeed 

express receptors for IL-6. To determine the relative ability of IL-6 and CNTF to stimulate 

P-STAT3, we treated human fetal neurons with IL-6 and CNTF for 30 min and measured 

P-STAT3 by Western blot (Fig 5.5). We found that relative to IL-6, CNTF stimulation 

resulted in higher levels of P-STAT3 and that this was consistent across 4 donors. 

Treatment with brain derived neurotrophic factor (BDNF) is not known to signal through 

STAT3 [253], and no P-STAT3 was observed after treatment of neurons with 10 ng/mL 

BDNF. To confirm the activation of STAT3 by CNTF in neuronal cultures 

immunohistochemistry was performed on neurons and 30 min after treatment with 10 

ng/mL CNTF. We also examined the localization of P-STAT3 in NPC post CNTF 

treatment. P-STAT3 by ws measured by immunocytochemistry. Interestingly, P-STAT3 

levels were high in both the untreated and CNTF treated NPC, but only induced in the 

CNTF treated neurons (Fig. 5.6). Additionally, P-STAT3 localized to the nuclei of cells 

confirmed with DAPI nuclear stain. These data showed that IL-6 and CNTF could induce  
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Figure 5.4 
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Figure 5.4 Induction of P-Stat3 by IL-6 in human fetal neurons. (A) Neurons were 

grown for 14 days in vitro then treated with 10 ng/mL of human IL-6 for 0, 15, or 30 min. 

Protein was purified from the cells and SDS-PAGE and Western blot analysis was used 

to detect levels of P-STAT3, Total STAT3, and actin loading control. The mean P-Stat3 ± 

SEM for 2 donors is shown.  
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Figure 5.5
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Figure 5.5 Induction of P-Stat3 by cytokines and neurotropic factors in human 

fetal neurons. (A) Neurons were grown for 14 days in vitro then treated with 10 ng/mL 

of human interleukin-6 (IL-6), brain derived neurotropic factor (BDNF), or ciliary 

neurotropic factor [246] for 30 min. Protein was purified from the cells and SDS-PAGE 

and Western blot analysis was used to detect levels of P-STAT3 and actin loading 

control. Samples from four individual donors are shown.    
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Figure 5.6 
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Figure 5.6 Nuclear localization of P-STAT3 after CNTF treatment in human NPC 

and neuronal cultures. (A) human neurons and (B) Neural progenitor cells (NPCs) 

were treated with 10 ng/mL cilliary neurotropic factor [246] for 30 min or no treatment 

(NT). Cells were fixed and stained with an antibody to P-STAT3 (green) and nuclear 

stain DAPI (blue). Staining was performed on cultures from 3 donors and representative 

images are shown.   
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phosphorylation of STAT3 in human fetal neuronal cultures, but that the levels of P-

STAT3 were constitutively high in NPC.  

Given that we saw induction of STAT3 phosphorylation in neurons after IL-6 and 

CNTF treatment, we then measured downstream induction of miR-21 expression. 

Neurons were treated with IL-6 and CNTF for 24 hours and levels of miR-21 were 

measured by qPCR. We found that both IL-6 and CNTF induced miR-21 expression in 

neurons (P < .05) (Fig 5.7A). Pri-miRNA is the transcriptional product of the miRNA 

gene, pri-miRNA is cleaved by Drosha in the nucleus into pre-miRNA-21, which is further 

processed by Dicer into the mature miR-21. To determine if pri-miR-21 was 

transcriptionally activated, levels of pri-miR-21 were measured after IL-6 and CNTF 

treatment in neurons. No change was found in pri-miR-21 expression after IL-6 or CNTF 

treatment (P = .92)(Fig. 5.7). These data suggest that either miR-21 is regulated at the 

processing level or that changes in pri-miRNA occur before the 24 h time point 

examined. Overall, these studies showed that both CNTF and IL-6 could induce 

phosphorylation of STAT3 and miR-21 expression. 

 STAT3 acting cytokines IL-6 and CNTF induced miR-21 expression in human 

neurons. Additionally miR-21 levels were higher in NPC that have constitutive STAT3 

activation. These data suggest a potential link between STAT3 activation and miR-21 

expression. To determine if STAT3 is essential for induction of miR-21 in neurons we 

used stattic, a STAT3 inhibitor that targets the SH2 domain [254]. Treatment of neurons 

with 1 µM stattic 30 min prior to CNTF treatment did not reduce miR-21 expression (P = 

.18) (Fig. 5.8A). Similarly, treatment of NPC with Stattic (2.5 µM) or Jak1 (0.6 nM) 

inhibitor did not reduce miR-21 expression (P = .58)(Fig. 5.8B). These findings thus 

suggest that miR-21 induction by CNTF is not dependent on STAT3 activation. Future 

studies should focus on alternative signaling pathways for miR-21 induction.  
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Figure 5.7 
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5.8 IL-6 and CNTF induce miR-21, but not pri-miR-21 expression in human 

neurons. Human neurons were treated with 10 ng/mL CNTF or IL-6, 24 hours later cells 

were harvested for RNA isolation. (A) Expression of miR-21 was measured by qPCR 

and normalized to snRNA U6. (B) Expression of pri-miR-21 was also measured by 

qPCR, but normalized to GAPDH. The mean fold change relative to no treatment (NT) ± 

SEM is shown. One-way repeated measures ANOVA was used to calculate significance 

based on ΔCt values. No change in pri-miRNA expression was found (P = .92), *, P < 

.05 relative to NT.  
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Figure 5.8 
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5.8 Inhibitors of JAK1 and STAT3 do not inhibit miR-21 expression. (A) Human 

neurons were treated with 1 µM stattic 30 min prior to addition of 10 ng/mL CNTF, 24 

hours later cells were harvested for RNA isolation. (B) Human NPC were treated with 2.5 

µM stattic or 0.6 nM JAK1 inhibitor for 48 hours. Expression of miR-21 was measured by 

qPCR and normalized to snRNA U6, shown as fold change relative to no treatment (NT). 

The mean ± SEM is shown. No significance was found by 1-way repeated measures 

ANOVA (neurons, P = .18; NPC, P = .58).  
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5.2.3 Protein expression of miR-21 targets in the brains of miR-21 knockout mice  

To further examine the role of miR-21 in neuronal function and injury we acquired miR-

21 KO mice. These mice are viable and fertile and have changes in apoptotic cell death 

in cancer models [164]. Before performing function studies of miR-21 in the brain we 

measured levels of miR-21 targets in the hippocampi of miR-21 KO mice compared to 

controls. We chose to examine levels of miR-21 target Phosphatase and tensin homolog 

(PTEN) a negative regulator of the Akt pathway [255]. In the brain PTEN regulates 

plasticity [256] and deletion of PTEN causes seizures and ataxia [257]. Hippocampi were 

dissected from miR-21 KO, heterozygous and WT mice, and protein homogenates 

analyzed by Western blot analyses. No changes in PTEN levels were observed in the 

brains of heterozygous or homozygous knockout mice relative to WT (Fig. 5.9A). 

Additionally, there were no changes in phosphorylated Akt (Fig. 5.9B). These data 

indicate that miR-21 is not essential for PTEN regulation in 5-week old hippocampi.  

 

5.2.4. Neuronal function measured by long-term potentiation (LTP) is normal in 

miR-21 KO mice    

Our previous studies had shown that increased miR-21 expression in neurons can lead 

to dysregulation of potassium channel currents [231]. No other studies on neuronal 

function had been performed on miR-21 KO mice. To determine whether miR-21 KOs 

showed changes in neuronal function we performed long-term potentiation (LTP) 

recordings on miR-21 KO and WT hippocampi. LTP is a correlate for learning and 

memory and a measure of complex neuronal function. To record LTP a stimulating 

electrode is placed in the Shaffer collateral and a recording electrode is placed in the 

CA1 subfield of the hippocampus. A stimulus is sent through the Shaffer collateral and 

the excitatory post-synaptic potential is measured in the stratum radiatum of the CA1. 

After a baseline response is recorded a high frequency stimulus is administered to the   
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Figure 5.9 
 

 
 
  

PTEN P-Akt 

Akt Actin 

Actin 

WT HET KO WT HET KO 
A B 



	   	   	  149 

Figure 5.9 Levels of known miR-21 targets are unchanged in miR-21 KO mice. 

Hippocampi were dissected from 5-week old miR-21 KO (KO), Heterozygous mice 

(HET) and wild type (WT) mice. Protein was purified and SDS-PAGE and Western blot 

were used to detect levels of miR-21 targets and activation of downstream pathways. (A) 

Levels of miR-21 target phosphatase and tensin homolog (PTEN) and actin loading 

control. (B) Levels of P-Akt and total Akt, a pathway inhibited by PTEN. N = 3.  
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Shaffer collateral. This induces an increased responsiveness to subsequent stimuli 

known as the post-tetanus potentiation (PTP). After a few min the PTP is diminished, but 

the potentiation is still elevated above baseline. This elevation is referred to as LTP. 

Measurement of LTP in miR-21 KO and WT mice litter mates showed no differences (Fig 

5.10). This result indicates that miR-21 KO neurons are still capable of functioning in the 

context of LTP.  

 

5.2.5 Susceptibility to excitotoxicity does not change in miR-21 KO neurons 

Several studies have identified a neuroprotective role for miR-21 [237, 258, 259]. To 

determine whether miR-21 knockout neurons showed any change in neuronal cell death 

we used an in vitro model of excitotoxicity. Excitotoxicity is related to several 

neurological conditions [260]. Excitotoxicity is caused by increased levels of excitatory 

amino acids, which bind to neurotransmitter receptors. The N-methyl D-aspartate 

(NMDA) receptor is thought to primarily contribute to excitotoxicity due to its calcium 

permeability [260]. In vitro models of excitotoxicity use NMDA to stimulate NMDA 

channels and cause delayed calcium-induced cell death. To measure differences in 

susceptibility to excitotoxicity in miR-21 KO neurons we cultured neurons from postnatal 

day 0 mouse pups and treated them with NMDA after 14 days in culture. P0 neurons 

were exposed to varying concentrations of NMDA for 30 min, followed by removal of 

NMDA and replacement of conditioned neuronal media. Cell death was then measured 

by increases in lactate dehydrogenase [176] release and alamar blue assay. Lactate 

dehydrogenase is released from dying cells and is a common measure of cell death. 

Alamar blue is a redox indicator of cell viability that can be used to asses neuronal 

viability [261]. In both the LDH and alamar blue assays we found a significant effect of 

NMDA concentration (P = .013 for alamar blue assay and P = .0028 for LDH assay), but 

no changes between miR-21 KO and WT neurons at any of the tested concentrations of  
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Figure 5.10 
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Fig. 5.10 Long-term potentiation is normal in miR-21 KO mice. Hippocampal slices 

from 4-6 week old miR-21 KO and WT littermates were bathed in oxygenated artificial 

CSF for one hour before recordings were made. Stimulation of the Shaffer collateral was 

used to elicit field excitatory postsynaptic potentials (fEPSP) recorded from the CA1 

subfield in the stratum radiatum. A 20 min baseline was recorded before high frequency 

stimulation (HFS, 100 Hz, 500 ms) fEPSP was recorded for an additional 40 min to 

measure long-term potentiation. Recordings from WT slices = 7, animals = 3, KO slices 

= 7, animals = 4). Shown is the mean initial slope of the EPSP ± SEM.   
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NMDA (P = .90 for alamar blue assay and P = .91 for LDH)(Fig. 5.11). This result was 

rather unexpected considering multiple reports of the neuroprotective role of miR-21. We 

cannot rule out a potential role for miR-21 in neuroprotection, but we were not able to 

measure it in this system. Compensatory mechanisms are one possible explanation for 

the lack of observed changes in neuroprotection. Another explanation is that miR-21 

levels are too low to observe changes without induction. In previous experiments we 

identified CNTF as an inducer of miR-21 expression. CNTF is secreted by astrocytes 

after CNS damage [262]. Therefore it is possible that in a complex multicellular 

environment during neuronal injury miR-21 could have an effect on neuronal survival.  

 

5.2.6 Ablation of miR-21 does not affect neurological severity score after CCI.  

In order to examine the function of miR-21 in a multicellular context of neuronal injury we 

used a CCI model of TBI.  In previous studies miR-21 was elevated at 3 days after 

severe (1.0 mm) CCI. To examine what effect miR-21 ablation had on neuronal survival 

and TBI outcome, CCI was performed on miR-21 KO and WT mice and evaluated by 

behavioral testing and histology. For these experiments 2 month-old miR-21 KO and WT 

mice were given a severe brain injury (1.0 mm depth). Neurological severity score was 

measured 3 days after CCI. The maximum score on the NSS is 10, a higher score 

indicates increased neurological impairment. A list of measures used for NSS testing is 

included in table 2. Using this gross measure of neurological function we found no 

changes between miR-21 KO mice and WT after CCI (P = .28) (Fig. 5.12) We used both 

male and female mice for this test and found no difference between genders (P = .60), 

or genotype (P = .25), or interaction between the variables (P = .44) by two-way ANOVA. 

Given that there was no difference between gender we examined NSS outcome of miR-

21 KO vs. WT by student’s T-test  
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Figure 5.11 
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Figure 5.11 No change in neurotoxicity after NMDA treatment in miR-21 KO 

neurons. Neurons were cultured from postnatal day 0 mice and grown for 13 days in 

vitro. On the 13th day neuronal media was removed and cells were treated with indicated 

concentrations of N-Methyl-D-aspartic acid (NMDA) for 30 min in artificial CSF. After 

treatment conditioned media was returned and cell death was measured 24 hours later 

by LDH and alamar blue assays. (A) Shown is the mean % cytotoxicity ± SEM measured 

by LDH assay and (B) Mean % Viability ± SEM was determined using alamar blue 

assay. Significance was calculated using two-way ANOVA. NMDA concentration was 

significant (P = .013 for alamar blue assay and P = .0028 for LDH assay), but no effect 

of genotype was found (P = .90 for alamar blue assay and P = .91 for LDH). 
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Figure 5.12 
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Figure 5.12. Neurological severity score [87] testing of WT and miR-21KO mice. 

The severity of injury 3 days after severe (1.0 mm) CCI was measured by NSS testing in 

miR-21 KO and WT mice. The maximum score possible is 10, with a higher score 

indicating higher severity. WT and miR-21KO mice were injured at 7-9 weeks old. WT, 

males = 8, females = 9; KO, males = 13, females = 9. (A) No significant difference was 

found by two-way ANOVA, (genotype, P = .25; gender, P = .60, interaction P = .44). The 

mean neurological severity score ± SEM is shown. (B) Combining male and female 

values gave no significance by student’s T-test, P = .28. 
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and also found no significant change (P = .28) We were not able to detect a difference in 

NSS outcome in miR-21 KO mice. The NSS is a relatively basic outcome measure, 

possibly more thorough outcome assessment could detect changes between miR-21 KO 

and WT.   

 

5.2.7 Neurodegeneration after CCI is unaffected by miR-21 KO 

To examine to importance of miR-21 in CCI mediated neuronal degeneration we used 

fluorojade C (FJC) staining. FJC is specific to degenerating neurons and can be used to 

measure neurdegeneration after TBI in rodent models [218]. One-mm CCI was 

administered to miR-21 KO and WT mice, then sacrificed the mice at 3 days post injury. 

FJC staining was performed and FJC positive cells were counted. Again, there were no 

measurable change between miR-21 KO and WT mice (cortex, P = .74; hippocampus, P 

= .34)(Fig. 5.13). These data suggest that even in a complex multicellular model of 

neural injury, miR-21 KO mice do not show changes in neuronal degeneration. This 

finding again points to a possible compensatory mechanism in miR-21 KO mice.  

  

5.2.8 Creation of miR-21 conditional knockout mice  

In order to address the potential compensatory mechanisms found in miR-21 KO a 

conditional miR-21 KO was created. This mouse was designed to be inducible by a 

AAV-CRE system or through tissue specific expression of CRE. Functionally this means 

that cultured cells or tissues of live animals could be transduced with a viral vector 

expressing CRE recombinase, alternatively CRE can be expressed under tissue specific 

promoters. CRE would cause recombination at LoxP sites on either side of the miR-21 

stem loop deleting the gene (Fig. 5.14). The initial steps of the mouse generation were 

performed by Mike McManus at the University of California San Francisco [263]. First a 

targeting vector was designed to insert a FRT site, lacZ gene, loxP site, Neomycin  
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Table 5.2 Neurological severity score parameters. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Failure to complete each task in the allotted time was given a score of 1 for a maximum 
of 10 [87]. 

Task Score 

Exit circle within 3 min 1 
Presence of seeking behavior 1 
Monoparesis/hemiparesis 1 
Strait walk 1 
Startle reflex 1 
Beam balancing for 10 sec 1 
Beam walking 3 cm width in 3 min  1 
Beam walking 2 cm width in 3 min 1 
Beam walking 1 cm width in 3 min 1 
Round stick balancing 1 
Total Possible 10 
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Figure 5.13 
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Figure 5.13 Levels of neurodegeneration are similar between miR-21 KO and WT 

mice after CCI. Degenerating neurons were stained with fluorojade (green) and DAPI 

(blue) 3 days after 1.0-mm CCI in the brains of WT and miR-21 KO mice. (A) Fluorojade 

cells were counted in three fields of the cortex, or (B) in the DG from three slices 

between bregma -2.5 and -1.5. The mean ± SEM of total fluorojade cells are shown, WT, 

n = 4 and miR-21 KO, n = 5 (C) Representative images from the ipsilateral dentate gyrus 

(DG) and the lesion boundary of the cortex are shown. No significance was found by 

student’s t-test, DG (P = .74), cortex (P = .34). 
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cassette, FRT site, and final loxP site (FRT-lacZ-loxP-Neo-FRT-loxP) upstream of the 

miR-21 stem loop with an additional loxP site downstream. This construct was 

electroporated into embryonic stem cells to generate chimeric mice. These mice were 

then crossed with other strains to generate the colony. Mice containing the targeted 

allele were donated to Jackson laboratories. We obtained mice heterozygous for the 

targeted allele from Jackson laboratories. This construct is referred to as a knock out-

first system as the LacZ and neomycin cassettes disrupt the expression of the gene. 

Once the LacZ and Neomycin cassettes are removed by Flp recombinase the target 

gene is expressed. Recombination with Cre recombinase removes the gene creating a 

true knockout. In this strain homozygosity for the targeted allele was lethal either 

embryonically or perinatally. The ratios of each genotype from a heterozygous cross to 

reach weaning age were homozygous 0/18 heterozygous 12/18 and wild type 6/18. 

Deletion of the miR-21 stem loop in another mouse strain (background 129S and 

C57Bl6) was not fatal and was used for our previous studies. However, the large 

neomycin/lacZ cassette likely interfered with the expression of the miR-21 host gene 

TMEM49 which codes for the vacuole membrane protein 1 (VMP1), which is essential 

for autophagy and other cellular processes [264]. Therefore heterozygous mice were 

bred to a Flp recombinase expressing strain to create a floxed miR-21 allele where the 

gene is flanked on either end by a LoxP site. The recombined allele was no longer 

homozygous lethal and mice homozygous for the floxed allele were generated. Floxed 

miR-21 mice can be used for in vitro or in vivo conditional deletion of the miR-21 gene. 

These mice could be breed with strains expressing Cre recombinase under tissue 

specific promoters to generate tissue specific strains [265, 266]. Alternatively neurotropic 

AAV serotypes expressing Cre recombinase could be injected to ablate miR-21 in 

neurons after development [267].  
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Figure 5.14 
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Figure 5.14 Generation of conditional miR-21 KO mice. (A) A (FRT-lacZ-loxP-Neo-

FRT-loxP) cassette was inserted upstream of the miR-21 stem loop followed by an 

additional FRT site. Approximate location of FRT recombination sites (red triangles) and 

loxP recombination sites (blue triangles) are shown. (B) Crossing with a Flp 

recombinase expressing strain removes the LacZ and neomycin cassette leaving a 

floxed miR-21 stem-loop. (C) Introduction of CRE recombinase by germline or viral 

transduction produces a knock-out allele.  
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5.3 Discussion 

Expression of miR-21 increases during development and can be induced by STAT3 

dependent neurotrophic factors IL-6 and CNTF. Examination of the hippocampi of miR-

21 KO mice revealed no changes in target PTEN or downstream phosphorylation of Akt. 

Additionally, miR-21 KO mice showed no changes in long-term potentiation indicating 

that neuronal function in these mice was intact. Despite the proposed neuroprotective 

properties of miR-21 [152, 237, 238, 258], we saw no changes in NMDA excitotoxicity in 

cultured miR-21 KO hippocampal neurons compared to WT. Additionally, we observed 

no changes in neurodegeneration measured by FJC in the brains of miR-21 KO mice vs. 

controls. There was also no difference in functional outcomes between the genotypes 

after CCI as measured by the NSS.  

 It is difficult to reconcile the evidence of a neuroprotective role for miR-21 

reported by multiple independent labs with the results of these studies. One possible 

explanation is that compensatory mechanisms could be at play. Patrick et al. reported a 

similar finding in miR-21 KO mice in the field of cardiology [268]. Despite multiple reports 

by several groups that miR-21 mediated a hypertropic response in the heart [269], 

Patrick et al reported no change in cardiac function in miR-21 KO mice. To address 

these concerns we have generated a mouse carrying a floxed miR-21 allele that could 

be used in the future for conditional deletion of miR-21 by either tissue specific or AAV 

mediated CRE recombinase expression.   

 One significant finding of these studies was the ability CNTF to induce miR-21 in 

human neurons. CNTF is critical for neuronal survival and regeneration [250, 270, 271]. 

Clinical trials targeting CNTF have been done in ALS patients and in retinal 

degeneration. In the ALS trial CNTF did not produce significant improvements and in 

many cases dosing was limited by adverse effects such as anorexia, weight loss, and 

cough [246]. However, studies in retinal degenerative diseases with CNTF producing 
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explants have not shown toxicity [272]. As therapeutic use of CNTF poses several 

challenges, identifying the importance of miR-21 for the down-stream effects of CNTF 

could lead to a novel therapeutic target for neuroprotection and regeneration.  

 

5.4 Summary: 

CNTF induces P-Stat3 and miR-21 in human neurons. Lack of neuronal phenotype in 

miR-21 KO mice suggests that compensatory mechanisms  could be involved. To 

address this issue a mouse strain with a floxed miR-21 allele was generated. This 

mouse can be combined with various modes of CRE delivery to make a conditional 

knockout for the study of miR-21 in the brain or in other systems.  
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Chapter 6: Traumatic brain injury increases levels of miR-21 in extracellular 

vesicles: implications for neuroinflammation 

 

6.1 Background: 

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide and 

current treatment strategies are limited [4, 6, 61]. The damage caused by a TBI can be 

divided into the instantaneous primary mechanical injury and delayed secondary injury, 

which includes inflammation, neurochemical changes, and mitochondrial dysfunction 

[21]. A robust inflammatory response is seen post-TBI, including migration and activation 

of resident glia and recruitment of peripheral immune cells to the injury site [28]. As in 

other types of injury, cell-cell communication is critical for regulating the immune 

response in TBI. Although there is a wide body of research examining the roles of cell-

cell mediators such as cytokines and chemokines in TBI [273], the short duration of 

action, along with the complex and pleiotropic nature of these molecules make them 

difficult drug targets [21]. In recent years several important studies have found that 

extracellular vesicles (EVs) can influence cell-cell communication significantly [274-276]. 

EVs are membrane-derived vesicles that include vesicles that originate from the plasma 

membrane, exosomes derived from multi-vesicular bodies, and apoptotic bodies. These 

EVs serve as shuttles for cellular components between cells, carrying proteins, 

metabolites, lipids, mRNA, and microRNA (miRNA) [277].  EV mRNA and miRNA can 

function within the recipient cell to alter protein expression [275, 278]. Recent studies 

also show that miRNA carried within extracellular vesicles can trigger inflammatory 

responses and neuronal damage through pattern-recognition receptors (PRRs) [276]. 

While several experiments have shown effects of EV associated miRNAs (EV-miRNAs) 

on cells in culture, less is known about how the miRNA content of EVs is altered in 

disease conditions and whether or not EV-miRNA has important pathophysiological 
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roles. No studies so far have characterized EVs in the TBI brain. The goal of this study 

was to investigate changes in EV microRNA after a TBI. To accomplish this we 

quantified levels of miRNA in EVs from mice 7 days after a TBI using next-generation 

sequencing. Furthermore, in situ hybridization was performed to analyze the expression 

of miRNA in the brain.  

 
6.2 Results: 

6.2.1 Characterization of CCI. While the CCI model is commonly used in TBI research, 

the histopathology and behavioral deficits can vary dramatically with injury depth, 

species, strain, and age, as well as choice of controls. We chose a 1.0 mm depth to 

model severe injury.  While a craniotomy only (without TBI) control is used by some in 

the TBI field, it is associated with inflammation [185, 186]. To avoid neuroinflammation 

caused by craniotomy, and to better control for peripheral injury and inflammation we 

used a peripheral injury control where an animals were given anesthesia, analgesia, and 

a scalp incision. 

Rotorod testing was then used to examine motor and vestibular function, as 

abnormalities are found after CCI [95]. Before surgery animals were trained on the 

accelerating rotarod apparatus for three trials a day for 3 days. On the last day of 

training there was no difference in latency to fall between the groups randomly selected 

for CCI and sham surgery (Fig 6.1A). Animals were tested daily beginning one day after 

surgery. CCI impaired motor function 1, 2, and 3 days after injury, by day 4 post injury 

motor function recovered to the level of control. Peripheral injury controls did not show a 

decrease in motor function after sham surgery. Since rotorod deficits were resolved at 7 

days after CCI, subsequent studies were performed at this time point. 
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Luxol fast blue staining was then performed In order to characterize the lesion 

site morphology and white matter damage 7 days after CCI or sham surgery (Fig. 6.1B). 

Sham animals showed no evident neuropathology, however CCI induced cortical and  

hippocampal tissue loss on the injured side and enlargement of the lateral ventricle. 

Disruption of white matter tracts was clearly observable. The corpus callosum was 

disrupted and the fimbria was deformed.  

 Glial activation is a well-recognized component of TBI pathophysiology [279]. To 

examine the extent of glial activation at 7 days after CCI, tissues were stained for GFAP 

and Iba1, markers of astrocytes and microglia respectively (Fig. 6.1C). Levels of GFAP 

and Iba1 are both up-regulated when glial activation occurs. As expected, staining for 

GFAP and Iba1 increased after TBI. In addition microglial morphology shifted from 

ramified, resting microglia to a bushy, activated state in the injured hemisphere 

compared to sham controls. Activated microglia were also observed in the contralateral 

cortex after CCI, but to a lesser extent. 

Overall, both motor impairment and neuropathology are consistent with 

descriptions of CCI by other groups. No changes in motor function or glial activation 

were seen in peripheral injury sham controls. Importantly, while motor deficits are 

resolved, glial activation is prominent at 7 days after injury, we chose this time point to 

examine the role of EV miRNA in TBI induced neuroinflammation.  

 

6.2.2 Isolation and characterization of EV after CCI. EVs were isolated from pooled 

brain tissue using differential centrifugation on a sucrose gradient. Transmission electron 

microscopy [24] was used to characterize vesicle size (Fig. 6.2). EVs isolated from 

mouse brain showed a heterogeneous sized population of EVs. Intact vesicles were 

present indicated by the characteristic “cup shape” created by the pooling of negative  
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Figure 6.1 

 
  



	   	   	  171 

Figure 6.1 Characterization of CCI model. (A) Motor function in the week after CCI 

measured by rotarod. Sham controls and CCI mice were tested 3 times per day and 

trained for three days prior to injury. The average time to fall of the final training day is 

shown as time 0. The average time to fall of three trials for each day after injury is 

shown. Day 1 corresponds to 1 day after CCI. The mean ± SEM from 15 animals are 

shown. A two way ANOVA was used to determine statistical significance. *, P < .001. (B) 

Histology performed on mice 7 days after injury or sham surgery. Shown are 

representative images of three replicates. Luxol fast blue and cresyl violet staining of 

myelin (blue) and Nissl substance (purple) showing gross histology of the lesion, 

indicated by an asterisk, after CCI compared to the normal anatomy of the sham surgery 

control. (C) Iba-1 and GFAP immunohisochemisty (IHC) staining for microglia and 

astrocytes respectively in the left hemisphere of sham controls (SHAM), and the 

ipsilateral (IPSI) and contralateral (CONTRA) hemisphere of animals after CCI (TBI), 

lesion cavity indicated by an asterisk. Original magnification 10 x (bars = 100 µM), and 

40 x (bars = 25 µM). 

  



	   	   	  172 

stain on top of the intact vesicle [277]. These data indicate that intact, heterogeneous 

EVs were isolated from mouse brain.  

 
6.2.3 Sequencing of EV-miRNA after CCI. Recent evidence has shown that EV-miRNA 

can induce inflammation and neuronal damage [177, 276, 280, 281]. Therefore, 

understanding changes in EV-miRNAs after CCI is relevant to TBI pathology. To quantify 

EV-miRNAs, EVs were isolated from the left and right hemispheres of animals 7 days 

after CCI or sham surgery. Then miRNAs were purified from the EVs and sequenced. 

Brains from four conditions were used for this purpose: TBI ipsilateral (left) hemisphere, 

TBI contralateral (right) hemisphere, sham left hemisphere and sham right hemisphere. 

A heat map of all differentially expressed miRNA genes (P < 0.05 by ANOVA) is shown 

in Fig. 6.3A. Generally miRNAs clustered into those that increased or decreased in both 

the ipsilateral and contralateral hemispheres and those that increased only in the 

ipsilateral hemisphere. The largest number of differentially expressed miRNAs (59) was 

found in the ipsilateral hemisphere from TBI relative to the corresponding sham 

hemisphere, followed by the TBI ipsilateral vs. contralateral hemisphere (46). Only 7 

differentially expressed genes were common between the ipsilateral and contralateral 

hippocampi (Fig. 6.3B). Together this indicates that the ipsilateral hemisphere shows the 

most distinct set of differentially expressed EV miRNAs, as would be expected 

considering the unilateral nature of the injury and glial activation seen by 

immunohistochemistry. To focus further examination, we calculated log2 values for 

differentially expressed miRNAs and set a threshold of |log2| = 0.5. Based on these 

criteria we identified 5 differentially expressed genes, 4 up-regulated and 1 down-

regulated in the ipsilateral hemisphere (Fig. 6.3C). Levels of miR-212 were decreased in 

the ipsilateral hemisphere relative to corresponding sham and contralateral 

hemispheres. In contrast, miR-7b, miR-7a, and miR-21 levels were all increased in the  
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Figure 6.2 
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Figure 6.2 Characterization of EVs from brain tissue. Transmission electron 

microscopy of brain derived EVs showing a heterogeneous population of vesicles.  
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ipsilateral hemisphere compared to the corresponding sham hemisphere. Uniquely, miR-

146 was increased bilaterally in both the ipsilateral and contralateral hemispheres 

compared to sham. Of all the differentially expressed EV-miRNAs, miR-21 showed the  

largest increase after CCI. Average counts for differentially expressed miRNAs are 

shown in Table 6.1.The sequences in Table 6.2 show differentially expressed miRNAs. 

Three of the five miRNAs have GU rich sequences that are known to mediate TLR7/8 

responses [282]. In summary, CCI induced changes in miRNAs associated with EVs, 

particularly in the ipsilateral hemisphere.  

 

6.2.4 Localization of miR-21 expression after CCI. Injury significantly increased EV-

miR-21 in brain tissue. As homogenized brain tissue was used to isolate EVs, which cell 

types secrete miR-21 into EVs could not be determined. To investigate the cell-type 

specific expression of miR-21 after CCI we performed combined immunofluorescence 

and in situ hybridization. Images were taken in the parietal cortex adjacent to the lesion, 

or lesion boundary. Expression of miR-21 was higher in CCI animals than in the sham 

control (Fig. 6.4), which is in agreement with other reports [145, 152, 283].  Co-staining 

with MAP2, a cell-type specific marker for neurons, showed co-localization with miR-21, 

indicating that miR-21 is highly expressed in neuronal cell bodies. In contrast, miR-21 

expression did not co-localize with microglial marker Iba-1, suggesting that microglia are 

not the primary source of EV-miR-21. However, activated microglia were found in 

immediately adjacent to the miR-21 positive neurons in the lesion boundary. While this 

staining cannot prove that the origin of EV-miR-21 is neuronal, it strongly suggests that 

the up-regulation in EV-miR-21 is due to an increased expression of miR-21 in neurons.  

 
6.3 Discussion 
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Figure 6.3 
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Figure 6.3 Sequencing of EV miRNAs after CCI. (A) Heat map and hierarchical 

clustering depicting all differentially expressed miRNAs (P < .05 by ANOVA). (B) Venn 

diagram showing differentially expressed miRNAs in ipsilateral (IPSI) vs. sham left and 

contralateral (CONTRA) vs. sham right. Significance was determined by T-test P <.05 

(B). (C) MiRNAs that increase or decrease in the ipsilateral hemisphere (IPSI) relative to 

controls (log2 > .5) (C). Log2 values for the contralateral hemisphere (CONTRA) are also 

shown. The mean ± SEM from 3 replicates are shown. A one-way ANOVA was used to 

determine statistical significance. *, P < .05; **, P < .01; ***, P < .001. 
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The major finding of this study is that TBI induces changes in EV associated miRNAs in 

a rodent CCI model. Through miRNA sequencing, we found that miR-21, miR-146, miR-

7a, and miR-7b all increased in the injured hemisphere relative to sham surgery control, 

while miR-212 expression decreased. Of these miRNAs, miR-21 showed the largest fold  

change. Localization of miR-21 expression through in situ hybridization was found 

overwhelmingly in MAP2 expressing neurons in the lesion boundary, suggesting that EV 

miR-21 could be neuronal in origin and might mediate neuron-glia signaling.  

 

This is the first study to profile changes in brain EV-miRNA after TBI. Several previous 

studies have identified changes in miRNA expression in brains from TBI models [144-

149]. Of these studies 3 reported a significant increase in miR-21 relative to controls 

[144, 145, 148]. Generally, literature on miR-21 in TBI supports a neuroprotective role for 

miR-21. Treatment with a miR-21 mimic improved disease outcomes in rats after CCI 

[152]. Also, overexpression of miR-21 reduces neurotoxicity in an in vitro, stretch model 

of TBI through miR-21 targeting of PTEN [284]. Increasingly, miR-21 is recognized as a 

important molecule in neuronal injury [285]. The neuroprotective and regenerative 

effects of miR-21 have been observed in models of stroke [237], axotomy [234], and 

neurodegeneration [259]. Additionally, miR-21 has roles in glial responses to injury. In 

spinal chord injury miR-21 reduces hypertrophy of astrocytes, reducing glial scar 

formation [141], whereas in experimental stroke, miR-21 targets FasL in microglia 

reducing microglia-mediated neuronal death [238]. Despite the potential benefits of miR-

21 expression in neuronal injury, there are also drawbacks. For example, in HIV 

associated neurocognitive disorders elevated expression of miR-21 contributes to 

neuronal dysfunction by increasing potassium channel activity and targeting MEF2C, an 

important neuronal transcription factor [231]. Elevated miR-21 also contributes to 

neuropathic pain in nerve injury [233]. Nevertheless, this yin-yang role of miR-21 makes  
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Table 6.1. 
 
     IPSI/ 
miRNA IPSI CONTRA SHAM L SHAM R SHAM L Log2 
miR-21a-5p 9,283 ± 3,860 6,610 ± 2,736 3,275 ± 295 4,179 ± 618 2.8 1.5 

miR-146a-5p 3,648 ± 413 3,707 ± 1,067 2,042 ± 318 2,163 ± 444 1.8 .84 

miR-7a-5p 11,393 ± 1,411 9,631 ± 1,313 7,057 ± 1,115 8,330 ± 910 1.6 .69 

miR-7b-5p 8,582 ± 1,411 8,067 ± 932 5,764 ± 642 6,827 ± 1,176 1.5 .57 

miR-212-5 2,988 ± 666 4,745 ± 594 4,229 ± 115 4,380 ± 931 .71 -.50 

 

Sequencing counts of miRNAs significantly increased in the ipsilateral hemisphere (P < 

.05 with |log2 IPSA/Sham L)| > .5), average counts ± SD for three replicates, each 

pooled from 3 animals. 
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Table 6.2 

 

miRNA    Sequence    

miR-21a-5p            UAGCUUAUCAGACUGAUGUUGA 

miR-146a-5p  UGAGAACUGAAUUCCAUGGGUU 

miR-7a-5p  UGGAAGACUAGUGAUUUUGUUGU 

miR-7b-5p  UGGAAGACUUGUGAUUUUGUUGU 

miR-212-5p  ACCUUGGCUCUAGACUGCUUACU 

 

Sequences of miRNAs significantly increased in the ipsilateral hemisphere (P < .05 with 

|log2| > .5). GU rich sequences shown in bold. 
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Figure 6.4 
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Figure 6.4 Localization of miR-21 expression after CCI. Expression of miR-21 was 

visualized by combined in situ hybridization and immunofluorescence. Staining for miR-

21 (magenta) and cell-type markers (green), MAP2 and Iba1 were used to identify 

neurons and microglia respectively. Nuclei are stained with DAPI (blue). Original 

magnification 63 x (bars = 100 µm), location of insets marked with an asterisk. Staining 

was performed in duplicate and representative images are shown. 
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it an interesting target of study in neuronal injury and inflammation. Here, for the first 

time we have identified that miR-21 can also be associated with EVs in TBI. 

In this study we profiled EV-miRNAs from the brain tissues of CCI injured mice. 

Previously, Patz et al also characterized EV-miRNAs after TBI, but in the cerebrospinal 

fluid (CSF) of patients [286]. Our miRNA sequencing did not recapitulate the miRNA 

profile found in this previous study. This difference could be due to several factors, such 

as the use of CSF vs. brain tissue, and patients versus a controlled experimental model. 

Outside of the TBI field, profiling of EV-miRNA from neurons and brain tissue has been 

performed. Interestingly, exosomes secreted by prion-infected neurons show higher 

levels of miR-21 than exosomes from uninfected neurons in vitro [235]. This supports the 

theory that neurons increase the release of miR-21 in EV as a response to stress. Our 

group and others have studied the role of miRNAs in exosomes or extracellular vesicles 

in HIV-associated neurocognitive disorders (HAND), conditions strongly linked with 

neuroinflammation [287]. One study indicated that comorbid HIV infection and opiate 

abuse can increase miR-29 packaging in brain EV, which in turn downregulates the 

important neuroprotective molecule PDGF [288]. Another study showed that in HAND, 

EV miR-21 is increased and mediates neurotoxicity by binding to TLR7 and causing 

necroptosis [177]. As more groups profile miRNA signatures of EVs, a clearer picture will 

form of which miRNAs are common to neuronal injury or inflammation and which are 

specific to disease state.  

The release of miRNAs in EVs is thought to have two possible effects on target 

cells. The first mechanism occurs when the EV either fuses with the cell membrane or 

endosomal membrane to release its contents into the cytosol [278]. Mature miRNAs in 

the cytosol can bind to target mRNAs and decrease their translation [274]. The second 

mechanism of EV miRNA action is through binding of pattern recognition receptors in the 

endosomal compartment, primarily toll-like receptor 7/8 (TLR7/8) [276]. TLR7/8 
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recognizes ssRNA, and elicits an antiviral response as part of the innate response to 

viral pathogens[289]. Several groups have reported that miRNAs with EV can stimulate 

TLR7/8, but the outcome of miRNA binding to TLR7/8 is highly dependent on cell type. 

In immune cells, such as macrophage and microglia, TLR7/8 binding elicits a pro-

inflammatory response, including secretion of TNFα [276]. Alternatively, TLR7/8 binding 

in neurons is toxic and can lead to cell death or synaptic loss [177, 280, 281]. The 

binding of miRNAs to TLR7/8 is dependent on GU rich sequences [282], as miR-21 has 

such a GU rich sequence it is a strong stimulator of TLR7/8 [177, 276, 280]. Recent 

studies have identified EV miR-21 specifically as both pro-inflammatory [276] and 

neurotoxic [281]. Our studies on SIV encephalitis showed that not only was miR-21 

elevated in EV from encephalitic brains, but also that EV miR-21 induced necroptosis in 

neurons through TLR7 [177]. Therefore, the increase of EV-miR-21 reported in this study 

has important pathophysiological implications for TBI. Whether miR-21 in EV leads to 

translational regulation or TLR7/8 stimulation in recipient cells after TBI is not addressed 

in this study and will be an important question for future research.  

Aside from miR-21, we identified 3 other miRNAs with increased levels in EVs, 

miR-146, miR-7a, and miR-7b. Increased expression of total brain miR-146a was 

reported Lei et al. in a CCI model of TBI [144]. Interestingly our previous studies in SIV 

encephalitis also found increases in EV miR-146 [177]. It is known that inflammatory 

stimuli such as LPS induce miR-146 [290]. Interestingly, knockout studies in mice have 

proven miR-146 to be an important anti-inflammatory miRNA [291]. Even more 

importantly miR-146 within exosomes can act functionally to reduce inflammation in 

recipient cells [292]. Therefore, it is possible that in TBI miR-146 within exosomes could 

reduce neuroinflammation. Relatively little is known about miR-7a and b compared to 

miR-146 and miR-21. However, some in vitro data suggest miR-7 can be 

neuroprotective [293]. The expression of miR-7 is relatively brain specific [294]. 
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Interestingly miR-7a and b both contain a GU rich element identical to that found in miR-

21 (UGUUG) indicating that they may also be ligands for TLR7/8 (6.2). We found one 

miRNA, miR-212, down regulated in EV after TBI. Down-regulation of miR-212 has been 

found in several brain diseases [295]. These include anencephaly [296], schizophrenia 

[297], and Alzheimer’s disease [298]. Together these studies hint that deregulation of 

miR-212 may be pathological in the brain.  

 

6.4 Summary: In conclusion we report here the first miRNA profile of brain exosomes in 

TBI. Differential expression of 5 miRNAs was found between EVs from CCI injured brain 

vs. uninjured controls. Of the differentially expressed miRNAs, miR-21 showed the 

highest increase in EVs of the injured brain. Interestingly, increased levels of miR-21 

were found in neurons of the injury boundary zone near reactive microglia. This work 

shows that TBI induces changes in EV miRNA, which likely has important consequences 

for cell-cell signaling and the disease process in TBI.  
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Chapter 7: Behavioral phenotyping of mice in the chronic phase of TBI 

 

7.1. Background:  

Survivors of TBI experience a variety of chronic symptoms that can range from motor 

and cognitive disability to neuropsychiatic dysfunction. Current pre-clinical modeling of 

TBI in rodents generally fails to address these chronic outcomes of TBI. To improve 

translational efficacy, a better understanding of the chronic phenotype of rodent models 

of TBI is needed. Additionally, the pathophysiology that causes neuropsychiatric 

conditions after TBI is unknown. Animal modeling of neuropsychiatric changes after TBI 

could provide a mechanistic understanding of these disorders. In order to investigate 

changes in long-term behavioral outcomes we chose a highly utilized model of TBI, the 

controlled cortical impact (CCI) model. Four experimental groups naïve, craniotomy only, 

moderate and severe CCI, were tested using a battery of motor, cognitive, and 

neuropsychiatric behavioral measures.  

 

7.2 Results: 

7.2.1 Motor function 2 months after CCI is normal 

To evaluate motor and vestibular function in the chronic phase of CCI we performed 

accelerating rotarod testing. Rotarod testing is a common measure of TBI induced 

deficits in rodent models [95, 170]. The accelerating rotarod utilizes a rotating cylinder as 

a treadmill. Mice were placed on the rod, the speed of rotation was steadily increased 

until the mouse fell, activating a weight based sensor below the rod. The latency to fall 

was then recorded. Mice were tested three times a day for three days and the trials 

averaged for each day. There were no differences between groups in rotarod 

performance indicating that motor function was not impaired 2 months after CCI (Fig 

7.1).  
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Figure 7.1 
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Figure 7.1 Motor testing 2 months after CCI. Motor and vestibular functions were 

tested by accelerating rotarod on three consecutive days in naïve, craniotomy only 

(Sham), moderate (0.5 mm) and severe (1.0 mm) CCI. Latency to fall was recorded by 

weight-based sensors. The average of three trials was reported for each day. The mean 

± SEM is shown, n = 8 per group. No significance by condition was found by two way 

ANOVA (P .40), however the day of testing was significant (P < .0001).  
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7.2.2 Memory is not impaired 2 months after CCI  

To evaluate memory function 2 months after CCI we performed novel object testing. 

Novel object testing is an ethological test of memory function [219] and has been used to 

evaluate animal models of TBI [299, 300]. Mice were first familiarized to two identical 

objects then after an interval of three hours one object was replaced with a novel, 

unfamiliar object. The mouse was then returned to the arena and recorded for 5 min. 

The time spent exploring each object was measured and a recognition index was 

calculated. The recognition index is a ratio of the time spent with the novel object to the 

time spent exploring both objects. A recognition index of .5 means that there was no 

preference for the novel object. Using this memory test no differences were found 

between the four groups (Fig. 7.2). All groups showed a recognition index greater than .6 

indicating a preference for the novel object. These data indicate that 2 months after 

injury mice do not have deficits in memory function. 

 

7.2.3 Evidence of hyperactivity 2 months after CCI  

The open field test is both a measure of overall motor function and activity and a 

measure of anxiety [301]. Mice were placed in an unfamiliar 49 cm x 49 cm arena and 

behavior was recorded for 20 min. Both moderately (.5 mm) and severely (1.0 mm) 

injured mice traveled a greater distance than naïve mice and severely injured mice 

traveled more than craniotomy only sham controls (Fig 7.3A). Similarly both moderately 

and severely injured mice had increased velocity in the open field test relative to naïve 

controls (Fig. 7.3C). The open field test can also be used to measure anxiety, to do this 

the percent time spent in the center quadrant is calculated. Injured mice and controls 

showed no changes in anxiety by this test (Fig. 7.3B). In summary, injured mice showed 

increased activity and velocity in the open field test.  
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Figure 7.2 
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Figure 7.2 Normal memory function months after CCI. Memory was tested by novel 

object recognition in naïve, craniotomy only (Sham), moderate (0.5 mm) and severe (1.0 

mm) CCI. The mouse was familiarized to two identical objects, after 3 hours one of the 

familiar objects was replaced with a novel object. Exploration of the two objects was 

measured using Ethovision software (Noldus) and defined as the nose of the mouse 

within 2 cm of the object. The ratio of time spent exploring the novel object to time spent 

exploring both objects is shown as the recognition index. A recognition index of .5 

indicates no preference for the novel object. The mean ± SEM is shown, n = 8 per group. 

No significance was found by one way ANOVA (P = .53).   
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Figure 7.3 
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Figure 7.3 Increased activity in injured mice 2 months after CCI. Activity and anxiety 

were tested by novel object recognition in naïve, craniotomy only (Sham), moderate (0.5 

mm) and severe (1.0 mm) CCI two months after injury.  Each mouse was allowed to 

explore an open arena for 20 min. (A) The overall movement over the 20 min interval (B) 

The % time each mouse spent in the center quandrant. (C) The velocity over the 20 min 

interval. Movement of animals within the arena was recorded and movement and center 

frequency were calculated using Ethovision software (noldus) The mean ± SEM of each 

group are shown, n = 8. Overall movement (P = .0017), but not % time in center (P = 

.52), was significant by one-way ANOVA. *, P < .05; **, P < .01 from naïve. #, P < .05 

from sham.   
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7.2.4 Injured mice are disinhibited 2 months after CCI 

In order to investigate the anxiety-like phenotype of injured mice, elevated zero maze 

testing was performed. In this modified version of an elevated plus maze mice were 

recorded while they explore the open, exposed arms and the closed, protected arms 

[302]. Over the 6 min recording period the time spent in the closed arms and the number 

of entries into the closed arms was determined. Interestingly severely injured mice spent 

significantly more time in the open arms (Fig. 7.4). No changes were observed in exits 

from closed arms. The increased time spent in the open arms by severely injured mice 

suggests decreased anxiety or disinhibition.  

 

7.2.5 Lack of depressive phenotype 2 months after CCI  

Depressive-like behavior in mice can be measured by the tail suspension test [303, 304]. 

Mice were suspended from a metal rod by the tail 30 cm off the counter. The time spent 

immobile vs. the time spent struggling was scored by a blinded observer. An increase in 

time spent immobile is a marker of depressive-like behavior in mice. No changes were 

observed between the four experimental groups in time spent immobile (Fig. 7.5). Based 

on this measure we did not observe depressive-like behavior in mice 2 months after CCI.  

 

7.2.6 Sociality in mice 2 months after CCI  

To measure subtle changes in social interaction between injured mice and non-injured 

controls we performed a social interaction test [305]. Experimental mice were placed in a 

clean cage with fresh bedding. Immediately after placing the experimental animal in the 

cage, a second non-experimental size matched con-specific was placed in the same 

cage. The two mice were allowed to interact for 20 min while being recorded. A blinded 

observer scored the time spent in proximity and scored several pro-social and 

aggressive behaviors performed by the experimental animal. We found no changes in  
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Figure 7.4 
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Figure 7.4 Disinhibition in injured mice 2 months after CCI. Anxiety was tested in 

naïve, craniotomy only (Sham), moderate (0.5 mm) and severe (1.0 mm) CCI two 

months after injury using an elevated zero maze. (A) The duration of time spent in the 

open arms in seconds (B) The number of times all four paws exited the closed arms.  

Movement of animals within the elevated zero maze was recorded and time spent in the 

closed arms was calculated using Ethovision software (noldus) The mean ± SEM of 

each group are shown, n = 8. No differences were seen in the number of exits from 

closed arms by one way ANOVA (P = .065). *, P < .05 from naïve. 
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Figure 7.5 
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Figure 7.5 Lack of depression-like phenotype in injured mice 2 months after CCI. 

Depression was tested in naïve, craniotomy only (Sham), moderate (0.5 mm) and 

severe (1.0 mm) CCI two months after injury using a tail suspension test. Time spent 

immobile was scored. The mean ± SEM of each group are shown, n = 8. No significance 

was found by one-way ANOVA (P = .93).  
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any of the observed behaviors (Fig. 7.6). There was a trend towards increased 

aggressive behaviors in severely injured mice, but there was high variability between 

individual mice.  

 

7.2.7 No difference in hyperactivity or disinhibition at 6 months after CCI 

At 2 months after CCI, injured mice showed increased activity and increased time spent 

in the open arms of the elevated zero maze (EZM). To determine whether measured 

changes in hyperacitivity and disinhibition persisted these tests were repeated at 6 

months after CCI. At this time point no changes were observed between groups in 

movement, velocity, or time spent in the center quadrant as measured by the open field 

test (Fig. 7.7). Similarly we found no difference between groups in the elevated zero 

maze (Fig. 7.8). These data suggest that the hyperactive and disinhibited phenotype of 

injured mice at 2 months after injury does not persist to 6 months after injury.  

 

7.3 Discussion 

The main finding of this work was disinhibition and hyperactivity in mice 2 months after 

CCI. Increased levels of movement and velocity were observed in both moderate and 

severely injured mice relative to controls indicating increased exploratory behavior. 

Additionally, severely injured mice spent more time in the open arms of an elevated zero 

maze, indicating disinhibition.  

 Several other groups have observed hyperactivity or increased exploratory 

behavior in rodent models of TBI. Increased activity was found in a CCI model [306], and 

diffuse axonal injury models [307, 308] as well as models of mild TBI [262, 309]. A few 

studies have also found decreased activity, but this was either during the acute phase 

when motor impairment is still a confounding factor [310] or in very severe injury [299].  
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Figure 7.6 
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Figure 7.6 Sociality 2 months after TBI. Sociality was measured 2 months after TBI by 

a social interaction test with a weight-matched male conspecific. Naïve, craniotomy only 

(Sham), moderate (0.5 mm) and severe (1.0 mm) CCI were tested 2 months after injury. 

Time spent in proximity (A) was evaluated as well as frequency of various (B) pro-social 

and (C) aggressive behaviors performed by the experimental animal. The mean ± SEM 

of each group are shown n = 8 per group. No significance was found by one-way for any 

of the recorded behaviors or for proximity (P = .20).  
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Figure 7.7 
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Figure 7.7 No change in activity in injured mice 6 months after CCI. Activity and 

anxiety were tested by novel object recognition in naïve, craniotomy only (Sham), 

moderate (0.5 mm) and severe (1.0 mm) CCI six months after injury.  Each mouse was 

allowed to explore an open arena for 20 min. (A) The overall movement over the 20 min 

interval (B) The % time each mouse spent in the center quandrant. (C) The velocity over 

the 20 min interval. Movement of animals within the arena was recorded and movement 

and center frequency were calculated using Ethovision software (noldus) The mean ± 

SEM of each group are shown, n = 8. None of the parameters were significantly different 

by one-way ANOVA (Movement, P = .331; % in center, P =  .62).  
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Figure 7.8 

 
  

A 
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Figure 7.8 No change in anxiety 6 months after CCI. Anxiety was tested in naïve, 

craniotomy only (Sham), moderate (0.5 mm) and severe (1.0 mm) CCI six months after 

injury using an elevated zero maze. (A) The duration of time spent in the open arms in 

seconds (B) The number of times all four paws exited the closed arms.  Movement of 

animals within the elevated zero maze was recorded and time spent in the closed arms 

was calculated using Ethovision software (noldus) The mean ± SEM of each group are 

shown, n = 8. No differences were seen in the number of exits from closed arms by one-

way ANOVA (Open arm duration, P = .070; exits from closed arms, P = .51).  
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Impulsivity and disinhibition are seen in human patients after TBI and are 

typically related to orbitofrontal injuries, but can also be related to injuries of the limbic 

system or the circuitry connecting these regions [68, 311]. To date, investigations into 

impulsivity or disinhibition in rodent models of TBI have been limited. Crane et al. 

showed deficits in impulse control using a stop-signal reaction time (SSRT) task after 

CCI injury to the medial prefrontal cortex, but this phenotype only persisted for 8 days 

post injury [312]. Bondi et al. showed changes in a CCI model using an attentional set-

shifting task, which measures executive functioning 4-weeks post injury [313]. In contrast 

to the EZM used in this study, both of these tests require complex training and testing 

paradigms that would be difficult to employ as part of a standard pre-clinical battery. 

However, they are more accurate and sensitive tests of impulse control than the EZM.  

The results of EZM testing or the closely related elevated plus maze (EPM) have 

rendered mixed results, some indicating disinhibition others anxiety [314]. Siopi et al. 

detected an increased number of head dippings after a closed-head, weight-drop injury 

model suggesting mild disinhibition 3.5 weeks after injury [315]. Washington et al. 

showed time spent in the open arms of the EPM 21 days after CCI was increased 

irrespective of injury severity [194]. Conversely Shultz et al. showed increased anxiety in 

a repeated fluid percussion injury model [316]. This diversity of findings on anxiety-like 

behaviors in pre-clinical models of TBI highlights the importance of injury model, 

species, and timing of behavioral testing on outcomes.  

There is a paucity of studies of TBI associated aggression in pre-clinical models. 

One study gave mice a TBI during adolescence then found development of an 

aggressive phenotype in adulthood [317]. The social-interaction test performed here is 

designed to limit aggressive behavior. This is done by the use of a size matched 

conspecific and a clean cage. Therefore it is surprising that we detected any aggressive 

behaviors. The increase in aggressive behaviors shown here, though highly variable, is 
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intriguing. There are much more sensitive tests of aggression in rodents, such as the 

resident-intruder test, which uses a smaller test animal in the experimental animal’s 

home cage. Also studies of aggression in rodents typically use strains prone to 

aggressive behavior. Performing testing of TBI models using both more sensitive testing 

and more appropriate strains and species would likely provide better modeling of TBI 

induced aggression. Further studies on TBI induced aggression could provide a new 

avenue to study the link between brain injury and aggression and develop improved 

treatment strategies.  

 

7.4 Summary: Taken as a whole these findings suggest a hyperactive and disinhibited 

phenotype of CCI mice in the chronic phase. Disinhibition or impulsivity is a well-

recognized feature of human TBI and can be associated with aggression [68]. 

Additionally, recent reports have linked TBI to increased risk of attention-deficit 

hyperactivity disorder in children [318] and adults [73]. This study shows that the CCI 

can model some of the long-term consequences of TBI. Future studies exploring the 

neuroanatomical and neurochemical correlates of these changes would further our 

understanding of TBI associated deficits and inform treatment strategies for TBI 

associated neuropsychiatric disorders.  
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Chapter 8: Conclusions 
 
Traumatic brain injury (TBI) is a disorder of interest and importance. While improved 

trauma care has improved survival from severe TBI, no treatment has led to improved 

outcomes [7]. Recently, miRNAs have emerged as modulators of neuroinflammation and 

injury [319]. While the roles of miRNAs in peripheral inflammation and injury are 

increasingly well defined [109], in the context of the brain far less is known. Beginning to 

define the expression and function of these inflammation-associated miRNAs in TBI was 

the goal of this work.  

To identify miRNA important to TBI induced neuroinflammation we used a mouse 

controlled cortical impact (CCI) model of TBI. We identified miR-155 as an inflammation-

associated miRNA that increased after CCI. Studies on miR-155 KO mice after CCI 

revealed altered cytokine and chemokine expression as well as increased microglial 

activation. However, we also identified several non-canonical roles for inflammation-

associated miRNA after CCI. Expression of both miR-155 and miR-21 was localized to 

neurons after CCI. Additionally the expression of miR-155 showed a nuclear expression 

pattern, suggesting it may have functions outside of traditional mRNA silencing. In other 

studies, we profiled miRNAs found in extracellular vesicles (EV) after CCI. We found 

changes in levels of EV-assoicated miRNAs, including increased levels of 3 miRNAs 

with GU rich sequences. GU rich sequences are important for TLR7/8 stimulation 

suggesting that these miRNAs could act as damage associated molecular patterns 

(DAMPS) in the context of CCI. Here we report that miRNA not only show altered 

expression, but also have functional roles in CCI. While miRNA do regulate inflammation 

in the context of CCI, they also have non-canonical roles both in neuronal nuclei and 

extracellular vesicles. Future work should focus not only on the ability of miRNA to 

silence target transcripts, but also consider a broader repertoire of functions for miRNAs 

in CNS inflammation and injury.  
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 We began by characterizing the pathology of the CCI model to identify promising 

anatomical regions to study the immune response after TBI, focusing on the injured 

cortex and underlying hippocampus. We found frank tissue loss and apoptotic cell death 

in the injured cortex, but not the hippocampus. However we found increased expression 

of glial markers Iba1 and GFAP in both the injured cortex and the ipsilateral 

hippocampus. Additionally, neuropathology was evident in both the cortex and 

hippocampus on the injured side, shown by damage-associated markers in 

neurofilaments, white mater degeneration, and accumulation of neuronal markers MAP2 

and synaptophysin. Therefore, we chose to study expression and function of 

inflammation-associated miRNAs in the hippocampus.  

 A panel of inflammation-associated miRNAs was chosen based on known roles 

in inflammation and identification by at least one miRNA profiling experiment in TBI 

models. The temporal expression of these miRNAs was measured over the acute and 

sub-acute phases of CCI using qPCR. Distinct temporal profiles were found for all the 

miRNAs examined. Expression of miR-155 was elevated in the acute phase up to 7 days 

after CCI, conversely miR-21 was only elevated in the sub-acute phase at 14 days after 

injury. Interestingly, miR-223 only showed a limited, acute expression. Given that miR-

223 is highly linked to neutrophils, we hypothesize that the expression of miR-223 in the 

brain may be linked to invading neutrophils, which show a similar pattern of acute 

response to TBI as found in spinal cord injury. Expression of miR-223 in neutrophils 

could explain the acute expression pattern seen for miR-223 in TBI, but would need 

verification in future studies. Surprisingly, miR-146 did not show a significant increase in 

TBI. Expression of miR-146 is induced by NF-κB and important to for inflammation 

resolution in the periphery through feedback inhibition [120]. The lack of miR-146 

induction could be pathological in TBI, leading to a prolonged and damaging 

inflammatory response.  



	   	   	  210 

To further characterize expression of miR-155, miR-21, and miR-223 we 

performed fluorescent in situ hybridization (FISH), which confirmed our qPCR findings. 

Interestingly the expression pattern of miR-155 was primarily nuclear. While at one time, 

nuclear expression was thought to indicate inactivity of miRNA, new studies are finding 

unique roles for nuclear miRNA in regulation of gene expression [105]. The expression 

pattern of miR-21 was also of interest. 7 days after injury miR-21 expression was found 

in regions of the hippocampus primarily composed of neuronal cell bodies and 

processes. In later experiments using combined immunofluorescence and FISH, we 

confirmed neuronal localization of miR-21. 

To identify which miRNAs were most associated with inflammation we measured 

levels of pro-inflammatory miRNA after CCI and correlated their expression with 

inflammation-associated miRNAs. In contrast to the expression of inflammation-

associated miRNAs, pro-inflammatory cytokines IL-6, TNFα, and IL-1β all peaked 1 day 

after injury. Although nearly all combinations of cytokines and miRNAs showed 

significant correlation, the association between miR-155 and IL-1β was the strongest. 

These studies were performed using a moderate CCI, 0.5 mm injury depth. To 

determine whether increasing injury severity would increase expression of inflammation-

associated miRNAs and cytokines we compared naïve, sham, moderate (0.5 mm), and 

severe (1.0 mm) injuries three days after injury. Severely injured mice had more robust 

expression of inflammation-associated miRNAs and cytokines 3 days after CCI. In 

addition, we increased the panel of inflammatory mediators examined to include 

additional cytokines, chemokines, and growth factors. Using this extended panel, we 

found IL-1β, TNFα, and chemokine CXCL10 to be strongly induced 3 days after CCI.  

To examine the role of miR-155 in TBI we acquired miR-155 KO mice. After CCI 

miR-155 KO mice showed no measurable motor or cognitive deficits in the acute and 

sub-acute time frames after CCI. Additionally, no changes in hippocampal apoptosis or 
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neurodegeneration were found between miR-155 KO and WT mice. However, we did 

find decreased interferon (IFN) expression in miR-155 KO mice after TBI, including 

decreased levels of IFN regulated chemokine CXCL10. We also found a decrease in 

anxiety after CCI in miR-155 KO mice relative to WT mice. The link between IFNs and 

mood disorders is well established, and patients administered IFNs show sickness 

behavior and mood disorders [229]. Together these data suggest that miR-155 affects 

the IFN response, and we speculate that this may alter mood disruptions after TBI. The 

mechanisms by which regulates IFN and CXCL10 expression is unknown. While we find 

miR-155 in neurons, the source of IFN and CXCL10 are unknown. Others have found 

that small populations of invading peripheral immune cells express CXCL10 in TBI, in 

clusters that appear to be dendritic cells [226]. 

Suppressor of cytokine signaling 1 (SOCS1) is a known target of miR-155 [206] 

and a negative regulator of the IFN response [209]. Therefore, in miR-155 KO mice we 

hypothesized that SOCS1 levels would be increased, leading to the observed decrease 

in IFN signaling. However the levels of SOCS1 in hippocampal homogenate were 

unchanged at the protein level. Still we note that while there were no changes in the 

hippocampus as a whole, levels in individual cells may still be altered. Expression of 

SOCS1 mRNA was decreased slightly but significantly in miR-155 KO mice, the 

opposite of what would be expected if miR-155 targeted SOCS1 mRNA in a cell type 

expressing both molecules. Thus it is unlikely that alterations in SOCS1 play a role, at 

least on the level of the whole hippocampus  

We also found in the miR-155 KO mice subjected to TBI there was an increase in 

Iba1 expression indicating increased microglial activation. Other groups have shown that 

miR-155 is pro-inflammatory in microglia and that reducing miR-155 leads to decreased 

levels of microglial marker CD11b, interpreted as decreased microglia activation [210]. 

Our findings suggest an opposite role for miR-155 in microglial activation after TBI, since 
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in fact, increased microglial activation was observed in miR-155 KO mice. Therefore it is 

possible that miR-155 does play a role in the microglial response, but in a different 

manner depending on the biological and pathological setting..  

To further explore the role of miR-155 in TBI we examined the cell-type specific 

localization of miR-155 in the brain after CCI. We found that miR-155 was highly 

expressed in neuronal nuclei. Whether this expression is linked to the observed changes 

in IFN and CXCL10 expression or anxiety remains to be determined. In viral infections of 

the brain CXCL10 is expressed in neurons [215, 216]. This suggests the possibility that 

miR-155 regulates expression of CXCL10 in neurons after CCI. However, nuclear 

expression is often associated with non-cannonical functions of miRNAs [320]. Future 

studies should address the role of nuclear miR-155 expression in neurons.  

We have discovered that miR-155 regulates the IFN response after TBI including 

TBI induced chemokine CXCL10. We have also shown that miR-155 contributes to 

anxiety after TBI, likely through the IFN response. Further studies are needed to 

determine the exact mechanism of miR-155 regulation of the IFN response and which 

cell types are responsible.  

Another miRNA of interest is miR-21. Increased expression of miR-21 has been 

seen in many types of neuronal injury [321], and we detected miR-21 in the sub-acute 

phase of CCI. Due to the various roles of miR-21 in neurons we characterized its 

expression in development, induction by neurotrophic cytokines, and role in neuronal 

function. The expression of miR-21 in the brain increases during development in mice 

from embryonic day 14 to postnatal day 14. However, different neuronal model systems 

had divergent expression patterns during differentiation. Expression in was higher in 

cultured human NPC than human neurons, but no change was found in mouse NPC and 

neurons, and conversely differentiated SH-SY5Y neuroblastoma cells showed higher 

expression of miR-21 than undifferentiated cells. To study the induction of miR-21 we 
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used cultured human neurons. We found that neurotrophic cytokines IL-6 and CNTF 

could induce miR-21. Additionally, we showed that IL-6 could stimulate STAT3 activation 

in human neurons, though not with the same magnitude as CNTF. The expression of IL-

6 receptor in neurons depends highly on neuronal type and species. Novel findings 

include the discovery that IL-6 treatment of fetal human neurons can induce STAT3 

signaling. Another novel finding is the induction of miR-21 in human neurons and to that 

miR-21 is induced by IL-6 and CNTF. Inhibitors of the Jak-Stat pathway did not inhibit 

miR-21 expression and levels of primary miR-21 were not elevated after treatment with 

IL-6 and CNTF. Future studies should examine alternative mechanisms of miR-21 

induction by neurotrophic cytokines. Even though the mechanism is not understood, the 

induction of miR-21 by these neurotrophic cytokines may explain why so many types of 

neuronal injury increase miR-21 expression.  

The function of miR-21 in the healthy brain is unknown. Previous data from our 

lab indicated that pathologically increased miR-21 could alter potassium currents in 

neurons [231]. However, we found that long-term potentiation, a correlate of learning 

and memory was not altered in miR-21 KO mice. Additionally, miR-21 targets PTEN and 

downstream phosphorylation of Akt were not changed in miR-21 KO mice. Together we 

could not identify a role for miR-21 in normal neuronal function. To determine whether 

miR-21 was neuroprotective in the context of injury, we utilized an in vitro model of 

excitotoxicity. Again, we did not detect any differences between miR-21 KO and WT 

neurons. Finally, we tested the importance of miR-21 in TBI by administering CCI to 

miR-21 KO mice and controls. We found no differences in function or in neuronal 

degeneration in miR-21 KO and WT mice. It is possible that miR-21 may play a role in 

neuronal development and neuroprotection, but that miR-21 KO during development 

induces compensatory mechanisms. To address this issue in the future we developed a 

mouse strain with a floxed miR-21 allele. In this stain two LoxP sites surround the miR-
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21 stem loop. Cre recombinase can cause recombination at these LoxP sites resulting in 

gene deletion. Therefore to induce conditional deletion of the miR-21 gene, Cre can be 

introduced virally or through a tissue specific promoter. These mice can be used to 

further study the role of miR-21 in neuronal development and injury.  

While miRNA are known to regulate gene expression in the cell, new evidence 

shows that miRNA may also be transferred between cells in extracellular vesicles (EVs). 

EVs containing miRNA can affect the recipient cell by decreasing mRNA expression in 

the cytosol [278] or binding to PRRs in the endocytic compartment [276]. In immune 

cells TLR7/8 recognizes viral RNA and miRNA and produces an inflammatory response 

[289]. Neurons also express TLR7/8 and activation of this receptor can be neurotoxic 

[177]. We isolated EVs from brains 7 days after CCI to examine the changes in EV-

associated miRNA (EV-miRNA). Small RNA sequencing showed changes in the EV-

miRNA profile after CCI. We found that miR-21, miR-146, miR-7a and miR-7b were 

elevated in EVs after CCI. One miRNA, miR-212 was down regulated. Three of the 

differentially expressed miRNA contain GU rich sequences that mediate TLR7/8 binding 

[282]. Of the differentially expressed miRNAs miR-21 showed the largest change. In situ 

hybridization combined with immunofluorescence, localized miR-21 to neurons near the 

lesion boundary. We also found reactive microglia adjacent to miR-21 expressing 

neurons suggesting that EV-associated miR-21 may be important for neuron-glia 

communication in TBI. While EV-miRNA can elicit immune responses [276] and 

neurotoxicity [177] in vitro and several studies have shown that EV-miRNA are altered in 

neurological disease [177, 288], the overall effect of this mechanism on disease 

pathology is still unclear. TBI may serve as a useful model to study the importance of 

EV-miRNA signaling through TLR7/8 on neuroinflammation.  

Neuropsychiatric dysfunction is a common consequence of TBI [66, 322, 323]. 

However, mechanisms of long-term dysfunction in TBI patients are unclear. One 



	   	   	  215 

difficulty in performing these types of mechanistic studies is the lack of a defined 

neuropsychiatric phenotype of mice in the chronic phase of TBI. Here we used a battery 

of neuropsychological tests to determine the phenotype of mice in the chronic phase of 

TBI. We found no evidence of motor or cognitive dysfunction, but did detect hyperactivity 

and disinhibition at 2 months after CCI, primarily in severely injured mice. Disinhibition is 

classically found in frontal lobe injuries [68]. Given that the lesion in our model primarily 

involves the parietal cortex and underlying hippocampus, how this injury induces 

disinhibition is unclear. A recent report identified a high degree of long-range inputs to 

the prefrontal cortex in mouse [324]. It is possible that diffuse axonal injury may disrupt 

these inputs. We currently have studies in progress to elucidate the pathological 

correlates to these behavioral changes. These studies will examine the presence of 

neuroinflammation in the prefrontal cortex after CCI using immunohistochemistry and 

determine CCI changes in connectivity using diffusion tensor (DT) magnetic resonance 

imaging (MRI) and tractography.  

In conclusion, this work has furthered the understanding of miRNA expression 

and function in TBI. While study of miRNAs in peripheral inflammation and injury has 

focused on regulation of cytokine signaling and immune cell function, we have found 

multi-faceted roles for miRNAs in brain injury. Changes in cytokine, chemokine, and glial 

activation were observed in miR-155 KO mice indicating that miRNAs are involved in 

neuroinflammation after TBI. Additionally, neuronal, nuclear, and EV-associated miRNAs 

were identified highlighting non-canonical roles for inflammation-associated miRNAs in 

TBI. Finally, we have identified disinhibition and hyperactivity in the chronic phase of 

CCI. Together these studies suggest an important role for miRNA in TBI and 

neuroinflammation. Based on this work we have identified several topics of interest for 

future studies of TBI: 1) The roles of inflammation-associated miRNAs in neurons, 

including the function of miR-155 in neuronal nuclei 2) The mechanistic link between 
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miR-155 expression, IFN expression, and anxiety after TBI 3) The effect of changes in 

EV-miRNA expression after TBI, especially in TLR7/8 activation and 4) The pathological 

correlates of disinhibition and hyperactivity in the chronic phase of the CCI mouse 

model. 

  



	   	   	  217 

References 
 

1.	   Warden,	  D.,	  Military	  TBI	  during	  the	  Iraq	  and	  Afghanistan	  wars.	  J	  Head	  Trauma	  
Rehabil,	  2006.	  21(5):	  p.	  398-‐402.	  

2.	   Schneiderman,	  A.I.,	  E.R.	  Braver,	  and	  H.K.	  Kang,	  Understanding	  sequelae	  of	  
injury	  mechanisms	  and	  mild	  traumatic	  brain	  injury	  incurred	  during	  the	  
conflicts	  in	  Iraq	  and	  Afghanistan:	  persistent	  postconcussive	  symptoms	  and	  
posttraumatic	  stress	  disorder.	  Am	  J	  Epidemiol,	  2008.	  167(12):	  p.	  1446-‐52.	  

3.	   Dai,	  R.	  and	  S.A.	  Ahmed,	  MicroRNA,	  a	  new	  paradigm	  for	  understanding	  
immunoregulation,	  inflammation,	  and	  autoimmune	  diseases.	  Transl	  Res,	  2011.	  
157(4):	  p.	  163-‐79.	  

4.	   Kuo,	  C.Y.,	  et	  al.,	  Functioning	  and	  disability	  analysis	  of	  patients	  with	  traumatic	  
brain	  injury	  and	  spinal	  cord	  injury	  by	  using	  the	  world	  health	  organization	  
disability	  assessment	  schedule	  2.0.	  Int	  J	  Environ	  Res	  Public	  Health,	  2015.	  
12(4):	  p.	  4116-‐27.	  

5.	   Coronado,	  V.G.,	  et	  al.,	  Trends	  in	  Traumatic	  Brain	  Injury	  in	  the	  U.S.	  and	  the	  
public	  health	  response:	  1995-‐2009.	  J	  Safety	  Res,	  2012.	  43(4):	  p.	  299-‐307.	  

6.	   CDC	  grand	  rounds:	  reducing	  severe	  traumatic	  brain	  injury	  in	  the	  United	  States.	  
MMWR	  Morb	  Mortal	  Wkly	  Rep,	  2013.	  62(27):	  p.	  549-‐52.	  

7.	   Gerber,	  L.M.,	  et	  al.,	  Marked	  reduction	  in	  mortality	  in	  patients	  with	  severe	  
traumatic	  brain	  injury.	  J	  Neurosurg,	  2013.	  119(6):	  p.	  1583-‐90.	  

8.	   Selassie,	  A.W.,	  et	  al.,	  Incidence	  of	  long-‐term	  disability	  following	  traumatic	  
brain	  injury	  hospitalization,	  United	  States,	  2003.	  J	  Head	  Trauma	  Rehabil,	  2008.	  
23(2):	  p.	  123-‐31.	  

9.	   Teasdale,	  G.	  and	  B.	  Jennett,	  Assessment	  of	  coma	  and	  impaired	  consciousness.	  A	  
practical	  scale.	  Lancet,	  1974.	  2(7872):	  p.	  81-‐4.	  

10.	   Balestreri,	  M.,	  et	  al.,	  Predictive	  value	  of	  Glasgow	  Coma	  Scale	  after	  brain	  
trauma:	  change	  in	  trend	  over	  the	  past	  ten	  years.	  J	  Neurol	  Neurosurg	  
Psychiatry,	  2004.	  75(1):	  p.	  161-‐2.	  

11.	   Fearnside,	  M.R.,	  et	  al.,	  The	  Westmead	  Head	  Injury	  Project	  outcome	  in	  severe	  
head	  injury.	  A	  comparative	  analysis	  of	  pre-‐hospital,	  clinical	  and	  CT	  variables.	  
Br	  J	  Neurosurg,	  1993.	  7(3):	  p.	  267-‐79.	  

12.	   Linacre,	  J.M.,	  et	  al.,	  The	  structure	  and	  stability	  of	  the	  Functional	  Independence	  
Measure.	  Arch	  Phys	  Med	  Rehabil,	  1994.	  75(2):	  p.	  127-‐32.	  

13.	   Whiteneck,	  G.G.,	  et	  al.,	  Quantifying	  handicap:	  a	  new	  measure	  of	  long-‐term	  
rehabilitation	  outcomes.	  Arch	  Phys	  Med	  Rehabil,	  1992.	  73(6):	  p.	  519-‐26.	  

14.	   Bullock,	  M.R.,	  et	  al.,	  Outcome	  measures	  for	  clinical	  trials	  in	  neurotrauma.	  
Neurosurg	  Focus,	  2002.	  13(1):	  p.	  ECP1.	  

15.	   Goranson,	  T.E.,	  et	  al.,	  Community	  integration	  following	  multidisciplinary	  
rehabilitation	  for	  traumatic	  brain	  injury.	  Brain	  Injury,	  2003.	  17(9):	  p.	  759-‐
774.	  

16.	   Gouvier,	  W.D.,	  et	  al.,	  Reliability	  and	  validity	  of	  the	  Disability	  Rating	  Scale	  and	  
the	  Levels	  of	  Cognitive	  Functioning	  Scale	  in	  monitoring	  recovery	  from	  severe	  
head	  injury.	  Arch	  Phys	  Med	  Rehabil,	  1987.	  68(2):	  p.	  94-‐7.	  

17.	   Shukla,	  D.,	  B.I.	  Devi,	  and	  A.	  Agrawal,	  Outcome	  measures	  for	  traumatic	  brain	  
injury.	  Clin	  Neurol	  Neurosurg,	  2011.	  113(6):	  p.	  435-‐41.	  



	   	   	  218 

18.	   McIntosh,	  T.K.,	  et	  al.,	  Neuropathological	  sequelae	  of	  traumatic	  brain	  injury:	  
relationship	  to	  neurochemical	  and	  biomechanical	  mechanisms.	  Lab	  Invest,	  
1996.	  74(2):	  p.	  315-‐42.	  

19.	   Werner,	  C.	  and	  K.	  Engelhard,	  Pathophysiology	  of	  traumatic	  brain	  injury.	  
British	  journal	  of	  anaesthesia,	  2007.	  99(1):	  p.	  4-‐9.	  

20.	   Greve,	  M.W.	  and	  B.J.	  Zink,	  Pathophysiology	  of	  traumatic	  brain	  injury.	  Mount	  
Sinai	  Journal	  of	  Medicine:	  A	  Journal	  of	  Translational	  and	  Personalized	  
Medicine,	  2009.	  76(2):	  p.	  97-‐104.	  

21.	   Finnie,	  J.W.,	  Neuroinflammation:	  beneficial	  and	  detrimental	  effects	  after	  
traumatic	  brain	  injury.	  Inflammopharmacology,	  2013.	  21(4):	  p.	  309-‐20.	  

22.	   Hailer,	  N.P.,	  Immunosuppression	  after	  traumatic	  or	  ischemic	  CNS	  damage:	  it	  is	  
neuroprotective	  and	  illuminates	  the	  role	  of	  microglial	  cells.	  Prog	  Neurobiol,	  
2008.	  84(3):	  p.	  211-‐33.	  

23.	   Walz,	  W.,	  et	  al.,	  Extracellular	  ATP	  activates	  a	  cation	  conductance	  and	  a	  K+	  
conductance	  in	  cultured	  microglial	  cells	  from	  mouse	  brain.	  J	  Neurosci,	  1993.	  
13(10):	  p.	  4403-‐11.	  

24.	   Whittemore,	  E.R.,	  et	  al.,	  Carbachol	  increases	  intracellular	  free	  calcium	  in	  
cultured	  rat	  microglia.	  Brain	  Res,	  1993.	  621(1):	  p.	  59-‐64.	  

25.	   Gehrmann,	  J.,	  et	  al.,	  Microglial	  reaction	  in	  the	  rat	  cerebral	  cortex	  induced	  by	  
cortical	  spreading	  depression.	  Brain	  Pathol,	  1993.	  3(1):	  p.	  11-‐7.	  

26.	   Nimmerjahn,	  A.,	  F.	  Kirchhoff,	  and	  F.	  Helmchen,	  Resting	  microglial	  cells	  are	  
highly	  dynamic	  surveillants	  of	  brain	  parenchyma	  in	  vivo.	  Science,	  2005.	  
308(5726):	  p.	  1314-‐8.	  

27.	   CYtology	  and	  cellular	  pathology	  of	  the	  nervous	  system.	  Archives	  of	  Internal	  
Medicine,	  1932.	  50(3):	  p.	  508-‐509.	  

28.	   Gyoneva,	  S.	  and	  R.M.	  Ransohoff,	  Inflammatory	  reaction	  after	  traumatic	  brain	  
injury:	  therapeutic	  potential	  of	  targeting	  cell-‐cell	  communication	  by	  
chemokines.	  Trends	  Pharmacol	  Sci,	  2015.	  36(7):	  p.	  471-‐80.	  

29.	   Lee,	  S.C.,	  et	  al.,	  Cytokine	  production	  by	  human	  fetal	  microglia	  and	  astrocytes.	  
Differential	  induction	  by	  lipopolysaccharide	  and	  IL-‐1	  beta.	  J	  Immunol,	  1993.	  
150(7):	  p.	  2659-‐67.	  

30.	   Shibata,	  M.	  and	  C.M.	  Blatteis,	  Human	  recombinant	  tumor	  necrosis	  factor	  and	  
interferon	  affect	  the	  activity	  of	  neurons	  in	  the	  organum	  vasculosum	  laminae	  
terminalis.	  Brain	  Res,	  1991.	  562(2):	  p.	  323-‐6.	  

31.	   Grassi,	  F.,	  et	  al.,	  TNF-‐alpha	  increases	  the	  frequency	  of	  spontaneous	  miniature	  
synaptic	  currents	  in	  cultured	  rat	  hippocampal	  neurons.	  Brain	  Res,	  1994.	  
659(1-‐2):	  p.	  226-‐30.	  

32.	   Jeohn,	  G.-‐H.,	  et	  al.,	  Synergistic	  neurotoxic	  effects	  of	  combined	  treatments	  with	  
cytokines	  in	  murine	  primary	  mixed	  neuron/glia	  cultures.	  Journal	  of	  
neuroimmunology,	  1998.	  85(1):	  p.	  1-‐10.	  

33.	   Stoll,	  G.,	  S.	  Jander,	  and	  M.	  Schroeter,	  Cytokines	  in	  CNS	  disorders:	  neurotoxicity	  
versus	  neuroprotection.	  2000:	  Springer.	  

34.	   Iadecola,	  C.,	  Bright	  and	  dark	  sides	  of	  nitric	  oxide	  in	  ischemic	  brain	  injury.	  
Trends	  in	  neurosciences,	  1997.	  20(3):	  p.	  132-‐139.	  



	   	   	  219 

35.	   Elkabes,	  S.,	  E.M.	  DiCicco-‐Bloom,	  and	  I.B.	  Black,	  Brain	  microglia/macrophages	  
express	  neurotrophins	  that	  selectively	  regulate	  microglial	  proliferation	  and	  
function.	  The	  journal	  of	  neuroscience,	  1996.	  16(8):	  p.	  2508-‐2521.	  

36.	   Batchelor,	  P.E.,	  et	  al.,	  Activated	  macrophages	  and	  microglia	  induce	  
dopaminergic	  sprouting	  in	  the	  injured	  striatum	  and	  express	  brain-‐derived	  
neurotrophic	  factor	  and	  glial	  cell	  line-‐derived	  neurotrophic	  factor.	  The	  Journal	  
of	  neuroscience,	  1999.	  19(5):	  p.	  1708-‐1716.	  

37.	   Dougherty,	  K.D.,	  C.F.	  Dreyfus,	  and	  I.B.	  Black,	  Brain-‐derived	  neurotrophic	  factor	  
in	  astrocytes,	  oligodendrocytes,	  and	  microglia/macrophages	  after	  spinal	  cord	  
injury.	  Neurobiology	  of	  disease,	  2000.	  7(6):	  p.	  574-‐585.	  

38.	   del	  Zoppo,	  G.J.,	  et	  al.,	  Microglial	  activation	  and	  matrix	  protease	  generation	  
during	  focal	  cerebral	  ischemia.	  Stroke,	  2007.	  38(2):	  p.	  646-‐651.	  

39.	   Bessis,	  A.,	  et	  al.,	  Microglial	  control	  of	  neuronal	  death	  and	  synaptic	  properties.	  
Glia,	  2007.	  55(3):	  p.	  233-‐8.	  

40.	   Heppner,	  F.L.,	  et	  al.,	  Experimental	  autoimmune	  encephalomyelitis	  repressed	  by	  
microglial	  paralysis.	  Nat	  Med,	  2005.	  11(2):	  p.	  146-‐52.	  

41.	   Bushong,	  E.A.,	  et	  al.,	  Protoplasmic	  astrocytes	  in	  CA1	  stratum	  radiatum	  occupy	  
separate	  anatomical	  domains.	  J	  Neurosci,	  2002.	  22(1):	  p.	  183-‐92.	  

42.	   Lundgaard,	  I.,	  et	  al.,	  White	  matter	  astrocytes	  in	  health	  and	  disease.	  
Neuroscience,	  2014.	  276:	  p.	  161-‐73.	  

43.	   Verkhratsky,	  A.	  and	  A.M.	  Butt,	  Glial	  physiology	  and	  pathophysiology.	  2013:	  
John	  Wiley	  &	  Sons.	  

44.	   Eugenin,	  E.A.,	  et	  al.,	  The	  role	  of	  gap	  junction	  channels	  during	  physiologic	  and	  
pathologic	  conditions	  of	  the	  human	  central	  nervous	  system.	  Journal	  of	  
Neuroimmune	  Pharmacology,	  2012.	  7(3):	  p.	  499-‐518.	  

45.	   Pekny,	  M.	  and	  M.	  Pekna,	  Astrocyte	  reactivity	  and	  reactive	  astrogliosis:	  costs	  
and	  benefits.	  Physiol	  Rev,	  2014.	  94(4):	  p.	  1077-‐98.	  

46.	   Burda,	  J.E.,	  A.M.	  Bernstein,	  and	  M.V.	  Sofroniew,	  Astrocyte	  roles	  in	  traumatic	  
brain	  injury.	  Exp	  Neurol,	  2016.	  275	  Pt	  3:	  p.	  305-‐15.	  

47.	   Huang,	  C.,	  et	  al.,	  Critical	  role	  of	  connexin	  43	  in	  secondary	  expansion	  of	  
traumatic	  spinal	  cord	  injury.	  J	  Neurosci,	  2012.	  32(10):	  p.	  3333-‐8.	  

48.	   Wanner,	  I.B.,	  et	  al.,	  Glial	  scar	  borders	  are	  formed	  by	  newly	  proliferated,	  
elongated	  astrocytes	  that	  interact	  to	  corral	  inflammatory	  and	  fibrotic	  cells	  via	  
STAT3-‐dependent	  mechanisms	  after	  spinal	  cord	  injury.	  J	  Neurosci,	  2013.	  
33(31):	  p.	  12870-‐86.	  

49.	   Myer,	  D.,	  et	  al.,	  Essential	  protective	  roles	  of	  reactive	  astrocytes	  in	  traumatic	  
brain	  injury.	  Brain,	  2006.	  129(10):	  p.	  2761-‐2772.	  

50.	   Bradbury,	  M.W.,	  The	  blood-‐brain	  barrier.	  Exp	  Physiol,	  1993.	  78(4):	  p.	  453-‐72.	  
51.	   Thal,	  S.C.	  and	  W.	  Neuhaus,	  The	  blood-‐brain	  barrier	  as	  a	  target	  in	  traumatic	  

brain	  injury	  treatment.	  Arch	  Med	  Res,	  2014.	  45(8):	  p.	  698-‐710.	  
52.	   McKeating,	  E.	  and	  P.	  Andrews,	  Cytokines	  and	  adhesion	  molecules	  in	  acute	  

brain	  injury.	  British	  journal	  of	  anaesthesia,	  1998.	  80(1):	  p.	  77-‐84.	  
53.	   Biagas,	  K.V.,	  et	  al.,	  Assessment	  of	  posttraumatic	  polymorphonuclear	  leukocyte	  

accumulation	  in	  rat	  brain	  using	  tissue	  myeloperoxidase	  assay	  and	  vinblastine	  
treatment.	  J	  Neurotrauma,	  1992.	  9(4):	  p.	  363-‐71.	  



	   	   	  220 

54.	   Holmin,	  S.,	  et	  al.,	  Intracerebral	  inflammatory	  response	  to	  experimental	  brain	  
contusion.	  Acta	  neurochirurgica,	  1995.	  132(1-‐3):	  p.	  110-‐119.	  

55.	   Dahlgren,	  C.	  and	  A.	  Karlsson,	  Respiratory	  burst	  in	  human	  neutrophils.	  Journal	  
of	  immunological	  methods,	  1999.	  232(1):	  p.	  3-‐14.	  

56.	   Weaver,	  K.D.,	  et	  al.,	  Effect	  of	  leukocyte-‐endothelial	  adhesion	  antagonism	  on	  
neutrophil	  migration	  and	  neurologic	  outcome	  after	  cortical	  trauma.	  J	  Trauma,	  
2000.	  48(6):	  p.	  1081-‐90.	  

57.	   Whalen,	  M.J.,	  et	  al.,	  Reduced	  brain	  edema	  after	  traumatic	  brain	  injury	  in	  mice	  
deficient	  in	  P-‐selectin	  and	  intercellular	  adhesion	  molecule-‐1.	  Journal	  of	  
Leukocyte	  Biology,	  2000.	  67(2):	  p.	  160-‐168.	  

58.	   Isaksson,	  J.,	  L.	  Hillered,	  and	  Y.	  Olsson,	  Cognitive	  and	  histopathological	  
outcome	  after	  weight-‐drop	  brain	  injury	  in	  the	  rat:	  influence	  of	  systemic	  
administration	  of	  monoclonal	  antibodies	  to	  ICAM-‐1.	  Acta	  neuropathologica,	  
2001.	  102(3):	  p.	  246-‐256.	  

59.	   Morganti,	  J.M.,	  et	  al.,	  CCR2	  antagonism	  alters	  brain	  macrophage	  polarization	  
and	  ameliorates	  cognitive	  dysfunction	  induced	  by	  traumatic	  brain	  injury.	  The	  
Journal	  of	  Neuroscience,	  2015.	  35(2):	  p.	  748-‐760.	  

60.	   Morganti,	  J.M.,	  et	  al.,	  CCR2	  antagonism	  alters	  brain	  macrophage	  polarization	  
and	  ameliorates	  cognitive	  dysfunction	  induced	  by	  traumatic	  brain	  injury.	  J	  
Neurosci,	  2015.	  35(2):	  p.	  748-‐60.	  

61.	   Zaloshnja,	  E.,	  et	  al.,	  Prevalence	  of	  long-‐term	  disability	  from	  traumatic	  brain	  
injury	  in	  the	  civilian	  population	  of	  the	  United	  States,	  2005.	  J	  Head	  Trauma	  
Rehabil,	  2008.	  23(6):	  p.	  394-‐400.	  

62.	   in	  Gulf	  War	  and	  Health:	  Volume	  7:	  Long-‐Term	  Consequences	  of	  Traumatic	  
Brain	  Injury.	  2008:	  Washington	  (DC).	  

63.	   Annegers,	  J.F.,	  et	  al.,	  A	  population-‐based	  study	  of	  seizures	  after	  traumatic	  brain	  
injuries.	  New	  England	  Journal	  of	  Medicine,	  1998.	  338(1):	  p.	  20-‐24.	  

64.	   Fann,	  J.R.,	  et	  al.,	  Psychiatric	  illness	  following	  traumatic	  brain	  injury	  in	  an	  adult	  
healthMaintenance	  organization	  population.	  Archives	  of	  General	  Psychiatry,	  
2004.	  61(1):	  p.	  53-‐61.	  

65.	   Jorge,	  R.E.,	  et	  al.,	  Major	  depression	  following	  traumatic	  brain	  injury.	  Arch	  Gen	  
Psychiatry,	  2004.	  61(1):	  p.	  42-‐50.	  

66.	   Gomez-‐Hernandez,	  R.,	  et	  al.,	  Social	  impairment	  and	  depression	  after	  traumatic	  
brain	  injury.	  Arch	  Phys	  Med	  Rehabil,	  1997.	  78(12):	  p.	  1321-‐6.	  

67.	   Dyer,	  K.F.,	  et	  al.,	  Aggression	  after	  traumatic	  brain	  injury:	  analysing	  socially	  
desirable	  responses	  and	  the	  nature	  of	  aggressive	  traits.	  Brain	  Inj,	  2006.	  
20(11):	  p.	  1163-‐73.	  

68.	   Greve,	  K.W.,	  et	  al.,	  Personality	  and	  neurocognitive	  correlates	  of	  impulsive	  
aggression	  in	  long-‐term	  survivors	  of	  severe	  traumatic	  brain	  injury.	  Brain	  Inj,	  
2001.	  15(3):	  p.	  255-‐62.	  

69.	   Gavett,	  B.E.,	  R.A.	  Stern,	  and	  A.C.	  McKee,	  Chronic	  traumatic	  encephalopathy:	  a	  
potential	  late	  effect	  of	  sport-‐related	  concussive	  and	  subconcussive	  head	  
trauma.	  Clinics	  in	  sports	  medicine,	  2011.	  30(1):	  p.	  179-‐188.	  

70.	   McKee,	  A.C.,	  et	  al.,	  The	  spectrum	  of	  disease	  in	  chronic	  traumatic	  
encephalopathy.	  Brain,	  2013.	  136(1):	  p.	  43-‐64.	  



	   	   	  221 

71.	   McKee,	  A.C.,	  et	  al.,	  Chronic	  traumatic	  encephalopathy	  in	  athletes:	  progressive	  
tauopathy	  after	  repetitive	  head	  injury.	  Journal	  of	  Neuropathology	  &	  
Experimental	  Neurology,	  2009.	  68(7):	  p.	  709-‐735.	  

72.	   Konigs,	  M.,	  et	  al.,	  Pediatric	  Traumatic	  Brain	  Injury	  and	  Attention	  Deficit.	  
Pediatrics,	  2015.	  136(3):	  p.	  534-‐41.	  

73.	   Ilie,	  G.,	  et	  al.,	  The	  association	  between	  traumatic	  brain	  injury	  and	  ADHD	  in	  a	  
Canadian	  adult	  sample.	  Journal	  of	  Psychiatric	  Research.	  

74.	   Lee,	  V.M.,	  M.	  Goedert,	  and	  J.Q.	  Trojanowski,	  Neurodegenerative	  tauopathies.	  
Annual	  review	  of	  neuroscience,	  2001.	  24(1):	  p.	  1121-‐1159.	  

75.	   Johnson,	  V.E.,	  W.	  Stewart,	  and	  D.H.	  Smith,	  Widespread	  tau	  and	  amyloid‐beta	  
pathology	  many	  years	  after	  a	  single	  traumatic	  brain	  injury	  in	  humans.	  Brain	  
pathology,	  2012.	  22(2):	  p.	  142-‐149.	  

76.	   Johnson,	  V.E.,	  et	  al.,	  Inflammation	  and	  white	  matter	  degeneration	  persist	  for	  
years	  after	  a	  single	  traumatic	  brain	  injury.	  Brain,	  2013.	  136(Pt	  1):	  p.	  28-‐42.	  

77.	   Leonard,	  B.E.,	  Inflammation,	  depression	  and	  dementia:	  are	  they	  connected?	  
Neurochemical	  research,	  2007.	  32(10):	  p.	  1749-‐1756.	  

78.	   Miller,	  A.H.,	  V.	  Maletic,	  and	  C.L.	  Raison,	  Inflammation	  and	  its	  discontents:	  the	  
role	  of	  cytokines	  in	  the	  pathophysiology	  of	  major	  depression.	  Biological	  
psychiatry,	  2009.	  65(9):	  p.	  732-‐741.	  

79.	   Raison,	  C.L.,	  L.	  Capuron,	  and	  A.H.	  Miller,	  Cytokines	  sing	  the	  blues:	  
inflammation	  and	  the	  pathogenesis	  of	  depression.	  Trends	  in	  immunology,	  
2006.	  27(1):	  p.	  24-‐31.	  

80.	   Dantzer,	  R.,	  et	  al.,	  From	  inflammation	  to	  sickness	  and	  depression:	  when	  the	  
immune	  system	  subjugates	  the	  brain.	  Nature	  reviews	  neuroscience,	  2008.	  
9(1):	  p.	  46-‐56.	  

81.	   Miller,	  A.H.	  and	  C.L.	  Raison,	  The	  role	  of	  inflammation	  in	  depression:	  from	  
evolutionary	  imperative	  to	  modern	  treatment	  target.	  Nat	  Rev	  Immunol,	  2015.	  
16(1):	  p.	  22-‐34.	  

82.	   Juengst,	  S.B.,	  et	  al.,	  Acute	  inflammatory	  biomarker	  profiles	  predict	  depression	  
risk	  following	  moderate	  to	  severe	  traumatic	  brain	  injury.	  The	  Journal	  of	  head	  
trauma	  rehabilitation,	  2015.	  30(3):	  p.	  207-‐218.	  

83.	   Fenn,	  A.M.,	  et	  al.,	  Immune	  activation	  promotes	  depression	  1	  month	  after	  diffuse	  
brain	  injury:	  a	  role	  for	  primed	  microglia.	  Biological	  psychiatry,	  2014.	  76(7):	  p.	  
575-‐584.	  

84.	   Xiong,	  Y.,	  A.	  Mahmood,	  and	  M.	  Chopp,	  Animal	  models	  of	  traumatic	  brain	  
injury.	  Nature	  Reviews	  Neuroscience,	  2013.	  14(2):	  p.	  128-‐142.	  

85.	   Thompson,	  H.J.,	  et	  al.,	  Lateral	  fluid	  percussion	  brain	  injury:	  a	  15-‐year	  review	  
and	  evaluation.	  J	  Neurotrauma,	  2005.	  22(1):	  p.	  42-‐75.	  

86.	   Dixon,	  C.E.,	  et	  al.,	  A	  controlled	  cortical	  impact	  model	  of	  traumatic	  brain	  injury	  
in	  the	  rat.	  Journal	  of	  neuroscience	  methods,	  1991.	  39(3):	  p.	  253-‐262.	  

87.	   Saljo,	  A.,	  et	  al.,	  Low-‐level	  blasts	  raise	  intracranial	  pressure	  and	  impair	  cognitive	  
function	  in	  rats.	  Journal	  of	  neurotrauma,	  2009.	  26(8):	  p.	  1345-‐1353.	  

88.	   Garman,	  R.H.,	  et	  al.,	  Blast	  exposure	  in	  rats	  with	  body	  shielding	  is	  characterized	  
primarily	  by	  diffuse	  axonal	  injury.	  Journal	  of	  neurotrauma,	  2011.	  28(6):	  p.	  
947-‐959.	  



	   	   	  222 

89.	   Williams,	  A.J.,	  et	  al.,	  Characterization	  of	  a	  new	  rat	  model	  of	  penetrating	  
ballistic	  brain	  injury.	  Journal	  of	  neurotrauma,	  2005.	  22(2):	  p.	  313-‐331.	  

90.	   Kane,	  M.J.,	  et	  al.,	  A	  mouse	  model	  of	  human	  repetitive	  mild	  traumatic	  brain	  
injury.	  Journal	  of	  neuroscience	  methods,	  2012.	  203(1):	  p.	  41-‐49.	  

91.	   Crawley,	  J.N.,	  Behavioral	  phenotyping	  of	  transgenic	  and	  knockout	  mice:	  
experimental	  design	  and	  evaluation	  of	  general	  health,	  sensory	  functions,	  motor	  
abilities,	  and	  specific	  behavioral	  tests.	  Brain	  research,	  1999.	  835(1):	  p.	  18-‐26.	  

92.	   Kochanek,	  P.M.,	  et	  al.,	  Operation	  Brain	  Trauma	  Therapy:	  Approach	  to	  
Modeling,	  Therapy	  Evaluation,	  Drug	  Selection,	  and	  Biomarker	  Assessments	  for	  
a	  Multicenter	  Pre-‐Clinical	  Drug	  Screening	  Consortium	  for	  Acute	  Therapies	  in	  
Severe	  Traumatic	  Brain	  Injury.	  Journal	  of	  neurotrauma,	  2015.	  

93.	   Washington,	  P.M.,	  et	  al.,	  The	  effect	  of	  injury	  severity	  on	  behavior:	  a	  phenotypic	  
study	  of	  cognitive	  and	  emotional	  deficits	  after	  mild,	  moderate,	  and	  severe	  
controlled	  cortical	  impact	  injury	  in	  mice.	  Journal	  of	  neurotrauma,	  2012.	  
29(13):	  p.	  2283-‐2296.	  

94.	   FOX,	  G.B.,	  et	  al.,	  Sustained	  sensory/motor	  and	  cognitive	  deficits	  with	  neuronal	  
apoptosis	  following	  controlled	  cortical	  impact	  brain	  injury	  in	  the	  mouse.	  
Journal	  of	  neurotrauma,	  1998.	  15(8):	  p.	  599-‐614.	  

95.	   Fujimoto,	  S.T.,	  et	  al.,	  Motor	  and	  cognitive	  function	  evaluation	  following	  
experimental	  traumatic	  brain	  injury.	  Neurosci	  Biobehav	  Rev,	  2004.	  28(4):	  p.	  
365-‐78.	  

96.	   Fujimoto,	  S.T.,	  et	  al.,	  Motor	  and	  cognitive	  function	  evaluation	  following	  
experimental	  traumatic	  brain	  injury.	  Neuroscience	  &	  biobehavioral	  reviews,	  
2004.	  28(4):	  p.	  365-‐378.	  

97.	   Clemson,	  C.M.,	  et	  al.,	  XIST	  RNA	  paints	  the	  inactive	  X	  chromosome	  at	  interphase:	  
evidence	  for	  a	  novel	  RNA	  involved	  in	  nuclear/chromosome	  structure.	  The	  
Journal	  of	  cell	  biology,	  1996.	  132(3):	  p.	  259-‐275.	  

98.	   Brannan,	  C.I.,	  et	  al.,	  The	  product	  of	  the	  H19	  gene	  may	  function	  as	  an	  RNA.	  
Molecular	  and	  cellular	  biology,	  1990.	  10(1):	  p.	  28-‐36.	  

99.	   Bernstein,	  E.,	  et	  al.,	  Dicer	  is	  essential	  for	  mouse	  development.	  Nature	  genetics,	  
2003.	  35(3):	  p.	  215-‐217.	  

100.	   Krol,	  J.,	  I.	  Loedige,	  and	  W.	  Filipowicz,	  The	  widespread	  regulation	  of	  microRNA	  
biogenesis,	  function	  and	  decay.	  Nature	  Reviews	  Genetics,	  2010.	  11(9):	  p.	  597-‐
610.	  

101.	   Winter,	  J.,	  et	  al.,	  Many	  roads	  to	  maturity:	  microRNA	  biogenesis	  pathways	  and	  
their	  regulation.	  Nature	  cell	  biology,	  2009.	  11(3):	  p.	  228-‐234.	  

102.	   Filipowicz,	  W.,	  S.N.	  Bhattacharyya,	  and	  N.	  Sonenberg,	  Mechanisms	  of	  post-‐
transcriptional	  regulation	  by	  microRNAs:	  are	  the	  answers	  in	  sight?	  Nature	  
Reviews	  Genetics,	  2008.	  9(2):	  p.	  102-‐114.	  

103.	   Bartel,	  D.P.	  and	  C.-‐Z.	  Chen,	  Micromanagers	  of	  gene	  expression:	  the	  potentially	  
widespread	  influence	  of	  metazoan	  microRNAs.	  Nature	  Reviews	  Genetics,	  2004.	  
5(5):	  p.	  396-‐400.	  

104.	   Vasudevan,	  S.,	  Y.	  Tong,	  and	  J.A.	  Steitz,	  Switching	  from	  repression	  to	  activation:	  
microRNAs	  can	  up-‐regulate	  translation.	  Science,	  2007.	  318(5858):	  p.	  1931-‐
1934.	  



	   	   	  223 

105.	   Roberts,	  T.C.,	  The	  MicroRNA	  Biology	  of	  the	  Mammalian	  Nucleus.	  Mol	  Ther	  
Nucleic	  Acids,	  2014.	  3:	  p.	  e188.	  

106.	   Marson,	  A.,	  et	  al.,	  Connecting	  microRNA	  genes	  to	  the	  core	  transcriptional	  
regulatory	  circuitry	  of	  embryonic	  stem	  cells.	  Cell,	  2008.	  134(3):	  p.	  521-‐533.	  

107.	   Lu,	  J.,	  et	  al.,	  MicroRNA	  expression	  profiles	  classify	  human	  cancers.	  nature,	  2005.	  
435(7043):	  p.	  834-‐838.	  

108.	   Baltimore,	  D.,	  et	  al.,	  MicroRNAs:	  new	  regulators	  of	  immune	  cell	  development	  
and	  function.	  Nature	  immunology,	  2008.	  9(8):	  p.	  839-‐845.	  

109.	   Sonkoly,	  E.,	  M.	  Ståhle,	  and	  A.	  Pivarcsi.	  MicroRNAs	  and	  immunity:	  novel	  players	  
in	  the	  regulation	  of	  normal	  immune	  function	  and	  inflammation.	  in	  Seminars	  in	  
cancer	  biology.	  2008.	  Elsevier.	  

110.	   Mogensen,	  T.H.,	  Pathogen	  recognition	  and	  inflammatory	  signaling	  in	  innate	  
immune	  defenses.	  Clinical	  microbiology	  reviews,	  2009.	  22(2):	  p.	  240-‐273.	  

111.	   Srikrishna,	  G.	  and	  H.H.	  Freeze,	  Endogenous	  damage-‐associated	  molecular	  
pattern	  molecules	  at	  the	  crossroads	  of	  inflammation	  and	  cancer.	  Neoplasia,	  
2009.	  11(7):	  p.	  615-‐628.	  

112.	   Taniguchi,	  N.,	  et	  al.,	  High	  mobility	  group	  box	  chromosomal	  protein	  1	  plays	  a	  
role	  in	  the	  pathogenesis	  of	  rheumatoid	  arthritis	  as	  a	  novel	  cytokine.	  Arthritis	  &	  
Rheumatism,	  2003.	  48(4):	  p.	  971-‐981.	  

113.	   Porto,	  A.,	  et	  al.,	  Smooth	  muscle	  cells	  in	  human	  atherosclerotic	  plaques	  secrete	  
and	  proliferate	  in	  response	  to	  high	  mobility	  group	  box	  1	  protein.	  The	  FASEB	  
Journal,	  2006.	  20(14):	  p.	  2565-‐2566.	  

114.	   Popovic,	  K.,	  et	  al.,	  Increased	  expression	  of	  the	  novel	  proinflammatory	  cytokine	  
high	  mobility	  group	  box	  chromosomal	  protein	  1	  in	  skin	  lesions	  of	  patients	  with	  
lupus	  erythematosus.	  Arthritis	  &	  Rheumatism,	  2005.	  52(11):	  p.	  3639-‐3645.	  

115.	   Hanke,	  M.L.	  and	  T.	  Kielian,	  Toll-‐like	  receptors	  in	  health	  and	  disease	  in	  the	  
brain:	  mechanisms	  and	  therapeutic	  potential.	  Clinical	  Science,	  2011.	  121(9):	  
p.	  367-‐387.	  

116.	   Zhang,	  Z.,	  et	  al.,	  Immunolocalization	  of	  Toll-‐like	  receptors	  2	  and	  4	  as	  well	  as	  
their	  endogenous	  ligand,	  heat	  shock	  protein	  70,	  in	  rat	  traumatic	  brain	  injury.	  
Neuroimmunomodulation,	  2011.	  19(1):	  p.	  10-‐19.	  

117.	   Laird,	  M.D.,	  et	  al.,	  High	  mobility	  group	  box	  protein‐1	  promotes	  cerebral	  
edema	  after	  traumatic	  brain	  injury	  via	  activation	  of	  toll‐like	  receptor	  4.	  Glia,	  
2014.	  62(1):	  p.	  26-‐38.	  

118.	   O'Neill,	  L.A.,	  F.J.	  Sheedy,	  and	  C.E.	  McCoy,	  MicroRNAs:	  the	  fine-‐tuners	  of	  Toll-‐
like	  receptor	  signalling.	  Nature	  Reviews	  Immunology,	  2011.	  11(3):	  p.	  163-‐
175.	  

119.	   Ruggiero,	  T.,	  et	  al.,	  LPS	  induces	  KH-‐type	  splicing	  regulatory	  protein-‐dependent	  
processing	  of	  microRNA-‐155	  precursors	  in	  macrophages.	  The	  FASEB	  Journal,	  
2009.	  23(9):	  p.	  2898-‐2908.	  

120.	   Taganov,	  K.D.,	  et	  al.,	  NF-‐κB-‐dependent	  induction	  of	  microRNA	  miR-‐146,	  an	  
inhibitor	  targeted	  to	  signaling	  proteins	  of	  innate	  immune	  responses.	  
Proceedings	  of	  the	  National	  Academy	  of	  Sciences,	  2006.	  103(33):	  p.	  12481-‐
12486.	  



	   	   	  224 

121.	   Ceppi,	  M.,	  et	  al.,	  MicroRNA-‐155	  modulates	  the	  interleukin-‐1	  signaling	  pathway	  
in	  activated	  human	  monocyte-‐derived	  dendritic	  cells.	  Proceedings	  of	  the	  
National	  Academy	  of	  Sciences,	  2009.	  106(8):	  p.	  2735-‐2740.	  

122.	   Worm,	  J.,	  et	  al.,	  Silencing	  of	  microRNA-‐155	  in	  mice	  during	  acute	  inflammatory	  
response	  leads	  to	  derepression	  of	  c/ebp	  Beta	  and	  down-‐regulation	  of	  G-‐CSF.	  
Nucleic	  acids	  research,	  2009.	  37(17):	  p.	  5784-‐5792.	  

123.	   Costinean,	  S.,	  et	  al.,	  Src	  homology	  2	  domain–containing	  inositol-‐5-‐phosphatase	  
and	  CCAAT	  enhancer-‐binding	  protein	  β	  are	  targeted	  by	  miR-‐155	  in	  B	  cells	  of	  
Eμ-‐MiR-‐155	  transgenic	  mice.	  Blood,	  2009.	  114(7):	  p.	  1374-‐1382.	  

124.	   Jennewein,	  C.,	  et	  al.,	  MicroRNA-‐27b	  contributes	  to	  lipopolysaccharide-‐
mediated	  peroxisome	  proliferator-‐activated	  receptor	  γ	  (PPARγ)	  mRNA	  
destabilization.	  Journal	  of	  Biological	  Chemistry,	  2010.	  285(16):	  p.	  11846-‐
11853.	  

125.	   Lagos,	  D.,	  et	  al.,	  miR-‐132	  regulates	  antiviral	  innate	  immunity	  through	  
suppression	  of	  the	  p300	  transcriptional	  co-‐activator.	  Nature	  cell	  biology,	  2010.	  
12(5):	  p.	  513-‐519.	  

126.	   O'Connell,	  R.M.,	  et	  al.,	  Inositol	  phosphatase	  SHIP1	  is	  a	  primary	  target	  of	  miR-‐
155.	  Proceedings	  of	  the	  National	  Academy	  of	  Sciences,	  2009.	  106(17):	  p.	  
7113-‐7118.	  

127.	   An,	  H.,	  et	  al.,	  Src	  homology	  2	  domain-‐containing	  inositol-‐5-‐phosphatase	  1	  
(SHIP1)	  negatively	  regulates	  TLR4-‐mediated	  LPS	  response	  primarily	  through	  a	  
phosphatase	  activity-‐and	  PI-‐3K-‐independent	  mechanism.	  Blood,	  2005.	  
105(12):	  p.	  4685-‐4692.	  

128.	   Boldin,	  M.P.,	  et	  al.,	  miR-‐146a	  is	  a	  significant	  brake	  on	  autoimmunity,	  
myeloproliferation,	  and	  cancer	  in	  mice.	  The	  Journal	  of	  experimental	  medicine,	  
2011.	  208(6):	  p.	  1189-‐1201.	  

129.	   Bhela,	  S.,	  et	  al.,	  Critical	  role	  of	  microRNA-‐155	  in	  herpes	  simplex	  encephalitis.	  J	  
Immunol,	  2014.	  192(6):	  p.	  2734-‐43.	  

130.	   Iwai,	  H.,	  et	  al.,	  MicroRNA-‐155	  knockout	  mice	  are	  susceptible	  to	  Mycobacterium	  
tuberculosis	  infection.	  Tuberculosis	  (Edinb),	  2015.	  95(3):	  p.	  246-‐50.	  

131.	   Eisenhardt,	  S.U.,	  et	  al.,	  MicroRNA-‐155	  aggravates	  ischemia-‐reperfusion	  injury	  
by	  modulation	  of	  inflammatory	  cell	  recruitment	  and	  the	  respiratory	  oxidative	  
burst.	  Basic	  Res	  Cardiol,	  2015.	  110(3):	  p.	  32.	  

132.	   Du,	  F.,	  et	  al.,	  MicroRNA-‐155	  Deficiency	  Results	  in	  Decreased	  Macrophage	  
Inflammation	  and	  Attenuated	  Atherogenesis	  in	  Apolipoprotein	  E–Deficient	  
Mice.	  Arteriosclerosis,	  thrombosis,	  and	  vascular	  biology,	  2014.	  34(4):	  p.	  759-‐
767.	  

133.	   Cardoso,	  A.L.,	  et	  al.,	  miR‐155	  modulates	  microglia‐mediated	  immune	  
response	  by	  down‐regulating	  SOCS‐1	  and	  promoting	  cytokine	  and	  nitric	  
oxide	  production.	  Immunology,	  2012.	  135(1):	  p.	  73-‐88.	  

134.	   O'Connell,	  R.M.,	  et	  al.,	  MicroRNA-‐155	  is	  induced	  during	  the	  macrophage	  
inflammatory	  response.	  Proceedings	  of	  the	  National	  Academy	  of	  Sciences,	  
2007.	  104(5):	  p.	  1604-‐1609.	  

135.	   Butovsky,	  O.,	  et	  al.,	  Targeting	  miR‐155	  restores	  abnormal	  microglia	  and	  
attenuates	  disease	  in	  SOD1	  mice.	  Annals	  of	  neurology,	  2015.	  77(1):	  p.	  75-‐99.	  



	   	   	  225 

136.	   Guedes,	  J.R.,	  et	  al.,	  Early	  miR-‐155	  upregulation	  contributes	  to	  
neuroinflammation	  in	  Alzheimer's	  disease	  triple	  transgenic	  mouse	  model.	  
Human	  molecular	  genetics,	  2014.	  23(23):	  p.	  6286-‐6301.	  

137.	   Thome,	  A.D.,	  et	  al.,	  microRNA-‐155	  Regulates	  Alpha-‐Synuclein-‐Induced	  
Inflammatory	  Responses	  in	  Models	  of	  Parkinson	  Disease.	  J	  Neurosci,	  2016.	  
36(8):	  p.	  2383-‐90.	  

138.	   Ponomarev,	  E.D.,	  et	  al.,	  MicroRNA-‐124	  promotes	  microglia	  quiescence	  and	  
suppresses	  EAE	  by	  deactivating	  macrophages	  via	  the	  C/EBP-‐[alpha]-‐PU.	  1	  
pathway.	  Nature	  medicine,	  2011.	  17(1):	  p.	  64-‐70.	  

139.	   Iyer,	  A.,	  et	  al.,	  MicroRNA-‐146a:	  a	  key	  regulator	  of	  astrocyte-‐mediated	  
inflammatory	  response.	  PloS	  one,	  2012.	  7(9):	  p.	  e44789.	  

140.	   Tarassishin,	  L.,	  et	  al.,	  Interferon	  regulatory	  factor	  3	  inhibits	  astrocyte	  
inflammatory	  gene	  expression	  through	  suppression	  of	  the	  proinflammatory	  
miR‐155	  and	  miR‐155*.	  Glia,	  2011.	  59(12):	  p.	  1911-‐1922.	  

141.	   Bhalala,	  O.G.,	  et	  al.,	  microRNA-‐21	  regulates	  astrocytic	  response	  following	  spinal	  
cord	  injury.	  J	  Neurosci,	  2012.	  32(50):	  p.	  17935-‐47.	  

142.	   Suarez,	  Y.,	  et	  al.,	  Cutting	  edge:	  TNF-‐induced	  microRNAs	  regulate	  TNF-‐induced	  
expression	  of	  E-‐selectin	  and	  intercellular	  adhesion	  molecule-‐1	  on	  human	  
endothelial	  cells:	  feedback	  control	  of	  inflammation.	  J	  Immunol,	  2010.	  184(1):	  
p.	  21-‐5.	  

143.	   Arner,	  E.,	  et	  al.,	  Adipose	  tissue	  microRNAs	  as	  regulators	  of	  CCL2	  production	  in	  
human	  obesity.	  Diabetes,	  2012.	  61(8):	  p.	  1986-‐93.	  

144.	   Lei,	  P.,	  et	  al.,	  Microarray	  based	  analysis	  of	  microRNA	  expression	  in	  rat	  cerebral	  
cortex	  after	  traumatic	  brain	  injury.	  Brain	  Res,	  2009.	  1284:	  p.	  191-‐201.	  

145.	   Redell,	  J.B.,	  Y.	  Liu,	  and	  P.K.	  Dash,	  Traumatic	  brain	  injury	  alters	  expression	  of	  
hippocampal	  microRNAs:	  potential	  regulators	  of	  multiple	  pathophysiological	  
processes.	  J	  Neurosci	  Res,	  2009.	  87(6):	  p.	  1435-‐48.	  

146.	   Liu,	  L.,	  et	  al.,	  Traumatic	  brain	  injury	  dysregulates	  microRNAs	  to	  modulate	  cell	  
signaling	  in	  rat	  hippocampus.	  PLoS	  One,	  2014.	  9(8):	  p.	  e103948.	  

147.	   Sun,	  T.Y.,	  et	  al.,	  Expression	  profiling	  of	  microRNAs	  in	  hippocampus	  of	  rats	  
following	  traumatic	  brain	  injury.	  J	  Huazhong	  Univ	  Sci	  Technolog	  Med	  Sci,	  
2014.	  34(4):	  p.	  548-‐53.	  

148.	   Meissner,	  L.,	  et	  al.,	  Temporal	  Profile	  of	  MicroRNA	  Expression	  in	  Contused	  
Cortex	  after	  Traumatic	  Brain	  Injury	  in	  Mice.	  J	  Neurotrauma,	  2015.	  

149.	   Hu,	  Z.,	  et	  al.,	  Expression	  of	  miRNAs	  and	  their	  cooperative	  regulation	  of	  the	  
pathophysiology	  in	  traumatic	  brain	  injury.	  PLoS	  One,	  2012.	  7(6):	  p.	  e39357.	  

150.	   Redell,	  J.B.,	  J.	  Zhao,	  and	  P.K.	  Dash,	  Altered	  expression	  of	  miRNA‐21	  and	  its	  
targets	  in	  the	  hippocampus	  after	  traumatic	  brain	  injury.	  Journal	  of	  
neuroscience	  research,	  2011.	  89(2):	  p.	  212-‐221.	  

151.	   Han,	  Z.,	  et	  al.,	  miR-‐21	  alleviated	  apoptosis	  of	  cortical	  neurons	  through	  
promoting	  PTEN-‐Akt	  signaling	  pathway	  in	  vitro	  after	  experimental	  traumatic	  
brain	  injury.	  Brain	  research,	  2014.	  1582:	  p.	  12-‐20.	  

152.	   Ge,	  X.T.,	  et	  al.,	  miR-‐21	  improves	  the	  neurological	  outcome	  after	  traumatic	  brain	  
injury	  in	  rats.	  Sci	  Rep,	  2014.	  4:	  p.	  6718.	  



	   	   	  226 

153.	   Ge,	  X.,	  et	  al.,	  MiR-‐21	  alleviates	  secondary	  blood-‐brain	  barrier	  damage	  after	  
traumatic	  brain	  injury	  in	  rats.	  Brain	  Res,	  2015.	  1603:	  p.	  150-‐7.	  

154.	   Sandhir,	  R.,	  E.	  Gregory,	  and	  N.E.	  Berman,	  Differential	  response	  of	  miRNA-‐21	  
and	  its	  targets	  after	  traumatic	  brain	  injury	  in	  aging	  mice.	  Neurochemistry	  
international,	  2014.	  78:	  p.	  117-‐121.	  

155.	   Truettner,	  J.S.,	  et	  al.,	  Therapeutic	  hypothermia	  alters	  microRNA	  responses	  to	  
traumatic	  brain	  injury	  in	  rats.	  Journal	  of	  Cerebral	  Blood	  Flow	  &	  Metabolism,	  
2011.	  31(9):	  p.	  1897-‐1907.	  

156.	   Peterson,	  K.,	  S.	  Carson,	  and	  N.	  Carney,	  Hypothermia	  treatment	  for	  traumatic	  
brain	  injury:	  a	  systematic	  review	  and	  meta-‐analysis.	  Journal	  of	  neurotrauma,	  
2008.	  25(1):	  p.	  62-‐71.	  

157.	   Marion,	  D.W.,	  et	  al.,	  Treatment	  of	  traumatic	  brain	  injury	  with	  moderate	  
hypothermia.	  New	  England	  Journal	  of	  Medicine,	  1997.	  336(8):	  p.	  540-‐546.	  

158.	   Wang,	  W.X.,	  et	  al.,	  Mitochondria-‐associated	  microRNAs	  in	  rat	  hippocampus	  
following	  traumatic	  brain	  injury.	  Exp	  Neurol,	  2015.	  265:	  p.	  84-‐93.	  

159.	   Yokobori,	  S.,	  et	  al.,	  Biomarkers	  for	  the	  clinical	  differential	  diagnosis	  in	  
traumatic	  brain	  injury—a	  systematic	  review.	  CNS	  neuroscience	  &	  
therapeutics,	  2013.	  19(8):	  p.	  556-‐565.	  

160.	   Redell,	  J.B.,	  et	  al.,	  Human	  traumatic	  brain	  injury	  alters	  plasma	  microRNA	  
levels.	  Journal	  of	  neurotrauma,	  2010.	  27(12):	  p.	  2147-‐2156.	  

161.	   Mattson,	  M.P.	  and	  S.W.	  Scheff,	  Endogenous	  neuroprotection	  factors	  and	  
traumatic	  brain	  injury:	  mechanisms	  of	  action	  and	  implications	  for	  therapy.	  J	  
Neurotrauma,	  1994.	  11(1):	  p.	  3-‐33.	  

162.	   Smith,	  D.H.,	  et	  al.,	  A	  model	  of	  parasagittal	  controlled	  cortical	  impact	  in	  the	  
mouse:	  cognitive	  and	  histopathologic	  effects.	  J	  Neurotrauma,	  1995.	  12(2):	  p.	  
169-‐78.	  

163.	   Dagan,	  L.N.,	  et	  al.,	  miR-‐155	  regulates	  HGAL	  expression	  and	  increases	  lymphoma	  
cell	  motility.	  Blood,	  2012.	  119(2):	  p.	  513-‐520.	  

164.	   Ma,	  X.,	  et	  al.,	  Loss	  of	  the	  miR-‐21	  allele	  elevates	  the	  expression	  of	  its	  target	  genes	  
and	  reduces	  tumorigenesis.	  Proc	  Natl	  Acad	  Sci	  U	  S	  A,	  2011.	  108(25):	  p.	  10144-‐
9.	  

165.	   Pan,	  Y.W.,	  et	  al.,	  Inducible	  and	  conditional	  deletion	  of	  extracellular	  signal-‐
regulated	  kinase	  5	  disrupts	  adult	  hippocampal	  neurogenesis.	  J	  Biol	  Chem,	  
2012.	  287(28):	  p.	  23306-‐17.	  

166.	   Farley,	  F.W.,	  et	  al.,	  Widespread	  recombinase	  expression	  using	  FLPeR	  (flipper)	  
mice.	  Genesis,	  2000.	  28(3-‐4):	  p.	  106-‐10.	  

167.	   Yelamanchili,	  S.V.,	  et	  al.,	  Upregulation	  of	  cathepsin	  D	  in	  the	  caudate	  nucleus	  of	  
primates	  with	  experimental	  parkinsonism.	  Mol	  Neurodegener,	  2011.	  6:	  p.	  52.	  

168.	   Chaudhuri,	  A.D.,	  S.V.	  Yelamanchili,	  and	  H.S.	  Fox,	  Combined	  fluorescent	  in	  situ	  
hybridization	  for	  detection	  of	  microRNAs	  and	  immunofluorescent	  labeling	  for	  
cell-‐type	  markers.	  Front	  Cell	  Neurosci,	  2013.	  7:	  p.	  160.	  

169.	   Schneider,	  C.A.,	  W.S.	  Rasband,	  and	  K.W.	  Eliceiri,	  NIH	  Image	  to	  ImageJ:	  25	  
years	  of	  image	  analysis.	  Nat	  methods,	  2012.	  9(7):	  p.	  671-‐675.	  

170.	   O'Connor,	  C.,	  et	  al.,	  Effects	  of	  daily	  versus	  weekly	  testing	  and	  pre-‐training	  on	  
the	  assessment	  of	  neurologic	  impairment	  following	  diffuse	  traumatic	  brain	  
injury	  in	  rats.	  J	  Neurotrauma,	  2003.	  20(10):	  p.	  985-‐93.	  



	   	   	  227 

171.	   Heisler,	  L.K.,	  et	  al.,	  Elevated	  anxiety	  and	  antidepressant-‐like	  responses	  in	  
serotonin	  5-‐HT1A	  receptor	  mutant	  mice.	  Proc	  Natl	  Acad	  Sci	  U	  S	  A,	  1998.	  
95(25):	  p.	  15049-‐54.	  

172.	   Flierl,	  M.A.,	  et	  al.,	  Mouse	  closed	  head	  injury	  model	  induced	  by	  a	  weight-‐drop	  
device.	  Nat	  Protoc,	  2009.	  4(9):	  p.	  1328-‐37.	  

173.	   Yelamanchili,	  S.V.,	  et	  al.,	  The	  evolutionary	  young	  miR-‐1290	  favors	  mitotic	  exit	  
and	  differentiation	  of	  human	  neural	  progenitors	  through	  altering	  the	  cell	  cycle	  
proteins.	  Cell	  Death	  Dis,	  2014.	  5:	  p.	  e982.	  

174.	   Reiner,	  B.,	  et	  al.,	  Platelet-‐activating	  factor	  attenuation	  of	  long-‐term	  
potentiation	  in	  rat	  hippocampal	  slices	  via	  protein	  tyrosine	  kinase	  signaling.	  
Neurosci	  Lett,	  2016.	  615:	  p.	  83-‐7.	  

175.	   Beaudoin,	  G.M.,	  3rd,	  et	  al.,	  Culturing	  pyramidal	  neurons	  from	  the	  early	  
postnatal	  mouse	  hippocampus	  and	  cortex.	  Nat	  Protoc,	  2012.	  7(9):	  p.	  1741-‐54.	  

176.	   Crescitelli,	  R.,	  et	  al.,	  Distinct	  RNA	  profiles	  in	  subpopulations	  of	  extracellular	  
vesicles:	  apoptotic	  bodies,	  microvesicles	  and	  exosomes.	  J	  Extracell	  Vesicles,	  
2013.	  2.	  

177.	   Yelamanchili,	  S.V.,	  et	  al.,	  MiR-‐21	  in	  Extracellular	  Vesicles	  Leads	  to	  
Neurotoxicity	  via	  TLR7	  Signaling	  in	  SIV	  Neurological	  Disease.	  PLoS	  Pathog,	  
2015.	  11(7):	  p.	  e1005032.	  

178.	   Perez-‐Gonzalez,	  R.,	  et	  al.,	  The	  exosome	  secretory	  pathway	  transports	  amyloid	  
precursor	  protein	  carboxyl-‐terminal	  fragments	  from	  the	  cell	  into	  the	  brain	  
extracellular	  space.	  J	  Biol	  Chem,	  2012.	  287(51):	  p.	  43108-‐15.	  

179.	   Helmy,	  A.,	  et	  al.,	  Cytokines	  and	  innate	  inflammation	  in	  the	  pathogenesis	  of	  
human	  traumatic	  brain	  injury.	  Prog	  Neurobiol,	  2011.	  95(3):	  p.	  352-‐72.	  

180.	   O'Connell,	  R.M.,	  D.S.	  Rao,	  and	  D.	  Baltimore,	  microRNA	  regulation	  of	  
inflammatory	  responses.	  Annu	  Rev	  Immunol,	  2012.	  30:	  p.	  295-‐312.	  

181.	   Singh,	  R.P.,	  et	  al.,	  The	  role	  of	  miRNA	  in	  inflammation	  and	  autoimmunity.	  
Autoimmun	  Rev,	  2013.	  12(12):	  p.	  1160-‐5.	  

182.	   Buscaglia,	  L.E.B.	  and	  Y.	  Li,	  Apoptosis	  and	  the	  target	  genes	  of	  miR-‐21.	  Chinese	  
journal	  of	  cancer,	  2011.	  30(6):	  p.	  371.	  

183.	   Gironella,	  M.,	  et	  al.,	  Tumor	  protein	  53-‐induced	  nuclear	  protein	  1	  expression	  is	  
repressed	  by	  miR-‐155,	  and	  its	  restoration	  inhibits	  pancreatic	  tumor	  
development.	  Proc	  Natl	  Acad	  Sci	  U	  S	  A,	  2007.	  104(41):	  p.	  16170-‐5.	  

184.	   Ovcharenko,	  D.,	  et	  al.,	  Genome-‐scale	  microRNA	  and	  small	  interfering	  RNA	  
screens	  identify	  small	  RNA	  modulators	  of	  TRAIL-‐induced	  apoptosis	  pathway.	  
Cancer	  Res,	  2007.	  67(22):	  p.	  10782-‐8.	  

185.	   Cole,	  J.T.,	  et	  al.,	  Craniotomy:	  true	  sham	  for	  traumatic	  brain	  injury,	  or	  a	  sham	  of	  
a	  sham?	  J	  Neurotrauma,	  2011.	  28(3):	  p.	  359-‐69.	  

186.	   Lagraoui,	  M.,	  et	  al.,	  Controlled	  cortical	  impact	  and	  craniotomy	  induce	  strikingly	  
similar	  profiles	  of	  inflammatory	  gene	  expression,	  but	  with	  distinct	  kinetics.	  
Front	  Neurol,	  2012.	  3:	  p.	  155.	  

187.	   Shojo,	  H.	  and	  K.	  Kibayashi,	  Changes	  in	  localization	  of	  synaptophysin	  following	  
fluid	  percussion	  injury	  in	  the	  rat	  brain.	  Brain	  Res,	  2006.	  1078(1):	  p.	  198-‐211.	  

188.	   Lovas,	  G.,	  et	  al.,	  Axonal	  changes	  in	  chronic	  demyelinated	  cervical	  spinal	  cord	  
plaques.	  Brain,	  2000.	  123(2):	  p.	  308-‐317.	  



	   	   	  228 

189.	   Wang,	  G.,	  et	  al.,	  Microglia/macrophage	  polarization	  dynamics	  in	  white	  matter	  
after	  traumatic	  brain	  injury.	  J	  Cereb	  Blood	  Flow	  Metab,	  2013.	  33(12):	  p.	  
1864-‐74.	  

190.	   Helmy,	  A.,	  et	  al.,	  The	  cytokine	  response	  to	  human	  traumatic	  brain	  injury:	  
temporal	  profiles	  and	  evidence	  for	  cerebral	  parenchymal	  production.	  J	  Cereb	  
Blood	  Flow	  Metab,	  2011.	  31(2):	  p.	  658-‐70.	  

191.	   Kelso,	  M.L.,	  et	  al.,	  Granulocyte-‐macrophage	  colony	  stimulating	  factor	  exerts	  
protective	  and	  immunomodulatory	  effects	  in	  cortical	  trauma.	  J	  Neuroimmunol,	  
2015.	  278:	  p.	  162-‐73.	  

192.	   Li,	  X.,	  F.	  Tian,	  and	  F.	  Wang,	  Rheumatoid	  arthritis-‐associated	  microRNA-‐155	  
targets	  SOCS1	  and	  upregulates	  TNF-‐alpha	  and	  IL-‐1beta	  in	  PBMCs.	  Int	  J	  Mol	  Sci,	  
2013.	  14(12):	  p.	  23910-‐21.	  

193.	   Loffler,	  D.,	  et	  al.,	  Interleukin-‐6	  dependent	  survival	  of	  multiple	  myeloma	  cells	  
involves	  the	  Stat3-‐mediated	  induction	  of	  microRNA-‐21	  through	  a	  highly	  
conserved	  enhancer.	  Blood,	  2007.	  110(4):	  p.	  1330-‐3.	  

194.	   Washington,	  P.M.,	  et	  al.,	  The	  effect	  of	  injury	  severity	  on	  behavior:	  a	  phenotypic	  
study	  of	  cognitive	  and	  emotional	  deficits	  after	  mild,	  moderate,	  and	  severe	  
controlled	  cortical	  impact	  injury	  in	  mice.	  J	  Neurotrauma,	  2012.	  29(13):	  p.	  
2283-‐96.	  

195.	   Chen,	  G.,	  et	  al.,	  miR-‐146a	  inhibits	  cell	  growth,	  cell	  migration	  and	  induces	  
apoptosis	  in	  non-‐small	  cell	  lung	  cancer	  cells.	  PLoS	  One,	  2013.	  8(3):	  p.	  e60317.	  

196.	   Pan,	  Y.,	  et	  al.,	  Platelet-‐secreted	  microRNA-‐223	  promotes	  endothelial	  cell	  
apoptosis	  induced	  by	  advanced	  glycation	  end	  products	  via	  targeting	  the	  
insulin-‐like	  growth	  factor	  1	  receptor.	  The	  Journal	  of	  Immunology,	  2014.	  
192(1):	  p.	  437-‐446.	  

197.	   Clark,	  R.S.,	  et	  al.,	  Caspase‐3	  mediated	  neuronal	  death	  after	  traumatic	  brain	  
injury	  in	  rats.	  Journal	  of	  neurochemistry,	  2000.	  74(2):	  p.	  740-‐753.	  

198.	   Knoblach,	  S.M.,	  et	  al.,	  Multiple	  caspases	  are	  activated	  after	  traumatic	  brain	  
injury:	  evidence	  for	  involvement	  in	  functional	  outcome.	  Journal	  of	  
neurotrauma,	  2002.	  19(10):	  p.	  1155-‐1170.	  

199.	   Yorke,	  C.H.,	  Jr.	  and	  V.S.	  Caviness,	  Jr.,	  Interhemispheric	  neocortical	  connections	  
of	  the	  corpus	  callosum	  in	  the	  normal	  mouse:	  a	  study	  based	  on	  anterograde	  and	  
retrograde	  methods.	  J	  Comp	  Neurol,	  1975.	  164(2):	  p.	  233-‐45.	  

200.	   Saba,	  R.,	  et	  al.,	  MicroRNA	  146a	  (miR-‐146a)	  is	  over-‐expressed	  during	  prion	  
disease	  and	  modulates	  the	  innate	  immune	  response	  and	  the	  microglial	  
activation	  state.	  PLoS	  One,	  2012.	  7(2):	  p.	  e30832.	  

201.	   Strickland,	  I.T.,	  et	  al.,	  Axotomy-‐induced	  miR-‐21	  promotes	  axon	  growth	  in	  adult	  
dorsal	  root	  ganglion	  neurons.	  PLoS	  One,	  2011.	  6(8):	  p.	  e23423.	  

202.	   Montalban,	  E.,	  et	  al.,	  MiR-‐21	  is	  an	  Ngf-‐modulated	  microRNA	  that	  supports	  Ngf	  
signaling	  and	  regulates	  neuronal	  degeneration	  in	  PC12	  cells.	  Neuromolecular	  
medicine,	  2014.	  16(2):	  p.	  415-‐430.	  

203.	   Sayed,	  D.,	  et	  al.,	  MicroRNA-‐21	  targets	  Sprouty2	  and	  promotes	  cellular	  
outgrowths.	  Molecular	  biology	  of	  the	  cell,	  2008.	  19(8):	  p.	  3272-‐3282.	  



	   	   	  229 

204.	   Izumi,	  B.,	  et	  al.,	  MicroRNA-‐223	  expression	  in	  neutrophils	  in	  the	  early	  phase	  of	  
secondary	  damage	  after	  spinal	  cord	  injury.	  Neuroscience	  letters,	  2011.	  
492(2):	  p.	  114-‐118.	  

205.	   Carlos,	  T.,	  et	  al.,	  Expression	  of	  endothelial	  adhesion	  molecules	  and	  recruitment	  
of	  neutrophils	  after	  traumatic	  brain	  injury	  in	  rats.	  Journal	  of	  leukocyte	  
biology,	  1997.	  61(3):	  p.	  279-‐285.	  

206.	   Wang,	  P.,	  et	  al.,	  Inducible	  microRNA-‐155	  feedback	  promotes	  type	  I	  IFN	  
signaling	  in	  antiviral	  innate	  immunity	  by	  targeting	  suppressor	  of	  cytokine	  
signaling	  1.	  J	  Immunol,	  2010.	  185(10):	  p.	  6226-‐33.	  

207.	   Zhou,	  H.,	  et	  al.,	  miR-‐155	  and	  its	  star-‐form	  partner	  miR-‐155*	  cooperatively	  
regulate	  type	  I	  interferon	  production	  by	  human	  plasmacytoid	  dendritic	  cells.	  
Blood,	  2010.	  116(26):	  p.	  5885-‐94.	  

208.	   Dufour,	  J.H.,	  et	  al.,	  IFN-‐γ-‐inducible	  protein	  10	  (IP-‐10;	  CXCL10)-‐deficient	  mice	  
reveal	  a	  role	  for	  IP-‐10	  in	  effector	  T	  cell	  generation	  and	  trafficking.	  The	  Journal	  
of	  Immunology,	  2002.	  168(7):	  p.	  3195-‐3204.	  

209.	   Nakagawa,	  R.,	  et	  al.,	  SOCS-‐1	  participates	  in	  negative	  regulation	  of	  LPS	  
responses.	  Immunity,	  2002.	  17(5):	  p.	  677-‐87.	  

210.	   Cardoso,	  A.L.,	  et	  al.,	  miR-‐155	  modulates	  microglia-‐mediated	  immune	  response	  
by	  down-‐regulating	  SOCS-‐1	  and	  promoting	  cytokine	  and	  nitric	  oxide	  
production.	  Immunology,	  2012.	  135(1):	  p.	  73-‐88.	  

211.	   Guedes,	  J.R.,	  et	  al.,	  Early	  miR-‐155	  upregulation	  contributes	  to	  
neuroinflammation	  in	  Alzheimer's	  disease	  triple	  transgenic	  mouse	  model.	  Hum	  
Mol	  Genet,	  2014.	  

212.	   Butovsky,	  O.,	  et	  al.,	  Targeting	  miR-‐155	  restores	  dysfunctional	  microglia	  and	  
ameliorates	  disease	  in	  the	  SOD1	  model	  of	  ALS.	  Int	  J	  Dev	  Neurosci,	  2015.	  47(Pt	  
A):	  p.	  5.	  

213.	   Woodbury,	  M.E.,	  et	  al.,	  miR-‐155	  Is	  Essential	  for	  Inflammation-‐Induced	  
Hippocampal	  Neurogenic	  Dysfunction.	  J	  Neurosci,	  2015.	  35(26):	  p.	  9764-‐81.	  

214.	   Takagi,	  Y.,	  et	  al.,	  STAT1	  is	  activated	  in	  neurons	  after	  ischemia	  and	  contributes	  
to	  ischemic	  brain	  injury.	  J	  Cereb	  Blood	  Flow	  Metab,	  2002.	  22(11):	  p.	  1311-‐8.	  

215.	   Klein,	  R.S.,	  et	  al.,	  Neuronal	  CXCL10	  directs	  CD8+	  T-‐cell	  recruitment	  and	  control	  
of	  West	  Nile	  virus	  encephalitis.	  Journal	  of	  virology,	  2005.	  79(17):	  p.	  11457-‐
11466.	  

216.	   Sui,	  Y.,	  et	  al.,	  Neuronal	  apoptosis	  is	  mediated	  by	  CXCL10	  overexpression	  in	  
simian	  human	  immunodeficiency	  virus	  encephalitis.	  The	  American	  journal	  of	  
pathology,	  2004.	  164(5):	  p.	  1557-‐1566.	  

217.	   Nelson,	  T.E.	  and	  D.L.	  Gruol,	  The	  chemokine	  CXCL10	  modulates	  excitatory	  
activity	  and	  intracellular	  calcium	  signaling	  in	  cultured	  hippocampal	  neurons.	  
Journal	  of	  neuroimmunology,	  2004.	  156(1):	  p.	  74-‐87.	  

218.	   Hall,	  E.D.,	  et	  al.,	  Evolution	  of	  post-‐traumatic	  neurodegeneration	  after	  
controlled	  cortical	  impact	  traumatic	  brain	  injury	  in	  mice	  and	  rats	  as	  assessed	  
by	  the	  de	  Olmos	  silver	  and	  fluorojade	  staining	  methods.	  Journal	  of	  
neurotrauma,	  2008.	  25(3):	  p.	  235-‐247.	  

219.	   Antunes,	  M.	  and	  G.	  Biala,	  The	  novel	  object	  recognition	  memory:	  neurobiology,	  
test	  procedure,	  and	  its	  modifications.	  Cogn	  Process,	  2012.	  13(2):	  p.	  93-‐110.	  



	   	   	  230 

220.	   Siopi,	  E.,	  et	  al.,	  Evaluation	  of	  late	  cognitive	  impairment	  and	  anxiety	  states	  
following	  traumatic	  brain	  injury	  in	  mice:	  the	  effect	  of	  minocycline.	  
Neuroscience	  letters,	  2012.	  511(2):	  p.	  110-‐115.	  

221.	   Fromm,	  L.,	  et	  al.,	  Magnesium	  attenuates	  post-‐traumatic	  depression/anxiety	  
following	  diffuse	  traumatic	  brain	  injury	  in	  rats.	  Journal	  of	  the	  American	  
College	  of	  Nutrition,	  2004.	  23(5):	  p.	  529S-‐533S.	  

222.	   Kalueff,	  A.V.	  and	  P.	  Tuohimaa,	  Experimental	  modeling	  of	  anxiety	  and	  
depression.	  Acta	  Neurobiol	  Exp	  (Wars),	  2004.	  64(4):	  p.	  439-‐48.	  

223.	   Varendi,	  K.,	  et	  al.,	  miR-‐1,	  miR-‐10b,	  miR-‐155,	  and	  miR-‐191	  are	  novel	  regulators	  
of	  BDNF.	  Cellular	  and	  Molecular	  Life	  Sciences,	  2014.	  71(22):	  p.	  4443-‐4456.	  

224.	   Alexander,	  W.S.,	  et	  al.,	  SOCS1	  is	  a	  critical	  inhibitor	  of	  interferon	  gamma	  
signaling	  and	  prevents	  the	  potentially	  fatal	  neonatal	  actions	  of	  this	  cytokine.	  
Cell,	  1999.	  98(5):	  p.	  597-‐608.	  

225.	   Lopez-‐Ramirez,	  M.A.,	  et	  al.,	  MicroRNA-‐155	  negatively	  affects	  blood–brain	  
barrier	  function	  during	  neuroinflammation.	  The	  FASEB	  Journal,	  2014.	  28(6):	  
p.	  2551-‐2565.	  

226.	   Israelsson,	  C.,	  et	  al.,	  Appearance	  of	  Cxcl10‐expressing	  cell	  clusters	  is	  common	  
for	  traumatic	  brain	  injury	  and	  neurodegenerative	  disorders.	  European	  Journal	  
of	  Neuroscience,	  2010.	  31(5):	  p.	  852-‐863.	  

227.	   Steffensen,	  M.A.,	  et	  al.,	  Suppressors	  of	  cytokine	  signaling	  1	  and	  3	  are	  
upregulated	  in	  brain	  resident	  cells	  in	  response	  to	  virus-‐induced	  inflammation	  of	  
the	  central	  nervous	  system	  via	  at	  least	  two	  distinctive	  pathways.	  J	  Virol,	  2014.	  
88(24):	  p.	  14090-‐104.	  

228.	   Fonken,	  L.K.,	  et	  al.,	  MicroRNA-‐155	  deletion	  reduces	  anxiety-‐and	  depressive-‐like	  
behaviors	  in	  mice.	  Psychoneuroendocrinology,	  2016.	  63:	  p.	  362-‐369.	  

229.	   Valentine,	  A.D.,	  et	  al.	  Mood	  and	  cognitive	  side	  effects	  of	  interferon-‐alpha	  
therapy.	  in	  Seminars	  in	  oncology.	  1998.	  

230.	   Bianchi,	  M.E.,	  DAMPs,	  PAMPs	  and	  alarmins:	  all	  we	  need	  to	  know	  about	  danger.	  
Journal	  of	  leukocyte	  biology,	  2007.	  81(1):	  p.	  1-‐5.	  

231.	   Yelamanchili,	  S.V.,	  et	  al.,	  MicroRNA-‐21	  dysregulates	  the	  expression	  of	  MEF2C	  in	  
neurons	  in	  monkey	  and	  human	  SIV/HIV	  neurological	  disease.	  Cell	  Death	  Dis,	  
2010.	  1:	  p.	  e77.	  

232.	   Li,	  M.,	  et	  al.,	  Generation	  of	  purified	  neural	  precursors	  from	  embryonic	  stem	  cells	  
by	  lineage	  selection.	  Current	  biology,	  1998.	  8(17):	  p.	  971-‐S2.	  

233.	   Sakai,	  A.	  and	  H.	  Suzuki,	  Nerve	  injury-‐induced	  upregulation	  of	  miR-‐21	  in	  the	  
primary	  sensory	  neurons	  contributes	  to	  neuropathic	  pain	  in	  rats.	  Biochem	  
Biophys	  Res	  Commun,	  2013.	  435(2):	  p.	  176-‐81.	  

234.	   Strickland,	  I.T.,	  et	  al.,	  Axotomy-‐induced	  miR-‐21	  promotes	  axon	  growth	  in	  adult	  
dorsal	  root	  ganglion	  neurons.	  PLoS	  One,	  2011.	  6(8):	  p.	  e23423.	  

235.	   Bellingham,	  S.A.,	  B.M.	  Coleman,	  and	  A.F.	  Hill,	  Small	  RNA	  deep	  sequencing	  
reveals	  a	  distinct	  miRNA	  signature	  released	  in	  exosomes	  from	  prion-‐infected	  
neuronal	  cells.	  Nucleic	  Acids	  Res,	  2012.	  40(21):	  p.	  10937-‐49.	  

236.	   Ziu,	  M.,	  et	  al.,	  Temporal	  differences	  in	  microRNA	  expression	  patterns	  in	  
astrocytes	  and	  neurons	  after	  ischemic	  injury.	  PLoS	  One,	  2011.	  6(2):	  p.	  e14724.	  



	   	   	  231 

237.	   Buller,	  B.,	  et	  al.,	  MicroRNA-‐21	  protects	  neurons	  from	  ischemic	  death.	  FEBS	  J,	  
2010.	  277(20):	  p.	  4299-‐307.	  

238.	   Zhang,	  L.,	  et	  al.,	  miR-‐21	  represses	  FasL	  in	  microglia	  and	  protects	  against	  
microglia-‐mediated	  neuronal	  cell	  death	  following	  hypoxia/ischemia.	  Glia,	  
2012.	  60(12):	  p.	  1888-‐95.	  

239.	   Liu,	  F.J.,	  et	  al.,	  microRNAs	  Involved	  in	  Regulating	  Spontaneous	  Recovery	  in	  
Embolic	  Stroke	  Model.	  PLoS	  One,	  2013.	  8(6):	  p.	  e66393.	  

240.	   Deng,	  X.,	  et	  al.,	  MiR-‐21	  involve	  in	  ERK-‐mediated	  upregulation	  of	  MMP9	  in	  the	  
rat	  hippocampus	  following	  cerebral	  ischemia.	  Brain	  Res	  Bull,	  2013.	  94:	  p.	  56-‐
62.	  

241.	   Shi,	  Y.,	  et	  al.,	  MiR-‐21	  is	  continually	  elevated	  long-‐term	  in	  the	  brain	  after	  
exposure	  to	  ionizing	  radiation.	  Radiat	  Res,	  2012.	  177(1):	  p.	  124-‐8.	  

242.	   Redell,	  J.B.,	  J.	  Zhao,	  and	  P.K.	  Dash,	  Altered	  expression	  of	  miRNA-‐21	  and	  its	  
targets	  in	  the	  hippocampus	  after	  traumatic	  brain	  injury.	  J	  Neurosci	  Res,	  2011.	  
89(2):	  p.	  212-‐21.	  

243.	   Peng,	  J.,	  et	  al.,	  Expression	  patterns	  of	  miR-‐124,	  miR-‐134,	  miR-‐132,	  and	  miR-‐21	  
in	  an	  immature	  rat	  model	  and	  children	  with	  mesial	  temporal	  lobe	  epilepsy.	  J	  
Mol	  Neurosci,	  2013.	  50(2):	  p.	  291-‐7.	  

244.	   Lescher,	  J.,	  et	  al.,	  MicroRNA	  regulation	  in	  experimental	  autoimmune	  
encephalomyelitis	  in	  mice	  and	  marmosets	  resembles	  regulation	  in	  human	  
multiple	  sclerosis	  lesions.	  J	  Neuroimmunol,	  2012.	  246(1-‐2):	  p.	  27-‐33.	  

245.	   Patterson,	  P.H.,	  The	  emerging	  neuropoietic	  cytokine	  family:	  first	  CDF/LIF,	  
CNTF	  and	  IL-‐6;	  next	  ONC,	  MGF,	  GCSF?	  Current	  opinion	  in	  neurobiology,	  1992.	  
2(1):	  p.	  94-‐97.	  

246.	   Group,	  A.C.T.S.,	  A	  double‐blind	  placebo‐controlled	  clinical	  trial	  of	  
subcutaneous	  recombinant	  human	  ciliary	  neurotrophic	  factor	  (rHCNTF)	  in	  
amyotrophic	  lateral	  sclerosis.	  Neurology,	  1996.	  46(5):	  p.	  1244-‐1244.	  

247.	   Yokogami,	  K.,	  et	  al.,	  Serine	  phosphorylation	  and	  maximal	  activation	  of	  STAT3	  
during	  CNTF	  signaling	  is	  mediated	  by	  the	  rapamycin	  target	  mTOR.	  Current	  
Biology,	  2000.	  10(1):	  p.	  47-‐50.	  

248.	   Nakajima,	  K.,	  et	  al.,	  A	  central	  role	  for	  Stat3	  in	  IL-‐6-‐induced	  regulation	  of	  
growth	  and	  differentiation	  in	  M1	  leukemia	  cells.	  The	  EMBO	  journal,	  1996.	  
15(14):	  p.	  3651.	  

249.	   Hirota,	  H.,	  et	  al.,	  Accelerated	  Nerve	  Regeneration	  in	  Mice	  by	  upregulated	  
expression	  of	  interleukin	  (IL)	  6	  and	  IL-‐6	  receptor	  after	  trauma.	  The	  Journal	  of	  
experimental	  medicine,	  1996.	  183(6):	  p.	  2627-‐2634.	  

250.	   Cui,	  Q.,	  et	  al.,	  CNTF,	  not	  other	  trophic	  factors,	  promotes	  axonal	  regeneration	  of	  
axotomized	  retinal	  ganglion	  cells	  in	  adult	  hamsters.	  Investigative	  
ophthalmology	  &	  visual	  science,	  1999.	  40(3):	  p.	  760-‐766.	  

251.	   Thier,	  M.,	  et	  al.,	  Interleukin‐6	  (IL‐6)	  and	  its	  soluble	  receptor	  support	  
survival	  of	  sensory	  neurons.	  Journal	  of	  neuroscience	  research,	  1999.	  55(4):	  p.	  
411-‐422.	  

252.	   Sawada,	  M.,	  et	  al.,	  Expression	  of	  cytokine	  receptors	  in	  cultured	  neuronal	  and	  
glial	  cells.	  Neuroscience	  letters,	  1993.	  160(2):	  p.	  131-‐134.	  



	   	   	  232 

253.	   Numakawa,	  T.,	  et	  al.,	  BDNF	  function	  and	  intracellular	  signaling	  in	  neurons.	  
Histol	  Histopathol,	  2010.	  25(2):	  p.	  237-‐58.	  

254.	   Schust,	  J.,	  et	  al.,	  Stattic:	  a	  small-‐molecule	  inhibitor	  of	  STAT3	  activation	  and	  
dimerization.	  Chemistry	  &	  biology,	  2006.	  13(11):	  p.	  1235-‐1242.	  

255.	   Zhang,	  J.G.,	  et	  al.,	  MicroRNA-‐21	  (miR-‐21)	  represses	  tumor	  suppressor	  PTEN	  and	  
promotes	  growth	  and	  invasion	  in	  non-‐small	  cell	  lung	  cancer	  (NSCLC).	  Clin	  
Chim	  Acta,	  2010.	  411(11-‐12):	  p.	  846-‐52.	  

256.	   Sperow,	  M.,	  et	  al.,	  Phosphatase	  and	  tensin	  homologue	  (PTEN)	  regulates	  
synaptic	  plasticity	  independently	  of	  its	  effect	  on	  neuronal	  morphology	  and	  
migration.	  J	  Physiol,	  2012.	  590(Pt	  4):	  p.	  777-‐92.	  

257.	   Backman,	  S.A.,	  et	  al.,	  Deletion	  of	  Pten	  in	  mouse	  brain	  causes	  seizures,	  ataxia	  
and	  defects	  in	  soma	  size	  resembling	  Lhermitte-‐Duclos	  disease.	  Nature	  genetics,	  
2001.	  29(4):	  p.	  396-‐403.	  

258.	   Han,	  Z.,	  et	  al.,	  miR-‐21	  alleviated	  apoptosis	  of	  cortical	  neurons	  through	  
promoting	  PTEN-‐Akt	  signaling	  pathway	  in	  vitro	  after	  experimental	  traumatic	  
brain	  injury.	  Brain	  Res,	  2014.	  

259.	   Montalban,	  E.,	  et	  al.,	  MiR-‐21	  is	  an	  Ngf-‐modulated	  microRNA	  that	  supports	  Ngf	  
signaling	  and	  regulates	  neuronal	  degeneration	  in	  PC12	  cells.	  Neuromolecular	  
Med,	  2014.	  16(2):	  p.	  415-‐30.	  

260.	   Doble,	  A.,	  The	  role	  of	  excitotoxicity	  in	  neurodegenerative	  disease:	  implications	  
for	  therapy.	  Pharmacology	  &	  therapeutics,	  1999.	  81(3):	  p.	  163-‐221.	  

261.	   White,	  M.J.,	  M.J.	  DiCaprio,	  and	  D.A.	  Greenberg,	  Assessment	  of	  neuronal	  viability	  
with	  Alamar	  blue	  in	  cortical	  and	  granule	  cell	  cultures.	  Journal	  of	  neuroscience	  
methods,	  1996.	  70(2):	  p.	  195-‐200.	  

262.	   Kang,	  S.S.,	  et	  al.,	  Loss	  of	  neuron-‐astroglial	  interaction	  rapidly	  induces	  
protective	  CNTF	  expression	  after	  stroke	  in	  mice.	  J	  Neurosci,	  2012.	  32(27):	  p.	  
9277-‐87.	  

263.	   Park,	  C.Y.,	  et	  al.,	  A	  resource	  for	  the	  conditional	  ablation	  of	  microRNAs	  in	  the	  
mouse.	  Cell	  reports,	  2012.	  1(4):	  p.	  385-‐391.	  

264.	   Calvo-‐Garrido,	  J.,	  et	  al.,	  Vacuole	  membrane	  protein	  1	  is	  an	  endoplasmic	  
reticulum	  protein	  required	  for	  organelle	  biogenesis,	  protein	  secretion,	  and	  
development.	  Mol	  Biol	  Cell,	  2008.	  19(8):	  p.	  3442-‐53.	  

265.	   Hirasawa,	  M.,	  et	  al.,	  Neuron-‐specific	  expression	  of	  Cre	  recombinase	  during	  the	  
late	  phase	  of	  brain	  development.	  Neuroscience	  research,	  2001.	  40(2):	  p.	  125-‐
132.	  

266.	   Dubois,	  N.C.,	  et	  al.,	  Nestin‐Cre	  transgenic	  mouse	  line	  Nes‐Cre1	  mediates	  
highly	  efficient	  Cre/loxP	  mediated	  recombination	  in	  the	  nervous	  system,	  kidney,	  
and	  somite‐derived	  tissues.	  Genesis,	  2006.	  44(8):	  p.	  355-‐360.	  

267.	   Rohlmann,	  A.,	  et	  al.,	  Sustained	  somatic	  gene	  inactivation	  by	  viral	  transfer	  of	  
Cre	  recombinase.	  Nature	  biotechnology,	  1996.	  14(11):	  p.	  1562-‐1565.	  

268.	   Patrick,	  D.M.,	  et	  al.,	  Stress-‐dependent	  cardiac	  remodeling	  occurs	  in	  the	  absence	  
of	  microRNA-‐21	  in	  mice.	  J	  Clin	  Invest,	  2010.	  120(11):	  p.	  3912-‐6.	  

269.	   Cheng,	  Y.	  and	  C.	  Zhang,	  MicroRNA-‐21	  in	  cardiovascular	  disease.	  Journal	  of	  
cardiovascular	  translational	  research,	  2010.	  3(3):	  p.	  251-‐255.	  



	   	   	  233 

270.	   Brem,	  G.	  and	  B.H.	  Thoenen,	  Disruption	  of	  the	  CNTF	  gene	  results	  in	  motor	  
neuron	  degeneration.	  Nature,	  1993.	  365:	  p.	  2.	  

271.	   Leaver,	  S.G.,	  et	  al.,	  AAV-‐mediated	  expression	  of	  CNTF	  promotes	  long-‐term	  
survival	  and	  regeneration	  of	  adult	  rat	  retinal	  ganglion	  cells.	  Gene	  therapy,	  
2006.	  13(18):	  p.	  1328-‐1341.	  

272.	   Kauper,	  K.,	  et	  al.,	  Two-‐year	  intraocular	  delivery	  of	  ciliary	  neurotrophic	  factor	  
by	  encapsulated	  cell	  technology	  implants	  in	  patients	  with	  chronic	  retinal	  
degenerative	  diseases.	  Invest	  Ophthalmol	  Vis	  Sci,	  2012.	  53(12):	  p.	  7484-‐91.	  

273.	   Woodcock,	  T.	  and	  M.C.	  Morganti-‐Kossmann,	  The	  role	  of	  markers	  of	  
inflammation	  in	  traumatic	  brain	  injury.	  Front	  Neurol,	  2013.	  4:	  p.	  18.	  

274.	   Mittelbrunn,	  M.,	  et	  al.,	  Unidirectional	  transfer	  of	  microRNA-‐loaded	  exosomes	  
from	  T	  cells	  to	  antigen-‐presenting	  cells.	  Nat	  Commun,	  2011.	  2:	  p.	  282.	  

275.	   Montecalvo,	  A.,	  et	  al.,	  Mechanism	  of	  transfer	  of	  functional	  microRNAs	  between	  
mouse	  dendritic	  cells	  via	  exosomes.	  Blood,	  2012.	  119(3):	  p.	  756-‐66.	  

276.	   Fabbri,	  M.,	  et	  al.,	  MicroRNAs	  bind	  to	  Toll-‐like	  receptors	  to	  induce	  prometastatic	  
inflammatory	  response.	  Proc	  Natl	  Acad	  Sci	  U	  S	  A,	  2012.	  109(31):	  p.	  E2110-‐6.	  

277.	   Thery,	  C.,	  M.	  Ostrowski,	  and	  E.	  Segura,	  Membrane	  vesicles	  as	  conveyors	  of	  
immune	  responses.	  Nat	  Rev	  Immunol,	  2009.	  9(8):	  p.	  581-‐93.	  

278.	   Valadi,	  H.,	  et	  al.,	  Exosome-‐mediated	  transfer	  of	  mRNAs	  and	  microRNAs	  is	  a	  
novel	  mechanism	  of	  genetic	  exchange	  between	  cells.	  Nat	  Cell	  Biol,	  2007.	  9(6):	  
p.	  654-‐9.	  

279.	   Faden,	  A.I.,	  et	  al.,	  Progressive	  inflammation-‐mediated	  neurodegeneration	  after	  
traumatic	  brain	  or	  spinal	  cord	  injury.	  Br	  J	  Pharmacol,	  2016.	  173(4):	  p.	  681-‐
91.	  

280.	   Lehmann,	  S.M.,	  et	  al.,	  An	  unconventional	  role	  for	  miRNA:	  let-‐7	  activates	  Toll-‐
like	  receptor	  7	  and	  causes	  neurodegeneration.	  Nat	  Neurosci,	  2012.	  15(6):	  p.	  
827-‐35.	  

281.	   Liu,	  H.Y.,	  et	  al.,	  The	  microRNAs	  Let7c	  and	  miR21	  are	  recognized	  by	  neuronal	  
Toll-‐like	  receptor	  7	  to	  restrict	  dendritic	  growth	  of	  neurons.	  Exp	  Neurol,	  2015.	  
269:	  p.	  202-‐12.	  

282.	   Forsbach,	  A.,	  et	  al.,	  Identification	  of	  RNA	  sequence	  motifs	  stimulating	  sequence-‐
specific	  TLR8-‐dependent	  immune	  responses.	  J	  Immunol,	  2008.	  180(6):	  p.	  
3729-‐38.	  

283.	   Sandhir,	  R.,	  E.	  Gregory,	  and	  N.E.	  Berman,	  Differential	  response	  of	  miRNA-‐21	  
and	  its	  targets	  after	  traumatic	  brain	  injury	  in	  aging	  mice.	  Neurochem	  Int,	  
2014.	  

284.	   Han,	  Z.,	  et	  al.,	  miR-‐21	  alleviated	  apoptosis	  of	  cortical	  neurons	  through	  
promoting	  PTEN-‐Akt	  signaling	  pathway	  in	  vitro	  after	  experimental	  traumatic	  
brain	  injury.	  Brain	  Res,	  2014.	  1582:	  p.	  12-‐20.	  

285.	   Bhalala,	  O.G.,	  M.	  Srikanth,	  and	  J.A.	  Kessler,	  The	  emerging	  roles	  of	  microRNAs	  in	  
CNS	  injuries.	  Nat	  Rev	  Neurol,	  2013.	  9(6):	  p.	  328-‐39.	  

286.	   Patz,	  S.,	  et	  al.,	  More	  than	  cell	  dust:	  microparticles	  isolated	  from	  cerebrospinal	  
fluid	  of	  brain	  injured	  patients	  are	  messengers	  carrying	  mRNAs,	  miRNAs,	  and	  
proteins.	  J	  Neurotrauma,	  2013.	  30(14):	  p.	  1232-‐42.	  

287.	   Kraft-‐Terry,	  S.D.,	  et	  al.,	  A	  coat	  of	  many	  colors:	  neuroimmune	  crosstalk	  in	  
human	  immunodeficiency	  virus	  infection.	  Neuron,	  2009.	  64(1):	  p.	  133-‐145.	  



	   	   	  234 

288.	   Hu,	  G.,	  et	  al.,	  Exosome-‐mediated	  shuttling	  of	  microRNA-‐29	  regulates	  HIV	  Tat	  
and	  morphine-‐mediated	  neuronal	  dysfunction.	  Cell	  Death	  Dis,	  2012.	  3:	  p.	  e381.	  

289.	   Crozat,	  K.	  and	  B.	  Beutler,	  TLR7:	  A	  new	  sensor	  of	  viral	  infection.	  Proc	  Natl	  Acad	  
Sci	  U	  S	  A,	  2004.	  101(18):	  p.	  6835-‐6.	  

290.	   Taganov,	  K.D.,	  et	  al.,	  NF-‐kappaB-‐dependent	  induction	  of	  microRNA	  miR-‐146,	  an	  
inhibitor	  targeted	  to	  signaling	  proteins	  of	  innate	  immune	  responses.	  Proc	  Natl	  
Acad	  Sci	  U	  S	  A,	  2006.	  103(33):	  p.	  12481-‐6.	  

291.	   Boldin,	  M.P.,	  et	  al.,	  miR-‐146a	  is	  a	  significant	  brake	  on	  autoimmunity,	  
myeloproliferation,	  and	  cancer	  in	  mice.	  J	  Exp	  Med,	  2011.	  208(6):	  p.	  1189-‐201.	  

292.	   Alexander,	  M.,	  et	  al.,	  Exosome-‐delivered	  microRNAs	  modulate	  the	  
inflammatory	  response	  to	  endotoxin.	  Nat	  Commun,	  2015.	  6:	  p.	  7321.	  

293.	   Choi,	  D.C.,	  et	  al.,	  MicroRNA-‐7	  protects	  against	  1-‐methyl-‐4-‐phenylpyridinium-‐
induced	  cell	  death	  by	  targeting	  RelA.	  J	  Neurosci,	  2014.	  34(38):	  p.	  12725-‐37.	  

294.	   Choudhury,	  N.R.,	  et	  al.,	  Tissue-‐specific	  control	  of	  brain-‐enriched	  miR-‐7	  
biogenesis.	  Genes	  Dev,	  2013.	  27(1):	  p.	  24-‐38.	  

295.	   Wanet,	  A.,	  et	  al.,	  miR-‐212/132	  expression	  and	  functions:	  within	  and	  beyond	  the	  
neuronal	  compartment.	  Nucleic	  Acids	  Res,	  2012.	  40(11):	  p.	  4742-‐53.	  

296.	   Zhang,	  Z.,	  et	  al.,	  MicroRNAs:	  potential	  regulators	  involved	  in	  human	  
anencephaly.	  Int	  J	  Biochem	  Cell	  Biol,	  2010.	  42(2):	  p.	  367-‐74.	  

297.	   Kim,	  A.H.,	  et	  al.,	  MicroRNA	  expression	  profiling	  in	  the	  prefrontal	  cortex	  of	  
individuals	  affected	  with	  schizophrenia	  and	  bipolar	  disorders.	  Schizophr	  Res,	  
2010.	  124(1-‐3):	  p.	  183-‐91.	  

298.	   Wang,	  W.X.,	  et	  al.,	  Patterns	  of	  microRNA	  expression	  in	  normal	  and	  early	  
Alzheimer's	  disease	  human	  temporal	  cortex:	  white	  matter	  versus	  gray	  matter.	  
Acta	  Neuropathol,	  2011.	  121(2):	  p.	  193-‐205.	  

299.	   Zhao,	  Z.,	  et	  al.,	  Comparing	  the	  predictive	  value	  of	  multiple	  cognitive,	  affective,	  
and	  motor	  tasks	  after	  rodent	  traumatic	  brain	  injury.	  J	  Neurotrauma,	  2012.	  
29(15):	  p.	  2475-‐89.	  

300.	   Tong,	  J.,	  et	  al.,	  Inhibition	  of	  Nogo-‐66	  receptor	  1	  enhances	  recovery	  of	  cognitive	  
function	  after	  traumatic	  brain	  injury	  in	  mice.	  J	  Neurotrauma,	  2013.	  30(4):	  p.	  
247-‐58.	  

301.	   Carola,	  V.,	  et	  al.,	  Evaluation	  of	  the	  elevated	  plus-‐maze	  and	  open-‐field	  tests	  for	  
the	  assessment	  of	  anxiety-‐related	  behaviour	  in	  inbred	  mice.	  Behav	  Brain	  Res,	  
2002.	  134(1-‐2):	  p.	  49-‐57.	  

302.	   Kulkarni,	  S.K.,	  K.	  Singh,	  and	  M.	  Bishnoi,	  Elevated	  zero	  maze:	  a	  paradigm	  to	  
evaluate	  antianxiety	  effects	  of	  drugs.	  Methods	  Find	  Exp	  Clin	  Pharmacol,	  2007.	  
29(5):	  p.	  343-‐8.	  

303.	   Cryan,	  J.F.,	  C.	  Mombereau,	  and	  A.	  Vassout,	  The	  tail	  suspension	  test	  as	  a	  model	  
for	  assessing	  antidepressant	  activity:	  review	  of	  pharmacological	  and	  genetic	  
studies	  in	  mice.	  Neurosci	  Biobehav	  Rev,	  2005.	  29(4-‐5):	  p.	  571-‐625.	  

304.	   Steru,	  L.,	  et	  al.,	  The	  tail	  suspension	  test:	  a	  new	  method	  for	  screening	  
antidepressants	  in	  mice.	  Psychopharmacology	  (Berl),	  1985.	  85(3):	  p.	  367-‐70.	  

305.	   Kaidanovich-‐Beilin,	  O.,	  et	  al.,	  Assessment	  of	  social	  interaction	  behaviors.	  J	  Vis	  
Exp,	  2011(48).	  



	   	   	  235 

306.	   Hsieh,	  C.L.,	  et	  al.,	  CCR2	  deficiency	  impairs	  macrophage	  infiltration	  and	  
improves	  cognitive	  function	  after	  traumatic	  brain	  injury.	  J	  Neurotrauma,	  2014.	  
31(20):	  p.	  1677-‐88.	  

307.	   Homsi,	  S.,	  et	  al.,	  Blockade	  of	  acute	  microglial	  activation	  by	  minocycline	  
promotes	  neuroprotection	  and	  reduces	  locomotor	  hyperactivity	  after	  closed	  
head	  injury	  in	  mice:	  a	  twelve-‐week	  follow-‐up	  study.	  J	  Neurotrauma,	  2010.	  
27(5):	  p.	  911-‐21.	  

308.	   Siopi,	  E.,	  et	  al.,	  Etazolate,	  an	  alpha-‐secretase	  activator,	  reduces	  
neuroinflammation	  and	  offers	  persistent	  neuroprotection	  following	  traumatic	  
brain	  injury	  in	  mice.	  Neuropharmacology,	  2013.	  67:	  p.	  183-‐92.	  

309.	   Luo,	  J.,	  et	  al.,	  Long-‐term	  cognitive	  impairments	  and	  pathological	  alterations	  in	  
a	  mouse	  model	  of	  repetitive	  mild	  traumatic	  brain	  injury.	  Front	  Neurol,	  2014.	  5:	  
p.	  12.	  

310.	   Elliott,	  M.B.,	  et	  al.,	  Acute	  effects	  of	  a	  selective	  cannabinoid-‐2	  receptor	  agonist	  
on	  neuroinflammation	  in	  a	  model	  of	  traumatic	  brain	  injury.	  J	  Neurotrauma,	  
2011.	  28(6):	  p.	  973-‐81.	  

311.	   Starkstein,	  S.E.	  and	  R.G.	  Robinson,	  Mechanism	  of	  disinhibition	  after	  brain	  
lesions.	  J	  Nerv	  Ment	  Dis,	  1997.	  185(2):	  p.	  108-‐14.	  

312.	   Crane,	  A.T.,	  K.D.	  Fink,	  and	  J.S.	  Smith,	  The	  effects	  of	  acute	  voluntary	  wheel	  
running	  on	  recovery	  of	  function	  following	  medial	  frontal	  cortical	  contusions	  in	  
rats.	  Restor	  Neurol	  Neurosci,	  2012.	  30(4):	  p.	  325-‐33.	  

313.	   Bondi,	  C.O.,	  et	  al.,	  Old	  dog,	  new	  tricks:	  the	  attentional	  set-‐shifting	  test	  as	  a	  novel	  
cognitive	  behavioral	  task	  after	  controlled	  cortical	  impact	  injury.	  J	  
Neurotrauma,	  2014.	  31(10):	  p.	  926-‐37.	  

314.	   Malkesman,	  O.,	  et	  al.,	  Traumatic	  brain	  injury	  -‐	  modeling	  neuropsychiatric	  
symptoms	  in	  rodents.	  Front	  Neurol,	  2013.	  4:	  p.	  157.	  

315.	   Siopi,	  E.,	  et	  al.,	  Evaluation	  of	  late	  cognitive	  impairment	  and	  anxiety	  states	  
following	  traumatic	  brain	  injury	  in	  mice:	  the	  effect	  of	  minocycline.	  Neurosci	  
Lett,	  2012.	  511(2):	  p.	  110-‐5.	  

316.	   Shultz,	  S.R.,	  et	  al.,	  Repeated	  mild	  lateral	  fluid	  percussion	  brain	  injury	  in	  the	  rat	  
causes	  cumulative	  long-‐term	  behavioral	  impairments,	  neuroinflammation,	  and	  
cortical	  loss	  in	  an	  animal	  model	  of	  repeated	  concussion.	  J	  Neurotrauma,	  2012.	  
29(2):	  p.	  281-‐94.	  

317.	   Semple,	  B.D.,	  S.A.	  Canchola,	  and	  L.J.	  Noble-‐Haeusslein,	  Deficits	  in	  social	  
behavior	  emerge	  during	  development	  after	  pediatric	  traumatic	  brain	  injury	  in	  
mice.	  J	  Neurotrauma,	  2012.	  29(17):	  p.	  2672-‐83.	  

318.	   Konigs,	  M.,	  et	  al.,	  Pediatric	  Traumatic	  Brain	  Injury	  and	  Attention	  Deficit.	  
Pediatrics,	  2015.	  

319.	   Thounaojam,	  M.C.,	  D.K.	  Kaushik,	  and	  A.	  Basu,	  MicroRNAs	  in	  the	  brain:	  it's	  
regulatory	  role	  in	  neuroinflammation.	  Mol	  Neurobiol,	  2013.	  47(3):	  p.	  1034-‐
44.	  

320.	   Khudayberdiev,	  S.A.,	  et	  al.,	  A	  comprehensive	  characterization	  of	  the	  nuclear	  
microRNA	  repertoire	  of	  post-‐mitotic	  neurons.	  Front	  Mol	  Neurosci,	  2013.	  6:	  p.	  
43.	  

321.	   Bhalala,	  O.G.,	  M.	  Srikanth,	  and	  J.A.	  Kessler,	  The	  emerging	  roles	  of	  microRNAs	  in	  
CNS	  injuries.	  Nature	  Reviews	  Neurology,	  2013.	  9(6):	  p.	  328-‐339.	  



	   	   	  236 

322.	   Deb,	  S.,	  et	  al.,	  Rate	  of	  psychiatric	  illness	  1	  year	  after	  traumatic	  brain	  injury.	  Am	  
J	  Psychiatry,	  1999.	  156(3):	  p.	  374-‐8.	  

323.	   Fann,	  J.R.,	  et	  al.,	  Psychiatric	  illness	  following	  traumatic	  brain	  injury	  in	  an	  adult	  
health	  maintenance	  organization	  population.	  Arch	  Gen	  Psychiatry,	  2004.	  
61(1):	  p.	  53-‐61.	  

324.	   DeNardo,	  L.A.,	  et	  al.,	  Connectivity	  of	  mouse	  somatosensory	  and	  prefrontal	  
cortex	  examined	  with	  trans-‐synaptic	  tracing.	  Nat	  Neurosci,	  2015.	  18(11):	  p.	  
1687-‐97.	  

	  
 


	Expression and Function of Inflammation-Associated MicroRNAs in Traumatic Brain Injury
	Recommended Citation

	Microsoft Word - ebh dissertation.docx

