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THE ROLE OF CBL FAMILY OF E3 UBIQUITIN LIGASES IN 

INTESTINAL EPITHELIAL HOMEOSTASIS 

Neha Zutshi, Ph.D. 

 

Supervisor: Hamid Band, M.D., Ph.D 

All adult organs are endowed with a small pool of resident stem cells that must be 

maintained throughout life to provide for cell turnover during homeostasis and tissue 

repair following any injury. The unique ability to self-renew as well as to differentiate into 

functional cells of organs in which they reside makes stem cells essential for the 

maintenance of organ systems. It is now becoming increasingly evident that aberrant 

activity of stem cells contributes to diseases such as cancer or tissue/organ atrophy. 

Thus, it is critical to better understand the mechanisms that regulate adult stem cells. 

Ligand-activated receptor tyrosine kinases (RTKs) represent an important means to 

regulate adult stem cells. We and others have established the CBL-family ubiquitin 

ligases as key negative regulators of RTKs. However, physiological roles of CBL 

proteins in intestinal epithelial homeostasis are unknown. Recently, we have shown that 

CBL and CBL-B function as redundant but essential regulators of hematopoietic stem 

cell (HSC) quiescence and their combined deletion in HSCs of mice leads to a rapidly-

fatal myeloproliferative disorder, mimicking a similar leukemic disease associated with 

mutations of CBL in humans. CBL and CBL-B have also been shown to help maintain 

asymmetric neural stem cell division. Any role of CBL proteins in the regulation of 

epithelial stem cells has not been reported. To address such a role, we generated a 

novel mouse model (Cbl-flox/flox; Cbl-b-null; Lgr5-EGFP-IRES-CreERT2; Rosa26-LacZ) 

to confer concurrent tamoxifen-inducible loss of CBL and CBL-B in the Lgr5-expressing 

intestinal epithelial stem cells (IESCs). Tamoxifen injection in this inducible CBL/CBL-B 
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double knockout (iDKO) mouse model resulted in a rapid and significant reduction in the 

Lgr5-High IESC pool with a concomitant increase in the Lgr5-Lo transit amplifying cells. 

Lineage tracing using LacZ-staining revealed an increase in the number of blue progeny 

in the iDKOs, suggesting an increased IESC commitment to differentiation. Of the 

progeny, iDKO animals showed a propensity towards enterocyte and goblet cell fate at 

the expense of Paneth cells. Loss of IESCs in iDKO mice led to slower recovery from 

intestinal epithelial injury due to X-ray radiation of the abdomen. In vitro deletion of CBL 

proteins in the crypt culture recapitulated the loss of self renewal phenotype and was 

associated with hyperactivation of MAPK pathway and downregulation of Wnt pathway 

effector TCF4. These results demonstrate a novel requirement of CBL/CBL-B in the 

maintenance of a well-studied epithelial stem cell compartment, the IESC, and suggest 

that CBL proteins by regulating MAPK pathway protect IESCs from exhaustion.  
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1 Introduction 

1.1 Development and architecture of the small intestine 

Gastrointestinal (GI) tract development doesn’t begin until gastrulation is complete and 

the three germ layers come together in the form of hollow tube in which the innermost 

endoderm (which later becomes mucosal epithelium) gets surrounded by mesoderm 

(derivatives of which become loose connective tissue, vascular structure and 

muscularis) and ectoderm (that forms  enteric nervous system) that then undergo 

complex patterning along the three axes of symmetry of the embryo (anterior-posterior, 

dorsal-ventral, left-right) (1, 2). While the anterior-posterior axis divides the GI tract into 

foregut (forming pharynx, esophagus, and stomach), midgut (small intestine, cecum and 

ascending colon) and hindgut (fated to become rest of the colon, rectum and anus), the 

dorso-ventral and left-right axes guide counterclockwise turning and looping of the gut 

keeping the stomach on the left (2, 3). The innermost endoderm layer of the tube retains 

its stratified structure until mid-late gestation (E15 in mice) when it begins to undergo 

cytodifferentiation into to columnar epithelial cells upon receiving inductive signals from 

the surrounding mesoderm (1, 4). These signals also enable the endoderm derived 

epithelium to model into luminal projections called “villi” and proliferative “intervillus” 

epithelium. This process is complete by E19 in mice (figure1.1). Crypts begin to 

organize from intervillus epithelium between postnatal day 1 (P1) to postnatal day 14 

(P14). Epithelial cell proliferation in the intestine rapidly increases as crypts multiply in 

number by a process called crypt fission and villi lengthen as rate of proliferation 

exceeds the rate of cell death. Development of murine gut is complete by P28 (1).  

The adult GI tract comprises of four layers (figure1.2). The luminal-most layer is 

called mucosa. It comprises of the columnar epithelium and supporting loose connective 

tissue called lamina propria that sit on top of a smooth muscle layer called “muscularis 
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mucosae”. Mucosal layer rests on top of the submucosa which is made up of connective 

tissue rich in blood and lymph vessels, nerve fibers, and cells of the immune system. 

Submucosa is placed on top of muscularis propria that is made up of inner circular 

smooth muscle fibers and outer longitudinal smooth muscle layer. In between these two 

layers of muscularis propria are autonomic nerve fibers and ganglionic clusters of the 

myenteric plexus. This enables neural control of the peristaltic movement initiated in the 

muscularis propria that allows passage of the food along the gut. Outermost layer of the 

intestine is called serosa which is a mesothelium lining that protects the gut from 

frictional damage in the peritoneum (5). 

1.2 The Intestinal Epithelium 

The major functions of the intestine include digestion and absorption of nutrients 

entering the gut lumen and forming a barrier against pathogens. These functions are 

carried out by the specialized columnar epithelial cells of the mucosal layer of the 

intestine. The intestinal epithelium is organized into luminal finger-like protrusions called 

“villi” (to increase the surface area for absorption) and invaginations into the underlying 

submucosa called the “Crypts of Lieberkühn”. The epithelial lining of the intestine is a 

unique tissue that undergoes rapid turnover most likely propelled due to exposure to 

constant mechanical, chemical and biological insults. The entire lining is replaced every 

3-5 days in mammals. To balance the loss of cells, intestinal epithelial stem cells 

(IESCs) and their transit amplifying progeny residing within the crypt carry out extensive 

proliferation (6, 7). While the IESCs divide every 24 hours to form the transit amplifying 

compartment, the latter divides every 12 hours for 4 cell divisions until it terminally 

differentiate into cells of absorptive or secretory lineage that move on to the villi 

connected to the crypt (8).  
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Figure 1-1 Development of the gastrointestinal tract. 

Formation of the endoderm as a part of gastrulation occurs first around E5-E7.5 

in mice. The hollow endodermal gut tube forms when two ventral invaginations, 

one at the anterior (anterior intestinal portal, AIP) and the other at the posterior 

(caudal intestinal portal, CIP) end of the embryo elongate and fuse together. At 

this time lateral plate-derived splanchnic mesoderm comes to surrounds the 

endoderm and connects the tube to the dorsal body wall.  At a later time point 

neural crest cells from the dorsal neural tube migrate and colonize the gut to 

establish the (ENS). The endoderm at E10.5 is a stratified epithelium that 

undergoes morphogenesis into columnar epithelium that moulds into luminal 

projections called villi separated by intervillus proliferative zones by E15.  
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Noah et al., Experimental Cell Research 317 (2011) 2702-2710. 

Figure 1.1 
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Figure 1-2 Architecture of mammalian intestine. 

The schematic shows the organization of different layers of the intestine 

namely outhermost Serosa, followed by Muscularis which encircles 

Submucosa and the innermost layer of Mucosa. 
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Wallace et al., Mechanisms of Development 122 (2005) 157–173. 

Figure 1.2 
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The differentiated cells further migrate along the villus for the next 2-3 days post 

which they undergo cell death and fall off into the intestinal lumen. These differentiated 

functional cells are well defined by their morphology, location, function and marker 

expression (figure 1.3). These include the enterocytes, goblet cells, Paneth cells, 

enteroendocrine cells, tuft cells and M cells. The absorptive enterocytes are the most 

abundant progeny lining the GI tract. They are columnar with brush border epithelium on 

their apical surface. These cells are also a storehouse of various hydrolytic enzymes 

which they secrete into the lumen to allow breakdown of partially digested chyme. These 

enzymes such as sucrase isomaltase, lactase and alkaline phosphatase also help 

identify enterocytes in the gut. Goblet cells produce and secrete mucous to lubricate and 

protect the epithelial lining. The mucous layer in the small intestine can be divided into 

two: a firm, sterile inner layer and a more pervious outer layer that harbors IgAs and anti-

mircrobial peptides to block the pathogens. Goblet cells increase in number from 

proximal to distal end of the intestine. They are mostly present on the villus but can be 

found in the crypts as well. They can be recognized by their “goblet shape”, by staining 

the tissues with Periodic acid-Schiff (PAS) stain that labels mucopolysaccharides and by 

expression of proteins such as Mucin2.  Paneth cells are the only post-mitotic cells 

present at the crypt base intercalated between CBC intestinal stem cells. They thus 

serve niche signals to the stem cells. Paneth cells also secrete antimicrobial compounds 

such as defensins and lysozyme into the gut lumen. They are also unique as they are 

the only differentiated cell type that lives for as long as 6-8 weeks. They can be 

recognized by their characteristic eosinophilic granules, staining with PAS and 

expression of Lysozyme. Neuroendocrine hormone secreting enteroendocrine cells and 

opioid secreting tuft cells are rare populations of epithelial cells that can be present on 

the villi or the crypt. They are recognized by markers such as ChromograninA and 

DCaMKL1 respectively. Lastly, Microfold or M cells present on lymphoid Peyer’s patches 
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present antigens from the gut lumen to the underlying immune cells. Glycoprotein 2 is a 

marker for mature M cells (6, 7, 9). 

Because of the clearly defined hierarchy of cells, well-understood architecture of the 

tissue and ease of in vitro manipulation due to established markers and protocols, the 

intestinal epithelium serves as an attractive model system to study proliferation, self-

renewal, differentiation, apoptosis and migration. 

1.3 Intestinal Epithelial Stem Cell  

Stem cells are present in most adult tissues and are defined as the cells that can 

maintain tissue homeostasis by harboring the capacity to generate all mature cell types 

of a given organ, as well as renew their own pool. They were also proposed to be rare, 

quiescent and dividing asymmetrically to maintain one of their own while creating one 

progenitor to differentiate further. After a long-standing debate about the identity of stem 

cells, it has now been established that the true stem cells of the intestinal epithelium are 

the crypt base columnar cells (CBCs) present at the base of the crypt intermingled with 

Paneth cells. CBCs were first identified by Cheng and Leblond in 1974 (10-12). Using 

electron microscopy, they identified that crypt base was not just made of differentiated 

Paneth cells but also comprised of slender, wedge shaped CBCs (figure 1.4). They also 

provided evidence for “stemness” of this population by employing a crude method of 

lineage trace, where they analyzed radiolabeled phagosomes in CBCs that had survived 

the exposure to 3H-Thymidine and phagocytosed other CBCs that did not. They showed 

that the radioactivity could later on be located in more mature cells. 
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Figure 1-3 Organization of cells along the crypt-villus axis. 

The schematic shows stem and transit-amplifying (TA) compartment of the 

intestine within the crypt and arrangement of more differentiated cells along 

the villus. 
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Modified from Schuijers and Clevers. The EMBO Journal 31 (2012), 2685–2696 

Figure 1.3 
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Figure 1-4 Electron micrograph of a small intestine crypt base. 

It shows CBC stem cells (black arrows) identified by their slender shape, basal 

nuclei and luminal microvilli, tightly intermingled with Paneth cells (red arrows). 
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Nick Barker et al., Cell Stem Cell 11(2012) 452-460. 

Figure 1.4 
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Recently, the cause of CBCs as a stem cell candidate was championed by Clevers 

group (13). They identified a Wnt target gene, Lgr5 that was exclusively expressed in the 

CBCs. They used Lgr5 promoter driven tamoxifen inducible-Cre recombinase fusion 

protein, Cre-ERT2 and transgenic Cre reporter allele R26-Lox-Stop-Lox-LacZ 

expression to unambiguously establish CBCs as multipotent, long-lived stem cells of the 

intestine (13). It was, however, not easy to establish Lgr5+ CBCs as true stem cells of 

the intestine because they challenged the accepted paradigm for stemness. They were 

neither rare (14-15 per crypt) nor quiescent (divided every 24 hours) (13, 14, 15). They 

were relatively resistant to radiation injury and divided symmetrically (13, 14). Since 

then, however, Lgr5+ cells have been identified as having self-renewal potential in 

several epithelial organs such as hair follicle (16), mammary gland (17, 18), stomach 

(19), kidney (20), inner ear (21), pancreas (22)(23) and liver (23). 

Another population of stem cells called +4 stem cells fitted the traditional definition of 

stemness and was originally proposed as the label retaining putative stem cell of the 

intestine by Potten and colleagues (24, 25). Since then several groups have reported the 

presence of a rare, quiescent stem cell  around the +4 position relative to the base of the 

crypt identified by expression of various markers such as Bmi1(26, 27, 29), Lrig1 (30), 

HopX (31), mTert (32), pPTEN (33, 34), and so on. Although most of these studies have 

relied on the rarity, quiescent nature (DNA label retention) and the ability to regenerate 

epithelium upon injury, only a handful of them have used the gold-standard of lineage 

tracing to establish the multipotency of these candidates (27, 30, 31). Nonetheless, the 

quiescent nature and low abundance of these stem cells in the gut can’t justify these 

cells as the sole bona fide stem cells that could meet the homeostatic needs of the 

organ. Indeed, several studies have now established that CBCs are the actual work-

horses that meet the daily requirements of proliferation and differentiation while 
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quiescent +4 cells are the reserve stem cell population called in during the times of 

stress(13, 26, 30).  

More recently this reconciliation and agreement about the separate roles of Lgr5+ 

and +4 stem cells has been put to further test. It was shown that the expression of all the 

+4 stem cell markers was highly enriched in the Lgr5+ stem cells (32). Plus, when the 

entire Lgr5 expressing population was wiped out using Lgr5-DTR mice (a model in which 

human diphtheria toxin receptor was knocked-into the Lgr5 locus to selectively ablate 

Lgr5+ cells following exposure to Diphtheria toxin)  mice could not recover from radiation 

induced epithelial injury (35). These experiments hinted that quiescent stem cells were 

not a separate compartment but a sub-population of Lgr5+ CBCs. Takeda et al., in a 

landmark paper showed a bi-directional interconversion between these two populations 

of stem cells (31).  

A further twist in the tale came about when Buczaki et al., showed that Lgr5 

expressing label retaining cells (expressing all the +4 stem cell markers) are actually 

secretory progenitors (36). These cells under normal homeostasis are destined to 

become Paneth and other secretory cells but under radiation injury conditions can be re-

wired to become stem cells that then contribute to regeneration.  Similarly another study 

identified that DLL1 expressing secretory progenitor regained stemness under conditions 

of in vivo stress or in vitro culture (37). In the same vein, Stamataki et al., in 2011, 

showed that strong expression of DLL1 and exit from cell cycle were linked together in 

the intestinal crypts (38). More recently, the Clevers group has shown that enterocyte 

progenitors could also contribute to epithelial homeostasis in the absence of Lgr5+ stem 

cells (39). Thus, keeping these multiple studies of plasticity within the crypt cells in mind, 

at present it seems that stemness may not be hard-wired in the intestinal crypt cells and 

may be a function of exposure to the right cues from the niche (40).   
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1.4 Lgr5+ Stem Cells 

During development, Lgr5+ cells are first observed at P1 as cluster of cells in the 

intervillus epithelium. P5 onwards as crypts begin to form, they settle down to the bottom 

of the crypt and it is after P15 that they start to mingle with the Paneth cells. Lineage 

tracing as early P5 has established that Lgr5+ cells possess stem cell characteristics 

(42). Paneth cells and surrounding mesenchymal tissue form a niche that tightly 

regulates the strength of signals needed to maintain these stem cells in a narrow zone of 

the crypt base. A number of studies have investigated the role the Paneth cells as 

providers of niche signals to the CBCs (42-47). While some have suggested that Paneth 

cells are dispensable for maintenance of stem cells (42, 44) possibly due to the 

overlapping signals by the sub-epithelial myofibroblasts (43, 48), others have shown that 

loss of Paneth cells results in loss of stem cell compartment (45-47). Also co-culture of 

stem cells with Paneth cells significantly increases the survival of stem cells in vitro. 

Among the several factors secreted by Paneth cells, Wnt3a, TGF-α/EGF and Jag1/DLL4 

seem to be the most potent at providing stemness cues to the CBCs (49). These factors 

have thus been used extensively now to culture Lgr5+stem cell and their progeny as 3 

dimensional organoids. 

Functionally, Lgr5 is a seven pass transmembrane protein that is a receptor for the 

Rspondin family of ligands (RSPO1-4) and potentiates Wnt/β-catenin signaling (50-53). 

Mechanistic dissection of this agonistic function of Lgr5 in the Wnt pathway was made 

possible after the discovery of RNF43 and ZNRF3, the E3 Ubiquitin ligases that 

downregulate Frizzled receptors by ubiquitinating and targeting the receptors for 

lysosomal degradation (52, 53). Lgr5-bound to RSPO1 was shown to engage RNF43 

and ZNRF4 in a complex that was eventually cleared from the membrane and allowed 

stabilization of Wnt signaling complex at the plasma membrane (53).  Whole body 
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knockout of Lg5 leads to neonatal lethality possibly due to swallowing air because of 

ankyloglossia (defects in tongue and jaw) resulting in gastrointestinal distention and no 

milk in the stomach of these pups (54). Lgr stands for leucine-rich repeat containing G-

protein-coupled receptor. Lgr5 has two other homologues, Lgr4 and Lgr6. The three 

members harbor multiple leucine rich repeats (16-18) in their extracellular domain 

flanked by cysteine-rich sequences on both sides of these repeats, followed by a 7 

transmembrane region and a cytoplasmic tail that unlike other GPCRs does not interact 

with heterotrimeric G proteins or β-arrestin (50, 55, 56) (figure1.5). Thus, their ability to 

modulate Wnt pathway is independent of GPCR function (50, 55). While Lgr5 expression 

in the intestine is restricted to CBCs, its homologue Lgr4 is expressed throughout the 

crypt (55). Lgr4 knockouts/ hypomorphs were shown to have multiple developmental 

defects including neonatal lethality, growth retardation, reproductive and ophthalmic 

deficits depending upon the background strain of mice or the extent of loss of Lgr4 (57). 

It is interesting to note that while conditional deletion of Lgr5 in the adult intestinal 

epithelium did not affect normal homeostasis, loss of Lgr4 caused a marked reduction in 

proliferation within the crypts and combined loss of both the family members was fatal 

within 4 to 5 days of induction of deletion (55).  Lgr6 is not expressed in the gut and is 

mostly thought not be involved in canonical Wnt signaling, however, Lgr6+ stem cells 

have been found in the isthmus region of the hair follicle (15). Lgr6 Knockout mice have 

no obvious phenotype (15). 

In an effort to better understand how mutation carrying crypts out grow normal 

crypts, scientists have studied the kinetics of self-renewal of Lgr5+ cells, because in 

addition to maintaining normal intestinal epithelium, these cells have also been 

implicated to be the cells-of-origin of mutation in colon cancer (58). Multi-color lineage 

tracing was carried out by Snippert et al., using R26-Confetti mice crossed to Lgr5-
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CreERT2 to follow the clonal behavior of individual Lgr5+ cell in multiple crypts at the 

same time (14). It was found that all the Lgr5+ cells labeled within the first 24 hours of 

tamoxifen induction and divided symmetrically to yield equally potent stem cells but over 

time any one clone stochastically predominated evicting others from the crypt base in a 

neutral competition for niche and thereby driving a crypt to monoclonality (14). This 

neutral kinetics and symmetrical cell division by Lgr5+ cells was independently 

demonstrated by Winton and colleagues as well (59) and has now also been accepted to 

occur in humans (60-63). Ritsma et al. looked further at how the niche signals dictated 

the spatiotemporal assignment of the winner stem cell clone during the neutral drift 

phenomenon using in vivo live imaging of lineage tracing through abdominal imaging 

window implanted in mice (64). They showed that most often the central CBCs would 

“win” by out-competing the rest of them creating a monoclonal crypt. This was observed 

to be due to passive displacement of the border stem cells out of the niche following 

division of the central stem cells to allow positioning and better adjustment of the newly 

formed stem cells within the limited niche space even though all the stem cells were 

equipotent to begin with, thus, forcing the evicted stem cells to undergo differentiation 

(64).  
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Figure 1-5 Predicted structure of Lgr5. 

The schematic shows the domain structure of Lgr5 comprising of an 

extracellular domain with multiple leucine-rich repeats, a 7 pass trans-

membrane domain, followed by an intracellular domain. 
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Barker and Clevers. Gastroenterology 138 (2010) 1681-1696. 

Figure 1.5 
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Because of their cycling nature, Lgr5+ cells are considered to be more susceptible to 

mucosal insults such as irradiation and cytotoxic drugs like doxorubicin and 5-FU. It has 

been shown that under these conditions, quiescent/ label retaining stem/progenitor 

population can take over homeostasis. In a mouse model carrying, Lgr5-DTR, Bmi1-

CreERT2 and Rosa26-LacZ alleles it was shown that diphtheria toxin exposure did not 

affect the normal epithelial integrity of the intestine while the same treatment along with 

tamoxifen (to activate Bmi1 Cre) increased LacZ+ lineage tracing ribbon of cells from the 

Bmi1 locus. These findings were confirmed independently by another group (26). 

Lineage tracings from HopX and Lrig1 loci were found to increase as well upon exposure 

to radiation (30, 31). More recently, secretory progenitors marked by DLL1 and LRC 

have also been shown to contribute to epithelial homeostasis when subjected to 

mucosal injury (36, 37). It has been proposed that these more mature cells, upon falling 

back into the “stem cell zone” can regain stemness and de-differentiate. What is also 

interesting is that for these progenitors to form organoids in vitro, Wnt3a is necessary (a 

true niche signal provided by Paneth and other non-epithelial cells). The LRC reported in 

the literature is relatively short-lived (up to 4 weeks after labeling) and may not be a true 

stem cell. However, new LRCs keep forming from the Lgr5 compartment on a regular 

basis that can be called into action in case of damage to the cycling stem cell 

compartment (66). These multiple studies demonstrating exquisite plasticity of several 

crypt progenitor/ LRCs could be indicative of the fact that stemness is not a function of 

expression of a particular marker in the intestinal epithelium but is defined by the 

positioning of a cell within the niche. Thus, it is critical to look at the key signaling 

networks in action within and surrounding the crypts. 
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1.5 Signaling pathways in the maintenance of intestinal 

epithelium  

The location of CBCs deep in the crypt pocket intermingled with Paneth cells puts them 

in an environment which is conducive for short range interactions as is required in case 

of pathways such as Wnt and Notch. Below is the description of different signaling 

pathways operational in the crypt milieu that maintain stem cell number and function. 

1.5.1 Wnt 

Wnt signaling regulates several aspects of maintenance of intestinal epithelial 

homeostasis. It is critical for keeping proliferation intact within the stem/transit amplifying 

compartment intact, inhibiting differentiation (other than Paneth cells), and regulating 

localization of cells along the crypt-villus axis.  

Wnts are the ligands that act within a short range to trigger this signaling cascade by 

binding to their cognate receptors Frizzled (Fzd) and co-receptors Lrp5/6 present on 

nearby cells via their palmitate group. This binding event introduces a conformational 

change in these receptors that allows associated kinase, CK1γ to phosphorylate the 

cytoplasmic tail of Lrp. This phosphorylated complex sequesters scaffold proteins 

Disheveled (Dsh) and Axin (which are a part of a complex including casein kinase1 

(CK1), adenomatous polyposis coli (Apc) and Glycogen synthase kinase 3β (GSK3β) 

that in the absence of Wnt activation binds to β-catenin to phosphorylate its amino-

terminus to target it for proteosomal degradation), to allow stabilization of β-catenin,  that 

then translocates to the nucleus and interacts with TCF/LEF family of transcription 

factors to induce transcription of Wnt-target genes (67).   

In the intestine, Wnt3, Wnt6 and Wnt9b are the main epithelial secreted Wnts, mostly 

by Paneth cells and Wnt2b, Wnt4, and Wnt5a are the mesenchymal Wnts (43). 
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Although, Fzd 2, 4, 5, 6 and 8 are all expressed in the epithelium, Fzd 7 is most 

abundantly expressed in the Lgr5+ CBCs along with LRP5 and 6 (68). It is also known 

that the mesenchyme surrounding the crypts secretes Wnt antagonists such as Frizzled 

related proteins 1 and 5 (the soluble proteins that compete for Wnts) and Dickkopfs 

(Dkks, inhibitors of LRP function) (69-71). The main effector of Wnt signaling in the adult 

small intestine, TCF4, is expressed all along the crypt-villus axis (69). 

The evidence for the vital role of Wnt pathway in intestinal epithelial self-renewal 

came from two major observations. One, along with the studies of loss of function 

mutations of Apc as a cause for familial adenomatous polyposis, several studies pointed 

to development of intestinal tumors with dysregulation of other Wnt pathway components 

(72-80). Two, abrogation of Wnt signaling through knockout of Tcf4 or overexpression of 

DKK1 resulted in complete loss of proliferation within the crypts (81-83).  

In association with other signaling pathways, Wnt also participates in fate 

determination of progenitors. Dysregulated Wnt signaling by the loss of Apc was shown 

to decrease differentiation towards all mature cell types except for Paneth cells and this 

phenotype was successfully rescued by c-Myc deletion (77, 78, 84). Similarly, 

overexpression of c-Myc caused loss of goblet cells (85). Paneth cells seem to depend 

extensively on the Wnt pathway for their maturation and positioning. Several Wnt-target 

genes regulate the function of Paneth cells such as cryptdins, defensin and Sox9 (47, 

78, 84, 86). Hyperactive Wnt doesn’t affect the number of Paneth cells but impacts their 

localization (84). On the other hand, disruption of β-catenin within a secretory progenitor 

compartment (marked by Neurogenin3) leads to reduced differentiation towards Paneth 

cells (87).  

Differentiation within the intestinal epithelium is closely connected to migration of 

cells out of the crypts and Wnt signaling regulates both migration and positioning of cells 



 

 

 

23 

along the crypt-villus axis. EphB receptors are receptor tyrosine kinases that regulate the 

migration of cells along the epithelial lining by remodeling the actin cytoskeleton (88-90).  

Interaction of EphB receptors with their transmembrane ligands (EphrinBs) generates 

repulsive forces that segregate cells expressing either of them into opposing gradients 

(88, 91). The Wnt pathway has been shown to positively regulate the expression of 

EphB receptors, Eph2 and Eph3, within the crypt while suppressing the expression of 

their ligands EphrinB1 and B2 which are highly expressed at the crypt-villus junction (92-

95).  Loss of EphB2 causes mislocalization of progenitor cells while loss of EphB3 

results mispositioning of Paneth cells along the crypt-villus axis (95, 92).     

1.5.2 Notch 

In the intestine, Notch signaling plays an important role in maintenance of stem cells as 

well as in the binary fate decision of secretory vs. absorptive cells (97-103).  

In mammals, the Notch family is comprised of 4 single transmembrane Notch 

receptors (Notch1–4) and 5 single transmembrane ligands, Delta-like1 (DLL1), Delta-like 

3 (DLL3), Delta-like 4 (DLL4), Jagged1 (Jag1) and Jagged 2 (Jag 2). Expression 

analysis of rodent gut has revealed that Notch 1 and Notch 2 are the main Notch 

receptors that are expressed in the gut (104). In situ hybridization, LacZ knock-in alleles 

for Dll1 and Dll4 and immunofluorescence staining has showed that Jag1, Dll1, and Dll4 

are the potential ligands for Notch receptors in the intestine (97, 104-106).  

The pathway initiates when ligand and receptor present on neighboring cells interact 

with each other leading to proteolytic cleavage and release of the intracellular domain 

(NICD) of the receptor.  NICD, upon release, translocates to the nucleus and forms a 

complex with the transcription factor CSL (RBP-J in mouse), inducing transcription of 

downstream target genes (107). Notch is able to regulate stem-cell proliferation and 

differentiation in the intestine through its target genes such as Ascl2, Olfm4 and Hes1 
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(101, 108).  Block in Notch pathway causes loss of expression of stem cell specific 

genes such as Olfm4, Ascl2 and Lgr5 and reduction in proliferating crypt progenitors 

(101, 103).  Notch regulates differentiation decisions through its target gene Hes1 which 

represses the expression of the basic helix-loop-helix transcription factor Atoh1 (also 

called Math1) (108). Atoh1 is the main regulator of secretory cell fate as its loss in the 

intestinal epithelium leads to complete absence of secretory cells. On the other hand, 

Hes-1 null mice have increased proportion of all the secretory cells at the cost of 

enterocytes (109, 110). Notch signaling also inhibits enteroendocrine fate specification 

by directly inhibiting the expression of Neurogenin3 (Ngn3). It is interesting to note that 

ectopic expression of Notch in the Ngn3+ enteroendocrine progenitor cells drives 

differentiation towards enterocytic and goblet cell fate (111, 112).  

The nature of interaction between Notch receptors and their ligands is that of lateral 

inhibition. Ligand expressing Paneth cells are located right next to the receptor 

expressing stem cells. This keeps the stem cells in an active Notch environment, 

maintaining proliferation and suppression of differentiation by downregulation of Atoh1 

and at the same time inhibits activation of Notch in its neighboring cells. In accordance 

with this thought, it has been observed that a transient increase in the expression of 

DLL1 within a cell overlaps with its exit from the cell cycle and these cells then become 

the “quiescent” secretory fate precursors (37, 38).   

Overall, genetic depletion of Notch pathway components (Notch1/Notch2) (41, 103) 

or DLL1/DLL4 (97) or pharmacological block through γ-secretase inhibitors (which 

prevent cleavage of NICD) (102) or receptor neutralizing antibodies (41, 101, 102) 

results in loss of proliferating cells and increased differentiation towards secretory cell 

fate. Thus, Notch signaling maintains proliferating crypt progenitors and balances 

between secretory and absorptive cell differentiation.  
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1.5.3 BMP 

In the context of intestine, BMP signaling is a potent inhibitor of proliferation and inducer 

of differentiation. This pathway includes the ligands, bone morphogenetic proteins 

(BMPs) that bind to a Ser/Thr receptor type I/II heterodimers to cause phosphorylation of 

the receptor type I and activation of downstream effectors of SMAD family of proteins 

which translocate to the nucleus to carry out transcription of BMP target genes. The 

receptors, ligands as well as the intracellular effectors are expressed in epithelium as 

well as in the surrounding stroma. Also, the soluble BMP inhibitors of the follistatin, 

chordin and gremlin family are expressed mostly within the mesenchyme (113). Studies 

have demonstrated that abrogating BMP signaling by knockout of Bmpr1A or 

overexpression of BMP inhibitor Noggin resulted in enhanced proliferation, increased 

crypt fission, ectopic formation of crypts along the crypt-villus axis and eventual 

development of intestinal polyposis (114, 115). Loss of BMP signaling results in impaired 

secretory cell differentiation and no effect on enterocytes (116). 

The anti-proliferative effect of BMP signaling has been attributed to its ability to 

antagonize Wnt signaling and partly by directly stabilizing p21CIP/WAF, the cell cycle 

inhibitor (117, 34). It is for this reason that the stroma around the crypt is enriched in 

BMP inhibitors gremlin and noggin (119).  

1.5.4 RTK/MAPK/PI3K Pathway 

Ample evidence supports an indispensable role of receptor tyrosine kinases (RTKs) and 

their ligands in intestinal development and maintenance, although the details of how the 

intracellular players further impact self-renewal, differentiation and migration are not as 

well documented as that for Wnt and Notch pathways.   
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Humans have 58 known RTKs that can be subdivided into 20 families. They all have 

similar domain architecture: an N-terminal extracellular ligand binding domain, a 

transmembrane region, followed by a C-terminal cytoplasmic tail that comprises of 

juxtamembrane regulatory regions and a tyrosine kinase domain. In an inactive state, 

these receptors can be found on the plasma membrane as sitting alone or in homo or 

hetero dimers with their family members. Ligand binding can induce dimerization of 

individual receptors or bring together already formed dimers into a conformation that 

allows activation of the tyrosine kinase domain in the C-terminus of these receptors. This 

activation leads to trans-phosphorylation of key tyrosine residues on these tails. These 

phospho-tyrosine residues then become signal transduction hubs through activation of 

downstream MAPK cascade or PI3K pathway. Receptor phosphorylation can also recruit 

Src homology-2 (SH2) or phosphotyrosine-binding domain (PTB) containing negative 

regulators of this signaling such as CBL or SHP1 that can instigate ubiquitination and 

targeting of the receptor for lysosomal degradation or dephosphorylation of signaling 

tyrosine residues respectively. This negative regulation is of extreme importance in 

keeping the signaling downstream of RTKs under check (120, 121). 

Specific roles for RTKs have been identified in the gut. It has been shown that, 

epidermal growth factor (EGF), the ligand for EGFR RTK, drives the mucosal maturation 

in utero, regulates expression of adult enterocytic enzymes (122-124), and promotes 

proliferation in neonatal and adult mammalian intestinal epithelium (125-127). Mice with 

compound deletion of EGFR ligands, TGF-α, EGF and amphiregulin (AR), show 

spontaneous duodenal lesions, stubbier villi, and increased susceptibility to Dextran 

sulfate-induced injury along with growth retardation (128). EGFR-dependent epithelial 

cell migration is required for epithelial renewal and wound healing (129-131). When 

mouse strain background permits live EGFR-/- births, pups display gross defects in the 
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intestinal mucosa along with reduced proliferation (132-134). The ISC niche function of 

Paneth cells requires them to secrete ErbB ligands (49). RTKs of the EphB-family, 

FGFR and IGFRs have also been shown to play crucial roles during gut morphogenesis, 

mucosal proliferation and crypt survival, differentiation and positioning of cells along the 

crypt-villus axis (88, 134-139). In addition, Lrig1, a negative regulator of ErbB family of 

RTKs was recently shown to be enriched within the crypt compartment and its loss led to 

formation of duodenal adenomas (30, 140). RTKs are also key players in oncogenesis 

and other pathologies of the gut (141-149). 

With respect to self-renewal and fate determination two sets of studies have 

elegantly demonstrated how RTKs can modulate the epithelial architecture. Heuberger 

et al., recently demonstrated that loss of Shp2, a positive regulator of RTK signaling, 

leads to expansion of Paneth cells at the cost of goblet cells along with an increase in 

the Lgr5+ stem cells. They attributed this phenotype to loss of Mek-Erk signaling, that 

potentiated Wnt signaling through de-stabilization of a shorter non-functional isoform of 

TCF4 (150). RTK signaling can also activate the PI3K/Akt pathway, which is a potent 

inducer of cell proliferation and inhibitor of apoptosis (151, 152). In the context of 

intestinal epithelium, PI3K/Akt pathway has been assessed through the impact of BMP 

signaling on PTEN, a negative regulator of the PI3K/Akt pathway (33, 34). It was shown 

that within the Label retaining +4 compartment, BMP signaling enhanced PTEN activity 

and inhibited nuclear accumulation of β-catenin (33, 34). Similarly, loss of PTEN resulted 

in de novo crypt formation and increased crypt fission and even intestinal polyp 

formation (33, 34, 154). This work showed how activated Akt, could induce 

phosphorylation of β-catenin and ultimately activation of Wnt (115, 34).  
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These divergent ways by which RTK signaling interacts with Wnt and other pathways 

makes it a unique signaling system that requires more detailed analysis especially of the 

context under which flux through these two different routes takes place.   

Through understanding of these different molecular networks that regulate stem cell 

function within its niche (figure1.6), scientists have developed in vitro culture conditions 

(including RSPO1, EGF, Noggin along with laminin based extracellular matrix)  to grow 

crypts as three dimensional organoids (figure1.7) (49). This ability to grow organoids in 

vitro not only allows us to manipulate these crypt cultures to answer scientific questions 

but could also have potential applications in regenerative medicine and in testing 

efficacy of pharmacological agents against cancer and other diseases (155). 
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Figure 1-6 Cell signaling at the base of the intestinal crypt. 

The schematic shows how growth factors such as Wnt, Notch and EGF supplied 

by the surrounding niche support the maintenance, proliferation and 

differentiation within the stem cell compartment. 
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Tan and Barker Seminars in Cancer Biology 32 (2015) 40–53 

Figure 1.6 
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Figure 1-7 Structural organization of in vitro cultures crypt derived 

organoids. 

 Schematic shows the arrangement of crypt and villus domains within in 

vitro cultured organoids. Stem cells are shown as green colored wedge 

shaped cells at the bottom of crypt domains. 



 

 

 

32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schuijers and Clevers. The EMBO Journal 31 (2012), 2685–2696 

 

Figure 1.7 
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1.6 Why study intestinal stem cells 

Their ability to continuously self-renew while generating progeny makes IESCs excellent 

candidates for use in regenerative medicine but this also makes them susceptible to 

accumulating cancer causing mutations. Thus, targeting self-renewal of this cancer 

causing stem like cell can serve as an effective therapeutic strategy (156).  

Progression of cancer from benign adenomatous polyps to highly aggressive 

carcinomas has been shown to be a function of continuous accumulation of mutations 

(157). From stem cell Cre based deletion of tumor suppressors or cancer stem cell 

xenograft transplantation experiments; substantial evidence has accumulated over the 

years to believe that normal stem cells can serve as the “cell of origin” within which 

accumulation of mutations can potentially result in colorectal cancer (58, 159-165). This 

is called the “bottom-up” model (155). Other observations that support this model 

include: the architecture of adenomas is very similar to normal crypts with the ability to 

differentiate into all the mature cell types being retained (166). Using lineage tracing, 

assessment of clonality upon activation of oncogenic KrasG12D revealed that much like 

their normal counterparts, mutated crypts moved towards fixation of a clone albeit the 

size of individual clones and drift towards monoclonality was much quicker, possibly due 

to increased cell cycle rates of the mutated cells. What was even more interesting to 

note was that because the stochastic dynamics of neutral drift remained intact, quite 

often WT clones were seen to replace mutant ones, demonstrating a mechanism by 

which the normal intestinal architecture attempted to thwart fixation of mutations. Also, 

similar to normal crypts, once fixed, mutated clones were seen to expand within the 

tissue through crypt fission (159, 160). Thus, it will be crucial to find ways to target these 

cancer stem cells without affecting normal stem cells. 
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1.7 CBL Family Ubiquitin E3 Ligase 

1.7.1 Evolutionary history and domain architecture of CBL proteins 

CBL (Casitas B-Lineage Lymphoma) was first identified as an oncoprotein, v-CBL, a Cas 

NS-1 retroviral Gag-fusion protein of 357 amino acids long that caused pre- and pro-B   

cell lymphomas in mice (167). Subsequent discovery of the full length cellular version, c-

CBL (913 a.a. in mice) revealed that v-CBL was C-terminal truncated form of the protein 

fused to viral Gag protein (168). Mammalian CBL family includes two other members 

namely CBL-B and CBL-C. While c-CBL and CBL-B are full length proteins, CBL-C is a 

shorter form lacking some of the key C-terminal domains (figure1.8) (169).  

The N-terminal region in all the three members comprises of a Tyrosine Kinase 

Binding (TKB) domain that recognizes a specific phospho-tyrosine (pY) motifs on 

activated receptor and non-receptor tyrosine kinases. The TKB domain is made up of a 

unique assortment of domains found only in CBL proteins. These include a four-helical 

bundle (4H), an EF hand and an SH2 domain (170). A highly conserved helical linker 

and RING (Really Interesting New Gene) finger domain follow the TKB region of CBL. 

Linker and RING finger domains bestow the E3 ligase function on to CBL proteins as 

they together serve as a scaffold for binding of E2, ubiquitin conjugating enzyme (figure 

1.9) (171). These three regions (TKB, Linker and RING finger) together comprise the N-

terminal domain of CBL proteins. In addition to the N-terminal domain, CBL and CBL-B 

also are comprised of a C-terminal tail made up of proline-rich (PR) and leucine-zipper 

(LZ)/Ubiquitin-Associated (UBA) domains. While the PR domain enables CBL and   

CBL-B to interact with SH3 domain containing proteins like Src-family kinases, Grb2 and 

CIN85, the LZ/UBA domain allows ubiquitination and dimerization of CBL proteins 

although its exact functional significance remains unclear (169). CBL and CBL-B also 



 

 

 

35 

harbor several key pY residues, which upon phosphorylation bind to SH2 domain 

containing proteins such as Vav, p85 subunit of PI3K and Crk family proteins (169).   

Evolutionarily, orthologs of CBL proteins have been found in all metazoan species 

with fairly similar domain structure. The most primitive organism to have a version of 

CBL has been traced back to a slime mold, Dictyostelium discoideum. Dicty-CBL has a 

conserved N-terminal domain architecture minus the linker region. Interestingly, this 

version of the TKB domain interacts with a protein tyrosine phosphatase, PTP3, and 

downregulates it to potentiate STAT signaling (172). While worms (Sli-1 of C.elegans) 

have a single CBL protein, insects (D-CBL (short) and D-CBL (long) of D. 

melanogaster), fish, amphibians and birds have two forms. All mammals on the other 

hand have three CBL proteins (169). 
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Figure 1-8 Evolutionary conservation of the primary structure and domain 

organization of CBL proteins. 

Comparison includes: the three human (Homo sapiens) CBL proteins (CBL; 

CBL-B; and CBL-C); Chicken (Gallus gallus) CBL; Zebra fish (Danio rerio) CBL; 

Frog (Xenopus tropicalis) CBL; Fly (Drosophila melanogaster) long and short 

CBL; Worm (Caenorhabditis elegans) CBL (SLI-1); and Dicty (Dictyostelium 

discoideum) CBL (Cbl-A).  
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Figure 1.8 
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Figure 1-9 Domain architecture of CBL proteins and major interacting 

partners. 

 The N-terminal Tyrosine Kinase-Binding (TKB) domain binds to phospho-

tyrosine (pY)-containing target proteins, including activated receptor and non-

receptor tyrosine kinases. The Linker (L) and the RING finger (RF) regions bind 

to ubiquitin conjugating enzymes (E2). The proline-rich motifs (Pro-rich) bind to 

SH3 domain containing proteins such as Src family kinases (SFK). Recruitment 

of CBL to its targets often induces phosphorylation at tyrosine residues in the 

C-terminal region of the protein that further engages SH2 domain-containing 

signaling proteins. The Ubiquitin-associated (UBA) domain/leucine zipper near 

the C-terminus is involved in ubiquitin binding and dimerization.  
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Figure 1.9 



 

 

 

40 

1.7.2 Function & localization of CBL proteins 

Numerous studies provided indirect evidence for the role of CBL in negative regulation of 

activated protein tyrosine kinases (PTKs); however, it was in 1997 that using oriented 

phosphopeptide libraries and mutagenesis we showed for the first time that the N-

terminal domain of CBL bound to the negative regulatory pY motifs of ZAP70 and Syk 

(173). Similar studies of TKB domain interaction of CBL were further extended to RTKs 

such as PDGFR and EGFR (174-176). Biochemical studies later established that CBL 

induced downregulation of activated RTKs by ubiquitination and lysosomal degradation 

of the internalized receptor (175, 177) could be attributed to the E3 ligase function of the 

RING finger domain (178). The generality of this ubiquitination related negative 

regulatory function of CBL was quickly extended to other RTKs such as c-MET and M-

CSFR, and non-receptor PTKs such as Fyn, Lck, Src, ZAP-70 and Syk (179-185). 

Structural and mutational studies have elucidated that while CBL attaches to its 

targets via the TKB or the proline-rich domains and the C-terminal pY residues; binding 

of E2 ubiquitin conjugating enzyme requires both Linker and RING finger regions. 

Particularly, phosphorylation of a critical tyrosine residue (Y371) in the linker region of 

CBL alters its conformation in a way that not only increases its binding to E2 but also 

brings E2 closer to the CBL targets (186). This association renders the PTK targets 

(multi) mono-ubiquitinated or polyubiquitinated, which are further sorted to lysosomal or 

proteosomal degradation (169). 

Localization studies mainly focused on c-CBL have shown that it is localized to the 

cytosol but can also be found on membrane due to its association with membrane 

receptors and membrane adaptor proteins (187). 

Few studies have gauged the physiological function of CBL proteins in a cell. In T 

cells, it was shown that CBL proteins regulated actin cytoskeleton needed for 
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stabilization of immunological synapse such that loss of CBL proteins led to prolonged 

synapses, resistance to induction of anergy, hyperactivation of the T-cell receptor 

(independent of co-stimulation from CD28), enhanced proliferation and cytokine 

secretion (169). CBL/CBL-B deficient mammary epithelial cells on the other hand were 

shown have increased migration upon being exposed to growth factors such as EGF or 

HGF, with no effect on proliferation (188).  In contrast, Cbl-/- or Cbl/Cbl-b double 

knockout (DKO) hematopoietic stem and progenitor cells showed marked increase in 

proliferation upon cytokine stimulation (189-191). 

In order to understand the physiological roles of CBL proteins, gene knockout mouse 

models have been helpful. It has been shown that while CBL and CBL-B are ubiquitously 

expressed in all tissues, expression of Cbl-c is restricted to epithelial tissues (169, 192). 

Cbl null mice, otherwise viable, show some hyper-cellularity in the lymphoid organs 

especially spleen, thymus and bone-marrow (190, 193, 194). Also, they display lean 

muscle mass due to elevated insulin action (195-196). In addition, males are hypofertile 

(196). Deletion of Cbl-b makes mice autoimmune when challenged by antigen due to 

hyperactivation of T and B cells (197, 198). Under pathogen-free laboratory conditions 

though, Cbl-b-/- have no apparent developmental abnormality (169). In addition, an 

interesting role of CBL-B (and possible of Cbl as well) as an inducer of muscle atrophy 

associated with its ability to downregulate insulin receptor signaling has emerged from 

the literature (199-202). Knockout of Cbl-c has not been associated with any anatomic 

observable phenotype (192, 203). In contrast, combined germ-line deletion of Cbl and 

Cbl-b results in embryonic lethality (203). Mice with germ-line double deletion of Cbl with 

Cbl-c and Cbl-b with Cbl-c have been recently generated in our lab and are viable. From 

unpublished observations in our lab, conditional whole body deletion of floxed Cbl and 

Cbl-b alleles using R26-CreERT in adult animals is also incompatible with life as mice 
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die within 5 days of tamoxifen induction due to complete breakdown of intestinal 

epithelial barrier. This suggests that CBL and CBL-B, the two full length proteins of the 

CBL family, play essential but possibly redundant roles during embryonic development 

as well as adulthood.  

Because of the functional redundancy of CBL and CBL-B, mice with conditional 

(floxed) Cbl alleles on a Cbl-b null background have been generated to study pertinent 

tissue-specific roles of CBL and CBL-B (189, 203). Using Lck-Cre to generate  

CBL/CBL-B DKO T cells heightened the autoimmune phenotype and hyper-

responsiveness of T cells to antigen stimulation as seen in CBL-B null mice (203). Loss 

of CBL/CBL-B in the B cells of mice led to a loss of peripheral tolerance (205). Even 

more remarkable results were seen in the case of hematopoietic stem cells where 

combined loss of CBL and CBL-B led to the development of myeloproliferative disorder 

(MPD) in mice which was fatal within 8 weeks of birth (189). A RING finger domain 

missense mutant knocked-into one allele and a complete loss of the other allele of Cbl 

phenocopied the DKO phenotype of MPD but at a significantly slower pace (191), 

illustrating that MPD resulted from the loss of E3 ligase activity of CBL. 

All together, these studies point to selective and redundant functions of CBL and 

CBL-B possibly linked to their relative expression within a tissue type. However, more 

studies are needed to better understand their roles especially in non-immune organ 

systems.  

1.7.3 CBL in Stem Cells and Cancer 

As mentioned before, CBL was first identified as a retroviral fusion oncoprotein (v-CBL) 

capable of inducing T- and B-cell lymphomas, erythroleukemia, and myeloid leukemia 

with a latency period of 5-6 months (167, 169). Two other oncogenic variants of CBL 

have since been identified in murine cell lines derived from carcinogen-induced 
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lymphomas (187) namely 70Z CBL (Linker-RING finger mutant incapable of binding to 

E2) and p95 CBL (hyper-phosphorylated form of CBL found near the membrane).  

In humans, mutations in the helical linker and RING finger domain have been 

reported in myelodysplastic syndromes such as juvenile myelomonocytic leukemia 

(JMML), chronic myelomonocytic leukemia (CMML) and atypical chronic myeloid 

leukemia (aCML) (206-210). Cbl mutations have so far not been reported for any 

epithelial cancers, although a recent report on Noonan Syndrome, a developmental 

disorder characterized by stunted growth, malformations of heart and facies, showed 

germ-line heterozygous deletion of Cbl as the cause (211).  

Over the last few years, published as well as unpublished data from our lab as well 

as from other studies have been pointing towards a very interesting role played by the 

CBL family of proteins in the regulation of stem/ progenitor compartments. In the 

hematopoietic system, we recently demonstrated that the earlier reported fatal MPD was 

a result of combined loss of CBL/ CBL-B within the hematopoietic stem cells (HSCs) and 

not the progenitors. In addition, we showed that CBL proteins were essential for 

maintenance of quiescence of HSCs such that DKO HSCs lost repopulation ability over 

time due to exhaustion (212).  In the neural system, one study showed the upregulation 

of CBL protein in response to oxidative stress in neural progenitor cells (213) while 

another study demonstrated that double deletion of Cbl and Cbl-b in the neural stem 

cells led to loss of asymmetric distribution of EGFR into daughter cells and increase in 

the number of neurospheres formed (214). With respect to osteoblast differentiation, it 

was shown that knock-down of Cbl in the mesenchymal stromal cells led to 

hyperactivation of STAT5 and thereupon increased differentiation to osteoblast cell fate 

(215). 
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Even though several epithelia relevant RTKs and non-receptor PTKs are targets of 

CBL proteins, no study has looked at their role in maintaining epithelial tissue. With this 

in mind, we generated conditional deletion of Cbl in the Cbl-b null background in the 

mammary gland using MMTV-Cre as well as WAP-Cre. DKO resulted in considerably 

reduced ductal branching. An in-depth investigation of this phenotype has revealed a 

significant reduction in the mammary stem cell population (CD24+/CD29hi) and a 

concomitant increase in the luminal epithelial population. This phenotype was confirmed 

with Lgr5-Cre based deletion of Cbl and Cbl-b in the mammary stem cells which showed 

shrinkage of the basal population (reported to harbor mammary stem cells) and 

expansion of luminal fate. With respect to the expectations of CBL’s role as a negative 

regulator of PTK signaling, the observed phenotype of delayed development of the 

mammary gland seemed counterintuitive especially keeping the hyper-proliferative HSC 

phenotype in mind. Thus, in order to investigate these tissue type specific differences in 

the role of CBL proteins in the epithelial stem/progenitor compartment, we proposed to 

study CBL proteins by employing the well characterized stem to mature epithelial cell 

hierarchy of the intestinal epithelium using the well-established Cbl fl/fl; Cbl-b-/- genetic 

system created by our lab. Not only would this study enhance our knowledge about the 

function of CBL proteins in the intestine but also provide mechanistic details to reconcile 

the divergent phenotypes of hematopoietic and mammary stem cells.  
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2 Materials and Methods 

2.1 Mouse Strains 

All mice used for experiments were approximately of 6-8 weeks of age. Lgr5GFP-

CreERT2 and Rosa26-LacZ reporter mice were purchased from Jackson Laboratories 

and interbred. This genotype served as a control. These mice were further bred with Cbl 

floxed; Cbl-b null mice (189) to obtain Cbl fl/fl; Cbl-b null; Lgr5-CreERT2; R26-LacZ 

experimental mice so that tamoxifen inducible stem cell specific deletion of Cbl and   

Cbl-b could be achieved. Cbl knockout (194)(198) and Cbl-b knockout (198) mice have 

been used to study the function of individual genes in the intestine with WT littermate 

C57BL/6J mice serving as controls. Cbl f/f; Cbl-b f/f; R-26-CreERT mouse model 

recently generated in our lab was used to perform organoid assay to by deleting  

Cbl/Cbl-b in vitro. 

All mouse strains were maintained on C57BL/6J background under specific 

pathogen-free conditions and handled in accordance with protocols approved by the 

Institutional Animal Care and Use Committee (IACUC) of UNMC. Mice were genotyped 

using tail DNA (primer sequences in Table-2.1).  

2.2 Induction of Gene Deletion 

Tamoxifen free base (MP Biomedicals, Catalog no. ICN15673880) was resuspended in 

sunflower oil (Catalog no. Sigma Aldrich, S5007) at a concentration of 10 mg/ml. 1ml 

Aliquots were made and frozen at -20°C.  

At 6 weeks of age, gender matched Lgr5-CreERT2; R26-LacZ and Cbl f/f; Cbl-b-/-; 

Lgr5-CreERT2; R26-LacZ mice were given intra-peritoneal injection of 2 mg of tamoxifen 

for 3 consecutive days to activate inducible Cre recombinase. Animals were analyzed 3 
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days after the last injection (or 5 days after the first), 8 days after the last injection (or 10 

days after the first) or 4 months after the last injection. 

2.3 Animal Euthanasia 

All mice used in this study were sacrificed by first anesthetizing using isoflurane (Piramal 

Healthcare, Catalog no. NDC66794-017-25) followed by cervical dislocation to confirm 

death.  

2.4 Tissue Harvest and Histological Analysis 

Mouse small intestine was excised carefully from the peritoneal cavity by first snipping at 

the ileo-cecal junction and pulling away to disentangle the intestine from the mesh of 

mesentery and finally cutting at the pyloric end of stomach. The intestine was 

immediately placed in a Petri dish, and gently flushed with cold phosphate buffered 

saline (PBS) to remove fecal matter using a 30 ml syringe and a blunt ended needle. 

Once cleaned, intestine was kept on a blotting sheet, cut open longitudinally, swiss- 

rolled and placed in formalin (Sigma Aldrich, Catalog No.HT501128) for overnight 

fixation at room temperature. Fixed tissue was processed, embedded in paraffin and 

sectioned to 5 uM thickness.  

2.5 Immunofluorescence (IF) 

Tissue sections were de-paraffinized and rehydrated followed by antigen retrieval in 

sodium citrate antigen unmasking solution (Vector Laboratories) using microwaving for 

20 min. Slides were then washed in PBS and blocked for 1 hr in TBS-T (Tris Buffered 

Saline with 0.1% Tween-20) containing 5% goat serum (Sigma Aldrich, G9023) followed 

by overnight incubation at 4°C with optimized concentrations of primary antibodies 

{(BrdU, Developmental Studies Hybridoma Bank, Iowa, G3G4,1:25) , Chromogranin A 
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(1:200, Abcam, Catalog No.15160 ), Cleaved Caspase 3 (Cell Signaling, Catalog 

No.9664, 1:200), GFP (Cell Signaling Rabbit monoclonal, 2956, 1:200), GFP ( Chicken, 

Catalog No.1020, Aves Laboratories, 1:2000)}. Tissue sections were then washed thrice 

in PBS for 5 minutes each, followed by incubation with fluorescently-tagged secondary 

antibodies (Molecular Probes Alexa series, all 1:400 in blocking buffer) for 1 hr at room 

temperature, washed 3X with PBS and mounted with Vectashield with DAPI to stain 

nuclei (Vector Laboratories). 

2.6 Immunohistochemistry (IHC) 

Tissue sections were de-paraffinized and rehydrated followed by antigen retrieval in 

sodium citrate antigen unmasking solution (Vector Laboratories) using microwaving for 

20 min. Slides were then washed in PBS and kept in 5% H2O2 for blocking endogenous 

peroxidase for 1 hour at room temperature. Slides were washed with PBS and blocked 

using Mouse Ig Blocking Reagent from Mouse on Mouse (MOM) kit of Vector 

Laboratories for Cbl (mouse monoclonal, anti-Cbl, BD Bioscience, 1:400) and Cblb 

(mouse monoclonal, anti-Cblb, Abcam, 1:100) or using 5% goat serum (Sigma Aldrich, 

G9023) for ChromograninA (1:200, Abcam) and Ki67 (Rat eBioscience, 145698-82, 

1:200) for 1 hour at room temperature. Slides were washed twice with PBS and 

incubated with primary antibodies mentioned above for overnight at 4°C. The next day, 

slides were washed thrice with PBS for 5 min each and incubated with biotinylated 

secondary antibodies. ABC amplification IHC kit (Vector Laboratories) was used as per 

vendor’s instructions to amplify the signal. Slides were washed twice and peroxidase 

staining was developed using DAB (3,3’-diaminobenzidine, Vector Laboratories) as HRP 

substrate. The slides were counterstained with hematoxylin, dehydrated and mounted in 

automated counter-stainer (Sakura Tissue-tek Prisma) at the UNMC Tissue Science 



 

 

 

48 

Core Facility. In all cases, a species matched isotype IgG or genetic knockouts were 

used as a negative control. 

2.7 β-Galactosidase (LacZ) Staining 

Protocol published by Barker and Clevers was used to perform lineage tracing using 

LacZ staining (216). Briefly, freshly dissected intestinal tissue was flushed clean with 

cold PBS and fixed in Gluteraldehyde fixative (1% formaldehyde, 0.2% gluteraldehyde, 

0.02%NP-40 in PBS) for 2 hours at 4°C. Tissue was washed twice with PBS and 

incubated in equilibration buffer (2mM MgCl2, 0.02% NP-40, 0.01% sodium 

deoxycholate in PBS) for 30 minutes at room temperature. After this, equilibration buffer 

was replaced by LacZ substrate {5mM K3Fe(CN)6 , 5mM K4Fe(CN)6, 2mM MgCl2, 

0.02% NP-40, 0.1% sodium deoxycholate, 1mg/ml X-gal in PBS} and incubated for 4 

hours at 37°C away from light. After blue color developed, tissue was washed twice with 

PBS, swiss rolled and incubated in 4% paraformaldehyde at 4°C overnight. Next 

morning, fixative was removed and tissue was washed with PBS and dehydrated in 

alcohol gradient (70%, 96% and 100% for 1 hour each) and paraffin embedded. 5uM 

tissue sections were cut, paraffin cleared and rehydrated, followed by counterstaining 

with nuclear fast red (Vector Labs).  

2.8 Intestinal stem cell isolation and flow cytometric analysis 

A modification of the Intestinal stem cell consortium protocol was used for making stem 

cell enriched single cell suspension of intestinal epithelium (217). Briefly, freshly 

dissected intestinal tissue was flushed clean with ice cold washing buffer (100 µg/ml 

penicillin/streptomycin, 10mM HEPES, 2mM Glutamax in HBSS) and cut open 

longitudinally to expose the lumen. A glass coverslip was used to scrape off the villi and 

the tissue chopped into 5 mm long pieces. The chopped pieces were then washed 
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several times with cold washing buffer by vigorously pipetting until the supernatant was 

almost clear. After this, the tissue was placed in dissociation reagent #1 {15mM EDTA, 

1.5 mM DTT, 10µM ROCK inhibitor (Y27632, TOCRIS), 100 µg/ml 

penicillin/streptomycin, 10mM HEPES, 2mM Glutamax in HBSS} and rocked slowly at 

4°C for 30 minutes. Supernatant was removed and replaced with fresh cold washing 

buffer and the tube was shaken vigorously. Tissue pieces were allowed to settle down 

and supernatant was passed through 70µM cell strainers and centrifuged at 1200 rpm 

for 5 minutes at 4°C. The pellet was resuspended in 10 ml washing buffer and 

centrifuged at 600 rpm for 2 minutes at 4°C. The cell pellet obtained was incubated in 

dissociation reagent # 2 {TrypLE Express (thermo scientific) 1:2 dilution, 10µM ROCK 

inhibitor (Y27632, TOCRIS), 0.5 mM N-acetylcysteine (Sigma), 200 µg/ml DNAaseI in 

Intestinal Epithelial Stem Cell Media (IESC Media) (Advanced DMEM/F12 supplemented 

with 1X N2 (invitrogen), 1X B27 without vitamin A (invitrogen), 10 mM HEPES, 2mM 

Glutamax (invitrogen),100 µg/ml penicillin/streptomycin} for 8 minutes at 37°C, pipetting 

intermittently to reduced cell clumping. Equal volume of neutralization buffer (10% FBS 

in IESC Media) was added to the tubes and the cell suspension was passes through 

20µM cell strainers. Followed by this, cells were centrifuged at 1000 rpm for 5 minutes at 

4°C. Supernatant was discarded and cells were resuspended in 1 ml of cold IESC media 

and counted under a microscope. After assessing the yield, cells were stained by 

incubating with Alexa 700 conjugated anti-CD45 antibody (BioLegend, Catalog No. 

103128, 0.25 µg per 106 cells) at 4°C for 30 min. Cells were washed twice after that and 

propidium iodide was added to the cells before analyzing using  BD LSR2 instrument. 

Post data collection, further analysis was done using BD FACS DIVA software. 

In another analysis, single intestinal epithelial cells were stained with fixable-Blue 

LIVE/DEAD stain (invitrogen) using manufacturer’s protocol. Cells were then washed 
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and stained for DLL1 using DLL1-PE (ebioscience, Caalog No. 12-5767-80, 0.25 µg per 

106 cells) antibody by incubating at 4°C for 30 min. Cells were washed twice after that 

and analyzed using  BD LSR2 instrument.  

2.9 RNA Isolation, cDNA synthesis and quantitative PCR 

analysis 

Flow analyzed cells were directly sorted into 500 µl of RNA lysis buffer of  RNAqueous®-

Micro Total RNA Isolation Kit from Thermo Scientific (Catalog No. AM1931). Instructions 

from the kit were followed to isolate RNA. Yield of RNA was assessed using nanodrop 

instrument and cDNA synthesis kit from QIAGEN was used to make cDNA (catalog No. 

205311). QuantiTect SYBR® Green PCR Kit was used to perform real-time PCR 

analysis on a Bio-Rad CFX-96 Thermo Cycler. Primer sequences (obtained from Sigma-

Aldrich) are listed in Table 2.2. Relative gene expression was calculated according to the 

ΔCt method, and normalized to GAPDH reference gene expression.  

2.10 Lysate preparation and Western Blot 

Freshly-excised, cleaned and chopped fragments intestine were incubated in 2mM 

EDTA in cold PBS at 4°C for 30 minutes to isolate intestinal epithelium from the 

remaining tissue. Once epithelial layer was separated (by shaking vigorously and taking 

the supernatant), it was pelleted and homogenized using a Pro-Sientific homogenizer in 

RIPA lysis buffer 50mM Tris Chloride (pH 7.5), 100 mM NaF, 0.1% SDS, 1 mM EDTA, 1 

mM PMSF, 10 μg/ml Aprotinin, 10 μg/ml Leupeptin, 1 mM Na3VO4, and NP-40 0.02%). 

Intestinal organoid lysates were prepared in the same lysis buffer. Further lysates were 

quantified using BCA kit from Thermo Scientific. 40 µg of lysates were resolved on 8% 

SDS–PAGE and transferred to PVDF membranes, which were then blocked with 2% 

BSA in TBS-T and incubated overnight at 4°C with specific antibodies diluted in TBS-T. 
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The following antibodies were procured from commercial sources: Mouse monoclonal 

antibody (mAb) anti-Cbl (Clone 17/c-Cbl, BD Bioscience); Rabbit monoclonal antibody 

(mAb) anti-Cbl-b (Clone D3C12, Cell Signaling Technology); Mouse monoclonal 

antibody (mAb) anti-HSC70 from Santa Cruz Biotechnology Inc. (Clone B6, Santa Cruz, 

CA). Membranes were washed 3X in TBS-T, incubated with HRP-conjugated species 

specific secondary antibodies (Zymed Laboratories, South San Francisco, CA) and 

signals were detected with Pierce ECL substrate (Thermo scientific). 

2.11 Abdominal Radiation 

Mouse irradiation was accomplished on the TrueBeam linear accelerator in the 

Radiation Oncology Department at UNMC. Mice were first sedated with 

Ketamine/Xyalzine, restrained to prevent movement to ensure reproducible positioning 

for radiation and imaged using the simulation CT scanner. The radiation target 

abdominal region was contoured and mice were exposed to a dose of 14Gy X-ray 

radiation. 

2.12 Organoid Culture 

A modification of the organoid protocol from Sato et al. was used for making organoids 

from crypts of R-26 CreERT; Cblf/f; Cblbf/f mice (49). Freshly dissected, cleaned and 

chopped fragments of ileum were incubated in 2mM EDTA in cold PBS at 4°C for 30 

minutes in a 15ml Falcon tube. Tissue fragments were allowed to settle, supernatant 

was replaced with washing buffer (recipe mentioned under section 2.8) and the tube was 

shaken by hand for 3 minutes to release epithelial layer from the remaining tissue. 

Supernatant was passed through 70μM cell strainer and rinsed with fresh washing 

buffer. Crypts were counted under the microscope and volume containing 500 crypts/ 

well was pelleted. Supernatant was removed and crypts were resuspended in Matrigel 
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(BD Bioscience, Catalog No. 356237) mixed with growth factors (EGF 5ng/ml; Noggin 

100ng/ml; R-spondin 500 ng/ml) and plated in a 24 well plate (Costar) which was then 

kept at 37°C to polymerize for 15 minutes. Wells were filled with 500μl of IESC media 

(recipe mentioned under section 2.8). Spent medium was replaced on the 4th day after 

plating with IESC containing EGF, Noggin, R-spondin 1 conditioned medium (1:10) and 

Wnt-3a conditioned medium (1:10). HEK293 cells, which overexpressed recombinant R-

spondin1 were a gift from Dr. Mark R. Frey   and Wnt-3a overexpressing L cells were 

purchased from ATCC.  

After the first passage, organoids from Cre positive and Cre negative control mice 

were split in a 1:4 ratio and grown for another 4 days at which point media containing 

400 nM 4-hydroxitamoxifen (4-OHT) (Sigma) was added and organoids remained in it for 

the next 72 hours before they were re-passaged or used for experiments. 

2.13 Statistical Analysis 

Statistical analysis was performed using Paired two-tailed student’s t-test to compare the 

results between control and knock-out mice. Data are presented as average values + 

SEM. The results were considered significant if P< 0.05.  
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Table 2.1 Genotype Primers 

Gene Forward 5’-3’ Reverse 5’-3’ 

Cbl WT AAGTTCCAAGCCTAGCCAGATA 
TGTGTGTG 

TCCCCTCCCCTTCCCATGTTTTT
AATAGACTC 

Cbl Del TGGCTGGACGTAAACTCCTCTT 
CAGACCAATAAC 

TCCCCTCCCCTTCCCATGTTTTT
AATAGACTC 

Cbl floxed GTGGTGGCTTGCAATTATAATC 
CTACCACTTAGG 

GTTTGAGATGTCTGGCTGTGTAC
ACGCG 

Cbl-b del CCCAGCAAAAGTAGCCAATG CTTGCAAAAAGGACTAAGATTC 

Cblb floxed GGCAGAACCACTGAGACACAT
TTA 

GGCTGCCAAACTGCTACCCAGG
AG 

Lgr5 - 
CRE ERT2(WT) 

CTGCTCTCTGCTCCCAGTCT ATACCCCATCCCTTTTGAGC 

Lgr5- 
CRE ERT2 
(Mutant) 

CTGCTCTCTGCTCCCAGTCT GAACTTCAGGGTCAGCTTGC 

Cre  GCGGTCTGGCAGTAAAAACTA
TC 

GTGAAACAGCATTGCTGTCACTT 

R26-LacZ 
(WT) 

AAA GTC GCT CTG AGT TGT 
TAT 

GGA GCG GGA GAA ATG GAT 
ATG 

R26-LacZ 
(Mutant) 

AAA GTC GCT CTG AGT TGT 
TAT 

GCG AAG AGT TTG TCC TCA 
ACC 
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Table 2.2 Primers used for quantitative real-time PCR 

Gene Forward 5’-3’ Reverse 5’-3’ 

Cbl AGCTGATGCTGCCGAATTT TTGCAGGTCAGATCAATAGTGG 

Cbl-b GGAGCTTTTTGCACGGACTA TGCATCCTGAATAGCATCAA 

GAPDH CCTGGAGAAACCTGCCAAGTATG AGAGTGGGAGTTGCTGTTGAAGT 

DLL1 CCCATCCGATTCCCCTTCG GGTTTTCTGTTGCGAGGTCATC 

Nurog3 GAGTCGGGAGAACTAGGATG CAGTCCCTAGGTATGAGAGT 

Alpi ATCCATCTGTCCTTTGGTATC TGATGAGGTTCTTAGCTGAT 

Lgr5 AACGGTCCTGTGAGTCAACC ATGGGGTAAGCTGGTGATGC 
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3 Results 

3.1 CBL proteins are expressed in a gradient along the crypt-

villus axis 

In order to study the role of CBL proteins in the maintenance of intestinal epithelium it 

was imperative to understand their expression pattern. Thus, in the absence of any 

previously reported study on CBL proteins in the intestine we began by analyzing the 

expression of CBL and CBL-B through immunohistochemistry, immunoblotting and 

quantitative real-time PCR. Due to the lack of reagents to study CBL-C at the protein 

level, we made use of the Cbl-c knockout mouse model (192), which has a knock-in of 

LacZ into the Cbl-c locus.  These mice were crossed to Lgr5-GFP-CreERT2 mice and 

this model was used to study the expression of Cbl-c at mRNA level. Lastly, by 

employing Cbl, Cbl-b and Cbl-c single knockout mice we sought to learn about the 

possible compensation at the transcript level between Cbl family members.  

Immunohistochemical (IHC) staining for Cbl on tissue sections from 6 week old WT 

and Cbl-/- mice revealed that CBL was expressed in an increasing gradient from villus to 

crypt. Cbl null animal was used as a negative control for the staining (figure3.1a, b). 

Using the same technique to study the expression of CBL-B, we found a similar pattern 

of increasing gradient of expression for CBL-B from villus to crypt, although it was less 

obvious in this case (figure3.1c, d).  To confirm our findings of IHC, we prepared 

mucosal whole tissue lysates from different regions of the intestinal epithelium, with one 

fraction being enriched in crypts and the other in villi (figure3.1e, f). We found both the 

proteins to be substantially enriched in the crypts vs. villi and much like the IHC, Cblb 

was more highly expressed in the villi than CBL. Phospho-histone3 (pH3) and CyclinD1 

are markers of proliferation to be found only within the crypt while Villin is ubiquitously 

expressed although more enriched in villus vs. crypt. These three proteins were probed 
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to validate the fractions prepared. HSC70, a housekeeping protein was used as a 

loading control. To study the expression of Cbl-c, LacZ and GFP co-stainings were 

performed on 6 weeks old Cbl-c-LacZ/LacZ; Lgr5-GFP-CreERT2 mice (Fig3.1g). While 

GFP antibody marked the Lgr5 expressing CBCs and their progeny (still retaining 

residual GFP protein) in the crypts, Lac Z (Cbl-c) was mostly localized to the 

differentiated cells on the villi. This pattern was in agreement with the previously 

published report on Cbl-c (192). In figure 3.1h-i and we scraped mucosal tissue from 

the luminal surface of the intestine to perform real-time PCR for Cbl and Cbl-b on the 

samples from WT, Cbl-/-, Cbl-b-/- and Cbl-c-/- mice. GAPDH was used as a 

normalization control. Cbl expression increased by more than 5 fold in Cbl-b-/- while it 

increased by about 2 fold in Cbl-c-/- mice as compared to the WT. Cbl-b expression was 

increased by about 2 fold in both Cbl-/- and Cbl-c-/- mice as compared to WT. This trend 

of compensation of expression in single null animals could be suggestive of functional 

redundancy between Cbl family members.  
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Figure 3-1 Expression analyses of CBL family members. 

Immunohistochemical (IHC) staining for CBL on tissue sections from 6 week old 

WT and Cbl-/- mice reveals that CBL  expresses in an increasing gradient from 

villus to crypt (a, b). A similar expression gradient is seen for CBL-B (c, d). Crypt-

villus fractionation confirmed enrichment of CBL and CBL-B within the crypts by 

immunobloting (e, f). Cbl-c expression analysis using LacZ-knock-in mice showed 

predominant expression within the villi, IHC for Lgr5-GFP in these mice marked 

the crypt compartment and showed no overlap between the two staining (g). 

Relative expression levels of Cbl, and Cbl-b mRNA in WT, Cbl-/-, Cbl-b-/- and 

Cbl-c-/- murine mucosal epithelium was assessed (h, i). GAPDH was used as a 

normalization control. Compensation of expression in single null animals is 

suggestive of functional redundancy between Cbl family members. Figures 3.1 a-

g were repeated three times on three different samples. Figure 3.1 h-i were 

performed twice on two different samples.   
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3.2 Cbl null mice show increased proliferation and 

differentiation to goblet cell fate  

Since Cbl-c expression was localized mostly to differentiated cells, and the main focus of 

our work was to determine the role CBL proteins in the mechanism of maintenance of 

intestinal epithelium, we decided to focus on the two full length proteins CBL and CBL-B 

that were enriched in the crypts, the epicenter of regenerating epithelium in the intestine. 

To begin our investigation, we looked at the gastrointestinal tissue from 6 weeks old  

Cbl-/- and Cbl-b-/- mice. While Cbl-b-/- looked indistinguishable from the WT, Cbl-/- 

showed goblet cell hyperplasia as revealed by PAS staining (figure3.2 a-e). 

Short term BrdU (bromodeoxyuridine) pulse of 4 hours was used to analyze the 

number of proliferating stem and progenitor cells in the crypts of WT and Cbl-/- mice 

(figure 3.2f-h). We found that in the absence of CBL there was a modest increase in the 

BrdU+ cells as compared to the WT. 

3.3 Construction and validation of Lgr5+ stem cell specific 

knockout model of Cbl/Cbl-b 

As mentioned before, combined complete genetic knockout Cbl and Cbl-b is not viable 

(203); thus, we decided to make an inducible DKO of these two genes in the Lgr5+ stem 

cell compartment by crossing together Cbl f/f; Cbl-/- mice (previously generated in our 

lab to probe the role of these proteins in hematopoietic stem cells and mammary stem 

cells) (189, 212) (Mohapatra et al., unpublished) with Lgr5-GFP-CreERT2 mice (13) that 

had already been mated with R26-LSL-LacZ reporter mice. Lgr5-GFP-CreERT2 mice 

are an ingenious genetic model used widely in intestinal epithelial biology to study Lgr5+ 

stem cells as they express GFP as well as a tamoxifen inducible Cre recombinase under 

the Lgr5 promoter.  
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Figure 3-2 Histological analyses of Cbl-/- and Cblb-/- mice. 

PAS staining on tissue sections from age matched WT, Cbl-/- , Cblb-/- mice 

revealed a significant  increase in the number of goblet cells with no change in 

Paneth cell number  in the Cbl null mice (a-e). WT and Cbl-/- mice subjected to a 

short pulse (4 hour) of BrdU showed increased commitment to S phase of the cell 

cycle in the Cbl null mice    (f-h). The experiments were repeated four times. 
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Based on the relative expression of GFP researchers can study not just stem cells (GFP 

high expressors) but also their early progeny in which GFP has not yet completely 

decayed (GFP low expressors). Introduction of floxed Cbl and null Cbl-b alleles into 

Lgr5-GFP-CreERT2 mice allowed us to monitor self-renewal of Lgr5+ stem cells by 

tracking GFP expressing cells. In addition, inserting R26-Lox-Stop-Lox-LacZ reporter 

allele into these mice allowed us to not only track deletion of Cbl but also perform 

lineage tracing of Lgr5+ stem cells in which activation of Cre had taken place.        

Figure 3.3a shows the all the alleles introduced into our experimental mouse model. To 

perform experiments on these mice, we injected them with 2 mg of tamoxifen (TAM) 

mixed in sunflower oil intraperitoneally for three consecutive days and analyzed them at 

various time points indicated in Figure 3.3b. Also mentioned in figure 3.3b are the 

genotypes used in the following experiments. In order to validate correct workings of our 

mouse model, 72 hours after the last injection, we sorted live epithelial cells into two 

fractions based on their relative expression of GFP namely Hi (GFP-high) and Lo (GFP-

low) in addition to sorting GFP negative (GFP
-ve

) fraction which could potentially 

represent differentiated progeny that had lost GFP expression and performed qPCR for 

Cbl and Cbl-b in WT and inducible DKO (iDKO) mice (figure3.3. c-d). This experiment 

showed that relative to GFP
-ve 

cells in the WT mice, Cbl and Cbl-b were both most 

highly expressed in the GFP-Hi cells and tamoxifen treatment was successful in deleting 

Cbl within the Lgr5 compartment. Deletion of Cbl was also confirmed by performing IHC 

for the same proteins (figure3.3 e). As was seen in the qPCR analysis, expression of 

Cbl was not completely gone and this was because while half of the crypts showed loss 

of CBL, the expression remained intact in the other half of the crypts. This is in 

accordance with the published reports of the CreERT2 construct of Lgr5 being 

epigenetically silenced in about half of the crypts (13).  
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Figure 3-3 Generation and validation of stem cell specific Cbl/Cbl-b iDKO 
mouse model. 

 Schematic shows targeted alleles used to generate conditional DKO animals (a). 

Conditional deletion of floxed Cbl alleles on a Cbl-b null background in Lgr5+ cells is 

carried out by using TAM inducible Lrg5-CreERT2. R26-LSL- LacZ is used as a 

reporter. Schematic of experimental plan followed and genotypes used (b). 

Tamoxifen induced mosaic deletion of Cbl demonstrated by IHC and real time PCR 

while Cblb is constitutively knocked out (c-e). Experiments shown in figure 3.3 c-e 

were repeated three times. 
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3.4 iDKO mice show increased proliferation with no alteration 

in apoptosis 

WT and iDKO animals were subjected to TAM injection as mentioned above. On 5th and 

10th day after treatment mice were injected with 2mg of BrdU and analyzed for 

proliferation changes. There was a significant increase in proliferating cells in iDKO vs 

WT after 5d of Cbl/Cbl-b loss and the trend looked similar at 10d after TAM (figure3.4 a-

f). In order to assess any changes in cell death, tissue sections from mice of both 

genotypes were stained with cleaved caspase 3 antibody. No significant difference was 

observed in the number of apoptotic cells in WT vs iDKO (figure3.4 g-k). 

3.5 iDKO mice show expansion of progenitor population at the 

expense of Lgr5+ stem cells 

To study the function of CBL proteins in the maintenance of stem cells we analyzed the 

impact of their loss on the percentage of GFP expressing Lgr5+ cells. For this 

experiment, crypts were isolated and dissociated into single cells from WT and iDKO 

mice after 5 and 10 days of induction. Single cells were subjected to flow cytometric 

analysis according to gating strategy delineated in figure 3.5 a-h.  We found that at 5 

days after TAM induction there was a significant reduction in the number of GFP Hi stem 

cells and a concomitant increase in the number of GFP Lo progenitor cells (figure3.5 a-

d).  Figure 3.5 e-h shows unstained and single stained controls for one representative 

experiment done at 5 days after TAM. A similar trend of reduction of GFP Hi cells and 

increment in GFP Lo cells was observed at day 10 after TAM treatment (figure3.5 i-j). 

Combining experiments from 4 independent experiments we found that there was a 

significant reduction in the percent GFP Hi Cells and an increase in GFP Lo cells at both 

the time points (figure3.5 k-n). Together with the proliferation analysis, this interesting 

observation pointed towards increased commitment towards differentiation in the iDKO 
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Lgr5+ stem cells. This loss of stem cells was however temporary, as progenitor 

population de-differentiated to give rise to GFP+ stem cells when analyzed at 2 months 

after TAM (figure 3.5 o).   
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Figure 3-4 iDKO animals show increased proliferation with no change in 

apoptosis. 

BrdU staining after short pulse showed significant increase in commitment to S 

phase of cell cycle after 5 days and 10days of TAM treatment (a-f). Cleaved 

caspase 3 immunostaining revealed no change in number of dead cells in WT 

vs iDKO at 10d time point. Each experimental time point  was repeated three 

times.  
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Figure 3-5 Loss of Cbl/Cbl-b coerces stems cell to undergo exhaustion. 

Flow cytometric analysis of live epithelial cells showed a significant expansion of Lgr5-

GFP Lo (progenitor) cells and a concomitant decrease in Lgr5-GFP Hi (stem cells) at 5 

days    (a-d; k-l) and 10 days  (i-j; m-n) after TAM induction in iDKO mice vs. WT. 

Unstained and single stained controls are shown to delineate the gating strategy 

followed (e-h). This loss of stem cells is overcome once the effect of TAM subsides as 

analyzed here at 60d after treatment (o) exemplifying the plasticity within the crypt. Each 

time point was repeated four times. 
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Figure 3.5a
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Figure 3.5e-h 



 

 

 

78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17.8% 

8.6% 

Figure 3.5i 

33.9

% 

60.8% 

10.6% 

Figure 3.5j 

76.9% 



 

 

 

79 

 

 

 

 

 

 

Figure 3.5k
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3.6 Loss of Cbl/ Cbl-b promotes commitment to differentiation 

Since the GFP analysis revealed that there was an increase in Lgr5-GFP Lo progenitor 

population and with no change in cleaved caspase 3+ apoptotic cells in the crypt, we 

suspected that these iDKO progenitors must be moving towards a more committed fate. 

To probe this further, we performed lineage tracing of iDKO and WT Lgr5+ cells by 

analyzing the expression pattern of β-galactosidase (LacZ) expressed under ubiquitous 

Rosa26 promoter. Upon TAM induction, removal of the stop cassette flanked by LoxP 

sites by Cre-recombinase expressed in the Lgr5+ cells allows transcription and 

translation of LacZ not only in the recombined stem cells but also in their progeny. Using 

this strategy we found that at 5 d and 10 d time points there was an increase in blue X-

gal (substrate of LacZ) staining in the crypts and villi (figure3.6 a-d). Quantitative 

analysis of these data showed that there was an increase in the partially blue and 

completely blue crypts but a reduction in the crypts with a single blue cell at 10 d time 

point (figure3.6 e-f).  This single stained LacZ+ cell most likely represents the Lgr5+ 

quiescent secretory progenitor cell (36, 37, 219). This finding was particularly interesting 

because in the literature, the quiescent secretory progenitor is responsible for 

repopulating IESC upon damage to the latter (36, 37, 219). However, in the absence of 

CBL proteins it appeared that these quiescent secretory cells may have also 

differentiated. Markers for this pool of quiescent progenitor cell are DLL1 (Delta like 

ligand 1) and Ngn3 (Neurogenin 3) (37, 38, 87). Real-time PCR revealed that there was 

a reduction in the expression of these markers in the Lgr5-Hi fraction after 5 days of 

TAM confirming the LacZ findings (figure3.6g, h). Percentage of DLL1 expressing GFP+ 

cells was further assessed after 10d TAM treatment using flow cytometry. Overall, the 

loss of CBL proteins seemed to have directed stem as well as quiescent progenitor cells 

towards differentiation.         



 

 

 

82 

 

 

 

 

 

 

 

 

Figure 3-6 Lineage tracing reveals increased commitment to differentiation in 
iDKO mice. 

 X-Gal staining showed increased commitment to differentiation in iDKO mice at 5 (c) 

and 10 (d) days post TAM induction as compared to WT mice (a-b). Quantitative 

analysis of the staining showed increase in the percentage of whole and partially blue 

crypts but a reduction in crypts with single blue cell, representative of the quiescent 

Lgr5 compartment (e-f). To confirm the loss of quiescent progenitor population, real-

time PCR showed a reduction in both DLL1 and Neurogenin3 secretory progenitor 

markers (g-h). Flow cytometric analysis of GFP+ DLL1+ cells at 10d after TAM 

induction showed a precipitous drop in iDKO vs. WT (i). Experiments shown in figure 

3.6 a-d were repeated 4 times per time-point. Real-time PCR analysis in figure 3.6 

was repeated 2 times. Flow analysis for GFP/ DLL1 dual positive cells was repeated 

twice. 
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3.7 iDKO mice show goblet cell hyperplasia at the cost of 

Paneth cells.  

Epithelial lining of the intestine is comprised of multiple functional cell types, most 

abundant of which are enterocytes. Indeed we found an increase in expression of 

alkaline phosphatase (ALPI) mRNA, a marker of enterocytes (figure3.7a).   

Of the secretory lineage of cells, iDKO mice showed a significant increase in the 

number of LacZ-PAS dual+ goblet cells and a concomitant reduction in the number of 

LacZ-PAS dual + Paneth cells (figure3.7b-d). Co-staining of LacZ and ChromograninA 

revealed no significant difference in the number of enteroendocrine cells (figure3.7e-g). 

Thus, loss of CBL proteins skewed stem cell differentiation towards enterocytic and 

goblet cell fate. 
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Figure 3-7 iDKO stem cells show increased commitment towards Enterocyte and 

Goblet cell fate and a reduction in Paneth cells. 

After 10 days of TAM induction, PAS and X-gal co-staining in iDKO mice revealed 

significant increase in commitment to goblet cells with a reduction in Paneth cell (b-d) 

while q-PCR showed increased expression of ALPI in the progenitor and differentiated 

cells (a). IHC of ChromograninA+ enteroendocrine cells on X-gal stained sections 

showed no difference in their number (e-g). These experiments were repeated four 

times. 
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3.8 DKO mice show delayed recovery of injured mucosa in 

abdominal radiation model 

Regeneration of lost cells in the intestinal epithelium under normal homeostasis is 

extremely important to maintain the epithelial barrier that prevents potential pathogens to 

infiltrate internal organs of our body. This process becomes even more crucial in case of 

mucosal insults such as exposure to radiation. Radiation induces cell death of 

proliferating cells by introducing double stranded breaks into the genetic material of 

these cells and because stem and absorptive progenitor compartment of the gut are 

both cycling in nature, it is one of the most severely affected organs by this kind of injury. 

Under these circumstances, the quiescent secretory progenitor is thought to re-enter the 

cell cycle and regenerate lost stem cells that can then take over the process of 

establishing epithelial homeostasis again.  

Most studies subject mice to whole-body radiation, however, this treatment severely 

compromises their bone marrow resident hematopoietic stem cells and they die at 

moderate to high doses of 10-12Gy because of hematopoietic complications (220). In 

order to understand the ability of iDKO Lgr5+ stem and progenitor compartment to 

differentiate and repopulate the epithelia following injury damage, we subjected 

experimental and control mice to 14 Gy of abdominal radiation to kill a majority of the 

proliferating Lgr5+ stem cells. Because of the mosaic expression of Lgr5-Cre, we chose 

a particularly high dose of radiation so that we could reduce regeneration from Cre 

negative crypts. Abdominal radiation has been used by few researchers to avoid 

hematopoietic toxicity and effectively target gut epithelium with 100% recovery of the 

animals due to re-establishment of epithelia by the gut stem cells (221). To perform 

abdominal radiation, we subjected anesthetized mice to CT scanning using the 

simulation CT scanner located in the Radiation Oncology Department at the University of 
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Nebraska Medical Center. The CT images were then used to identify the radiation target 

(small and large intestine) and organs at risk (stomach, liver and spleen) and treatment 

was contoured to avoid hitting anything other than the bowel by radiation (figure3.8 a, 

b).  

After the planning, mice received conformal radiation at a dose of 14Gy. WT mice 

were first used to validate this method. In figure3.8 c, we can see that as compared to 

un-irradiated control mice, at 3 d post radiation, crypts are obliterated in all the regions of 

the intestine. By day 5, the surviving clones begin the process of repopulation and by 

day 7 the mice are well on their way to recovery. After validating every step of this 

treatment plan in our hands, we subjected WT and age matched iDKO to radiation and 

TAM treatment. The latter was continued for another 2 days and mice were analyzed on 

the 7th day after radiation.  Mice were weighed every day as weight loss is good indicator 

of mucosal health (221). Figure3.8 d shows the treatment plan followed and figure3.8 e 

shows weight loss trends of WT, iDKO and Cbl-b-/- mice. At day 7 iDKO mice showed 

delayed recovery of injured mucosa as evidenced by blunted villi and various bare crypt-

less regions shown in figure3.8f. Next, tissue sections from these mice were stained 

with Ki67 proliferation marker and the average number of surviving crypts (defined as a 

crypt with at least 5 adjacent Ki67+ cells) was determined (35). Figure3.8 g-i shows 

there was a significant reduction in the surviving crypts in the iDKO mice. Figure3.8 j-n 

shows that the same trend that we observed previously of loss of Lgr5-Hi cells and a 

moderate increment of Lgr5-Lo cells. Sorting of GFP+ cells and analysis by qPCR for 

differentiation markers revealed that as compared to the WT animals there was a drop in 

expression ALPI (marker for enterocytes) and lysozyme (marker for Paneth cells) but an 

increase in the expression of Muc2 (marker for goblet cells) (figure3.8 o-q).  
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Figure 3-8 iDKO mice show delayed recovery abdominal radiation injury. 

CT conformal 14Gy abdominal X-ray radiation treatment was standardized using WT 

mice which quickly recovered from the mucosal damage (a-c). iDKO mice on exposure 

of the same treatment showed significant delay in recovery from the injury as evidenced 

by the weight loss, H&E and Ki67 staining ( d-i). This inability to repopulate injured 

epithelia coincided with precipitous drop in Lgr5-Hi stem cells in iDKO mice (j-n). 

Differentiation to enterocyte and Paneth cell lineages was also reduced but increase in 

Muc2 showed the trend towards goblet cell fate differentiation in iDKO at 5 days after 

TAM (o-q). Experiments shown in figures 3.8 d-i were repeated three times. Flow 

cytometric analysis of stem and progenitor cells was repeated four times (j-n). Real-time 

PCR was performed once (o-q). 
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Figure 3.8d: Experimental plan

Figure 3.8e
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3.9 Inability of iDKO crypts to self-renew prohibits their re-

passage in organoid assay 

Crypts can be cultured in vitro as organoids in the presence of essential growth factors 

(R-spondin1, EGF and Noggin) and an extracellular matrix material like matrigel (BD 

Bioscience) (49)(222). Organoids can also be generated from single Lgr5+ stem cells, 

albeit at a much reduced frequency (222). Because Lgr5-Cre is mosaic in expression, for 

these experiments we used another mouse model in which both alleles of Cbl and Cbl-b 

are floxed and they have been bred to TAM inducible Cre expressed under the 

ubiquitous Rosa26 promoter (figure3.9a). We started by isolating the crypts from Cblf/f; 

Cbl-bf/f (Control) and from Cblf/f; Cbl-bf/f; R26-CreERT+ (Experimental) mice, and 

embedding them in matrigel with the growth conditions mentioned above. 24 hours after 

plating we observed that the luminal ends of crypts had sealed off and they looked like 

tiny balls (figure3.9b-c). 3 days after plating, the crypts began budding and after 8 days 

they had metamorphosed into organoid structures with well-defined crypt regions, 

connecting villus domains and luminal mass comprising of dying cells (figure3.9d-i). 

After 8 days of initial plating we re-plated these organoids in a split ratio of 1:4 and grew 

them for another 4 days before introducing 4-hydroxy tamoxifen (4-OH TAM) into the 

culture to activate the Cre (figure3.9 j-m). After 24 and 48 hours of TAM treatment, we 

found DKO organoids grew more rapidly but by 72 hours after induction they began to 

deteriorate (figure3.9 j-m). Real-time PCR analysis at 72h time point showed reduction 

in the transcripts of both Cbl and Cbl-b (figure3.9 n-o). When the 4-OH TAM treated 

structures were re-plated for a second passage at a split ratio of 1:4, Control organoids 

re-created the same 3-dimensional (3-D) structure with intact crypt and villus domain but 

not a single organoid could be seen in case of DKO (figure3.9 q-s). This showed that 

combined loss of Cbl/Cbl-b coincided with loss of self-renewal in the organoid structures. 
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Figure 3-9 Loss of CBL proteins reduces the self-renewal potential of iDKO 
organoids. 

 We used Cbl; Cbl-b double floxed mice carrying Cre under ubiquitous Rosa26 promoter. 

For these experiments we cultured Cre negative (Control) and Cre+ (iDKO) mice (a). 

Initial growth kinetics was indistinguishable between both the genotypes (b-i). These 

organoids were re-plated and exposed to 4-OH TAM to induce deletion of Cbl proteins 

(j-m). iDKO mice showed enormous budding of organoids till 48h time point. At 72h after 

TAM induction, DKO organoids lost their 3D morphology. qPCR analysis confirmed 

reduction of Cbl proteins at 72h time point (n-o). Re-passage of iDKO organoids did not 

generate any organoids suggesting a loss of self-renewal (p-s). These experiments were 

repeated two times.   
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Figure 3.9p Figure 3.9q

Figure 3.9r Figure 3.9s
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3.10 Hyperactive MAPK pathway in Cbl/Cbl-b DKO in organoids 

suppresses Wnt pathway 

Organoids were collected at 24 hour and 72 hour time points after TAM treatment and 

lysed to isolate proteins to study cell signaling changes accompanying the phenotypic 

alterations (figure3.10a-b). Upregulation of p-MEK1/2, p-AKT and p-S6 in the DKO 

organoids at both time points are indicative of hyperactive MAPK pathway. At the same 

time we analyzed TCF4 expression, which is the transcription factor that activates the 

transcription of Wnt target genes and is considered to be indispensable for maintenance 

of stem/progenitor compartment of the intestine (223, 224). In the intestine, the different 

splice variants of Tcf4 have been identified that have different capacity to bind to DNA 

and hence carry out transcription of downstream Wnt effector genes (150, 225). While 

the longer 70 kDa isoform, Tcf4E has a binding site for CtBP (carboxyl terminal binding 

protein) and an elongated C-terminal domain harboring a C-clamp (a DNA binding 

domain), the shorter 50 kDa isoforms, Tcf4M and Tcf4S lack both these structures (150, 

225).  Although the shorter isoforms can bind to Wnt response elements and can be co-

immunoprecipitated with β-catenin, they cannot initiate transcription of target genes such 

as Axin2 (225). Interestingly, MAPK signaling has been shown to regulate the relative 

abundance of these isoforms at the translational level (150). Indeed, we observed that at 

the 24h time point, there was an increase in the 70kDa isoform but by 72 hours it 

decayed drastically. In addition to confirming previous findings of MAPK signaling as a 

regulator of Wnt activity (150), these data also suggest that fine tuning of MAPK 

signaling can have very different effects on Wnt pathway output, thereby regulating 

properties like self-renewal and differentiation. 
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Figure 3-10 Hyperactivation of MAPK signaling reduced functional TCF4 isoform 

expression. 

Probing cell signaling changes at early (24h, a) and late (72h, b) time points showed that 

loss of Cbl proteins was accompanied by increased output through MAPK signaling as 

seen by upregulation of p-AKT, p-Mek1/2 and p-S6. This hyperactivation of MAPK 

signaling appeared to have fine-tuned the translation of different isoforms of TCF4, 

which is the effector of Wnt pathway. This could possibly be responsible for loss of self-

renewal seen in iDKO organoids. 
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4 Discussion  

Multiple biochemical and cell biological studies have established that CBL family of 

proteins (CBL, CBL-B and CBL-C) function as negative regulators of activated receptor 

and non-receptor tyrosine kinases by ubiquitinating and targeting them for degradation. 

While in vivo analysis of these proteins has established them as critical regulators of 

immune function, hematopoietic system and neural progenitors, their function in 

epithelial organs is not clearly established. Detailed analysis of the mammary gland in 

our lab, revealed that CBL and CBL-B, the two full length family members of CBL family, 

are vital to the development of this gland such that in their absence there is reduced 

ductal branching and defects in mammary stem cell self-renewal (Mohapatra et al., 

unpublished). This finding was very counterintuitive considering the role of activated 

protein tyrosine kinases in hyper-proliferative epithelial cancers (141-147, 148-149). In 

order to tease apart the role of CBL proteins in another epithelial organ we decided to 

look at the intestinal epithelium not only because it is the fastest self-renewing tissue in 

mammals, has a well-defined tissue architecture with well characterized 

stem/progenitor/differentiated cell population but also because RTK signaling plays a 

crucial role in its normal physiology and pathology.  

Since no study thus far had looked at the expression or function of CBL proteins in 

the intestinal epithelium, we decided to begin by first studying their expression pattern in 

the tissue. Our analysis using immunohistochemistry, western blotting and quantitative 

real-time PCR revealed that CBL and CBL-B are both expressed in a gradient from crypt 

to villus. Crypt enrichment of these family members pointed to their potential role in 

regulating the proliferative stem/progenitor compartment of intestine that is also localized 

within the crypts (Fig. 3.1). LacZ expression analysis of Cblc LacZ knock-in mice 

revealed a reverse expression pattern to the other two family members. Cbl-c was 
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highest in the villi, which comprise the differentiated cells of the intestinal epithelium (Fig 

3.1). Thus, from our expression analysis as well as from our previous analysis of 

hematopoietic and mammary gland systems we proposed that CBL and  CBL-B might 

play redundant roles in the maintenance of tissue resident stem cells of intestinal 

epithelium. Since Cbl-c expression was mainly restricted to differentiated epithelial cells 

and Cbl-c-/- mice have no apparent phenotype we decided to focus our analysis on Cbl 

and Cbl-b for further studies.  

Next, we decided to look at the gut of single Cbl and Cbl-b knockout mice. We found 

that while Cbl-b-/- mice looked indistinguishable from age matched WT animals, Cbl-/- 

mice showed goblet cell hyperplasia and increased commitment of stem/progenitor cells 

towards cell cycle entry (Fig 3.2). This finding showed that even though CBL and CBL-B 

may regulate certain aspects of tissue maintenance redundantly, some degree of fate 

determination was controlled solely by CBL. Nonetheless, because of their largely 

overlapping expression pattern, we decided to study their function together, in the 

intestinal stem cells. As mentioned before a whole body combined knockout of Cbl and 

Cbl-b is not conducive for live birth, thus, we generated a novel intestinal stem cell 

specific DKO of Cbl and Cbl-b by introducing Cblf/f; Cbl-b-/- alleles in Lgr5-eGFP-IRES-

CreERT2; R26-LSL-LacZ mice (Fig 3.3). This model allowed us to not only monitor self-

renewal based on the GFP expression within the Lgr5+ compartment but also assess 

their ability to commit to differentiated cell fate in an inducible fashion.  

Analysis of proliferation in the iDKO (inducible double knockout) mice revealed 

increased entry into the cell cycle with no change in apoptosis (Fig. 3.4). This phenotype 

was similar to the one observed in Cbl-/- mice, although the difference was more 

significant in iDKO mice. This suggested that even though proliferation within the 

stem/progenitor compartment was predominantly controlled by CBL, there was an 
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additive effect on the phenotype with the loss of both family members. Further scrutiny of 

self-renewal using flow cytometric analysis of GFP+ Lgr5 cells demonstrated a 

significant drop in the percentage of live Lgr5-Hi stem cells with a concomitant increase 

in Lgr5-Lo progenitor cells in the iDKO mice (Fig 3.5). These data combined with the 

previous analysis of proliferation and apoptosis suggested that Lgr5-Hi cells were 

committing to differentiation over self-renewal in the iDKO mice.  

To further probe the differentiation phenotype, we performed lineage tracing 

experiments of iDKO and WT mice by staining for LacZ (Fig 3.6). These data showed 

increased blue staining in the villi as well as crypts of iDKO mice suggestive of increased 

commitment to differentiation. Analysis of crypt filling pattern revealed a significant 

increase in the percentage of partially and fully blue crypts but a precipitous drop in the 

crypts with a single blue cell.  These blue cells represent Lgr5 expressing cells that did 

not divide, and hence comprise the Lgr5 expressing quiescent secretory progenitor 

fraction. It was interesting to note that in the absence of CBL proteins a loss of 

quiescence did not translate into reverting to stem cell fate (as they are known to 

interconvert with Lgr5+ stem cells) instead differentiated into progeny as evidenced by 

the continued depression in the percentage of GFP-Hi cells at the 10d time point. Since 

GFP+ stem cells do eventually equilibrate their numbers when the effect of TAM has 

subsided (Fig. 3.4 o), it could mean that the abundant ALPI expressing proliferative 

absorptive progenitors could potentially be the candidate cells that replace the lost   

Lgr5-Hi stem cells as has been shown recently by Hans Clevers’ group (39).  

Identification of differentiation fates taken by iDKO stem cells, revealed a preference 

towards enterocyte and goblet cell fate (Fig. 3.7) and a loss of Paneth cell compartment. 

Interestingly, it has previously been shown that signaling downstream of RTKs can tilt 

the balance amongst different types of secretory cells (150, 137, 139). Loss of Paneth 
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cells in the iDKO crypts coincided very well with the loss of quiescent secretory 

progenitor population, whose default fate was shown to be Paneth cells (36). However, 

at this point it is difficult to ascertain if loss of Cbl/Cbl-b impacts the allocation of Lgr5+  

quiescent compartment or promotes their conversion to alternate fates (such as goblet 

cells or enterocyte).        

Nonetheless, loss of quiescent progenitors could have deleterious implications for 

maintaining homeostasis of intestinal epithelia especially under circumstances that could 

kill proliferating cells such as exposure to anti-mitotic drugs or exposure to radiation 

injury. To assess the impact of such an injury on the self-renewal of Cbl/Cbl-b deficient 

epithelia we subjected mice to radiation injury (Fig. 3.8). As expected, loss of CBL 

proteins rendered the stem/progenitor compartment incapable of re-establishing 

epithelial homeostasis. One possibility could be that in the absence of a functional 

quiescent compartment and because radiation killed the proliferating ALPI+ enterocyte 

progenitors, the stem cell pool could not be repopulated soon enough to regain epithelial 

integrity.  

A potential limitation of our mouse model was the constitutive knockout of Cbl-b in all 

the cell types of the intestine. As Cbl-b -/- mice have been reported to have a 

hyperactive immune system when challenged with antigens (169, 197, 198), to 

overcome this constraint we made use of our newly generated mouse model carrying 

both Cbl and Cbl-b alleles as floxed with TAM inducible Cre being expressed from the 

R26 promoter to study the effect of loss of CBL proteins in in vitro culture of crypts (Fig. 

3.9). Not only did this model recapitulate the loss of self-renewal phenotype of DKO 

mice, but it also allowed us to assess cell signaling changes that accompanied the said 

phenotype, which was difficult to perform in the mosaic Lgr5-Cre model. In keeping with 

the expected role of CBL proteins as negative regulators of PTK signaling, loss of Cbl 
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proteins increased the downstream effector MAPK signaling through both AKT and MEK 

pathways. This hyperactivation of the MAPK pathway interestingly also accompanied 

changes in TCF4 isoforms confirming the observations of Heuberger et al., 2014 (150) 

who showed that reduction in MAPK signaling through knockout of its positive regulator 

SHP2 caused degradation of the lower defective TCF4 isoform. In contrast, we saw that 

hyperactivation of MAPK signaling through loss of Cbl/Cbl-b stabilized the lower TCF4 

isoforms but reduced the longer functional isoform. Since this longer isoform is 

responsible for activation of Wnt targets, we believe that loss of self-renewal observed 

upon knockout of CBL proteins could possibly be due to the effects of dysregulated 

MAPK signaling on Wnt pathway, which is a well-known preserver of self-renewal in the 

intestine.  
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5 Conclusion    

The work presented within this thesis describes the role of CBL family of proteins as 

essential regulators of epithelial homeostasis under normal physiology and injury 

conditions. Due to their E3 Ubiquitin ligase function, CBL proteins are well known 

negative regulators of activated protein tyrosine kinases. However, their in vivo function 

in the context of epithelial tissues is still not known, even though their targets such as 

EGFR, FGFR and PDGFR play crucial roles during development as well as 

pathogenesis of epithelial tissues. Since the intestinal epithelium is the fastest self-

renewing epithelial tissue, we chose to focus on it to delve into the question of CBL 

proteins’ purpose in the maintenance of this tissue.  

As this was the first work done to decipher the role of CBL proteins in the gut, we first 

determined their expression pattern. We found that while CBL/CBL-B are expressed 

predominantly within the crypts, Cbl-c is restricted to the villi. Germline deletion of Cbl 

led to increased proliferation within the crypts and commitment to goblet cells. We 

further designed a novel mouse genetic model (Cbl-flox/flox; Cbl-b-null; Lgr5-CreERT2-

IRES-EGFP; R26-LacZ) to examine the combined role of CBL and CBL-B in the 

epithelial stem cells of the intestinal epithelium. Tamoxifen injection in this inducible 

CBL/CBL-B double knockout (iDKO) mouse model resulted in a rapid and significant 

reduction in the Lgr5-High intestinal epithelial stem cell (IESC) pool with a concomitant 

increase in the Lgr5-Lo transit amplifying cells. Lineage tracing using LacZ-staining 

revealed an increase in the number of blue progeny in the iDKOs, suggesting an 

increased IESC commitment to differentiation. Of the progeny, iDKO animals showed a 

propensity towards enterocyte and goblet cell fate at the expense of Paneth cells. Loss 

of IESCs in iDKO mice led to slower recovery from intestinal epithelial injury due to X-ray 

radiation of the abdomen. In vitro culture of crypts of Cblf/f; Cblbf/f; R26CreERT mice 



 

 

 

112 

reiterated the loss of self-renewal phenotype seen in the iDKO mice. Analysis of cell 

signaling revealed hyperactivation of MAPK pathways which was accompanied by 

changes in the relative abundance of TCF4 variants.  These results demonstrate a novel 

requirement of Cbl/Cbl-b in the maintenance of a well-studied epithelial stem cell 

compartment, the IESC, and suggest that CBL proteins by regulating MAPK signaling to 

protect IESCs from exhaustion by balancing commitment to differentiation vs. self-

renewal.  

Thus, our study showcases this novel role of Cbl proteins as regulators of stem cell 

fate in the intestinal epithelium. These results could have possible implications in the 

field of regenerative medicine as well as cancer. For example, inhibition of CBL proteins 

using small molecule inhibitors could result in pro- as well as anti-proliferative effects 

depending on the dose and extent of inhibition.  
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6 Future Directions 

Our study has for the first time elucidated the expression and function of CBL and CBL-B 

proteins in the context intestinal epithelium. However, there have been some limitations 

of our model system as well as some questions that remain unanswered.  

To study the combined role of redundantly functioning CBL/CBL-B we crossed floxed 

Cbl with Cbl-b-/- mice to obtain a DKO in the intestinal stem cells using Lgr5-Cre. 

However, Cbl-b-/- mice have a hyperactive immune phenotype when challenged with an 

allergen. Although in the context of normal homeostasis, Cbl-b-/- intestinal epithelium did 

not show a phenotype but a much more detailed investigation is required especially in 

case of radiation or other kinds of epithelial injury (such as dextran sodium sulfate 

induced colitis) which are thought to instigate immune cells. To overcome this challenge 

to some extent and study purely epithelial contributions of CBL-B, we used Cblf/f;      

Cbl-bf/f crypts in vitro to corroborate the in vivo findings. Nonetheless, combining the 

floxed alleles with an intestinal epithelium specific Cre that deletes in a less mosaic 

fashion such as Villin-CreERT could further confirm our findings.  

Secondly, the effects of intraperitoneal TAM injection induced deletion in our model 

system were transient and stem cells are able to re-establish their numbers at a later 

time point examined due to extensive plasticity within the crypt cells. A long term effect 

of abolishing CBL proteins could, thus, not be assessed. An alternative to this drawback 

could be a continuous pulse of TAM given in chow. However, effectiveness of this 

strategy to induce deletion of CBL proteins would need to be assessed. If this strategy 

would be effective in knocking out CBL for an extended period of time, it would be 

interesting to see if complete exhaustion of stem cells under these circumstances would 

be incompatible with life or would neighboring Cre negative crypts undergo increased 
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rates of fission to generate the epithelium that would potentially have no GFP positive 

crypts.  

Part of the reason for the reduced ability of iDKO epithelium to recover from radiation 

damage could have been the loss of quiescent Lgr5+ progenitor pool. From the 

literature, these cells under normal homeostasis have been shown to be precursors of 

Paneth cells and under injury conditions have been demonstrated to de-differentiate into 

Lgr5+ stem cells to re-establish recovery of the epithelial lining. Thus, the effects seen in 

iDKO mice with respect to reduced Paneth cells and delayed recovery from injury could 

be ascribed to the loss of quiescent Lgr5+ fraction. However, to look at the role of CBL 

proteins more directly within the quiescent progenitors, it would be interesting to directly 

delete CBL proteins in this compartments using DLL1 or Ngn3 directed Cre. If CBL 

proteins are indeed essential for maintenance of quiescence, it could have therapeutic 

implications in case of cancer where relapse has been associated with dormant clones 

of cancer stem cell population.  

Since CBL and CBL-B in this study have been shown to maintain self-renewal within 

the normal intestinal stem cell compartment, it would be of immediate interest to see if 

this finding translates to cancer stem cells since they are thought to be derivatives of 

normal stem/ progenitor compartment (58, 159-165). However, because of increased 

ability of CBL-B-/- mice to reject spontaneous tumors (203), it would be necessary to use 

Cbl-bf/f alleles along with floxed Cbl alleles in these experiments. Because loss of CBL 

proteins accompanies hyperactivation of MAPK signaling and downregulation of Wnt 

pathway activator TCF4, it would be interesting to see the effect of their absence on the 

tumorogenic potential in both Wnt hyperactivation cancer model of Apc and MAPK 

hyperactivation model of KrasG12D  mutations. An easier approach would be to stably 

transfect colon cancer cell lines with inducible shRNAs against Cbl and Cbl-b and 
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perform subcutaneous transplants in immune compromised mice and monitor tumor 

development.  

Heuberger et al., showed that downregulation of MAPK signaling resulted in 

hyperactivation of Wnt pathway in the intestine and that this regulation was proteosome 

mediated (150). Our data showed that the converse of this regulation was also true, i.e., 

hyperactivation of MAPK by knockout of Cbl and Cbl-b resulted in downregulation 

functional TCF4 isoform. Although TCF4 is the main TCF/LEF family member in the 

adult intestinal epithelium, it will be imperative to also assess the transcription of its 

target genes in iDKO animals as well as in iDKO organoids.  

Lastly, the exact mechanism of interaction between MAPK and Wnt pathway would 

be important to tease apart especially since it has been reported in the endothelial cell 

system that CBL proteins degrade nuclear β-catenin, thereby downregulating Wnt 

pathway (227). It could be possible that such a regulation may not take place in the 

epithelial cells. On the other hand, β-catenin can interact with both the isoforms of TCF4, 

hence it could be possible that in the epithelial cells CBL proteins’ could preferentially be 

targeting the β-catenin pool complexed with shorter isoforms? Or the interaction of CBL 

and TCF4 could be independent of β-catenin. Nonetheless, it would be important to 

understand the nature of interaction between the two pathways. 

Overall, using novel genetic mouse models we have demonstrate that by regulating 

MAPK signaling CBL/CBL-B maintain IESCs, balancing commitment to differentiation vs. 

self-renewal and hence preventing exhaustion of stem cells.  
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