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Abstract 

Role of B cell and hematopoietic cell intrinsic actions of ERα in lupus 

pathogenesis 

Dana E. Tabor, Ph.D. 

University of Nebraska, 2016 

Supervisor: Karen A. Gould, Ph.D.  

Lupus is a chronic autoimmune disease characterized by the presence of autoimmune B 

and T cells and the production of pathogenic antibodies against nuclear antigens. Lupus 

predominately affects women between menarche and menopause. There are both 

genetic and environmental risk factors which affect an individuals’ risk of developing 

lupus. Estrogens are a risk factor for developing lupus and are thought to contribute 

significantly to the initiation and progression of disease. In lupus-prone mice, genetic 

knockout of a receptor for estrogen, estrogen receptor alpha (ERα), causes significant 

attenuation of lupus. Previous studies have not identified the cell type or types which 

mediate the effects of ERα on lupus. Estrogen has many effects on the immune system 

which could contribute to the development of autoimmunity in susceptible individuals. 

Particularly, estrogen promotes the survival of highly autoreactive B cells. Therefore, we 

hypothesized that ERα expression in hematopoietic cells promotes lupus, and more 

specifically, that ERα in B cells promotes lupus.  

To test this hypothesis, we created two different murine models of lupus on the lupus-

prone (NZB x NZW)F1 genetic background. To investigate the role of ERα in 

hematopoietic cells, we created chimeric mice with hematopoietic and non-

hematopoietic cells with different ERα genotypes. Due to issues with the creation of 

successful chimeras, we were not able to use these mice to fully address our 
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hypothesis. However, these studies revealed that estrogen plays a role in the success of 

hematopoietic reconstitution in females.  

To address the hypothesis that ERα expression in B cells promotes lupus, we created a 

(NZB x NZW)F1 model with B cell specific deletion of ERα. Although only a moderate 

proportion of B cells had successful deletion of ERα, this was sufficient to cause a 

significant attenuation of lupus. Mice with B cell specific ERα deletion had fewer 

activated B cells, produced fewer pathogenic autoantibodies, and had significantly 

prolonged survival compared to control mice. Therefore, these studies have shown that 

ERα expression in B cells promotes lupus in the (NZB x NZW)F1 model of lupus.  
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Chapter 1: Introduction 

Estrogens 

Estrogens are a group of naturally occurring and synthetic steroid hormones which 

regulate the female reproductive system and are responsible for the development of 

female secondary sex characteristics. There are three kinds of naturally occurring 

estrogens, which all have different biological activity: estrone (E1), estradiol (E2), and 

estriol (E3). Estrogens are produced from cholesterol through aromatization of 

androgens. In non-pregnant premenopausal women, the ovary is the principle source of 

estrogens E1 and E2, but small amounts of estrogen are also produced in adipose 

tissue, skin, bone, and brain, and in men estrogens are produced in the testes (reviewed 

in Simpson, 1999). E3 is produced by modification of E1 or E2 and is primarily produced 

in the placenta during pregnancy. Serum E2 and E1 increase in the late follicular stage 

of the menstrual cycle, while the levels of E3 are generally low and do not fluctuate with 

the menstrual cycle (Lipsett, 1978). In premenopausal women, the average serum E2 

level varies from about 50 pg/ml to 125 pg/ml over the course of the menstrual cycle, 

and postmenopausal women have an average of 54 pg/ml serum E2 (Ghosh, 2014). 

Men have an average serum E2 level of 43 pg/ml (Travison, 2014). Estrogens have 

many physiological effects in both women and in men, which are discussed in more 

detail below. 

As steroid hormones, estrogens diffuse freely across cell membranes and elicit genomic 

and non-genomic effects by binding to estrogen receptors (ERs). E2 is the most potent 

of these naturally occurring estrogens because of its superior binding affinity for ERs. 

The relative binding affinity of these naturally occurring estrogens to receptors is E2 > E1 

> E3 (Korenman, 1968). 
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Estrogen Receptors 

Estrogens signal through estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), 

and membrane-bound G protein-coupled estrogen receptor 1 (GPER). Estrogens bound 

to GPER cause rapid calcium mobilization, and signaling through GPER is responsible 

for some of the rapid effects of estrogen. Estrogens bound to nuclear hormone receptors 

ERα and/or ERβ cause transcriptional effects on target genes. This introduction will 

focus on ERα and ERβ. 

ERα and ERβ are nuclear hormone receptors found most abundantly in the cell nucleus. 

The most abundant ERα in the nucleus is the full length 66 kDa protein. In the nucleus, 

ERα and ERβ can act as transcription factors or interact with other transcription factors 

to impact gene expression. Both ERα and ERβ can also be found in the cytoplasm and 

bound to the plasma membrane. Upon ligand binding, ERs in the cytoplasm change 

conformation to reveal a nuclear localization signal and then translocate to the nucleus. 

Plasma membrane ERα is relatively rare, and association of this 46 kDa splice variant of 

ERα with the plasma membrane is dependent on post-translational palmitoylation (Li, 

2003). Palmitoylated ERβ is also found in the plasma membrane (Galluzzo, 2007). 

Plasma membrane bound ERα and ERβ are responsible for the rapid effects of estrogen 

signaling not caused by GPER. Estrogen signaling through plasma membrane ERα 

leads to phosphorylation of AKT and ERK (Pedram, 2014). ERβ is also found in the 

mitochondria where it increases the threshold for apoptosis in a ligand-independent 

manner (Yang, 2004; Liang, 2015).  

The ERα and ERβ genes are composed of analogous functional domains A-F which 

have varying degrees of homology (Figure 1.1). Both genes have an N-terminal A/B 

domain which contains an activation factor (AF)-1 transcriptional regulation domain 

which is not well conserved between ERα and ERβ. Next, there is domain C, which  
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Figure 1.1 Functional domains of ERα and ERβ  
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Figure 1.1 Functional domains of ERα and ERβ  

ERα and ERβ are composed of analogous functional domains. The A/B domain contains 

an activation function (AF) domain, AF-1, which regulates the transcriptional activity of 

the ER. Domain C contains the DNA binding domain (DBD). The D domain contains the 

hinge domain (HD) as well as a nuclear localization signal which is revealed upon ligand 

binding. The E/F domain contains a second AF binding site (AF-2) and the ligand 

binding domain (LBD).  
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contains the DNA binding domain (DBD) and dimerization domain. This domain is well 

conserved between ERα and ERβ and allows both receptors to bind estrogen response 

elements (EREs) in the genome. Domain D is also involved in dimerization, as well as 

binding of heat shock proteins, and contains the hinge domain (HD), which undergoes a 

conformational change to reveal the nuclear localization signal upon ligand binding. The 

C-terminal E/F domain contains a ligand binding domain (LBD) which forms a 

hydrophobic pocket, and the AF-2 transcriptional regulation domain. There is a moderate 

degree of homology in the ligand binding domain, which causes ERα and ERβ to have 

different binding affinities for different estrogenic ligands. Variation in the AF domains 

and ligand binding domain causes ERα and ERβ to have different transcriptional effects.  

In the inactive state, ERα and ERβ are bound to heat shock proteins, which are released 

upon ligand binding. After ligand binding, ERα and ERβ form homo- or heterodimers 

through interaction of peptides in the dimerization domain. Homodimers of ERα and ERβ 

have different physiological activities, while heterodimers act like ERα homodimers (Li, 

2004). The ER dimer moves to the nucleus where it acts as a transcription factor, either 

by binding DNA and acting as a transcription factor in ERE-dependent signaling, or by 

binding other transcription factors and acting as part of a transcription factor complex 

without directly binding DNA in ERE-independent signaling. The conformation of the ER 

dimer is independently affected by both the ligand and the sequence of the ERE site with 

which it interacts (Yi, 2002; Ramsey, 2001). The ligand, and not the ERE sequence, 

dictates the recruitment of co-factors such as SRC-1, TIF-1, TIF-2, and AIB-1 to the ER 

complex (Yi, 2002).  

The ERE consensus sequence is a 13 base pair palindrome, GGTCAnnnTGACC, which 

can contain up to two deviations from the consensus sequence and still elicit binding, 

although multiple nearby EREs are required for efficient binding of imperfect sequences 
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(Martinez, 1989). ERα has an approximately two-fold greater affinity for the same EREs 

as ERβ, which could be a mechanism underlying the different transcriptional activity of 

these receptors (Yi, 2002). Approximately 70,000 potential ERE sites have been found in 

the human and mouse genomes, and the most highly estrogen-responsive genes 

contain multiple EREs in their promoters (Bourdeau, 2004; Martinez, 1989; Sathya, 

1997).  

Estrogen Receptors and Reproduction 

ERα and ERβ are found throughout the reproductive system in the ovaries, uterus, and 

mammary glands in females and the testis of males in both humans and mice (Pelletier, 

2000; Irsik, 2013). ERα signaling plays an essential role in regulation of hormones and 

reproduction. In mice with ERα knockout (ERα-/-) both female and male mice are infertile. 

Female ERα-/- mice have abnormal physiology of the ovaries and uterus; the ovaries 

develop large hemorrhagic cysts and do not release mature follicles, while the fallopian 

tubes and uterus are small and the uterus does not increase in size in response to E2 

treatment (Dupont, 2000; Lubahn, 1993). Infertile male ERα-/- mice have defects in 

spermatogenesis resulting in significantly reduced sperm number as well as defects in 

the motility of the few sperm that are produced (Eddy, 1996). Interestingly, it is somatic 

cells, not germ cells, which require ERα signaling for normal sperm production and male 

fertility (Mahato, 2001). Global heterozygosity for ERα (ERα+/-) results in normal fertility 

in both females and males. Therefore, at least one functional copy of ERα is essential for 

normal fertility.  In addition to loss of fertility and physiological abnormalities, ERα-/- mice 

also have hormonal abnormalities. Female ERα-/- mice have a ten-fold increase in serum 

E2 and an increase in serum testosterone of a similar magnitude (Eddy, 1996). Serum 

testosterone levels are elevated by two-fold in male ERα-/- mice, but E2 levels are not 

affected (Eddy, 1996; Parikka, 2005). The increased serum hormone levels in ERα-/- 
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mice are the result of lack of feedback in the hypothalamic-pituitary-gonadal axis. 

Therefore, although ERα-/- mice can provide some useful information, it is important to 

remember that in this system estrogen and testosterone levels are significantly elevated 

in females, and signaling through ERβ, GPER, and androgen receptors may be 

impacted by these hormonal changes. To study the effects of ERα in specific estrogen-

sensitive cells and tissues, models with conditional activation or deletion of ERα have 

been developed. Using a conditional deletion approach, it has been shown that ERα-/- 

gonadotropin α-subunit- expressing pituitary cells are sufficient to cause infertility in 

female mice, but not in males (Gieske, 2008). These females produce normal follicles, 

not the hemorrhagic cysts observed in global ERα-/- females, but do not have regular 

estrus cycles (Gieske 2008). Fertility in female mice requires ERα expression in multiple 

tissues, for instance, in gonadotropin α-subunit-expressing pituitary cells for regulation of 

estrus cycles, and in the uterus for estrogen-induced growth of the uterine lining.  

Like ERα, ERβ is widely expressed in the female and male reproductive tracts. However, 

unlike ERα-/- mice, ERβ null (ERβ-/-) mice are not completely sterile. ERβ-/- males have 

normal fertility, and ERβ-/- females have reduced fertility with fewer litters and fewer pups 

per litter than mice with normal ERβ expression (Krege, 1998). The uterus of ERβ-/- 

females appears normal and is responsive to estrogen, but the ovaries release 

significantly fewer follicles than normal (Krege, 1998). Thus, ERβ is not essential for 

reproduction, but does affect fertility in females.  

Unsurprisingly, mice with combined ERα and ERβ deficiency are completely sterile 

(Couse, 1999). Individually, ERα+/-  and ERβ-/-  do not cause complete infertility in mice 

of either sex, so it is not unexpected that ERα+/- ERβ-/- male mice have normal fertility, 

however, it was surprising that ERα+/- ERβ-/- female mice are unable to produce mature 

ovarian follicles and are completely sterile (Dupont, 2000). These data suggest that both 
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ERα and ERβ are important for female fertility and that there is some functional 

redundancy between these receptors. Additionally, ERα significantly affects male fertility 

while ERβ does not play an essential role.  

The expression level of ERs, as well as polymorphisms in these genes, impacts human 

fertility. Sperm from men with varicocele-related infertility express lower levels of ERα 

and ERβ than healthy sperm, which leads to reduced estrogen-induced motility (Guido, 

2011). Polymorphisms in ERα and ERβ in both women and men are associated with 

differences in fertility potential (Corbo, 2007; Zulli, 2010). Clearly, estrogen signaling 

through ERα and ERβ plays an important role in reproduction.  

Estrogen Receptors in Non-Reproductive Physiology  

ERs are not only important in reproduction, but also in other tissues throughout the body. 

Although ERs are expressed by both females and males, females often have higher 

levels of ER expression, and the potential magnitude of ER signaling is greater due to an 

increased amount of estrogen available as a ligand.  ERα and ERβ are expressed in the 

kidney, liver, and heart in both female and male mice, although in the kidney males only 

produce 25% the ERβ as females, and ERα is produced at a lower level by males in all 

of these tissues (70%, 6%, and 1% of female level, respectively) (Irsik, 2013). In the 

kidney, ERα regulates urine osmolality and water homeostasis (Cheema, 2015). 

In the cardiac system, estrogens are protective against cardiac disease. Women who 

receive postmenopausal hormone replacement therapy (HRT, estrogen alone or 

estrogen and progestin) within 10 years of menopause have a reduced risk of death 

from coronary heart disease, although this same protection was not seen in women who 

began treatment more than 10 years after menopause (Boardman, 2015). ERα in the 

coronary endothelium is protective against ischemia-related loss of acetylcholine 
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responsiveness and reduces the size of the damaged area after myocardial infarct 

(Favre, 2010). ERα also plays an important role in E2-mediated protection from the 

development of atherosclerosis, in part by reducing cholesterol levels (Hodgin, 2001). In 

the brain, both ERα and ERβ are widely expressed, and both contribute to the 

prevention of hypertension by acting on different regions of the brain (reviewed in Hay, 

2014).   

Many of the cells involved in the growth and maintenance of bones express ERα. Loss 

of ERα results in bone defects. ERα-/- mice have shorter vertebrae and limb bones than 

ERα+/+ mice, increased trabecular bone volume, and increased tibial thickness (Parikka, 

2005). At the cellular level, osteoblasts from ERα-/- mice produce less type I collagen, 

and female ERα-/- mice have fewer osteoclasts compared to ERα+/+ mice (Parikka, 

2005). ERα not only plays an important role in bone growth, but also bone remodeling. 

Many of the cell types involved in maintaining bone structure express ERα, and 

estrogens play an important role in maintaining bone mineral density and preventing the 

development of osteoporosis. HRT in post-menopausal women prevents osteoporosis-

associated bone loss and fracture (Cauley, 2003). In addition to regulating bone growth 

and remodeling, ER signaling also plays an important role in the bone marrow by 

regulating hematopoiesis.  

Estrogen and the Immune System  

The immune systems of women and men differ intrinsically, which has long been 

attributed the higher levels of estrogen in women. These intrinsic differences are thought 

to be related to pregnancy and the need to both immunologically tolerate a fetus and 

protect the body from external pathogens. Women produce more robust cellular and 

humoral immune responses than men do, and consequently are at a higher risk of 

developing autoimmune diseases. Estrogen does not cause an immune response, but 
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instead enhances humoral immune responses (Carlsten, 1989). Hematopoietic stem 

cells (HSCs) are the source of immune cells, and estrogen has far-reaching effects on 

the whole immune system by acting on these undifferentiated cells. Both HSCs and the 

more differentiated multipotent progenitors (MPPs) express ERα, while ERβ expression 

is only detected in HSCs (Sanchez-Aguilera, 2014). There is no difference in the number 

or frequency of HSCs or MPPs in the bone marrow of females and males (Nakada, 

2014). In ERα+/+ females, both HSCs and MPPs divide more frequently than in ERα+/+ 

males or ER-/- mice of either sex, which all divide at the same lower rate (Nakada, 2014). 

When estrogen levels are increased in females by pregnancy or E2 administration, the 

frequency of HSC division increases further, and the number of HSCs in the bone 

marrow significantly increases (Nakada, 2014, Illing, 2012). Males also experience 

increased HSC division when treated with E2, propyl pyrazole triol (PPT, an ERα 

agonist), or tamoxifen (an ERα agonist in hematopoietic cells) (Nakada, 2014; Sanchez-

Aguilera, 2014; Thurmond, 2000). Ergo, females naturally have an increased rate of 

HSC division compared to males, which is dependent on ERα signaling and is due to a 

naturally higher serum level of E2.  

Although HSCs in female mice naturally divide more rapidly than in males, supra-

physiological levels of division may have detrimental effects on the HSC population. 

Treatment with high dose tamoxifen significantly decreases the long term HSC, short 

term HSC, and MPP populations, while increasing the cycling of normally quiescent long 

term HSCs (Sanchez-Aguilera, 2014). After three rounds of serial transplantation, E2 

treated HSCs have a reduced ability to reconstitute the HSC population in the bone 

marrow compared to untreated cells (Illing, 2012). Estrogens lead to an increased rate of 

HSC division, and at high enough levels to exhaustion of the HSC population.  
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Although there is strong evidence that ERα expression in HSCs plays an important role 

in regulating HSC division, it is not the only way through which estrogens affect the HSC 

population. Estrogen signaling via other receptors, as well as ERα signaling in stromal 

cells, can also affect HSC division. In one study, ERα knockout  mice treated with a high 

dose of E2 had significant reduction in bone marrow HSCs, although this was not as 

dramatic as was seen in ERα+/+ mice (-0.3 vs -0.8 fold)  (Thurmond, 2000). This 

suggests that ERα only partially regulates this effect, and that signaling through ERβ or 

GPER may be involved. The same study also found that expression of ERα in both the 

hematopoietic and non-hematopoietic cells contributed to the decrease in the number of 

HSCs caused by high dose E2 (Thurmond, 2000). In short, estrogens promote the 

division of HSCs, which is partially mediated by ERα. Supra-physiological amounts of 

estrogen can cause exhaustion of the HSC population which, in turn, can lead to 

alterations in the immune system.  

In addition to their effects on HSCs, estrogens also impact the differentiation of 

lymphocytes (see figure 1.2 for an overview of B cell development). Estrogen causes an 

overall decrease in the total B cell population in the bone marrow; more specifically, it 

causes a decrease in the number of developing B cells, and an increase in the 

proportion of mature bone marrow B cells (Medina, 2001; Thurmond, 2000; Erlandsson, 

2002). Additionally, estrogen causes a decrease in the number of B cells in the spleen 

(Erlandsson, 2002). These effects on B cell populations are likely caused by ER 

regulation of multiple genes. Estrogen signaling increases the expression of Bcl-2, an 

anti-apoptotic molecule, in developing and mature B cells; increased Bcl-2 causes an 

increase in mature B cells in the bone marrow (Grimaldi, 2002; Strasser, 1991). 

However, overexpression of Bcl-2 does not affect the proportion of developing B cells in 

the bone marrow or mature B cells in the spleen (Strasser, 1991). Expression of sFRP5,  
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Figure 1.2 B cell development  
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Figure 1.2 B cell development  

B cells originate in the bone marrow from hematopoietic stem cells (HSCs) which 

differentiate into multipotent progenitors (MPPs), and then common lymphoid 

progenitors (CLPs) (not shown). CLPs differentiate into pro-B cells which undergo 

immunoglobulin (Ig) heavy chain VDJ recombination. At the pre-B cell stage cells 

express the recombined heavy chain with surrogate light chain forming the pre-BCR. 

Heavy chain autoreactivity is mediated by additional rearrangement, and cells with 

autoreactive heavy chain specificity which are not successfully remediated die via 

apoptosis. Pre-B cells undergo Ig light chain VJ recombination. Immature B cells 

express both heavy and light chains as IgM, and autoreactive cells are remediated or 

are rendered anergic. Immature B cells leave the bone marrow and travel to secondary 

lymphoid organs, such as the spleen. In secondary lymphoid organs Transitional T1 B 

cells must undergo another checkpoint for autoimmunity before becoming Transitional 

T2 cells, and then mature B cells.  Mature B cells express IgD and can become marginal 

zone or follicular B cells. Upon stimulation with cognate antigen and T cell help, memory 

B cells and plasmablasts are produced. Plasmablasts give rise to long-lived and short-

lived plasma cells.  
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a modulator of Wnt signaling, is also increased by estrogen, and causes a decrease in 

developing B cell populations in bone marrow and total B cell population in the spleen 

(Yokota, 2015). These data suggest that estrogen causes a reduction in developing B 

cells and fewer splenic B cells by regulating the expression of multiple genes. Both ERα 

and ERβ are involved in the estrogen-mediated decrease in total bone marrow B cells 

and the increased proportion of mature B cells in the bone marrow (Erlandsson, 2003). 

The B cells of pre- and post-menopausal women and men all express ERα and ERβ at 

approximately the same level, but it is the amount of estrogen (and not testosterone) in 

the serum that negatively correlates with the total number of bone marrow B cells  (Phiel, 

2005; Erben, 2001). Additionally, estrogen promotes polyclonal B cell activation, which 

results in an increased number of antibody-producing cells, and increased serum 

immunoglobulins (Igs) (Carlsten, 1992; Nikolaevich, 1991). There are many ways in 

which estrogen promotes the development of autoreactive B cells, which will be 

discussed later.  

In addition to its effects on B cell development, ERα plays an important role in the 

development of the thymus and thymic T cell populations. Both CD4+ and CD8+ T cells 

express ERα and ERβ at levels which are consistent among premenopausal women, 

postmenopausal women, and men (Phiel, 2005). Estrogen, acting through ERα, 

negatively regulates an early lymphocyte precursor population which gives rise to T 

cells, and causes decreased thymus cellularity (Medina, 2001; Islander, 2003). In the 

thymus, estrogen also causes a decrease in the immature double positive (CD4+CD8+) T 

cell population and an increase in more mature single positive (CD4+ or CD8+) T cells 

(Staples, 1999). This shift in T cell populations is also observed during pregnancy when 

estrogen levels are naturally increased (Rijhsinghani, 1996). In a competitive 

repopulation assay, E2-treated lymphocyte precursors produced fewer T cells than 
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untreated precursors, but the T cells differentiated into single and double positive T cells 

at normal ratios (Medina, 2001). Similarly, the pregnancy-induced disruption in thymic T 

cell populations normalizes postpartum and thymic cellularity returns to normal after 

weaning (Rijhsinghai, 1996).  

The effects of estrogen on T cell development are mediated through both ERα and ERβ. 

ERα-/- mice have significantly smaller thymi with lower cellularity compared to ERα+/+ 

mice (Staples, 1999). For normal size and cellularity of the thymus, expression of ERα is 

needed in both the stromal and hematopoietic cells (Staples, 1999). E2 treatment in 

ERα+/+ ERβ+/+, ERα-/-, and ERβ-/- mice causes a decrease in thymic cellularity, which 

indicates that neither ERα nor ERβ alone is the sole mediator of the effects of E2 on 

thymus cellularity (Staples, 1999; Erlandsson, 2001). Thymus structure and T cell 

development are regulated by estrogen in a complex way not entirely dependent on 

either ERα or ERβ, and the effects on thymic cellularity and T cell populations are 

reversible when estrogen levels return to normal.  

Estrogen also affects the immune response by regulating the balance of mature T cell 

populations. A balance among IFNγ-, IL-2-, and TNFα-producing Th1 cells that promote 

a cell-mediated immune response and IL-4-, IL-6-, and IL-10-producing Th2 cells that 

promote a humoral immune response is necessary to prevent inappropriate immune 

responses. Estrogens affect the Th1/Th2 balance in a bimodal manner, with low levels 

leading to an increased Th1 response and high levels leading to a Th2 response. 

Studies have shown that this effect is dependent on the expression of ERα in 

hematopoietic cells, specifically in T cells (Maret, 2003; Lelu, 2011).  

Th17 cells are CD4+ T cells that secrete pro-inflammatory IL-17 cytokines, and thus play 

an important role in inflammatory and autoimmune diseases. Depending upon the 



16 
 

stimulation conditions, estrogen can promote or suppress the production of IL-17 (Khan, 

2010; Lelu, 2011). Similarly, estrogen has different effects on Th17 cells in different 

disease models.  Estrogen increases the number of IL-17-secreting cells and the amount 

of IL-17 produced in lupus-prone (NZB x NZW)F1 mice, consistent with estrogen’s 

pathogenic role in lupus (Khan, 2010). In contrast, in a murine model of arthritis, 

estrogen signaling through ERα plays a protective role by restricting the localization of 

Th17 cells so that they do not reside in inflamed joints (Andersson, 2015).   

T regulatory cells (Tregs) promote self-tolerance in the periphery by inhibiting the 

function of effector T cells. Increased levels of estrogen, by both E2 administration and 

pregnancy, cause an increase in the population of Tregs via ERα signaling (Polanczyk, 

2004). Not only does E2 cause an increase in the number of Tregs, but it also increases 

their capacity to suppress effector T cells (Prieto, 2006).  

Estrogen signaling, through ERα, can affect mature T cell populations in a number of 

important ways, including regulating the balance of Th1/Th2 cells, regulating Th17 cell 

activity, and increasing the regulatory capabilities of Tregs. Unlike with B cells, for which 

estrogens are known to promote the development of autoreactive cells, the effect of 

estrogens on the development of autoreactive T cells has not been studied.  

In addition to its effects on lymphocytes, estrogen may also impact the differentiation 

and function of myeloid cells. ERα is expressed in myeloid lineage cells (Sanchez-

Aguilera, 2014). However, reports vary on the effect of estrogens on the differentiation of 

myeloid cells. One group found that the differentiation potential of common myeloid 

progenitors is not affected by E2 treatment, while another reported that HSCs are less 

capable of differentiating into granulocytes after treatment with E2 (Medina, 2001; Illing, 

2012). ERα signaling can either inhibit or promote the differentiation of dendritic cells, 
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depending on the cytokine environment, but it always enhances the dendritic cells’ pro-

inflammatory capacities (reviewed in Kovats, 2012; Seillet, 2013). Megakaryocyte and 

platelet counts are low when the E2 level is low and high when E2 levels are high (Fox, 

2006). There is not a consensus about the effects of estrogens on monocyte function. 

One recent study showed that human primary monocytes have attenuated production of 

pro-inflammatory cytokines upon treatment with E2, while another found that women 

have higher levels of activated monocytes compared to men (Pelekanou, 2016; Jiang, 

2014). Estrogen, through macrophage-intrinsic expression of ERα, promotes 

macrophage activation and pro-inflammatory cytokine production (Calippe, 2010). 

Clearly, estrogen signaling affects myeloid cells in complex ways, sometimes promoting 

and sometimes suppressing the immune response. More research into the effects of 

estrogen on different myeloid lineage cells is needed to form a more complete 

understanding of these effects.  

As discussed here, in addition to their role in reproduction, ERs have a wide range of 

effects on normal physiological processes throughout the body, including a strong 

impact on the development and function of the immune system. Women are more likely 

to develop most autoimmune diseases than men. This phenomenon is thought to be due 

to intrinsic, estrogen-mediated, differences in the immune system. In order to develop 

improved therapies for estrogen-mediated diseases, we must increase our 

understanding of the role that estrogen signaling plays in different cells involved in the 

pathogenesis of these diseases.  

Systemic Lupus Erythematosus  

Many diseases have a strong sex bias. Nearly all autoimmune diseases have a female 

gender bias, including Hashimoto’s thyroiditis, Sjogren’s syndrome, rheumatoid arthritis, 

and multiple sclerosis. One autoimmune disease with particularly strong sex bias is 
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Systemic Lupus Erythematosus (SLE or lupus); between 90-95% of SLE patients are 

women. The prevalence of SLE is approximately 107-150 per 100,000 adults, and 180-

250 per 100,000 women (Chakravarty, 2007). SLE is the most common and the most 

severe form of lupus. SLE is a heterogeneous disease that can impact any organ system 

and cause a variety of symptoms. Patients that have 4 or more of the 11 symptoms 

defined by the American College of Rheumatology (ACR) are diagnosed with SLE. 

These symptoms include malar rash, discoid rash, photosensitivity, oral ulcers, arthritis, 

serositis, kidney disorder, neurological disorder, blood disorder, immunologic disorder, 

and abnormal antinuclear antibody (Arthritis and Rheumatism, 1999). Lupus is a 

dynamic disease and lupus patients experience alternating periods of flare and 

remission.  

Although there is great diversity in the symptoms that lupus patients can develop, there 

are many immunological alterations, including the presence of autoreactive B and T 

cells, which are commonly observed in lupus patients. The defining characteristic of 

lupus is the production of antibodies against nuclear antigens‒ particularly the 

production of pathogenic double stranded DNA (dsDNA) antibodies. When these dsDNA 

autoantibodies bind antigen they form immune complexes which are deposited in tissues 

and cause an inflammatory immune response and tissue damage. Other common 

immune abnormalities seen in lupus patients include aberrant B and T cell activation, 

defective clearance of apoptotic debris, and production of cytokines that promote 

humoral and inflammatory immune responses.  

Currently, the etiology of lupus is unknown, but it is thought to be caused by a 

combination of genetic and environmental factors. Studies examining the incidence of 

lupus in monozygotic and dizygotic twins have shown that monozygotic twins are more 

likely to both have lupus than dizygotic twins, but that there is not complete concordance 
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(Deapen, 1992). In addition to having a twin with lupus, having first degree relatives with 

lupus significantly increases an individual’s risk of lupus. Those with one first degree 

relative with lupus have a relative risk of 17.04, which increases to 35.09 for someone 

with two first degree relatives with lupus (Kuo, 2015). Additionally, many genes 

associated with increased risk of lupus have been identified in lupus patients (Chung, 

2014; Radanova, 2015). These studies have clearly established that there is a genetic 

component to lupus, but lupus is not a purely genetic disease.  

It is believed that genetics predispose an individual to develop lupus and environmental 

factors trigger disease onset through phenomena like epitope spreading or molecular 

mimicry. Although there are likely many different initiating circumstances which can 

prompt the development of lupus in susceptible individuals, there is evidence that 

infections are a likely trigger of autoimmunity. Infection provides an opportunity for the 

immune system to experience epitope spreading, superantigen exposure, and molecular 

mimicry in an activated state. There have been reports of patients that experience an 

infection shortly before developing symptoms of lupus (Yamazaki, 2015; Perez-Mercado, 

2010; Rajadhyaksha, 2012). By a completely different mechanism, a theory known as 

the hygiene hypothesis postulates that infection by microbes is protective against 

autoimmunity, and that lack of infection causes the immune system to develop 

abnormally and react against the self. So far, there is some support for this hypothesis in 

the form of a few case studies, and the assertion that people of African ethnicity living in 

the western world develop lupus at higher rates than Africans living in Africa, where they 

presumably experience more infections (Praprotnik, 2008; Bae, 1998).  However, this 

assertion may be incorrect as similar rates of antinuclear autoantibody production have 

been found in African Americans and Africans of the same ancestral heritage (Gilkeson, 
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2011). Instead, the idea lupus is less common in Africa may be due to differences in the 

diagnostic abilities and availability of health care in western and African countries  

Although the etiology of lupus is unknown, a defining characteristic of this disease is the 

production of anti-nuclear antibodies (ANA), including antibodies against dsDNA. Auto-

antibodies are produced by activated autoreactive B cells that either escape negative 

selection at developmental checkpoints or are produced by somatic hypermutation 

(SHM) in the periphery. ANA can be detected in 95% of lupus patients of African-

American, Afro-Caribbean, and Caucasian heritage (Somers, 2014; Flower, 2012). 

Antibodies specific to dsDNA are only detected in only about 37% of lupus patients 

(Hanly, 2016, Wichainun, 2013). Detection of both ANA and anti-dsDNA antibodies is 

highly specific for lupus (88-96%, and 97-100% respectively), although ANA are 

occasionally found in healthy controls (8%) and both antibodies are occasionally found in 

patients with multiple other health problems (12% and 3%, respectively) (Wichainun, 

2013). Although not detectable in all lupus patients, anti-dsDNA antibodies are very 

specific to lupus. 

In addition to autoreactive B cells and autoantibody producing plasma cells, lupus 

patients have other immune abnormalities that contribute to disease. They have 

significantly higher levels of B cell-activating factor (BAFF), which is secreted by 

monocytes and activated T cells and promotes the maturation of  B cells to plasma cells  

(Elbirt, 2014). Patients with lupus have more plasmocytes and plasmablasts than healthy 

controls (Korganow, 2010). Most B cells from lupus patients express less CD19 than 

controls, which may prevent the negative selection of autoreactive B cells (Korganow, 

2010). Some lupus patients have a pre-plasma B cell population with high CD19 

expression, which is associated with adverse long-term clinical outcomes (Culton, 2007; 

Nicholas, 2008). It is thought that these CD19hi B cells are easily activated and are 
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autoreactive. Regulatory B cells (Bregs) are IL-10-producing B cells which negatively 

regulate the inflammatory immune response. Bregs from lupus patients cannot 

effectively inhibit T cell proliferation (Gao, 2014). In a murine lupus model that lacks 

mature B cells, lupus is completely attenuated (Shlomchik, 1994). In the same murine 

lupus model, when mature B cells are present but cannot secrete antibodies, some, but 

not all, lupus-related outcomes are improved (Chan, 1999). These studies point to both 

antibody-dependent and antibody-independent roles for B cells in lupus.  

Like B cells, lupus patients also have autoreactive T cells that recognize nuclear 

antigens. T cells from lupus patients are resistant to activation-induced apoptosis, which 

leads to the survival of autoreactive T cells (Kim, 2010). The T cells of lupus patients 

also have more rapid signaling than healthy individuals due to lower TCRζ levels 

(Liossis, 1998). When activated, autoreactive B and T cells cause an inflammatory 

immune response which leads to tissue damage. Normally, nuclear proteins are 

sequestered and are not available to autoreactive B and T cells. However, multiple 

defects in the clearance of apoptotic cell debris have been found in some lupus patients, 

which lead to a large amount of uncleared nuclear material that is available for antigen 

processing and presentation by autoreactive immune cells (Pang, 2014; Li, 2015; Jung 

2015). Thus, targeting some of these immune cells for destruction or preventing their 

activation could be an attractive therapeutic target for treating lupus.  

Lupus can affect people of all ages, but is primarily a disease of young women. 

Approximately 85% of adults with lupus are under age 50, and 28% are under 29 

(Feldman, 2013). Although the exact statistics vary by study, non-Caucasian women are 

at a higher risk of developing lupus than Caucasians. Asian women are twice as likely to 

develop lupus as Caucasian women, and Hispanic and Native American women are also 

at increased risk (Johnson, 1995; Samanta, 1991; Feldman, 2013). However, most 



22 
 

dramatically, African American women are 2.5-3.5 times more likely to develop lupus 

than Caucasian women (Lim, 2014; Chakravarty, 2007; Anderson, 2008). Unfortunately, 

most cohort studies of lupus patients are made up predominately of Caucasian patients, 

leaving African Americans and other minorities underrepresented.  

The diagnostic criteria for lupus include a broad range of symptoms, and each patient 

may experience a different set of symptoms. As such, there are many causes of 

morbidity in lupus patients which can range from mild to life-threatening. In addition to 

impacting the risk of developing lupus, the patient’s ethnicity influences the symptoms 

that they will experience (Samanta, 1991; Feldman, 2013; Gomez-Puerta, 2015). Many 

differences can be observed in the incidence of ACR criteria in lupus patients of different 

ethnicities (Table 1.1). One important difference is that patients of both African American 

and African Caribbean ethnicity have a significantly higher incidence of renal disorder 

than Caucasian patients (Somers, 2014; Flower, 2012). It is estimated that lupus 

nephritis occurs in 55-69% of Hispanic and African American patients and 23-29% of 

Caucasian patients; nephritis is a major concern, because patients with nephritis have a 

lower rate of survival than those that do not develop nephritis (Alarcon, 2002; Cervera, 

2003; Bastian, 2002). Renal disease is especially threatening for recently diagnosed 

patients. Patients that have measurable kidney damage soon after diagnosis are more 

likely to develop end stage renal failure and have a significantly increased mortality rate 

(Rahman, 2001; Nossent, 2007). 

Lupus nephritis is caused by the deposition of immune complexes in the glomerular 

basement membrane. This begins a process of renal chemokine expression, immune 

cell infiltration, pro-inflammatory cytokine secretion, tissue damage, and loss of 

glomerular filtration capacity. Histologically, lupus nephritis can have a wide range of 

manifestations including: hypercellularity, immune complex deposits, glomerular  
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Table 1.1 Clinical manifestations of lupus in different ethnic populations 

Clinical Manifestation % African 

American 

% African 

Caribbean 

% Caucasian 

Malar rash 42.7 † 36.4 * 58.9 

Discoid rash 32.2 † 33.1 * 13.5 

Photosensitivity  41.4 † 5.8 ‡* 58.9 

Oral ulcers 37.9 † 20.9 ‡* 48.2 

Arthritis 71.8 84.0 ‡* 69.5 

Serositis 45.9 50.3 * 42.3 

Renal disorder 40.5 † 47.0 * 18.8 

Neurologic disorder 21.7 † 17.2 14.0 

Hematologic disorder 66.8 74.1 ‡* 64.5 

Immunologic disorder 71.0 † 63.2 ‡ 61.3 

Antinuclear antibody 96.1 † 95.0 * 91.5 

 

†=significant difference between African American and Caucasian 

‡= significant difference between African American and African Caribbean  

*= significant difference between African Caribbean and Caucasian  

 

Data presented is compiled from Flower, 2012 and Somers, 2014 
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sclerosis, crescent formation, and membranous neuropathy. Renal biopsy is used to 

diagnose nephritis and the International Society of Nephrology/Renal Pathology Society 

guidelines are used to classify the degree of lupus nephritis depending on the cell types 

that are affected, and the extent of nephritis in the kidney (Weening, 2004). The immune 

complexes which are deposited in tissues contain both antibody and antigen. Antibodies 

reactive to dsDNA, chromatin, and proteins, including a variety of nuclear proteins are 

found in immune complexes (Mannik, 2003). In healthy individuals, blood-borne immune 

complexes are rapidly cleared in the liver, a process which is mediated by both 

complement and Fc receptors; both of these clearance mechanisms are less effective in 

lupus patients (Edberg, 1987; Davies, 1992; Davies, 2002). Additionally, immune 

complexes can also be formed in situ in the kidney via antibody crossreactivity. 

Monoclonal anti-dsDNA antibodies and antibodies isolated from the kidneys and urine of 

lupus patients bind components of the glomerular basement membrane including 

proteoglycan, heparin sulfate, and hyaluronic acid (Sasaki, 1991; Ben-Yehuda, 1995). 

Although immune complex formation occurs in all individuals, faulty clearance, an 

increased amount of cross-reactive anti-nuclear antibodies, and increased availability of 

nuclear antigen make lupus patients susceptible to immune complex-mediated nephritis. 

Although renal disease is a significant risk factor for lupus-related mortality, it is not the 

only cause of lupus-related death.  

A recent meta-analysis confirmed that lupus patients are at significantly increased risk of 

dying compared to the general population, specifically due to increased risk of death 

from nephritis and infection (Lee, 2016).  Encouragingly, the risk for lupus patients of 

dying from these causes has been steadily decreasing since the 1970s, as has the 

overall risk of death (Bernatsky, 2006). In the past, it was reported that lupus patients 

have a high risk of mortality in a bimodal manner, with a large proportion of patients 
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dying within a year of diagnosis (Urowitz, 1976). However, in recent decades diagnosis 

and therapies have improved, and lupus patients are not at increased risk of dying soon 

after diagnosis; in fact, the risk of death is steady over time (Nossent, 2007). Infections 

and cardiovascular events, including myocardial infarction and heart failure, are the main 

causes of death among lupus patients, and SLE activity is a common contributing factor 

(Nossent, 2007). In addition to early kidney damage, a major risk factor for mortality is 

youth‒ 40 years old or younger, with those under 24 years old having an even greater 

risk of mortality (Bernatsky, 2006). Having multiple comorbidities also significantly 

increases the risk of death for lupus patients. The 1-year mortality rate increases 

significantly with each comorbidity, from 9% for those with no comorbidities to 30% for 

those with 2, and 57% for those with over 5 comorbidities (Anderson, 2008). Additionally, 

ethnicity appears to influence the risk of mortality in lupus patients. African Americans 

die at a significantly younger age than Caucasians, perhaps in part because they tend to 

have more comorbidities, including diabetes mellitus, pericarditis, and thrombocytopenia, 

in addition to nephritis/renal failure (Anderson, 2008). Although the rate of mortality for 

lupus patients has declined over the past several decades, there is still a need for 

improved therapeutic options for lupus patients.  

As lupus is a chronic disease that affects many women during the reproductive years, 

the effects of pregnancy on disease activity, and the effects of lupus on pregnancy 

outcomes, are important considerations. Pregnant lupus patients are at increased risk of 

maternal and fetal complications, including lupus flare, spontaneous abortion, and 

preterm birth. The mean gestational age at birth for mothers with lupus is 32 weeks 

(Feld, 2015). The premature birth rate is 39%, and 23% of pregnancies do not result in 

live birth (Smyth, 2010). Several factors correlate with adverse fetal and maternal 

outcomes, especially disease flare within 6 months of conception or during pregnancy, 
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and prior history of nephritis (Kwok, 2011; Chen, 2015). The risk of fetal loss is 

significantly decreased in individuals whose lupus is stable over the course of 

pregnancy. Of women without significant lupus activity, 80% of pregnancies resulted in 

live births, and 76% ended at full term; among women with significant lupus activity 6 

months before pregnancy, only 31% of pregnancies resulted in live birth, and only 23% 

were delivered at full term (Chen, 2015). Other studies have reported less dramatic fetal 

mortality, with 89% of asymptomatic women and 65% of women with active lupus 

achieving live births (Yang, 2014). Regardless of the exact numbers, lupus flare is a 

significant risk factor for unsuccessful pregnancy outcome. Patients with a prior history 

of nephritis have a significantly increased risk of flare and associated adverse fetal 

effects like stillbirth, total fetal loss, fetuses which are small for gestational age, and 

preterm delivery (Kwok, 2011). To a degree, the risks involved in pregnancy for lupus 

patients can be managed with careful planning of pregnancies.  

Since lupus primarily affects women, especially women between menarche and 

menopause when estrogen levels are naturally high, it has long been assumed that 

estrogen plays an important role in the pathogenesis of lupus. This is supported by the 

fact that exposure to endogenous or exogenous estrogens is a risk factor for developing 

lupus. Early age of menarche, oral contraceptive use, and post-menopausal HRT 

increase the risk of developing lupus (Costenbader, 2007). Although men make up only 

a small proportion of lupus patients, there is evidence that estrogen may contribute to 

the development of lupus in men. Men with Klinefelter’s syndrome (XXY) have levels of 

serum E2 about twice as high as healthy men, and are at greater risk for developing 

lupus compared to healthy men (Wang, 1975; Socfield, 2008; Seminog, 2014). 

Although estrogen is a risk factor for developing lupus, studies on the effects of estrogen 

on disease activity in patients with lupus have not been so clear cut.  Studies examining 
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oral contraceptive use and lupus flare have shown mixed results (Jungers, 1982; 

Sanchez-Guerrero, 2005; Petri, 2005). Similarly, there is no consensus on whether post-

menopausal hormone replacement therapy increases the risk of lupus flare (Fernandez, 

2006; Buyon, 2005). Over the course of pregnancy, estrogen and prolactin levels 

increase dramatically, but the incidence of lupus flare correlates more closely with the 

level of prolactin than with estrogen (Tsesis, 2013; Jara, 2007). Overall, the evidence for 

estrogen as a risk factor for lupus flare is inconclusive.  

There are several ways that estrogens can promote the development of autoimmunity. 

Besides its impact on B cell development, estrogen can predispose B cells to 

autoimmunity by impacting the negative selection of autoreactive cells and B cell 

receptor (BCR) specificity. There are several checkpoints in B cell development where 

autoreactive B cells are normally removed by induction of apoptosis or anergy; however, 

estrogen signaling through ERα increases the frequency of high-affinity autoreactive B 

cells by allowing them to escape negative selection at immature and T2 stages of 

development, thus allowing the accumulation of autoreactive B cells (Grimaldi, 2006; 

Hill, 2011). Estrogen promotes the development of autoreactive B cells by increasing the 

expression of Bcl-2, CD22, Shp-1, and Vcam-1, which blunts the BCR signal, and 

protects against BCR-mediated apoptosis (Grimaldi, 2002). Increased expression of Bcl-

2 alone leads to the production of autoantibodies, and to systemic autoimmunity 

(Strasser, 1991). 

In addition to allowing the survival of autoreactive B cells during development, estrogen 

also promotes autoimmunity by impacting the specificity of the BCR. Genomic estrogen 

signaling through EREs leads to expression of activation-induced deaminase which 

promotes somatic hypermutation and class switch recombination (Mai, 2010; Pauklin, 

2009).  Somatic hypermutation can lead to de novo autoreactivity in B cells that originally 
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expressed a non-autoreactive BCR (Guo, 2010). Additionally, somatic hypermutation of 

the BCR promotes T cell activation and the formation of memory T cells (Jiang, 2012). 

Estrogen also causes an increase in the splenic marginal zone B cell population, a 

population which is more likely to be autoreactive against some antigens (Hendricks, 

2011; Enghard, 2011). Therefore, estrogen affects B cells in multiple ways which 

promote autoimmunity and immune activation. 

As previously discussed, estrogens can signal through two nuclear hormone receptors: 

ERα and ERβ. Studies of lupus-prone mice have concluded that ERα promotes lupus in 

these models, while ERβ does not promote disease (Li, 2007; Svenson, 2008; Bynote, 

2008). ERα signaling increases the number of Ig-secreting B cells and total serum IgG 

(Erlandsson, 2003; Li, 2007). In the (NZB x NZW)F1 lupus model, ERα signaling 

promotes the production of anti-dsDNA IgG autoreactive antibodies, particularly the 

IgG2a and IgG2b isotypes (Bynote, 2008; Li, 2007).   

Exposure to estrogen is a risk factor for developing lupus, yet lupus is still relatively rare 

among those exposed to estrogen. Aside from other genetic differences which may 

cause increased susceptibility to lupus, ER-intrinsic factors could impact ER signaling in 

those prone to lupus, including receptor expression and genetic polymorphisms. The 

promoter region of ERα is significantly demethylated in peripheral blood lymphocytes 

from lupus patients, which correlates with increased amounts of ERα mRNA and protein 

in these cells (Liu, 2014; Inui, 2007). It is not known if demethylation of ERα occurs 

before or after the onset of clinical disease. Other studies have reported that lupus 

patients and healthy controls express the same amount of ERα in B cells, T cells, and 

monocytes (Suenaga, 1998; Rider, 2006). Despite the proposed differences in ERα 

expression, there are no differences in the binding efficiency and binding characteristics 

of ERα in lupus patients and healthy controls (Suenaga, 1996).  
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Polymorphisms in ERα are associated with an increased risk of lupus in some 

populations. The best studied, rs2234693 (commonly referred to as PvuII) and 

rs9340799 (commonly referred to as XbaI), are located in an intronic region between 

exon 1 and exon 2 of ERα. In Caucasian American patients, PvuII and XbaI 

polymorphisms are significantly associated with lupus, and individuals homozygous for 

either PvuII or XbaI have an even greater risk of lupus than those with only one copy 

(Wang, 2010). However in adult Chinese, Korean, and Swedish lupus patients, there is 

no association of the PvuII and Xbal polymorphisms with risk of lupus (Lu, 2009; Lee, 

2004; Johansson, 2005). Although the Swedish study did not find an association 

between these polymorphisms and increased risk of lupus, this study did find that the 

PvuII polymorphism was associated with malar rash and that the XbaI polymorphism 

was associated with photosensitivity (Johansson, 2005).  Different combinations of PvuII 

and XbaI alleles are associated with increased production of Th2 cytokines IL-4 and IL-

10 in lupus patients (Lu, 2009). Heterozygosity for an exon 8 polymorphism of ERα, 

rs2228480, is also associated with an approximately 3 fold increase in lupus risk (Kassi, 

2005).  Although these do not by any means represent all of the possible genetic 

contributions, any of these polymorphisms could predispose individuals to develop lupus 

by altering their sensitivity to estrogen.  

Lupus Treatments  

Because lupus is such a heterogeneous disease, there are a range of treatments used, 

which can be customized to each patient depending on their level of disease activity and 

symptoms. Most of the current treatments for lupus cause broad immunosuppression 

which makes patients susceptible to infection. In addition to immunosuppression, many 

of the drugs used to treat lupus have serious side effects, and these treatments should 

be given for the shortest amount of time and at the lowest effective dose to avoid side 
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effects. This can be a problem for a chronic disease like lupus where patients are never 

cured and may require treatment for the rest of their lives. Current therapies for lupus 

include: non-steroidal anti-inflammatory drugs (NSAIDs), antimalarials, glucocorticoids, 

immunosuppressive drugs, and the recently approved antibody belumimab.  

NSAIDs, such as ibuprofen and aspirin, are used to treat some mild to moderate 

symptoms of lupus, including joint pain, mild inflammation, and fever. While these 

medications have relatively mild side effects, they may not be appropriate for patients 

with kidney disease because with long-term use they can cause reduced glomerular 

filtration and increased blood pressure.  

Antimalarials hydroxychloroquine and chloroquine are some other commonly used lupus 

treatments. Use of these medications has increased over the past decade, and about 

half of lupus patients take antimalarials at some time after diagnosis (Norgaard, 2015). 

Antimalarials protect against the development of lupus nephritis and end-stage renal 

disease, and improve the survival of lupus nephritis patients (Galindo-Izquierdo, 2016; 

Zheng, 2012). Lupus patients taking hydroxychloroquine have a lower risk of serious 

infection than patients taking immunosuppressive drugs, glucocorticoids, and even those 

not taking medication (Feldman, 2015). Antimalarials can be used for long term 

treatment and may be used in combination with other lupus medications. Often, the 

addition of an antimalarial medication allows patients to use a lower dose of other, more 

toxic, medications. Antimalarial drugs work via several mechanisms, including interfering 

with the antigen-presentation function of T cells, antagonism of nucleic acid-sensing 

TLRs, and by inhibiting the production of pro-inflammatory cytokines (Wallace, 2012; 

Silva, 2013). Although generally safe, damage to the retina can be a side effect of these 

drugs. 
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When NSAIDs and antimalarials cannot effectively control lupus symptoms, 

glucocorticoids such as prednisone are often prescribed. Glucocorticoids act by binding 

the glucocorticoid receptor and mimicking the anti-inflammatory effects of cortisol. 

Glucocorticoids significantly improve the survival of lupus patients (Zheng, 2012). 

However, there are many side effects of these drugs which can significantly affect the 

patient’s quality of life. Lupus patients that take glucocorticoids have a significantly 

increased risk of serious infection, which can be life-threatening (Feldman, 2015). Other 

symptoms include changes in appearance such as weight gain, round face shape, 

redistribution of fat to the abdomen with thin arms and legs, and fluid retention. Patients 

taking glucocorticoids can also experience osteoporosis and bone necrosis which can 

necessitate joint replacement, cataracts, glaucoma, and psychological problems. To 

decrease the risk of these side effects, glucocorticoids should be taken at the lowest 

effective dose. 

For severe forms of lupus, there are many immunosuppressive drugs that can be used 

including: azathioprine, cyclosporine, mycophenolate mofetil, methotrexate, leflunomide, 

and cyclophosphamide. These drugs were originally developed as chemotherapeutic 

agents or to prevent rejection after an organ transplant and are used for severe lupus 

that affects organs or organ systems. These drugs interfere with cell replication, 

suppressing the immune response through various mechanisms, some of which 

specifically affect immune cells and some of which affect all replicating cells. Many of 

these medications are “steroid sparing”, which means that while taking these drugs, 

patients are able to take a reduced dose of glucocorticoids. Because these drugs inhibit 

cell proliferation and the natural immune response, lupus patients taking 

immunosuppressive drugs are at increased risk of serious infection (Feldman, 2015). An 
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increased risk of developing cancer later in life is also a side effect of many of these 

drugs.  

In March 2011, the U. S. Food and Drug Administration (FDA) approved belimumab, the 

first new lupus therapy to be approved in over 50 years. Belimumab was approved for 

lupus patients without active kidney or central nervous system disease. Belimumab is a 

human monoclonal antibody against B-cell activating factor (BAFF). BAFF is a B cell 

growth factor essential for B cell survival. Without BAFF, B cells undergo apoptosis and 

very few mature B cells develop (Marino, 2014). Overexpression of BAFF leads to both 

an expanded B cell population and the production of an increased proportion of high-

affinity autoreactive B cells (Ota, 2010). BAFF is overexpressed in peripheral blood of 

lupus patients, and is positively correlated with increased disease activity (Ju, 2006; 

Duan, 2016). Lupus patients treated with belimumab (in addition to standard of care) 

have fewer peripheral B cells, including transitional and naïve B cells, pre-switched 

memory B cells, and plasmablasts/ plasma cells (Jacobi, 2010). They also have 

significantly less total IgG and less anti-dsDNA antibodies (Stohl, 2012).  

Belimumab shows that biologics have great potential to improve on current lupus 

treatments; however, belimumab itself is far from a magic bullet. After one year of 

treatment, only 7.5-11.2% more patients treated with belimumab had disease 

improvement compared to placebo-treated patients (Furie, 2011). Additionally, the risk of 

sever flare was only reduced from 29.6% in placebo treated patients to 19-20.4% in 

belimumab treated patients (Stohl, 2012). The cost of belimumab is approximately 

$35,000 per year, which is quite high for the small percentage of patients who respond 

positively to this treatment (Lamore, 2012). Furthermore, patients treated with 

belimumab are also at increased risk of infection. 
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Another monoclonal antibody, rituximab, is occasionally used to treat lupus, although it is 

not FDA approved for this purpose. Rituximab is an antibody against CD20, which is 

present on B cells from the pre-B cell stage in the bone marrow through the memory B 

cell stage. It is approved for the treatment of B cell leukemia and lymphoma as well as 

rheumatoid arthritis. Although stage III clinical trials of lupus patients treated with 

rituximab did not show an improvement over treatment with placebo, it may still be 

beneficial to some lupus patients, particularly African Americans (Merrill, 2010).  

With the exception of NSAIDs taken for minor to moderate inflammation and pain, 

therapies for lupus are broadly immunosuppressive and can have severe side effects, 

especially when taken for a long time, as is necessary for a chronic disease like lupus. 

Overall, the adherence to lupus medications is quite poor. Nonadherence (taking 

medication appropriately <80% of the time) to lupus medications (prednisone, 

hydroxychloroquine, other immunosuppressive drugs) has been estimated to be around 

50% by multiple studies (Koneru, 2008; Abdul-Sattar, 2015; Ting, 2012). Some of the 

risk factors for nonadherence include a low education level, not understanding the 

directions given by the physician, taking more than one medication per day, and taking 

medications more than once per day (Koneru et al, 2008; Abdul-Sattar 2015). This 

means that not only can lupus treatment have severe side effects; treatment is also often 

complicated and burdensome for patients. Physicians that treat lupus patients must try 

to balance treating the symptoms of lupus, which can themselves be deadly, with the 

side effects and mental burden caused by treatments. There is an obvious need to 

improve the treatments for lupus, both in terms of decreasing serious side effects and 

simplifying the treatment schedule, which should lead to increased patient compliance to 

medication use.  
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Research investigating the pathogenesis of lupus has revealed some new potential 

approaches for the treatment of lupus. Genetic deletion of the ERα gene in lupus-prone 

mice significantly attenuates disease, as does removing the endogenous source of 

estrogen in young mice by ovariectomy (Bynote, 2008; Sobel, 2005). Among lupus 

patients, postmenopausal women have fewer flares and a less disease activity 

compared to premenopausal women (Urowitz, 2006). These data suggest that 

antiestrogen therapies may be beneficial for lupus patients. Because lupus is 

predominately a disease of young women, systemic antiestrogens would be 

inappropriate as they interfere with fertility, and with bone and cardiovascular health. 

Several different estrogen-modulating drugs are currently used to treat other diseases, 

but none have been used to treat lupus.  

Currently, estrogen-modulating therapies are used to treat and prevent conditions in 

women including ER-positive breast cancers and osteoporosis. These therapies work by 

several different mechanisms, from selectively antagonizing ERs to inhibiting the 

production of estrogen. Selective ER modifiers (SERMs) act as ER agonists in some 

tissues and as ER antagonists in others. Tamoxifen is a SERM which acts as an ER 

antagonist in the breast and an ER antagonist elsewhere in the body, and is used for the 

treatment of ER-positive breast cancers and the prevention of breast cancer in women 

with a high risk of breast cancer. The SERM raloxifene acts as an ER agonist in bone 

and an antagonist in the breast and uterus, and is approved for treatment of 

osteoporosis and to reduce the risk of developing invasive breast cancer in 

postmenopausal women. Bazedoxifene is a SERM used in conjunction with conjugated 

estrogens, and is known as a Tissue Selective Estrogen Complex (TSEC). Bazedoxifene 

is used to prevent osteoporosis and treat moderate-to-severe hot flashes in menopausal 

and post-menopausal women. Fulvestrant is a pure ER antagonist. It binds ERs, blocks 
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the binding of endogenous estrogens, and targets ERs for degradation. Aromatase 

inhibitors are used to block the aromatization of testosterone to estrogen, but these 

drugs are only effective in postmenopausal women because premenopausal women 

produce too much aromatase to be effectively inhibited. To inhibit estrogen production in 

premenopausal women, gonadotropin-releasing hormone agonists can be used; 

however, these drugs are not appropriate for long-term therapy. Estrogen production can 

also be permanently stopped by oophorectomy, which causes loss of fertility and 

premature menopause.   

Some of these estrogen-modulating therapies can have unintended effects on tissues 

throughout the body, and have side effects which may be acceptable for cancer patients 

who only require treatment for a limited period of time, but are unacceptable for lupus 

patients who require long-term treatment. The SERMs and TSEC discussed here have 

been approved by the FDA, and several other SERMs are currently being evaluated. 

The use of a SERM or targeted delivery of the antiestrogen fulvestrant could be used to 

antagonize ERs in the cells where ER signaling promotes lupus.  

The specific cell type or types that mediate the effects of estrogens on lupus have not 

been previously identified. We believe that cells of the immune lineage, particularly B 

cells, promote lupus through ERα signaling. B cells are essential to the development of 

lupus. Lupus-prone mice without mature B cells do not develop disease (Shlomchik, 

1994). Estrogens have many effects of B cells which promote the development of 

autoimmunity, which are discussed in more detail above. Estrogen signaling through 

ERα allows autoreactive B cells to escape negative selection at tolerance checkpoints by 

upregulating anti-apoptotic molecules, promotes affinity maturation of autoreactive B 

cells, and promotes B cell activation (Grimaldi, 2002; Grimaldi, 2006; Hill, 2011; Guo, 
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2010; Yoachim, 2015). Depletion of ERα from B cells would mitigate these effects, while 

avoiding the broad immunosuppression caused by other lupus therapies.   

Murine Models of Lupus 

There are many murine models used to study lupus. In some models, the onset of lupus 

can be induced by a single injection with pristane or allogenic donor cells (to induce 

graft-versus-host disease). One advantage to using an inducible lupus model is that the 

onset of lupus is uniform among all mice in the study. Drug-induced lupus also occurs in 

humans after prolonged exposure to certain medications. However, unlike inducible 

murine lupus, human patients fully recover after discontinuing the medication causing 

the reaction.  

In addition to inducible murine models of lupus, there are other murine lupus models in 

which disease develops spontaneously as the result of genetic predisposition. Lupus as 

a result of genetic predisposition is more relevant to human SLE, which has a strong 

genetic component. Some genetic models of lupus have been used to identify genes 

that confer lupus susceptibility.  

Since lupus is a heterogeneous disease with many different manifestations and 

symptoms, and no simple genetic cause, there is no perfect murine lupus model. Each 

model recapitulates some aspects of disease, but none capture the full picture of lupus. 

Some common genetic models of lupus are the MRL/lpr, BXSB, (NZB x NZW)F1, and 

NZM2410 mice. These mice all produce antibodies against nuclear antigens which form 

immune complexes, and glomerulonephritis is the main cause of death in all of these 

lupus-prone mice. MRL/lpr mice have a spontaneous lymphoproliferation mutation in the 

Fas gene, which is a receptor essential for Fas/Fas ligand-induced cell death. Mice of 

both sexes develop systemic autoimmunity, aberrant T cell division, and immune 
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complex-mediated glomerulonephrosis at a similar rate.  In the BXSB strain, male mice 

develop lupus at a much younger age than females because of the Yaa mutation carried 

on the Y chromosome. (NZB x NZW)F1 mice are produced by crossing a New Zealand 

Black (NZB) female with a New Zealand White (NZW) male. The parental NZW strain is 

healthy and does not develop any lupus-like symptoms. However, NZB mice are prone 

to leukemia, similar to chronic lymphocytic leukemia, by one year of age (Phillips, 1992). 

The F1 offspring of this cross inherit risk alleles from each parent, which together confer 

susceptibility to develop a lupus-like disease. (NZB x NZW)F1 mice of both sexes 

develop autoantibodies and fatal glomerulonephritis, but females develop these 

symptoms and die several months before males. The NZM2410 strain was derived from 

offspring from a female (NZB x NZW)F1 bred with her NZW father (Rudofsky, 1999). 

Female and male NZM2410 mice develop early-onset severe nephritis. These mice 

have been extensively used to identify lupus susceptibility loci from the NZB and NZW 

genomes.  

Our lab uses (NZB x NZW)F1 mice for lupus studies. This model recapitulates some of 

the important aspects of lupus, including the production of antibodies against nuclear 

antigens, including chromatin and dsDNA, and the development of fatal 

glomerulonephritis. However, importantly, the (NZB x NZW)F1 model is the only one 

with a female sex bias. Studies from our lab showed a 100% penetrance of severe 

glomerulonephritis in both female and male (NZB x NZW)F1 mice by 18 months of age; 

however, female mice had a median survival time of 238 days while the median survival 

time of males was 321 days (Bynote, 2008).   

Although our lab uses (NZB x NZW)F1s, several different murine lupus models have 

been used to study the effects of estrogen on lupus. In (NZB x NZW)F1, NZM2410, and 

MRL/lpr mice, the detrimental effects of estrogen on lupus are mediated by ERα and not 
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ERβ (Bynote, 2008; Li, 2007; Svenson, 2008; Cunningham, 2014). In lupus-prone mice 

of both sexes, ERα signaling promotes the production of pathogenic autoantibodies and 

the production of pro-inflammatory IFN-γ (Bynote 2008; Li, 2007). The activation of B 

and T cells in (NZB x NZW)F1 mice is also promoted by ERα (Gould Lab, unpublished 

data). Lupus-prone mice with ERα knockout have significant attenuation of albuminuria, 

decreased lupus-associated kidney damage, and dramatically improved survival (Bynote 

2008; Svenson et al, 2008).  

Because we know how the lupus phenotype is affected by ERα signaling in lupus-prone 

(NZB x NZW)F1 mice, we can use this model to identify the cell type or types that cause 

the negative effects of estrogen on lupus. With this knowledge, we can advance the field 

and begin to develop targeted antiestrogen therapies for lupus.  

Summary 

Lupus is a chronic autoimmune disease that predominately affects young women. 

Exposure to estrogen, both endogenous and exogenous, is a risk factor for developing 

lupus, and estrogens promote the development of autoimmunity in several ways. 

Multiple murine lupus models have shown that estrogen promotes lupus via ERα 

signaling. Taken together, the data presented here support the hypothesis that estrogen 

signaling through ERα in cells of the immune system, particularly in B cells, promotes 

lupus. To address this hypothesis, we have performed experiments investigating the role 

of ERα in both all hematopoietic cells, and B cells in particular, in a lupus-prone mouse 

model.  

The role of ERα in hematopoietic cells was examined using lupus-prone (NZB x NZW)F1 

chimeric mice with hematopoietic cells of one ERα genotype and non-hematopoietic 

cells of a different ERα genotype. These studies revealed an important role for ERα in 
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the successful engraftment of hematopoietic cells in female mice, but unfortunately were 

not able to demonstrate that ERα in hematopoietic cells promotes lupus. To address the 

role of ERα in B cells on lupus, we produced (NZB x NZW)F1 mice with cre-mediated 

deletion of ERα specifically in B cells. Although we found that the cre knockin allele had 

its own significant effects and caused relatively low efficiency of ERα deletion, we 

showed that ERα signaling in B cells contributes significantly to the development of 

lupus. Therefore, our studies have shown that disruption of ERα signaling in B cells is a 

novel therapeutic target for lupus.  
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Chapter 2: Dissertation Overview 

Hypothesis and Objectives 

The objective for these specific aims is to determine the effects of ERα on hematopoietic 

cells in general, and B cells in particular, on lupus in (NZB x NZW)F1 lupus-prone mice. 

In specific aim 1 we hypothesized that ERα signaling in hematopoietic cells promotes the 

development of autoimmunity in (NZB x NZW)F1 mice, and that the lack of ERα in 

hematopoietic cells would attenuate disease.  In specific aim 2, we hypothesized that 

ERα signaling in B cells promotes the production of autoantibodies and accelerates 

mortality in (NZB x NZW)F1 mice.  

Rationale  

Lupus is a chronic autoimmune disease that predominately affects young women. 

Exposure to estrogen, both endogenous and exogenous, is a risk factor for developing 

lupus, and estrogens promote the development of autoimmunity by impacting the 

development and activation of immune cells. Multiple murine lupus models have shown 

that estrogen promotes lupus via ERα signaling. In these studies, ERα signaling was 

affected throughout the body, and the specific cell type or types which promote lupus via 

ERα were not elucidated. Therefore, our lab sought to determine the cell type or types 

which mediate the effects of ERα on lupus.   

In lupus patients, several types of immune cells function abnormally in ways which 

contribute to lupus. Impaired negative selection leads to the persistence of autoreactive 

B cells and the development of autoreactive plasma cells. Macrophages from lupus 

patients have an impaired ability to phagocytose apoptotic debris, leading to an 

increased presence of nuclear antigens. Follicular dendritic cells present autoantigens 

from apoptotic cell debris to B cells, resulting in the activation of autoreactive B cells. 

Some of these abnormalities have been shown to be dependent on ERα. ERα is 
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expressed by hematopoietic cells at different stages and in different lineages including: 

HSCs, MPPs, common myeloid progenitors, common lymphoid progenitors, B cells, T 

cells, and myeloid cells (Sanchez-Aguilera, 2014).  

B cells are essential to the development of lupus. Lupus-prone mice without B cells have 

a completely attenuated lupus phenotype (Shlomchik, 1994). Estrogens have many 

effects on B cells which promote the development of autoimmunity. Estrogen signaling 

through ERα allows autoreactive B cells to escape negative selection at tolerance 

checkpoints by upregulating anti-apoptotic molecules, and promotes affinity maturation 

of autoreactive B cells (Grimaldi, 2002; Grimaldi, 2006; Hill, 2011; Guo, 2010). ERα also 

promotes the activation of B cells in female mice carrying lupus susceptibility loci 

(Yoachim, 2015).  

Additionally, CD4+ T cells are stimulated by E2 through ERα, resulting in a Th-1 immune 

response and IFN-γ production (Maret, 2003). In lupus-prone mice, ERα promotes T cell 

activation, and ERα knockout causes a significant decrease in the serum level of IFN-γ 

(Yoachim, 2015; Bynote, 2008). In contrast to its effect on CD4+ T cells, ERα signaling in 

antigen-presenting splenic macrophages leads to decreased stimulation of CD4+ T cells 

and a reduced Th-1 response (Lambert, 2005). These data suggest that ERα signaling 

regulates the immune response by causing different effects in different types of immune 

cells. 

Taken together, these data strongly suggest that ERα signaling in hematopoietic cells 

plays a role in the development of autoimmunity. Therefore, we were interested to 

investigate the effects of loss of ERα in hematopoietic cells on lupus. Because B cells 

play such a central role in lupus, and because of the strong evidence that ERα in B cells 

promotes the development of autoimmunity, we were also interested in the role that ERα 
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in B cells plays in lupus. The results of these studies will give new insight into the 

pathogenesis of lupus, and could reveal novel therapeutic targets for the treatment of 

lupus.  

Specific Aims  

Aim1: To determine how ERα signaling in hematopoietic cells impacts lupus in (NZB x 

NZW)F1 mice.  

The role of ERα in hematopoietic cells was examined using lupus-prone (NZB x NZW)F1 

chimeric mice transplanted with hematopoietic cells of a different ERα genotype. The 

engraftment of transplanted cells in these chimeric mice was determined by QPCR 

analysis of peripheral blood DNA. Additionally, the survival of host plasma cells was 

analyzed by QPCR of isolated plasma cells, and the antigen specificity of these cells 

was analyzed by ELISPOT. The development of lupus including autoantibody 

production, glomerulonephritis, and survival was analyzed in these mice. The results of 

these studies are presented in chapter 3. 

Aim 2: To determine how ERα signaling in B cells affects lupus in (NZB x NZW)F1 mice.  

To address the role of ERα in B cells on lupus, we produced (NZB x NZW)F1 mice with 

cre-mediated deletion of ERα specifically in B cells using the CD19-Cre knockin allele. 

The efficiency of cre-mediated deletion of ERα was examined using QPCR. Survival was 

monitored for up to one year. The production of antibodies and autoantibodies was 

analyzed by ELISA. Histology was used to assess the development of 

glomerulonephritis, and flow cytometry was used to assess the impact of ERα deletion 

on B cell development. The results of these studies are presented in chapter 4.  
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Chapter 3: Loss of estrogen receptor alpha in hematopoietic cells 
temporarily attenuates lupus and impacts hematopoietic 
reconstitution  

Abstract 

Estrogen signaling through ERα promotes lupus in lupus-prone (NZB x NZW)F1 mice. 

Knockout of ERα in (NZB x NZW)F1 mice significantly attenuates autoantibody 

production, glomerulonephritis, and mortality. We hypothesized that ERα signaling in 

hematopoietic cells was responsible for these effects. To investigate this, we created 

chimeric (NZB x NZW)F1 mice with different combinations of ERα+/+ and ERα-/- 

hematopoietic and non-hematopoietic cells. ERα-/- hematopoietic and ERα-/- non-

hematopoietic cells negatively impacted engraftment in female, but not male, mice. 

Female ERα+/+ mice given ERα-/- hematopoietic cells had a lower rate of engraftment 

than those given ERα+/+ cells, and female ERα-/- mice that received ERα+/+ hematopoietic 

cells had a low level of engraftment, which decreased over time. In mice that were 

successfully transplanted, the genotype of the transplanted bone marrow had no impact 

on the latency to development of albuminuria or the development of glomerulonephritis. 

Furthermore, there was no difference in the survival of ERα+/+ mice that were 

successfully transplanted with either ERα-/- or ERα+/+ hematopoietic cells. However, we 

did find that ERα+/+ females that received ERα-/- hematopoietic cells produced fewer 

autoantibodies at a young age. However, this difference did not persist over time. We 

postulate that the delayed production of pathogenic autoantibodies in ERα+/+ mice that 

were transplanted with ERα-/- hematopoietic cells was the result of residual host-derived 

(ERα+/+) plasma cells. Up to ten months after transplantation, host-derived plasma cells 

were detected in some female and male mice. Furthermore, through analysis of 

irradiated, but untransplanted mice, we showed that although immune cells were 

significantly depleted, a significant amount of ERα+/+ dsDNA-reactive plasma cells 



44 
 

survived irradiation.  Altogether, these data suggest that residual autoreactive ERα+/+ 

hematopoietic cells may be sufficient to drive lupus in (NZB x NZW)F1 mice. 

Additionally, these studies demonstrated that ERα signaling modulates the 

hematopoietic reconstitution potential in female mice.  
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Background  

ERα signaling promotes the pathogenesis of lupus in (NZB x NZW)F1 mice. It causes 

increased production of autoantibodies, increased glomerulonephritis, and shorter 

survival (Bynote, 2008; Li, 2007). These effects were observed in models where mice 

had ERα knockout or ERα stimulation throughout the body. Because these models 

looked at the effects of ERα in the entire body, they cannot be used to identify which cell 

type or types mediate the pathogenic effects of ERα. For this, other models must be 

developed where the effects of ERα can be examined in specific cell types.  

Hematopoietic stem cells give rise to the cells of the immune system including B cells, T 

cells, macrophages, and dendritic cells. Lupus patients have many hematologic 

abnormalities, including a reduced number of peripheral leukocytes. Some of the 

abnormalities observed in the immune cells of lupus patients may contribute to the 

development and survival of autoreactive B and T cells and the development of 

autoimmunity.  

Some of the immune alterations found in lupus patients are related to defective 

clearance of apoptotic cell debris, which can be a source of nuclear autoantigens if not 

properly degraded. Lupus patients have a higher proportion of apoptotic white blood 

cells, and are not able to clear apoptotic debris as rapidly as healthy people (Fan, 2014; 

Gaipl, 2007). Both monocyte-derived and tingible body macrophages from lupus patients 

are impaired in their ability to phagocytize apoptotic cells, which leads to the 

accumulation of apoptotic debris in germinal centers (Tas, 2006; Baumann, 2002). This 

free apoptotic debris can be taken up by follicular dendritic cells and presented to B 

cells, and lead to activation of autoreactive B cells (Gaipl, 2007).  
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Defective clearance of apoptotic bodies, and presentation of nuclear antigens by 

follicular dendritic cells can lead to the activation of autoreactive B cells, but lymphocytes 

from lupus patients have other characteristics which can also contribute to aberrant 

activation of the immune system. Anti-inflammatory Bregs from lupus patients have a 

decreased ability to inhibit T cell proliferation, independent of any lupus-related T cell 

defects (Gao, 2014).  Additionally, T cells from lupus patients have more rapid and 

robust responses to T cell receptor stimulation (Vassilopoulos, 1995; Liossis, 1998). 

Both CD4+ and CD8+ T cells substantially contribute to the production of anti-dsDNA IgG 

by B cells in lupus patients (Linker-Israeli, 1990). Alterations in B and T cell function can 

lead to synergistic B and T cell activation which, combined with a less effective Breg 

population, can lead to increased immune activation. This may contribute to the increase 

in B cells and plasma cells, and the higher percentage of activated B cells found in lupus 

patients (Fan, 2014; Korganow, 2010). 

Although these particular effects have not been explicitly linked to estrogen, estrogen 

affects the immune system in many ways that promote the development of 

autoimmunity. Estrogen (through ERα) promotes the development of autoreactive B cells 

by allowing high-affinity autoreactive B cells to escape negative selection at tolerance 

checkpoints (Grimaldi, 2006; Hill, 2011, Grimaldi, 2002). Estrogen also promotes B cell 

autoreactivity by promoting somatic hypermutation in the periphery, which can cause 

mutations that lead to an autoreactive BCR (Mai, 2010; Pauklin, 2009; Guo, 2010). 

Additionally, somatic hypermutation causes T cell activation and the formation of 

memory T cells (Jiang, 2012).  

In addition to its effects on B cell autoreactivity, estrogen may promote lupus by 

stimulating Th2 immune responses. E2 promotes the activation of both CD4+ and CD8+ 

T cells (Wang, 2008). Exposure to estrogen causes CD4+ T cells to produce fewer Th1 
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and more Th2 cytokines, thus promoting a humoral immune response (Polanczyk, 2005; 

Haghmorad, 2014). This is protective in the EAE model of multiple sclerosis (Lelu, 

2011), where E2 protects against the development of disease, but may be pathogenic in 

lupus which is mediated by the Th2 immune response. Additionally, E2 prevents Fas-

dependent apoptosis in activated Th2, but not Th1, cells by increasing Bcl-2 expression 

(Huber, 1999). A similar phenomenon is seen in lupus patients where estrogen inhibits 

the activation-induced apoptosis of T cells by down-regulating the expression of FasL 

(Kim, 2010).  

Not all T cells promote Th2 immune responses in response to estrogen signaling. iNKT 

cells produce IFN-γ, a Th1 cytokine, in response to estrogen signaling through ERα 

(Gourdy, 2005). Exposure to estrogens increases the number of T regs and enhances 

their capacity to suppress CD4+ effector T cells (Polanczyk, 2005). The anti-

inflammatory effects of Tregs have been suggested to be dependent on Treg intrinsic 

expression of ERα (McKarns, 2015). Thus, not all of the effects of ERα on hematopoietic 

cells promote immune stimulation and the development of autoimmunity.  

Additionally, estrogens promote autoimmunity by acting on myeloid lineage cells. 

Chronic ERα stimulation by E2 causes increased production of inflammatory cytokines 

and nitric oxide by macrophages (Calippe, 2008; Calippe, 2010). E2 promotes the 

differentiation of dendritic cells with potent antigen-presentation capabilities, which 

strongly promote the proliferation of CD4+ T cells (Paharkova-Vatchkova, 2004). ERα 

stimulation also causes dendritic cells to produce inflammatory IFN-α and TNF-α (Seillet, 

2012). Together, these studies show that ERα promotes autoimmunity though multiple 

mechanisms by acting on both lymphoid and myeloid cells. Therefore, we hypothesized 

that cells of the hematopoietic lineage are likely responsible for ERα’s role in promoting 

lupus. 
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To study the impact of ERα in hematopoietic cells on lupus, we created (NZB x NZW)F1 

chimeras by transplanting ERα-/- and ERα+/+ hematopoietic cells into mice with that were 

ERα+/+ elsewhere in the body.  Because ERα in stromal cells plays an important role in 

the development of the cells that the stroma supports (as demonstrated in the thymus 

and testis), we also transplanted ERα+/+ hematopoietic cells into ERα-/- and ERα+/- 

recipients.  

  



49 
 

Methods 

Production of experimental mice  

All animals were housed under conditions of controlled humidity, temperature, and 

lighting in facilities accredited by the American Association for Accreditation of 

Laboratory Animal Care, operating in accordance with standards set by the Guide for the 

Care and Use of Laboratory Animals. Mice had ad libitum access to 7904 Teklad 

Irradiated S-2335 Mouse Breeder Diet (Harlan Teklad, Madison, WI, USA). All 

procedures involving live animals were approved by the University of Nebraska Medical 

Center Institutional Animal Care and Use Committee.  

Age and sex matched (NZB x NZW)F1 mice between 8-12 weeks old were used as both 

cell donors and recipients for these studies. Recipient mice were irradiated with two 

doses of 5 Gy, 4 hours apart with a RS-2000 irradiator in the Biological Irradiator Core 

(RAD Source Technologies Inc., Alpharetta, GA, USA).  

Bone marrow and spleen cells were isolated from donor mice in a laminar flow hood 

under sterile conditions. Cells were suspended in RPMI cell culture medium (Gibco, 

Waltham, MA, USA) at 1x107 live cells/ 100 μl. Approximately 2x107 bone marrow cells 

and 1x107 splenocytes were injected i.v. via the tail vein immediately after the second 

dose of irradiation. Mice were given antibiotic-supplemented water (1 g/L neomycin and 

125 mg/L polymyxin B) 4 days before transplant until 2 weeks post-transplant, to prevent 

infections while the transplanted immune system was established (Sigma-Aldrich, St. 

Louis, MO, USA; Calbiochem, San Diego, CA, USA).  

The following combinations of transplants were performed. ERα+/+ or ERα-/- cells into 

ERαfl/+ recipients, and ERα+/+ cells into ERα+/- or ERα-/- recipients, outlined in Table 1. 
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The floxed (fl) allele of ERα is functionally a wild type allele, and (NZB x NZW)F1.ERα+/- 

mice develop lupus which is indistinguishable from (NZB x NZW)F1.ERα+/+  mice.  

Analysis of engraftment efficiency  

Blood was collected 8 weeks after transplant, and red blood cells lysed with ACK lysis 

buffer (Gibco).  DNA was then isolated with a DNeasy kit using the protocol for cultured 

cells (Qiagen, Hilden, Germany). Blood DNA was analyzed for engraftment using Sybr 

green (Applied Biosystems, Foster City, CA, USA) quantitative PCR (QPCR) and a 7500 

Real Time PCR System (Applied Biosystems). For ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ 

transplants, ERαfl F: 5’-CTATACGAAGTTATGGATCCCTAGC-3’ and ERαfl R: 5’-

CACATGCAGCAGAAGGTATTTG-3’ primers were used to detect the ERαfl allele (149 

bp product) and ERαEx5 F: 5’-GGAAGGCCGAAATGAAATGGG-3’ and ERαEx5 R: 5’-

CCAACAAGGCACTGACCATC-3’ primers were used to detect exon 5 of ERα (140 bp 

product). Exon 5 of ERα is identical in the ERαfl, ERα-, and ERα+ alleles. Grafts with 

≥95% efficient engraftment (<5% ERαfl DNA detected) were considered successful for 

these sets of transplants. For ERα+/+→ERα-/- and ERα+/+→ERα+/- transplanted mice, 

NeoC F: 5’-GGCATTCTGCACGCTTCAAA-3’ and NeoC R: 5’-

TTGTTCAATGGCCGATCCCA-3’ (104 bp product) primers were used to detect the ERα- 

allele, and compared to ERα exon 5. The NeoC primers over-reported the amount of 

ERα- DNA present in samples by ~5%, so the cutoff for successful engraftment was 

placed at 90%.  

Analysis of chemokines and receptors  

Bone marrow was collected from 3 month old (NZB x NZW)F1 ERα-/- and ERα+/+ mice. 

RNA was isolated from cells using the Absolutely RNA Miniprep Kit (Aligent 

Technologies, Santa Clara, CA, USA). Up to 2.5 μg RNA was converted to cDNA using 

SuperScript VILO Master Mix (Invitrogen, Carlsbad, CA, USA) and was diluted 1:80 
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before use. RT PCR was performed using Power SYBR Green PCR Master Mix (Applied 

Biosystems). The following primers were used: Cxcr4 F: 5’-

AAACCTCTGAGGCGTTTGGT-3’ and Cxcr4 R: 5’-GCAGGGTTCCTTGTTGGAGT-3’ 

(148 bp product), Cxcr7 F: 5’-ACAGGCTATGACACGCACTG-3’ and Cxcr7 R: 5’-

ACGAGACTGACCACCCAGAC-3’ (92 bp product), Cxcl12 F: 5’-

CAGAGCCAACGTCAAGCA-3’ and Cxcl12 R: 5’-AGGTACTCTTGGATCCAC-3’ (128 bp 

product). Each of these primers was normalized to GAPDH. The GAPDH primers were, 

F: 5’-TGCACCACCAACTGCTTAG-3’ and R: 5’-GGATGCAGGGATGATGTTC-3’ (177 

bp product).  

Survival studies 

Mice were monitored biweekly for albuminuria with Albustix (Bayer Corporation, Elkhorn, 

IN, USA). Upon a positive (2+ or greater) reading, mice were tested weekly. Mice were 

considered positive for albuminuria upon two consecutive readings of 2+ (100 mg/dl) or 

greater. Mice were also visually examined weekly for physical symptoms of distress. 

Mice were sacrificed upon two consecutive albuminuria readings of 4+ (>2000 mg/dl) or 

upon signs of significant distress. 

Serological analysis  

Enzyme Linked Immunosorbent Assay (ELISA) was used to measure serum antibody 

levels. Anti-chromatin IgG ELISA plates were made with Immulon 2 HB plates (Thermo 

Fisher Scientific, Waltham, MA, USA) coated with excess histone proteins and dsDNA. 

Diluted serum samples were incubated on the plate. The plate was washed, and then 

incubated with anti-mouse IgG HRP conjugate (EMD Millipore, Billerica, MA, USA). After 

washing, TMB substrate (Alpha Diagnostic International, San Antonio, TX, USA) was 

added for 20 minutes or until a significant color change developed, after which Stop 

Solution (Alpha Diagnostic International) was added to the wells, and the plate was read 
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on a 96 well microplate reader at 450 nm. For wash steps, 0.05% Tween-20 in PBS was 

used. Anti-dsDNA IgG ELISAs were done with Immulon 2 HB plates (Thermo Fisher 

Scientific) coated with only dsDNA, and the same procedure was followed as for the 

anti-chromatin ELISAs.  

Flow cytometry  

To assess cells by flow cytometry, bone marrow and spleen cells were isolated from 

mice at the end of the survival study. Bone marrow cells were gently pipetted up and 

down and spleen cells were passed through a 70 μm cell strainer (Thermo Fisher 

Scientific) to create single cell suspensions. Red blood cells were lysed with ACK lysis 

buffer (Gibco) and stained with combinations of CD138 PE, CD19 APC, CD27 V450, 

CD4 PE, CD25 APC-Cy7, CD62L APC, CD69 FITC, CD80 FITC, and CD86 PE (all BD 

Biosciences, San Jose, CA, USA). Propidium iodide was used as a live/dead stain (BD 

Biosciences). Cells were fixed with 0.6% formalin. Flow cytometry was performed with a 

BD LSRII Flow Cytometer and analyzed with FACSDiva software (BD Biosciences, v. 

8.0).  

Periodic acid-Schiff staining and analysis  

Kidneys were collected from mice upon death or sacrifice at the end of the survival study 

and fixed in 10% formalin for 24 hours. Fixed kidneys were paraffin embedded, 

sectioned, stained with the Periodic Acid-Schiff Kit (Sigma-Aldrich), and analyzed by 

light microscopy. One hundred glomeruli per kidney were evaluated as previously 

described (Bynote, 2008). Briefly, kidneys with 20-50% affected glomeruli have 

moderate glomerulonephritis, and those with < 50% affected glomeruli have severe 

glomerulonephritis. 
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Plasma cell isolation and genotyping 

Plasma cells were isolated from mice at the time of death or at one year of age. Briefly, 

single cell suspensions were made from the bone marrow and spleen, and red blood 

cells were lysed. The CD138+ plasma cell kit and AutoMacs (Miltenyi Biotech, Bergisch-

Gladbach, Germany) were used to isolate CD138+ plasma cells. DNA was collected from 

these cells using the DNeasy kit (Qiagen) and QPCR was performed as described 

above for engraftment efficiency using ERαfl and ERαEx5 primers.  

ELISPOT  

To examine the potential of autoreactive plasma cells to survive irradiation, 10 week old 

mice were irradiated with two doses of 5 Gy four hours apart, but were not injected with 

cells from a donor mouse. After irradiation, mice were monitored three times daily for 

signs of distress. 7-8 days after irradiation, mice were sacrificed and bone marrow and 

spleen cells were collected, single cell suspensions made, and stained for fluorescence 

activated cell sorting (FACS) with CD138-PE, MHCII-V500, and propidium iodide as a 

live dead gate (BD Biosciences). FACS was used to purify populations of live long-lived 

(CD138+ MHCIIlo) and short-lived (CD138+ MHCIIhi) plasma cells. Cells were sorted with 

a FACSAria II (BD Biosciences). Isolated cells in RPMI +10% fetal bovine serum were 

applied to an Immulon 2 HB plate coated with dsDNA and were incubated at 37ºC with 

6% CO2 in a humid environment for 24 hours. Biotinylated anti-mouse IgG (Vector 

Laboratories, Burlingame, CA, USA) was applied, followed by streptavidin-alkaline 

phosphatase (Southern Biotech, Birmingham, AL, USA). Next, 1 mg/ml 5-bromo-4-

chloro-3-indolyl phosphate (Sigma-Aldrich) in AMP buffer was applied until colored spots 

developed. The plate was rinsed with running water and spots counted under a 

dissecting microscope.  
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Statistics 

Statistical analysis was done using SPSS software (IBM, v. 23). P values of less than or 

equal to 0.05 are considered significant. Kaplan Meyer survival curves and log rank tests 

were used to evaluate survival. A 2-sided Fisher’s exact test was used to analyze the 

engraftment efficiency of ERαfl transplants. Student’s t tests were used to evaluate the 

efficiency of some transplant, ELISA, flow cytometry, histology, and QPCR data.  
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Results 

Production of Experimental Animals  

To analyze the effect of ERα in hematopoietic cells on lupus in (NZB x NZW)F1 mice, we 

produced two sets of chimeric mice. The first set was designed to compare the effects of 

ERα-/- and ERα+/+ hematopoietic cells in ERα+/+ (NZB x NZW)F1s. The second set used 

ERα+/+ hematopoietic cells in both ERα-/- and ERα+/- recipients to evaluate the 

contributions of ERα in non-hematopoietic cells to lupus. The first set of chimeras was 

produced by transplantation of ERα+/+ or ERα-/- bone marrow into lethally irradiated 

ERαfl/+ recipients (ERα+/+→ERαfl/+ and ERα-/-→ERαfl/+). The loxP sites in the ERαfl allele 

are located in introns surrounding ERα exon 3, and functions as ERα+ allele when it has 

not undergone recombination (as is the case in this cre recombinase-free system) 

(Dupont, 2000). Transplantation of hematopoietic cells to ERαfl/+ recipients allowed us to 

detect cells derived from the host mouse in QPCR assays.  

The second set of chimeric mice was produced by transplanting ERα+/+ bone marrow 

into lethally irradiated ERα+/- or ERα-/- mice (ERα+/+→ERα+/- and ERα+/+→ERα-/-). For this 

set of chimeras, cells from the host can be detected by QPCR for the null allele of ERα. 

ERα+/- mice were used as recipients because the null allele of ERα could be detected by 

QPCR to determine engraftment efficiency. Heterozygosity for the null allele of ERα has 

no impact on the lupus phenotype in (NZB x NZW)F1 mice (Bynote, 2008). The chimeric 

mice used for these studies are named so that the first genotype indicates the donated 

hematopoietic cells and the second indicates the genotype of the recipient mouse and 

the non-hematopoietic cells (Table 3.1).  
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Table 3.1 The ERα genotype of hematopoietic and non-hematopoietic cells in 

chimeric mice  

Transplant Hematopoietic cells Non-hematopoietic cells 

ERα-/-→ERαfl/+ ERα-/- ERαfl/+ 

ERα+/+→ERαfl/+ ERα+/+ ERαfl/+ 

ERα+/+→ERα-/- ERα+/+ ERα-/- 

ERα+/+→ERα+/- ERα+/+ ERα+/- 
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Optimization of the Transplantation Protocol 

Before these experiments began, preliminary experiments were carried out to optimize 

the transplantation protocol. Different strains of mice can tolerate different amounts of 

irradiation, and when we began these experiments there was no information available 

about the amount of irradiation (NZB x NZW)F1 mice could tolerate. A protocol from 

another lab at our institution specified that mice should be irradiated with 10 Gy (1000 

rad) prior to transplant to produce chimeric mice (Garg, 2009). When 10 Gy of x-ray 

irradiation was administered to (NZB x NZW)F1 mice in a single dose, followed 

immediately by cell transplant, mice lost an average of 15% of their body weight and 

showed visible signs of distress  before they died, an average of 12 days after the 

procedure. Other available protocols specified that irradiation should be given in a split 

dose, with a four hour gap between doses. When (NZB x NZW)F1 mice were irradiated 

with a split dose of irradiation (5 Gy, then four hours later 5 Gy) and then immediately 

transplanted with hematopoietic cells, the mice did not develop visible signs of distress, 

and only lost an average of 3% of their initial body weight after 2 weeks. The survival of 

(NZB x NZW)F1s treated with single and split dose irradiation is shown in Figure 3.1a. 

To determine if the irradiation and transplantation procedure had a significant impact on 

the long-term survival of (NZB x NZW)F1 mice, the survival of a small group of female 

mice transplanted with ERα+/- bone marrow was monitored. These mice had a median 

survival of 211 days, which is not different from the 239 day median survival time of 

unirradiated ERα+/- females (Figure 3.1b). Thus, this split dose irradiation protocol did not 

negatively impact the median survival time in (NZB x NZW)F1 mice.   

ERα is necessary for Efficient Bone Marrow Engraftment in Females but not Males 

The engraftment efficiency of bone marrow transplants was measured with DNA isolated 

from peripheral blood 8 weeks after transplant. The efficiency of ERα-/-→ERαfl/+ and  
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Figure 3.1 Split dose irradiation does not significantly affect survival of (NZB x 

NZW)F1 mice 
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Figure 3.1 Split dose irradiation does not significantly affect survival of (NZB x 

NZW)F1 mice 

(NZB x NZW)F1 mice were irradiated with 10 Gy of x-ray irradiation in single and split 

doses and transplanted with hematopoietic cells. (a) Mice that received a single dose of 

irradiation died soon after transplant while mice that received a split dose survived much 

longer (p=0.003). The median survival (b) is not different between female mice treated 

with a split dose of irradiation and female mice that were not irradiated.   
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ERα+/+→ERαfl/+ transplants was determined by measuring the relative abundance of 

recipient-derived DNA (as measured by the ERαfl allele) by QPCR. Efficiency of 

ERα+/+→ERα-/- and ERα+/+→ERα+/- transplants was determined by measuring the amount 

of recipient-derived DNA (as measured by the ERα- allele) by QPCR. ERα-/-→ERαfl/+ and 

ERα+/+→ERαfl/+ transplants with ≥ 95% engraftment were considered successful, and 

unsuccessfully transplanted mice were excluded from further studies. The primers used 

to measure ERα- DNA slightly over-represent the amount of ERα- DNA in each sample, 

so in engraftment is slightly overestimated in ERα+/+→ERα-/- and ERα+/+→ERα+/- 

transplants, so mice with ≥ 90% estimated engraftment were considered successful.  

For female mice, there was a statistically significant difference in the transplant efficiency 

between mice with different ERα genotypes in hematopoietic cells. In females, the 

success rate of the ERα-/-→ERαfl/+ grafts was significantly less than that of the 

ERα+/+→ERαfl/+ grafts (Figure 3.2a). Among ERα-/-→ERαfl/+ females, only 35% had 

successful grafts, with a median of 90% engraftment, while in ERα+/+→ERαfl/+ females, 

68% had successful grafts with a median of 100% engraftment.  

There was also a statistically significant difference in the transplant efficiency, measured 

8 weeks after transplant, between female mice with different ERα genotypes of non-

hematopoietic cells. The estimated rate of engraftment in ERα+/+→ERα-/- females was 

significantly lower than in ERα+/+→ERα+/- females (Figure 3.2b). Among ERα+/+→ERα+/- 

females the median estimated engraftment was 88.5%, while in ERα+/+→ERα-/- females 

the median estimated engraftment of was 39%.  This indicates that loss of ERα in both 

hematopoietic and non-hematopoietic cells significantly impacts the success of 

hematopoietic reconstitution in females.  
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Figure 3.2 Loss of ERα causes impaired hematopoietic reconstitution in female 

mice 
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Figure 3.2 Loss of ERα causes impaired hematopoietic reconstitution in female 

mice 

Engraftment efficiency was detected by QPCR of DNA from peripheral blood. (a) The 

group of female ERα-/-→ERαfl/+ chimeras had significantly fewer successful transplants 

compared to ERα+/+→ERαfl/+ females (p=0.047). (b) Female ERα+/+→ERα-/- chimeric 

mice also had significantly lower rates of engraftment compared to ERα+/+→ERα+/- 

females (p=0.016). Among male mice (c-d) the ERα genotype of hematopoietic and non-

hematopoietic cells did not affect transplant success. 
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The engraftment efficiency in male mice did not depend on ERα genotype. There was no 

difference in the proportion of successful transplants between ERα-/-→ERαfl/+ and 

ERα+/+→ERαfl/+ males (Figure 3.2c). 73% of ERα-/-→ERαfl/+ males had successful grafts 

with a median engraftment of 100%, and 80% of ERα+/+→ERαfl/+ males had successful 

grafts with a median of 100% engraftment. Likewise, ERα+/+→ERα-/- and ERα+/+→ERα+/- 

male mice did not differ in transplantation efficiency (Figure 3.2d). The median estimated 

engraftment efficiency was 90% for ERα+/+→ERα-/- males, and 93% for ERα+/+→ERα+/- 

males. Therefore, loss of ERα in either hematopoietic or non-hematopoietic cells does 

not impact the success of hematopoietic reconstitution in males.  

In addition to successful initial engraftment (measured 8 weeks after transplant, at about 

4 months of age), successful bone marrow transplants must be able to maintain 

engraftment over time. To assess engraftment efficiency over time, we isolated DNA 

from blood collected at monthly intervals, and used QPCR to measure the ERαfl or ERα- 

DNA originating from the host in selected samples. At least 3 mice of each sex and 

genotype were evaluated at 6 months of age, and some were additionally evaluated at 8 

and 10 months of age.  

In both female and male ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ mice, the engraftment 

efficiency was stable between 4-8 months of age for females and 4-10 months for males 

(Figures 3.3a-d). The degree of engraftment did not significantly decrease in either set of 

female mice between 4-6 months, or male ERα-/-→ERαfl/+ mice between 4-10 months. 

The degree of engraftment did significantly decrease between 4 and 10 months in 

ERα+/+→ERαfl/+ males, however this was a small decrease, corresponding to less than 

2% per month (average 100% at 4 months vs 93% at 10 months).  

  



64 
 

  

Figure 3.3 part 1 Engraftment efficiency decreases over time in female 

ERα+/+→ERα-/- chimeras 
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Figure 3.3 part 2 Engraftment efficiency decreases over time in female 

ERα+/+→ERα-/- chimeras 
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Figure 3.3 Engraftment efficiency decreases over time in female ERα+/+→ERα-/- 

chimeras  

Engraftment efficiency was measured at later time points. The engraftment efficiency did 

not change significantly between 4 and 8 months in (a) female ERα+/+→ERαfl/+ chimeras, 

(b) female ERα-/-→ERαfl/+ chimeras, or between 4 and 10 months in (d) male 

ERα+/+→ERαfl/+ chimeras. In (c) ERα-/-→ERαfl/+ males engraftment decreased slightly but 

significantly between 4 and 10 months, at a rate of less than 2% per month (p=0.01). 

The engraftment of (f) female ERα+/+→ERα-/-chimeras decreased significantly between 4 

and 6 months (p=0.03), but no decrease in engraftment occurred between 4 and 6 

months in (e) female ERα+/+→ERα+/- mice, (g) male ERα+/+→ERα+/- mice, or (h) 

ERα+/+→ERα-/-male mice.  
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The engraftment efficiency of ERα+/+→ERα+/- and ERα+/+→ERα-/- chimeras was re-

measured at 6 months of age. In female ERα+/+→ERα-/- chimeras, there was a significant 

decrease in engraftment efficiency between 4 and 6 months of age (Figure 3.3f). On 

average, the amount of donor-derived DNA detected in these mice decreased by 14% 

over this period, although this amount varied by individual. Female ERα+/+→ERα+/- and 

male ERα+/+→ERα-/- and ERα+/+→ERα+/- chimeras had stable engraftment, and there was 

no significant variation in engraftment between 4 month and 6 months (Figure 3.3e,g,h). 

Therefore, in female mice, loss of ERα in recipient mice transplanted with ERα+/+ 

hematopoietic cells results in a progressive decrease in the proportion of ERα+/+ 

hematopoietic cells. This effect is not observed in female ERα-/-→ERαfl/+ mice which also 

had lower engraftment efficiency 8 weeks after transplant compared to controls. In male 

mice, the ERα genotype of hematopoietic and non-hematopoietic cells does not cause a 

large progressive decrease in engraftment efficiency.  

CXCR4, CXCR7, and CXCL12 Expression is Not Affected by ERα  

The success of hematopoietic reconstitution was affected by the ERα genotype of 

hematopoietic cells and non-hematopoietic cells in female, but not male mice. The 

chemokine CXCL12 mediates localization of HSCs to the stem cell niche by interacting 

with the chemokine receptors CXCR4 and CXCR7 on hematopoietic cells. The 

expression of these is regulated by estrogen (Boudot, 2011; Li, 2013). A change in the 

expression of one or more of these molecules could be responsible for impaired 

hematopoietic reconstitution in female mice. 

Therefore, we examined the expression of CXCL12, CXCR4, and CXCR7 in global 

ERα+/+ and ERα-/- mice. RNA was isolated from the bone marrow of ERα+/+ and ERα-/- 

mice, and analyzed by QRT-PCR for CXCR4, CXCR7, and CXCL12, and compared to 
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GAPDH. We found no significant differences in the expression of CXCR4, CXCR7, or 

CXCL12 in bone marrow cells from ERα+/+ and ERα-/- mice (Figure 3.4).  

ERα in Hematopoietic Cells Does Not Affect Albuminuria or Survival  

Although they do not all develop disease at exactly the same time, (NZB x NZW)F1 mice 

develop lupus at a predictable rate. Females develop and succumb to disease several 

months before males. ERα+/+ females develop albuminuria with a median latency of 201 

days, while ERα+/+ males develop albuminuria at a median latency of 335 days (Bynote, 

2008). The median lifespan for ERα+/+ females is 238 days and for ERα+/+ males is 321 

days (Bynote, 2008). ERα-/- (NZB x NZW)F1 mice have significantly delayed albuminuria 

and prolonged survival. For female (NZB x NZW)F1 mice, loss of ERα  increases the 

median survival time by >308 days, and median survival is extended by 113 days in 

males (Bynote, 2008). Therefore, loss of ERα has a greater impact on lupus in female 

mice.  

In this study, albumin in the urine, or albuminuria, was measured as a non-invasive way 

to assess renal function. Albumin is a protein which is excluded from the urine by healthy 

kidneys, but is present in the urine of individuals with nephritis, and an increased 

concentration of albumin correlates with increased kidney damage. These chimeric mice 

were also monitored for survival until they reached a maximum of one year of age.  

In ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ female mice with successful engraftment, there 

was no difference in the incidence and latency to albuminuria (Figure 3.5a). 83% of  

ERα-/-→ERαfl/+ and 92% of ERα+/+→ERαfl/+ females developed detectable albuminuria 

before death, at a median age of 234 and 244 days, respectively. Similarly, there was no 

difference in the survival of ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ females (Figure 3.5b). 

The median survival of ERα-/-→ERαfl/+ females was 258 days, which is not different from  
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Figure 3.4 Expression of chemokine receptors is not affected by ERα deficiency 
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Figure 3.4 Expression of chemokine receptors is not affected by ERα deficiency 

Levels of CXCR4, CXCR7, and CXCL12 mRNA were quantitatively measured in bone 

marrow cells from ERα+/+ and ERα-/- mice. There were no significant differences in 

mRNA levels in (a) female or (b) male mice.  
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Figure 3.5 The ERα genotype of hematopoietic cells does not impact the survival 

of (NZB x NZW)F1 chimeras 
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Figure 3.5 The ERα genotype of hematopoietic cells does not impact the survival 

of (NZB x NZW)F1 chimeras  

(a) Albuminuria was measured in female ERα+/+→ERαfl/+ and ERα-/-→ERαfl/+ mice, and 

no difference was found in the median latency to albuminuria. Survival was monitored for 

up to one year in (b) female and (c) male ERα+/+→ERαfl/+ and ERα-/-→ERαfl/+ mice, and 

there was no difference in the median survival in mice of either sex.  
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the 271 day median survival of ERα+/+→ERαfl/+  females. This suggests that, in female 

mice, the ERα genotype of hematopoietic cells does not affect the development of lupus. 

Albuminuria and survival were initially monitored in ERα+/+→ERα+/- and ERα+/+→ERα-/- 

chimeric mice. However, after it became clear that the engraftment in ERα+/+→ERα-/- 

females was uniformly unsuccessful, the albuminuria and survival studies were 

discontinued. All remaining mice in this arm of the study were sacrificed at six months of 

age.  

No female mice from the ERα+/+→ERα-/- group achieved successful engraftment, so 

these mice have a hematopoietic compartment which consists of a mixed population of 

ERα+/+ and ERα-/- cells. When mice from this group were compared to ERα+/+→ERα+/- 

mice, there was no difference in survival (Figure 3.6a). ERα+/+→ERα-/- females had a 

median survival of 247 days, and ERα+/+→ERα+/- females had a median survival of 278 

days. Because the hematopoietic compartment of ERα+/+→ERα-/- females is a mixed 

population, we cannot draw conclusions about the impact of ERα in non-hematopoietic 

cells on lupus with these mice.  

Albuminuria was not accurately assessed in males, because I was not able to 

consistently express urine in male mice, so albuminuria data will not be presented for 

males, but the survival of males was monitored for up to one year. There was no 

difference in the survival of ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ male mice (Figure 3.5c). 

ERα-/-→ERαfl/+ males had a median survival time of 338 days, and ERα+/+→ERαfl/+ males 

had a median survival time of 358 days. This suggests that the ERα genotype of 

hematopoietic cells does not affect survival in male mice.  
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Figure 3.6 The ERα genotype of non-hematopoietic cells does not impact the 

survival of chimeric (NZB x NZW)F1s  
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Figure 3.6 The ERα genotype of non-hematopoietic cells does not impact the 

survival of chimeric (NZB x NZW)F1s  

Survival was monitored for up to one year. In (a) female mice, including mice with 

inefficient engraftment, survival was not different in ERα+/+→ERα+/- and ERα+/+→ERα-/- 

mice. (b) There was no difference in the survival of ERα+/+→ERα+/- and ERα+/+→ERα-/- 

male mice. 
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There was no difference in the survival of ERα+/+→ERα-/- and ERα+/+→ERα+/- male mice 

(Figure 3.6b). Neither group of male mice reached 50% mortality over the course of this 

study, so the median survival could not be calculated for these groups.  

Together, these survival studies suggest that ERα-/- hematopoietic cells are unable to 

attenuate lupus in female and male mice. Additionally, in male mice, no difference in 

survival was observed in mice with ERα-/- and ERα+/+ non-hematopoietic cells, which 

suggests that ERα in non-hematopoietic cells does not affect the development of lupus. 

Hematopoietic Estrogen Receptor Alpha Influences Autoantibody Production 

(NZB x NZW)F1 lupus-prone mice produce antibodies against many nuclear antigens. 

To determine the effect of hematopoietic ERα expression on autoantibody production, 

ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ mice with successful engraftment were evaluated for 

autoantibody production using serum samples collected at monthly intervals. Non- 

pathogenic anti-chromatin IgG autoantibodies, which are among the first autoantibodies 

detected in lupus, were measured in female ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ mice at 

5, 6, and 7 months of age. At 5 months of age, both groups produced very little anti-

chromatin IgG and there was no difference in antibody production between these 

groups. However, at 6 months of age ERα+/+→ERαfl/+ females produced significantly 

more anti-chromatin IgG than ERα-/-→ERαfl/+ females (Figure 3.7a). At 7 months of age, 

there was no difference in the amount of anti-chromatin IgG produced by the two groups. 

In both groups of chimeric mice, there is a trend of increasing antibody production as 

mice age, which is consistent with previous observations in (NZB x NZW)F1 mice. These 

data suggest that female mice with ERα-/- hematopoietic cells have attenuated lupus at 6 

months, but by 7 months this attenuation is overcome and immune activation is similar to 

females with ERα+/+ hematopoietic cells.   
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Figure 3.7 Fewer autoantibodies are produced by female ERα-/- → ERαfl/+ chimeras 

at 6 months of age 
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Figure 3.7 Fewer autoantibodies are produced by female ERα-/- → ERαfl/+ chimeras 

at 6 months of age 

(a) Serum α-chromatin IgG was measured by ELISA in female ERα+/+→ERαfl/+ and ERα-/-

→ERαfl/+ mice at 5, 6, and 7 months of age. ERα-/-→ERαfl/+ mice produced significantly 

less α-chromatin IgG at 6 months of age (p=0.006). (b) Anti-dsDNA IgG antibodies were 

measured in the same mice at 6, 7, and 8 months of age in the same mice. At 6 months 

ERα-/-→ERαfl/+ mice produced less anti-dsDNA IgG. (c) Anti-dsDNA IgG was measured 

in male mice at 8 months of age, and there was no difference in antibody production 

between ERα+/+→ERαfl/+ and ERα-/-→ERαfl/+ males.  
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Pathogenic anti-dsDNA IgG autoantibodies were measured at 6, 7, and 8 months of age 

in ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ females. Anti-dsDNA IgG production followed the 

same trend that was observed with anti-chromatin IgG production in these mice. At 6 

months of age, ERα+/+→ERαfl/+ females produced significantly more anti-dsDNA IgG than 

ERα-/-→ERαfl/+ females (Figure 3.7b). However, by 7 and 8 months of age there was no 

difference in the anti-dsDNA IgG production between these groups. As with anti-

chromatin IgG, anti-dsDNA IgG usually increases over time in (NZB x NZW)F1 mice. 

This was observed in these experimental mice until 8 months of age, by which time 

many of the sickest mice had died, and the average level of anti-dsDNA IgG plateaued. 

Therefore, female mice with ERα-/- hematopoietic cells produced less anti-dsDNA IgG at 

6 months of age, but as these mice aged, autoimmunity was activated, and lupus was no 

longer attenuated.  

The latency to death in chimeric mice is similar between females at 6 months of age, 

and males at 8 months of age; therefore, anti-dsDNA IgG production was measured in 

ERα+/+→ERαfl/+ and ERα-/-→ERαfl/+ males at 8 months of age. Male mice produce the 

same amount of this antibody at 8 months of age (Figure 3.7c).   

B and T cell Populations Are Unaffected by Hematopoietic ERα  

ERα affects the development of many types of immune cells. Plasma cells and activated 

B and T cells are cells associated with more aggressive lupus, while other immune cells, 

like Tregs, negatively regulate the immune response. We examined several lymphocyte 

populations in the bone marrow and spleens of chimeric mice to see if ERα expression 

in hematopoietic cells affected these populations. The cells for this experiment were 

collected when mice were removed from the survival study due to signs of illness. A 

large proportion of male mice survived until the end of the study without developing 

signs of illness. This, combined with the relatively small number (n = 15/ group) of mice 
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produced for these studies, resulted in a very small number of ill male mice. Therefore, 

we were not able to capture data from enough ill males to compare ERα+/+→ERαfl/+ and 

ERα-/-→ERαfl/+ mice. Almost all female mice showed signs of illness over the course of 

the study, so we were able to capture data from enough ERα+/+→ERαfl/+ and             

ERα-/-→ERαfl/+ female mice to compare these two groups.  

No differences were found in the percentage of plasma cells, memory B cells, or Tregs 

in either the bone marrow or spleens of ERα+/+→ERαfl/+ and ERα-/-→ERαfl/+ female mice 

(Table 3.2). This indicates that at the end-stage of disease, the sizes of these B and T 

cell populations are not different in mice with and without ERα expression in 

hematopoietic cells.  

One consequence of knockout of ERα in (NZB x NZW)F1 mice is a dramatic reduction in 

the activation of B and T cells (Gould lab, unpublished data). Activation of B and T cells 

was also examined in female ERα+/+→ERαfl/+ and ERα-/-→ERαfl/+ mice. There was no 

difference in the percentage of activated B cells or activated T cells in the spleen (Table 

3.3). This indicates that, at least at the end stage of disease, ERα-/- and ERα+/+ 

hematopoietic cells are similarly activated in (NZB x NZW)F1 chimeras.  

ERα Does Not Impact the Development of Moderate to Severe Glomerulonephritis  

In order to determine if the development of glomerulonephritis was affected by ERα in 

hematopoietic and non-hematopoietic cells, kidneys were collected at the end of the 

survival study. Kidneys sections were stained with Periodic acid-Schiff, and analyzed for 

signs of nephritis. All kidneys that were examined from ERα+/+→ERαfl/+ and               

ERα-/-→ERαfl/+ mice had moderate to severe glomerulonephritis (Figure 3.8a). There was 

no difference in percentage of affected glomeruli between ERα+/+→ERαfl/+ and           

ERα-/-→ERαfl/+ females; the mean percent of affected glomeruli was 78% and 80%,  
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Table 3.2 Lymphocyte populations in chimeric mice 

 
Bone marrow Spleen 

 
ERα-/-→ERαfl/+ ERα+/+→ERαfl/+ ERα-/-→ERαfl/+ ERα+/+→ERαfl/+ 

% Plasma cells 5.4 ± 1.3 8.0 ± 3.8 2.5 ± 0.3 2.4 ± 0.05 

% Total memory 
B cells 

3.2 ± 1.2 4.7 ± 1.3 5.4 ± 1.2 1.3 ± 0.3 

% T regulatory 
cells 

6.0 ± 2.0 8.2 ± 5.8 4.1 ± 2.0 6.4 ± 1.6 

 

Plasma cells- % of live CD138+ cells  

Total memory B cells- % of CD27+ of live CD19+ cells  

T regulatory cells- % of CD25+ CD62Llo of live CD4+ cells  
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Table 3.3 B and T cell activation in the spleen  

 

ERα-/-→ERαfl/+ ERα+/+→ERαfl/+ 

% Activated B cells 12.4 ± 2.1 13.0 ± 3.3 

% Activated T cells 17.5 ± 4.8 18.9 ± 3.9 

 

Activated B cells- % of CD80/86+ of live CD19+ cells 

Activated T cells- % of CD69+ of live CD4+ B cells  
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Figure 3.8 part 1 Chimeric (NZB x NZW)F1 mice develop severe glomerulonephritis 

at the same frequency 
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Figure 3.8 part 2 Chimeric (NZB x NZW)F1 mice develop severe glomerulonephritis 

at the same frequency 
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Figure 3.8 Chimeric (NZB x NZW)F1 mice develop severe glomerulonephritis at the 

same frequency 

Kidneys collected at the end of the survival study were stained with PAS and evaluated 

for glomerulonephritis. (a) Almost all kidneys from the ERα+/+→ERαfl/+ and ERα-/-→ERαfl/+ 

chimeras had severe glomerulonephritis and those that did not had moderate 

glomerulonephritis. (b) Although few mice in the ERα+/+→ERα+/- and ERα+/+→ERα-/- 

groups were kept until the end of the survival study, the kidneys from these mice all had 

moderate or severe glomerulonephritis. Representative sections from (c) female 

ERα+/+→ERαfl/+, (d) female ERα-/-→ERαfl/+, (e) male ERα+/+→ERαfl/+, and (f) male ERα-/-

→ERαfl/+ chimeras are shown. 
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respectively. Similarly, there was no difference in the percentage of affected glomeruli in 

males. Male ERα+/+→ERαfl/+ mice had an average of 77% affected glomeruli, while   

ERα-/-→ERαfl/+ males had an average of 74% affected glomeruli. Representative images 

of PAS-stained kidneys from each of these groups are shown (Figure 3.8c-f).  

Because the survival studies for ERα+/+→ERα+/- and ERα+/+→ERα-/- mice were 

terminated prematurely, there were few samples available from mice that had completed 

the survival study in which to analyze glomerulonephritis. However, 2-4 samples per 

group were analyzed, and all showed signs of moderate to severe glomerulonephritis 

(Figure 3.8b). All types of chimeric mice from these studies developed 

glomerulonephritis characteristic of lupus in (NZB x NZW)F1 mice. Therefore, these 

mice are dying from lupus-related causes, not as a side effect of the irradiation and 

transplantation procedure.  

Autoreactive Plasma Cells Survive Irradiation   

ELISA data indicated that the development of autoimmunity is delayed in ERα-/-→ERαfl/+ 

females compared to ERα+/+→ERαfl/+ females, which supported our hypothesis that ERα 

in immune cells promotes lupus. However, the subsequent increase in autoantibody 

production suggested that somehow ERα-/- immune cells became activated and were 

driving the progression of lupus. If ERfl/+ host-derived plasma cells were driving 

autoantibody production in 7 and 8 month old ERα-/-→ERαfl/+  female mice, this could 

also be the reason that we did not observe a difference in survival between mice with 

ERα-/- and ERα+/+ hematopoietic cells.  

In an effort to address the hypothesis that the failure to see attenuation of lupus in    

ERα-/-→ERαfl/+ mice was due to antibody production by residual, host-derived ERαfl/+ 

plasma cells, we looked for the presence of ERαfl/+ plasma cells in mice at the end of the 
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survival study. CD138+ plasma cells were isolated with a magnetic column, DNA was 

isolated, and QPCR used to detect the amount of DNA derived from host plasma cells. 

DNA from the ERαfl/+ host could be detected in 60% of plasma cell samples from bone 

marrow and 62.5% from spleen (Figure 3.9a). Overall, ERαfl/+ DNA was detected in 6 of 

9 mice used for this experiment from both ERα+/+→ERαfl/+ and ERα-/-→ERαfl/+ mice. All of 

the mice in which ERαfl/+ plasma cell DNA was not detected were one year old, so it is 

possible that ERαfl/+ plasma cells could have been detected in these mice at a younger 

age. This indicates that long-lived plasma cells may survive irradiation, and persist for 7-

10 months after irradiation.  

Although detection of ERαfl/+ plasma cells in chimeric mice indicated that some host 

plasma cells either survived irradiation or arose from cells that did, this experiment did 

not address the specificity of these cells. To determine if host dsDNA-reactive plasma 

cells survived irradiation, young (NZB x NZW)F1 mice were irradiated and not injected 

with replacement bone marrow. After one week, plasma cells were isolated and anti-

dsDNA IgG ELISpot was performed. Figure 3.9b shows an example of ELISpot wells 

containing blue-green spots which represent dsDNA-reactive plasma cells. 

Irradiation of young mice caused a greater than ten-fold decrease in the number of live 

cells recovered from the bone marrow and spleen. Accordingly, after one week the 

spleen weight was reduced by 65-75% in irradiated mice compared to unirradiated 

littermate controls. Live long-lived plasma cells (PI- CD138+ MHCIIlo) and short-lived 

plasma cells (PI- CD138+ MHCIIhi) were isolated from the bone marrow and spleen and 

applied to a plate coated with dsDNA. 

dsDNA-reactive long-lived and short-lived plasma cells were detected in the spleen and 

bone marrow of young, irradiated mice. The percent of dsDNA-reactive cells ranged 
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from 0.27-0.41% (Table 3.4). This is a relatively high percentage of plasma cells to be 

reactive to a single antigen. These results show that pathogenic dsDNA-reactive plasma 

cells can survive irradiation in 10 week old (NZB x NZW)F1 mice. These residual 

pathogenic cells may be sufficient to cause lupus in these mice.  
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Figure 3.9 Autoreactive plasma cells from the host survive irradiation 
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Figure 3.9 Autoreactive plasma cells from the host survive irradiation 

Plasma cells were isolated from ERα+/+→ERαfl/+  and ERα-/-→ERαfl/+ mice at the end of 

the survival study, and the origin of the cells was evaluated by QPCR. (a) Plasma cells 

from host mice were detected in the bone marrow and spleen of mice which had 

received both ERα+/+ and ER-/- transplants. (b) An example of an ELISPOT plate 

showing dsDNA-reactive plasma cells.  
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Table 3.4 dsDNA-reactive plasma cells survive irradiation in young (NZB x NZW)F1 

mice  

 Long-lived plasma cells Short-lived plasma cells 

Spleen 0.27 ± 0.07% 0.41 ± 0.29% 

Bone marrow 0.37 ± 0.09% 0.41 ± 0.07% 

 
Long-lived plasma cells (PI- CD138+ MHCIIlo) 
Short-lived plasma cells (PI- CD138+ MHCIIhi) 



92 
 

Discussion  

ERα signaling promotes the pathogenesis of lupus in (NZB x NZW)F1 mice (Bynote, 

2008; Li, 2007). To investigate the cell type/types that mediate this effect, we created 

chimeric (NZB x NZW)F1 mice with ERα-/- hematopoietic cells or ERα-/- non-

hematopoietic cells. Although our studies were not able to delineate the impact of ERα-/-

hematopoietic and non-hematopoietic cells on lupus, our studies demonstrated the 

importance of ERα signaling on hematopoietic reconstitution.  

Age- and sex-matched (NZB x NZW)F1 ERα+/+ and ERα-/- bone marrow was 

transplanted into (NZB x NZW)F1 ERαfl/+ mice to examine the impact of the ERα 

genotype of hematopoietic cells on lupus. Among female mice, ERα-/-→ERαfl/+ chimeras 

have significantly less successful grafts than ERα+/+→ERαfl/+ chimeras, but grafts from 

both these sets of mice were stable over time. There was no difference in the 

engraftment efficiency between ERα+/+→ERαfl/+ and ERα-/-→ERαfl/+ male mice. Therefore, 

ERα-/- hematopoietic cells from female and male mice have different potential for 

engraftment. This difference is caused by intrinsic differences between cells from 

females and males. HSCs from females require ERα to maintain the normal rate of cell 

division (Nakada, 2014). ERα-/- cells from females could also have an impaired ability to 

hone to the stem cell niche. 

In a set of complementary experiments, ERα+/+ bone marrow was transplanted to ERα+/- 

or ERα-/- mice in order to determine the impact of ERα in non-hematopoietic cells on 

lupus in (NZB x NZW)F1 mice. At 8 weeks after transplant, ERα+/+→ERα-/- female mice 

have dramatically lower engraftment efficiency compared to ERα+/+→ERα+/- females, and 

the efficiency of engraftment in ERα+/+→ERα-/- females decreases over time. We believe 

that this is caused by an exhaustion of ERα+/+ hematopoietic cells in ERα-/- female mice 

where serum E2 levels are 10x higher than in ERα+/+ females. Treatment with estrogen 
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causes an increased rate of HSC and MPP division in a cell intrinsic manner (Nakada, 

2010; Illing, 2012). This estrogen-induced increase in division is mediated by ERα 

(Nakada, 2010). Additionally, extended treatment with high dose E2 causes exhaustion 

of ERα+/+ hematopoietic cells, while ERα-/- cells are resistant to this effect (Thurmond, 

2000). Together, this supports our theory that the progressive decrease in engraftment 

efficiency in ERα+/+→ERα-/- female chimeric mice is due to exhaustion of ERα+/+ 

hematopoietic cells caused by the high level of serum E2 in female ERα-/- mice. 

Exhaustion of ERα+/+ hematopoietic cells causes ERα-/- cells that survived irradiation to 

comprise an increasing proportion of the hematopoietic population in these mice.  

We hypothesized that another factor that may contribute to engraftment failure in 

ERα+/+→ERα-/- female mice may be a difference in the bone marrow microenvironment. 

A difference in the bone marrow microenvironment between female ERα+/+ and ERα-/- 

mice could prevent HSCs from locating and engrafting in the stem cell niche. Our 

analysis of chemokine receptors CXCR4 and CXCR7, and the chemokine ligand 

CXCL12, which are involved in HSC homing to the stem cell niche, did not reveal a 

difference in the expression of these molecules between ERα-/- and ERα+/+ female mice. 

Estrogen also has bone marrow stromal cell intrinsic effects, which affect the 

development of hematopoietic cells (Smithson, 1995). Therefore, ERα-/- bone marrow 

stromal cells could negatively impact the survival of ERα+/+ hematopoietic cells. 

No difference in engraftment success was observed in (NZB x NZW)F1 male mice from 

either set of transplants. This result was not surprising, because ERα does not have the 

same effects on hematopoietic cells in males that it has in females. HSCs divide at the 

same rate in ERα+/+ and ERα-/- male mice (Nakada, 2014). Additionally, male ERα-/- mice 

have the same level of serum E2 as ERα+/+ males, so ERα+/+ hematopoietic cells would 

not undergo rapid E2-induced division, as in females. 
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In female and male mice that were considered successful transplants, we found that the 

ERα genotype of hematopoietic cells does not impact median survival. The median 

survival times of ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ females are not different from each 

other, but are 20-33 days longer than global ERα+/+ females (Bynote, 2008). Similarly, 

the median survival of male ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ chimeras are not 

different, but are 17-37 days longer than global ERα+/+ males. The delay in lupus-related 

death observed in chimeras compared to non-transplanted (NZB x NZW)F1s likely 

occurs because, although the donor bone marrow cells are age-matched with the 

recipients, reconstitution of the hematopoietic compartment takes several weeks, and 

the pathogenic processes that promote lupus are delayed while reconstitution takes 

place. 

Female ERα-/-→ERαfl/+ chimeras had lower levels of anti-chromatin and anti-dsDNA 

antibodies at 6 months of age (2.5-3 months before death) compared to ERα+/+→ERαfl/+ 

females. However, the amount of anti-chromatin and anti-dsDNA antibodies was not 

significantly different between these groups at 7 months of age. This suggests that 

although ERα-/- hematopoietic cells attenuate lupus at a young age, this effect is 

overcome in older mice, leading to increased autoantibody production.  

The unsuccessful engraftment of ERα+/+→ERα-/- female mice prevented us from 

assessing the impact of ERα in non-hematopoietic cells on lupus in female mice. These 

mice had hematopoietic compartments composed of a mix of ERα+/+ and ERα-/- cells. 

There was no difference in the survival of male ERα+/+→ERα-/- and ERα+/+→ERα+/- mice, 

which suggested that the ERα genotype of non-hematopoietic cells does not impact the 

development of lupus.  
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A confounding factor that should be considered when interpreting these results is the 

incomplete ablation of the host immune system. Although irradiation effectively kills 

rapidly dividing cells, long-lived plasma cells are resistant to irradiation-induced cell 

death and can survive for more than 6 months after irradiation (Miller, 1967). A recent 

study has shown that many long-lived plasma cells are produced in young (NZB x 

NZW)F1 mice (> 105 by 6 weeks of age in the spleen) many hundreds of which are 

dsDNA-reactive (Taddeo, 2015). 

For ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ chimeras, mice with up to 5% of host DNA in the 

peripheral blood were considered to have successful engraftment. Our ELISpot analysis 

showed that 0.27-0.41% of plasma cells were dsDNA reactive in 10 week old (NZB x 

NZW)F1 mice that express ERα. This seems to be quite a large percentage of plasma 

cells to be reactive against a single antigen. There have been few reports of the 

percentage of plasma cells reactive to a single antigen, likely because the frequency of 

these cells is very low. A study of 5-7 month old (NZB x NZW)F1s found that ~0.03% of 

bone marrow plasma cells were dsDNA reactive, while ~0.07% of spleen plasma cells 

were dsDNA reactive (Winter, 2015). Therefore, our analysis found that young, irradiated 

(NZB x NZW)F1 mice had a larger proportion of dsDNA-reactive plasma cells compared 

to older, unirradiated (NZB x NZW)F1 mice. Thus, we propose that the host-derived 

ERα-competent dsDNA-reactive cells significantly accelerated the development of lupus 

in (NZB x NZW)F1 chimeric mice.   
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Chapter 4: Deletion of ERα in B cells attenuates lupus in (NZB x 
NZW)F1 mice  

Abstract  

Lupus is a systemic autoimmune disease that disproportionally affects women and is 

characterized by the production of autoreactive antibodies against nuclear antigens. 

Estrogen has long been believed to play an important role in the pathogenesis of lupus. 

Knockout of ERα considerably ameliorates lupus in lupus-prone mice. Because of the 

significant pathogenic role of B cells in lupus, we hypothesized that ERα expression in B 

cells promotes lupus. To test this hypothesis, we generated a murine lupus model where 

ERα is deleted from B cells using a cre-loxP system on the (NZB x NZW)F1 genetic 

background. On this genetic background, the B cell specific CD19-Cre driver induced 

only moderately efficient deletion of ERα. Despite this, mice with B cell specific ERα 

deletion, albeit incomplete, survived significantly longer than controls, and produced 

significantly lower levels of pathogenic anti-dsDNA autoantibodies. B cell specific 

deletion of ERα did not disturb B cell populations in the bone marrow or spleen, but it 

caused a significant reduction in the proportion of B cells that were activated. 

Additionally, we found that the CD19-Cre knockin allele had a significant impact on lupus 

and B cell populations. This emphasizes the need for cre-only controls in experiments 

using cre-loxP systems.  
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Background 

Lupus is a disease in which multiple types of hematopoietic cells function abnormally in 

ways that lead to the development of systemic autoimmunity. Although multiple types of 

hematopoietic cells contribute to lupus, B cells play a central role. Lupus patients, as 

well as lupus-prone mice, have autoreactive B cells that produce autoantibodies. 

Antibodies against dsDNA are pathogenic in lupus. In a lupus-prone mouse strain that 

lacks mature B cells, the lupus phenotype is completely ameliorated (Shlomchik, 1994). 

A mild form of lupus occurs when the same strain of lupus-prone mice produce B cells 

that do not secrete antibody (Chan, 1999).  

Depletion of B cells is an attractive therapeutic target for the treatment of lupus, but 

disappointingly, B cell depletion with the CD20 antibody rituximab did not significantly 

improve symptoms in lupus patients. In 2011, belimumab became the first new FDA 

approved lupus treatment in 56 years. Belimumab is an antibody that restricts the 

number of B cells produced by depleting the B cell growth factor BAFF, which is required 

for the survival of developing B cells. Despite the low proportion of patients who showed 

significant symptom improvement from belimumab treatment, its approval by the FDA 

demonstrates both the great need for new lupus therapies and the potential for B cell 

targeting by future lupus therapies.  

Lupus is a disease that predominately affects young women, and it has long been 

thought that estrogens play a key role in the development of lupus. Exposure to both 

endogenous and exogenous estrogens is a risk factor for developing lupus 

(Costenbader, 2007). In lupus-prone mice, estrogen signaling through ERα significantly 

promotes autoantibody production and mortality (Li, 2007; Bynote, 2008). In these 

studies, the cell type or types responsible for these effects could not be identified. 
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Estrogens have many effects on the immune system, and particularly impact B cells in 

multiple ways which contribute to the development of autoimmunity.  

Immature B cells in the bone marrow which have strongly autoreactive BCRs normally 

undergo clonal deletion. In the periphery, autoreactive mature B cells are rendered 

anergic at the transitional stage in secondary lymphoid organs. High levels of E2 allow 

high-affinity autoreactive B cells to escape negative selection at the immature and T2 

stages (Grimaldi, 2006). Additionally, in a high-estrogen environment, estrogen signaling 

in B cells, predominately through ERα, causes upregulation of CD22 and SHP-1 which 

leads to decreased BCR signaling, thereby increasing the concentration of antigen 

required for tolerization of autoreactive B cells, and protecting autoreactive B cells from 

receptor-mediated apoptosis (Grimald, 2002; Hill, 2011). High levels of E2 also cause 

increased expression of anti-apoptotic Bcl-2 and the B cell survival factor BAFF 

(Grimaldi, 2002; Hill, 2011). By decreasing the strength of BCR signaling and increasing 

the expression of pro-survival molecules, estrogens enhance the survival of high-affinity 

autoreactive B cells.  

In addition to autoreactive B cells that arise as the result of VDJ recombination, 

autoreactive B cells can be generated by somatic hypermutation in the periphery. 

Estrogen promotes somatic hypermutation by stimulating the expression of activation-

induced deaminase (Mai, 2010; Pauklin, 2009). Therefore, estrogen can potentially 

promote the development of autoreactive B cells via multiple pathways. 

Enhanced survival of autoreactive B cells in mice treated with high levels of E2 causes 

an increase in the marginal zone B cell population in the spleen (Grimaldi, 2001; 

Grimaldi, 2006). In lupus-prone mice, the spleen marginal zone B cell population is 

enriched for dsDNA-reactive B cells compared to follicular B cells (Enghard, 2011). 
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Additionally, ERα promotes the activation of splenic B cells in female mice that carry a 

(NZB x NZW)F1-derived lupus susceptibility loci (Yoachim, 2015).  

Together, these data led us to hypothesize that ERα signaling in B cells promotes lupus. 

To test this hypothesis, we have generated lupus-prone (NZB x NZW)F1 mice with ERα 

deletion in the B cell compartment. (NZB x NZW)F1 lupus-prone mice have several 

important similarities to lupus patients. (NZB x NZW)F1 mice produce pathogenic anti-

dsDNA antibodies and develop fatal glomerulonephritis. They also have a gender bias, 

with female mice developing and succumbing to disease several months before males. 

To develop (NZB x NZW)F1 mice with B cell specific ERα deletion, we created NZB 

females that carry the CD19-Cre knockin allele and are globally heterozygous for ERα. 

These females were bred to NZW males homozygous for the floxed allele of ERα. B 

cells begin to express CD19 at the pro-B cell stage in the bone marrow. CD19 

expression causes deletion of the floxed ERα allele in B cells, while ERα is left intact in 

non-B cells. Global ERα+/- does not impact the survival or development of 

glomerulonephritis in (NZB x NZW)F1 mice (Bynote, 2008).  

Previously, it has been shown that the deletion efficiency of the CD19-Cre knockin allele 

is 75-80% in bone marrow B cells and 90-95% in spleen B cells on the 129 genetic 

background (Rickert, 1997). Although the CD19-Cre knockin allele has been extensively 

used in other mouse strains, to our knowledge, this is the first report of its use in a lupus-

prone mouse model. Our studies show that deletion of ERα in a moderate proportion of 

B cells caused significant amelioration of lupus in (NZB x NZW)F1 mice.   
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Methods  

Production of experimental animals 

To produce NZB mice carrying the CD19-Cre knockin allele, B6.129P2(C)-Cd19 

tm1(cre)Cgn/J mice were purchased (The Jackson Laboratory, Bar Harbor, ME, USA) and 

crossed with NZB mice. Genotyping for the CD19-Cre knockin allele was done with 

(IMR1084Tg F:5’-GCGGTCTGGCAGTAAAAACTATC-3’ and IMR1085Tg R: 5’-

GTGAAACAGCATTGCTGTCACTT-3’) primers, with (COO3IC F: 5’-

CTAGGCCACAGAATTGAAAGATCT-3’ and COO4IC R 5’-

GTAGGTGGAAATTCTAGCATCATCC-3’) primers as an internal positive control. 

Offspring carrying the CD19-Cre knockin allele (CD19-Cre) were backcrossed to NZB 

mice for 4-5 more generations using simple sequence length polymorphism (SSLP) 

marker assisted selection. NZB.CD19Cre/+ mice were then crossed to NZB.ERα+/- mice 

previously generated in our lab, producing NZB mice heterozygous for both CD19-Cre 

and ERα (Bynote, 2008). Genotyping for the exon 2 deletion of ERα was performed as 

described (www.jax.org/protocols). The ERaEx2 F primer: 5’-

TACGGCCAGTCGGGCATC-3’ (0.5 uM/rxn) and either the ERaEx2wtR 5’-

GTAGAAGGCGGGAGGGCCGGTGTC-3’ (0.06 uM/rxn) or ERaEx2null R 5’-

GCTACTTCCATTTGTCACGTCC-3’ (2 uM/rxn) primers were used to produce 234 bp 

and ~300 bp products, respectively. NZW.ERαfl/fl mice homozygous for an ERα allele in 

which exon 3 is flanked by loxP sites, were previously produced by backcrossing the 

floxed ERα allele from B6.ERαf/fll mice to the NZW background using marker assisted 

selection, and intercrossing NZW.ERαfl/+ mice as previously described (Nelson, 2016). 

Genotyping for the ERαfl allele was done with the primers N6delcKF: 5’- 

GACTCGCTACTGTGCCGTGTGC-3’ and N6del3R 5’-

CTTCCCTGGCATTACCACTTCTCCT-3’. The ERα+ allele produces a 275 bp product, 
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while the ERαfl allele produces a 475 bp product. To produce experimental mice, 

NZB.CD19Cre/+; ERα+/- female mice were crossed with NZW.ERαfl/fl males.  

In addition to marker assisted selection performed in our lab, the genetic backgrounds of 

NZB.CD19Cre/+ and NZW.ERαfl/fl mice were analyzed at the DartMouse Mouse Speed 

Congenic Core Facility at Dartmouth Medical School. Using a 1449 SNP Illumina 

beadchip, the genetic origins of 733 SNPs spread throughout the genome were 

determined.  

All animals were housed under conditions of controlled humidity, temperature, and 

lighting in facilities accredited by the American Association for Accreditation of 

Laboratory Animal Care, operating in accordance with standards set by the Guide for the 

Care and Use of Laboratory Animals. Mice had ad libitum access to 7904 Teklad 

Irradiated S-2335 Mouse Breeder Diet (Harlan Teklad, Madison, WI, USA). All 

procedures involving live animals were approved by the University of Nebraska Medical 

Center Institutional Animal Care and Use Committee.  

Quantification of ERα deletion  

To evaluate the efficiency of Cre-mediated ERα deletion in B cells, CD19+ cells were 

isolated from the bone marrow and spleen of 2-6 month old (NZB x NZW)F1 CD19Cre/+; 

ERαfl/-, CD19Cre/+; ERαfl/+ , CD19+/+; ERαfl/+, and CD19+/+; ERαfl/- mice. Briefly, bone 

marrow and spleen cells were isolated, passed through a 70 µm cell strainer to create a 

single cell suspension, and red blood cells lysed with ACK lysis buffer (Gibco, Waltham, 

MA, USA). Cells were labeled using CD19 Microbeads, and CD19+ cells were isolated 

using an AUTOMacsPro as per manufacturer protocol (Miltenyi Biotech, Bergisch-

Gladbach, Germany). After isolation, DNA was isolated from CD19+ cells using a 

DNeasy Kit as per manufacturer protocol for cultured cells (Qiagen, Hilden, Germany). 
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Quantitative PCR was performed on isolated CD19+ cell DNA as previously described 

(Nelson, 2016). Briefly, a primer set was developed flanking the LoxP sites around ERα 

Exon 3 (ERαDel F: 5’-TGGAATGAGACTTGTCTATCTTCG-3’, ERαDel R: 5’-

AACCAAGGAGAACAGAGAGACT-3’). From these primers, wild type and floxed ERα 

alleles flank regions of 699 and 773 bp, respectively, while ERα which has undergone 

recombination produces a product of 161 bp. In this QPCR assay, the wild type and 

floxed ERα alleles do not form products and only ERα that has undergone deletion is 

measured by this assay. A primer set in the unaffected ERα Exon 5 serves as a control 

in a separate reaction (ERαEx5 F: 5’-GGAAGGCCGAAATGAAATGGG-3’ and ERαEx5 

R: 5’-CCAACAAGGCACTGACCATC-3’).  

Survival studies 

Survival of animals was monitored over one year. Animals were euthanized by CO2 

asphyxiation when they exhibited persistent albuminuria of 4+ (>2000 mg/dl) or physical 

signs of distress. Albuminuria was initially measured monthly, and with increasing 

frequency after a positive measurement using Albustix (Bayer Corporation, Elkhorn, IN, 

USA).   

Histological analysis 

Kidneys were collected from mice upon death or sacrifice at the end of the study. 

Tissues were fixed in 10% formalin for 96 hours, paraffin embedded, and sectioned. 

Kidney sections were stained with Periodic Acid Schiff (Sigma-Aldrich, St. Louis, MO, 

USA) and 100 glomeruli per kidney were evaluated as previously described (Yuan, 

2013). Kidney sections were stained with anti-mouse IgG to detect immune complexes 

and color developed with the DAB kit (Vector Laboratories, Burlingame, CA, USA). To 

quantify the amount of immune complex (IC) staining in glomeruli, the color density of 

≤20 immune complex stained and unstained glomeruli was measured and averaged. A 
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ratio of the two densities was calculated, and a higher number indicates more IC 

staining.  

Serological analysis   

Serum was collected from mice at monthly intervals beginning at 2 months of age. 

Enzyme Linked Immunosorbent Assay (ELISA) was used to measure serum antibody 

levels. Anti-dsDNA IgG ELISAs were done using Immulon 2 HB plates (Thermo Fisher 

Scientific, Waltham, MA, USA) coated with excess calf thymus dsDNA (Rockland 

Immunochemicals Inc., Limerick, PA, USA). Diluted serum samples were incubated on 

the plate, followed by anti-mouse IgG HRP conjugate, TMB substrate, and Stop Solution 

(Alpha Diagnostic International, San Antonio, TX, USA) was added and plates read at 

450 nm. Plates were washed with 0.05% Tween-20 in PBS.  

Total IgM, IgG1, IgG2a, IgG2b, and IgG3 ELISAs were done using Immulon 2 HB plates 

(Thermo) coated with 5 ng/ml capture antibody (Southern Biotech, Birmingham, AL, 

USA) and incubated overnight at 4ºC. Briefly, wells were incubated in blocking solution, 

incubated with samples and standards, then incubated with isotype specific alkaline 

phosphatate-labeled antibody, after which 1 mg/ml PNPP solution was applied for 20 

minutes (Southern Biotech). Plates were read on a microplate reader at 415 nm. The 

concentrations of IgG1, IgG2a, IgG2b, and IgG3 were added together to find total IgG. 

Anti-dsDNA Ig2a and IgG2b ELISAs were performed by applying standards and samples 

to dsDNA-coated Immulon 2 HB plates (Thermo Fisher Scientific).  Isotype specific 

alkaline phosphatate-labeled antibodies, and PNPP solution (Southern Biotech) were 

added and plates read as for total isotype ELISAs.  
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Flow cytometry 

To assess B cell development by flow cytometry, single cell suspensions were prepared 

and incubated with primary antibody for 30 minutes on ice. After staining for surface 

proteins, cells were incubated with Propidium Iodide (BD Biosciences, San Jose, CA, 

USA) for 10 minutes as a live/dead stain. After staining, cells were fixed with 0.6% 

formalin. The antibodies used were CD4-PE, CD5-PE, CD19-FITC, CD69-FITC, CD86-

PE, B220-APC, CD93-BB515, CD279-APC, CXCR5-PECy7 (all BD Biosciences), IgM-

FITC (Southern Biotech), IgD-APC-Cy7 (Biolegend, San Diego, CA, USA), CD21-

eFlour450, and CD23-PE-Cy7 (eBioscience Inc., San Diego, CA, USA). Apoptosis was 

analyzed with Teleford reagent. Flow cytometry was performed with a BD LSRII Flow 

Cytometer and analyzed with FACSDiva software (BD Biosciences, v.8.0). 

Statistics  

Statistical analysis was done using SPSS software (IBM, v. 22). P values of less than or 

equal to 0.05 are considered significant. Kaplan Meyer survival curves with log rank 

tests were used to evaluate survival, and student’s t tests or ANOVA were used to 

analyze QPCR, ELISA, histology, and flow cytometry data.   
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Results 

Production of Experimental Animals 

(NZB x NZW)F1 mice are a commonly used model of lupus. Characteristics of this 

model include the presence of autoreactive B and T cells, the production of autoreactive 

antibodies, and the development of fatal glomerulonephritis. To explore the role of ERα 

in B cells in lupus, we used the cre-loxP system to create a mouse model with ERα 

deletion in B cells on a lupus-prone genetic background.  

NZB.CD19Cre/+ mice were produced by backcrossing the CD19-Cre knockin allele onto 

the NZB background using simple sequence length polymorphism (SSLP) marker 

assisted selection. The 111 SSLP markers used for this process and their genetic 

locations are listed in Table 4.1. By the N5 generation, an average of only 7% of SSLP 

markers indicated remaining heterozygosity, while 93% were homozygous for NZB. In 

addition to our SSLP analysis, 733 SNPs were analyzed using DNA from an N5 NZB 

which was estimated by our SSLP analysis to be 94% NZB. SNP analysis showed this 

N5 NZB was 96% homozygous for NZB (Figure 4.1). All major areas of heterozygosity 

had been identified by our SSLP genotyping, and no remaining areas of residual 

heterozygosity were found in known SLE susceptibility loci. At this point, CD19-Cre was 

determined to be extensively backcrossed onto the NZB background.  

NZB.CD19Cre/+ mice were crossed with NZB.ERα+/- mice to produce NZB.CD19Cre/+; 

ERα+/- mice. NZB.CD19Cre/+; ERα+/- females were crossed with NZW.ERαfl/fl males to 

produce (NZB x NZW)F1 CD19Cre/+; ERαfl/- mice, which should have no functional ERα 

alleles in CD19+ B cells after cre-mediated recombination. Previous studies have shown 

that global ERα+/- has no impact on lupus (Bynote, 2008). Therefore, any differences 
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Table 4.1 SSLP markers used for the production of NZB.CD19-Cre mice 

Marker (location in cM, Mb) 

D1Mit316 (2.46, 10.3) 
D1Mit169 (9.9, 24.1) 
D1Mit123 (17.67, 39.2) 
D1Mit132 (39.51, 77.1) 
D1Mit440 (44.98, 90.7) 
D1Mit495 (55.79, 129.5) 
D1Mit159 (69.03, 161.6) 
D1Mit111 (76.73, 170.9) 
D1Mit426 (84.32, 182.3) 
D1Mit209 (96.35, 193.3) 
D2Mit1 (2.33, 3.8) 
D2Mit83 (19.38, 28.8) 
D2Mit156 (31.66, 56.9) 
D2Mit327 (40.88, 69.3) 
D2Mit94 (47.93, 80) 
D2Mit395 (59.97, 119.4) 
D2Mit411 (80.04, 159.4) 
D2Mit145 (86.75, 166.2) 
D3Mit203 (10.82, 26.8) 
D3Mit51 (ND, 77.0) 
D3Mit26 (34.97, 79.5) 
D3Mit311 (40.14, 92.8) 
D3Mit320 (66.75, 143.2) 
D3Mit19 (ND, 164.4) 
D4Mit193 (13.99, 32.3) 
D4Mit17 (33.96, 63) 
D4Mit9 (43.34, 94.7) 
D4Mit308 (57.66, 123.8) 
D4Mit42 (82.64, 150.9) 
D5Mit348 (11.97, 24.4) 
D5Mit352 (18.4, 36) 
D5Mit201 (39.55, 75.6) 
D5Mit314 (53.25, 110.1) 
D5Mit97 (76.1, 137.5) 
D5Mit143 (89.8, 151.8) 
D6Mit138 (1.81, 4.5) 
D6Mit116 (11.5, 21.1)  
D6Mit123 (27.76, 56.9) 

D6Mit209 (32.56, 75.5) 
D6Mit328 (52.62, 112.7) 
D6Mit14 (77.64, 145.6) 
D7Mit21 (1.91, 3.3) 
D7Mit267 (17.09, 30.3) 
D7Mit82 (32.76, 58.8) 
D7Mit248 (ND, 63.8) 
D7Mit323 (54.45, 108) 
D7Mit98 (60.49, 122.1) 
D7Mit358 (67.27, 129.9) 
D7Mit101 (69.01, 132.8) 
D7Mit332 (77.87, 141.2) 
D8Mit155 (2.14, 5) 
D8Mit289 (16.47, 29.9) 
D8Mit69 (29.7, 59.2) 
D8Mit178 (34.43, 73.6) 
D8Mit211 (52, 105.2) 
D8Mit49 (72.38, 126.6) 
D9Mit90 (17.8, 32.3) 
D9Mit129 (24.45, 43.7) 
D9Mit123 (40.88, 73.4) 
D9Mit355 (51.41, 98.7) 
D9Mit55 (65.28, 114.7) 
D10Mit213 (9.75, 20.1) 
D10Mit20 (34.83, 66.5) 
D10Mit230 (45.28, 89.7) 
D10Mit233 (61.58, 113.8) 
D10Mit297 (72.31, 124.5) 
D11Mit71 (4.7, 6.8) 
D11Mit189 (27.39, 45.3) 
D11Mit5 (40.59, 67) 
D11Mit285 (54.64, 89.8) 
D11Mit333 (71.83, 108.6) 
D12Mit182 (5.52, 10.9) 
D12Mit60 (15.54, 35.5) 
D12Mit91 (30.06, 72.8) 
D12Mit158 (38.14, 83.7) 
D12Mit7 (ND, 103) 

D12Nds2 (62.22, 115.1) 
D13Mit16 (7.26, 20.4) 
D13Mit275 (14.5, 37.4) 
D13Mit13 (30.06, 56.6) 
D13Mit126 (45.05, 85.5) 
D13Mit74 (56.92, 106.7) 
D13Mit151 (64.72, 116.3) 
D14Mit126 (11.94, 22.7) 
D14Mit60 (24.6, 47.7) 
D14Mit5 (31.49, 60.3) 
D14Mit68 (37.61, 72.9) 
D14Mit106 (50.9, 100.6) 
D14Mit177 (60.21, 116.8) 
D15Mit252 (8.54, 22.6) 
D15Mit143 (19.62, 52) 
D15Mit67 (32.17, 70) 
D15Mit107 (39.79, 84.2) 
D15Mit161 (52.78, 96.8) 
D16Mit131 (3.41, 7.3) 
D16Mit60 (23.27, 32.7) 
D16Mit139 (37.28, 65.7) 
D16Mit52 (53.73, 92.7) 
D17Mit164 (2.11, 3.9) 
D17Mit51 (19.74, 43.6) 
D17Mit10 (ND, 51.0) 
D17Mit93 (45.2, 74.2) 
D17Mit122 (52.25, 83.5) 
D18Mit222 (8.08, 14.7) 
D18Mit177 (21.39, 41.1) 
D18Mit186 (45.63, 72.2) 
D18Mit144 (57.79, 85.7) 
D19Mit96 (15.54, 21.9) 
D19Mit88 (32.23, 37.3) 
D19Mit90 (35.97, 42.3) 
D19Mit103 (48.46, 53.8) 
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Figure 4.1 The CD19-Cre knockin allele was backcrossed onto the NZB genetic 

background  
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Figure 4.1 The CD19-Cre knockin allele was backcrossed onto the NZB genetic 

background  

SNP analysis was performed on an NZB.CD19-Cre N5 female mouse to determine the 

purity of the genetic background. 96% of informative SNPs were NZB homozygous, 

while 4% of SNPs showed residual B6/NZB heterozygosity, including the region 

surrounding the CD19-Cre knockin allele on distal chromosome 7.  
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observed in lupus in (NZB x NZW)F1 CD19Cre/+; ERαfl/- mice are due to the deletion of 

ERα in B cells.  

On the (NZB x NZW)F1 Genetic Background, the CD19-Cre Knockin Allele Causes Only 

Moderately Efficient Deletion of ERα and Increases B cell Apoptosis  

 
The CD19-Cre knockin allele was previously shown to have a deletion efficiency of 75-

80% in bone marrow pre-B cells and 90-95% in splenic B cells on the 129 genetic 

background (Rickert, 1997). To assess the efficiency of CD19-Cre mediated deletion of 

ERα on the (NZB x NZW)F1 genetic background, CD19+ cells from bone marrow and 

spleen were isolated from 2-6 month old mice, and DNA from these cells was analyzed 

for deletion efficiency. The efficiency of deletion was not different at different ages, nor 

were there any sex-related differences in deletion efficiency. No deletion was detected in 

any CD19+/+; ERαfl/+ or CD19+/+; ERαfl/- samples (not shown).  CD19Cre/+; ERαfl/+ mice 

have an average of 27% deletion efficiency in CD19+ bone marrow cells, which is not 

significantly different from CD19Cre/+; ERαfl/- mice which have an average deletion 

efficiency of 18% (Figure 4.2a). CD19+ spleen cells from CD19Cre/+; ERαfl/+ mice have an 

average deletion efficiency of 53%, while CD19Cre/+; ERαfl/- mice have an average 

deletion efficiency of 54%. Our results affirm previous findings which showed that that 

the efficiency of CD19-Cre mediated gene deletion is higher in splenic B cells than bone 

marrow B cells; however, deletion efficiency on the (NZB x NZW)F1 genetic background 

is significantly lower than has been previously reported.  

We posit that the lupus-prone genetic background of (NZB x NZW)F1 mice is the reason 

only a moderate level of ERα deletion is observed. Cre recombinase can cleave at loxP-

like sites throughout the mammalian genome, causing dsDNA breaks (Loonstra, 2001). 

Many lupus patients cannot effectively repair dsDNA breaks (Bassi, 2008; Davies, 

2012). Unrepaired dsDNA breaks lead to cell death. This means that cells that express 
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Figure 4.2 The CD19-Cre knockin allele causes apoptosis and decreased CD19 

expression in (NZB x NZW)F1 mice   
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Figure 4.2 The CD19-Cre knockin allele causes apoptosis and decreased CD19 

expression in (NZB x NZW)F1 mice 

The efficiency of ERα deletion was measured in (NZB x NZW)F1 mice. (a) ERα deletion 

in CD19+ bone marrow and spleen cells was moderately successful. (b) The rate of 

apoptosis in CD19+ splenocytes was increased in female mice with the CD19-Cre 

knockin allele (p=0.003). Fluorescent intensity of CD19 staining on B cells was 

measured in mice with and without the CD19-Cre knockin allele. (c) CD19 expression 

was reduced in mice with the CD19-Cre knockin allele (representative sample shown). 

(d) Mean fluorescent intensity of CD19 staining was consistently and significantly 

reduced in both bone marrow and spleen B cells (p=6.0x10-9, p=3.3x10-13). 
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low levels of cre recombinase may have a survival advantage, and this could contribute 

to the decreased efficiency of cre-mediated deletion observed in (NZB x NZW)F1 mice. 

Our lab has previously observed inefficient Lck-Cre mediated deletion of ERα in T cells 

in (NZB x NZW)F1 mice, as well as an increase in T cell apoptosis (Nelson, 2016). We 

examined apoptosis in young (NZB x NZW)F1 mice and found that females that have 

the CD19-Cre knockin allele had significantly more apoptotic CD19+ splenocytes than 

CD19+/+ mice (Figure 4.2b). No difference was observed in apoptosis in CD19+ bone 

marrow cells.   

In our (NZB x NZW)F1 model, deletion of ERα in B cells was only moderately efficient, 

and the B cell population in CD19Cre/+; ERαfl/- mice was composed of a mixture of ERα+/- 

and ERα-/- cells. The mixed nature of the B cell compartment in this model impacted the 

magnitude of the effects of B cell ERα on lupus that could be observed.  

The CD19-Cre Knockin Allele Causes Reduced CD19 Expression  

The CD19-Cre knockin allele by itself has the potential to impact the lupus phenotype in 

(NZB x NZW)F1 mice. Mice that carry the CD19-Cre knockin allele have significantly 

less CD19 expression on B cells compared to CD19+/+ littermates (Figure 4.2c). In the 

bone marrow, CD19-Cre mice have an average of 65% as much CD19 as CD19+/+ mice, 

and in the spleen they have an average of 53% as much CD19 (Figure 4.2d). This 

decrease in CD19 expression could impact the strength of B cell receptor signaling and 

alter the negative selection of autoreactive B cells. The CD19-Cre knockin allele could 

also affect the lupus phenotype through the toxic off-target effects of cre expression. 

Debris from apoptotic B cells is a source of autoantigen, and leads to acceleration of 

disease (Trebeden-Negre, 2003). Because of its potential to impact lupus, the effects of 

the CD19-Cre knockin allele alone were examined in (NZB x NZW)F1 mice. 
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The CD19-Cre Knockin Allele Causes Accelerated Mortality on the (NZB x NZW)F1 

Genetic Background 

 
Comparison of CD19Cre/+; ERαfl/+ and CD19+/+; ERαfl/+ (NZB x NZW)F1 mice revealed 

that the CD19-Cre knockin allele itself caused accelerated mortality in female and male 

mice. Female CD19+/+; ERαfl/+ mice had a median survival time of 211 days, while 

CD19Cre/+; ERαfl/+ females had a median survival time of 171 days (Figure 4.3a). The 

median lifespan of (NZB x NZW)F1 CD19+/+; ERαfl/+  females is similar to the median 

survival of (NZB x NZW)F1.ERα+/+ females which was 238 days (Bynote, 2008). 

Similarly, male CD19+/+; ERαfl/+ mice had a median survival time of 301 days and 

CD19Cre/+; ERαfl/+males had a median survival time of 257 days (Figure 4.3b). The 

median survival time of (NZB x NZW)F1 CD19+/+; ERαfl/+ males of 301 days is similar to 

the median survival of (NZB x NZW)F1.ERα+/+ males which was 321 days (Bynote, 

2008). Although we are unable to distinguish whether it is an effect of cre recombinase 

or CD19 heterozygosity, it is clear that the CD19-Cre knockin allele causes significantly 

accelerated mortality in (NZB x NZW)F1 mice. Therefore, the appropriate control group 

for mice with B cell specific deletion of ERα is mice with the CD19-Cre knockin allele.  

B cell Specific Deletion of ERα Extends Survival 

Our lab has previously shown that total body ERα knockout significantly attenuates the 

development of lupus and extends survival in (NZB x NZW)F1 female and male mice 

(Bynote, 2008). To determine the effects of B cell specific ERα deletion on survival, mice 

were monitored for up to one year. Female CD19Cre/+; ERαfl/+ control mice had a median 

survival of 171 days, which is significantly shorter than CD19Cre/+; ERαfl/- mice that had a 

median survival time of 239 days (Figure 4.3c). 25% of CD19Cre/+; ERαfl/- females and 2% 

of CD19Cre/+; ERαfl/+ female controls survived until the end of the study.  
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Figure 4.3 Both the CD19-Cre knockin allele and B cell ERα significantly impact 

survival  
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Figure 4.3 Both the CD19-Cre knockin allele and B cell ERα significantly impact 

survival  

Survival was monitored for up to one year. (a) Female and (b) male CD19Cre/+; ERαfl/+ 

mice have significantly shorter median survival compared to CD19+/+; ERαfl/+ mice 

(p=0.0003 females and p=0.0002 males). Compared to CD19Cre/+; ERαfl/+ control mice, 

CD19Cre/+; ERαfl/- (c) female and (d) male mice have significantly longer median survival 

(p=0.001 females and p=0.050 males).  
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Although significant, the 68 day increase in median survival observed in female mice 

with ERα deletion in B cells is less dramatic than the survival difference observed in 

female mice with  ERα-/-, where more than half of the population survived for 18 months 

(Bynote, 2008). This difference is likely due, at least in part, to the large proportion of B 

cells in CD19Cre/+; ERαfl/- mice that retain ERα expression. Additionally, ERα signaling in 

other cell types may also contribute to lupus in (NZB x NZW)F1 mice.    

Male mice with B cell specific ERα deletion also experience significantly delayed 

mortality.  Male CD19Cre/+; ERαfl/+ control mice had a median lifespan of 257 days, which 

is significantly shorter that of CD19Cre/+; ERαfl/- males which had a median lifespan of 329 

days (Figure 4.3d).  Only 3% of male CD19Cre/+; ERαfl/+ mice survived until the end of the 

study, and 12.5% of CD19Cre/+; ERαfl/- mice survived for one year. The 72 day difference 

in the median survival of male mice in this study is only slightly less than the 85-113 day 

difference in median survival observed between ERα+/+ or ERα+/- and ERα-/- male (NZB x 

NZW)F1 mice (Bynote, 2008).  

Mice from All Groups Develop Glomerulonephritis 

(NZB x NZW)F1 mice typically develop and succumb to severe glomerulonephritis. 

Kidneys were collected from mice when they showed signs of advanced illness or 

reached one year of age, and were removed from the survival study. Periodic Acid Schiff 

stained sections were analyzed to determine the extent of glomerular damage. (NZB x 

NZW)F1 mice with the CD19-Cre knockin allele developed glomerulonephritis that was 

histologically indistinguishable from CD19+/+ mice (data not shown). Almost all female 

and male CD19Cre/+; ERαfl/+ and CD19Cre/+; ERαfl/- mice had ≥ 50% abnormal glomeruli, 

which indicates severe glomerulonephritis (Figure 4.4a). The B cell ERα genotype had 

no impact on the extent of glomerulonephritis. Representative PAS stained images show 

a similar extent of damage in both CD19Cre/+; ERαfl/+ and CD19Cre/+; ERαfl/- mice (Figure 
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4.4b). Additionally, no difference was found in the amount of immune complex deposition 

in the glomeruli (Figure 4.4c). Therefore, although mice with B cell specific deletion of 

ERα survive significantly longer than control mice, both groups of mice develop severe 

glomerulonephritis. This also indicates that the CD19-Cre knockin allele does not cause 

mortality that is not related to glomerulonephritis.  

Mice with B cell Specific ERα Deletion Produce Fewer Pathogenic Autoantibodies  

The production of high levels of dsDNA-reactive antibodies is characteristic of lupus. In 

lupus patients and (NZB x NZW)F1 mice, serum levels of dsDNA IgG antibodies 

correlate with disease severity. The development of autoreactive B cells and production 

of pathogenic autoantibodies are promoted by ERα signaling (Hill, 2011). To determine 

the effect of ERα expression in B cells on autoantibody production, serum anti-dsDNA 

IgG levels were measured by ELISA. Serum levels of anti-dsDNA IgG were significantly 

higher in control CD19Cre/+; ERαfl/+ mice at 5 months of age compared to female 

CD19Cre/+; ERαfl/- mice (Figure 4.5a). Similarly, male CD19Cre/+; ERαfl/+ control mice had 

significantly higher levels of anti-dsDNA IgG antibodies compared to CD19Cre/+; ERαfl/- 

males (Figure 4.5b). Lower levels of pathogenic autoantibodies in mice with B cell 

specific ERα deletion indicate amelioration of lupus, and are consistent with the 

attenuated mortality observed in these mice.  

Different isotypes of anti-dsDNA IgG antibodies have different pathogenic potentials; 

autoreactive IgG2a and IgG2b antibodies are especially pathogenic because they 

activate both complement and Fcγ receptors (Azeredo da Silveira, 2002).  To determine 

if these antibodies were affected by ERα in B cells, serum levels of anti-dsDNA IgG2a 

and anti-dsDNA IgG2b were measured by ELISA at 4 months of age in females and 7 

months of age in males. Compared to CD19Cre/+; ERαfl/+ controls, levels of anti-dsDNA 
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Figure 4.4 B cell ERα deletion does not prevent the development of 

glomerulonephritis 
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Figure 4.4 B cell ERα deletion does not prevent the development of 

glomerulonephritis 

(a) The majority of mice of both sexes developed severe glomerulonephritis by the end 

of the survival study. (b) Representative histological sections show abnormalities 

characteristic of glomerulonephritis. (c) Semi-quantitative analysis of immune complex 

staining showed immune complex deposition occurred in equally in CD19Cre/+; ERαfl/- and 

CD19Cre/+; ERαfl/+ mice of both sexes.  
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Figure 4.5 part 1 B cell specific ERα deletion causes reduced production of 

pathogenic autoantibodies but does not affect total antibody production   
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Figure 4.5 part 2 B cell specific ERα deletion causes reduced production of 

pathogenic autoantibodies but does not affect total antibody production   
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Figure 4.5 B cell specific ERα deletion causes reduced production of pathogenic 

autoantibodies but does not affect total antibody production   

(a) Female and (b) male CD19Cre/+; ERαfl/- mice produce less α-dsDNA IgG than 

CD19Cre/+; ERαfl/+ controls (a. p=0.03; b. p=0.02). (c) Less α-dsDNA IgG2a is produced 

by both female and male CD19Cre/+; ERαfl/- mice (p=0.04 females and p=0.02 males). (d) 

Male CD19Cre/+; ERαfl/- mice produce less α-dsDNA IgG2b (p=0.002). There is no 

difference in total IgM, total IgG, or IgG1, IgG2a, or IgG2b in (e) female and (f) male 

mice. Female CD19Cre/+; ERαfl/- mice produce less total IgG3 than CD19Cre/+; ERαfl/+ 

controls (p=0.005). 

 The data for 4.5e-f was produced by Kimberly Bynote and analyzed by Dana Tabor.  
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IgG2a were significantly lower in both female and male CD19Cre/+; ERαfl/- mice (Figure 

4.5c). Additionally, compared to CD19Cre/+; ERαfl/+ controls, male CD19Cre/+; ERαfl/- mice 

had lower serum levels of anti-dsDNA IgG2b antibodies, but no difference was observed 

in anti-dsDNA IgG2b levels in female mice (Figure 4.5d). 

To evaluate the effect of B cell specific ERα deletion on total antibody production, and to 

determine if the significant reduction in anti-dsDNA IgG autoantibodies is due to global 

changes in antibody production, we measured serum IgM, IgG1, IgG2a, IgG2b, and 

IgG3 levels by ELISA. Total IgG was calculated by totaling the antibodies of the various 

IgG isotypes. In female mice, the only difference detected was that CD19Cre/+; ERαfl/+ 

mice produce significantly more IgG3 than CD19Cre/+; ERαfl/- females (Figure 4.5e). In 

male mice, there were no differences in the production of IgM or any IgG isotype (Figure 

4.5f). Therefore, the reduction in dsDNA IgG is not due to a global decrease in antibody 

production, but is specific to dsDNA antibodies. Thus, it is likely that the dramatic 

reduction in anti-dsDNA IgG antibodies is primarily responsible for the attenuation of 

lupus in mice with B cell specific deletion of ERα.  

B cell ERα Deletion Leads to Decreased B cell Activation  

ERα affects the development of B cells in the bone marrow. Specifically, E2 causes a 

decrease in developing bone marrow B cells on a mixed C57BL/6/129 genetic 

background (Thurmond, 2000; Erlandsson, 2003). Reports vary on the effect of ERα 

knockout on B cell populations in the bone marrow; however there is consensus that the 

effects of E2 on B cell populations are mainly mediated by signaling through ERα 

(Thurmond, 2000; Erlandsson, 2003). It is not known if these effects are B cell intrinsic.  

To evaluate the effects of B cell intrinsic ERα on B cell populations in the bone marrow, 

cells from 3 month old pre-autoimmune (NZB x NZW)F1 mice were analyzed by flow 
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cytometry. In females, but not males, we observed a decrease in the percentage of pre-

B cells and increase in the percentage of immature B cells, which was due to the CD19-

Cre knockin allele (Table 4.2). The deletion of ERα from B cells did not cause changes in 

the bone marrow or spleen populations in either female or male mice.  

The effect of global ERα knockout on B cell populations in the spleen has not previously 

been reported. In order to have a comparison for our mice with B cell specific ERα 

deletion, we evaluated follicular and marginal zone B cell populations in 3 month old 

ERα-/- and ERα+/+ (NZB x NZW)F1s. The population of follicular B cells was not affected 

by ERα genotype (Table 4.3). However, the population of marginal zone B cells was 

significantly increased in ERα-/- female mice. This was somewhat unexpected because 

the marginal zone B cell population is enriched for autoreactive B cells compared to 

follicular B cells, and ERα-/- female mice produce less autoantibodies than ERα+/+ mice 

(Grimaldi, 2001; Bynote, 2008). However, the marginal zone B cell population also 

increases significantly in high-estrogen conditions or upon treatment with an ERα 

specific agonist (Grimaldi, 2006; Hill, 2011). Female ERα-/- mice have significantly 

elevated serum E2 (Couse, 1995), which may be the reason for the increase in marginal 

zone B cells in these mice.  

The same analysis of spleen populations was done on 3 month old (NZB x NZW)F1 

CD19-Cre mice. The percentage of follicular and marginal zone B cells is similar 

between ERα+/+ and CD19+/+; ERαfl/+ mice. ERα deletion in B cells did not have a 

significant impact on follicular or marginal zone B cell populations, but the CD19-Cre 

knockin allele significantly impacted these populations (Tale 4.4). The CD19-Cre knockin 

allele causes an increase in the proportion of follicular B cells and a decrease in the 

proportion of marginal zone B cells. Several other lymphocyte populations were 

examined in the spleen, and no significant differences were caused by B cell ERα  
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Table 4.2 Bone marrow B cell populations in (NZB x NZW)F1 mice  

 CD19Cre/+; ERαfl/- CD19Cre/+; ERαfl/+ CD19+/+; ERαfl/+ 

Females    

Pre-B cells  
(IgM- IgD-) 

40.6 ± 1.9 * 42.6 ± 2.8 * 53.0 ± 1.5 

Immature B cells 
(IgM+ IgD-) 

27.7 ± 1.4 * 31.9 ± 1.6 * 18.4 ± 1.6 

Recirculating B cells 
(IgM+/- IgD+) 

29.3 ± 1.2 † 23.2 ± 1.8 26.6 ± 1.2 

Males    

Pre-B cells 
(IgM- IgD-) 

50.1 ± 5.7 48.9 ± 3.1 50.9 ± 5.3 

Immature B cells 
(IgM+ IgD-) 

24.5 ± 3.0 24.4 ± 1.8 25.3 ± 2.9 

Recirculating B cells 
(IgM+/- IgD+) 

24.0 ± 4.3 24.9 ± 2.5 21.8 ± 3.2 

% of live B220+ cells  
 
* Indicates p ≤ 0.05 compared to CD19+/+; ERαfl/+ 
† indicates p ≤ 0.05 compared to CD19Cre/+; ERαfl/+ 

 
3 month old mice were used for this experiment. 
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Table 4.3 Spleen B cell populations in (NZB x NZW)F1 mice 

 ERα+/+ ERα-/- 

Females   

Follicular B cells 

(CD21+ CD23+) 

55.4 ± 1.4 54.5 ± 0.9 

Marginal zone B cells 

(CD21+ CD23-) 

26.6 ± 1.1 36.4 ± 0.9 * 

Males   

Follicular B cells 

(CD21+ CD23+) 

57.2 ± 2.0 53.9 ± 5.3 

Marginal zone B cells 

(CD21+ CD23-) 

28.6 ± 2.1 31.5 ± 2.2 

% of live B220+ CD5- cells 

* indicates p ≤ 0.05 compared to ERα+/+ 

 

3 month old mice were used for this experiment.  
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deletion or CD19-Cre in transitional B cell, or T follicular helper cell populations (Table 

4.4). These results suggest that CD19-Cre reduces the relative abundance of marginal 

zone B cells in the spleen, but that deletion of ERα in B cells does not affect the relative 

abundance of splenic B cell populations. Thus, the attenuated development of lupus in 

CD19Cre/+; ERαfl/- mice is not the result of a shift in the relative abundance of splenic B 

cell subsets 

Previous studies from our lab suggest that ERα may promote lupus by enhancing 

immune cell activation (Yoachim, 2015). Therefore, the percentage of activated B and T 

cells in the spleen was examined in these young mice. Female CD19Cre/+; ERαfl/- mice 

had significantly fewer activated B cells than CD19Cre/+; ERαfl/+ mice (Table 4.5). This was 

not observed in males at this age. There was no change in proportion of activated T cells 

in mice of either sex. This suggests that ERα promotes B cell activation in female lupus-

prone mice in a B cell intrinsic manner, and further suggests that the ability of ERα to 

promote B cell activation may underlie the ability of ERα to promote lupus.   
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 Table 4.4 Spleen lymphocyte populations in (NZB x NZW)F1 mice 

 CD19Cre/+; ERαfl/- CD19Cre/+; ERαfl/+ CD19+/+; ERαfl/+ 

Females    

Follicular B cells  
(CD21+ CD23+) 

66.0 ± 1.0 * 68.1 ± 1.6 * 59.8 ± 1.2 

Marginal zone B cells 
(CD21+ CD23-) 

18.9 ± 1.6 ^ 18.0 ± 1.1 * 25.2 ± 2.0 

Transitional B cells 
(AA4.1+) 

5.6 ± 0.6 6.0 ± 0.5 5.6 ± 0.5 

T follicular helper cells 
(% of live CD4+ 
CXCR5+ PD1+) 

51.9 ± 3.9 49.3 ±2.4 46.0 ± 1.4 

Males    

Follicular B cells 
(CD21+ CD23+) 

67.7 ± 1.6 * 65.0 ± 1.3 ^ 60.4 ± 1.9 

Marginal zone B cells 
(CD21+ CD23-) 

20.8 ± 0.3 * 19.2 ± 0.4 * 25.0 ± 1.4 

Transitional B cells 
(AA4.1+) 

4.2 ± 0.3 5.3 ± 0.5 4.8 ± 0.3 

T follicular helper cells 
(% of live CD4+ 
CXCR5+ PD1+) 

45.8 ± 2.8 46.9 ± 1.5 42.5 ± 1.3 

B cells- % of live B220+ CD5- cells 
* indicates p ≤ 0.05 compared to CD19+/+; ERαfl/+ 
^ indicates p ≤ 0.1 compared to CD19+/+; ERαfl/+ 

 
3 month old mice were used for this experiment. 
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Table 4.5 B and T cell activation in (NZB x NZW)F1 mice 

 CD19Cre/+; ERαfl/- CD19Cre/+; ERαfl/+ CD19+/+; ERαfl/+ 

Females     

Activated B cells 

(% live of B220+ 

CD86+) 

1.9 ± 0.3 † 5.7 ± 0.8 * 3.0 ± 0.6 

Activated T cells 

(% live of CD4+ 

CD69+) 

5.5 ± 0.9 9.2 ± 2.3 6.2 ± 0.8 

Males    

Activated B cells 

(% live of B220+ 

CD86+) 

2.3 ± 0.4 ^ 2.7 ± 0.4 3.5 ± 0.5 

Activated T cells 

(% live of CD4+ 

CD69+) 

4.7 ± 0.6 5.2 ± 0.9 5.4 ± 0.8 

* Indicates p ≤ 0.05 compared to CD19+/+; ERαfl/+ 

^ indicates p ≤ 0.1 compared to CD19+/+; ERαfl/+ 

† indicates p ≤ 0.05 compared to CD19Cre/+; ERαfl/+ 

 

3 month old mice were used for this experiment. 
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Discussion 

To study the impact of ERα in B cells on lupus, we created (NZB x NZW)F1 mice with 

ERα deletion in B cells. This was accomplished using the CD19-Cre knockin allele which 

causes the expression of cre recombinase in B cells, and an allele of ERα flanked by 

loxP sites (floxed ERα). The cre-loxP system is widely used in mammalian systems to 

cause targeted deletion of DNA segments from the genome. Although this system is 

potentially very useful, models created with the cre-loxP system are often under-

characterized. In our studies, we found that the CD19-Cre knockin allele by itself caused 

significant effects in (NZB x NZW)F1 mice. Cre recombinase can cleave pseudo-loxP 

sites throughout the mammalian genome, causing severe DNA damage (Thyagarajan, 

2000). Indeed, we observed a small increase in apoptotic CD19+ splenocytes in CD19-

Cre mice.  

The CD19-Cre knockin allele not only causes cre recombinase expression in B cells, but 

because it is a knockin allele, it interrupts the coding region of CD19, resulting in a null 

allele. To our knowledge, the effect of CD19 heterozygosity on B cell populations has not 

been reported. However, it is known that total CD19 knockout in (NZB x NZW)F1 mice 

accelerates the development of lupus (Watanabe, 2010). In our (NZB x NZW)F1 CD19-

Cre mice we were unable to determine whether the effects of the CD19-Cre allele were 

due to the decreased expression of CD19 or the expression of cre recombinase, both of 

which could contribute to the changes we observed.    

Survival studies showed that female and male CD19Cre/+; ERαfl/+ mice (which carry the 

CD19-Cre knockin allele but do not have B cell ERα deletion) have a significantly 

reduced median survival compared to CD19+/+; ERαfl/+ mice. In females, the CD19-Cre 

knockin allele also caused changes in B cell populations in the bone marrow, and 

differences in B cell populations were observed in both sexes in the spleen. Therefore, in 
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the studies presented here, CD19Cre/+; ERαfl/+ mice are the appropriate controls for 

CD19Cre/+; ERαfl/- mice with B cell specific ERα deletion. A recent study from our lab 

showed that the Lck-Cre allele significantly accelerates lupus in (NZB x NZW)F1 mice by 

causing increased apoptosis and an increase in the proportion of activated T cells 

(Nelson, 2016). Although we did find that the CD19-Cre knockin allele caused increased 

apoptosis of CD19+ splenocytes, it did not lead to an increase in B or T cell activation. 

Although the effects of cre were not identical, these studies show that cre-loxP systems 

can have significant, unintended effects in some models. 

In addition to examining the effects of the CD19-Cre knockin allele on survival and B cell 

populations, the efficiency of ERα deletion in CD19+ B cells from CD19Cre/+; ERαfl/- and 

CD19Cre/+; ERαfl/+ mice was analyzed. On the 129 genetic background, CD19-Cre causes 

75-80% deletion in bone marrow B cells and 90-95% deletion in spleen B cells (Rickert, 

1997). The deletion efficiency was much lower in (NZB x NZW)F1 CD19-Cre mice. Only 

~20% of CD19+ bone marrow cells had ERα deletion while ~50% of CD19+ B cells had 

ERα deletion. These results indicate that the B cells in CD19Cre/+; ERαfl/- mice are a 

mixed population of ERα+/- and ERα-/- cells. Therefore, the effects that we have observed 

in these studies are the result of loss of ERα signaling in only a portion of the B cell 

population.  

Loss of ERα signaling in a portion of B cells in (NZB x NZW)F1 mice significantly 

attenuated lupus. Female and male CD19Cre/+; ERαfl/- mice survived significantly longer 

than CD19Cre/+; ERαfl/+ mice. The increase in survival time observed in mice with B cell 

ERα deletion is not as dramatic as the increase in survival that occurred when ERα was 

knocked out globally in (NZB x NZW)F1 mice. However, we speculate that the increase 

in survival time between CD19Cre/+; ERαfl/- and CD19Cre/+; ERαfl/+ mice would be even 
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greater if there was more complete deletion of ERα in B cells. It is also possible that ERα 

signaling in other cell types contributes to lupus.   

Glomerulonephritis is a highly penetrant manifestation of lupus in (NZB x NZW)F1 mice 

and is the main cause of death. At the end of the survival study, kidneys were collected 

and analyzed for glomerulonephritis and immune complex deposition. Almost all mice 

from each group had severe glomerulonephritis. There were no significant differences in 

the proportion of mice with severe glomerulonephritis or in the amount of immune 

complex deposition between CD19Cre/+; ERαfl/+ and CD19Cre/+; ERαfl/- mice. Therefore, 

although ERα deletion in B cells prolonged survival, these mice still developed fatal 

glomerulonephritis.  

Higher levels of dsDNA IgG autoantibodies are associated with increased disease 

severity in lupus-prone mice. (NZB x NZW)F1 mice of both sexes with B cell ERα 

deletion have significantly lower levels of pathogenic anti-dsDNA IgG antibodies than 

mice with intact B cell ERα. Some isotypes of dsDNA antibodies are particularly 

pathogenic, especially the IgG2a and IgG2b isotypes which cause immune activation 

through multiple pathways (Azeredo da Silveira, 2002). CD19Cre/+; ERαfl/+ mice of both 

sexes have higher levels of anti-dsDNA IgG2a than CD19Cre/+; ERαfl/- mice, and males 

have more anti-dsDNA IgG2b. Therefore, B cell specific loss of ERα causes a significant 

decrease in the levels of pathogenic dsDNA autoantibodies.  

To determine if the decreased levels of autoantibodies in CD19Cre/+; ERαfl/- mice were 

unique to dsDNA specific antibodies or were the result of general suppression of the 

immune response, we measured the amount of total serum IgM and IgG. The levels of 

total IgM and IgG are not different in CD19Cre/+; ERαfl/+ and CD19Cre/+; ERαfl/- mice. This 
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indicates that the reduced levels of autoantibodies in CD19Cre/+; ERαfl/- mice are not due 

to general immunosuppression, but are the result of the loss of ERα signaling. 

It has been shown that global ERα knockout does not affect the proportion of each B cell 

population in the bone marrow (Thurmond, 2000). Therefore, we examined the 

populations of developing B cells in the bone marrow to see if this was also the case in 

mice with ERα deletion in B cells. B cells first express CD19 at the pro-B cell stage, so 

the populations we examined have all undergone at least some cre-mediated deletion of 

ERα. The only differences that we observed in B cell development in the bone marrow 

were due to the CD19-Cre knockin allele. In female mice, CD19-Cre caused an increase 

in the pre-B cell population and a decrease in immature B cells, but these populations 

were not affected in males. In mb1-Cre mice, which contain a different B cell specific 

driver of cre which is expressed in very early pro-B cells, there were no changes 

observed in bone marrow B cell populations on the BALB/c genetic background, 

although the sex of mice was not reported (Hobeika, 2006). These results suggest that 

CD19 heterozygosity affects B cell development in females.  

Additionally we sought to determine if B cell ERα impacted the follicular and marginal 

zone B cell populations in the spleen. In (NZB x NZW)F1 mice, the marginal zone B cell 

population was enriched for autoreactive B cells (Enghard, 2011). Studies with a 

different model have shown that an increased marginal zone population corresponds to 

an increase in the number of autoreactive B cells (Grimaldi, 2001). To the best of our 

knowledge, the effect of global ERα knockout on follicular and marginal zone B cell 

populations has not been previously reported. In female ERα-/- (NZB x NZW)F1 mice, the 

marginal zone population was significantly increased. This was somewhat surprising 

because ERα-/- (NZB x NZW)F1 females have significant attenuation of lupus (Bynote, 

2008). There were no changes in these populations in ERα-/- male mice. 
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The follicular and marginal zone B cell populations in the spleens of CD19Cre/+; ERαfl/+ 

and CD19Cre/+; ERαfl/+ mice were examined to determine if ERα deletion in B cells 

affected these populations. CD19-Cre increased the proportion of follicular B cells and 

decreased the proportion of marginal zone B cells in both sexes of mice, but B cell 

specific deletion of ERα did not impact these populations. These results from global ERα 

knockout and B cell ERα deletion mice contradict the currently accepted dogma that an 

increase in the marginal zone B cell population corresponds with an increased 

population of activated autoreactive B cells and increased disease activity.  One possible 

explanation is that the marginal zone B cells in ERα knockout females may be composed 

of cells which are resistant to activation or anergic. It has been shown that ERα knockout 

prevents B cell activation (Yoachim, 2015), but resistance to activation has not been 

tested in these mice. In mb1-Cre mice, no changes in the splenic B cell populations were 

found (Hobeika, 2006). This suggests that the alterations in these populations in CD19-

Cre mice may be due to CD19 heterozygosity. Unfortunately, the effect of CD19 

heterozygosity on splenocytes has not been reported in the literature.  

The expression of ERα in B cells did not affect T cell activation in the spleen, but it did 

cause a significant decrease in activated splenic B cells in female mice. This effect was 

not observed in young male mice, but a difference in activation may develop at a later 

stage in males. Our data suggests that the significant decrease in activated B cells in 

female mice is the cause of attenuated autoantibody production, delayed development of 

glomerulonephritis, and attenuated mortality.  

B cell specific deletion of ERα prolongs median survival by 68 days in females and 72 

days in males.  In mice with global ERα knockout, the median survival of females was 

increased by more than 219 days, and the median survival of males was increased by 

85-113 days (Bynote, 2008). Compared to female mice, male mice with B cell ERα 
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deletion come closer to recapitulating the complete attenuation of lupus observed in ERα 

knockout mice. In female ERα knockout mice, serum levels of E2 are elevated by 10-

fold, which likely causes increased ERβ signaling (Couse, 1995). Previous studies with 

(NZB x NZW)F1 mice have suggested that ERβ may slightly attenuate lupus (Li, 2007). 

In the high-E2 environment of ERα knockout female mice, this modest effect may be 

exaggerated, and be responsible for part of the attenuation of lupus seen in these mice. 

In any case, it is clear that deletion of ERα in B cells significantly ameliorates lupus in 

both female and male (NZB x NZW)F1 mice.  

In conclusion, these studies showed that loss of ERα in a moderate proportion of B cells 

significantly attenuated lupus in (NZB x NZW)F1 mice. ERα deletion in B cells 

significantly decreased the production of autoantibodies and prolonged survival in both 

female and male mice. A decrease in B cell activation was found in young female mice 

with B cell specific ERα deletion. We propose that an even more dramatic attenuation of 

lupus would likely be observed if there was greater efficiency of ERα deletion in B cells. 

Although the low efficiency of B cell specific ERα deletion in this model was unintended, 

the significant reduction in lupus observed in these mice suggests that disruption of ERα 

signaling in B cells may be a reasonable target for the treatment of lupus.  
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General Discussion and Conclusion 

Lupus is an autoimmune disease characterized by the production of autoreactive 

antibodies against nuclear antigens, and aberrant immune activation. Estrogens, through 

activation of ERα, exacerbate lupus, but it is not known which cell type or types mediate 

this effect. Additionally, estrogens affect hematopoietic cells in ways that autoimmunity, 

but it is not known if these effects are hematopoietic cell intrinsic.  

In the studies presented here, we sought to discover the cell type or types in which ERα 

signaling promotes lupus. We hypothesized that ERα promotes lupus in B cells, and 

more generally, in hematopoietic cells. To test this hypothesis, we created two different 

mouse models on the (NZB x NZW)F1 lupus-prone genetic background that allowed us 

to assess the effect of ERα knockout in all hematopoietic cells, and the effect of B cell 

specific ERα deletion.  

In chapter 3, we presented data from our studies that sought to determine the impact of 

ERα in hematopoietic cells on lupus. To address this, we created chimeric mice with 

ERα-/- or ERα+/+ hematopoietic cells in ERα+/+ lupus-prone (NZB x NZW)F1 mice. When 

characterizing this model, we observed that ERα in hematopoietic cells has a significant 

impact on the ability of hematopoietic cells to successfully reconstitute the bone marrow 

in female mice. A smaller proportion of ERα-/-→ERαfl/+ transplanted female mice had 

successful engraftment compared to ERα+/+→ERαfl/+ transplanted females. These grafts 

were stable, without a significant increase in the proportion of host ERαfl/+ hematopoietic 

cells, until at least 6 months after transplant. Both ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ 

male chimeras had high rates of successful engraftment. These results indicate that 

ERα-/- hematopoietic cells from female mice are not able to reconstitute the 

hematopoietic compartment as efficiently as ERα+/+ cells. Estrogen signaling through 

ERα plays an important role in the proliferative capacity of hematopoietic stem cells. 
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ERα-/- bone marrow cells do not repopulate the bone marrow as rapidly as ERα+/+ cells 

after transplantation due to the reduced population size and proliferative capacity of 

ERα-/- HSCs in female mice (Sanchez-Aguilera, 2014; Nakada, 2014). Therefore, the 

lower proliferative capacity of HSCs from ERα-/- female mice could be the cause of the 

decreased engraftment efficiency that we observed.  

In addition to proliferative capacity, to achieve successful engraftment, HSCs must be 

able to localize to the stem cell niche in the bone marrow. A defect in HSC homing could 

be responsible for the decreased engraftment efficiency in ERα-/-→ERαfl/+ female mice. 

To investigate this, we examined the expression of CXCR4, CXCR7, and CXCL12 in 

bone marrow from ERα+/+ and ERα-/- mice. CXCR4 is a G-protein coupled chemokine 

receptor expressed on the surface of hematopoietic stem and progenitor cells. HSCs are 

guided to the niche stem cell niche by the CXCR4 ligand, CXCL12 (also called stromal-

derived factor 1), which is secreted by bone marrow stromal cells. The concentration of 

CXCL12 is higher in the bone marrow than in the peripheral blood, and CXCR4-

expressing HSCs locate the stem cell niche based on this gradient. CXCL12 can also 

bind CXCR7, a scavenger receptor which targets CXCL12 for degradation, and thus 

prevents CXCL12 from binding CXCR4 (Naumann, 2010). The balance between CXCR4 

and CXCR7 expression regulates HSCs’ ability to hone to the bone marrow stroma. 

Estrogen increases the expression of CXCL12 and CXCR4, and decreases the 

expression of CXCR7 (Boudot, 2011; Li, 2013). The CXCR4-CXCL12 interaction is not 

the only factor involved in HSC homing, but it plays a significant role in the engraftment 

potential of transplanted hematopoietic cells (Adamiak, 2015). Our analysis of the mRNA 

levels of these chemokine receptors and ligand did not find a difference in the 

expression of these molecules between ERα+/+ and ERα-/- mice of either sex. These 
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results do not preclude the possibility that other factors that affect HSC homing could be 

affected by the loss of ERα in females.  

Despite a lower than expected rate of success in producing ERα-/-→ERαfl/+ female mice 

with high levels of engraftment, we were able to produce enough successfully 

transplanted mice to study the effects of ERα in hematopoietic cells on lupus. The 

survival of ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ chimeric mice was monitored for up to one 

year. There was no difference in the median lifespan of ERα-/-→ERαfl/+ and 

ERα+/+→ERαfl/+ female mice. Additionally, there was no difference in median survival 

between ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ males. This suggests that ERα in 

hematopoietic cells does not affect the rate of lupus-related mortality in either female or 

male mice.  

In addition to its effects on survival, we examined the effects of ERα in hematopoietic 

cells on the production of autoantibodies. Autoantibody production was measured in 

ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ chimeric mice. We found that female ERα-/-→ERαfl/+ 

mice produced less anti-chromatin IgG and anti-dsDNA IgG at 6 months of age. By 7 

months of age, there was no difference in the amount of these autoantibodies produced 

by ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ mice. This suggests that mice with ERα-/- 

hematopoietic cells have attenuated autoantibody production at a young age, but that 

loss of ERα does not protect against autoantibody production as the mice age. The rate 

of engraftment in these mice remained high for at least 6 months after the transplant 

(about 8 months old), which suggests that progressive graft failure is not the cause of 

increased autoantibody production in ERα-/-→ERαfl/+ female mice. We hypothesized that 

there may be some pathogenic element of the host immune system that remained in 

ERα-/-→ERαfl/+ mice which was able to overcome the protective effects of ERα-/- 

hematopoietic cells and cause increased immune activation in these mice.  
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Short-lived plasmablasts and long-lived plasma cells in (NZB x NZW)F1 mice are 

resistant to depletion by cyclophosphamide (Hoyer, 2004), which suggests that these 

cells may be able to survive irradiation. When we examined the DNA of plasma cells 

isolated from mice at the end of the survival study, many months after irradiation, we 

were able to detect host plasma cell DNA in many mice. Additionally, we isolated 

dsDNA-reactive long-lived and short-lived plasma cells from 10 week old mice that had 

been irradiated and not given replacement bone marrow. 0.27-0.41% of the plasma cells 

isolated from these mice were dsDNA-reactive, which is a large percent of cells of a 

single reactivity. These results show that a significant population of pathogenic dsDNA 

reactive plasma cells are present in pre-autoimmune (NZB x NZW)F1 mice and that 

these cells survive irradiation. Therefore, chimeric ERα-/-→ERαfl/+ and ERα+/+→ERαfl/+ 

mice are likely to have a significant population of autoreactive plasma cells from the 

host. These host-derived autoreactive plasma cells may be sufficient to drive the 

progression of lupus in ERα-/-→ERαfl/+ mice. The ERα+/+→ERαfl/+ chimeric mice had 

ERα+/+ plasma cells from both the host and the donor hematopoietic cells, and produced 

more autoantibodies initially. The delayed antibody production in ERα-/-→ERαfl/+ female 

mice could be from activation of autoreactive host-derived ERαfl/+ plasma cells, and not 

ERα-/- cells. This would suggest that ERα-/- hematopoietic cells do attenuate lupus in 

(NZB x NZW)F1 mice, but in this chimeric model, these effects are masked by the 

activity of residual dsDNA-reactive ERαfl/+ plasma cells.  

Although we had hypothesized that ERα in hematopoietic cells impacts lupus, ERα is 

widely expressed by cells throughout the body, and the expression of ERα in other cell 

types could impact lupus. For instance, ERα could impact lupus through bone marrow 

stromal cells (BMSCs). BMSCs support hematopoietic cells both through direct contact 



140 
 

and through the secretion of growth factors. BMSCs express ERα, and estrogen 

regulates the ability of BMSCs to support hematopoietic cells (Smithson, 1995).  

In addition to the chimeras created to study the role of ERα in hematopoietic cells on 

lupus, we also created chimeric mice designed to address the role of ERα in non-

hematopoietic cells on lupus. To do this, we transplanted (NZB x NZW)F1 ERα+/+ 

hematopoietic cells into  ERα-/- or ERα+/- (NZB x NZW)F1 recipients. Studies with these 

mice revealed that loss of ERα in non-hematopoietic cells has a significant, negative 

effect on engraftment in female mice. The transplant efficiency in female ERα+/+→ERα-/- 

mice was dramatically lower than in female ERα+/+→ERα+/- mice. The proportion of   

ERα-/- hematopoietic cells in ERα+/+→ERα-/- females increased significantly over time, 

indicating progressive failure of the donor cells.  Male ERα+/+→ERα-/- and ERα+/+→ERα+/- 

chimeras had successful transplants that were stable over time. Again, we observed that 

ERα impacted the success of hematopoietic engraftment in female mice and not males. 

In this case, the hormonal environment in ERα-/- females likely leads to exhaustion of the 

transplanted HSCs, and failure of ERα+/+ HSC grafts in ERα-/- recipient females.  

Elevated levels of estrogen significantly affect the proliferation of HSCs. A moderate 

increase in serum E2, like the approximately 2-fold increase that occurs during 

pregnancy, causes HSCs to divide more frequently, and causes an increase in the 

number of HSCs (Nakada, 2014). However, in conditions of high serum E2, the HSC 

population decreases, likely as the result of exhaustion due to rapid division (Thurmond, 

2000). After chronic exposure to estrogen, HSCs are unable to effectively repopulate 

some hematopoietic populations (Illing, 2012).  Female ERα knockout mice have serum 

E2 levels about 10x higher than ERα+/+ females (Eddy, 1996). Therefore, in female 

ERα+/+→ERα-/- mice, the donor ERα+/+ HSCs are likely exhausted after rapid estrogen-

induced proliferation, which causes the proportion of ERα+/+ cells in the hematopoietic 
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population to progressively decrease. Male ERα knockout mice do not have elevated 

levels of E2, so ERα+/+ hematopoietic cells would not undergo rapid proliferation in ERα-/- 

males.  

Examining the rate of hematopoietic engraftment in chimeric mice revealed that the ERα 

genotype of both donor and host play a significant role in the success of hematopoietic 

reconstitution in females, but not males. Female ERα-/-→ERαfl/+ chimeras have a lower 

rate of successful reconstitution than ERα+/+→ERαfl/+ females. Female ERα+/+→ERα-/- 

chimeras have a dramatically lower rate of engraftment than ERα+/+→ERα+/- chimeras 

which progressively decreases over time due to exhaustion of the HSC population.  

Transplantation of hematopoietic cells has been investigated as a treatment for many 

diseases, particularly cancers. The use of high dose chemotherapy followed by 

autologous stem cell transplant (HDCT/ASCT) has been investigated as a treatment for 

breast cancer with mixed results. The amount of estrogen in breast cancer patients 

could impact the engraftment of the transplanted hematopoietic cells, and the ability of 

immune cells to fight cancer cells. Breast cancer patients can be either pre- or post-

menopausal and some receive fulvestrant treatment, which makes it difficult to 

determine the estrogen level in patients and how this affects the success of the 

HDCT/ASCT treatment. Phase I/II trials of HDCT/ASCT were done in young, 

premenopausal women and showed promise for treating breast cancer, but later trials 

that included both premenopausal and postmenopausal women had mixed results. One 

study showed that postmenopausal women given HDCT/ASCR were more likely to die 

of tumor-related death than premenopausal women (Wild, 2004). Although far from 

conclusive, these results may indicate that low levels of estrogen negatively affect the 

effectiveness of this transplantation therapy. If this is true, it is likely related to the effects 

of estrogen on hematopoietic cell division.  
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In our experiments, because of the unsuccessful engraftment of ERα+/+→ERα-/- female 

mice, we were unable to use these female mice to draw conclusions about the role of 

ERα in non-hematopoietic cells in lupus. The median survival times of male 

ERα+/+→ERα-/- and ERα+/+→ERα+/- mice are not different. Therefore, the ERα genotype 

of non-hematopoietic cells does not have an impact on survival in males.  

The development of fatal glomerulonephritis is characteristic of lupus in (NZB x NZW)F1 

mice. Therefore, when chimeric mice died or were sacrificed at the end of the one year 

survival study, kidneys were collected and evaluated for nephritis. All chimeric mice from 

each group had moderate to severe glomerulonephritis. This is similar to what was 

observed in ERα+/+ (NZB x NZW)F1 mice,  where all female and male mice developed 

severe glomerulonephritis by the end of an 18 month survival study (Bynote, 2008).   

Although glomerulonephritis and autoantibody production are characteristic of lupus in 

(NZB x NZW)F1 mice, they can also be symptoms of graft versus host disease (GVHD), 

a condition that can develop after transplantation of hematopoietic cells. GVHD occurs 

when there is a mismatch in histocompatibility loci between the donor and recipient, 

which causes the donor hematopoietic cells to launch an immune response against host 

cells. Acute GVHD (aGVHD) manifests immediately after transplantation and causes 

severe skin rash and diarrhea. Murine models of aGVHD result in continual weight loss 

and death by one month after transplant (Lin, 2014). Chronic graft vs host disease 

(cGVHD) develops later, and can cause autoantibody production and glomerulonephritis 

(Fraile, 2013). In our chimeric mouse model, both the donor and recipient mice are (NZB 

x NZW)F1s and should not have any mismatches at histocompatibility loci. Although the 

chimeric mice produced for these studies initially lost weight after the transplant, they 

gained back almost all of this weight within 2 weeks. Additionally, no diarrhea or skin 

manifestations were observed in these mice over the course of the study. In these 
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chimeric (NZB x NZW)F1 mice, significant sex-specific survival differences were 

observed, which is characteristic of lupus, and not GVHD. Therefore, we are confident 

that these mice did not develop GVHD, and the autoantibody production and 

glomerulonephritis that occurred in these mice were due to lupus.  

In conclusion, although we were not able to show that ERα in hematopoietic cells 

significantly affected lupus, the persistence of host-derived long-lived plasma cells, 

combined with the partial attenuation of autoantibody production in ERα-/-→ERαfl/+ 

females suggests that a small population of ERα+/+ dsDNA-reactive plasma cells may be 

sufficient to cause lupus in (NZB x NZW)F1 mice. These studies also demonstrated that 

estrogen signaling, through ERα, in hematopoietic and non-hematopoietic cells is 

important for successful engraftment after transplantation in females.  

In addition to investigating the impact of ERα in hematopoietic cells on lupus, we were 

also interested in examining the effects of ERα in B cells on lupus. High levels of 

estrogen promote the development of high-affinity autoreactive B cells through ERα.  

Activated autoreactive B cells become plasma cells that produce pathogenic 

autoantibodies. These pathogenic autoantibodies form immune complexes, which cause 

inflammation and tissue damage in lupus patients.  

In chapter 4, we presented data from our studies on lupus-prone (NZB x NZW)F1 mice 

with B cell specific deletion of ERα. To achieve B cell specific deletion of ERα, a cre-loxP 

system was used in which the CD19-Cre knockin allele, which is expressed in B cells, 

caused the deletion of a floxed allele of ERα. The efficiency of ERα deletion by CD19-

Cre was much lower than has been previously reported, with only ~50% deletion of ERα 

in CD19+ splenocytes. Another study from our lab which used Lck-Cre to cause ERα 



144 
 

deletion in T cells also found that the deletion efficiency was lower on the (NZB x 

NZW)F1 genetic background than had been previously reported (Nelson, 2016).  

Mammalian cells contain cryptic or pseudo loxP sites, which can deviate significantly 

from the consensus loxP sequence and be cleaved by cre recombinase (Thyagarajan, 

2000). Defects in double strand break repair are associated with lupus, and unrepaired 

dsDNA breaks can lead to apoptosis. (NZB x NZW)F1 mice with the CD19-Cre knockin 

allele have a small but significant increase in apoptotic CD19+ splenocytes compared to 

mice without cre. (NZB x NZW)F1 mice with Lck-Cre also have a significant increase in 

apoptotic T cells (Nelson, 2016). Cells that have high enough cre expression to cause 

deletion of ERα may also have DNA damage at pseudo loxP sites caused by cre. 

Unrepaired DNA damage leads to apoptosis, and could contribute to the moderate 

deletion efficiency we observed in (NZB x NZW)F1 mice.   

Another possible reason for the moderate deletion efficiency of ERα observed in these 

mice would be if B cells that lacked ERα expression were at a survival disadvantage. We 

found that the rate of deletion of the floxed ERα allele was the same in B cells that had 

total loss of ERα in B cells, and those that retained one functional copy of ERα after 

recombination. Therefore, ERα knockout B cells were not at a survival disadvantage, 

and the reduced proportion of CD19+ cells that underwent cre-mediated deletion was 

likely an effect of the (NZB x NZW)F1 genetic background.  

Despite the moderate rate of ERα deletion, our studies showed that loss of ERα in a 

moderate proportion of B cells caused a significant improvement in lupus. Young female 

mice with B cell ERα deletion had a lower percentage of activated B cells compared to 

CD19-Cre controls. Therefore, deletion of ERα in B cells prevented B cell activation in 

pre-autoimmune mice. Although we did not observe a difference in B cell activation in 



145 
 

young male mice, we predict that there would be a difference in slightly older male mice, 

since males have a longer latency to disease than females.  

In addition to decreased activation of B cells, mice of both sexes with B cell ERα deletion 

had significantly lower levels of pathogenic anti-dsDNA IgG autoantibodies than CD19-

Cre only controls. There was no difference in the production of total IgM or IgG, which 

indicates that the reduction in anti-dsDNA IgG is particular to this antibody specificity and 

is not due to general immunosuppression from loss of ERα in B cells.  

Lower levels of pathogenic autoantibodies in mice with B cell ERα deletion caused a 

delay in the development of fatal glomerulonephritis. Both female and male mice with B 

cell ERα deletion had longer median survival than CD19-Cre only controls. The 

differences in median survival between female and male (NZB x NZW)F1 mice with B 

cell specific ERα deletion and CD19-Cre controls are 68 days and 72 days, respectively. 

Therefore, partial deletion of ERα in B cells attenuated lupus-related mortality by a 

similar amount of time in females and males. 

Female (NZB x NZW)F1 mice with whole-body ERα knockout had a far longer 

attenuation of lupus than the 68 days in females with B cell specific deletion of ERα  

(Bynote, 2008). However, this study was complicated by the hormonal changes 

associated with ERα knockout in females. Female ERα knockout mice have about 10x 

more serum E2 than ERα+/+ mice, while there is no change in serum E2 in ERα knockout 

males (Eddy, 1996). The increased level of serum E2 in (NZB x NZW)F1 females would 

have caused increased ERβ activation. It has been suggested that ERβ activation has a 

moderate protective effect in (NZB x NZW)F1 mice (Li, 2007), and this could contribute 

significantly to the attenuation of lupus in (NZB x NZW)F1 ERα knockout females. The 

attenuation of lupus in male ERα knockout mice is 85-113 days, which is similar to the 
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attenuation of 72 days in males with B cell specific ERα deletion (Bynote, 2008). So, 

even though we did not observe a sex-specific difference in the attenuation of lupus in 

mice with partial ERα deletion in B cells, this is not necessarily inconsistent with past 

studies, because female mice with partial ERα deletion in B cells should not have 

hormonal abnormalities like global ERα knockout females.  

There are several studies that we would like to perform to further characterize this 

model. To determine if the development of glomerulonephritis is indeed attenuated in 

mice with B cell specific ERα deletion, we will collect kidneys from female and male mice 

at a pre-defined age, after initiation of disease, but before mice begin to succumb to 

disease. These kidneys will be evaluated for glomerulonephritis and immune complex 

deposition. At this time, we will also analyze B cell activation in male mice to see if males 

with B cell ERα deletion have a lower proportion of activated B cells. It has been 

reported that estrogen, through activation of ERα, causes an increase in the frequency 

of Ig-producing B cells (Erlandsson, 2003). To see if ERα deletion in B cells causes a 

change in the total number of autoantibody producing B cells, an ELISpot assay will be 

performed.  

The studies presented here suggest that ERα in B cells may be an attractive target for 

lupus therapy. Although unintended, the modest efficiency of ERα deletion in this model 

suggests that disruption of ERα signaling in only a portion of B cells is sufficient to cause 

significant attenuation of lupus. Therefore, after the studies to further characterize this 

model have been completed, the next step is to begin designing a targeted method to 

deliver an ERα blocking molecule to B cells. It has been shown that liposomes loaded 

with doxorubicin can be targeted to B cells with anti-CD19 antibodies. A similar design 

could be used to encapsulate an anti-estrogen, such as fulvestrant, for delivery to B 

cells.  
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In addition to the effects of B cell specific deletion of ERα on lupus, we also observed 

many changes in our experimental mice that can be attributed to the CD19-Cre knockin 

allele. In both female and male mice, the survival of CD19-Cre only control mice was 

significantly shorter than CD19+/+ mice.  We were not able to determine if this was an 

effect of CD19 heterozygosity, cre recombinase expression, or a combination of both. 

CD19 promotes BCR signaling (Depoil, 2008), and CD19-Cre mice have about half the 

CD19 expression as CD19+/+ mice, which could lead to less effective BCR signaling, and 

increased survival of autoreactive B cells. Alternatively, a cre-induced increase in 

apoptosis could cause the release of nuclear antigens and increased activation of 

autoreactive B cells. In support of this, an increase in apoptosis was observed in CD19+ 

splenocytes from mice with the CD19-Cre knockin allele. Whatever the cause, the 

CD19-Cre knockin allele had significant effects on mortality in these studies. This 

emphasizes the need for appropriate cre-only controls in experiments using the cre-loxP 

system. Without comparing the survival of these two groups, we would have incorrectly 

concluded that B cell specific deletion of ERα did not affect the survival of lupus-prone 

mice.   

The results of the two studies presented here appear contradictory. The study presented 

in chapter 3 failed to show that ERα in hematopoietic cells promotes lupus, while the 

study presented in chapter 4 showed that deletion of ERα in a moderate proportion of B 

cells significantly attenuates lupus. There are a few possible explanations for this 

disconnect.  

The hematopoietic compartment is made up of many types of cells, which play different 

roles in immunity. ERα is widely expressed in hematopoietic cells from HSCs to fully 

differentiated cells, and activation of ERα causes varied effects in different cell types. 

Consequently, the loss of ERα in various immune cell types will have different effects. 
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Our studies have shown loss of ERα in even a portion of B cells leads to a lower level of 

immune activation. However, the loss of ERα in a different cell type, like Tregs, which 

negatively regulate the immune response, could lead to unchecked immune activation. 

E2 causes an increase in the Treg population, and also increases the suppressor 

capacity of Tregs via multiple mechanisms (Polanczyk, 2004; Prieto, 2006; Polanczyk, 

2007).  Some of these effects are mediated by ERα. Therefore, it is possible that loss of 

ERα from the entire hematopoietic compartment affects some cells in a lupus-promoting 

and others in others in a lupus-attenuating manner, and that in the environment of an 

ERα+/+ mouse, changes in the number or function of different types of immune cells 

results in no net change in the development of lupus. Thus, proper ERα signaling in 

Tregs may provide crucial protection from unattenuated lupus.  

Another explanation for these results is that while ERα in hematopoietic cells promotes 

lupus, the chimeric (NZB x NZW)F1 mice produced for our studies did not have a pure 

enough population of hematopoietic cells to show an effect on survival. We have shown 

that ERα+/+ host-derived dsDNA-reactive plasma cells survive irradiation in (NZB x 

NZW)F1 mice and can be detected months after the transplant. A large percentage of 

these surviving plasma cells were dsDNA-reactive. In an environment where most other 

hematopoietic cells are ERα-/-, ERα+/+ plasma cells could be free from the inhibitory 

signals that normally prevent high levels of activation. Activated dsDNA reactive plasma 

cells could then produce large amounts of autoantibodies, thus promoting lupus.  
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Conclusion 

We created chimeric (NZB x NZW)F1 mice with different ERα genotypes in 

hematopoietic and non-hematopoietic cells to study the impact of ERα in these cells on 

lupus. Although we were not able to show that ERα in hematopoietic cells promotes 

lupus, our studies with these chimeric mice did show that ERα plays an important role in 

the successful engraftment of hematopoietic cells in female mice. Loss of ERα in 

hematopoietic cells led to decreased engraftment efficiency.  

Additionally, to study the role of ERα in B cells in lupus, we created a (NZB x NZW)F1 

model with ERα deletion specifically in B cells. Loss of ERα in a moderate proportion of 

B cells significantly reduced B cell activation and attenuated autoantibody production 

and mortality in (NZB x NZW)F1 mice. As a result of these studies, we have identified 

ERα in B cells as a potential new target for lupus therapy. Additionally, we have shown 

that the CD19-Cre knockin allele alone has significant effects in lupus-prone mice, 

emphasizing that cre-only controls are essential in experiments that utilize cre-loxP 

systems.  

Although the results of these studies appear contradictory, there are a few possible 

explanations for these results. One possibility is that the hematopoietic compartment of 

the chimeric mice produced to study the role of ERα in hematopoietic cells was not 

composed of a pure population of cells from the donor mouse, and that residual host-

derived cells were sufficient to cause lupus in chimeric mice. Another possibility is that 

by knocking out ERα from the entire hematopoietic compartment, both cells that promote 

and attenuate lupus were affected, leading to no net change in the development of 

lupus.  
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Abstract 

Objective 

To evaluate the potentially improved therapeutic efficacy and safety of nephrotropic 

macromolecular prodrugs of glucocorticoids (GC) in the treatment of lupus nephritis. 

Methods 

Monthly injection of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-based 

dexamethasone prodrug (P-Dex) and daily injection of dexamethasone phosphate 

sodium (Dex, overall dose equivalent to P-Dex) were given to lupus-prone 

(NZB×NZW)F1 female mice for two months. The animals were monitored for 

albuminuria, mean arterial pressure and serum autoantibody levels during the treatment. 

Nephritis, renal immune complexes and macrophage infiltration were evaluated 

histologically. The bone quality was analyzed with pDEXA and μ-CT. Optical imaging, 

immunohistochemistry (IHC) and fluorescence-activated cell sorting (FACS) were used 

to understand the in vivo distribution of P-Dex. The anti-inflammatory effect of P-Dex 

was validated using LPS-activated human proximal tubule epithelial cells (HK-2). 

Results 

Monthly P-Dex injection completely abolished albuminuria in the (NZB×NZW)F1 mice, 

which is significantly (P < 0.001) more efficacious than daily Dex treatment. P-Dex did 

not reduce serum levels of anti-dsDNA antibodies or renal immune complexes, but did 

reduce macrophage infiltration, a marker of chronic inflammation. IHC and FACS 

analyses revealed that P-Dex was primarily sequestered by proximal tubule epithelial 

cells and it could attenuate the inflammatory response in HK-2 cell culture. Different from 
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Dex treatment, P-Dex did not lead to any significant bone quality deterioration or total 

serum IgG reduction. 

Conclusion 

Macromolecularization of GCs renders them nephrotropic. The protracted retention, 

subcellular processing and activation of GC prodrugs by kidney cells would potentiate 

nephritis resolution with reduced risk of systemic toxicities. 

Introduction  

Lupus is an autoimmune disease in which autoantibodies are produced against nuclear 

antigens, including double stranded DNA (dsDNA). Renal deposition of anti-dsDNA IgG 

containing immune complexes leads to nephritis, a major cause of morbidity and 

mortality in lupus patients. Renal immune complexes induce inflammation and immune 

cell infiltration, which if unresolved, lead to renal injury, dysfunction, and failure. Nephritis 

is treated with glucocorticoids (GCs), which are suboptimal because they frequently 

cause off-target toxicity. Because lupus patients often take GCs continuously for many 

years, they are at high risk for developing GC-associated adverse side effects, including 

osteoporosis and immunosuppression. 

The therapeutic efficacy of a drug depends on its specificity for its molecular target and 

its concentration at the site of interaction with the target. Advances in understanding 

lupus have stimulated progress in the identification of drugs that interact with molecular 

targets and pathways associated with disease [1]. These efforts, nevertheless, have not 

addressed the problems created by our inability to control the in vivo drug concentration 

at either the intended site(s) of action or off target sites, where drug action results in 

adverse side effects. 
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To address this challenge, we have developed a macromolecular prodrug of 

dexamethasone (P-Dex), which passively targets inflamed tissues and provides superior 

and sustained resolution of inflammation in several animal models [2–4]. Here, we 

demonstrate that P-Dex prevents nephritis in lupus-prone (NZB×NZW)F1 mice. P-Dex 

demonstrated reduced systemic toxicity compared to the equivalent dose of 

dexamethasone. Mechanistic studies indicate that the nephrotropism, cell-mediated local 

sequestration, subcellular processing and activation of P-Dex likely contribute to its 

superior therapeutic efficacy and reduced systemic toxicities. 

Materials and Methods 

Synthesis of macromolecular prodrugs 

P-Dex (Figure 1A) was synthesized by reversible addition-fragmentation chain transfer 

(RAFT) copolymerization as described previously [3]. Briefly, N-(2-

hydroxypropyl)methacrylamide (HPMA), N-methacryloylglycylglycylhydrazyl 

dexamethasone (MA-Dex) [3] and other comonomers {N-methacryloylaminopropyl 

fluorescein thiourea [5] and N-(3-aminopropyl)methacrylamide hydrochloride (APMA, 

Polysciences, Inc. Warrington, PA)} were copolymerized at 40°C under Argon for 48 

hours (h) with 2,2′-azobisisobutyronitrile as the initiator and S,S′-bis(α, α ′-dimethyl-α″-

acetic acid) trithiocarbonate as the RAFT agent [6]. The resulting polymers were purified 

by LH-20 column (GE HealthCare, Waukesha, WI) and lyophilized. IRDye 800CW and 

Alexa Fluor® 488 labeled P-Dex (P-Dex-IRDye and P-Dex-Alexa) were obtained via 

polymer analogous reactions between poly(HPMA-co-MA-Dex-co-APMA) and NHS 

esters of these dyes [2]. 

Experimental animals and drug treatment 
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Figure 1. Dexamethasone prodrug (P-Dex) prevents albuminuria and reduces 
glomerular damage in female (NZB x NZW)F1 mice. A, Chemical structure of P-Dex. 
B, Albuminuria readings for mice in the saline (n =10), N-(2-
hydroxypropyl)methacrylamide homopolymer (PHPMA) (n = 10), dexamethasone 21-
phosphate disodium (Dex) (n = 15), and P-Dex (n = 15) treatment groups at the 
pretreatment (PT) and 8-week time points. The percentages shown are the incidence of 
albuminuria at the 8-week time point. Each data point represents an individual mouse. C, 
Quantification of the incidence of abnormal glomeruli in each treatment group. Values 
are the mean ± SEM. * = P < 1 x 10-3; ** = P < 5 x 10-4. D, Representative periodic acid–
Schiff–stained histologic sections from each treatment group. Bars = 50 μm.   
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(NZB×NZW)F1 and NZW females (Jackson Laboratories, Bar Harbor, ME) were housed 

under controlled humidity, temperature and lighting conditions in facilities accredited by 

the American Association for Accreditation of Laboratory Animal Care, operating in 

accordance with standards set by the Guide for the Care and Use of Laboratory Animals 

(The National Academies Press, 1996). Mice were given Harlan irradiated rodent diet 

7904 (Harlan Teklad, Madison, WI) and allowed to feed ad libitum. All procedures 

involving live animals were approved by the University of Nebraska Medical Center 

Institutional Animal Care and Use Committee. 

At 16 weeks of age, mice were treated via i.v. injection with saline, N-(2-

hydroxypropyl)methacrylamide homopolymer (PHPMA), or P–Dex (250 mg/kg) every 4 

weeks. A fourth group of mice were given daily i.p. injections of dexamethasone 21-

phosphate disodium (Dex, 1.32 mg/kg, containing 1.00 mg/kg of dexamthasone, 

Hawkins, Inc., Minneapolis, MN). Dosages of Dex and P-Dex were calculated and 

prepared as such that mice received the same dose of dexamethasone over the 8-week 

treatment period. 

Mice were monitored weekly for albuminuria using Albustix (Siemens Corp., Washington 

DC). Albuminuria was defined as two consecutive 2+ readings (100 mg/dL). Every 4 

weeks, serum was isolated from peripheral blood, and mean arterial pressure (MAP) 

was recorded via tail-cuff method using the CODA blood pressure measuring system 

and software (Kent Scientific, Torrington, CT). One week after cessation of treatment, 

mice were euthanized and tissues harvested. 

Analysis of nephritis, renal immune complexes and macrophage infiltration 
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Kidneys were fixed, paraffin-embedded, sectioned and stained with Periodic Acid-Schiff 

(PAS) (Sigma-Aldrich, St. Louis, MO) and analyzed by light microscopy. One hundred 

glomeruli per mouse were evaluated as described previously [7]. 

Renal immune complexes were visualized by immunohistochemistry. After 

deparaffinization and rehydration, slides were incubated in H2O2, washed and incubated 

in citrate buffer (Vector Laboratories, Burlingame, CA). Slides were blocked with normal 

horse serum (Vector Labs), and incubated with anti-mouse IgG (Vector Labs). Antibody 

binding was visualized using Vectastain Elite reagents (Vector Labs). Staining intensity 

(represented as arbitrary gray units or AGU) of fifty glomeruli per mouse was quantified 

using Axiovision software (v4.6.3.0; Carl Zeiss, Thornwood, NY). A second set of slides 

stained for immune complexes was counterstained with hematoxylin; these slides were 

for illustration purposes only. 

Renal macrophage infiltration was assessed via immunofluorescence with the 

macrophage marker Iba-1 (Biocare Medical, Concord, CA) as described previously [8], 

with an added blocking step in Sudan Black B. Staining was visualized and quantitated 

using confocal microscopy and Zen 2010 software (v6; Carl Zeiss). 

Serological analysis of serum immunoglobulin levels 

Serum immunoglobulin concentrations were determined by ELISA (Southern Biotech, 

Birmingham, AL). The IgG1, IgG2a, IgG2b, and IgG3 levels were added together to obtain 

total serum IgG levels. Serum Anti-dsDNA IgG levels were determined by ELISA (Alpha 

Diagnostics International, San Antonio, TX) as described previously [7]. 

Analysis of bone quality 
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Femoral bone mineral density (BMD) and micro-architectural parameters were 

measured as described previously [9], using pDEXA® Sabre™ X-ray bone densitometer 

(Norland Medical System, Inc, Fort Atkinson, WI) and Skyscan 1172 micro-CT system 

(Skyscan, Kontich, Belgium), respectively. pDEXA analysis was performed with a 20 

mm/sec scanning speed and a 0.2 × 0.2 mm resolution. Areal BMD was calculated using 

SABRE RESEARCH software (v3.9.4). Micro-CT scanning parameters were: voltage, 55 

kV; current, 189 μA; exposure time, 230 ms; resolution, 6.2 μm; and aluminum filter (0.5 

mm). Three-dimensional reconstructions were performed with NRecon and Dataviewer 

software (Skyscan). Trabecular bone was selected for analysis by a polygonal region of 

interest within the center of the femur, starting at 20 slices (0.25 mm) proximal from the 

growth plate and extending proximally 80 slices (0.99 mm) further. Trabecular bone 

volume fraction, number and thickness were quantified with CTAn software (Skyscan). 

Near infrared imaging analysis 

Mice received P-Dex-IRDye (148 nmol IRDye per kg body wt.) by i.v. injection. Mice 

were euthanized 2 or 7 days (d) later and tissues were harvested and imaged using an 

XENOGEN IVIS® 200 Series Imaging System (Caliper Life Sciences, Hopkinton, MA). 

Immunohistochemical analyses of P-Dex distribution within kidney 

Mice were given P-Dex-Alexa (300 nmol Alexa Fluor® 488 per kg body wt.) via i.v. 

injection. Seven days later, mice were perfused and euthanized. Kidneys were fixed, 

paraffin-embedded and sectioned. For direct staining, APC-labeled anti-mouse B220 

and CD8a, and PE-labeled anti-mouse CD31 and CD4 (BD Pharmingen, San Diego, 

CA) antibodies were used. For indirect staining, sections were incubated with anti-

mouse CD11c (eBioscience, San Diego, CA), E-cadherin (R&D Systems, Minneapolis, 
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MN), F4/80 and Ly-6G (eBioscience) antibodies, followed with PE-labeled secondary 

antibody (eBioscience; R&D Systems; and Invitrogen, Carlsbad, CA). Stained sections 

were examined under a Nikon Swept Field confocal microscope (Nikon Instruments Inc, 

Melville, NY). 

Flow cytometry 

Mice received an i.v. injection of P-Dex-Alexa. At necropsy (7 d post injection), white 

blood cells (WBCs) were isolated from peripheral blood. Mice were perfused, and 

tissues were isolated, macerated and passed through a 70-μm strainer to obtain single 

cell suspensions. Cells were analyzed with Becton Dickinson FACSCalibur flow 

cytometer (BD Biosciences, San Jose, CA). The following antibodies were used: APC-

labeled anti-mouse B220, CD19, CD5 and CD8a; PE-labeled anti-mouse F4/80 

(eBioscience), Ly6B.2 (AbD Serotec, Raleigh, NC), CD4, CD138, CD31 and IgD (BD 

Pharmingen); PECy7-labeled anti-mouse IgM (BD Pharmingen); anti-mouse CD11c, α-

smooth muscle actin and E-cadherin followed with PE-labeled secondary antibody. 

Cell culture 

Human proximal tubule epithelial cells (HK-2) were grown in RPMI 1640 with 10% fetal 

bovine serum (FBS), penicillin (100 units/mL) and streptomycin (0.1 mg/mL). To 

investigate the internalization of fluorescein isothiocyanate (FITC) labeled P-Dex (P-Dex-

FITC), HK-2 cells were stimulated overnight with LPS (10 μg/mL). P-Dex-FITC (final 

concentration 200 μg/mL) was added to LPS-stimulated and untreated HK-2 cells. After 

specified intervals, cells were rinsed and analyzed by FACS. 

For subcellular localization studies, HK-2 cells were cultured overnight with LPS and 

then incubated with P-Dex-FITC (200 μg/mL) for 24 h. Cells were rinsed and incubated 
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with 75 nM Lysotracker DND-99 (Invitrogen) for 3 h. After rinsing, cells were stained with 

DAPI, fixed, mounted and observed by confocal microscopy. 

To analyze the anti-inflammatory effect of P-Dex, HK-2 cells were treated with LPS plus 

Dex (2 μM) or P-Dex (2 μM dexamethasone equivalent) for 24 h. Supernatants were 

collected and stored at −80°C. Cells were rinsed and incubated with fresh medium 

containing LPS for an additional 48 h. Supernatants were collected and assayed for IL-6 

level by ELISA (R&D Systems). 

Statistical methods 

Comparisons were performed using Fishers exact test, Wilcoxon signed-ranks test, 

Mann-Whitney U test, independent or paired samples t-test, or one-way ANOVA with 

Tukey’s post hoc test where appropriate. Statistical analyses were performed using 

SPSS software (version 19.0). A two-sided P ≤ 0.05 was considered significant. Two-

sided p-values are provided. Mean ± standard error of the mean is presented. 

Results 

P-Dex prevents albuminuria and reduces glomerular damage 

Albuminuria was measured in (NZB×NZW)F1 mice to assess nephritis-associated loss 

of renal function. Prior to treatment, none of the mice displayed albuminuria. However, 

after 8 weeks, 100% of saline treated mice and 70% of PHPMA treated mice exhibited 

albuminuria (Figure 1B). The incidence of albuminuria in these groups did not differ 

significantly (P = 0.2). After eight weeks, 47% of Dex treated mice displayed albuminuria 

(Figure 1B), which was significantly different from the saline (P < 0.01), but not the 

PHPMA group (P = 0.4). Strikingly, after eight weeks, 0% of P-Dex treated mice 
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exhibited albuminuria (Figure 1B), which is significantly different from the saline (P < 

5×10−7), PHPMA (P < 5×10−4) and Dex (P < 5×10−2) groups. Thus, P-Dex was more 

effective than Dex in preventing albuminuria. 

To further assess renal function, PAS-stained kidney sections were analyzed for 

glomerular abnormalities induced by nephritis. Abnormal glomeruli were found at a 

frequency of 16% in the saline group and 14.9% in the PHPMA group (Figure 1C, 1D). 

There was no significant difference between these two groups (P = 0.9). The frequency 

of abnormal glomeruli in Dex and P-Dex treated mice was 11.3% and 9.9%, respectively 

(Figure 1C, 1D). There was no significant difference between the Dex and P-Dex groups 

(P = 0.7), but the frequency in both groups was significantly lower than that in the saline 

group (P < 0.01). Although the frequency of abnormal glomeruli in the Dex and P-Dex 

groups was lower than that in the PHPMA group, the difference achieved significance for 

the P-Dex (P < 5×10−3) but not the Dex (P = 0.07) group. Thus, both Dex and P-Dex 

preserve the structural integrity of glomeruli, suggesting that these treatments attenuate 

nephritis. 

P-Dex does not reduce anti-dsDNA IgG levels or renal immune complexes 

Nephritis in (NZB×NZW)F1 mice correlates with serum levels of pathogenic anti-dsDNA 

IgG [10]. Therefore, serum anti-dsDNA IgG levels were assessed. Over the 8-week time 

course, serum anti-dsDNA IgG levels increased in the saline (P = 0.07) and PHPMA (P 

< 0.01) groups, although this increase fell short of statistical significance in the saline 

group (Figure 2A). Over this time period, serum anti-dsDNA IgG levels rose significantly 

in the Dex and P-Dex groups (Figure 2A; P ≤ 0.01), indicating that neither treatment 

prevented this pathognomonic increase in anti-dsDNA IgG. Nonetheless, at the 8-week 

time point, serum anti-dsDNA IgG levels in the Dex group were significantly lower than  
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Figure 2. Effect of different treatments on serum anti–double-stranded DNA (anti 
dsDNA) IgG and renal immune complex levels. A, Anti-dsDNA IgG levels at the 
pretreatment, 4-week, and 8-week time points, as determined by enzyme-linked 
immunosorbent assay. B, Representative kidney sections from each treatment group, 
immunohistochemically stained for renal deposition of anti-dsDNA IgG. Bars = 50 μm. C, 
Quantification of immune complex staining. Values in A and C are the mean ± SEM. * = 
P < 0.02; ** = P < 0.001; *** = P < 1 x 10-12. See Figure 1 for other definitions.  
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those in the PHPMA and P-Dex groups (P < 0.05). Thus, Dex blunts the increase in anti-

dsDNA IgG, which correlated with reduced incidence of albuminuria and nephritis in this 

group. By contrast, in the P-Dex group, reduced glomerular damage did not correlate 

with serum anti-dsDNA IgG, suggesting that P-Dex prevents nephritis through a 

mechanism that is independent of production of pathogenic autoantibodies. 

Because nephritis in (NZB×NZW)F1 mice is associated with renal deposition of anti-

dsDNA IgG-containing immune complexes [11], renal immune complex deposition was 

evaluated (Figure 2B). Quantification of staining indicated that immune complex 

deposition in the PHPMA treated group did not differ from that in the saline group (Figure 

2C; P ≥ 0.2). Renal immune complex staining in the Dex treated group was significantly 

less than that in the other groups (Figure 2C; P < 1 ×10−12). Immune complex staining in 

the P-Dex group was not reduced compared to saline or PHPMA groups (Figure 2C; P ≥ 

0.7). Thus, in contrast to Dex, P-Dex does not prevent nephritis by diminishing renal 

immune complex deposition. 

P-Dex reduces renal macrophage infiltration 

To test the hypothesis that P-Dex reduced renal inflammation, we examined renal 

macrophage infiltration, a marker of chronic inflammation. Staining with the macrophage 

marker Iba-1 was detected in all groups. Quantification of Iba-1 staining indicated that 

macrophage infiltration in the saline and PHPMA groups did not differ (Figure 3; P = 0.4). 

Macrophage infiltration was not significantly reduced in the Dex group compared to 

either the saline (P = 0.2) or PHPMA (P = 0.7) group (Figure 3). By contrast, renal 

macrophage infiltration was significantly lower in the P-Dex group than in the saline and 

PHPMA groups (Figure 3; P < 0.04). Although macrophage infiltration was less abundant 

in the P-Dex group than the Dex group, this difference fell just short of statistical  
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Figure 3. Impact of treatment on renal macrophage infiltration in (NZB x NZW)F1 
mice. A, Representative confocal microscopic images of immunohistochemical staining 
of kidney sections from mice in each treatment group. Sections were stained with an 
anti-Iba1 antibody (red) and DAPI (blue). Negative control (no Iba1 antibody) and 
merged images are shown. Bars = 25 μm. B, Quantification of Iba1 staining. Values are 
the mean ± SEM. * = P < 0.05. See Figure 1 for definitions. 
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significance (Figure 3; P = 0.06). These results suggest that P-Dex may maintain renal 

function by attenuating renal inflammation. 

P-Dex reduces mean arterial pressure 

Because GC therapy can lead to hypertension, we assessed the impact of each 

treatment on blood pressure. In mice treated with either saline or PHPMA, MAP was not 

significantly altered after 8 weeks (Figure 4A; P ≥ 0.4). In the Dex group, MAP was 

reduced after 8 weeks of treatment (Figure 4A), although this decrease fell short of 

statistical significance (P = 0.08). By contrast, P-Dex significantly reduced MAP after 8 

weeks of treatment (Figure 4A; P < 1×10−4). 

P-Dex treatment does not affect bone quality 

Long-term GC use is associated with osteoporosis. To understand the impact of P-Dex 

on the skeleton, the femoral BMD and micro-architecture were evaluated. No significant 

difference in femoral BMD was observed between the saline and PHPMA groups (Figure 

4B). Dex treatment, however, was associated with a significantly lower BMD (Figure 4B; 

P < 5×10−7). By contrast, BMD in the P-Dex group did not differ from that in the saline 

and PHPMA groups (P > 0.05). No significant differences in trabecular bone volume 

fraction or number were found between groups. However, in the Dex group, trabecular 

thickness was significantly lower than that in the other groups (Figure 4C; P < 0.05). 

Thus, in contrast to free Dex, P-Dex did not negatively affect BMD or microarchitecture 

of the bone. 

P-Dex treatment does not reduce serum IgG levels 

GC therapy causes immunosuppression and reduces serum IgG [12, 13]. We therefore 

analyzed the impact of treatment on serum immunoglobulin levels. None of the  
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Figure 4. Analysis of side effects associated with treatment in (NZB x NZW)F1 
mice. A, Mean arterial pressure (MAP) at the pretreatment, 4-week, and 8-week time 
points, as measured using the tail-cuff method. The horizontal line represents the MAP 
(mean _ SEM 109 _ 2 mm Hg) in a group of nonautoimmune female NZW mice (n _ 12) 
ages 4–6 months. B and C, Bone mineral density (BMD) (B) and trabecular thickness 
(C) after 8 weeks of treatment. D, Total serum IgG levels at the pretreatment and 8-week 
time points, as determined by enzyme-linked immunosorbent assay. Values are the 
mean ± SEM. * = P < 0.05; ** = P < 0.001; *** = P < 0.0005. See Figure 1 for other 
definitions. 
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treatments affected serum IgA or IgM levels (data not shown). Prior to treatment, no 

significant differences in serum IgG levels were observed between groups (Figure 4D; P 

> 0.4). In the saline and PHPMA groups, serum IgG concentrations increased 

significantly after 8 weeks (Figure 4D; P = 0.01). In the Dex group, serum IgG level 

decreased significantly after 8 weeks (Figure 4D; P < 5×10−3). By contrast, serum IgG 

concentration increased after 8 weeks in the P-Dex group (Figure 4D; P < 5×10−3). At 

the 8-week time point, Dex treated mice had significantly lower serum IgG levels than 

mice in the saline, PHPMA, and P-Dex groups (P < 5×10−3). Thus, in contrast to free 

Dex, P-Dex did not reduce serum IgG. 

P-Dex exhibits nephrotropism in (NZB×NZW)F1 mice 

To elucidate the mechanism underlying the enhanced efficacy and decreased toxicity of 

P-Dex in (NZB×NZW)F1 mice, optical imaging was performed to evaluate the in vivo 

distribution of P-Dex. (NZB×NZW)F1 and NZW (healthy control) mice received i.v. 

injections of P-Dex-IRDye and P-Dex-Alexa and imaging was performed at 2 and 7 d 

post injection. P-Dex-IRDye preferentially accumulates (2 d) and is retained (7 d) in 

inflamed kidneys of (NZB×NZW)F1 mice, but not healthy kidneys of NZW controls 

(Figure 5A). FACS revealed that ~61% of kidney cells from (NZB×NZW)F1 mice were P-

Dex-Alexa+ whereas less than 20% of kidney cells from NZW mice were P-Dex-Alexa+ 

(Figure 5B). Furthermore, the mean fluorescence intensity of P-Dex-Alexa+ kidney cells 

of (NZB×NZW)F1 mice was substantially greater (~ 4.5 fold) than that of P-Dex-Alexa+ 

kidney cells in NZW mice. This observation suggests that on a per cell basis, larger 

quantities of P-Dex are taken up and retained in the kidneys of (NZB×NZW)F1 mice than 

NZW mice. Persistent near-infrared fluorescence signals were also observed in the 

spleen and liver of (NZB×NZW)F1 mice (Figure 5A). FACS analysis showed that ~81% 

of spleen cells and ~10% of liver cells were P-Dex-Alexa+ (Figure 5B). In peripheral  
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Figure 5. Nephrotropism and renal cell retention of the dexamethasone prodrug (P-
Dex) in (NZB x NZW)F1 mice. A, Representative optical images of organs isolated from 
(NZB x NZW)F1 mice and NZW mice. Images were obtained 2 days and 7 days after 
intravenous injection of IRDye 800CW–labeled P-Dex (P-Dex–IRDye). B, 
Representative results of fluorescence-activated cell sorting analysis of cells isolated 
from the organs of (NZB x NZW)F1 or NZW mice without (white) or with Alexa Fluor 
488–labeled P-Dex (P-Dex–Alexa) treatment (blue), 7 days after injection. C, 
Representative fluorescence microscopic images of kidney sections from (NZB x 
NZW)F1 mice without or with P-Dex–Alexa treatment, 7 days after injection. Bars = 150 
μm. D, Representative confocal microscopic images of immunohistochemical staining of 
kidney sections from (NZB x NZW)F1 mice without or with P-Dex–Alexa treatment, 7 
days after injection. Sections were stained with an anti-mouse E-cadherin antibody and 
DAPI. Antibody signal (red), P-Dex–Alexa signal (green), DAPI signal (blue), and a 
merged image are shown. Bars = 15 μm. Ht = heart; Lv = liver; Kd = kidney; Sp = 
spleen; Lu = lung.  
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blood, ~69.7% of WBCs were P-Dex-Alexa+, but virtually no signal was seen in red blood 

cells (data not shown). 

Renal distribution of P-Dex-Alexa 

To identify the mechanism responsible for renal retention of P-Dex, mice were injected 

with P-Dex-Alexa, and 7 days later, kidneys were isolated and analyzed by fluorescence 

microscopy and FACS. P-Dex-Alexa+ cells were most abundant in proximal tubules of 

the renal cortex (Figure 5C). Immunohistochemical staining indicated that a large 

proportion of retained prodrug was localized within cortical epithelial cells, which were 

identified based upon histology and E-cadherin positivity (Figure 5D). Flow cytometry 

indicated that 21.3% of the P-Dex-Alexa+ kidney cells were E-cadherin+ (data not 

shown). The identity of the remaining P-Dex-Alexa+ cells could not be determined 

definitively by flow cytometry, despite the use of an extensive panel of antibodies 

designed to identify various cells in the inflamed kidney. Less than 0.1% of the P-Dex-

Alexa+ cells in kidney were F4/80+ macrophages, CD11c+ dendritic cells, CD4+ helper T 

cells or CD8a+ cytotoxic T cells (data not shown). 

Internalization, intracellular localization and activation of P-Dex 

Proximal tubule epithelial cells contribute to nephritis by secreting chemokines and 

inflammatory cytokines in response to albumin and immune complexes [14–17]. 

Because these cells represent the largest defined population of P-Dex-Alexa+ cells, the 

internalization kinetics of P-Dex-FITC was examined in HK-2 renal proximal tubule cells 

in vitro. HK-2 cells rapidly internalized P-Dex-FITC (Figure 5A). To test the hypothesis 

that renal inflammation enhances uptake of P-Dex, we examined prodrug uptake in HK-2 

cells treated with LPS, which causes renal inflammation in vivo and induces the release  
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Figure 6. In vitro internalization, intracellular localization, and activation of 
fluorescein isothiocyanate (FITC)–labeled dexamethasone prodrug 
(P-Dex) in human proximal tubule epithelial (HK-2) cells. A, Quantification of 
internalized P-Dex–FITC in untreated and lipopolysaccharide (LPS)–stimulated (10 
μg/ml) HK-2 cells over a 72-hour time course. B, Representative confocal microscopic 
images showing internalization and intracellular localization of P-Dex–FITC in LPS-
stimulated (10 μg/ml) HK-2 cells. LysoTracker DND-99 signal (red), P-Dex–FITC signal 
(green), DAPI signal (blue), and a merged image are shown. Bars = 15 μm. C, Impact of 
dexamethasone 21-phosphate disodium (Dex) and P-Dex on LPS-induced interleukin-6 
(IL-6) secretion in HK-2 cells. Values in A and C show the mean ± SEM (n = 3 individual 
experiments). * = P < 5 x 10-7; ** = P < 1 x 10-12. All treatments (LPS, LPS + Dex, LPS + 
P-Dex) resulted in a significant increase in IL-6 secretion versus untreated (P <1 x 10-4). 
However, asterisks for these comparisons are not shown.  
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of proinflammatory cytokines and mediators from renal cells in vitro [18, 19]. LPS did not 

alter prodrug internalization kinetics (Figure 6A). 

To examine the fate of internalized P-Dex-FITC, we used immunohistochemistry and 

confocal microscopy. Internalized P-Dex-FITC co-localized with the LysoTracker® 

lysosome marker in HK-2 cells (Figure 6B), suggesting that P-Dex-FITC is internalized 

and processed by an endocytic pathway, that results in sequestration in a lysosomal 

compartment, where P-Dex would gradually undergo processing in the acidic 

environment, leading to the release of active drug [2–4]. 

To examine the impact of P-Dex on LPS-induced cytokine release in HK-2 cells, ELISA 

was used to evaluate secretion of the proinflammatory cytokine IL-6 into the 

supernatant. Although untreated HK-2 cells secrete low levels of IL-6, secretion can be 

stimulated 60-fold by LPS (Figure 6C; P < 1×10−5). Dex and P-Dex significantly 

attenuated the LPS-induced increase in IL-6 secretion (Figure 6C; P < 5×10−3), 

indicating that both treatments can inhibit secretion of inflammatory cytokines by 

activated proximal tubule epithelial cells. 

Discussion 

Recent lupus drug development strategies have focused on targeting specific molecules 

and pathways that impact immunologic and proinflammatory processes. Although 

progress has been made, off-target toxicity due to the inability to manage in vivo drug 

distribution still poses a significant clinical challenge. Targeting inflammation with 

macromolecular prodrugs is a new nanomedicine-based therapeutic strategy. This 

approach is based on a mechanism involving extravasation of macromolecules through 
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leaky vasculature and inflammatory cell-mediated sequestration (ELVIS) and has been 

validated in several inflammatory disease models [2, 4, 20]. 

Based upon these studies, we hypothesized that a dexamethasone prodrug could 

selectively target lupus-associated renal inflammation and become activated locally to 

ameliorate nephritis. Furthermore, we postulated that this prodrug would avoid the off-

target toxicity associated with traditional GC therapy. To test this hypothesis, we treated 

(NZB×NZW)F1 mice with saline, PHPMA, Dex, or P-Dex beginning at 4 months of age, 

prior to the onset of albuminuria. Over the next 8 weeks, the majority of mice treated with 

saline or PHPMA developed albuminuria. As expected, Dex decreased the incidence of 

albuminuria by ~50%, and reduced both serum anti-dsDNA IgG levels and renal immune 

complexes [21]. Strikingly, P-Dex was more effective than Dex and completely 

prevented albuminuria. P-Dex did not affect serum anti-dsDNA IgG levels or renal 

immune complexes, but did reduce renal macrophage infiltration. These observations 

suggest that P-Dex may attenuate nephritis by reducing renal inflammation and act via 

different mechanisms than free Dex. Importantly, our results also demonstrate that P-

Dex does not cause osteoporosis, a major systemic side effect associated with GC 

treatment. 

Based upon the above data and the ELVIS mechanism, we hypothesized that P-Dex 

would extravasate and be retained at sites of renal inflammation. Optical imaging, 

immunohistochemistry and FACS analysis confirmed preferential accumulation and 

retention of P-Dex in inflamed kidneys of lupus-prone but not healthy control mice. 

Furthermore, these in vivo data validate that cell sequestration is the major mechanism 

for retention of P-Dex in the inflamed kidney, with proximal tubule epithelial cells being 

the primary cellular reservoir of sequestered P-Dex. 
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Our data, together with previously published work, support a model in which reduced 

glomerular capillary macromolecular permselectivity associated with renal inflammation 

enhances passage of P-Dex into the ultrafiltrate. This in turn leads to uptake and 

sequestration of significant quantities of the prodrug by the activated proximal tubule 

epithelium. The glomerulus is responsible for forming a nearly protein-free plasma 

ultrafiltrate. The essential components of the glomerular filtration barrier, the barrier 

between the blood and urinary space, are the fenestrated capillary endothelium, the 

surrounding basement membrane, and the filtration slit (spanned by the slit diaphragm) 

between adjacent foot processes of podocytes. In the normal kidney, small solutes 

readily pass through the filtration barrier, with passage increasingly restricted as 

molecular weights exceed 15 kDa; solutes of >50–60 kDa have very limited passage into 

the ultrafiltrate. Macromolecules having a net negative charge are further impeded from 

crossing the filtration barrier. Given that P-Dex is a neutral molecule of ~36 kDa, some 

P-Dex filtration is likely under normal conditions. Loss of integrity of the filtration barrier 

results in enhanced permeability (reduced permselectivity) of large molecules such as 

albumin, leading to albuminuria. Nephritis in (NZB×NZW)F1 mice is associated with 

vascular damage, alterations in the glomerular basement membrane and distortion of slit 

diaphragms [22–24], and this likely accounts for the enhanced filtration of P-Dex in these 

mice. The higher proportion of plasma P-Dex likely passing into the ultrafiltrate in 

(NZB×NZW)F1 mice compared to controls, results in increased P-Dex delivery to the 

apical aspect of the renal tubular epithelium. Proximal tubule epithelial cells reabsorb 

multiple substances from the tubular fluid, and previous reports indicate that polymer 

carriers can achieve renal targeting through uptake by these cells [25–29]. Enhanced 

prodrug delivery to and uptake by proximal tubule epithelial cells likely contributes to the 

efficacy of P-Dex. 
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Albumin and immune complexes activate proximal tubule epithelial cells and induce 

secretion of chemokines and cytokines such as IL-6 that promote renal inflammation and 

immune cell infiltration [14–17]. Our in vitro data indicate that P-Dex, similar to free Dex, 

inhibits LPS-induced IL-6 release from proximal tubule epithelial cells, suggesting that P-

Dex may reduce renal inflammation by attenuating the pro-inflammatory response of 

proximal tubule epithelial cells. We postulated that inflammation would enhance 

endocytosis and P-Dex uptake in proximal tubule epithelial cells. Though not supported 

by our cell culture studies, this hypothesis was consistent with results from our in vivo 

studies, which indicate that kidney cells in the (NZB×NZW)F1 mice take up and retain 

larger quantities of P-Dex than those in NZW mice. 

Although proximal tubule epithelial cells were identified as a major population of P-Dex-

Alexa+ cells in kidney, the identity of a substantial percentage of P-Dex-Alexa+ cells in 

kidney remains to be determined. Furthermore, P-Dex was also found in liver, spleen 

and peripheral WBCs of (NZB×NZW)F1 mice, which is consistent with our findings in 

other disease models [2, 4, 30]. A clear understanding of how P-Dex uptake or retention 

in these cells or tissues impacts the ability of P-Dex to prevent nephritis and reduce off-

target toxicities needs further investigation. 

In summary, monthly administration of P-Dex provided superior prevention of lupus 

nephritis and reduced toxicity in (NZB×NZW)F1 mice, as compared to dose equivalent, 

daily administered Dex. We speculate that the nephrotropism and retention of P-Dex in 

(NZB×NZW)F1 mice is, at least partially, attributed to reduced glomerular capillary 

permselectivity and enhanced uptake by activated kidney cells including proximal tubule 

epithelial cells. The intracellular processing of P-Dex into free dexamethasone and 

sustained release of active drug at the site of inflammation provides a rational 

explanation for the superior, sustained anti-inflammatory effect of P-Dex in the local 
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environment. These data provide a rationale for the future development of this 

macromolecular prodrug system as a potential preventive and/or therapeutic agent for 

lupus patients. Further clarification of the mechanisms underlying P-Dex action will be 

essential for its structural optimization and clinical translation. 

Acknowledgments 

This study was supported in part by NIH R01 AR053325 (DW) and NIH COBRE grant 

RR021937. We thank Dr. Tammy Kielian for the Iba-1 staining protocol and Jenny Fusby 

for assistance with Iba-1 staining and analysis. We also thank Drs. Runqing Lu, Pamela 

Carmines and Steven R. Goldring for helpful discussions and critical review of the 

manuscript. We thank Janice A. Taylor and James R. Talaska of the Confocal Laser 

Scanning Microscope Core Facility at the University of Nebraska Medical Center for 

providing assistance with confocal microscopy and the Nebraska Research Initiative and 

the Eppley Cancer Center for their support of the Core Facility. 

  



175 
 

References 

1. Hahn BH. Targeted therapies in systemic lupus erythematosus: successes, failures 

and future. Ann Rheum Dis. 2011;70(Suppl 1):i64–i66.  

2. Ren K, et al. Early detection and treatment of wear particle-induced inflammation and 

bone loss in a mouse calvarial osteolysis model using HPMA copolymer conjugates. Mol 

Pharm. 2011;8(4):1043–51.  

3. Liu XM, et al. Synthesis and evaluation of a well-defined HPMA copolymer-

dexamethasone conjugate for effective treatment of rheumatoid arthritis. Pharm Res. 

2008;25(12):2910–9.  

4. Quan LD, et al. Development of a macromolecular prodrug for the treatment of 

inflammatory arthritis: mechanisms involved in arthrotropism and sustained therapeutic 

efficacy. Arthritis Res Ther. 2010;12(5):R170.  

5. Omelyanenko V, et al. Targetable HPMA copolymer-adriamycin conjugates. 

Recognition, internalization, and subcellular fate. J Control Release. 1998;53(1–3):25–

37.  

6. Lai JT, Filla D, Shea R. Functional Polymers from Novel Carboxyl-Terminated 

Trithiocarbonates as Highly Efficient RAFT Agents. Macromolecules. 2002;35:6754–6. 

7. Bynote KK, et al. Estrogen receptor-alpha deficiency attenuates autoimmune disease 

in (NZB x NZW)F1 mice. Genes Immun. 2008;9(2):137–52.  

8. Kielian TSM, Liu S, Phulwani NK, Phillips N, Wagoner G, Drew PD, Esen N. The 

Synthetic Peroxisome Proliferator-Activated Receptor-αAgonist Ciglitazone Attenuates 

Neuroinflammation and Accelerates Encapsulation in Bacterial Brain Abscesses. J 

Immunol. 2008;180(7):5004–16.  

9. Manolides AS, Cullen DM, Akhter MP. Effects of glucocorticoid treatment on bone 

strength. J Bone Miner Metab. 28(5):532–9.  

10. Steward MW, Hay FC. Changes in immunoglobulin class and subclass of anti-DNA 

antibodies with increasing age in N/ZBW F1 hybrid mice. Clin Exp Immunol. 

1976;26(2):363–70.  

11. Sugisaki T, Takase S. Composition of immune deposits present in glomeruli of 

NZB/W F1 mice. Clin Immunol Immunopathol. 1991;61(3):296–308.  

12. Butler WT, Rossen RD. Effects of corticosteroids on immunity in man. I. Decreased 

serum IgG concentration caused by 3 or 5 days of high doses of methylprednisolone. J 

Clin Invest. 1973;52(10):2629–40.  



176 
 

13. Settipane GA, Pudupakkam RK, McGowan JH. Corticosteroid effect on 

immunoglobulins. J Allergy Clin Immunol. 1978;62(3):162–6.  

14. Benigni A, et al. Involvement of renal tubular Toll-like receptor 9 in the development 

of tubulointerstitial injury in systemic lupus. Arthritis Rheum. 2007;56(5):1569–78.  

15. Ferraccioli G, Romano G. Renal interstitial cells, proteinuria and progression of lupus 

nephritis: new frontiers for old factors. Lupus. 2008;17(6):533–40.  

16. Ronda N, et al. Early proinflammatory activation of renal tubular cells by normal and 

pathologic IgG. Nephron Exp Nephrol. 2005;100(2):e77–84.  

17. Yung S, et al. Effect of human anti-DNA antibodies on proximal renal tubular 

epithelial cell cytokine expression: implications on tubulointerstitial inflammation in lupus 

nephritis. J Am Soc Nephrol. 2005;16(11):3281–94.  

18. Boswell RN, et al. Interleukin 6 production by human proximal tubular epithelial cells 

in vitro: analysis of the effects of interleukin-1 alpha (IL-1 alpha) and other cytokines. 

Nephrol Dial Transplant. 1994;9(6):599–606.  

19. Cunningham PN, et al. Complement is activated in kidney by endotoxin but does not 

cause the ensuing acute renal failure. Kidney Int. 2000;58(4):1580–7.  

20. Wang D, et al. Novel dexamethasone-HPMA copolymer conjugate and its potential 

application in treatment of rheumatoid arthritis. Arthritis Res Ther. 2007;9(1):R2.  

21. Macanovic M, et al. The treatment of systemic lupus erythematosus (SLE) in NZB/W 

F1 hybrid mice; studies with recombinant murine DNase and with dexamethasone. Clin 

Exp Immunol. 1996;106(2):243–52.  

22. Perysinaki GS, et al. Podocyte main slit diaphragm proteins, nephrin and podocin, 

are affected at early stages of lupus nephritis and correlate with disease histology. 

Lupus. 2011;20(8):781–91.  

23. Kelley VE, Cavallo T. An ultrastructural study of the glomerular slit diaphragm in New 

Zealand black/white mice. Lab Invest. 1976;35(3):213–20.  

24. Howie JB, Helyer BJ. The immunology and pathology of NZB mice. Adv Immunol. 

1968;9:215–66.  

25. Choi HS, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–

70.  

26. Kamada H, et al. Synthesis of a poly(vinylpyrrolidone-co-dimethyl maleic anhydride) 

co-polymer and its application for renal drug targeting. Nat Biotechnol. 2003;21(4):399–

404.  

27. Kodaira H, et al. The targeting of anionized polyvinylpyrrolidone to the renal system. 

Biomaterials. 2004;25(18):4309–15.  



177 
 

28. Yuan ZX, et al. Randomly 50% N-acetylated low molecular weight chitosan as a 

novel renal targeting carrier. J Drug Target. 2007;15(4):269–78.  

29. Yuan ZX, et al. Specific renal uptake of randomly 50% N-acetylated low molecular 

weight chitosan. Mol Pharm. 2009;6(1):305–14.  

30. Quan LD, et al. Pharmacokinetic and Biodistribution Studies of N-(2-

Hydroxypropyl)methacrylamide Copolymer-Dexamethasone Conjugates in Adjuvant-

Induced Arthritis Rat Model. Mol Pharm. 2010;7(4):1041–9.  

 

   



178 
 

Appendix B: A Dexamethasone Prodrug Reduces the Renal 
Macrophage Response and Provides Enhanced Resolution of 
Established Murine Lupus Nephritis 

Fang Yuan1, Dana E. Tabor2, Richard K. Nelson2, Hongjiang Yuan1, Yijia Zhang1, 
Jenny Nuxoll2, Kimberly 
K. Bynoté2, Subodh M. Lele3, Dong Wang1*, Karen A. Gould2* 

1 Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 
Omaha, Nebraska, United States of America, 2 Department of Genetics, Cell 
Biology & Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United 
States of America, 3 Department of Pathology and Microbiology, 
University of Nebraska Medical Center, Omaha, Nebraska, United States of America 

Citation: Yuan F, Tabor DE, Nelson RK, Yuan H, Zhang Y, Nuxoll J, et al. (2013) A 

Dexamethasone Prodrug Reduces the Renal Macrophage Response and Provides 

Enhanced Resolution of Established Murine Lupus Nephritis. PLoS ONE 8(11): e81483. 

doi:10.1371/journal.pone.0081483 

Editor: Jose Crispin, Beth Israel Deaconess Medical Center, United States of America 

Received: September 4, 2013; Accepted: October 22, 2013; Published: November 28, 

2013 

Copyright: © 2013 Yuan et al. This is an open-access article distributed under the terms 

of the Creative Commons Attribution License, which permits unrestricted use, 

distribution, and reproduction in any medium, provided the original author and source 

are credited. 

Funding: This study was supported by an Institutional Development Award (IDeA) from 

the National Institute of General Medical Sciences of the National Institutes of Health 

under grant number P20GM103480 (K.A.G. and D.W.). This study was also supported in 

part by NIH R01 AR053325 (http://www.nih.gov/) (D.W.). The funders had no role in 

study design, data collection and analysis, decision to publish, or preparation of the 

manuscript.  

Competing interests: The authors have read the journal's policy and have the following 

conflicts: Dong Wang is an inventor of a PCT patent application (WO 2005/097073), 

which discloses the dexamethasone prodrug development. No other coauthor declares 

any competing interest. The authors confirm that this potential competing interest does 

not alter their adherence to the PLOS ONE policies on the sharing of data and materials. 

 

 

  



179 
 

Abstract 

We evaluated the ability of a macromolecular prodrug of dexamethasone (P-Dex) to 

treat lupus nephritis in (NZB × NZW)F1 mice. We also explored the mechanism 

underlying the anti-inflammatory effects of this prodrug. P-Dex eliminated albuminuria in 

most (NZB × NZW)F1 mice. Furthermore, P-Dex reduced the incidence of severe 

nephritis and extended lifespan in these mice. P-Dex treatment also prevented the 

development of lupus-associated hypertension and vasculitis. Although P-Dex did not 

reduce serum levels of anti-dsDNA antibodies or glomerular immune complexes, P-Dex 

reduced macrophage recruitment to the kidney and attenuated tubulointerstitial injury. In 

contrast to what was observed with free dexamethasone, P-Dex did not induce any 

deterioration of bone quality. However, P-Dex did lead to reduced peripheral white blood 

cell counts and adrenal gland atrophy. These results suggest that P-Dex is more 

effective and less toxic than free dexamethasone for the treatment of lupus nephritis in 

(NZB × NZW)F1 mice. Furthermore, the data suggest that P-Dex may treat nephritis by 

attenuating the renal inflammatory response to immune complexes, leading to 

decreased immune cell infiltration and diminished renal inflammation and injury.  

Introduction 

Lupus nephritis is a leading cause of morbidity and mortality among lupus patients [1]. 

Lupus nephritis is associated with inflammation caused by renal deposition of immune 

complexes containing autoantibodies, particularly IgG autoantibodies recognizing double 

stranded DNA (anti-dsDNA IgG). If not resolved, renal inflammation can lead to renal 

injury, dysfunction, and failure.  
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Lupus nephritis can be effectively treated with glucocorticoids (GCs). However, because 

long-term GC therapy is required, this treatment frequently is associated with numerous 

side effects involving the endocrine, cardiovascular, hematopoietic and musculoskeletal 

systems [2]. These adverse side effects, especially secondary osteoporosis, contribute 

significantly to morbidity in lupus patients. Nevertheless, because of the lack of 

alternative therapeutic options, GCs continue to be the mainstay of clinical management 

of lupus nephritis [3].  

In an attempt to reduce GC-associated side effects, we previously employed a 

nanomedicine-based strategy to modify the pharmacokinetic/biodistribution profile of 

GCs to enhance drug delivery to the site of inflammation while reducing systemic 

exposure to the drug. Specifically, we developed a macromolecular prodrug of 

dexamethasone (P-Dex); P-Dex is taken up preferentially by the proximal tubule 

epithelial cells in the inflamed kidneys of (NZB × NZW)F1 females, but the prodrug is 

also found to a much lesser extent in splenocytes and circulating blood cells [4]. We 

observed that P-Dex prevents the development of nephritis in young lupus-prone (NZB × 

NZW)F1 female mice without causing osteoporosis, a side effect associated with the 

equivalent dose of free Dex [4]. Our previous studies also suggest that P-Dex prevents 

nephritis by attenuating the response of the kidney to immune complex deposition and 

decreasing the recruitment of infiltrating immune cells to the kidney.  

Here, we sought to further explore the therapeutic potential of P-Dex for the treatment of 

lupus nephritis using a preclinical mouse model. The primary objective of the present 

study was to determine if P-Dex could effectively treat established nephritis in (NZB × 

NZW)F1 mice. Additionally, we sought to assess the safety of longer term P-Dex 

administration and to further explore the potential underlying mechanism of action of this 

prodrug.  
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Results 

P-Dex reverses established albuminuria, extends survival and reduces incidence of 

severe nephritis and tubulointerstitial disease in (NZB × NZW)F1 mice 

To determine if P-Dex could ameliorate established nephritis, P-Dex was administered 

monthly to (NZB × NZW)F1 females beginning at ~22 weeks of age, after they had 

developed nephritis, as evidenced by sustained albuminuria. Treatment was continued 

for 12 weeks. Two control groups, one receiving dose equivalent daily Dex and the other 

receiving a monthly dose of saline, were also treated for 12 weeks. Mice were monitored 

for an additional two weeks after cessation of treatment. Over the entire experimental 

time course, albuminuria not only persisted in 100% of the mice in the saline treated 

group, but also increased in severity in most of these mice (93%) (Figure 1A). In the Dex 

group, albuminuria likewise continued in 100% of the mice. However, albuminuria 

intensified in just 23% of the Dex treated mice, indicating that Dex treatment could 

prevent progression of renal dysfunction. By contrast, albuminuria resolved in 78% of the 

mice in the P-Dex group (Figure 1A). Albuminuria persisted but did not increase in the 

remaining 22% of mice in this group. The fraction of mice in the P-Dex group that 

showed resolution of albuminuria was significantly greater than that in the Dex treated 

group, indicating that P-Dex is more effective than dose equivalent Dex in resolving 

albuminuria associated with lupus nephritis (P ≤ 1x10-6). 

Prior to the end of the experiment, ~55% of mice in the saline group were euthanized 

due to severe nephritis (Figure 1B). In the saline treated group, median survival was ~13 

weeks after initiation of treatment, which corresponded to ~35 weeks of age. The median 

survival in this group is similar to what we and others have reported previously for (NZB 

× NZW)F1 females [5-7]. All mice in the Dex and P-Dex groups survived the entire 
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Figure 1. P-Dex ameliorates albuminuria, extends lifespan and attenuates 

development of severe nephritis and tubulointerstitial disease in (NZB × NZW)F1 

females. 

(A), Albuminuria data for mice in saline (n=13), Dex (n=13), and P-Dex (n=9) treatment 
groups is illustrated at the pretreatment (PT) and 14-week time points. The incidence of 
albuminuria at the 14-week time point for each group is shown (in %) in upper right 
corner of each sub-section. For mice in the saline group that did not survive to the 14-
week time point (n=7), the albuminuria reading shown is the last recorded value. (B), A 
Kaplan-Meier survival curve for each treatment group is shown. (C), The fraction of mice 
in each treatment group with mild, moderate and severe renal disease is shown. (D), A 
PAS stained histological section illustrating representative glomeruli from each treatment 
group are provided. Scale bars: 20 μm. (E), A representative PAS stained histological 
section illustrating the tubulointerstitium from each treatment group is provided. Scale 
bars: 40 μm. The asterisk (*) indicates a statistically significant difference (P < 0.05) from 
the saline control group.  
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treatment period, indicating that both therapies significantly increased the fraction of 

mice surviving until the end of the treatment period (P = 0.001). These data indicate that 

Dex and P-Dex can extend the lifespan of (NZB × NZW)F1 mice.  

The kidneys from 86% of mice in the saline group showed histological evidence of 

severe glomerulonephritis, characterized by diffuse glomerular hypercellularity, matrix 

deposition and crescent formation (Figure 1 C, D). By contrast, in the Dex treated group, 

the incidence of severe glomerulonephritis was 46%, which was significantly less than 

that in saline controls (Figure 1C, D; P = 0.04). In the P-Dex treated group, none (0%) of 

the kidneys showed histological evidence of severe glomerulonephritis; incidence of 

severe nephritis in this group was different than that in the saline and Dex groups (P <1 

x10-3).  

Furthermore, 100% of the kidneys from mice in the saline group showed evidence of 

marked tubulointerstitial disease, which was typified by tubular dilation, tubular casts, 

and immune cell infiltration into the interstitium. The immune cell infiltrates were found in 

both the cortex and medulla, and were distributed throughout the interstitium as well as 

in prominent perivascular lymphoid aggregates (Figure 1E). By contrast, in both the Dex 

and P-Dex groups, there was little indication of tubulointerstitial disease; kidneys 

displayed mild tubular dilation, sparse tubular casts and scant evidence of interstitial 

immune cell infiltration (Figure 1E). 

P-Dex does not reduce serum anti-dsDNA IgG or glomerular immune complexes 

In (NZB × NZW)F1 mice, severity of nephritis typically correlates with serum levels of 

pathogenic autoantibodies, particularly anti-dsDNA IgG [8]. Therefore, serum anti-

dsDNA IgG levels were assessed. In the saline group, serum anti-dsDNA IgG levels 

increased significantly over the experimental time course (Figure 2A; P = 0.02). By 
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contrast, in the Dex group, serum anti-dsDNA IgG did not change significantly over the 

experimental time course (Figure 2A; P > 0.05). Consequently, at the end of the 

experimental time course, serum anti-dsDNA IgG levels in the Dex group were 

significantly lower than those in the saline group (P = 0.02). Serum anti-dsDNA IgG 

levels increased in the P-Dex group over the experimental time course (Figure 2A; P = 

0.03). There were no significant differences in serum anti-dsDNA IgG levels between the 

P-Dex and saline groups (P > 0.05). However, serum anti-dsDNA IgG levels in the P-

Dex group were significantly greater than those in the Dex group at the end of the 

experimental time course (P < 0.008). These results demonstrate that P-Dex attenuates 

nephritis through a mechanism independent of the production of pathogenic 

autoantibodies. 

Although our results indicate that P-Dex did not impact the total levels of serum anti-

dsDNA IgG, this observation does not preclude the possibility that P-Dex alters the 

relative abundance of different subclasses of anti-dsDNA IgG autoantibodies. Such an 

effect could be important given the fact that anti-dsDNA IgG autoantibodies of different 

subclasses are not equally pathogenic [8-10]. Therefore, we examined the impact of 

treatment on the levels of anti-dsDNA IgG of each subclass individually. In the Dex 

treated group, serum levels of anti-dsDNA IgG1, IgG2a, IgG3 and were significantly lower 

than in the saline control group (Figure 2B; P < 0.05). By contrast, the levels of serum 

anti-dsDNA IgG1 and IgG2a autoantibodies did not differ between the P-Dex and saline 

groups (Figure 2B; P > 0.05). However, the P-Dex treated group did display lower serum 

levels of anti-dsDNA IgG3 autoantibodies compared to the saline group (Figure 2B; P = 

0.03). There were no differences in serum levels of anti-dsDNA IgG2b autoantibodies 

between any of the groups (data not shown). These results indicate that P-Dex does not   
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Figure 2. The effect of treatment on serum anti-dsDNA IgG and renal immune 

complexes. 

(A), Anti-dsDNA IgG levels for mice in saline (n=13), Dex (n=13), and P-Dex (n=9) 
treatment groups were determined via ELISA at pretreatment, 4-week, 8-week, and 12 
week time points. For the saline group, serum was available for analysis only from the 
subset of mice surviving at each time point: 12 mice at 4-week time point; 11 mice at 8-
week time point; 9 mice at 12-week time point (B), Levels of anti-dsDNA IgG of each 
subclass were determined via ELISA at the 12-week time point. For the saline group, 
serum was available for this analysis only from the 9 mice that survived to the 12-week 
time point (C), Representative sections of kidney from each treatment group are shown. 
Sections were stained for renal deposition of anti-dsDNA IgG via immunohistochemistry. 
(D), Quantification of immune complex staining is illustrated. Scale bars: 25 μm; The 
asterisk (*) indicates a statistically significant difference (P < 0.05) from the saline control 
group. The dagger (†) indicates a statistically significant difference (P < 0.05) from the 
pretreatment time point of the same treatment group.  
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cause a dramatic shift in the relative abundance of different subclasses of anti-dsDNA 

IgG. Importantly, these results also clearly illustrate that P-Dex does not decrease the 

abundance of anti-dsDNA IgG2a autoantibodies, which are considered to be the most 

pathogenic autoantibodies in (NZB x NZW)F1 mice [8-10].  

Because glomerular deposition of anti-dsDNA IgG-containing immune complexes 

contributes to the development and progression of nephritis [11], we evaluated the 

impact of treatment on glomerular immune complex deposition. In the kidneys of mice in 

the saline group, prominent glomerular immune complex deposition was observed 

(Figure 2C, D). In the kidneys of the Dex group, glomerular immune complex deposition 

was significantly less than that in the saline group (Figure 2C, D; P = 0.04). Glomerular 

immune complex staining in the P-Dex group was similar to that in the saline group 

(Figure 2C, D; P > 0.05), but was significantly different than that in the Dex group (P ≤ 

0.025). Thus, P-Dex treated mice do not develop nephritis despite the presence of 

abundant glomerular immune complexes.  

P-Dex reduces renal macrophage infiltration and tubulointerstitial injury 

In (NZB × NZW)F1 mice, the presence of glomerular immune complexes is not sufficient 

for the development of nephritis. Rather, the development of nephritis requires the 

recruitment of FcR-expressing myeloid cells, including macrophages, to the kidney and 

the subsequent activation of these cells by glomerular immune complexes [12,13]. 

These activated macrophages are thought to contribute to the chronic renal inflammation 

and tissue damage associated with nephritis. Therefore, the impact of P-Dex treatment 

on macrophage recruitment in the kidney was evaluated. Quantification of staining with 

the macrophage marker Iba1 revealed abundant macrophage infiltration into the 

tubulointerstitium and periglomerular area in the saline group (Figure 3A,B). By contrast, 
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macrophage infiltration in both the Dex and P-Dex groups was significantly less than that 

the saline control group (Figure 3A, B; P < 0.04). The modest recruitment of 

macrophages to kidneys from the P-Dex treated mice, despite the presence of abundant 

glomerular immune complexes, suggests that P-Dex attenuates nephritis by impairing 

the macrophage infiltration that occurs in response to renal immune complex deposition.  

The recruitment of macrophages to the kidney in lupus-prone mice leads to 

tubulointerstitial inflammation and injury [14,15]. To determine whether the reduced 

macrophage recruitment in the P-Dex group was also associated with decreased 

tubulointerstitial injury, the expression of Toll-like receptor 9 (TLR9) and Lipocalin 2 

(LCN2), markers for renal tubule damage and tubulointerstitial injury, were assessed 

[16-20]. Consistent with the observation that the kidneys of the mice in the saline group 

contained numerous macrophages and showed pronounced tubulointerstitial disease, 

abundant tubular TLR9 staining was observed in this group (Figure 4A, B). By contrast, 

in both the Dex and P-Dex groups, there was significantly less tubular TLR9 staining 

than in the saline group (Figure 4A,B; P < 0.05). To assess the impact of Dex and P-Dex 

on TLR9 expression in a more quantitative fashion, quantitative RT-PCR was performed 

to determine the level of expression of the Tlr9 transcript. This analysis confirmed that 

the levels of Tlr9 transcript were significantly less in the Dex and P-Dex groups 

compared to that in the saline control group (Figure 4C; P ≤ 0.01). Likewise, there was 

robust expression of LCN2 in the kidneys of the saline group, and significantly less 

LCN2 in the kidneys of both the Dex and P-Dex groups (Figure 4D; P ≤ 0.05). 

P-Dex prevents the development of lupus-associated hypertension, splenomegaly and 

vasculopathy 

Since systemic inflammation and renal dysfunction promote hypertension in lupus 

patients and (NZB × NZW)F1 mice [21,22], we assessed the impact of treatment on 
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Figure 3. Impact of treatment on renal macrophage infiltration in (NZB × NZW)F1 

mice. 

(A), Representative confocal images of immunohistochemical staining of kidney sections 
from mice in the saline (n=13), Dex (n=13), and P-Dex (n=9) treatment groups are 
shown. Sections were stained with an anti-Iba1 antibody (red) and DAPI (blue). Negative 
control (no Iba1 antibody) and merged images are shown. (B), Quantification of Iba1 
staining is illustrated. Scale bars: 50 μm; the asterisk (*) indicates a statistically 
significant difference (P < 0.05) from the saline control group.  
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Figure 4. Impact of treatment on tubulointerstitial inflammation and injury in (NZB 

× NZW)F1 mice. 

(A), Representative images of immunohistochemical staining of kidney sections from 
mice in the saline (n=13), Dex (n=13), and P-Dex (n=9) treatment groups are shown. 
Sections were stained with an anti-TLR9 antibody (brown) and counterstained with 
hematoxylin (blue). (B), Quantification of TLR9 staining is illustrated. (C), TLR9 transcript 
levels in the kidney were measured by quantitative RT-PCR. For the saline group, frozen 
kidneys were available for RNA extraction only from the 6 mice that survived until the 14-
week time point. (D), Levels of LCN2 were measured in kidney lysates by ELISA. For the 
saline group, frozen kidneys were available for preparation of protein lysates only from 
the 6 mice that survived until the 14-week time point. Scale bars: 25 μm; the asterisk (*) 
indicates a statistically significant difference (P < 0.05) from the saline control group.  
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mean arterial pressure (MAP). Prior to treatment, mice in the saline group were 

normotensive (Figure 4A). However, over the experimental time course, MAP rose 

significantly and virtually all of the mice in this group became hypertensive (Figure 5A; P 

≤ 0.01). By contrast, there was no significant change in MAP in either the Dex or P-Dex 

groups over this time course (Figure 5A; P > 0.05).  

Splenomegaly occurs only in a subset of human lupus patients. By contrast, 

splenomegaly is observed in virtually all lupus prone mouse strains, including the (NZB × 

NZW)F1 hybrid. Therefore, spleen mass of the animals was investigated at necropsy. 

Splenomegaly was pronounced in the saline group (Figure 5B). By contrast, there was 

little evidence of splenomegaly in either the Dex or P-Dex treated groups; mean spleen 

mass in the Dex and P-Dex groups was significantly different than that in the saline 

group (P < 0.001). The spleen mass in the P-Dex group was significantly different than 

that in the Dex group (P = 0.03), although the biological significance of this difference is 

unclear. All differences persisted when spleen mass was normalized to total body mass 

(data not shown). Thus, both Dex and P-Dex can attenuate splenomegaly in (NZB × 

NZW)F1 mice. 

Lupus patients are also at high risk for vasculitis. Vasculitis, evidenced by fibrinoid 

necrosis in the walls of the splenic blood vessels, was found in 54% of mice from the 

saline group. Fibrin deposits were also noted within the lumen of splenic vessels in 39% 

of the mice in the saline group (Figure 5C). No fibrin deposition or fibrinoid necrosis was 

observed in mice from the Dex and P-Dex groups, indicating that both treatments 

attenuated vascular disease in lupus prone mice. 
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Figure 5. Impact of treatment on hypertension, splenomegaly and vasculitis in 

(NZB × NZW)F1 mice. 

(A), Mean arterial pressure was measured at pretreatment, 4-week, 8-week, 12 week 
time points via tail-cuff method. For the saline group, measurements were obtained only 
for the subset of mice surviving at each time point: 12 mice at 4-week time point; 11 
mice at 8-week time point; 9 mice at 12-week time point (B), Spleen mass was 
determined at the time of sacrifice in each mouse. (C), A representative hematoxylin and 
eosin stained histological section illustrating a splenic vessel from each treatment group 
is provided. The arrow indicates perivascular fibrin deposits indicative of vasculitis. Scale 
bars: 50 μm; the asterisk (*) indicates a statistically significant difference (P < 0.05) from 
the saline control group. The double asterisk (**) indicates a statistically significant 
difference (P < 0.05) from the Dex group. The dagger (†) indicates a statistically 
significant difference (P < 0.05) from the pretreatment time point of the same treatment 
group. For saline and Dex treatments, n=13; for P-Dex treatment, n=9. 
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P-Dex treatment does not affect bone quality 

Osteoporosis is a major adverse side effect of long-term use of GCs [23]. To investigate 

the impact of P-Dex on the skeleton, the femoral BMD and micro-architecture were 

evaluated. As expected, the mean bone mineral density (BMD) and trabecular bone 

volume/tissue volume (BV/TV) in the femurs of Dex treated mice were significantly lower 

than that observed in the saline group (Figure 6A, B; P < 0.05). Trabecular number did 

not differ significantly between the Dex and saline groups (Figure 6C; P > 0.05). In the P-

Dex group, mean femoral BMD, BV/TV and trabecular number did not differ significantly 

from the means in the saline group (Figure 6A, B, C; P > 0.05). By contrast, compared to 

the Dex group, the P-Dex group exhibited significantly greater BMD (Figure 6A; P = 

0.004), BV/TV (Figure 6B; P = 0.007) and trabecular number (Figure 6C; P = 0.01). 

Thus, unlike Dex, P-Dex did not negatively affect BMD or microarchitecture of the bone. 

P-Dex treatment reduces peripheral white blood cells but does not reduce serum IgG 

levels 

GC therapy is associated with immunosuppression [24,25]. Therefore, we monitored 

peripheral white blood cell (WBC) counts and serum IgG levels during the experimental 

time course. Prior to treatment, no significant differences in peripheral WBC counts were 

observed between groups (Figure 6D; P > 0.05). In the saline group, peripheral WBC 

counts initially remained constant, but were significantly reduced at the 12 week time 

point (Figure 6D; P = 0.049). By contrast, peripheral WBC counts were significantly 

reduced by the 4-week time point in the Dex (Figure 6D; P = 0.0004) and P-Dex (Figure 

6D; P = 0.0007) groups; WBC counts remained low in both of these treatment groups for 

the duration of the study. No significant changes in serum IgG levels were observed in 
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Figure 6. Evaluation of treatment-induced side effects. 

At sacrifice, femurs were collected for endpoint analysis of bone quality. (A), bone 
mineral density (B), bone volume/tissue volume and (C), trabecular number 
measurements in each treatment group are shown. (D), white blood cell counts and (E), 
total serum IgG levels were determined at pretreatment 4-week, 8-week and 12-week 
time points. For the saline group, measurements were obtained only for the subset of 
mice surviving at each time point: 12 mice at 4-week time point; 11 mice at 8-week time 
point; 9 mice at 12-week time point (F), Adrenal mass was determined at the time of 
sacrifice in each mouse. The asterisk (*) indicates a statistically significant difference (P 
< 0.05) from the saline control group. The double asterisk (**) indicates a statistically 
significant difference (P < 0.05) from the Dex group. The dagger (†) indicates a 
statistically significant difference (P < 0.05) from the pretreatment time point of the same 
treatment group. For saline and Dex treatments, n=13; for P-Dex treatment, n=9. 
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any group (Figure 6E; P > 0.05). Thus, treatment with either Dex or P-Dex reduced 

peripheral WBC counts, but did not reduce serum IgG levels. 

P-Dex treatment induces adrenal gland atrophy 

GC therapy causes suppression of hypothalamic-pituitary-adrenal (HPA) axis and 

atrophy of the adrenal glands. Therefore, at necropsy, we determined the mass of the 

adrenal glands in each mouse. The mean adrenal mass in the Dex group was 

significantly different than the saline group (Figure 6F; P = 0.01). Although the mean 

adrenal mass in the P-Dex group was less than that in the saline group, this difference 

fell short of statistical significance (Figure 6F; P = 0.07). There was no significant 

difference in adrenal gland mass between the P-Dex and Dex groups (Figure 6F; P 

>0.05). These data suggest that treatment with either Dex or P-Dex induced adrenal 

gland atrophy.  

Discussion 

Nanomedicine-based approaches that permit the modulation of the in vivo 

pharmacokinetic/biodistribution profile of drugs represent a promising strategy for the 

development of novel therapeutics to treat lupus nephritis. This approach is particularly 

helpful for existing drugs, such as glucocorticoids, for which high potency is 

accompanied by severe side effects due to ubiquitous distribution within the body.  

Previously, we demonstrated that P-Dex can be passively targeted to the kidneys of 

lupus-prone mice, likely due to the leaky vasculature in this inflamed tissue. In the 

kidneys of lupus-prone mice, P-Dex is internalized and activated by proximal tubule 

epithelial cells. In our previous study, we found that P-Dex is more effective than free 

Dex at preventing nephritis in young (NZB × NZW)F1 mice, but it does not cause typical 

Dex-associated side effects, such as osteopenia [4].  
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In the present study, we evaluated the potential of P-Dex to treat established nephritis in 

(NZB × NZW)F1 mice. Over the experimental time course, albuminuria intensified in the 

mice in the saline control group, and almost all of these mice developed severe 

nephritis. Furthermore, 55% of the saline treated mice succumbed to severe nephritis. 

By contrast, all the animals treated with either Dex or P-Dex survived the entire 14-week 

experimental time course. Although albuminuria worsened in only a fraction of the mice 

in the Dex group, albuminuria persisted in all of the mice in this group. Strikingly, 

albuminuria was eliminated in almost 80% of the mice in the P-Dex group. These data 

indicate the P-Dex improved renal function whereas the equivalent dose of free Dex only 

maintained the extant level of renal function.  

Consistent with our previous observations, we found that P-Dex did not attenuate 

nephritis by reducing serum anti-dsDNA IgG or glomerular immune complex deposition. 

We also determined that P-Dex did not attenuate nephritis by causing a shift toward less 

pathogenic subclasses of anti-dsDNA IgG. However, P-Dex did reduce the infiltration of 

macrophages into the kidney. The modest recruitment of macrophages to the kidney in 

the P-Dex group, despite the presence of abundant glomerular immune complexes, 

suggests that P-Dex may impair the renal pro-inflammatory response to immune 

complex deposition. It has been suggested that stimulation of the TLR and FcR signaling 

pathways may act synergistically to initiate the chronic inflammation that leads to 

nephritis [26]. Both of these pathways are activated by the presence of immune 

complexes containing dsDNA. Our observation that P-Dex inhibits both tubulointerstitial 

TLR9 expression as well as the recruitment of FcR-bearing macrophages to the 

tubulointerstitium, despite the presence of such immune complexes, suggests that the 

ability to inhibit both of these pathways may contribute to the enhanced therapeutic 

benefit of P-Dex. 
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P-Dex also attenuated tubulointerstitial injury and disease. In lupus patients, 

tubulointerstitial inflammation and injury correlate with impaired renal function more 

strongly than glomerular damage [27]. Furthermore, tubulointerstitial inflammation is the 

best predictor of risk of progression to renal failure in lupus nephritis patients [27,28]. 

Altogether, these data suggest that P-Dex may restore renal function and extend 

lifespan in (NZB × NZW)F1 females by reducing inflammatory cell infiltration in the 

kidney, thereby minimizing tubulointerstitial inflammation and protecting the 

tubulointerstitium from injury. By contrast, Dex inhibits nephritis and extends lifespan in 

lupus prone mice by reducing serum levels of pathogenic anti-dsDNA IgG 

autoantibodies.  

In our previous study, we found that P-Dex was taken up not only by cells in the kidney, 

but also by spleen cells in (NZB × NZW)F1 mice [4]. Therefore, in the present study, we 

evaluated the impact of treatment on the spleen. Neither Dex nor P-Dex induced 

histopathological abnormalities in spleen. Rather, both treatments attenuated the 

splenomegaly that develops in (NZB × NZW)F1 mice. Dex and P-Dex also prevented the 

development of vasculitis affecting the splenic blood vessels.  

Due to the passive-targeting of P-Dex to the inflamed kidney, one would expect P-Dex to 

exhibit a superior safety profile compared to free Dex. To assess the side effects of P-

Dex, we measured femoral bone quality, serum IgG levels, peripheral WBC counts and 

adrenal gland mass. All of these parameters are usually reflective of GC-associated 

toxicities (e.g. osteoporosis, adrenal gland atrophy and immunosuppression). As 

expected, Dex treatment significantly reduced femoral BMD and other micro-architecture 

parameters. By contrast, femoral BMD, trabecular BV/TV and trabecular number in the 

P-Dex group was not different than that in the saline group. Mice in the Dex and P-Dex 

groups displayed similar reductions in peripheral WBC counts and adrenal gland 
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atrophy. This residual toxicity in the P-Dex group is likely due to the fact that P-Dex is 

taken up to some degree by splenocytes and circulating blood cells [4]. Additionally, 

these side effects could be due to the free dexamethasone that is released as a result of 

the cleavage of P-Dex. Collectively, these data suggest that P-Dex treatment partially 

eliminates the side effects associated with free Dex treatment. Further study is needed 

to understand why the skeleton was shielded from GC-associated toxicity following P-

Dex treatment whereas other tissues and organs remained vulnerable. Acquisition of 

such knowledge may provide insight that would facilitate the further optimization of the 

design of this prodrug to improve its safety profile.  

Materials and Methods 

Ethics statement 

Mice were housed under controlled humidity, temperature and lighting conditions in 

facilities accredited by the American Association for Accreditation of Laboratory Animal 

Care, operating in accordance with standards set by the Guide for the Care and Use of 

Laboratory Animals (The National Academies Press, 1996). Mice were given Harlan 

irradiated rodent diet 7904 (Harlan Teklad, Madison, WI) and allowed to feed ad libitum. 

All procedures involving live animals were approved by the University of Nebraska 

Medical Center Institutional Animal Care and Use Committee under protocol 03-008.  

Experimental animals and drug treatment 

Beginning at 20 weeks of age, (NZB × NZW)F1 female mice (Jackson Laboratories, Bar 

Harbor, ME) groups of mice were randomized into saline, Dex and P-Dex groups and 

monitored weekly for albuminuria using Albustix (Siemens Corp., Washington DC). 

Albustix readings between 1 and 2 (30-99mg/dl) are considered “normal”, whereas 

readings of ≥2+ (≥100mg/dl) indicate the presence of albuminuria. Only the mice in each 
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group with established nephritis, evidenced by sustained albuminuria (≥100 mg/dl) over 

an initial monitoring period of 3 weeks, were officially enrolled in the study and are 

described here. The P-Dex (250 mg/kg, containing 30 mg/kg of dexamethasone) and 

saline groups were administered monthly i.v. injections. The third group was given daily 

i.p. injections of dexamethasone 21-phosphate disodium (Dex, 1.32 mg/kg, containing 

1.00 mg/kg of dexamethasone, Hawkins, Inc., Minneapolis, MN). Over the three-month 

(12 weeks) treatment period, the overall dose of dexamethasone in the P-Dex and Dex 

groups was the same. P-Dex was synthesized as described previously [4,29]. 

Every month, serum was isolated from peripheral blood, mean arterial pressure was 

recorded via tail-cuff method using the CODA blood pressure measuring system and 

software (Kent Scientific, Torrington, CT), and peripheral white blood cells were isolated 

from whole blood and counted by hemocytometer. Mice were weighed and monitored for 

albuminuria on a weekly basis. Visual inspection of mice showing evidence of increasing 

albuminuria and/or weight loss was performed daily. Mice that developed severe 

albuminuria (≥ 2000 mg/dl) or showed signs of distress (i.e. reduced mobility, weight loss 

>20%, edema, unkempt appearance) were sacrificed immediately. The remaining mice 

were sacrificed two weeks after cessation of treatment (14 weeks after initiation of 

treatment). All mice were sacrificed by CO2 asphyxiation, and tissues were harvested 

after sacrifice. No anesthesia or analgesia was used.  

Analysis of nephritis, renal immune complexes and renal macrophage infiltration 

Kidneys were fixed, paraffin-embedded, sectioned and stained with Periodic Acid-Schiff 

(PAS) (Sigma-Aldrich, St. Louis, MO) and analyzed by light microscopy. Nephritis was 

assessed using a semi-quantitative 0 to 4 scale as described previously [5].  
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Renal immune complexes were visualized by immunohistochemistry as described 

previously [4]. Staining intensity (represented as arbitrary gray units or AGU) of fifty 

glomeruli per mouse was quantified using region of interest analysis in Axiovision 

software (v4.6.3.0; Carl Zeiss, Thornwood, NY).  

Renal macrophage infiltration was assessed via immunofluorescence with the 

macrophage marker Iba1 (Biocare Medical, Concord, CA) as described previously 

[4,30]. Staining was visualized and quantified using confocal microscopy and Zen 2010 

software (v6; Carl Zeiss). 

Analysis of serum immunoglobulin and autoantibody levels 

Serum immunoglobulin concentrations were determined by ELISA (Southern Biotech, 

Birmingham, AL) as described previously [4,5]. The IgG1, IgG2a, IgG2b, and IgG3 levels 

were added together to obtain total serum IgG levels. Serum anti-dsDNA IgG levels 

were determined by ELISA (Alpha Diagnostics International, San Antonio, TX) as 

described previously [4,5].  

Analysis of markers of tubulointerstitial activation and injury 

Renal expression of LCN2 protein was assessed in diluted kidney cell lysates by ELISA 

(BioPortoDiagnostics, Gentofte, Denmark) according to the manufacturers’ instructions. 

The protein in the supernatant was quantified using the Bradford method. LCN2 

expression levels were normalized to total protein input levels.  

TLR9 protein expression was assessed via immunohistochemical staining with an 

antibody specific for this receptor (Santa Cruz Biotechnology, Santa Cruz, CA) as 

described previously [4,19]. Staining intensity (in AGU) of fifty glomeruli per mouse was 

quantified using Axiovision software. Tlr9 transcript level was assayed by quantitative 
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RT-PCR. For this analysis, total RNA was isolated from kidney using the Absolutely RNA 

Miniprep Kit (Agilent Technologies, La Jolla, CA) and cDNA using SS VILO Master Mix 

(Life Technologies, Carlsbad, CA). PCR was performed using Tlr9–specific primers [19], 

SYBR Green PCR Master Mix (Life Technologies) and the Applied Biosystems 7500 

Real-Time PCR System. 

Histological analysis of vasculitis 

Spleens were fixed, paraffin-embedded, sectioned and stained with hematoxylin and 

eosin stain (H&E) (Sigma-Aldrich, St. Louis, MO) and analyzed by light microscopy using 

sections from age-matched NZW female mice as a healthy control.  

Analysis of bone quality 

Femoral BMD and micro-architectural parameters were measured using Skyscan 1172 

micro-CT system (Skyscan, Kontich, Belgium) as described previously [4,31]. Micro-CT 

scanning parameters were identical to those described previously [4]. Femoral BMD, 

BV/TV and trabecular number and thickness were quantified with CTAn software 

(Skyscan). 

Statistical methods 

Comparisons were performed using Fishers exact test, Wilcoxon signed-rank test, 

Mann-Whitney U test, independent or paired samples t-test, or one-way ANOVA with 

Tukey’s post hoc test where appropriate. Kaplan-Meier survival analysis and log-rank 

test were used to assess the impact of treatment on lifespan. Statistical analyses were 

performed using SPSS software (v. 21.0). A two-sided P ≤ 0.05 was considered 

significant. Two-sided P-values are provided. Mean ± standard error of the mean is 

presented. 
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