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The master regulator of the macrophage development, differentiation, 

proliferation, survival, phagocytosis, cytokine secretion, motility, adhesion, 

migration, and spreading is the receptor tyrosine kinase (RTK) colony stimulating 

factor-1 receptor (CSF-1R). Aberrant CSF-1R signaling is present amongst a 

variety of highly prevalent and devastating human diseases in the United States 

such as atherosclerosis, cancer, inflammatory bowel disease, arthritis, and 

neuro-demyelination/neuro-degeneration. A better understanding of basic 

mechanisms that govern macrophage development and function is of vital 

importance in treating patients afflicted with these conditions/diseases. CSF-1R 

presentation on the macrophage cell surface is a required precursor for CSF1-

induced RTK dimerization (activation) and downstream CSF-1R signaling 

cascades. Mechanisms which regulate CSF-1R trafficking are unstudied and 

mechanisms of RTK trafficking regulation are poorly understood. The 

evolutionarily conserved C-terminal Eps15 Homology Domain (EHD) protein 

family consists of vesicular trafficking regulating proteins. However, the role of 

EHD proteins in CSF-1R trafficking and signaling has not been studied. I have 

utilized primary (non-immortalized) murine/mammalian macrophages under 



 
 

inducible Ehd1 gene deletion/knockout (EHD1-KO) to explore the role of EHD1 in 

CSF-1R trafficking in macrophages. I have discovered an entirely novel function 

for EHD1 in anterograde transport and presentation of CSF-1R on the 

macrophage cell surface. EHD1-KO macrophages have significantly depleted 

total and surface CSF-1R expression (i.e. receptor available for ligand-binding 

and subsequently CSF-1R activation/signaling) when compared with control 

macrophages. In EHD1-KO macrophages, newly synthesized CSF-1R en route 

to the cell surface is essentially shunted to the lysosome and degraded. These 

findings reveal an entirely novel and essential role for EHD1 in anterograde 

transport/presentation of CSF-1R to the macrophage cell surface. 
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The monocyte/macrophage cell lineage  

Cells of the monocyte/macrophage lineage play fundamental roles in 

integrating the two major arms (innate and adaptive) immune system. Colony-

stimulating factor-1 receptor (CSF-1R) signaling is essential for the development 

of the cells of the monocyte-macrophage lineage by mediating the proliferation 

and differentiation of myeloid progenitors into mature, fully functional 

macrophages (1). CSF-1R signaling has been demonstrated to instruct 

hematopoietic stem cells (HSCs) to differentiate into macrophages via myeloid-

lineage transcription factor PU.1, providing a mechanism for the immune system 

to increase macrophage numbers during infection/inflammation (2). 

Abnormalities in the development of this cell lineage are incompatible with an 

efficient and healthy immune system (3–5).  

Macrophages also play pivotal roles in wound repair and the removal of 

apoptotic cells. Phagocytosis and subsequent removal of necrotic tissues by 

macrophages is an important part of normal human physiology.  In wound repair, 

macrophages function in the production of the new extracellular matrix. The 

mechanism by which macrophages help produce this extracellular matrix is via 

macrophage arginase which allows the conversion of arginine to ornithine. This 

conversion is necessary to make collagen—an essential building block for 

reconstruction of damaged tissues (6).  

 

Of clinical relevance, macrophages are also known to be present in 
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common in human diseases (Figure 1.1). More specifically, macrophages are 

known to be involved in immunological diseases (7–9) such as rheumatoid 

arthritis, inflammatory bowel disease, and demyelinating neurological diseases 

(10–12). Additionally, macrophages also play key homeostatic roles in non-

immune diseases such as atherosclerosis and cancer (13–15).  

In the context of cancer, macrophages are key players in 

regulating/maintaining the tumor microenvironment and are known as Tumor-

Associated Macrophages (TAMΦ). TAMΦs take part in a positive feedback loop 

involving tumor cells. Briefly, the tumor cells secrete CSF-1, which attracts and 

maintains TAMΦs along with a combination of other growth factors. TAMΦs in 

return secrete Epidermal Growth Factor (EGF) and Vascular Endothelial Growth 

Factor (VEGF) which promotes survival of the tumor cells. Specifically, EGF 

promotes the growth of the tumor directly, and VEGF promotes vascularization of 

the neoplastic tissue (16).  

Given their relatively short life span yet relatively constant numbers in 

circulation and tissues under homeostasis, and a rapid and sometimes marked 

increase in numbers in the face of infection or inflammation, macrophages need 

to be continuously produced to match the body’s needs. CSF-1R signaling is 

essential for this process to occur (17). It is also known that critical proliferative 

signals generated by CSF-1R occur when the receptor has been internalized and 

is in the endocytic recycling compartment (18). However, mechanisms which 

regulate CSF-1R trafficking have not been studied. A better understanding of 

basic mechanisms that govern macrophage biology/CSF-1R signaling is of vital 
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importance regarding treatment of patients afflicted with these conditions. 

CSF-1R as the master regulator of macrophages 

CSF-1R signaling that is essential for appropriate macrophage 

development and population maintenance (Figures 1.2 and 1.3) is controlled by 

binding and subsequent activation of the receptor by CSF-1. CSF1-induced CSF-

1R signaling has also been shown directly to regulate the physiological functions 

of macrophages such as proliferation, differentiation, spreading, migration, 

phagocytosis, and cytokine secretion (Figure 1.4). Furthermore, CSF-1R 

signaling also controls universal transcription of the macrophage genome and 

subsequent protein expression (19). Hence, if CSF-1R does not directly regulate 

macrophage function, the receptor indirectly regulates macrophage biology due 

regulation of cellular protein expression (Table 1.1).  

CSF-1R, like all receptor tyrosine kinases (RTKs), is synthesized in the 

endoplasmic reticulum, glycosylated/matured in the Golgi apparatus, and then 

transported to the cell surface where it can become activated via binding of 

ligand (CSF-1). Transport of newly synthesized receptor is a prerequisite step in 

RTK/CSF-1R activation and signaling (20). Furthermore, if CSF-1R does not 

make it to the cell surface or is not oriented on the plasma membrane correctly, it 

cannot bind ligand and become activated (signal).  

Similarly, to other RTKs, ligand binding of CSF-1 (M-CSF) or IL-34 

activates CSF-1R by inducing conformational changes, dimerization, and trans-

phosphorylation, leading to the association of key cytoplasmic signaling 
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intermediates.  Signal transduction cascades are activated, including the PI3-

kinase/AKT, Ras/Erk, and Rho/Rac pathways (21, 22). Transcription occurs 

downstream of these signaling pathways dictating changes in macrophage 

biology. 

When CSF-1 binding of CSF-1R occurs at the macrophage’s surface 

(RTK activation) endocytic internalization of CSF-1R occurs (18, 23). 

Endocytosed RTKs are targeted to the lysosome, which our laboratory and 

others have demonstrated to be dependent on CBL-family proteins and ESCRT 

complexes (20, 24–26). Also, ligand-stimulated and internalized RTKs can transit 

through an endocytic recycling pathway (27). These alternate fates of 

internalized RTKs are of a high biological interest as their balance determines the 

magnitude and duration of signaling in response to ligand-induced stimulation 

(28). Furthermore, activated RTKs continue to signal in endosomes and indeed 

may require endocytosis to transduce specific signals (20). CSF-1R signaling at 

the cell surface is known to induce phosphorylation of the STAT3 pathway 

specifically and not the Erk and Akt pathways. However, once internalized, CSF-

1R signaling from the endosome results in phosphorylation of the Erk and Akt 

pathways (18).  

After newly synthesized receptor has been transported to the cell surface, 

it will undergo constitutive recycling if CSF-1 activation does not occur. CSF-1R 

is known to undergo constitutive recycling at a rate of 4 molecules/cell/s at 

steady state (29). The combinatory effects of the rate of receptor internalization, 

constitutive recycling, and degradation determine the half-life (t1/2) of an RTK. 
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CSF-1R has one of the fastest turnover rates ( t1/2 < 1 hour) of any known RTK 

(25). Trafficking of CSF-1R happens extremely fast. In contrast, EGFR has one 

of the slowest turnover rates (t1/2 > 24 hours). The rapid turnover rate of CSF-1R, 

as compared to other RTKS, is an important caveat which must be taken into 

account when trying to understand the biology of the receptor. 

C-terminal Eps15 Homology Domain (EHD) containing proteins 

The four members of C-terminal Eps15-homology domain-containing 

(EHD) protein family have emerged recently emerged as regulators of endocytic 

traffic of cell surface receptors (30). EHD proteins are characterized by highly 

related primary amino acid sequences amongst family members and similar 

domain structure. The domains are composed of a nucleotide-binding G-domain, 

coiled-coiled regions that form a membrane lipid-binding domain, an EH domain 

(67-86% homology, Figure 1.5A), and a C-terminus that mediates interactions 

with partner proteins by binding to asparagine-proline-phenylalanine (NPF)-

containing motifs (Figure 1.5B). In vitro studies have suggested EHD proteins 

function in a manner similar to the protein dynamin—as scission proteins to 

promote vesicular budding and membrane tubulation (Figure 1.5C). Furthermore, 

EHD1 has been linked to the cellular endocytic recycling compartment (Figure 

1.6). These studies have shown EHD proteins to be involved in the recycling of 

immune-relevant receptors such as MHC class I, MHC class II, β1 integrins (30). 

Furthermore, EHD proteins have been correlated with various human diseases 

(Table 1.2). However, the role of EHD proteins in CSF-1R trafficking and 
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signaling has not been studied. 

Mouse models to study EHD proteins  

Our laboratory has previously used individual and combined gene deletion 

approaches in mice to discover physiological roles of EHD proteins in vivo. EHD1 

deletion on a mixed C57BL/6 and 129Sv background is partially embryonic lethal 

and associated with defective spermatogenesis and lens developmental defects. 

EHD1 deletion is fully embryonic lethal on a predominantly C57BL/6 background 

and related to defective neural tube closure due to lack of ciliogenesis and 

altered Hedgehog signaling (31–33). EHD1-null mice also exhibit a skeletal 

myopathy (34, 35). EHD4-null mice exhibit reduced testes size and male fertility 

while EHD3-null mice are normal (36); however, EHD3/EHD4-null mice show 

high early neonatal lethality and develop rapidly progressive renal thrombotic 

microangiopathy (37). Further analyses of EHD3-null mice have revealed a 

pivotal role of EHD3 in regulating cardiac membrane excitability and rhythm (38). 

Consistent with these physiological functions, EHD proteins have been found to 

regulate trafficking to the cell surface of non-RTK receptors, such as 

Sodium/Calcium (Ca2+) exchanger L-type Ca2+ channel type 1.2 (39) and 

voltage-gated T-type Ca2+channels CaV3.1, and CaV3.2 (40) in cardiomyocytes, 

and feeling protein Fer1L1 in skeletal muscle cells (34, 35). Currently, little is 

known about the physiological roles of EHD proteins. EHD-regulated endocytic 

traffic of other receptors characterized in cellular models, including transferrin 

receptor (41), MHC class I (42), β1 integrin (43), cadherin 23 (44), L1/Ng-CAM 
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(45), and surface protease BACE1 (46). Similarly, the functional importance of 

EHD1 and EHD4 localization to the neuromuscular junction (47) remains unclear. 

In contrast to non-RTK receptors, less is known about the roles of EHD 

proteins in RTK traffic. EHD4 expression was found to be upregulated by 

neurotrophin stimulation of neuronal cultures, and knockdown studies showed 

that EHD4 was required for the post-stimulation retrograde traffic of neurotrophin 

receptor TrkA (48). We have observed an increased cytoplasmic and reduced 

surface localization of vascular growth factor receptor 2 (VEGF2) in glomerular 

endothelial cells of EHD3/EHD4 double knockout mice with a glomerular disease, 

suggesting a potential role of EHD proteins in facilitating the surface mobilization 

of RTKs. At present, no role of EHD proteins in CSF-1R traffic or monocyte-

macrophage function is known. 

To establish a biological system in which the functions of endocytic 

recycling can be examined in vivo as well as ex vivo, our laboratory has focused 

on four highly conserved proteins of the Eps15-homology domain-containing 

(EHD) protein family. By creating constitutive as well as inducible mouse 

knockout (KO) models, our laboratory aims to uncover previously unanticipated 

roles of these proteins in physiological processes. To elucidate the roles of EHD 

protein-dependent endocytic recycling in the macrophages, I initiated studies 

using mouse macrophages, given the critical duties of the endocytic machinery in 

basic macrophage biology, including phagocytosis, endocytic internalization of 

foreign antigens or antigen/antibody complexes, antigen processing and display 

on the surface, and other roles (49, 50). Mutations of endocytic regulatory 
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proteins in genetic immune disorders, such as Chediak-Higashi Syndrome (51) 

and familial lymphohistiocytosis (52) significantly affect macrophage function. 

Hypothesis 

I hypothesize that EHD1 orchestrates optimal CSF-1R expression and 

signaling in macrophages. Furthermore, EHD1 regulates macrophage CSF-1R 

surface expression via control of CSF-1R transport to the cell surface, thus 

permitting stabilization of the dimerized form of the receptor by CSF-1 

(activation). This hypothesis will be explored using primary murine bone marrow-

derived macrophages (BMDMs) from constitutive and inducible EHD knockout 

mice. Using an array of biochemistry, immunofluorescence, and Fluorescence 

Activated Cell Sorting (FACS) analysis, I will characterize the physiological 

functions of EHD1 in the context of CSF-1R signaling in macrophages 

responses. Furthermore, I will seek to describe a mechanism behind any 

differences detected between control and EHD1-KO macrophages.  
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Table 1.1. Modulation of the protein expression by CSF-1. 
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Table 1.1. Modulation of protein expression by CSF-1. CSF-1 up-regulates 

human monocyte expression of the P2X7 extracellular ATP receptor that 

regulates DCs and macrophage inflammatory functions, including intracellular 

bacterial killing, and favors the generation of cytokines that stimulate T helper 2 

responses. Independently of LPS, CSF-1 induces monocytes to express a variety 

of cytokines and immunologically relevant cell surface molecules. 

Used with permission (7) 
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Table 1.2. Relationship of EHD proteins to human disease. 

 

 
  



14 
 

Table 1.2. Relationship of EHD proteins to human disease. The table 

highlights known correlation between EHD proteins and human diseases using 

fold increase or decrease of the corresponding EHD protein to a given human 

disease. 

Used with permission (30) 
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Figure 1.1. Macrophages in human disease. 
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Figure 1.1. Macrophages in human disease. Involvement of CSF1-regulated 

mononuclear phagocytes in immunity and inflammation. By regulating the 

development and activation of mononuclear phagocytes, CSF-1 contributes to 

immunity to viral, bacterial and fungal infections and increases the efficiency of 

vaccination (e.g. Sendai virus and glioma vaccines). The involvement of specific 

macrophage populations is shown. CSF-1 is also involved in promoting and 

sustaining inflammation in several diseases (e.g. Alzheimer’s disease, systemic 

lupus erythematosus, arthritis and obesity) and in the regulation of TAMΦs in 

enhancing tumor progression and metastasis (not shown). Although most studies 

have been performed in rodents, for illustrative purposes this information is 

depicted on a human body.  

Used with permission (7) 
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Figure 1.2. The origins of tissue macrophages. 
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Figure 1.2. The origins of tissue macrophages. Developmental origin of tissue 

macrophages in the mononuclear phagocyte system. Embryonic macrophages 

from the yolk sac and fetal liver self-renew in homeostatic conditions and are 

driven by M-CSF (CSF-1) or GM-CSF. Inflammatory macrophages of embryonic 

origin also self-renew. 

Used with permission (53) 
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Figure 1.3. Model of how CSF-1R controls macrophage tissue density. 
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Figure 1.3. Model of how CSF-1R controls macrophage tissue density. CSF-

1R signaling controls the proliferation of tissue macrophages. Constant secretion 

of CSF-1 by tissue stroma and consumption by macrophages maintains 

population density just below the CSF-1R signaling threshold required for 

proliferation (A). Steady state death/ migration (B) or disappearance during 

inflammation (C) increases available CSF-1 without necessarily changing 

production of CSF-1, thereby allowing proliferation to restore normal density. 

Elevated CSF-1 secretion stimulates cells to proliferate to higher tissue density 

than normal (D), but can also stimulate monocyte recruitment via macrophage 

chemokine production (E). Recruitment likely requires a higher threshold of CSF-

1R signaling than proliferation, but this remains to be established. Other factors, 

such as IL-4, can allow macrophages to proliferate independently of CSF-1 

thereby increasing macrophage numbers when CSF-1 is limiting and without a 

concurrent increase in monocyte recruitment (F).  

Used with permission (54) 
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Figure 1.4. CSF-1R signaling governs macrophage biology. 
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Figure 1.4. CSF-1R signaling governs macrophage biology. Signaling 

pathways regulated by colony-stimulating factor-1 receptor (CSF-1R) in myeloid 

cells. Binding of Colony-stimulating factor-1 (CSF-1) stabilizes a dimeric form of 

the CSF-1R and leads to activation of the CSF-1R kinase, its tyrosine 

phosphorylation, and the direct association of signaling molecules with the 

receptor through their phosphotyrosine-binding domains. The precise 

involvement of the Ras–MEK–MAPK pathway in the CSF1-regulated proliferation 

and differentiation of myeloid cells is not clear, but Raf-1 seems to signal 

independently of this pathway. Differences in signaling pathways are also 

expected to exist between macrophage progenitor cells and macrophages. 

Used with permission and modified (17) 
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Figure 1.5. C-terminal Eps15 homology domain (EHD) proteins. 
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Figure 1.5. Domain architecture, conservation, and function of C-terminal 

Eps15 homology domain (EHD) proteins. (A) The EHD proteins, comprised of 

534–543 amino acids, each contain two helical regions, a conserved ATP-

binding domain, a linker region and an EH domain localized to the C-terminus of 

the protein. (B) Comparison of the amino acid sequence identity of full-length 

EHD proteins. (C) Proposed model of EHD protein function. Cytoplasmic 

localized EHD proteins bind ATP and dimerize. EHD dimerization causes the 

formation of a membrane binding site and the EHD proteins associate with 

tubular membranes, where they undergo further oligomerization. Upon ATP 

hydrolysis, the membranes are destabilized, leading to scission of vesicles 

containing concentrated cargo/receptors, thus facilitating vesicular transport. 

Used with permission (30) 
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