
University of Nebraska Medical Center University of Nebraska Medical Center 

DigitalCommons@UNMC DigitalCommons@UNMC 

Theses & Dissertations Graduate Studies 

Summer 8-19-2016 

The Pathogenesis of Natural Killer/T Cell Lymphoma The Pathogenesis of Natural Killer/T Cell Lymphoma 

Bei Jiang 
University of Nebraska Medical Center 

Tell us how you used this information in this short survey. 

Follow this and additional works at: https://digitalcommons.unmc.edu/etd 

 Part of the Hemic and Lymphatic Diseases Commons, Medical Molecular Biology Commons, and the 

Medical Pathology Commons 

Recommended Citation Recommended Citation 
Jiang, Bei, "The Pathogenesis of Natural Killer/T Cell Lymphoma" (2016). Theses & Dissertations. 131. 
https://digitalcommons.unmc.edu/etd/131 

This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It 
has been accepted for inclusion in Theses & Dissertations by an authorized administrator of 
DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu. 

http://www.unmc.edu/
http://www.unmc.edu/
https://digitalcommons.unmc.edu/
https://digitalcommons.unmc.edu/etd
https://digitalcommons.unmc.edu/grad_studies
https://unmc.libwizard.com/f/DCFeedback/
https://digitalcommons.unmc.edu/etd?utm_source=digitalcommons.unmc.edu%2Fetd%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1011?utm_source=digitalcommons.unmc.edu%2Fetd%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/673?utm_source=digitalcommons.unmc.edu%2Fetd%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/676?utm_source=digitalcommons.unmc.edu%2Fetd%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unmc.edu/etd/131?utm_source=digitalcommons.unmc.edu%2Fetd%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@unmc.edu


 
 

 

THE PATHOGENESIS OF NATURAL KILLER/T CELL LYMPHOMA 
 

By 

 

Bei Jiang 

 

A DISSERTATION 

 

Presented to the Faculty of 

The Graduate College in the University of Nebraska 

In Partial Fulfillment of the Requirements 

For the Degree of Doctor of Philosophy 

 

Pathology & Microbiology Graduate Program 

 

Under the Supervision of Professor Wing-Chung (John) Chan and Professor Kai Fu 

 

 

University of Nebraska Medical Center 

Omaha, Nebraska 

 

May, 2016 

 

Supervisory Committee: 

Runqing Lu, Ph.D.      Samuel J. Pirruccello, M.D.     Kay-Uwe Wagner, Ph.D.



I 
 

 

Acknowledgment 

I would first like to acknowledge my advisor Dr. John Chan for continual support and 

guidance during my Ph.D. study. He has inspired me to think as a clinician and solve 

problems in a scientific way. His enthusiasm for research has always motivated me. I 

would like to extend special thanks to Dr. Kai Fu for advising me and arranging animal 

protocol changes after Dr. Chan moved to California, so that I could continue my study in 

Omaha. I would like to thank Dr. Timothy W. McKeithan for sharing his knowledge, 

insight and experience throughout my project, and also the joy we had as friends. I am 

especially grateful to Dr. Can Küçük and Dr. Xiaozhou Hu, as we worked as team and 

family together for 4 years. I also thank Dr. Chao Wang for being my best friend and lab 

mate during my entire graduate study. I would also like to thank the rest of my committee 

Dr, Runqing Lu, Dr. Samuel J. Pirruccello and Dr. Kay-Uwe Wagner for their valuable 

time and suggestions. I would like to thank every member in Dr. Chan’s labpratory for 

making the lab a wonderful place to work every day.  

I would like to thank my grandparents Xiuwen and Yongtao, who raised me and 

helped me realize the value of my life. I would like to thank my parents Wei and 

Huaizhou, who made me brave and independent. They have always believed in me and 

gave me tremendous support so that I could always pursuit my dream without worrying 

about anything. I would like to thank my friend Tony and his family Grace, Nancy and 

Tony, Sr who treated me like their family and help me adapt to the life in United States. I 

thank my friend Mike for always being there when I needed him and for helping me go 

though my bad days with his humor.  

 

  



II 
 

 

Molecular pathogenesis of natural killer/T-cell lymphomas 
Bei Jiang, Ph.D. 

University of Nebraska Medical Center, 2016 

Supervisor: Wing-Chung (John) Chan, MD and Kai Fu, M.D., Ph.D. 

Extranodal natural killer/T-cell lymphomas (NKTCL) are uncommon lymphomas with 

poor prognosis.  In order to gain a better understanding of the molecular pathogenesis of 

NKTCL, we obtained and compared the global gene expression profile, global somatic 

mutation profile, and global methylation profile of normal NK cells, malignant NK cell 

lines, and NKTCL patient samples. We showed that the JAK-STAT pathway was 

constitutively activated in NKTCL through the cooperation between activation of signal 

transducer and activator of transcription proteins (STATs) via activating mutations and 

inactivation of STAT suppressor protein  suppressor of cytokine signaling 6 (SOCS6) 

through promoter hypermethylation. Activating STAT3 and STAT5B mutations are 

associated with increased phosphorylated protein and a growth advantage to transduced 

cell lines or normal NK cells. Growth-promoting activity of the mutants can be partially 

inhibited by a JAK1/2 inhibitor or by expressing exogenous SOCS6. Molecular modelling 

and surface plasmon resonance measurements of the N642H STAT5B mutant indicate a 

marked increase in binding affinity of the phosphotyrosine-Y699 with the mutant protein. 

This is associated with the prolonged persistence of the mutant phosphoSTAT5B and 

marked increase of binding to target sites. We also showed that Blimp1, a tumor 

suppressor gene frequently inactivated in NKTCL by the combination of allelic deletion 

and promoter hypermethylation, has an effect on NK cell homeostasis, maturation and 

function using a NK-lineage specific Blimp1-knockout mouse model. Blimp1 knockout 

mice had a lower percentage of NK cells in peripheral lymphoid sites, such as spleen 

and peripheral blood, and higher percentage of NK cells in bone marrow when 

compared to wild-type mice. The maturation of NK cells was partially impaired in Blimp1 

http://www.ncbi.nlm.nih.gov/gene/9306�
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knockout mice. However, Blimp1-deficient NK cells proliferated better upon stimulation in 

vitro and in vivo, and had a potent cytotoxic ability. Together, these findings suggest 

potential pathways for therapeutic targeting in NKTCL patients. 
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NK cell 

The lymphocyte is a subtype of white blood cell in a vertebrate’s immune system that 

plays an important role in immunosurveillance. Innate lymphoid cells (ILC) are group of 

innate immune cells that are derived from the lymphoid lineage but do not respond in an 

antigen-specific manner, as they lack somatic rearrangement of immunoglobulin and T 

cell receptor genes. There are three types of ILCs characterized based on cytokine 

secretion and transcriptional factor expression, NK cells are one of two group 1 ILC 

described to date. NK cells can kill pathogen-infected cells or malignant cells by 

releasing cytotoxic molecules such as perforin and granzymes. Upon degranulation, 

perforin can form pores on the target cell’s plasma membrane. Granzymes then enter 

the target cell through the pore and cleave caspase-3 and Bid, which results in apoptosis 

(Buzza and Bird, 2006). NK cells can also protect the host by augmenting and recruiting 

other immune cells via secretion of cytokines, such as TNFα, TNFβ and IFNγ, and 

chemokines such as MIP-1α, MIP-1β and RANTES (Fauriat et al., 2010). 

NK cell anatomical localization and maturation 

NK cells localize throughout lymphoid and non-lymphoid tissues. In most tissues, NK 

cells comprise a small fraction of all lymphocytes (Gregoire et al., 2007).  It is believed 

that NK cells develop from a common lymphoid progenitor (CLP) in the bone 

marrow(Kondo et al., 2001).  However, studies show that NK cells in thymus and 

secondary lymphoid organs such as lymph nodes, have distinct phenotypic and 

functional features compared to those in the spleen and peripheral blood. Both CD34+ 

HPCs and downstream NK cell developmental intermediates have been identified in 

liver, uterus and mucosa-associated lymphoid tissue (MALT). Taken together, it is 

commonly accepted that NK cell developmental intermediates originate in the bone 

marrow then traffic to extramedullary tissues such as lymph nodes, liver, spleen and give 



3 
 

 

rise to functionally distinct mature NK cell subsets.(Res et al., 1996, Di Santo, 2006). 

CLPs can differentiate into NK cell progenitors (NKPs), marked by the expression of 

IL2/IL-15 receptor beta chain (IL2RB), also known as CD122 (Di Santo, 2006). IL-15 

selectively promotes NK cell differentiation, proliferation and survival (Becknell and 

Caligiuri, 2005). The committed NKP then acquires functional receptors in an orderly 

fashion as they become functionally mature. In mice, NKPs first acquire NK1.1, 

CD94/NKG2A, and NKp46 followed by Ly49 receptors, DX5, and finally CD43 and Mac-

1 (CD11b)(Kim et al., 2002). In human NK cells, receptors are expressed in the following 

order: CD161, CD56, CD94/NKG2A, NKp46, and NKG2D, killer immunoglobulin-like 

receptors (KIR) and CD16 (Freud et al., 2006, Perussia et al., 2005).  Mature NK cells 

can be divided into different subsets based on the expression of surface molecules. 

In mice, 4 populations of NK cells with different expression of CD11b and CD27 

are present. NK cell differentiation is a 4-stage process following CD11lowCD27low to 

CD11lowCD27high to CD11bhighCD27high cells to the most mature CD11bhighCD27high cells 

(Chiossone et al., 2009). CD11lowCD27low double negative (DP) NK cells express low 

levels of NK maturation receptors and are considered to represent immature NK cells in 

various numbers in different lymphoid sites. CD11lowCD27high NK cells are the major NK 

–cell compartment in fetal and neonatal mice, whereas they are mainly found in bone 

marrow, lymph nodes and liver in the adult.  CD11low NK cells have high proliferation 

ability compared to CD11bhigh NK cells. CD11bhigh   NK cells are mostly present in 

peripheral sites such as peripheral blood, spleen and liver. CD11bhighCD27high NK cells 

have the greatest effector function.  CD11bhighCD27high cells are also mostly found in 

peripheral sites, but these cells have greater restriction by self MHC (Hayakawa and 

Smyth, 2006) 
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In human, two subsets of NK cells are identified by expression of CD56 and 

CD16. CD56high CD16dim   NK cells are the major component of the NK cell population in 

lymph nodes and tonsil; they secrete large quantities of cytokines upon stimulation, but 

they have low cytotoxic capacity. CD56dimCD16high NK cells account for around 90% of 

NK cell population in peripheral blood and spleen. They have high cytotoxic capacity but 

have relatively lower capacity for cytokine production (Yu et al., 2013).  Despite the 

differences in NK lineage markers between mouse NK cells and human cells, several 

experiments suggest that CD56high CD16dim   human NK cells and CD11low  mouse NK 

cells share similarities in localization (enrichment in lymph nodes), phenotype 

(expression of early NK markers such as IL7R and lack of effector markers such as Ly49 

and KIR) and better proliferation ability. 

NK cell activation 

NK cells, as a member of the innate immune system, can recognize and kill transformed 

or virus-infected cells. Unlike cytotoxic T cells, which recognize target cells in a MHC-I-

dependent manner, NK cells can response to cells that lack MHC-I through release from 

inhibitory receptors. Further studies show that besides inhibitory receptors, NK cell also 

process various activating receptors, and the interplay between inhibitory and activating 

receptors result in the proper response of NK cells to its targets. 

NK cells express a repertoire of inhibitory receptors that have different structures 

and ligands (Long, 2008), and NK cells are heterogeneous in their expression of 

inhibitory receptors.The most common inhibitory receptors are belonged to three 

families: killer cell immunoglobulin-like receptors (KIRs), leukocyte immunoglobulin-like 

receptors (LILRs) and  Ly49. Most KIRs are inhibitory and dominant but some are 

activating. They are present in human and nonhuman primates and are the main 
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receptor for MHC I molecules (HLA-A, HLA-B, HLA-C). KIRs are not present in mice, 

however Ly 49, which also have both activating and inhibitory isoforms, are the 

functional homologues of KIRs in mice. LILRs are recently discovered receptors, the 

inhibitory receptors are found on NK cells. KIRs and LILRs belong to the immunoglobulin 

superfamily which has Ig-like extracellular domains, whereas others, such as Ly49 and 

CD94-NKG2A receptors have a C-type lectin—like scaffold. The differences in their 

extracellular domains determin their ligand binding specificity. However, regardless the 

differences in their extracellular region, all the inhibitory receptors share a common 

immunoreceptor tyrosin-based inhibitory motif (ITIM) in their intracellular region. The 

inhibitory MHC I receptor interacts with MHC I molecules constitutively expressed on 

normal cells and suppress NK cell activation when engaged. Since MHC class I 

molecules are the main mechanism by which cells display viral or tumor antigens to 

cytotoxic T cells, some intracellular microbes and tumors cells adapt to downregulate 

their MHC I molecules on cell surface in order to avoid the killing by T cells. This causes 

NK cells losing the inhibitory signal and becoming more prone to activation. This 

"missing-self recognition" mechanism allows NK cells to be tolerant to self while able to 

kill stressed or infected cells (Yokoyama and Plougastel, 2003) 

Unlike T and B cells, instead of having a dominant activation receptor, NK cells 

process different activating receptors. There are three major activating receptors in both 

human and mouse NK cells: the ITAM-bearing NK receptors such as CD16 (FCGR3A, 

which binds to the Fc portion of antibodies and allows NK cells to kill through antibody-

dependent cellular cytotoxicity [ADCC]), the DAP10-associated NKG2D receptor, and 

the CD244 receptor(Moretta et al., 2001). Studies show that none of the activating 

receptor, except CD16, can activate NK cell alone. Only when the combination of 

several activating receptors transmit a activating signal that counterbalances the 

https://en.wikipedia.org/wiki/Microbes�
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inhibitory signal from inhibitory receptors, will the NK cell be activated (Lanier, 2008). NK 

cell’s effector functions are also dependent on the cytokine microenvironment and 

interaction with other cells such as T cells and macrophages. IL-2 and IL15 are potent 

activators of human and mouse NK cells and have been used for NK cell culture (Sun et 

al., 2009). 

 

γδT cell 

Gamma delta T cells (γδ T cells) are a rare subset of T cells with a TCR composed of a 

γ  chain and a δ chain, in contrast to the mainstream alpha beta T cells (αβ T cells), 

which have TCRs that is made up of α and β TCR chains. γδ T cells are considered to 

be a bridge between innate and adaptive immunity in that as they express both natural 

killer receptors such as NKG2D and γδ T cell receptors (Kong et al., 2009). On one 

hand, γδ T cells rearrange TCR genes to produce recombinatorial and junctional 

diversity and develop a memory phenotype as other adaptive immunity cells and interact 

with T and B cells in the adaptive immune system; on the other hand, they can recognize 

targets in a MHC-independent manner and they also have phagocytic and cytotoxic 

functions that are used by NK cells or macrophages in the innate immune system (Wu et 

al., 2014). Compare to αβ T cells, γδ T cells display more diverse functions. Similar to αβ 

T cells, they can provide help for B cells(Vantourout and Hayday, 2013), secrete 

cytokines such as IL10, IL17, IFN-γ and TNFα to activate or recruit other cells and kill 

malignant cells (Kong et al., 2009). In addition, they can present antigen to αβ T cells as 

antigen present cells (APC) (Brandes et al., 2005), and they play a role in maintaining 

epidermal integrity by secreting different kinds of growth factors (Schilbach et al., 2000). 
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γδ T cells cell anatomical localization and maturation 

Both αβ and γδ T cells are developed from double negative (DN) CD3+ T cell precursors 

in the thymus. γδ T cells are mainly distributed in the skin and gut mucosa, within a 

population of lymphocytes known as intraepithelial lymphocytes (IELs)(Petermann et al., 

2010). In human, there are three major γδ T cell subsets: Vδ1, Vδ2 and Vδ3 T cells. Vδ1 

T cells are prominent in the intraepithelial location of mucosal surfaces. They maintain 

epithelial tissue integrity during damage, infection, or transformation by producing growth 

factors and cytokines. Vδ2 chain pairs almost exclusively with Vγ9 chain to form Vδ2 γ9 

T cells. They comprise up to 50-90% of the peripheral γδ T-cell population and can serve 

as professional APCs, as they express MHC-II and costimulatory molecules such as 

CD80 and CD86 upon activation. Vδ3 T cells comprise only 0.2% of circulating T cells, 

but they are more frequent in patients with leukemia and chronic infections. They can 

express T cell and NK cell markers such as CD4, CD8, CD56, CD161 and NKG2D. 

γδ T cells activation 

Some γδ T cells recognize phosphoantigens such as (E)-4-hydroxy-3-methyl-but-2-enyl 

diphosphate (HMB-PP), an immediate upstream metabolite of isopentenyl diphosphate 

(IPP), in killed microorganisms including bacteria such as Mycobacterium tuberculosis. 

Human cells also produce IPP, but in physiologically concentration it is not sufficient to 

activate γδ T cells. However, certain tumor cells produce higher concentrations of IPP 

and activate γδ T cells.  Cell-to-cell interaction with APC is required for the binding of γδ 

TCR and phosphoantigens, but antigen processing and MHC molecules are not required 

since γδ T cells use their TCR in a pattern recognition manner. Besides TCR signaling, 

activation of γδ T cells also requires other costimulatory molecules. Three major 

catergories of costimulatory molecules are used by γδ T cells: immunoglobulin (Ig) 

https://en.wikipedia.org/wiki/Intraepithelial_lymphocyte�
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superfamily coreceptors such as CD28, tumor necrosis factor receptor family members 

such as CD27 and atypical costimulatory molecules such as NKG2D. NKG2D is an 

important stimulatory molecule in other cytotoxic cells such as CD8+ T cells and NK 

cells. In γδ T cells, NKG2D can either directly activate γδ T cells, as in NK cells, or act as 

a co-receptor to the TCR as in CD8+ T cells. Thus, γδ T cells share features and function 

with both NK cells and CD8+ T cells. This phenomenon is also observed in disease 

states, as NK/T cell lymphomas are derived from both NK cells and γδ T cells. 

 

Extranodal natural killer/T-cell lymphoma 

Extranodal natural killer/T-cell lymphomas (NKTCL) are uncommon lymphomas 

comprising about 1-2 % of all non-Hodgkin lymphoma (Vanherberghen et al., 2013). This 

disease has a high incidence in Asian and Central and South America. NKTCL is a 

group of diseases, caused by clonal proliferation of cytotoxic lymphocytes, with unique 

clinicopathologic features marked by a predilection to the nasal and paranasal areas 

with extensive necrosis and angioinvasion. Most of NKTCLs originate from NK cells, and 

the neoplasm cells are CD2+,CD56+,cCD3e+, CD7+,CD16+/-, cytotoxic granule-

associated protein+, but TCR or immunoglobulin gene rearrangements are absent. A 

small fraction of NKTCL is of δ T cell origin, and they share very similar clinical and 

pathological features with the NK cell derived lymphoma. Lesions most often present as 

tumor or destruction in extranodal sites, classically in nasal and paranasal areas but may 

also affect the upper respiratory tract, gastrointestinal tract and skin (Aozasa et al., 

2008). NKTCL is an aggressive disease with poor prognosis for extranasal disease. 

Localized nasal and paranasal diseases are highly responsive to radiation therapy and 

have much better outcome.Traditional CHOP therapy showed little effect on NKTCL, 
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whereas an L-asparaginase- containing SMILE chemotherapy regimen 

(dexamethasone, methotrexate, ifosfamide, l-asparaginase, and etoposide) shows much 

better results (Jaccard et al., 2011).  Although progress has been made in combining 

modified chemotherapy with radiotherapy and autologous bone marrow transplantation, 

many NKTCLs are not cured. Therefore, it is necessary to investigate the pathogenesis 

of NKTCL to discover new therapeutic targets. 

 

Pathway alterations observed in NKTCL 
NKTCL development is a multifactorial process. The high EBV infection rate and limited 

geographic distribution of this disease indicate an important role of EBV infection and 

genetic/environmental factors in the pathogenethsis of NKTCL. In addition, genetic 

alterations, including the activation of oncogenes and inactivation of tumor suppressor 

genes also contribute to NK/T cell malignant transformation. In our laboratory and 

others, studies were conducted at different levels aiming to decipher the genetic 

alterations in NKTCL. At the chromosome level, genome-wide array-based comparative 

genomic hybridization (aCGH) was used to identify chromosomal copy number 

abnormalities such as deletion, amplification and fusion associated with NKTCL. At the 

DNA level, global somatic mutation profiles are explored commonly by whole-exon 

sequencing, whereas epigenetic changes such as DNA methylation can be detected by 

DNA methylation assays. At the RNA level, the gene expression profiles (GEP) of 

NKTCL were analyzed and compared to those of normal NK cells or other 

leukemia/lymphoma by microarray-based methods and more recently by RNA-

sequencing. However, there is no proteomics study on NKTCL. 

Genome-wide profiling studies described above identified several potential 

molecular pathways that might play an important role in pathogenesis of NKTCL. Gene 
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expression profile studies shown that several pathways such as JAK-STAT, 

Angiogenesis, platelet-derived growth factor receptor (PDGFR), NOTCH, WNT, and 

NFκB signaling pathways are activated in NKTCL(Huang et al., 2010, Iqbal et al., Ng et 

al.). The activation of oncogenic pathways was usually due to activation of oncogens 

through amplification or activating mutation and/or inactivation of tumor suppressor 

genes by mechanisms like allele deletion, missense/nonsense mutations or DNA 

methylation. Some important pathways related to this study are described below. 

EBV infection and Lmp1expression 

A distinctive feature of NKTCL is the strong association with Epstein–Barr virus infection; 

EBV is positive in 100% of NKTCL cases by in situ hybridization(Chiang et al., 1996). 

EBV undergoes latency II infection in NK cells, in which they only express a restricted 

pattern of viral proteins limiting to EBNA1, LMP1, and LMP2 (Xu et al., 2001). EBNA1 is 

required for the maintenance of viral episomes and expressed in all latency phases. 

LMP2B can promote cell proliferation and survival. LMP1 is the main transforming 

protein of EBV. The N-terminal six-transmembrane domain (6TM) of Lmp1 regulates its 

own transcription and degradation through its activation of unfolded protein response 

and autophagy. Its C-terminal domain activate several downstream molecules such as 

nuclear factor-κB (NF-κB) and activating protein 1 (AP-1) and signal transducer and 

activator of transcription (STAT) , leading to NK/T-cell activation and proliferation(Chen, 

2012).Thus Lmp1 acts like a constitutively activated tumor necrosis factor receptor 

family member, in fact in B cell Lmp1 can substitute for the signaling of CD40(Graham et 

al., 2010), another member of TNF family. In vitro study shown that Lmp1 silencing in 

EBV+ NK cell line resulted in decreased cell proliferation and survival and a reduction in 

cell invasion and migration, suggesting the oncogenic role of Lmp1 in NKTCL(Sun et al., 

2015). 

https://en.wikipedia.org/wiki/Epstein%E2%80%93Barr_virus�
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Activation of JAK-STAT pathway 

The JAK/STAT pathway is the principal signaling mechanism for a wide array of 

cytokines and growth factors. To simplify the process, JAK activation occurs opon 

ligand-mediated receptor dimerization or multimerization which allowed the trans-

phosphoralation of JAKs. The activated JAKs subsequently phosphorylate additional 

target including the major substrate STATs. The phosphotyrosine of STATs permits the 

dimerization of STATS. The dimerizaed STATs then enter nucleus and binds specific 

sequence to activate or repress transcription of target gene.  In addition to those 

effectors, there are three major classes of negative regulator: SOCS (suppressor of 

cytokine signaling), PIAS(protein inhibitor of activated stats) and PTPs(protein tyrosine 

phosphotases). The SOCSs complete a negative feedback loop in the JAK/STAT 

circuitry: activated STATs stimulate transcription of the SOCS genes and the resulting 

SOCS protein bind phosphorylated JAKs and their receptors to turn off the pathway. 

Constitutive activation of STAT3 and STAT5 are known to increase tumor cell 

proliferation, survival and invasion(Yu et al., 2009).  Aberrant STAT3 and STAT5B 

activation were shown in activated B-cell type Diffuse Large B-cell lymphomas (ABC-

DLBCL) (Lam et al., 2008)  and CD8+ Lymphoblastic Lymphoma (Bessette et al., 2008), 

respectively. Recently, activating mutations were identified in STAT3 (Jerez et al., 2012, 

Koskela et al.)  and STAT5B(Rajala et al.) in NK-LGL and T-LGL cases suggesting an 

oncogenic role for these mutations. On the other hand, SOCSs the negative regulator of 

JAKs are silenced in different tumors. Promoter methylation mediated silencing of 

SOCS1 were shown in hepatocellular carcinoma (Yoshikawa et al., 2001) and multiple 

myeloma(Galm et al., 2003) , SOCS3 in lung cancer (He et al., 2003) and in 

myeloproliferative disorders(Fourouclas et al., 2008) and SOCS6 in gastric cancer(Lai et 

al.). It is possible that accumulation of the oncogenic mutations and/ or silencing of the 
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negative regulators in JAK-STAT pathway contribute to the neoplastic transformation of 

NK cells. 

Loss function of Blimp1 

According to our study, 6q21 deletion is a frequent chromosomal abnormality observed 

in 44% of NKCL cases. PR domain zinc finger protein 1 (PRDM1) is an important 

transcriptional regulator within this deleted region. We later found that PRDM1 was 

inactivated in NKTCL by the combination of allelic deletion and promoter 

hypermethylation. Blimp1 is a transcription suppressor; it binds to its target genes in the 

promoter region though zinc-finger motifs, and suppresses transcription by recruiting 

proteins such as histonedeacetylase1 and 2, G9a histone methyl transferases that 

modified histones to create a more inactive structure. PRDM1, also known as B 

lymphocyte-induced maturation protein 1(Blimp1),  has various effects on the function 

and homeostasis of B cells and T cells(Martins and Calame, 2008).   In B cells, Blimp1 is 

a master regulator of B cell maturation and immunoglobulin secretion(Savitsky and 

Calame, 2006). In T cells, Blimp1 regulate cell proliferation and effector functions50,51. In 

activation of Blimp1 was observed in several malignancies. Blimp1 was silenced through 

hypermethylation in EBV-positive Burkitt lymphoma(Zhang et al., 2014), and in another 

study  investigators shown that Blimp1 inactivated by multiple mechanisms, including 

homozygous deletions, truncating or missense mutations and transcriptional repression 

by constitutively active BCL6, in difuse large B cell lymphoma(DLBCL) (Mandelbaum et 

al., 2010). In our previous study, knocking down PRDM1 resulted in a positive selection 

of NK cells. Whereas ectopic PRDM1 expression in PRDM1-null NK cell lines resulted in 

G2/M cell cycle arrest, increased apoptosis, and a strong negative selection. These 

finding, along with the observation that PRDM1 was inactivated in NKTCL, indicated that 

PRDM1 is a potential tumor suppressor gene in NKTCL. 
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Aim of the dissertation 

In order to gain a better understanding of the molecular pathogenesis of NKTCL, we 

obtained and compared the global gene expression profile, global somatic mutation 

profile, and global methylation profile of normal NK cells, malignant NK cell lines as well 

as NKTCL patients, and identified potential tumor suppresser genes and oncogenes. 

Our previous GEP study shown JAK-STAT pathway was activated in NKTCL. It is 

important to investigate the underlining mechanism as this will give us an insight in 

potential therapeutic targets. This dissertation explores the underline mechanism of 

constitutive JAK-STAT actication in NKTCL and the effect of JAK-STAT activation on NK 

cell behaviors. In addition, this study compares the mutation profile of NKTCL and other 

γδ-T derived lymphoma; this will give us a better understanding of the ambiguous 

relationship between NK cells and γδ-T. Our previous study shown Blimp1 was 

frequently inactivated in NKTCL and in vitro experiments in normal malignant human NK 

cells indicated Blimp1 as a tumor suppressor gene in NKTCL. Explore the role of Blimp1 

in NK cells in mouse model will give us a better understanding as how Blimp1 affects NK 

cells in vivo and whether Blimp1 deletion alone or combine with other oncogenic 

alternations can lead to malignancies development in vivo. 
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Group Cell 

type 

Mediators 

produced 

Function 

Group 1 

ILCs 

NK cell IFNγ, 

Perforin, 

granzymes 

Immunity to virus and intracellular 

pathologens 

Tumor surveillance 

ILC1 IFNγ Inflammation? 

Group 2 

ILC 

ILC2 IL5,IL9,IL13 

amphiregulin 

Immunity to helminthes 

Wound healing 

Group 3 

ILCs 

LTi cell IL17,IL22, 

lymphotoxin 

Lymphoid tissue development 

Intestinal homeostasis 

Immunity to extracellular bacteria 

Ncr+ 

ILC3 

IL22 Homeostasis of epithelia 

Immunity to extracellular bacteria 

Ncr-ILC3 IL17, IFNγ Immunity to extracellular bacteria 
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Table 1-1: Summary of innate lymphoid cell subsets, mediators production and 

functions 

 

ILCs are further divided into three groups: group 1 ILCs, group 2 ILCs and group 3 ILCs, 

based on their ability to produce type 1, type 2 and TH17 cell-associated cytokines, 

respectively. LTi: Lymphoid tissue inducer cell 
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Chapter II 

Material and method 
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Patient samples and cell lines 

The phenotypic characteristics of all NKTCL, δγ-PTCL and EATL type II cases (n=94), 

NK- and δγ T-cell lines (n= 9) used in this study are summarized in Table 2-1 and Table 

2-2. Culture conditions of NK and γδ-T cell lines were as described previously(Iqbal et 

al., 2009, Nagata et al., 2001). The DHL16 cell line was cultured in RPMI-1640 (Gibco-

Invitrogen) including 10% FBS; penicillin G (100 units/mL) and streptomycin (100 μg/mL) 

at 37 °C in 5% CO2. 

DNA and RNA extraction 

Extraction and purification of DNA and RNA from tumor cases were performed 

simultaneously using AllPrep DNA/RNA Mini Kit (Qiagen Inc., Valencia, CA) or ALLPrep 

DNA/RNA FFPE Kit (Qiagen Inc). Genomic DNA was isolated from NK or γδ T-cell lines 

using DNeasy Blood and Tissue Kit (Qiagen Inc.).   

Whole transcriptome sequencing and data analysis 

RNA-sequencing was performed on resting NK cells, NK-cells activated by IL2 or by 

K562-Clone9-mb21, 17 NKTCL cases and 3 NK-cell lines. Briefly, 100-bp paired-end 

libraries were prepared with the TrueSeq RNA preparation kit (Illumina Inc., San Diego, 

CA), and high-throughput sequencing was performed at the UNMC Next Generation 

Sequencing Core facility and Tufts University (TUCF) Genomics Core Facility using 

Illumina Genome Analyzer IIX or HiSeq 2000 Sequencing systems. FASTQC reports 

were evaluated for each sample to evaluate the quality of basic statistics. Two different 

pipelines were used to generate the SNVs.    The main pipeline used for SNV detection 

was described previously (Schmitz et al., 2012) with the following addition. In addition to 

the NCBI SNP database (dbSNP) and 1000 Genomes project (Abecasis et al., 2012), 

three normal NK samples were used to filter out the SNPs. The presence of the SNVs 
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was evaluated by visualizing the SNVs using Integrative Genomics Viewer software 

(IGV) (http://www.broadinstitute.org/igv). Finally, the Cosmic release v69 

(http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/) was used to annotate the 

variants observed in previous studies.  The secondary pipeline used for SNV detection is 

as follows: The read were aligned to the human reference genome (NCBI GRCh37) 

using the BWA aligner(Li and Durbin, 2009) with paired-end (sample) mode and with 

default options. After merging BAM files, PCR duplications were also removed. Then, 

GATK tool (DePristo et al., 2011) was used to realign indel-containing reads to the 

reference genome. After realignment, GATK UnifiedGenotyper was used to generate 

SNP and indel callsets for 24 (21 malignant and 3 normal NK samples) RNA-Seq 

samples, using a merged BAM file including all 24 datasets with specific IDs. Variant 

Quality Score Recalibration filter was applied using the GATK resource bundle 1.2 to 

help minimize false positives. Then, ANNOVAR tool(Wang et al., 2010), version 2013-

02-11, was used to annotate the detected SNPs and indels. For gene and filter 

annotation, the April 2012 version of the annotation database (hg191000g2012apr) and 

dbSNP version 137 was used. For comparison against the 1000 Genomes Project, the 

data 1000g2012apr was used. Lastly, the SNVs present in three normal NK samples 

were filtered out. The basic statistics of RNA-Seq are shown in Table 2-2. Furthermore, 

the number of SNVs and their annotations identified by the primary RNA-Seq pipeline for 

17 NKTCL cases are shown in Fig. 2-1. The RNA-sequencing data will be deposited into 

dbGaP (http://www.ncbi.nlm.nih.gov/gap/) database. 

Whole exome-sequencing and data analysis 

Trueseq DNA library kit (FC-121-2001, Illumina) was used to prepare libraries of a 

NKTCL case DNA and DNA from the peripheral blood of the same patient. Rapid 100-bp 

paired-end sequencing was performed with Hiseq2500 (Illumina) at the UNMC Next 

http://www.broadinstitute.org/igv�
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/�
http://www.researchgate.net/go.Deref.html?url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fgeo%2F�
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Generation Sequencing Core facility.  Raw sequencing reads were mapped to the 

human reference genome hg19 using BWA. GATK was used for local realignment and 

base quality recalibration. Picard (http://picard.sourceforge.net) was used to mark 

duplicates. VarScan(Koboldt et al., 2009) called variants for paired NKTCL and the 

corresponding normal sample. In this study, only STAT3 and STAT5B mutation status 

was evaluated; the whole sequencing profile will be reported later.  

Whole genome amplification 

Whole genome amplification (WGA) of the NKTCL (n=20) or γδ-PTCL (n=4) and KAI3 

cell line was performed using the Repli-g kit (Qiagen Inc., Valencia, CA). 50 ng of tissue 

material was used as a template for amplification. The sensitivity of mutation detection 

was evaluated by applying Sanger sequencing on the G to A mutation detected in the 

intron4/exon5 splice junction of PRDM1 detected previously (Fig. 2-2A)(Iqbal et al., 

2009). Uniform linear amplification of genomic DNA from each NK sample was tested 

with PCR, which generated ~ 3 kb amplicons using KAI3 cell line or NKTCL cases (Fig. 

2-2B,C).In addition, WGA DNA from NKTCL cases was run on TAE-agarose gels, which 

showed  that WGA DNA contains large fragments (>10kb) (Fig. 2-2D).   

Compilation of the list of JAK/STAT pathway genes 

The list of genes in the JAK/STAT pathway was compiled using the following resources: 

1) The genes screened in NK or T-LGL cases in a recent report (Jerez et. al. Blood 

2012).2) The JAK-STAT pathway genes defined in Ingeniuty pathway analysis (IPA) 

program Ingenuity Systems [http:// www.ingeniuty.com], 3) JAK/STAT pathway genes 

shown in Cell Signaling Technology website (http://www.cellsignal.com/pathways/jak-

stat.jsp). 4) The genes shown to play a role in JAK-STAT pathway based on the 

literature.  

http://picard.sourceforge.net/�
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Mutation validation by Sanger sequencing 

Sanger sequencing was performed on DNA from cryopreserved or FFPE tissues, or 

cDNA if only RNA was available. Sequencing was focused on the SH2 domain of STAT3 

and STAT5B and the previously reported mutation hotspots for JAK3.  The genomic 

DNA sequences around the JAK3 A572V, A573V and V722I SNVs was obtained using 

UCSC (http: //genome. ucsc. edu/) genome browser. PCR primers covering SNVs were 

designed with the PrimerQuest software (IDT DNA technologies, Coralville, IA). The 

primers were optimized with gradient PCR, and the forward and reverse primers used for 

PCR amplification of WGA or FFPE gDNA or cDNA samples were used for Sanger 

sequencing. Analysis of the sequences was performed using Vector NTI 10.3.0 

(Invitrogen, Carlsbad, CA, USA) and Sequence Scanner Software v1.0 (Applied 

Biosystems Inc.).  

Promoter methylation analysis of SOCS6 

Methylation specific cut counting (MSCC) procedure was employed to determine the 

methylation level of SOCS6 as described earlier (Ball et al., 2009) in NKTCL cases (n= 

12) and malignant NK cell lines (n=2). We specifically concentrated on the HpaII sites in 

the promoter of SOCS6 (+/- 1 kb of TSS) whereas the complete methylation profile by 

MSCC will be published later. The library preparation and high throughput sequencing 

was performed at the epigenetic core facility by Illumina Genome Analyzer II X. R 

program scripts (http://www.R-project.org) were used to identify the average promoter 

MSCC cut count data.  To determine the significance of change in count data, an 

analysis for fit based on the Poisson distribution at the p=0.05 level was employed. 

Based on this analysis, a significant change was determined to be a four-fold or greater 

difference between two samples. 48h IL2 activated NK-cells were used as the standard 

to evaluate promoter methylation.  
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NK-cell isolation and activation for RNA-Seq 

Primary human NK cells were isolated from peripheral blood lymphocytes (PBL) using a 

human NK-cell isolation kit (Miltenyi Biotec, Auburn, CA) as described 

previously(Meinhardt et al., 2012). The purity of NK cells was evaluated by CD56-APC 

and CD3-PE double staining, and samples with >95% CD56+CD3- cells were used for 

RNA-Seq. Resting NK cells were cultured in the presence of 100 IU of IL2 for 48h to 

obtain activated NK cells. Higher levels of NK-cell activation were achieved by 

coculturing freshly isolated PBLs with engineered K562 cells, K562-Clone9-mb21, as 

described in detail before(Somanchi et al., 2011, Kucuk et al., 2013).  

q-RT-PCR 

Real-time PCR was performed using DyNAmo HS SYBR Green qPCR Kit (Thermo 

Scientific Inc) with CFX Connect (Bio-Rad, Hercules, CA) real time thermocycler. Melting 

curve analysis was performed to ensure amplification specificity.  The ΔΔCt method was 

used to calculate the relative mRNA expression level. Human RPL13A and mouse eEF2 

were used for normalization of gene expression in human and mouse samples 

respectively.  

STAT3 shRNA transfection in 293T cells 

The STAT3 shRNA was transfected into 293T cells as follows: 150,000 cells were 

seeded in 2 ml using 6-well plates in triplicate 24 h before transfection. 3 µg of PLVTH or 

PLVTH-S3S (STAT3 shRNA)(Piva et al., 2010) was transfected into 293T cells using 

Turbofect (Thermo Scientific,Waltham, MA) according to the manufacturer’s 

recommendations. 51 h post-transfection, cells were harvested for q-RT-PCR. 
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Western Blot 

Western blot was performed as described previously with the following modifications 

(Iqbal et al., 2009). RIPA buffer supplemented with a protease inhibitor cocktail (Sigma 

Aldrich, St Louis, MO) and phosphatase inhibitor cocktails 2 and 3 (Sigma Aldrich, St 

Louis, MO) was used to prepare the whole cell lysate. 20 µg protein/sample was used 

for Western blot.  BSA (Sigma-Aldrich, St Louis, MO) was used instead of non-fat dry 

milk during blocking. The primary antibodies used for Western blotting are as follows: 

STAT3 (Cell Signaling, Danvers, MA), STAT5 (3H7) Rabbit mAb #9358 (Cell Signaling 

Inc.,Danvers,  MA) ,phospho-STAT5 D47E7 Rabbit mAb # 4322 (Cell Signaling), 

phospho-STAT3 (Cell Signaling, Danvers, MA) and α-Tubulin (Sigma-Aldrich). 

STAT3 shRNA expression in NK-cell lines 

The lentiviral construct used for STAT3 knock-down was described previously (Piva et 

al., 2010). Lentiviral transduction of NK-cell lines or DHL16 was performed following the 

protocol used for retroviral transduction(Kucuk et al., 2013) with the following 

modifications: 4 µg PLVTH or PLVTH-S3S was cotransfected with 2 µg of PMD2G and 2 

µg psPAX2 packaging constructs into the 293T cell line to generate lentiviral particles. 

Transduction was performed once rather than twice. Transduction efficiency was 

determined with fluorescence-activated cell sorting (FACS) 3 days post-transduction. 

Generation and expression of the STAT3 or STAT5B mutant constructs  

Wild type (WT) STAT5B was PCR-cloned with the high-fidelity PfuUltra II Fusion HS 

DNA Polymerase (Agilent Technologies, Palo Alto, CA) using NK92 cell line cDNA as 

the template and then cloned into the multiple cloning site (MCS) of the pMIG expression 

vector using NotI and SalI restriction sites. Similarly, WT STAT3 was PCR-cloned into 

pMIG from KAI3 cell line cDNA using NotI and SalI sites. Diagnostic mapping and full 
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insert sequencing was performed. These WT STAT3 or STAT5B constructs were used 

as templates for site-directed mutagenesis to generate the STAT3 or STAT5B mutants 

used for functional studies as described below apart from the STAT3-Y640F-pMIG 

construct, which was PCR-cloned with PfuUltra II Fusion HS DNA Polymerase using the 

cDNA from NKYS cells, which have the STAT3 Y640F mutation.   

STAT3 or STAT5B SNVs observed in NKTCL, γδ-PTCL or EATL type II samples (patient 

samples or cell lines) were generated using the Quick-Change Site-Directed 

Mutagenesis Kit (Agilent technologies, Santa Clara, CA) according to the manufacturer’s 

instructions using WT STAT3 or STAT5B-pMIG vectors. Diagnostic restriction mapping 

and full sequencing of the inserts were performed to ensure the presence of introduced 

mutation and absence of another SNV.   The primers used for site-directed mutagenesis 

(SDM) are as follows:  

STAT3-S614R-SDM-F: GAAAGCAGCAAAGAAGGACGCGTCACTTTCACTTGG 

STAT3-S614R-SDM-R: GTGACGCCTCCTTCTTTGCGGCTTTCACTGAATCTT 

 STAT3-G618R-SDM-F: GAAAGCAGCAAAGAAGGACGCGTCACTTTCACTTGG 

STAT3-G618R-SDM-R: CCAAGTGAAAGTGACGCGTCCTTCTTTGCTGCTTTC-3 

STAT3- D661Y-SDM-F: TGGGCTATAAGATCATGTATGCTACCAATATCCTGG 

 STAT3- D661Y-SDM-R: CCAGGATATTGGTAGCATACATGATCTTATAGCCCA 

 STAT3- A702T-SDM-F: AGCTGACCCAGGTAGCACTGCCCCATACCTGAAG 

 STAT3- A702T-SDM-R: CTTCAGGTATGGGGCAGTGCTACCTGGGTCAGCT 

 STAT5B-E579K-SDM-F: GGTTTGACGGTGTGATGAAAGTGTTAAAAAAACATC 

STAT5B-E579K-SDM-R: GATGTTTTTTTAACACTTTCATCACACCGTCAAACC 

STAT5B-N642H-SDM-F:  GGAAAGAATGTTTTGGCATCTGATGCCTTTTACC 
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 STAT5B-N642H-SDM-R: GGTAAAAGGCATCAGATGCCAAAACATTCTTTCC 

 STAT5B-Y665F-SDM-F: GCTTGGGAGACTTGAATTTCCTTATCTACGTGTTTC 

 STAT5B- Y665F-SDM-R: GAAACACGTAGATAAGGAAATTCAAGTCTCCCAAGC 

 STAT5B-I704L-SDM-F: GGATACGTGAAGCCACAGCTCAAGCAAGTGGTCCCTG 

 STAT5B-I704L-SDM-R: CAGGGACCACTTGCTTGAGCTGTGGCTTCACGTATCC 

Retroviral transduction of NK-cell lines was performed as previously described(Kucuk et 

al., 2011) with the following modifications: 4 μg of pMIG or pMIG vectors expressing WT 

or mutated STAT3/STAT5B gene was cotransfected with 4 μg of the packaging 

construct PCL-Ampho into the 293T cell line. A single transduction was performed. 

Transduction efficiency was determined with flow cytometry on GFP+ cells 2-4 days 

post-transduction. KAI3 cells were cultured in the presence of 20% FBS to increase 

transduction efficiency. 

SOCS6 cloning and expression in NK-cell lines 

The SOCS6 coding sequence (NCBI accession number: NM_004232.3) was PCR- 

amplified with the high-fidelity PfuUltra II Fusion HS DNA Polymerase (Agilent 

Technologies, Palo Alto, CA) from 48h IL2 activated human NK cell cDNA and cloned 

into the pMIG expression plasmid upstream of the internal ribosomal entry site using 

NotI and SalI sites. The construct was validated by diagnostic restriction mapping and 

Sanger sequencing of the inserts. Retroviral transduction of NK-cell lines was performed 

as previously described with the following modifications: 4 µg of pMIG or pMIG-SOCS6 

vector was cotransfected with 4 µg of the packaging construct PCL-Ampho into the 293T 

cell line. Single transduction was performed. Transduction efficiency was determined 

with flow cytometry on GFP positive cells 2-4 days post-transduction. YT cells were 

cultured in the presence of IL2 during transduction to increase transduction efficiency. 
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Conditioning primary human NK cells for retroviral transduction   

Primary human NK cells were expanded using a special ex vivo system that involves 

coculturing primary human NK cells with an engineered NK-cell target, K562-Cl9-mb21, 

which activates and induces proliferation of NK cells robustly as described before(Kucuk 

et al., 2013, Kucuk et al., 2011). The expansion procedure is briefly as follows: First, 

primary human NK cells were isolated by negative selection using EasySepTM Human 

NK cell enrichment kit (Stemcell technologies,Vancouver ,Canada). Then, primary NK 

cells were admixed in a 1:2 ratio with 100 Gr irradiated K562-Cl9-mb21cells, which 

express CD86, 4-1BBL and mIL21 on their surface, and cultured in NK-cell expansion 

medium (NKEM) (Somanchi et al., 2011). Cells were spun down at 400 g for 5 min, and 

the culture medium was renewed every three days with fresh culture medium, keeping 

the cell density at 250,000 cells/ml after every subculture. 9 days after coculture started, 

cells were immunostained with CD56-PE (Biolegend, San Diego, CA) and CD3-FITC 

(Biolegend) antibodies to determine the NK-cell purity by FACS. On the same day purity 

was determined, primary NK cells were transduced with WT or mutant STAT5B retroviral 

constructs.  

Determination of positive/negative selection of transduced cells using FACS 

STAT3 shRNA or STAT3/STAT5B mutant transduced NK cell lines were tracked by 

quantification of the GFP+ cells using flow cytometry after transduction to determine 

negative or positive selection of cells, respectively, because GFP was used as the 

marker of transduction. The following flow cytometers were used for determination of 

GFP+ cells: FACS Calibure (BD Biosciences), BD LSRFortessa (BD Biosciences) and 

Gallious (Beckman Coulter Inc.)  Autofluorescent cells, which emit both green and 

orange, represent false positive, untransduced cells, were filtered out through proper 

gating. During quantification of GFP+  cells in transduced primary NK cells, dead cells 
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were labeled and filtered out by staining the cells with 0.5ug/ml DAPI (Biolegend, cat.no: 

422801) for 10 min before flow cytometry. 

ChIP-q-PCR 

10 million cells isolated from GFP-sorted, empty vector, STAT5B-WT or N642H-mutant 

transduced KAI3 cells were used for chromatin immunoprecipitation using ChIP-IT 

Express Enzymatic (Active Motif, Carlsbad, CA)  following the manufacturer’s 

recommendations.The procedure is  briefy as follows: The enzymatic digestion time was 

optimized as 10 min based on the TAE-agarose gel image. 10*106 cells /sample were 

fixed with 1% formaldehyde. After enzymatic fragmentation,   STAT5 (3H7) Rabbit  mAb 

#9358  (Cell Signaling Inc.,Danvers,  MA) and rabbit anti-IgG Control (Abcam Inc., 

Cambridge, MA) antibodies were used side-by-side for immunoprecipitations. 20 µg of 

chromatin/reaction was immunoprecipitated using dilutions of STAT5 or IgG antibody 

based on manufacturers’ recommendations. After elution of DNA , reversal of DNA 

crosslinks, and proteinase K  treatment,  q-PCR was performed using 2 µl of gDNA in 

replicate.  STAT5 immunoprecipated DNA levels were normalized to the levels of IgG 

immunoprecipitated DNA for each sample. STAT5 binding sites reported before for 

IL2Ra(Kanai et al., 2014), BCL2(Li et al., 2010),BCL-XL(Kanai et al., 2014), HIF2α(Fatrai 

et al., 2011)  and MIR155HG(Kopp et al., 2013) were evaluated. The sequences of 

ChIP-q-PCR primers used in this study are as follows:    

IL2Rα-ChIP-q-PCR-F: AAAACCAATTTCTTGGGATGG-3 

IL2Rα-ChIP-q-PCR-R: AGGGGAAATTCCGTTGAGTT 

BCL2 ChIP-q-PCR-F: ACTTTACATTTCTGTTGTGTTTACAGC 

BCL2 ChIP-q-PCR-R: ATTCATACATATGCACACGCACA 

BCL-XL ChIP-q-PCR F: AATTCAGCTGCCAGCCTCT 
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 BCL-XL ChIP-q-PCR R: CAACCGCTTCCTTTTCTGAG 

 HIF2α (EPAS1) ChIP-q-PCR F: CAGTGTCCTGAGACTGTATG- 

HIF2α (EPAS1) ChIP-q-PCR R: CTGTCAGACCCGAAAAGA 

AZD1480 treatment of mutant STAT3 or STAT5B transduced KAI3 cells  

25,000 KAI3 cells were seeded in 2 ml inside 24-well plates in replicates or triplicates 

and treated with 0, 0.5 µM, 1  µM or 2 µM of AZD1480 for 72 h. 72 h post-treatment, the 

total viable cell number in each well was quantified using a Vi-cell XR Cell Viability 

Analyzer (Beckman Coulter Inc.) according to the manufacturer’s instructions. Total cell 

number in each treated sample was normalized to that of the untreated control cells.  

Three-dimensional structural modeling of the STAT5B-N642H mutant  

The STAT5B structure was modeled on the available STAT5A structure (PDB ID: 1Y1U) 

using the program MODELLER(Sali and Blundell, 1993). There was little difference in 

the SH2 domains as these two proteins have extremely similar primary sequences. 

Then, the modeled STAT5B SH2 domain was compared to other proteins containing 

SH2 domains that had been co-crystallized with peptides (v-SRC, GRB2, SH2B, NCK2) 

which showed the site of the N642H was directly located in the key binding pocket of the 

phosphorylated tyrosine.   Phosphorylated self-peptide (STAT5B: VDG-PTR-VKPQ) was 

docked into the SH2 domain of WT-STAT5B or N642H-STAT5B, respectively. Protein-

protein docking was done with the FFT-based docking tool ClusPro(Comeau et al., 

2004) on a dedicated server. Key binding residues (STAT5B: R618, S620, N621, K600, 

N642) were specified based on previous peptide-SH2 domains co-crystallized structures 

(PDB ID: 2HDX, 1SHA, 2CIA, 1TZE). The best docking results were selected based on 

an electrostatically favored scoring function.  ClusPro docking server first clustered 1000 

ligand positions with the lowest energy score according to the 9 angstrom C-alpha 
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RMSD radius and then ranked the best model. With the energy-minimized protein-

peptide docked model, the binding energy of the complex was calculated with MolDock 

(Thomsen and Christensen, 2006).  

Wild-type and N642H mutant STAT5B cloning, expression and purification for 

surface plasmon resonance (SPR)  

For surface plasmon resonance, wild-type (WT) and N642H-mutant STAT5B  [residues 

between 128aa-717aa, NM_012448]  was PCR-cloned into the SMT3-pET28b+  plasmid 

using the BamHI and XhoI cloning sites. BclI instead of BamHI  restriction site was used 

in the forward primer to prevent digestion of STAT5B due to the presence of an internal 

BamHI site. A TGA stop codon was included in the reverse primer so that C-term His 

was not expressed. High-fidelity PfuUltra II Fusion HS DNA Polymerase (Agilent 

Technologies, Palo Alto, CA) was used to amplify  STAT5B insert from STAT5B-WT-

pMIG  vector. Diagnostic mapping and Sanger sequencing of the inserts and the 

integration sites were performed to check the quality of the clones. 

WT and mutant STAT5B expression was performed as follows: Plasmid DNA was 

transformed into BL21 (DE3) Codon Plus RIL competent cells (Agilent Technologies) 

and plated on LB agar plates with chloramphenicol (Cam) and kanamycin (Kan). Single 

colonies were selected and grown in LB media with Cam and Kan overnight at 37 °C. 6 

X 6 mL of overnight culture was used to inoculate 6 X 1L LB media with Kan and Cam. 

Cultures were grown at 37 °C to an optical density of 0.6, then flasks were moved to a 

pre-cooled shaker at 18 °C. Cultures were grown at 18 °C until they reached an optical 

density between 0.9-1.1. Protein expression was induced with a final concentration of 

500 µM IPTG, and cells were allowed to grow 16-20 hrs at 18 °C with continued shaking. 

Cells were harvested by centrifugation, resuspended in PBS and frozen at -20 °C until 

purification. 
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His6-SMT fusions of both WT and N642 mutant STAT5B were purified as previously 

published (Donaldson et al., 2013). Briefly, cells were thawed and lysed by French 

pressure cell with DNase I and PMSF. Lysates were clarified by centrifugation and 

filtration. Lysates were applied to Ni-NTA (Thermo Scientific HisPur) and washed with a 

PBS/ imidazole gradient. Eluted protein was dialyzed overnight at 4 °C into PBS in the 

presence of His6-ULP1 enzyme with 1 mM DTT. The dialyzed protein was incubated 

with Ni-NTA beads prior to concentration to remove uncleaved material, His6-SMT and 

His6-ULP1. The unbound material was then loaded onto the preparative grade superdex 

G200 gel filtration column (GE lifesciences) and exchanged into 50 mM Tris pH 8.0, 100 

mM NaCl, 1 mM EDTA, and 1 mM DTT on column. The peak eluting at ~190 mL was 

concentrated, aliquotted into small volumes, and stored at -80 °C.  

Surface plasmon resonance binding assay 

SPR studies were carried out with the GE Lifesciences Biacore T100 instrument at 25 

°C. STAT5B WT and N642H variant ligands were thawed and extensively dialyzed into 

HBS-N buffer (GE lifesciences). 50 µg/mL samples of protein were made by diluting the 

dialyzed stock samples into acetate pH 5.0 buffer immediately before immobilization. 

Both STAT5B proteins were coupled using EDC/NHS amine coupling chemistry with 

final immobilization levels of 5345.6 RU for WT and 5433.9 RU for N642H variant. 

Reference channels received a blank amine coupling protocol. The analyte, 

phosphopeptide (KAVDG (p) YVKPQI) (Anaspec, Fremont, CA) was prepared by 

dissolution in water and extensive dialysis into water. The peptide stock solution was 

stored at 4 °C prior to analysis. 2-fold dilutions of the phosphopeptide stock were 

prepared in HBS-EP+ (GE lifesciences) ranging from 100 µM to 0.78 µM immediately 

prior to analysis. Peptide samples were flowed over the immobilized ligand at a rate of 

30 µL/min with each concentration being run in duplicate. HBS-EP+ was used both as 



30 
 

 

running and regeneration buffer. KD values were calculated using BiaEvaluation software 

(Biacore AS, Uppsala, Sweeden) by fitting the binding isotherms to a 1:1 Langmuir 

model.  

STAT5B Triple flag tag vector construction  

A triple flag tag sequence was fused to C terminal of wild-type and mutant STAT5B and 

inserted into PMIG vector. For regulated STAT5B expression, triple flag STAT5 

sequence were inserted into pBMN-DHFR-YFP vector so that the sequence was fused 

with DHFR on its C terminal. The triple flag tag sequence used in the experiment is:GAC 

TAC AAGGAC CACGAC GGTGAC TAC AAGGAC CACGACATCGACTAC 

AAGGACGACGACGACAAGTGA (D Y K D H D G D Y K D H D I D Y K D D D D K Stop) 

CHIP-Seq assay 

10 million cells isolated from GFP-sorted, empty PMIG vector, STAT5B-WT-3xFlag or 

STAT5B-N642H-3xFlag-PMIG  transduced KAI3 cells were used for chromatin 

immunoprecipitation using ChIP-IT Express Enzymatic (Active Motif, Carlsbad, CA)  

following the manufacturer’s recommendations. The procedure is briefy as follows: The 

enzymatic digestion time was optimized as 10 min based on the TAE-agarose gel 

image. 10*106 cells /sample were fixed with 1% formaldehyde. After enzymatic 

fragmentation, Anti-Flag  mAb () #9358  (Cell Signaling Inc.,Danvers,  MA) and rabbit 

anti-IgG Control (Abcam Inc., Cambridge, MA) antibodies were used side-by-side for 

immunoprecipitations. 20 µg of chromatin/reaction was immunoprecipitated using 

dilutions of STAT5 or IgG antibody based on manufacturers’ recommendations. After 

elution of DNA, reversal of DNA crosslinks, and proteinase K  treatment,  q-PCR was 

performed using 2 µl of gDNA in replicate.  STAT5 immunoprecipated DNA levels were 

normalized to the levels of IgG immunoprecipitated DNA for each sample. STAT5 
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binding sites reported before for KAI3 cells were transduced with empty PMIG vector, 

wild-type STAT55-Flag-PMIG and STAT5B-N642H-Flag-PMIG. GFP positive cells were 

sorted 4 days after transduction. 1 x 10 7 cells were used for Immune-precipitation.            

Donor vector and sgRNA generation for STAT5B mouse 

The loxp flanked wild type STAT5B- STAT5B N642H construct was inserted into 

Bluescript vector by Gibson assembly. Primers with 20bp overhang were used to amplify 

each sequence. 5’ homology arm, mouse wild type STAT5B exon16, 3’ homology arm 

were amplified from mouse genome. Huamn N642H STAT5B exon 16 was amplified 

from patient sample. Sequence containing two paired of loxP sites were amplified from 

vector MSCV- FLIPi-P2G-Thy1.1-PTEN vector (Addgene). Primers for Gibson assembly 

are as follows:  

STAT5BMM5'FLANK-F:,CCGGGCTGCAGGAATTCGATGGACGGAATTACACTTTCTG 

STAT5BMM5'FLANK-R: 

GTTATAGACTAAGGAAGGAATGGTCATTCTTAGGTGGCAATGTTAGCAGCAACACC

TGCCATTAATTAGAG 

5'2XLOXP-SPACER-F: 

TTCCTTCCTTAGTCTATAACTTCGTATAGGATACCTTATACGAAGTTATGGTGAACC

GCATCGAGCTGAAG 

5'2XLOXP-SPACER-R: 

GTAAACCTTGATAACTTCGTATAATGTGTACTATACGAAGTTATCACGAACTCCAGC

AGGACCATGTG 

STAT5BHU-EX16-FLANKS-F: ACGAAGTTATCAAGGTTTACATCTGCCC  
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STAT5BHU-EX16-FLANKS-R: 

GGACTTCTTGGGTTATTTTTAAATGGAGATTTCTATTG STAT5BMU-EX16-FLANK-F: 

AAAAATAACCCAAGAAGTCCCCGTTGGC  

STAT5BMU-EX16-FLANK-R : CCCAGCCATCGCCCTGGGTATTGCCTGA  

3'2XLOXP-F: TACCCAGGGCGATGGCTGGGTTCATGGTG 

3'2XLOXP-F: 

ACGAATTTGTGTATTTCCTAAGAATTTTACGACAATATGATAAGCTTGGCTGCAGG 

STAT5BMU3'FLANK-F: 

TAGGAAATACACAAATTCGTGAGAAAGAAAGACTTCACACACATCTTGATGCTGGCT

CTG 

STAT5BMU3'FLANK-R: ACGGTATCGATAAGCTTGATGGATACTCTAGGAAACTCAG 

sgRNA sequence was cloned into T7-promoter containing pUC57-sgRNA 

expression vector using Bsal sites as described previously(Shen et al., 2014). Vector 

were linearized DraI and in vitro–transcribed using the MEGAshortscript Kit (Ambion, 

AM1354). sgRNAs were purified by MEGAclear Kit (Ambion, AM1908).  To test sgNRA 

efficiency, sgRNA sequence were cloned into CAS9 expressing vector pSpCas9 (BB)-

2A-GFP. 3T3 cells were transfected with sgRNA containing pSpCas9(BB)-2A-GFP 

plasmid, DNA were isolated 2 days posttransfection and Cas9 mediated edition was 

tested with SURVEYOR assay (Invitrogen) (Cong and Zhang, 2015) STAT5B sgRNA 

sequence are as follows:  

STAT5B-CRISPR1-SENSE: GCAATGTTAGCAGCAACACC  

STAT5B-CRISPR1I-ANTISENSE: GGTGTTGCTGCTAACATTG  

STAT5B-CRISPR2- SENSE: TGACCATTCCTTCCTTAGTC 
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 STAT5B-CRISPR2- ANTISENSE: GACTAAGGAAGGAATGGTCA  

STAT5B-CRISPR3- SENSE: CTAAGAATTTTACGACAATA 

 STAT5B-CRISPR3- ANTISENSE: TATTGTCGTAAAATTCTTAG  

STAT5B-CRISPR4- SENSE: AAGACTTCACACACATCTTG  

STAT5B-CRISPR4- ANTISENSE: CAAGATGTGTGTGAAGTCTT  

Mice 

LMP1flSTOP mice on a BALB/c background, Ncr1-cre mouse strains on the C57BL/6 

background were purchased from the Jackson Laboratory. Blimp1f/f mice on C57/b6 

background were kindly given to us by Dr. Alexander Tarakhovsky, Cre reporter mice on 

BALBc background by Dr. Kay-Uwe Wagner.  To test Cre mediated recombination in 

vivo, Ncr1-cre mice crossed with GFP stopf/f mice to generate Ncr1-cre, GFP stopf/- mice 

and mice in first generation were used for experiment. Ncr1-cre mice were crossed with 

Blimp1f/f or Blimp1f/- to generate Ncr1-cre, Blimpf/-mice in first generation. Ncr1-cre; 

Blimpf/- mice were crossed with Blimp1f/f to generate Ncr1-cre; Blimpf/f mice. 

LMP1flSTOP mice were crossed with Blimpf/f or Ncr1-cre,Blimpf/f for at least 5 generation 

to generate Blimpf/f,LMP1flSTOP and Ncr1-cre,Blimpf/f,LMP1flSTOP mice.     

Antibodies for flow cytometry 

The following antibodies were purchased from BD Biosciences: NK-1.1 (PK136), CD3e 

(145-2C11), CD4 (RM4-5), CD8a (53-6.7), CD45R/B220 (RA3-6B2), CD19 (1D3),TCRβ 

(H57-597), CD27 (LG3A10), CD11b (M1/70), NKp46 (29A1.4), CD69(H1.2F3). For flow 

cytometry, single-cell suspensions were prepared from PBMC, lymph nodes, spleen, 

bone marrow followed by red blood cell lysis. Purified rat anti–mouse CD16/CD32 

(2.4G2; BD Pharmingen) was added to avoid nonspecific binding. Stained samples were 

http://www.rockefeller.edu/research/faculty/labheads/AlexanderTarakhovsky/�
http://www.unmc.edu/eppley/about/faculty/wagner.html�
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fixed with 0.5% paraformaldehyde 4 °C overnight. Stained samples were analyzed using 

FACSCantoII and FACSDiva software Version 6.1.2 (BD Biosciences). Cell number 

were counted using BD Accur C6 Cytometer (BD Biosciences) 

NK-cell purification, expansion, and function 

Single-cell suspensions were prepared from 3-4 spleens/genotype. NK cells were 

isolated using negative seletion NK cell isolation kit (Miltenyi Biotec) as unwanted cells 

were labeled with magnetic beads and attached to the magnetic column while untouched 

NK cells were collected. NK cells were expanded for 6-12 days in RPMI 1640 medium 

containing 10% fetal calf serum (FCS), β-2ME, L-glutamine, and penicillin/streptomycin 

supplemented with rhIL2 1000U/mL The purity as assessed by flow cytometry was > 

90%-95%. For in vitro proliferation assays, freshly purified NK cells or NK cells at day 6 

were seeded in 24-well plates under IL2 or IL15.  Cells were stained with 0.4% trypan 

blue and counted using automated cell counter (Invitrogen).  

NK-cell cytotoxicity was analyzed by flow cytometry. Briefly, target YAC-1 cells 

were labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE; Invitrogen) in 

37°C for 1 hour. 1 × 103 target cells/well was incubated expanded NK cells at day 10 at 

the indicated E:T ratios for 4 hours at 37°C. Propidium iodide (Sigma-Aldrich) was added 

to each well immediately before flow cytometry. The percentage of specific lysis was 

determined as CFSE+PI+.  

In vivo T cell depletion  

For antibody-mediated T cell depletion, 40 ug anti-CD3 antibodies (145-2C11) were 

injected intraperitoneally (i.p.) everyday for 5 days every other week. In another 

experiment, 30mg/kg body weight Cyclosporin A (Selleckchem) were injected 

intraperitoneally daily along with 200ug anti-CD3 antibodies every 3-4 days.  

https://www.bdbiosciences.com/documents/BD_Accuri_C6_brochure.pdf�


35 
 

 

In vivo PolyIC stimulation  

For acute poly IC stimulation, mice were injected i.p. with 20ug poly IC (Invivogen), 

blood were collected retro-obitally on day 1 and day 3. For chronic poly IC stimulation, 

mice were injected i.p. with 200ug polyIC every other day for 4 weeks. Lymphocyte 

profile was analysis in different organs.  

Statistical analysis 

Mean and SEM were calculated using Microsoft Office Excel (Microsoft), two-tailed 

unpaired t-test was applied, p<0.05 was considered statistically significant. 
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Figure 2-1:Total number of mutations identified by RNA-Seq in each NKTCL cases. 

The number of missense, indel, nonsense and frameshift mutations are shown for 17 

NKTCL cases as column percase based on the primary RNA-Seq pipeline. 
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Figure 2-2: The quality control of whole genome amplification procedure using NK 

samples 

(A) The reported PRDM1 mutation was detected by Sanger-PCR using whole genome 

amplified (WGA) DNA from KAI3 cell line. (B) ~3kb DNA amplicon generated with PCR 

using WGA DNA as a template from the KAI3 cell line. RPL13A specific primers were 

used. (C)~3 kb fragment was generated using the WGA DNA from NKCL cases (n=3) as 

in B. TAE-Agarose gel results of the PCR amplicons from three representative NKCL 

cases were shown in duplicate. (D) 1ug of WGA genomic DNA from 4 representative 

NKCL cases was run on  0.8% TAE-agarose gel to show the relatively large size of the 

amplified genomic DNA. 
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Figure 2-3: Generation of the mutated STAT3 or STAT5B expression construct 

The STAT3 (A) and STAT5B (B) mutant expression construct generated and used in 

functional studies are shown. The nucleotide changes and their corresponding effects on 

the targeted residues are indicated. The altered nucleotides are shown in red color 

inside the context of the amino acid codon affected. * NKYS cDNA, which has Y640F 

mutation, was used as a template during cloning.  
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Table 2-1: The STAT3/STAT5B mutations observed in γδ-PTCL, EATL, NKCL or 

NKTCL cases and cell lines 
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Table 2-2: Characteristics of NK and γδ- T cell lines used in the study and STAT3 

mutation status 
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Chapter III 

Identification of mutations of JAK-STAT pathway genes in 

natural killer and peripheral γδ T-cell lymphomas 
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Introduction 

Mature NK cell malignancies are classified under two major categories by the current 

WHO classification(Jaffe, 2009): Aggressive NK cell leukemia (ANKL) and extra-nodal 

NK/T cell lymphoma of nasal type (NKTCL). NKTCLs can be clinically classified as nasal 

or extra-nasal lymphomas based on the primary site of the tumor (Au et al., 2009).    

NKTCLs are rare malignancies with poor prognosis, particularly in advanced stage or 

with extranasal presentation (Kwong, 2005). NKTCL shows marked geographic 

differences in incidence with much higher frequency in East Asia and Central/South 

America (Au et al., 2009). NKTCLs are frequently associated with EBV 

infections(Kwong, 2005); however, the role of EBV in the pathogenesis of NKTCLs is not 

well understood despite two studies suggesting an oncogenic role for EBNA1(Ian et al., 

2008) and LMP1(Komabayashi et al.) , genes encoded by EBV. Interestingly, non-

hepatosplenic γδ -TCL (γδ-TCL NHS) showed a very similar gene expression profile to 

NKTCL (Iqbal et al.)  suggesting that these two diseases are highly similar and may use 

the same oncogenic mechanisms during neoplastic transformation. There is little insight 

into the aberrant pathways operative in γδ –TCLs. 

Based on gene expression profile (GEP) differences between malignant and normal NK 

cells (Huang et al., 2010, Iqbal et al., Ng et al.), constitutive activation of the JAK-STAT, 

NF-kB, AKT and MYC pathways in NKTCL cases have been demonstrated. Given that 

the activation of these pathways is a part of the normal NK cell activation process 

(Dybkaer et al., 2007), it is possible that accumulation of oncogenic mutations in genes 

affecting these pathways contributes to the neoplastic transformation of NK cells by 

aberrantly promoting proliferation and survival.   However, there is still limited 

information regarding the mechanistic basis for the constitutive activation of these 

growth promoting pathways. Recently, two groups reported activating JAK3 mutations in 
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NKTCL cases(Koo et al., Bouchekioua et al.) but a recent report showed that JAK3 

mutations are not frequent in NKTCLs at least in Japan (Kimura et al., 2014).   This 

marked difference in mutation frequency requires additional investigation. 

The JAK-STAT pathway plays a key role in mediating cytokine signaling in NK cells 

(Dybkaer et al., 2007). This role has recently been underscored by phosphorylation of 

STAT1, STAT3 and STAT4 in mouse NK cells in response to MCMV infection (Bezman 

et al., 2012). Constitutive activation of STAT3 and STAT5 is known to increase tumor 

cell proliferation, survival and invasion(Yu et al., 2009).  Aberrant STAT3 and STAT5B 

activation has been shown in activated B-cell type diffuse large B-cell lymphomas (ABC-

DLBCL) (Lam et al., 2008)  and CD8+ lymphoblastic lymphoma (Bessette et al., 2008), 

respectively. Recently, activating mutations were identified in STAT3 (Jerez et al., 2012, 

Koskela et al.)  and STAT5B(Rajala et al.) in NK-large granular leukemia (LGL) and T-

LGL cases suggesting an oncogenic role for these mutations. These mutations were 

located in the Src homology 2 (SH2) domain which is essential for homodimerization and 

activation of STATs (O'Shea et al., 2002). 

SOCS family proteins are induced in response to cytokine signaling and they have been 

known to act as the negative regulators of the JAK-STAT pathway (Krebs and Hilton, 

2001). Promoter methylation-mediated silencing of SOCS gene expression was shown 

for SOCS1 in hepatocellular carcinoma (Yoshikawa et al., 2001) and multiple 

myeloma(Galm et al., 2003) , for SOCS3 in lung cancer (He et al., 2003) and in 

myeloproliferative disorders(Fourouclas et al., 2008) and for SOCS6 in gastric 

cancer(Lai et al.). These studies showed that the JAK-STAT pathway may be 

constitutively activated by hypermethylation-mediated silencing of the negative 

regulators of the pathway in addition to activating mutations of the mediators of the 

pathway. 
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In this study, we investigated the genome-wide driver mutations in NKTCLs using a 

combination of RNA sequencing, whole-exome sequencing (WES) and Sanger 

sequencing, and identified activating mutations of STAT3 and STAT5B in the SH2 

domain. STAT5B mutations were also observed at a high frequency in γδ-T-cell-derived 

lymphomas (γδ-PTCLs). The mutatant proteins were more resistant to inactivation and 

promoted cell growth and survival by binding to their direct targets. The JAK-STAT 

activation could be partially inhibited by JAK1/2 inhibitors and expression of the negative 

regulator SOCS6, suggesting a potential therapeutic option for these patients. 
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Results 

Frequent STAT3 and STAT5B mutations are identified by WTS in NKTCL cases 

WTS was performed on resting NK cells, NK cells activated by IL2 or by K562-Clone9-

mb21, 17 NKTCL cases and 3 NK cell lines. Totally 9424 annotated SNVs were 

identified in NKTCL cases and NK cell lines (Table 3-1). First, we validated the 

mutations detected from our WTS data that may be functionally significant including the 

mutations in FAS, TP53, BRAF, MAP2K1, CREBBP, EP300 and MLL2 genes, by 

Sanger sequencing on the corresponding genomic DNA. The BRAF (G469A) and 

MAP2K1 (K57N) SNVs have been detected frequently in epithelial tumors(Paik et al., 

2011, Marks et al., 2008, Shukla et al.) and have been shown to be oncogenic(Roring et 

al., Wan et al., 2004, Marks et al., 2008). Of note, FAS and TP53mutations were 

identified in NKTCLs by traditional Sanger sequencing in previous studies. 

WTS identified a number of mutations that may affect the JAK/STAT pathway 

including one STAT3 missense SNV (S614R, G618R and A702T) in each of three 

NKTCL cases (3 of 17, 18%). Interestingly, all of the STAT3 SNVs were located in the 

SH2 domain, a domain critical for STAT3 activation (Fig. 3-1A left). STAT3 S614R and 

STAT3 G618R mutations were recently reported in NK-LGL or T-LGL leukemia cases 

(Jerez et al., 2012). The third STAT3 mutation, STAT3 A702T was predicted to be 

benign by Polyphen-2; however, this residue is located close to a phosphorylated 

residue 705 raising the possibility that the mutation may alter the phosphorylation of 

residue 705. STAT5B missense mutation (STAT5B N642H) was present in one of 17 

(6%) NKTCL cases (Fig. 3-1B). STAT5A and STAT5B are highly conserved in this 

residue and introduction of STAT5A N642H was reported previously to confer growth 

factor independent growth in leukemic cell lines(Ariyoshi et al., 2000). In total, STAT3 

and STAT5B mutations were observed in 4 of 17 (23.5%) NKTCL cases with WTS data. 



51 
 

 

 

Targeted resequencing of STAT3 and STAT5B in NKTCL,γδ-PTCL and enteropathy 

associated T-cell lymphoma (EATL) type II patient cohort and cell lines 

NK cell and γδT cell share similar properties and functions, and our gene expression 

profiling studies found that NKTCL and γδ-PTCL cases share a very similar profile with 

each other and with normal NK cells. These observations suggest that NK cell and γδT 

cell derived lymphoma may use similar oncogenic mechanisms. To compare the role of 

STAT3/STAT5B SH2 domain mutations in NK cell and γδT cell derived lymphoma, we 

screened the SH2 domains of STAT3 and STAT5B in additional NKCL and γδ-T cell 

lines, as well as NKTCL,  γδ-PTCL  and enteropathy associated T-cell lymphoma (EATL) 

type II patient cohort (Fig. 3-2A). 

Since all observed SNVs were located in the SH2 domain, we sequenced the 

SH2 domains of STAT3 and STAT5B by targeted Sanger sequencing in 35 additional 

NKTCK cases collected in China (Fig. 3-3). One STAT3 D661Y mutation was observed 

in 35 cases (2.9%) and two STAT5B mutations (Y665F and N642H) was observed in 

two of these 35 screened cases (5.7%) (Fig. 3-2B, C). Frequency of both STAT3 and 

STAT5B mutations was lower in Chinese NKTCL cases. These analyses yielded a 

STAT3 and STAT5B mutation frequency of 5.9% in all NKTCL patients screened by 

WTS, WES and/or Sanger sequencing (Fig. 3-2D, left). 

RNA-Seq analysis on 3 NK-cell lines revealed an activating mutation, Y640F, in 

the SH2 domain of STAT3 in NKYS cells, which was validated by Sanger sequencing 

(Fig. 3-2B). Interestingly, 2 out of 3 additional NK-cell lines (SNK6 and YT) showed 

STAT3 mutations when screened by Sanger sequencing, raising the STAT3 mutation 

frequency to 50% of the 6 NK-cell lines studied (Fig. 3-2B). However, Sanger 
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sequencing of the SH2 domain (exon14-exon18) of STAT5B in these NK-cell lines did 

not reveal any STAT5B mutations. 

Two recent studies reported the presence of JAK3 A572V, A573V or V722I 

mutations in NKTCL (Koo et al., 2012, Jiang et al., 2015). However, neither WTS nor 

hotspot sequencing of 40 NKTCL cases revealed these SNVs, consistent with a recent 

report(Kimura et al., 2014). The discrepancy may be due to a variety of factors including 

the genetic composition of the populations and different stimuli that initiate and sustain 

the initial phase of NK-cell proliferation. 

We also screened the SH2 domains of STAT3 and STAT5B in 3 γδ T-cell lines 

and 24 γδ-PTCL cases [15 primary cutaneous (PC)-γδ-PTCL and 9 hepatosplenic (HS) - 

γδ-PTCL cases]. Among the three γδ T-cell lines, we observed a STAT3 Y640F mutation 

(SNT-15) and a STAT3 D661Y mutation (SNT-8), but no STAT5B mutation (Fig. 3-2B). 

We identified only a STAT3 Y640F mutation in 1 of 24 γδ-PTCL cases (Fig. 3-2B). On 

the other hand, 8 of 24 (33.3%) cases (4 PC and 4 HS) showed activating STAT5B 

mutations in the SH2 domain (Fig. 3-2C, D). 

Enteropathy associated T-cell lymphoma (EATL) is an aggressive PTCL with 

higher incidence in Europe and USA (Delabie et al., 2011).  The disease is now 

classified into two subtypes: Type I is the classical type expressing TCR-αβ and is 

associated with celiac disease and gluten-sensitive enteropathy. EATL type II cases 

have been shown to frequently express TCR-γδ ~ 78% in one study (Chan et al., 2011)), 

and they are not associated with gluten-sensitive enteropathy.  Targeted sequencing 

revealed STAT5B N642H mutations in 7 of 19 EATL type II cases (36.8%) (Fig. 3-2C, 

D). Intriguingly, all mutated EATL type II cases have γδ-T cell receptor expression (7/16 

of TCR-γδ positive cases) underscoring the significance of STAT5B mutations in the 

neoplastic transformation of γδ-T cells giving rise to different subtypes of γδ-PTCL. 
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STAT3 is constitutively activated in NK cell lines with STAT3 mutations 

To address whether STAT3 mutations activate the STAT3 pathway, we performed 

western bloting on 6 NK cell lines using STAT3 and phospho-STAT3 antibodies. 

Consistent with the targeted sequencing results, we observed high phospho-STAT3 

expression in SNK6, NKYS and YT cell lines (Fig. 3-4). The three NK cell lines without 

STAT3 mutations (NK92, KHYG1 and KAI3) express phospho-STAT3 at  much lower 

levels suggesting that STAT3 is highly activated in 3 of 6 (50%) of NK cell lines due to 

the presence of activating mutations in the SH2 domain. 

 

NK-cell lines with STAT3 mutations show high pY-STAT3 expression and shRNA- 

mediated knock-down of STAT3 inhibits NK-cell line growth 

Next, we transduced the NKYS and YT cell lines, which have the activating STAT3-

Y640F mutation, with empty vector or STAT3 shRNA with confirmed activity (Fig. 3-5) to 

evaluate whether STAT3 silencing inhibits growth of NK cells. We quantified the 

percentage of GFP positivity of  STAT3 shRNA transduced cells at regular time intervals 

starting 3 days post-transduction, and observed a markedly reduced percentage of  

GFP+ cells compared to vector-only transduced cells, suggesting a strong negative 

selection pressure after STAT3 knock-down (Fig. 3-6A-D). We did not observe a 

decrease in the percentage of GFP+ population in STAT3 shRNA-transduced KAI3 cells, 

which express wild-type STAT3 (Fig. 3-6E, F). STAT3 protein knockdown efficiency was 

~72%, ~78% and ~39% in NKYS, KAI3 and YT cell lines, respectively (Fig. 3-6G, H), 

which may account for the more moderate decrease in growth observed in YT cells after 

STAT3 knock-down. 
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Ectopic expression of STAT3 or STAT5B mutants promotes growth in KAI3 cells under 

limiting IL2 concentrations. 

Some of the STAT3/STAT5B mutations have been reported in other tumors and 

are likely oncogenic, but other mutations have not been previously identified. We used 

several approaches to confirm that these mutations are functionally significant and not 

passenger mutations or uncommon SNPs.  We performed site directed mutagenesis of 

each of the mutants and transduced KAI3 cells, which lack STAT3 or STAT5B 

mutations, with retroviruses expressing each of the STAT3 and STAT5B mutants and 

determined the % of GFP+ cells post-transduction in regular time intervals. With only two 

exceptions, all STAT5B- or STAT3-mutant transduced KAI3 cells showed significant 

progressive positive selection under limiting IL2 concentrations compared with WT-

transduced cells (Fig. 3-7A, B). STAT3 A702T mutant showed only modest positive 

selection when compared with WT transduced cells. 

Western blot analysis in cell lines clearly demonstrated an association of STAT3 

mutations with increased phosphorylation. As there are no cell lines with STAT5B 

mutations, we measured the phosphorylation of STAT5B proteins in STAT5B-mutant 

transduced KAI3 cells and found it to be clearly increased compared with WT 

transduced cells (Fig. 3-7C). 

 

Ectopic expression of STAT5B I704L or N642H mutants promotes growth of primary 

human NK cells 

We transduced STAT5B mutants (N642H and I704L) into primary human NK cells 

obtained through coculture with engineered K562 cells, K562-Cl9-mb21, and observed 

robust promotion of cell growth in mutant compared to WT transduced cells (Fig. 3-8). 
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Intriguingly, the effect of STAT5B N642H was prominent and the strongest among all 

mutants tested in KAI3 cells or normal NK cells. 

 

STAT5B target genes are transcriptionally upregulated in STAT5B-mutant transduced 

cells through direct binding to conserved STAT5 binding sites 

We evaluated the expression of known STAT5B targets, IL2Rα(Kanai et al., 2014), BCL-

XL(Silva et al., 1999), BCL2(Li et al., 2010), MIR155HG(Kopp et al., 2013) and 

HIF2α(Fatrai et al., 2011) in KAI3 cells transduced with STAT5B mutants (N642H and 

I704L)  and observed significantly higher expression compared to WT or empty vector 

transduced cells (Fig. 3-9A-E), indicating that the mutants are functionally active and 

upregulate oncogenic STAT5B targets, which in part accounts for better promotion of 

survival/growth in NK cells. Next, we performed ChIP-q-PCR on STAT5 binding sites for 

these genes. Compared to KAI3 cells transduced with empty vector or wild- type 

STAT5B, a robust increase in occupancy of STAT5 binding sites was observed in 

STAT5B-N642H transduced KAI3 cells (Fig. 3-9F-J), indicating that increased STAT5B 

binding due to the mutation, upregulates the expression of the target genes. Altogether, 

these results suggest that the STAT3 and STAT5B mutations are oncogenic, driver 

mutations. 

 

Three-dimensional modeling and surface plasmon resonance (SPR) analysis of the 

N642H mutant shows stronger affinity for the phosphorylated tyrosine Y699 

STAT5B N642H is the most frequent mutation identified in γδ-PTCLs and appears to 

have the highest functional potency. Hence, we sought to determine the molecular basis 

of the functional alterations resulting from this mutation through structural analysis. To 
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mimic homodimerization, we docked a tyrosine-phosphorylated STAT5B peptide into the 

WT and mutant SH2 domains (Fig. 3-10A-C). Molecular docking showed that the peptide 

has a significantly higher binding affinity to the N642H mutant than the WT (Fig. 3-10D) 

largely due to the direct electrostatic interaction of the mutant histidine with the 

phosphotyrosine. To confirm these modeling studies, we produced nonphosphorylated 

wild-type and N642H STAT5B (residues 128 to 717), purified each to homogeneity, and 

performed surface plasma resonance (SPR) studies. The wild-type and mutant STAT5B 

proteins were coupled to individual channels of a CM5 SPR chip, and the 

phosphopeptide KAVDG(p)YVKPQI was passed over each channel at increasing 

concentrations (0.8 to 100 μM) in duplicates. The binding affinity of the peptide to the 

wild-type and N642H mutant was determined by fitting the equilibrium saturation point as 

a function of peptide concentration.  The dissociation constants for the N642H mutant 

and wild-type STAT5B were 2.9 μM and 14 μM, respectively (Fig.3-10E).  While these 

measurements represent a ~5 fold difference for the peptide to the monomeric STAT5B-

WT compared to N642H mutant, it is important to note that phosphoSTAT5B forms a 

homodimer and thus there are two phosphotyrosine binding sites.  Consequently, KDimer 

= K Monomer1 • K Monomer2 which translates to a 25-fold increase in association constant for 

the dimer.  Hence, the homodimeric N642H mutant is substantially more stable than the 

wild-type. This finding supports the molecular model and the in vitro cell based assay 

observations. 

To address whether the STAT5B-N642H mutation is associated with prolonged 

STAT5B activation in the presence of acute JAK-STAT5 pathway activation, we 

performed western blot analysis on IL2-activated YT cells in a time-course experiment to 

evaluate P-STAT5 expression. The JAK-STAT5 pathway is known to be inducible in this 

cell line (Nagy et al., 2009) and we observed P-STAT5 expression only in the presence 
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of IL2 (data not shown). We incubated empty vector, STAT5B-WT or N642H-mutant 

transduced YT cells with IL2 for 30 minutes, and evaluated P-STAT5 expression up to 6 

h after IL2 withdrawal. P-STAT5 expression disappeared 1 h after transient IL2 

stimulation in empty vector (EV) or STAT5B-WT transduced cells whereas it persisted 

for more than 6 h in N642H-transduced cells (Fig.3-10F). These results suggest that the 

N642H mutation increases affinity of the phospho-STAT5B dimer and thereby resulting 

in far more persistent activation. 

 

AZD1480 inhibits STAT3/STAT5B mutant transduced NK cells 

Most NKCL and γδ-PTCL cell lines are still dependent on IL2 which signals mainly 

through JAK1/2 to activate STAT3 and STAT5 (Johnston et al., 1996, Johnston et al., 

1995). JAK inhibitors are expected to be effective in interrupting this signaling pathway in 

cells with wild-type STAT3 and STAT5. However, it is unclear whether the inhibitor 

would effectively inhibit this pathway at a tolerable dosage in cells harboring the 

mutants. We treated STAT3 or STAT5B-mutant and WT transduced KAI3 cells with 0.5 

µM AZD1480, a selective JAK1/2 inhibitor(Derenzini et al., 2011). We quantified viable 

cells at 72 h post-treatment and observed inhibition of growth in all the mutant STAT3 

and STAT5B transduced cells (Fig. 3-11A, B).  With higher concentrations of AZD1480, 

we observed up to 60% inhibition in STAT5B N642H-mutant transduced cells (Fig. 3-

11C, right), associated with reduced STAT5 phosphorylation in a dose-dependent 

manner (Fig. 3-11D). Next, we treated YT and NKYS cells, which have STAT3 

mutations, with the JAK1/2 inhibitor and observed dose-dependent inhibition of cell 

growth (Fig.3-11E).  These data suggest that JAK1/2 inhibitors may have therapeutic 

efficacy for NKTCL and γδ-PTCL patients with the mutations. This may have immediate 

clinical application as JAK1/2 inhibitors are already approved for myeloproliferative 
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disorders (Pardanani, 2008, Sonbol et al., 2013). Thus they are available for trials in 

NKTCL or γδ-PTCL patients while STAT3 and STAT5B inhibitors are still not clinically 

available. Further development of small-molecule inhibitors targeting STAT3 or STAT5B 

dimerization or DNA binding or siRNA approaches may synergize with JAK1/2 inhibitors 

to improve the outcome in these diseases with currently dismal prognosis. 

 

Activating STAT3 mutations coordinated with silencing of SOCS6 in NKTCLs 

In our previous study we showed that SOCS6 was silenced through promoter 

methylation in NKCL cases and NK cells lines. The SOCS6 mRNA was expressed at low 

level in 5 out of 6 NK cell lines compared to resting or activated NK cells and intriguingly 

all NK cell lines with activating STAT3 mutations had low SOCS6 expression based on 

q-RT-PCR (Fig. 3-12). To address whether there is cooperation between activating 

STAT3 mutations and silencing of SOCS6 in NKCL samples in establishing constitutive 

activation of STAT3, we transduced the NKYS cell line which harbors a STAT3 Y640F 

activating mutation with the empty vector or retrovirus expressing SOCS6 and quantified 

the % of GFP+ cells in regular time intervals. The YT cell line is partially IL2 dependent 

so IL2 was removed from cell culture medium 3 days post-transduction. We observed a 

significant reduction of SOCS6 transduced YT cells when we compared the percentage 

of GFP+ cells 4 days and 8 days post-transduction whereas no change was observed for 

empty vector transduced   cells and similarly transduced control DHL16 cells, a 

malignant B cell line that does not have STAT mutations (Fig. 3-13B). Next we tested the 

effect of SOCS6 on apoptosis by staining the empty vector or SOCS6 transduced YT 

cell line with early apoptotic marker Annexin V. We observed significantly higher % of 

AnnexinV+/GFP+ cells in SOCS6 transduced YT cells compared with empty vector 

transduced cells (4.5% vs 12.5% in empty vector or SOCS6 transduced cells, 
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respectively)  (Figure 3-14A,B). To address whether SOCS6 mediated negative 

selection pressure is due to inhibition of the JAK-STAT3 pathway, we performed western 

blot analysis to evaluate P-STAT3 levels. P-STAT3 protein expression in SOCS6 

transduced NKYS cells was lower compared with empty vector transduced cells (Fig 3-

14C). These finding indicated that activating STAT3 mutations cooperated with silencing 

of SOCS6 in NKCL samples, resulting in enhanced activation of STAT3. 
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Discussion 

Identification of possible oncogenic signaling pathways in malignant NK cells could give 

us an insight on the mechanism of the pathogenesis of NKTCL as well as suggesting 

potential therapeutic strategies. Previous GEP-based studies reported several aberrant 

activated pathway in NKTCL such as the MYC, WNT, NF-B a nd TGFb pa thwa ys(Iqbal 

et al.). The constitutive activation of different pathways is often due to the accumulation 

of multiple genomic imbalances or mutations that cause the activation of oncogenes or 

inactivation of tumor suppressor genes. In our study, we investigated the genomic 

abnormalities occurring in NKTCL and γδT derived lymphoma at different levels. At the 

chromosomal level, we identified chromosomal copy number abnormalities such as 

gain/loss by aCGH. We found 6q22 loss was the most frequent abnormality in NKTCL 

samples. At the DNA level, we investigated epigenetic changes by analyzing global 

methylation profile using the “methylation-sensitive cut counting” (MSCC) assay. We 

identified 95 genes with strong evidence for being silenced though promoter methylation, 

including BCL2L11 (BIM), PTPN6 (SHP1), TET2, SOCS6, and ASNS.In this study, we 

investigated and compared the somatic mutation profile of NKTCL and other γδT derived 

lymphomas using next generation sequencing (NGS). NGS study of NKTCL and γδT 

should enable the identification of the full spectra of oncogenic mutations contributing to 

the aberrant activation of oncogenic pathways or inactivating of JAK-STAT pathways 

leading to the transformation of NK cells. This knowledge will aid in the development of 

the targeted therapies with better efficacy and less cytotoxicity. 

Although STAT3 or rarely STAT5B mutations have been reported in 

malignancies such as B-cell lymphomas(Ohgami et al., 2014), angioimmunoblastic T-cell 

lymphoma(Odejide et al., 2014) , CD30+  T-cell lymphoma(Ohgami et al., 2013) and the 

indolent LGLL disease(Qiu and Fan, 2016), our study describes prevalent activating 
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STAT5B and STAT3 mutations in aggressive lymphomas of NK and γδ-T cell of origin. 

The frequency of activating STAT3 mutations was much higher in NK (50%) and γδ-T-

cell lines (67%) compared with NKTCL (5.9%) or γδ-PTCL patient samples (8.3%). This 

suggests that JAK-STAT3 pathway activation may be more critical in cell survival 

independent of stromal components and that consequently the activating mutations are 

selectively enriched in cell lines. 

Intriguingly, STAT5B mutations were far more frequent in γδ T-cell lymphomas 

including multiple subtypes: hepatosplenic, EATL type II and other mucocutaneous γδ-

PTCL (34.9%) than in NKTCL cases (5.9%). It is worth mentioning that in the 2016 

revision of the World Health Organization (WHO) classification of lymphoid neoplasms, EATL 

type II s formally renamed as monomorphic epitheliotropic intestinal T-cell lymphoma 

(MEITL) due to its distinctive features. Our study showed that the STAT5B mutations 

were highly associated with γδMEITL. All these observations imply a pivotal role of 

STAT5B in γδ-PTCL pathogenesis. 

Two groups reported frequent activating JAK mutations in NKTCL. In our study 

and other recent studies(Kimura et al., 2014), we failed to detect the JAK3 mutations in 

NKCLs, an in some studies JAK3 mutations were observed in a low frequency. This 

suggests that JAK3 mutations may not be frequent in NKTCLs, at least in the population 

that we studied. This discrepancy may be due to a variety of factors including but not 

limited to the characterization of malignant NK samples. 

Importantly, our in vitro functional data suggested that mutant STAT3/STAT5B, 

act as transcriptional activators, which contribute to the potent proliferative and survival 

ability of NK cells under limited IL2 condition by directly binding and upregulating genes 

involved in cell proliferation and cell cycle. Even though mutant STAT3/STAT5B had a 

higher binding potency to their target, their activation still required the phosphorylation by 
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upstream JAK kinase as withdrawal of IL2 result in a decrease in mutant p- 

STAT3/STAT5B level. However, mutant STAT3/STAT5B can form a tightly associated 

dimer that is resistant to inactivation by phosphatases which results in a prolonged 

activation of JAK-STAT pathway. Although the mutant p- STAT3/STAT5B dimers were 

resistant to inactivation, the activation of JAK-STAT pathway still could be regulated 

through upstream sites. Both JAK kinase inhibitor and ectopic expression of STAT 

inhibitor SOCS disrupt the positive selection effect of mutant STATs. Therefore drugs 

that target JAK-STAT pathway or reactivation of SOCS6 could be effective in treating 

NKTCL or other γδ T cell derived lymphomas.  Genomic-based strategies for cancer 

therapy such as small interference RNA (siRNA) based therapy promise potent gene 

inhibition with selectivity, even down to the level of single-nucleotide variant. Therefore, 

mutant STATs-specific siRNA therapy may benefit NKTCL patients with particular 

mutations, as this approach only target tumor cells results in less potential toxicity. 
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Figure 3-1: Activating JAK-STAT pathway mutations are frequent in NKTCL cases. 

The location of the mutated residues in the SH2 domain of STAT3 (A) and STAT5B (B) 

and the type of residues mutated in other members of the JAK-STAT pathway genes (C) 

in NK-cell lines and/or NKTCL cases are shown. The chromatograms show the relative 

height of the sequencing peak for the mutations compared with the WT allele. 
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Figure 3-2: Activating STAT3 and STAT5B mutations are frequent in lymphomas of 

NK or γδ-T cell of origin. 

(A) The diagram shows the type of mutation analyses performed and the number of 

tumour samples used for each analysis. The locations of the primers used for PCR and 

Sanger sequencing of the STAT3 andSTAT5B SH2 domains are shown in. The location 

of the mutated nucleotides found in the SH2 domains of STAT3 (B) and STAT5B (C) in 

tumour cases (NKTCL, γδ-PTCL (PC-γδ-PTCL and HS-γδ-PTCL) or EATL type II) and 

cell lines (NK and γδ-T cell lines) are shown (not to scale). Mutations of different tumour 

cases or cell lines are indicated with different symbols over the SH2 domains, and the 

disease types to which these symbols refer are shown in the upper right corner of the 

panels. Other than A702T, all STAT3 mutations were reported in LGLL by Koskela et al 

and Jerez et al STAT5B N642H and Y665F mutations were rarely (~1%) observed in 

LGLL by Rajala et al. (D) the percentages of STAT3 and STAT5B mutations in NKTCL 

(n=51), γδ-PTCL (n=24) or EATL type II cases (n=19) are shown with pie charts. Apart 

from the STAT5B Y665F mutation identified using WES; all SNVs identified in this study 

have been cross-validated on genomic DNA with Sanger sequencing using both forward 

and reverse primers. *: two NKTCL tumour samples with WTS data was re-classified 

later as PC-γδ-PTCL due to γδ-TCR expression. One of these two reclassified cases is 

the sample with the STAT3-G618R mutation. 
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Figure 3-3: The locations and amplicon sizes of Sanger primers for the exons in 

the SH2 domain of STAT3 and STAT5B. 

(A) Primer pairs generating small size amplicons for STAT3 Sanger sequencing of FFPE 

tumor samples are shown as arrows above the diagram. Primer pairs generating larger 

size (>350 bp) amplicons used for samples with high molecular weight DNA are shown 

with arrows below the diagram. The colors of the arrow correspond to different exons. 

(B) The locations of the primer pairs used for Sanger sequencing of the STAT5B SH2 

domain in FFPE tumor samples are shown as arrows above the diagram. The locations 

of the primer pairs generating >500bp size amplicons used for Sanger sequencing 

STAT5B SH2 domain in cyropreserved NKTCL or γδ-PTCL samples are shown as 

arrows below the diagram. 
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Figure 3-4: NK cell lines with STAT3 mutations show high STAT3 activation. 

Western blot was performed on whole cell lysates (WCL) from 6 NK cell lines using 

phospho tyrosine (Y705)-STAT3 and STAT3 antibodies. The germinal center B cell line, 

DHL16, which does not have STAT3 activation was used as a negative control. α-

Tubulin was used to ensure equal loading of the samples. The name of the cell lines 

used is indicated on top of the gel image. The presence or absence of activating STAT3 

mutations is shown with (+) or (-) signs, respectively. NA: Not available. 
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Figure 3-5: STAT3 knock-down efficiency in 293T and NKYS cells 

(A) STAT3 knock-down efficiency was evaluated with q-RT-PCR on STAT3 shRNA 

transfected 293T cells. STAT3 mRNA levels in STAT3 shRNA transfected 293T cells 

were normalized to STAT3 expression in untrasnfected cells and compared with empty 

vector transfected cells 51 h after transfection. (B) Evaluation of the STAT3 knock-down 

efficiency in NKYS cells transduced with empty vector or STAT3 shRNA. STAT3 shRNA 

transduced NKYS cells were purified by FACS sorting 3 days post-transduction to enrich 

GFP+ cells. STAT3 mRNA expression was determined using FACS sorted NKYS cells 

transduced with empty vector or STAT3 shRNA. Unsorted NKYS cells were used to 

normalize STAT3 expression

 

. 

 

 

 

 

 



74 
 

 

 

A B 

C D 

F E 



75 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G 

H 



76 
 

 

 

 

Figure 3-6: NK-cell lines with STAT3 mutations show high pY-STAT3 expression 

and shRNA- mediated knock-down of STAT3 inhibits NK-cell line growth 

(A) Representative flow cytometric plots showing the percentage of GFP+ cells 3 days 

(day 0) and 12 days (day 9) post-transduction of NKYS cells with empty vector (EV) or 

STAT3 shRNA after removing IL2 from the culture medium at day 0. (B) Quantification of 

the percentage of GFP+ cells post-transduction of NKYS cells with empty vector or 

STAT3 shRNA at regular time intervals. In one experiment, cells were cultured in the 

presence of IL2 (5-7 ng/ml) until 3 days (day 0) post-transduction and then IL2 was 

removed from the culture medium. In the second experiment, IL2 was always included 

post-transduction of NKYS cells. Each data point is representative of two biological 

replicates. (C) Representative FACS plots showing the percentage of GFP+ cells of YT 

cell line transduced with empty vector or STAT3 shRNA 3 days (day 0) or 15 days (day 

12) post-transduction. (D) Quantification of the percentage of GFP+ cells by FACS 

between 3 and 15 days post-transduction with empty vector or STAT3 shRNA. For one 

week before transduction, YT cells were cultured in the presence of IL2. Three days 

post-transduction (day 0), cells were transferred to medium lacking IL2. (E) 

Representative FACS plots showing the percentage of GFP+ cells in empty vector or 

STAT3 shRNA transduced KAI3 cells. (F) Quantification of the percentage of GFP+ cells 

after transduction of KAI3 cells with empty vector or STAT3 shRNA. 3 days post-

transduction (day 0), the percentage of GFP+ cells was determined by flow cytometry, 

and cells were switched to NK culture medium with reduced IL2 (25 IU/ml). 

 



77 
 

 

 

 

 

 

 

    A 

 

B 



78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  C 



79 
 

 

Figure 3-7: Ectopic expression of STAT3 or STAT5B mutants promotes growth in 

KAI3 cells under limiting IL2 concentrations. 

(A) Quantification of the percentage of GFP+ cells post-transduction of KAI3 cells with 

each STAT3 mutant observed in tumor samples. Transduced cells were cultured in 

regular IL2 concentrations for 4 days, then switched to limiting (25 IU) IL2 

concentrations. Day 0 = 4 days post-transduction. Each data point shows the mean of 

biological replicates. The average values for the % of GFP+ cells at day 0 were 6.9%, 

3.2%, 6.0%, 2.8%, 4.1%, 4.3% and 3.2% for EV, STAT3-WT, S614R, G618R, Y640F, 

D661Y or A702T transduced cells, respectively. (B) Quantification of the percentage of 

GFP+ cells post-transduction of KAI3 cells with each STAT5B mutant observed in tumor 

samples as in A. Means ±SD of 2 independent experiments with replicates are shown 

(n=4). The average values for the % of GFP+ cells at day 0 were 4.8% ,6.8% , 5.9%, 

5.7%, 8.2%, 6.7% for EV, STAT5B-WT, E579K, N642H, Y665F or I704L-mutant 

transduced cells, respectively.  The percentage of GFP+ cells for each sample is 

normalized to day 0 in both A and B. (C) P-STAT5 (Y699) and STAT5 protein expression 

levels in KAI3 cells transduced with STAT5B mutants are shown by western blot. Six 

days post-transduction, the GFP+ population of STAT5B-mutant transduced cells was 

isolated by FACS, and then placed into culture medium with limiting (25 IU/ml) 

concentrations. Whole cell lysates were collected 11 days post-transduction. One 

experiment representative of three experiments is shown. 
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Figure 3-8: Ectopic expression of STAT5B I704L or N642H mutants promotes 

growth of primary human NK cells 

(A) Schematic representation of the coculture system used to activate and condition NK-

cells for retroviral transduction with N642H or I704L mutant forms of STAT5B. Pure NK 

cells isolated from PBMCs were admixed with 100 Gr-irradiated engineered K562 cells, 

K562-Cl9-mb21, as shown. Characterization of K562-Cl9-mb21 cells used to induce 

proliferation of primary human NK cells was performed before(Somanchi et al., 2011).  

The purity of NK cells (CD56+/CD3- cells) was ~94%. (B) Quantification of the 

percentage of GFP+ cells post-transduction of primary NK cells with STAT5B-WT or each 

of two STAT5B mutants (I704L or N642H) at three-day intervals. The percentage of 

GFP+ cells for each sample is normalized to day 0. Day 0 indicates 5 days post-

transduction. The average % of GFP+ cells at day 0 was 4.6%, 4.9% and 4.8% for 

STAT5B-WT, N642H or I704L-transduced cells, respectively.  Data are means ±SD of 

biological replicates.  Dead cells were stained with 0.5 µM of DAPI (Biolegend, cat.no: 

422801) to exclude them from quantification. 
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Figure 3-9: STAT5B target genes are transcriptionally upregulated in STAT5B-

mutant transduced cells through direct binding to conserved STAT5 binding sites 

Relative mRNA expression of IL2Rα (A), BCL-XL (B), BCL2 (C), MIR155HG (D) and, 

HIF2α (E) is shown in control vector or STAT5B-mut transduced cells prepared as 

described in A.  Means ± SD of two independent experiments (total combined samples = 

4) are shown. * = p<0.01 and ** = p<0.05 compared to WT. ChIP-q-PCR results for 

known STAT5 binding sites are shown for IL2Rα (F), BCL-XL (G), BCL2 (H), MIR155HG 

(I) and HIF2α (J) in EV, STAT5B-WT or STAT5B-N642H transduced KAI3 cells. STAT5 

pull-down normalized to IgG control as a fold difference compared with the STAT5B-WT 

sample is shown in the y-axis using a log scale. STAT5B consensus sites and their 

approximate distance to the TSS sites are indicated. 
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Figure 3-10: Three-dimensional modeling and SPR analysis of the N642H mutant 

shows stronger affinity for the phosphorylated tyrosine Y699 

The phosphorylated STAT5B peptide involved  in homodimerization was docked into the 

SH2 domain of either WT (A) or N642H (B) STAT5B. The overlay of these structures (C) 

shows little difference in the docking poses. In both cases, the N642 or H642 residue 

was found to be in close proximity to the phosphorylated tyrosine on the STAT5B 

peptide (D). The binding energy of these docked structures was calculated for both the 

WT (-101.5 kj/mol) and N642H (-125.3 kj/mol). (E) SPR binding isotherms of 

phosphopeptide with STAT5B WT (brown circles) and N642 mutant (blue triangles). 

Calculated KD values of 14 µM and 2.9 µM for STAT5B WT and N642H mutant, 

respectively, are indicated by vertical lines. An inset shows the Scatchard plot of the 

same data (F) Western blot image showing P-STAT5(Y699) and STAT5 levels before or 

after culturing empty vector (EV), STAT5B-WT or N642H mutant transduced, GFP-

sorted YT cells in the absence (no IL2) or the presence of IL2. YT cells were cultured in 

the absence of IL2 in each stage of the experiment including one week before 

transduction. The image is representative of two independent western blots. 
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Figure 3-11: AZD1480 inhibits STAT3/STAT5B mutant transduced NK cells 

25,000  STAT3-mutant (A) or STAT5B-mutant (B) transduced, GFP+-sorted KAI3 cells 

were treated with 0.5 µM AZD1480 in 2ml medium for 72 h. Dead cells were stained with 

trypan blue , viable cell number was determined using Vi-cell XR cell viability analyzer 

(Beckman Coulter Inc.) and normalized to the corresponding untreated sample.  Means 

± SD of two biological replicates are shown. (C) Normalized viable cell number of 

STAT5B-WT (left) or N642H mutant (right) transduced KAI3 cells treated with 

progressively increasing doses of AZD1480 for 72 h. Each column represents mean ± 

SD of three biological replicates. (D) P-STAT5 (Y699) levels were analyzed by western 

blot on empty vector (EV), STAT5B-WT, N642H or I704L transduced KAI3 cells treated 

with progressively increasing doses (0.5 µM,1 µM or 2 µM) of  AZD1480 for 4h (E) 

Normalized numbers of viable STAT3-mutated NKYS and YT cells treated as in (C) are 

shown *: P<0.01 vs no treatment; **: p<0.05 vs no treatment. N.S.: Not significant. 
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Figure 3-12: q-RT-PCR shows SOCS6 silencing in 5 of 6 NK cell lines. 

R: Resting NK cells, A: 48h IL2 activated normal NK cells. The STAT3 mutation status is 

indicated with a (+) or (-) sign for each NK cell line. A (+) sign indicates the presence of 

the mutation. 
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Figure 3-13: Ectopic expression of SOCS6 is associated with negative selection 

pressure in NK cell lines with STAT3 mutations. 

(A) Quantification of the % of GFP+ population in empty vector or SOCS6 transduced YT 

cells at 2 day intervals for 4 days. Mean (+/- SD) was shown. Each data point represents 

2-4 biological replicates. (B) Quantification of the % of GFP+ population in empty vector 

or SOCS6 transduced DHL16 cells at 5 days and 7 days post transduction. Mean (+/- 

SD) was shown. Each data point represents 2-4 biological replicates. 
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Figure 3-14: Ectopic expression of SOCS6 induces apoptosis in NK cell lines with 

STAT3 mutations. 

(A)A representative plot for AnnexinV-PE staining on GFP gated cells is shown for 

empty vector or SOCS6 transduced YT cells 3 days post-transduction. (B) Quantification 

of the % of AnnexinV+/GFP+ population in YT cells transduced with empty vector or 

SOCS6 3 days post-transduction. Each data point represents a combination of biological 

replicate with two technical replicates (n=4). *=p= 0.001. (C) NKYS cells were 

transduced twice with empty vector or SOCS6 and GFP+ cells were sorted with FACS 

two or four days post-transduction. Western blot was performed on GFP sorted vector or 

SOCS6 transduced cells using P-STAT3 antibody. α-Tubulin was used as a loading 

control to ensure equal loading. 
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Chapter IV 

Role of Blimp1 in NK cells homeostasis and function 
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Introduction 

Extranodal NK/T- cell lymphoma is an aggressive lymphoma with poor prognosis. 

Studies revealed that this type of lymphoma is derived from cytotoxic lymphocytes of 

both NK- and T-cell lineages. Nasal NK-cell lymphomas are either CD3-CD56+ or 

CD3+(cytoplasmic),CD56+ and lack T cell receptor (TCR)γ and immunoglobulin heavy 

chain gene (IgH) clonal rearrangement, whereas nasal T-cell lymphomas are either 

sCD3+CD56+ or sCD3+CD56- with clonally rearranged TCRγ and germ-line IgH(Metgud 

et al., 2011).  Even though its molecular background has been investigated in the last 

few years, the pathogenesis of NK/T cell lymphoma is still largely unknown.  A distinctive 

feature of this disease is the strong association with Epstein–Barr virus infection; EBV is 

positive in 100% of NKCL cases by in situ hybridization for EBV-encoded small non-

polyadenylated RNAs (EBER) (Chiang et al., 1996).   However, the role of EBV infection 

in the pathogenesis of NKTCL is still not clear; the EBV-infected cells frequently express 

latent membrane protein 1 (LMP1), which activate several downstream signaling 

pathways such as NF-κB pathway that are likely involved in NK/T-cell activation and 

proliferation(Chen, 2012). These LMP1-expressing proliferating cells are able to escape 

from elimination by host cytotoxic T- lymphocytes (CTLs)(Young et al., 1989).  Other 

proteins that are expressed include Epstein–Barr virus nuclear antigen 1 

(EBNA1) and latent membrane protein 2 (LMP2), and they may also be involved in 

NKTCL (Ian et al., 2008, Fox et al., 2010).Genetic abnormalities leading to the activation 

of oncogenes and inactivation of tumor suppressor genes likely play an important role in 

NK/T cell malignant transformation. 

In our previous studies, we found that PR domain zinc finger protein 1 (PRDM1) 

was inactivated in NKTCL by the combination of chromosomal deletion and promoter 

hypermethylation in 44% of NKTCL cases, and in vitro studies demonstrated that 

https://en.wikipedia.org/wiki/Epstein%E2%80%93Barr_virus�
https://en.wikipedia.org/wiki/Epstein%E2%80%93Barr_virus_nuclear_antigen_1�
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PRDM1 is a tumor suppressor gene in NKTCL(Kucuk et al., 2011).  The encoded 

protein, PRDM1, also known as B lymphocyte-induced maturation protein 1(Blimp1),  is 

a transcriptional repressor that has various effects on the function and homeostasis of B 

cells and T cells(Martins and Calame, 2008) and is frequently inactivated in B-cell 

malignancies such as diffuse large B cell lymphoma (DLBCL)(Pasqualucci et al., 

2006).In B cells, Blimp-1 is expressed in plasmablasts and all plasma cells, and is a 

master regulator of the differentiation of B cells into immunoglobubin secreting 

cells(Savitsky and Calame, 2006).  Conditional knockout of Blimp1 using cre-loxp 

system in the mouse resulted in the development of lymphoproliferative disorder 

including DLBCL (Mandelbaum et al., 2010). In T cells, Blimp1 expression increases in 

antigen-activated CD8+ and CD4+ T-cells and some CD25+ regulatory T-cells(Ozaki et 

al., 2004, Kallies et al., 2006) ,  and is important for T cell  homeostasis and effector 

functions. Expression of Blimp1 was upregulated upon TCR stimulation. Blimp1-deficient 

T cells proliferated more and produced excess IL2 and IFNγ.  Mice lacking Blimp1 in 

their T cells had more peripheral effector T cells and developed an inflammatory disease 

(Ozaki et al., 2004, Kallies et al., 2006). 

Unlike in T and B cells, Blimp1 is expressed in NK cells in all stages and 

upregulated in mature or activated NK cell subsets. In our previous study, we observed 

an increase in PRDM1 expression in activated NK cells, and knocking down PRDM1 

resulted in a positive selection of NK cells. Whereas ectopic PRDM1 expression in 

PRDM1-null NK cell lines resulted in G2/M cell cycle arrest, increased apoptosis, and a 

strong negative selection. These finding, along with the observation that PRDM1 was 

inactivated in NKTCL, indicated that PRDM1 is a potential tumor suppressor gene in 

NKTCL. A recent study using chimeric mice reconstituted with Rag2−/−Blimp1gfp/gfp fetal 

liver cells showed that Blimp1 is required for NK cell maturation and homeostasis 
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(Kallies et al., 2011). Blimp1 was induced by IL15 in NK cells, and highly expressed in 

the most mature NK cell subsets. The reconstituted chimeric mice had reduced NK cells 

in peripheral and NK cell maturation was partially impaired in the transition from 

CD27+KLRG1- to the CD27-KLRG1+ stage. However, due to lack of B cells and T cells, 

this model cannot fully reflect the interaction of NK cells and other lymphocytes. 

Therefore, we generated a NK-cell lineage conditional Blimp1 knockout mouse model to 

study the effect of BLIMP1 in NK cell maturation and homeostasis, as well as the 

possibility of development of NKTCL. In addition, we evaluated the phenotypic changes 

in mice with NK-cell lineage-specific deletion of Blimp1 and coexpression of EBV 

oncoprotein LMP1. 
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Results 

Establish a NK-lineage specific Blimp1 knock out mouse model 

Ncr1-cre mice previous generated by Dr. Alexander Tarakhovsky’s lab, which express 

Cre recombinase under control of Ncr1 promoter, were crossed to Blimp1f/f mice, 

previous generated in Dr.Veronika Sexl’s lab’ in which the exon encoding the DNA 

binding domain was flanked by two loxP sites (“floxed”), resulted in Blimp1 knockout in 

NK cells from the pro-NK cell stage (Fig. 4-1). The function and lineage specificity of 

Ncr1-cre were tested by crossing Ncr1-cre mice with Cre reporter Cag-GFP f/stop mice, 

previously generated in Dr. Kay-Uwe Wagner’s lab. The offspring express green 

fluorescence protein upon Cre-mediated deletion of a loxP-flanked stop cassette. As 

expected, Ncr1-dependent Cre-mediated GFP expression was restricted to the NK 

compartment, as more than 90% of the GFP+ cells were NK cells (CD3-NK1.1+) in 

blood and spleen (Fig. 4-2A). On average, 40% of the CD3-NKp46+ NK cells were GFP 

positive in blood and spleen (Fig. 4-2B). No GFP expression was detected in T-lymphoid 

cells, as analyzed by CD3, CD4, and CD8 staining, and B-lymphoid cells stained by 

CD45R (B220) and CD19 (Fig. 4-2C). 

To confirm Cre-mediated Blimp1 deletion in Blimp1f/f mouse NK cells, NK cells 

were isolated from spleen using a negative selection NK cell isolation kit (Miltenyi 

Biotec). Genomic DNA was extracted from both NK cells and the rest of the splenocytes. 

Primers spanning the deleted region were used to amplify the genomic DNA. The band 

indicating Cre-mediated recombination was only observed in Ncr1-cre, Blimp1f/f NK 

cells, and a remaining floxed blimp1 band indicated incomplete deletion. To quantify the 

Cre-mediated Blimp1 deletion in Ncr1-cre, Blimp1f/f NK cells, primers within the deleted 

region were use for quantitive PCR on genomic DNA and revealed 90% deletion 

efficiency, which was higher than the efficiency we detected in Cre-reporter mice (Fig. 4-

http://www.rockefeller.edu/research/faculty/labheads/AlexanderTarakhovsky/�
http://www.miltenyibiotec.com/en/products-and-services/macs-cell-separation/cell-separation-reagents/nk-cells/nk-cell-isolation-kit-human.aspx�
http://www.miltenyibiotec.com/en/products-and-services/macs-cell-separation/cell-separation-reagents/nk-cells/nk-cell-isolation-kit-human.aspx�
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3). Since GFP expression in NK cells does not affect NK cell function and homeostasis, 

we speculated that the Blimp1 knockout in NK cell might have a positive selection on NK 

cell function and homeostasis. However it might also due to the difference of 

accessibility between different loxP sequences. 

 

Blimp1 has an effect on NK cell homeostasis and maturation in vivo 

Ncr1-cre, Blimp1f/f mice were born at the expected Mendelian ratio. Hematopoietic 

organs displayed no gross abnormalities; weight and cellularity of spleens and cellularity 

of the lymph nodes and bone marrow were unaltered in Ncr1-cre, Blimp1f/f mice 

compared with Blimp1f/f littermate controls. Analysis of CD3−NK1.1 cells in the 

peripheral blood and spleens revealed a reduction of the percentage of NK cells in the 

total lymphocyte gate and their absolute number in Ncr1-cre, Blimp1f/f mice (Fig. 4-4A). 

However, the NK cell frequency and number were unaltered in lymph nodes and were 

higher in bone marrow in Ncr1-cre, Blimp1f/f mice (Fig. 4-4A).  T lymphocytes were 

analyzed by staining with CD3, CD4 and CD8 antibodies; B lymphocytes were stained 

with CD45R (B220) antibody. The numbers of total CD3+ cells, CD4+ and CD8+ T 

lymphocytes and CD45R+ B lymphocytes were largely unchanged in peripheral blood, 

spleen, lymph node and bone marrow (Fig. 4-4B). 

NK cell maturation is a multi-step process; the mature subsets are mainly 

distributed in the peripheral lymphoid organs or tissues whereas the immature subsets 

are largely contained in the primary lymphoid organ such as bone marrow. Since NK cell 

frequency and number were decreased in peripheral blood and spleen and increased in 

bone marrow, we next investigated whether lack of Blimp1 could affect NK cell 

maturation. In mice, NK cells can be divided into immature and mature populations by 

expression of CD11b. CD11b- NK cells compose most of the NK cell population in fetal 
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mice. In the adult, CD11b- NK cells are found mostly in the bone marrow and primary 

lymphoid sites such as lymph nodes. CD11b+ NK cells are mostly found in peripheral 

sites such as peripheral blood mononuclear cells (PBMCs) and can also be found in 

spleen. CD11b+ NK cells can be further divided into 2 populations by the expression of 

CD27. NK cell differentiation follows the pathway CD27-CD11b- (referred as DN for 

double negative), CD27+CD11b-, CD27+CD11b+ (referred as DP for double positive) 

and CD27-CD11b+. Different subsets have different features; DN NK cells display an 

immature phenotype and highest potential for proliferation; CD27+ CD11b− and DP NK 

cells show the best ability to secrete cytokines, whereas CD27-CD11b+NK cells  are the 

most mature subset exhibiting highest cytotoxicity. 

In adult mice, relatively immature NK subsets (DP and CD27+CD11b-) were 

present in lymph nodes (50.18± 1.87 % in control mice, 59.42 ± 1.90 % in Ncr1-

cre,Blimp1f/f mice) and bone marrow (60.1±1.45% in control mice, 82.17 ± 1.60 % in 

Ncr1-cre,Blimp1f/f mice), mature NK subsets (DP and CD27-CD11b+) were found to 

predominate in spleen (76.80 ± 4.09 % in control mice, 60.82 ± 2.29 % in Ncr1-

cre,Blimp1f/f mice) and PBMC (77.60 ± 4.25 % in control mice, 57.73 ± 4.95 % in Ncr1-

cre,Blimp1f/f mice). The frequency of mature CD11b+ NK cell subsets was reduced in all 

the lymphoid sites, with a significant decrease from 39.93 ± 1.43% to 17.83 ± 1.61% in 

bone marrow in Ncr1-cre, Blimp1f/f mice (Fig. 4-5A). Further analysis of subsets 

distribution by staining CD27 and CD11b revealed that CD27+CD11b- NK cells were 

significantly increased in peripheral blood, lymph nodes and bone marrow and the most 

mature CD27-CD11b+ subset was decreased in all the lymphoid sites in the Ncr1-

cre,Blimp1f/f mice compared to the control mice (Fig. 4-5B).  These results indicated that 

Blimp1 has an effect on NK cell maturation and homeostasis. 
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Blimp1 has an effect on NK cell proliferation and survival 

In our previous study, we identified Blimp1 as a tumor suppressor gene in NKTCL, as 

Blimp1 was silenced by the combination of allelic deletion and promoter methylation, and 

knockdown of Blimp1 in human primary NK cells resulted in enhanced proliferation and 

decreased apoptosis in vitro. To determine the proliferative potential of NK cells in the 

absence of Blimp1, freshly isolated splenic Ncr1-cre, Blimp1f/f and wild-type NK cells 

were cultured in media containing IL-2. Live cells were counted under the microscope as 

death cells were excluded by staining with trypan blue. In another experiment, NK cells 

were expanded in IL2 for 4 days followed by culturing in media containing IL15.  Blimp1-

deficient NK cells exhibited enhanced growth in vitro compared with wild-type controls 

(Fig. 4-6A). Wild-type NK cells started expanding 5 days after in vitro culture whereas 

Blimp1-deficient NK cells expansion started 3 days after culture. Blimp1-deficient NK 

cells proliferated more rapidly than wild-type cells when cultured in IL15 after initial 

stimulation in IL2 for 4 days (Fig. 4-6A, right panel). 

To test the survivability of NK cells, Day 4 NK cells were cultured in media with or 

without IL2 for 24 hours; early and late apotosis was analyzed by staining with early 

apoptosis marker Annexin V and cell viability dye 7-AAD. Under normal IL2 condition, 

Ncr1-cre, Blimp1f/f and wild-type NK cells had similar baseline apoptosis (Fig. 4-6B). 

Withdrawal of IL2 for 24 hours resulted in significant cell death and cell apoptosis. Ncr1-

cre, Blimp1f/f NK cells survived better (63.30 ± 0. 42% Anexin V-7-AAD- cells) than wild-

type NK cells (42.10 ± 3.81 % Anexin V-7-AAD- cells) (Fig. 4-6B). Even though Ncr1-cre, 

Blimp1f/f NK cells had defective maturation in vivo, the in vitro experiment indicated that 

IL2 stimulation might contribute to the more potent proliferation and survival ability of 

Ncr1-cre, Blimp1f/f NK cells. In our previous study, we identified IL2Ra (CD25) as a 

direct target of Blimp1 in human NK cells.IL2Ra is the high affinity subunit of IL2 
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receptor, it promotes cell proliferation and survival upon upregulation.As expected, 

IL2Ra was expressed at a low level in freshly isolated NK cells and upregulated upon 

IL2 stimulation; the increase was more significant in Ncr1-cre, Blimp1f/f NK cells (Fig. 4-

6C). 

Since Ncr1-cre, Blimp1f/f NK cells grew faster when activated by IL2, we 

speculate that activated Ncr1-cre, Blimp1f/f NK cells might proliferate better in the 

mouse when stimulated in vivo. To test our hypothesis, Ncr1-cre, Blimp1f/f and control 

mice were injected with polyinosinic-polycytidylic acid (poly I:C), a dsRNA analog that 

induces antiviral activity in vivo by activating NK cells and CD8+ T cells, either one time 

as acute polyIC stimulation, or every other day for 4 weeks as chronic polyIC stimulation. 

Peripheral blood was collected 1 day and 3 days after polyIC injection during acute 

stimulation, and the lymphocyte profile was evaluated by FACS. While NK cell frequency 

in control mice showed little change, NK cell frequency in Ncr1-cre, Blimp1f/f mice 

increased 4-fold and 5-fold at day 1 and day 3 post injections, respectively (Fig. 4-7A), 

whereas T cells and B cells remained at the same level (Fig. 4-7B,C). NK cell subset 

distribution was similar in peripheral blood of control and Ncr1-cre, Blimp1f/f mice after 

acute polyIC stimulation, however compare to unstimulated mice, stimulated mice had 

more CD27+CD11b- subsets (less than 20% in unstimulated mice of both genotypes, 

45.9% in polyIC stimulated control mice and 55.2% in polyIC stimulated Ncr1-cre, 

Blimp1f/f mice)  (Fig. 4-7B). After 4 weeks of chronic polyIC stimulation, spleens of both 

groups were slightly enlarged to the same extent. NK cell frequency and NK cell number 

were increased both in control and Ncr1-cre, Blimp1f/f mice; the increase in Ncr1-cre, 

Blimp1f/f mice was greater (1.47 fold in control mice, 2.5 folds in Ncr1-cre, Blimp1f/f 

mice) (Fig. 4-8A, B). There were more activated NK cells stained as CD69+ in Ncr1-cre, 

Blimp1f/f mice (Fig. 4-8C). Similar to acute polyIC stimulation, NK cell subsets were 
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distributed with a similar pattern as the percentage of CD27+CD11b- NK cells were 

significanted increased (less than 30% in unstimulated mice of both genotypes, 69.8% in 

polyIC stimulated control mice and 75.8% in polyIC stimulated Ncr1-cre, Blimp1f/f mice)   

(Fig. 4-8D). Both in vitro and in vivo studies showed that Ncr1-cre, Blimp1f/f NK cells had 

better proliferation potential. 

 

Blimp1 has an effect on NK cell cytotoxicity 

Our previous study demonstrated that PRDM1 was upregulated upon IL2 stimulation 

and suppressed the expression of IFN γ and TNFa by directly binding to specific regions 

on their promoters. mRNA isolated from resting NK cells and day 8 NK cells cultured in 

the presence of IL2 were analyzed by real-time quantitative RT-PCR. Consistent with 

our finding in human NK cells, TNFα and TNFβ (Lta) were expressed at low level in the 

resting NK cells and unregulated upon IL2 stimulation. Expression of TNFα was higher in 

resting and IL2 stimulated Ncr1-cre, Blimp1f/f NK cells. TNFβ was expressed at a low 

level in both resting Blimp1f/f NK cells and wild-type NK cells, whereas its expression 

significantly increased in Blimp1f/f NK cells upon IL2 stimulation (Fig. 4-9A). Since TNFs 

are associated with NK cell cytotoxicity, we further tested the cytotoxic properties of 

Blimp1-deficient NK cells. NK cells isolated from spleen of control and Ncr1-cre, 

Blimp1f/f mice were expanded in IL2-containing media for 8 days. NK cells were then 

cocultured with CFSE-labeled YAC-1 target cells at different effector to target ratios for 4 

hours; killed target cells were stained with cell viability dye 7-AAD and quantified by flow 

cytometry as CFSE+7-AAD+ cells. Ncr1-cre, Blimp1f/f NK cells showed greater cytotoxic 

activity than the wild-type NK cells (Fig. 4-8B), which was different from the results found 

using human NK cells, where Blimp1 did not affect NK cell cytotoxicity. 
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Establish a NK-lineage specific Lmp1 knock in Blimp1 knock out double transgenic 

mouse model 

Although Blimp1 has been identified as a tumor suppressor gene in NKTCL, we have not 

observed the development of NKTCL in mice with Blimp1 knock out alone . As 

tumorgenesis is a multifactorial process, it is worthwhile to combine genomic aberrations 

that would likely cooperate with blimp1 deficiency. EBV infection is highly associated 

with NKTCL lymphoma, Epstein-Barr virus latent membrane protein 1(Lmp1) is the 

major oncoprotein in B-cell transformation and is expressed in NK lymphoma cells. It is a 

six-span transmembrane protein belonging to the TNF family. It functions as an activator 

of both the alternative and canonical NFκB pathways in B-cell transformation and may 

play an important role in NK cell activation as well. Thus we proceeded to evaluate the 

effect of simultaneously loss of tumor suppressor gene Blimp1 and expression of 

oncogenic Lmp1 on NKTCL development. 

Ncr1-cre, Blimp1f/f or Ncr1-cre, Blimpf/- mice were crossed to Lmp1stopf/- mice to 

generate Ncr1-cre, Lmp1stopf/- and Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice. Ncr1-cre, 

Blimp1f/f, Lmp1stopf/-  mice have Lmp1 coding sequence inserted into 

the Gt(ROSA)26Sor locus, along with a loxP flanked stop fragment placed between the 

promoter and LMP1 coding sequence. Expression of the Lmp1 gene is blocked by 

the loxP-flanked STOP fragment, but upon Ncr1-dependent cre-mediated excision of the 

stop cassette, Lmp1 is expressed in NK cells. As mentioned above Blimp1 is deleted 

simultaneously (Fig. 4-10) 
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NK cells were severely reduced in Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice 

Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice was born at the expected Mendelian ratio. 

Hematopoietic organs displayed no gross abnormalities; weight and cellularity of spleens 

and bone marrow were unaltered in Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice compared with 

Blimp1f/f, Lmp1stopf/-   littermate controls, however the lymph nodes were smaller in Ncr1-

cre, Blimp1f/f, Lmp1stopf/-   mice. Analysis of CD3−NK1.1 cells in the different lymphoid 

sites revealed severe reduction of NK cell percentage and number in all the sites. The 

frequency of NK cells was most significantly decreased in peripheral blood, as a 16 fold 

(3.60 ± 0.37 % to 0.22 ± 0.05 %) decrease of NK cell was observed in Ncr1-cre, 

Blimp1f/f, Lmp1stopf/- mice compared to the control mice (Fig. 4-11A). A 10- fold decrease 

in NK cell frequency was observed is lymph nodes and bone marrow as well, whereas a 

6-fold decrease in NK cell frequency was observed in spleen (Fig. 4-11A, upper panel). 

The decrease in NK cell number was consistent with the decrease in NK cell frequency 

as NK cell number was most significantly reduced in peripheral blood followed by bone 

marrow, lymph nodes and spleen (Fig. 4-11A, lower panel). The decrease of NK cell 

frequency and number was also more significant in Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice 

than that in Ncr1-cre, Blimp1f/f mice which showed a defect in NK cell maturation. We 

were not able to evaluate the absolute number of NK cells in lymph nodes due to the 

small size of the lymph nodes in Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice.  The frequency of 

total CD3+ cells and CD45R+ B lymphocytes were largely unchanged in peripheral 

blood, spleen, lymph nodes and bone marrow (Fig. 4-11B). 
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Lmp1 expression altered NK cell subsets distribution 

As we showed in the previous study, Blimp1 knockout in NK cells resulted in defective 

NK cell maturation, we next tested if Lmp1 could alter the NK cell subset distribution. NK 

cells subsets were analyzed for expression of CD27 and CD11b. The fraction of NK cells 

in relatively mature CD11b+ subsets was markedly decreased while the percentage of 

the immature CD11b- subsets increased in all the lymphoid sites (Fig. 4-12A). Compare 

to other lymphoid sites, spleen had a less signification NK cell reduction (2.23± 0.32 x105 

/spleen in Blimp1f/f, Lmp1stopf/- mice, 0.8 ±  0.09 x105/spleen in Ncr1-cre, Blimp1f/f, 

Lmp1stopf/- mice  ) and was the largest NK cell pool in mice, 95% of NK cells were CD11b- 

in Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice  but only 35% of NK cells were CD11b-  in control 

Blimp1f/f, Lmp1stopf/- mice (Fig. 4-12A). In control mice, the percentage of CD11b+ NK 

cell was higher in peripheral blood and spleen and lower in lymph nodes and bone 

marrow. In Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice, CD11b+ NK cells were severely reduced 

in all the lymphoid sites compare to control mice (4.52 folds decrease in blood, 5.44 

folds decrease in lymph nodes, 4.97 folds decrease in bone marrow and 13 folds 

decrease in spleen). When the subsets distribution was more specifically evaluated, the 

percentage of DN NK cell subset increased in all secondary lymphoid sites but remained 

the same in bone marrow. The increased fraction of CD11b- NK cells in bone marrow 

was mostly due to the increase of the CD27+CD11b- subset (Fig. 4-12B). 

 

The decrease in NK cells in Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice was due to 

Immunosurveillance 

Lmp1 is an EBV encoded protein that may be strongly immunogenic. It is possible that 

NK cells expressing Lmp1 were recognized by the immune system as virus infected cells 

and subsequently destroyed by T-cells despite of their presence throughout 
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hematopoiesis. This speculation was also supported by a study in B cell-specific Lmp1 

mice showing that, T cells were activated by lmp1-expressing B cells, and these 

activated CD8 T cells killed lmp1-expressing B cells. This indicated that Lmp1-

expressing NK cells were killed by activated T cells, and the CD11b- NK cell subsets 

proliferate to compensate for the loss of NK cells. During NK cell maturation, NK 

progenitor cells gain NK1.1 first immediately followed by NKp46. More than 99% CD3-

NK1.1+ NK cells are CD3-NKp46 cells (Walzer et al., 2007). Thus it is likely most of 

these CD11b- NK cells still express Lmp1 but they are able to escape 

immunosurviliance due to their potent proliferation ability. 

In order to study the property of simultaneous Blimp1 knockout and lmp1 

expressing NK cells without the interference of T cell-mediated cell killing. We depleted 

T cells in Ncr1-cre, Blimp1f/f, Lmp1stopf/- and control mice by injecting blocking CD3 

antibodies. The blocking monoclonal CD3 antibodies are known to cause cytokine storm 

both in human and mice (Ferran et al., 1990). After anti-CD3 injection, mice loss body 

weight immediately in the first week. Then body weight started increasing until returning 

to normal in another week. NK cells and T cells in anti-CD3 injected mice were 

monitored at week 2, 3 and 4. At week 2, T cell depletion in control mice was more 

efficient as all three mice had less than 20% T cells, whereas only one Ncr1-cre, 

Blimp1f/f, Lmp1stopf/- mouse had less than 20% T cells (Fig. 4-13A). The NK cell 

percentage increased in both Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice  and control mice, and 

the increase was higher in the two Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice  with better T cell 

depletion (<30% in total lymphocytes) (Fig. 4-13A). 

To exclude the interference of T cells, NK cell percentage and number were 

analyzed only using mice with less than 30% T cells (3 mice in control group, 2 mice in 

Ncr1-cre, Blimp1f/f, Lmp1stopf/- group). The NK cell number increased rapidly 2 weeks 
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after anti-CD3 injection in Ncr1-cre, Blimp1f/f, Lmp1stopf/- , indicating a better proliferation 

capacity of these NK cells(Fig. 4-13B). This was also supported by the observation that 

the percentage of CD27+ CD11b- NK cell was higher in Ncr1-cre, Blimp1f/f, Lmp1stopf/- 

mice than in control mice (Fig. 4-1C). However, after week 2, T cells increased 

dramatically in two of the Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice even though T cell 

depletion was still efficient in control mice (Fig. 4-13A). As T cells increased in Ncr1-cre, 

Blimp1f/f, Lmp1stopf/- mice, NK cells dropped back to a low level (Fig. 4-13A). Two months 

of anti-CD3 injections depleted most of the T cells in control mice in all the lymphoid 

sites, but failed to persistently deplete T cells in Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice (Fig. 

4-14). This finding supported our hypothesis that, Lmp1 expressing NK cells could 

stimulate T cells, and as Lmp1-specific CD8+ T cell expanded, LMP+ NK cells were 

eliminated. Intriguingly, although NK cells in Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice 

remained at a low level in bone marrow , the percentage of NKT cells (CD3+, NK1.1+) 

increased dramatically (from 0.001% to 12.9% in bone marrow,  0.0008% to 13.06% in 

spleen) (Fig. 4-15). T cells upon stimulation, can acquire NK markers such as CD16, 

NK1.1 and NKp46.  If these CD3+NK1.1+ positive cells also express NKp46 (Ncr1), then 

they may also express Lmp1, therefore further experiment are needed to address 

whether these NKT cells express Lmp1. 
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Discussion 

In this study, we showed that Blimp1 plays an important role in NK cell homoeostasis 

and functions. A previous study using Blimp1GFP/GFP, Rag2-/-γc-/- reconstituted chimeric 

mice showed that Blimp1 is a important player in the transcription network controlling NK 

cell maturation. However in their study, Blimp1 was deleted in all hematopoietic cells, 

which is not the case in real NKTCL cases, where Blimp1 deletion is NK cell specific. In 

addition, chimeric mice lack other lymphocytes such as T cells and B cells. NK cells 

depend on cytokines from the microenvironment, IL2; a cytokine primarily secreted by 

CD4+ T cells has long been used for NK cell culture in vitro, suggesting an interaction of 

NK cells and other lymphocytes. Therefore chimeric mice cannot fully reflect the 

interaction of NK cells and their microenvironment. Thus in our study, we established a 

NK-lineage specific Blimp1 knockout mouse model. 

NK cells are believed to develop from common lymphoid progenitors (CLP) in 

bone marrow or other extramedullary sites such as lymph nodes and thymus (Kondo et 

al., 2001)14,15. In mouse, CLP develop into NK progenitors (NKP) as they acquire IL2/IL-

15 receptor beta chain (CD122), identified as Lin-CD122+ cells(Di Santo, 2006). NKPs 

then express functional receptors following the order NK1.1, CD94/NKG2A, NKp46, 

Ly49 receptors, DX5, CD43 and Mac-1 (CD11b) (Kim et al., 2002), and become 

functional mature. In our study, the cre-mediated Blimp deletion was under the control of 

the Ncr1 (NKp46) promoter, thus Blimp1 was knocked out starting after the NKP stage. 

Consistent to the finding in the chimeric mice study, NK cell maturation was disrupted in 

Ncr1-cre, Blimp1f/f mice. Peripheral maturation of NK cells is known to be a 4-stage 

process marked by the expression of CD27, a member of the TNF-receptor superfamily, 

and CD11b, a protein subunit of integrin alpha-M beta-2 (αMβ2). NK cells were reduced 

in peripheral lymphoid sites such as peripheral blood and spleen. In contrast, NK cells 

https://en.wikipedia.org/wiki/Integrin�
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were increased in bone marrow. This was in agreement with the finding that Ncr1-cre, 

Blimp1f/f NK cells were impaired in the transition from relatively immature CD11b- 

subsets to the mature CD11b+ subsets. CD11b, also known as macrophage-1 

antigen (Mac-1), along with common integrin β2 subunit (CD18), forms the heterodimer 

integrin αMβ2.  Integrin αMβ2 is expressed on the surface of many innate immune 

leukocytes, such as neutrophils,macrophages and NK cells, and regulates 

their adhesion and migration. Therefore, the lower number and frequency of NK cells in 

peripheral sites might due to the impairment of NK cell migration. 

Moreover, CD11b- NK cells consist of DN NK subsets and CD27+ CD11b- 

subsets. These two subsets are known to have greatest proliferative potential and 

superior effector potential. This was supported by the finding that Ncr1-cre, Blimp1f/f NK 

cells proliferated better in the presence of IL2 and IL15 in vitro and upon polyIC 

stimulation in vivo. The better proliferation and survival of Ncr1-cre, Blimp1f/f NK cells 

might be associated with the dysregulation of IL2Ra (CD25), a direct target of Blimp1 in 

human NK cells. As we demonstrated, CD25 was transcribed at a detectable level in 

resting NK cells. Upon stimulation with IL2, CD25 was upregulated in both Ncr1-

cre,Blimp1f/f NK cells and wild-type NK cells, however,  the increase in Ncr1-cre,Blimp1 

NK cells was about 2-fold higher. CD25 is the alpha chain of the IL-2 receptor and it can 

associate with CD122 to form a high affinity IL2 receptor. CD25 is expressed in diffuse 

large B-cell lymphoma (DLBCL) and follicular lymphoma (FL), and high expression of 

CD25 in the two types of lymphoma is correlated with a poor prognosis (Fujiwara et al., 

2014).  Expression of high affinity IL2 receptor allows Ncr1-cre, Blimp1f/f NK cells to 

survive in IL2 limiting conditions. 

In contrast to the finding in experiments using chimeric mice, Ncr1-cre, Blimp1f/f 

NK cells exhibited better cytotoxic function in vitro. This can be explained by the 

https://en.wikipedia.org/wiki/Macrophage-1_antigen�
https://en.wikipedia.org/wiki/Macrophage-1_antigen�
https://en.wikipedia.org/wiki/Leukocyte�
https://en.wikipedia.org/wiki/Macrophage�
https://en.wikipedia.org/wiki/Cell_adhesion�
https://en.wikipedia.org/wiki/IL-2_receptor�
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upregulation of Blimp1 targets involved in NK cell cytotoxicity such as TNFα and TNFβ, 

as both genes were upregulated upon IL2 stimulation and a 5-fold increase in TNFβ was 

observed in Ncr1-cre, Blimp1f/f NK cells compare to wild-type NK cells. Another 

possibility is the formation of CD25+ cytokine induced memory-like (CIML) NK cells. It 

has been show that brief preactivation with IL-12, IL15 and IL18 generated CIML NK 

cells that expressed CD25 and later exhibit enhanced proliferation, cytokine secretion 

and cytotoxicity via its high affinity αβγ IL2 receptor(Leong et al., 2014). Therefore, 

deletion of Blimp1 might promote generation of CD25+ memory-like NK cells though IL2 

alone. 

Even though PRDM1 silencing is one of the major genetic alterations in NKTCL, 

Blimp1 knockout alone was not sufficient to cause NKTCL in mice in steady state; 

moreover, it impaired NK cell maturation. However, the accumulated Blimp1-knockout 

NK cells exhibited potent proliferative and functional ability, which represent the highly 

activated feature of malignant NK cells, in the presence of  cytokine stimulation. Thus 

the development of NKTCL may need another factor(s) that causes dysregulated NK cell 

activation. Lmp1 is the major oncoprotein of EBV, which isdetected in 99% of NKTCL. It 

activates the signaling pathways of nuclear factor-κB (NF-κB) and signal transducer and 

activator of transcription (STAT), which is also activated upon IL2 stimulation. However, 

the role of Lmp1 in NKTCL development was not studied as Lmp1-expressing Ncr1-cre, 

Blimp1f/f NK cells were killed by immunesurveiliance. Prolonged anti-CD3 injection 

resulted in a selection of Lmp1-specific cytotoxic T cells, as T cell depletion was 

complete in control mice but got worse in Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice. However 

we observed a transient rapid growth of Lmp1-expressing Ncr1-cre, Blimp1f/f NK cells in 

the first two weeks, when T cell depletion was optimal and Lmp1- specific T cells were 
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not expanded. An alternative method needs to be applied to achieve a complete T cell 

deletion in Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice in future experimental studies. 
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Figure 4-1: Strategy for breeding NK-lineage specific Blimp 1 knockout mice 

Ncr1-cre mice were crossed with Blimp1f/f mice to generate heterozygous Ncr1-cre, 

Blimp1f/- mice in thefirst generation. Ncr1-cre, Blimp1f/- mice were crossed with 

Blimp1f/f mice to generate homozygous Ncr1-cre, Blimp1f/f mice. 
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Figure 4-2: Ncr1-dependent Cre-mediated recombination was restricted to the NK 

cell compartment 

(A) Cre-mediated GFP expression as shown by flow cytometry in Ncr1-cre, Cag-GFP 

report mice and littermate controls. Cells were analyzed within the lymphocyte gate (A) 

Most GFP+ cells were showed expression of NK cell markers NKp46 and NK1.1,thus 

most of the GFP+ cells were NK cells. (B) Percentage of GFP positive cells in NK cells 

(CD3-NKp46+ ) in blood and spleen. (C-D) Absence of GFP expression in T and B cells 

in different lymphoid sites. > 3 mice/genotype were used for analysis. LN, lymph nodes. 
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Figure 4-3: Cre-mediated Blimp1knockout in mice 

NK cells were isolated from the spleens of Ncr1-cre, Blimp1f/f and control mice (3 

mice/phenotype) using a negative selection NK cell isolation kit. DNA was extracted from 

isolated NK cells and attached remaining cells. (A) Blimp1 deletion was tested by PCR 

using genomic DNA. A 200bp band indicates wild type Blimp1, a 250bp band indicates 

floxed Blimp1, and a 400bp band indicates deleted Blimp1. The band indicating Blimp1 

deletion was only detected in the Ncr1-cre, blimp1f/f NK cells. (B) Quantification of 

Blimp1 deletion by q-PCR using genomic DNA. 
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Figure 4-4: Blimp1 has an effect on NK cell homeostasis in vivo 

Single cell suspensions were prepared from blood, spleen, lymph nodes and bone 

marrow in one femur. The lymphocyte profile was analyzed by FACS. NK cells were 

gated as CD3-NK1.1+, T cells were gated as CD3+ and different subsets were analyzed 

by CD4 and CD8 staining, B cells were gated as CD3-CD45R+.(A) Upper panel 

: absolute NK cell number in different lymphoid sites. Lower panel: percentage of NK 

cells in total lymphocytes in different lymphoid sites. (B) Absolute number of B cells, 

CD4+T cells and CD8+T cells in different lymphoid sites. LN: lymph node, BM: bone 

marrow 
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Figure 4-5: Blimp1 has an effect on NK cell maturation in vivo 

NK cells were gated as CD3-NK1.1+. Different subsets were analyzed by the expression 

of CD27 and CD11b. (A) Comparison of the percentage of CD11b- and CD11b+ NK 

cells in different lymphoid sites in Ncr1-cre, Blimp1f/f mice and control mice. (B) NK cell 

subset distribution in different lymphoid sites in Ncr1-cre, Blimp1f/f mice and control 

mice. 
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Figure 4-6: Blimp1 has an effect on NK cell proliferation and survival 

(A)In vitro cultured NK cells were stained with 0.4% trypan blue and live cells were 

counted using an automated cell counter (Invitrogen). Right panel: 105 freshly isolated 

NK cells were seeded into a 24-well plate and cultured in  medium containing 1000U/ml 

IL2. Live cells were counted at the indicated time points. (B) NK cells were expanded in 

media containing IL2 for 4 days; then 105 day4 NK cells were seeded into a 24-well plate 

and cultured in the medium containing 1000U/ml IL15. Live cells were counted at the 

indicated time points. (C) 105  day4 NK cells expanded in IL2 containing medium were 

seeded into plate bottom 96-well plate with or without IL2 for 24 hours. Apoptotic cells 

were stained with Annexin V and 7-AAD and analyzed by flow cytometry. (D) Expression 

of known Blimp1 target IL2Ra was tested by q-RT-PCR in resting NK cells and IL2 

activated NK cells. 
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Figure 4-7: Acute PolyIC stimulation restores NK cells in peripheral blood 

Mice were injected ip with 200µg polyIC. Peripheral blood samples were collected before 

and 1 day and 3 days after injection. NK cell frequency in peripheral blood (A), NK cell 

subset distribution (B) and B cell (C) and T cell (D) frequency in peripheral blood were 

analyzed by FACS (4 mice/ genotype). 
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Figure 4-8: Chronic PolyIC stimulation restores NK cells in spleen 

4 mice/ phenotype were injected ip with 200µg poly IC every other day for 4 weeks. 

Spleens were harvested and lymphocyte profiles were analyzed by FACS. (A) 

Percentage of NK cells among total lymphocytes in spleen. (B) Absolute numbers of NK 

cells in spleen within the lymphocyte gate. (C) Comparison of the percentage of 

activated NK cells in Ncr1-cre, blimp1f/f and control mice. (D) Representative pattern of 

NK cell subsets distribution in Ncr1-cre, blimp1f/f and control mice. 
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Figure 4-9: Blimp1 has an effect on NK cell cytotoxicity 

(A) RNA was extracted from freshly isolated NK cells and IL2 expanded NKcells at day 

7. Expression of known Blimp1 targets TNFα and TNFβ was tested by q-RT-PCR. (B) 

1000 CFSE labeled YAC-cells were cocultured with day 7 NK cells at the indicated 

effector-target ratios in 200ul medium containing 1000U/ml IL2  in a round-bottom 96-

well plate for 4 hours at 37°C. Killed cells were labeled with PI and analyzed by flow 

cytometry. 
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Figure 4-10: NK-lineage specific Blimp 1 knockout and Lmp1 knockin mice 

Blimp1f/f,Lmp1stopf/-  mice have Lmp1 coding sequence inserted into 

the Gt(ROSA)26Sor locus. The transcription of lmp1 was blocked by a loxP-flanked 

STOP fragment placed between the ROSA26 promoter and the LMP1 coding 

sequences. When bred with Ncr1-cre mice, the offspring had the STOP fragment 

deleted in Cre expressing NK cells, resulting in expression of lmp1. At the same time, 

Cre-mediated deletion of Blimp1 resulted in Blimp1 knock out in NK cells. 
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Figure 4-11: NK cells were reduced in Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice 

Single cell suspensions were prepared from blood, spleen, lymph nodes and the bone 

marrow in one femur. The lymphcyte profiles were analyzed by FACS. NK cells were 

gated as CD3-NK1.1+. T cells were gated as CD3+ and different subsets were analyzed 

by CD4 and CD8 staining. B cells were gated as CD3-CD45R+.(A) Upper panel: 

absolute NK cell number in different lymphoid sites. Lower panel: percentage of NK cells 

in total lymphocytes in different lymphoid sites. (B) Percentage of B cells (upper panel) 

and T cells (lower panel) in different lymphoid sites. LN: lymph node, BM: bone marrow. 

Absolute numbers of cells in lymph nodes could not be determined in Ncr1-cre, 

Blimp1f/f, Lmp1stopf/- mice due to their small size. 
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Figure 4-12: NK cell subsets distribution in Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice 

NK cells were gated as CD3-NK1.1+. Different subsets were analyzed by the expression 

of CD27 and CD11b. (A) Comparison of the percentage of CD11b- and CD11b+ NK 

cells in different lymphoid sites in Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice   and control mice. 

(B) NK cell subset distribution in different lymphoid sites in Ncr1-cre, Blimp1f/f, Lmp1stopf/- 

mice and control mice. 
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Figure 4-13: T cell depletion resulted in transient NK cell growth in Ncr1-cre, 

Blimp1f/f, Lmp1stopf/- mice 

Mice were injected iv with 5mg/kg anti-CD3 antibodies once a week. Peripheral blood 

was collected retro-orbitally every week after the second week for 3 weeks. The 

lymphocyte profile was evaluated by FACS. (B) NK cells were analyzed using mice with 

optimal T cell depletion (< 30%). 3 mice in the control group, 2 mice in the Ncr1-cre, 

Blimp1f/f, Lmp1stopf/-  group were used. Percentage of NK cells in total lymphocytes 

(Right panel) and absolute number of NK cells in peripheral blood are indicated as mean 

± SEM. (C) Representative pattern of NK cell subsets distribution. NK cells were stained 

with CD3-NK1.1+. Subsets were analyzed by the expression of CD27 and CD11b. 
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Figure 4-14: T cell depletion in Ncr1-cre, Blimp1f/f, Lmp1stopf/- and control mice 

Mice were injected ip with 40µg anti-CD3 antibodies daily for 5 consecutive days every 

other week for 2 months. 4 surviving mice in each group were then euthanized and their 

lymphocyte profile was evaluated in peripheral blood, spleen, lymph nodes and bone 

marrow. T cells were stained with CD3. B cells were stained with CD45R. NK cells were 

stained with CD3-NK1.1+. The percentage of T cells, B cells and NK cells is indicated for 

each mouse. 
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Figure 4-15: Occurrence of NKT cells in Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice bone 

marrow after two months T cell depletion 

Mice were injected ip with 40µg anti-CD3 antibodies daily for 5 consecutive days every 

other week for 2 months. 4 surviving mice in each group were then euthanized and their 

lymphocyte profile was evaluated in peripheral blood, spleen, lymph nodes and bone 

marrow. The frequency of NK cells (CD3-NK1.1+), NKT cells (CD3+NK1.1+) T cells 

(CD3+) and B cells (CD3-CD45R+) is indicated as mean ± SEM. 
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Chapter V 

Summary and future directions 

 

 

 

 

 

 

 

 

 

 

 



158 
 

 

Global gene expression, methylation and mutation profile studies enable us to gain a 

better understanding of the changes in the comprehensive signaling network in NKTCL. 

In this summary, I will describe our major findings including activating STAT3 and 

STAT5B mutations and inactivation of Blimp1 in NKTCL. 

Activating mutations in STAT3 and STAT5B were observed in lymphomas 

derived from NK cells and γδ-T cells. STAT3 mutations mainly were present in NKTCL 

cases and NK and γδ-T cell lines, whereas STAT5B mutations were frequently observed 

in γδ-T cell-derived lymphomas including PC- and HS-PTCL and enteropathy associated 

T-cell lymphoma (EATL) type II. All the mutations were present in the SH2 domain, 

which is required for STAT protein dimerization. Our experiments clearly showed that the 

mutated histidine within the SH2 domain of N642H STAT5B mutant bound to the 

phosphotyrosine of another STAT5B with a 5-fold higher affinity, resulting in a more 

stable N642H STAT5B homodimer or heterodimer that resistant to inactivation. 

Moreover, the mutant p-STAT5B dimers bound to their targets with higher occupancy 

and upregulated their expression. All of these resulted in the constitutive activation of the 

JAK-STAT pathway, which promoted NK cell proliferation, survival and transformation in 

NKTCL. The STAT3 and STAT5B proteins with activating mutations can still be 

regulated by upstream molecules. In our study we showed that JAK inhibitor treatment 

and SOCS6 overexpression can ablate the activating effect of mutant STAT3 and 

STAT5B in NK cells. The role of activating STAT5B mutation in NKTCL is summarized in 

Figure 5-1. 

The question that arises after determining that mutant N642H STAT5B bound to 

certain known targets such as IL2Ra, Bcl-2, Bcl-XL and MIR155, with higher occupancy 

is whether the N642H STAT5B can bind to different targets. In the future, alterations in 

target genes and the activity of signaling pathways will be identified by CHIP-SEQ and 
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GEP analysis respectively. In order to distinguish the endogenous STAT5B and ectopic 

wild-type or mutant STAT5B, NK cell lines will be transduced with vector containing 

triple-flag tag labeled STAT5B. A triple-flag tag was fused to the C-terminus of WT or 

mutant STAT5B, and the entire sequence was inserted into PMIG vector. We already 

showed that fusion of triple-flag tag at its C-terminus did not affect STAT5B’s 

phosphorylation and function. Western blot analysis showed that triple-flag wild-type and 

N642H STAT5B were phosphorylated upon IL2 stimulation (Fig 5-2A). CHIP-q-PCR 

using anti-flag antibody showed N642H STAT5B bound to its known target with higher 

occupancy (Fig 5-2B). 

To help identify the direct target genes of STAT 5B employing GEPanalysis, it is 

important to capture the changes immediately after STAT5B activation, as prolonged 

activation may result in secondary signaling changes. Thus, we established a regulated 

STAT5B expression system for future application. In this system, triple-flag wild-type or 

N642H STAT5B was fused to an engineered Escherichia coli dihydrofolate reductase 

(DHFR) on its C-terminus, resulting in the rapid degradation of the entire fusion protein 

until stabilized by the small molecule trimethoprim (TMP) (Fig 5-3). This allows us to 

regulate the expression of STAT5B rapidly at the protein level. 

As our in vitro experiments provided strong evidence to support our hypothesis 

that activating STAT3 and STAT5B mutations were driver mutations leading to the 

development of NKTCL, our next goal is to test our hypothesis in vivo. Conditional 

STAT5B N642H knock-in can be achieved using the Cre-loxP system. Using the 

CRISPR/Cas9 system, exon 16 of STAT5B will be replaced by a construct in which the 

sequence of WT-STAT5B followed by the inverted sequence of STAT5B N642H is 

flanked by two loxP sites with opposite orientation. We designed two sets of sgRNAs 

targeting regions within intron 15 and intron 17 of the STAT5B gene. The sgRNAs 
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should guide Cas9n nickase to the specific region and generate nicks on both DNA 

strands, in this case, resulted in cutting out STAT5B exon 16 with its flanking sequences. 

The double-strand break then can undergo homology-directed repair (HDR) in the 

presence of the template containing homology arm and loxP sites flanking WT STAT5B 

exon16- inverted STAT5B N642H exon 16 sequences, results in the replacement 

STAT5B exon 16 with the loxP sites flanked  WT STAT5B exon16- inverted STAT5B 

N642H exon 16 sequence (Fig 5-4). The targeting donor vector WT STAT5B exon16- 

inverted STAT5B N642H exon 16- Bluescript was generated using Gibson Assembly. In 

its natural state, STAT5B encodes WT STAT5B, but when the STAT5B N642H f/- mice 

were crossed with Cre mice, Cre mediated inversion of the WT STAT5B exon16 -

inverted STAT5B N642H exon 16 sequence results in the expression of STAT5B N642H 

(Fig 5-5). SgRNAs were cloned into the PU57 vector for in vitro transcription using T7 

promoter. SgRNAs, Cas9n protein and the targeting donor vector will be injected into 

one-cell C57/Bl6 embryos. Pups with correct targeting will be identified by PCR and 

Southern blotting. Knock-in mice will then be bred to Ncr1-cre mice to determine the 

phenotypic effects of mutant STAT5B in NK cells and whether NKTCL develops. 

In vivo study of Blimp1 showed that loss of Blimp1 immediately after the pro-NK 

stage resulted in partial impairment of NK cell maturation. Compared to wild-type mice, 

NK cell frequency in Blimp1-deficient mice was higher in bone marrow but lower in 

peripheral blood, lymph nodes and spleen as the transition from immature CD11b- 

subsets to mature CD11b+ subsets was partially blocked. However, Blimp1-deficient NK 

cells had better proliferation, survival and cytotoxic ability than wild-type NK cells in vitro 

in medium containing IL2. Blimp1-deficient NK cells also proliferated better than wild-

type NK cells upon stimulated with dsRNA analog polyIC in vivo. However, we did not 

observe tumor develop in Ncr1-cre, Blimp1f/f mice. Since the development of NKTCL is 
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a multifactorial process, additional genetic alternations are needed to establish a NKTCL 

mouse model. Based on our recent finding, activating STAT3 and STAT5B mutations 

are potential driver mutations in NKTCL. Given the observation that IL2 and IL15 

activate STAT3 and STAT5B in NK cells, activating STAT3 and STAT5B mutations may 

provide the stimulation signal to NK cells as it in IL2 and IL15 stimulation in vitro. 

Therefore, we plan to cross Ncr1-cre, Blimp1f/f mice with STAT5B N642H knockin mice 

to generate a NK-lineage specific Blimp1 knockout STAT5B N642H knockin mouse 

model. 

To study the role of EBV infection in NKTCL. We generated a NK-lineage specific 

Blimp1 knockout Lmp1 knockin mouse model.  Lmp1-expressing NK cells were 

destroyed by T cells in the mouse model. NK cells were restored within two weeks in 

Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice after T cell depletion. However, after two weeks, 

Lmp1-specific T cells started expending and destroyed Lmp1-expressing NK cells.  In 

order to test whether the combination Lmp1 expression and Blimp1 inactivation lead to 

NKTCL development, we need to deplete T cells completely. Anti-CD3 blocking 

antibodies are known to be associated with cytokine-storm related side effects. 

Therefore, increasing anti-CD3 dose is not practical. Cyclosporin A, an 

immunosupression drug that selectively inhibits T cell function at least in part by 

suppressing transcription of NFAT target genes including IL2, can be used alone or with 

CD3 antibody to enhance T cell depletion. Alternatively, Ncr1-cre, Blimp1f/f, Lmp1stopf/- 

mice can be cross with TCRβ−/−;TCRδ−/− mice which lack T cells. To study the feature of 

NK cell subsets, each NK subsets will be sorted and injected into Rag2−/−γc−/−  mice 

respectively.  For in vitro functional study, NK cells will be isolated from Lmp1stopf/- and 

Blimp1f/f, Lmp1stopf/- mice and treated with a soluble TAT-Cre to create Cre-mediated 

deletion in vitro.  As mentioned in the discussion section, a large portion of the remaining 
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CD3+ cells were CD3+NK1.1+ NKT cells in Ncr1-cre, Blimp1f/f, Lmp1stopf/- mice.  A study 

showed that NKp46 is expressed on a minute fraction of NK-like T cells (Walzer et al., 

2007), and these NKp46-expressing NKT cells have higher proliferation and survival 

ability and propensity to become leukemic in IL-15 transgenic mice (Yu et al., 2011). To 

address the increase in NKT cells is due to the antigenic stimulation of Lmp1-expressing 

NK cells or intrinsic oncogenic effect of Lmp1, it is important to determine whether these 

CD3+NK1.1 NKT cells express NKp46, since Lmp1 expression is regulated by Cre 

under the control of the NKp46 (Ncr1) promoter. NKp46 expression can be detected by 

FACS. Lmp1 expression will be determined by q-RT-PCR on sorted CD3+NK1.1+ T 

cells. 
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Figure 5-1: Summary of the functional effects of activating STAT5B N642H 

mutation 

STAT5B N642H mutation was frequently observed in γδ-PTCL. Mutant STAT5B, upon 

phosphorylation, can form a more stable dimer with prolonged activation. Mutant p-

STAT5B bound to its target genes with increased occupancy and upregulated their 

expression, resulting in increased cell proliferation and survival. 
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Figure 5-2: Triple flag fusion does not alter STAT5B function 

KAI3 cell were transduced with PMIG empty vector (EV) and vector containing wild-type 

STAT5B-triple flag or STAT5B N642H-triple flag construct.  Western blot analysis of total 

STAT5 protein and STAT5B-triple flag fusion protein was performed using anti-STAT5 

antibody and anti-flag antibody respectively. β-tubulin was used as loading control. (B) 

ChIP-q-PCR results for known STAT5 binding sites are shown for IL2Rα, BCL-XL, and 

BCL2 in EV, STAT5B-WT-triple flag or STAT5B-N642H-triple flag transduced KAI3 cells. 

Anti-flag pull-down normalized to IgG control as a fold difference is shown in the y-axis 

using a log scale. STAT5B consensus sites and their approximate distance to the TSS 

sites are indicated. 
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Figure 5-3: TMP-mediated dose-dependent expression of STAT5B using DHFR 

vector 

KAI3 cells were transduced with DHFR empty vector (EV) and vector containing wild-

type STAT5B-triple flag or STAT5B N642H-triple flag construct. Cells were treated with 

TMP at indicated concentrations for 12 hours. Western blot analysis of endogenous p-

STAT5 protein and DHFR-STAT5B-triple flag fusion protein was performed using anti p-

STAT5 antibody. The ~120kDa band indicates DHFR-STAT5B-triple flag fusion protein, 

the ~90kDa bind indicates endogenous p-STAT5 protein. 
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Figure 5-4: Schematics of the donor plasmid and targeting strategy for HDR-

mediated knock-in of loxP flanked WT STAT5B exon 16-inverted STAT5B N64H 

exon 16 sequences. 

Two sets of sgRNAs were designed to target a region in intron 15 and intron 16, 

resulting in the deletion of the entire exon 16 and a portion of the flanking introns. The 

donor template consists of upstream homology arm, two loxP sites with a spacer, 

inverted human exon 16 with N642H mutation, mouse wild type exon 16, two loxP sites 

and a downstream homology arm. The mouse STAT5B exon 16 will be replaced by the 

construct after homology-directed repair. 
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Figure 5-5: Schematic representation of conditional STAT5B N642H knockin by 

Cre/loxP system. 

The inverted mutant human exon 16 followed by mouse wild-type exon 16 was flanked 

by two pairs of loxP sites. Without Cre recombinase, wild type mouse exon16 will be 

transcripted. Two pairs of incompatible loxP sites were placed in head-to-head 

orientation. Cre-mediated recombination between either pair of loxP sites lead to an 

inversion resulted in transcription of mutant human exon 16. Another pair of loxP sites 

positioned in the same direction leading to the deletion of loxP sites within the flanked 

region so that the construct could no longer change. 
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