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ROLE OF DDR1 IN PANCREATIC CANCER 

 

Huocong Huang, B.Med., Ph.D. 

University of Nebraska Medical Center, 2016 

Supervisor: Keith R. Johnson, Ph.D. 

Pancreatic ductal adenocarcinomas are highly malignant cancers, characterized by extensive 

invasion into surrounding tissues, metastasis to distant organs at a very early stage, and a limited 

response to therapy. One of the main features of pancreatic ductal adenocarcinomas is 

desmoplasia, which leads to extensive deposition of collagen I. We have demonstrated that 

collagen I can induce epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. A 

hallmark of EMT is an increase in the expression of a mesenchymal cadherin, N-cadherin. Our 

previous studies have shown that up-regulation of N-cadherin can promote tumor cell invasion 

and that collagen I-induced EMT is through two collagen receptors α2β1 integrin and discoidin 

domain receptor 1 (DDR1). DDR1 is a receptor tyrosine kinase widely expressed during 

embryonic development and in many adult tissues. It is also highly expressed in many different 

cancers. However, the role of DDR1 in pancreatic cancer is largely unknown. In the collagen I-

induced up-regulation of N-cadherin signaling pathway, we have shown that Proline-rich tyrosine 

kinase 2 (Pyk2) is downstream of DDR1.  In this study, we found that isoform b of DDR1 is 

responsible for collagen I-induced up-regulation of N-cadherin and that it is Tyrosine513 of 

DDR1b that is involved. Knocking down Shc1, which binds to Tyrosine513 on DDR1b, 

eliminates N-cadherin up-regulation.  We also found that the signaling is mediated by the 

interaction between the central domain of Shc1 and the proline-rich region of Pyk2. Taken 

together, these data illustrate that DDR1b, and not DDR1a, specifically mediates collagen I-

induced N-cadherin up-regulation and that Shc1 is involved in this process. 
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1. PANCREATIC CANCER AND STROMA 

Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth leading cause of cancer-related 

mortality in the US, with a five-year survival rate of less than 6% (American Cancer Society, 

2013). Despite progress made in cancer biology and the development of various cancer 

therapeutic strategies, the prognosis of PDAC still remains very poor. The unfortunate prognosis 

of this cancer is mainly due to the malignant behavior of its tumors. Extensive local invasion and 

early systemic dissemination are characteristics of pancreatic cancer. About 80% of patients 

already have regional or distant metastases when they are diagnosed with the disease (1). Only 

10-15% of patients with advanced and metastatic disease have the chance to go through surgical 

resection. But regardless of surgery, most patients still relapse (2). Moreover, there remains no 

effective therapy available to treat this aggressive tumor. For the past two decades, patients have 

been treated with the nucleoside analog gemcitabine as the standard chemotherapy, which results 

in increasing median survival by only five weeks (3). More recently FOLFIRINOX (oxaliplatin, 

irinotecan, 5-fluorouracil, and leucovorin), although it has increased toxicity, improved median 

survival by about four months more in patients who can tolerate it compared to gemcitabine (4), 

however, this is still very short survival among all the cancers. 

PDAC is characterized by its unique microenvironment formed by a very dense stroma, which 

plays a complex role in tumor progression (Figure 1). PDAC is one of the most stroma-rich 

cancers and the stroma can comprise as much as 90% of the total tumor volume (5, 6). It consists 

of a variety of cellular components including proliferating myofibroblasts (pancreatic stellate 

cells), macrophages, mast cells, lymphocytes, and plasma cells, and extensive extracellular matrix 

including type I collagen, proteoglycans, fibronectin and hyaluronic acid.   
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Figure 1. Microenvironment of PDAC is formed by a very dense stroma.  

Masson's trichrome staining was performed in primary pancreatic cancer tissues. Tissues were 

obtained from Rapid Autopsy Program at the University of Nebraska Medical Center. Cytoplasm 

is stained red whereas collagen displays blue coloration.  
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The stroma has many direct or indirect effects on disease progression. For example, in vitro 

studies showed that pancreatic stellate cells, which are the predominant fibroblasts present in the 

PDAC stroma, can increase proliferation, migration and invasiveness of pancreatic cancer cells, 

and orthotopic mouse models with pancreatic stellate cells and pancreatic cancer cells co-

injection showed more aggressive and metastatic tumor formation (7, 8). During pancreatitis or 

PDAC, pancreatic stellate cells become activated. They acquire a myofibroblast-like phenotype, 

and express the fibroblast activation marker α-smooth muscle actin (αSMA) (9). These activated 

pancreatic stellate cells secrete excessive amounts of extracellular matrix (ECM) causing 

desmoplasia and a fibrotic microenvironment (5). Pancreatic stellate cells also secrete different 

matrix metalloproteinases, which play an important role in ECM turnover and tissue architecture 

(10). Although many studies reported that pancreatic stellate cells promote PDAC, it has to be 

mentioned that several studies recently (11-13) showed that depleting the pancreatic stellate cells 

accelerates tumorigenesis and results in a more aggressive cancer phenotype with high 

invasiveness, increased hypoxia, and reduced survival. These results indicate that pancreatic 

stellate cells may restrain tumor growth and highlight the complexity of the PDAC stroma and the 

need for further understanding of each stromal component and the complex signaling interactions 

in the PDAC microenvironment. Besides pancreatic stellate cells, many immune cells also 

contribute to tumor progression by restricting immune surveillance and creating an inflammatory 

response that supports tumorigenesis (14). During the early stage of tumor formation, 

immunosuppressive regulatory T cells and myeloid cells are recruited to the tumor stroma by the 

cytokine granulocyte–macrophage colony-stimulating factor produced by tumor cells (15), 

moreover, tumor-associated macrophages are also recruited to the microenvironment (16). All of 

these will eventually lead to suppression of antitumor immunity. Besides cellular components, 

acellular components within the stroma can also contribute to tumor progression indirectly. The 

dense fibrous stroma will create a hypovascular environment, reducing blood flow and increasing 

interstitial pressure (17). This will impair drug delivery, which is one of the major reasons of the 
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extremely poor prognosis of the disease and its resistance to systemic therapies (5, 18). It has 

been reported that in an orthotopic pancreatic cancer mouse model with little stromal formation, 

the intracellular metabolite of gemcitabine was detected at a high concentration and it exerted 

optimal anti-tumor effects (19). In contrast, in Pdx1-Cre; K-Ras+/LSLG12D; p53R172H/+ (KPC) mice (a 

genetically engineered mouse model of pancreatic adenocarcinoma), which are characterized by 

pronounced desmoplastic reactions, the intracellular metabolite of gemcitabine was hardly 

detectable and the drug had little effect on tumors (19).   

The formation of stroma within PDAC has been attributed to signaling between cancer and its 

microenvironment involving paracrine and autocrine signaling pathways. Many signaling 

pathways have been reported to be potent modulators of the stroma. As potential therapeutic 

strategies, many clinical trials are undergoing trying to target these signaling pathways. For 

example, the Sonic hedgehog signaling pathway has been shown to mediate desmoplasia (19), so 

chemical inhibitors have been developed targeting this signaling pathway and brought to clinical 

trials (20), including GDC-0449 (Genentech/Curis) and IPI-926 (Infinity Pharmaceuticals), with 

which there are six clinical trials going on in the United States. Another such signaling pathway is 

the TGF-beta pathway (21, 22). A randomized, active-controlled study in pancreatic cancer 

patients is in preparation with the antisense oligonucleotide trabedersen (AP 12009)  inhibiting 

TGF-beta2 synthesis (23). Besides targeting the signaling pathways that contribute to 

desmoplasia, the abundant ECM can also be a potential target. As it was mentioned before, ECM 

can increase interstitial fluid pressure and promote hypovascularity, which impairs perfusion and 

cause inefficient drug delivery. Pegylated hyaluronidase (PEGPH20), a recombinant 

hyaluronidase that can degrade hyaluronic acid, a major component of the pancreatic cancer ECM, 

has been shown to decrease interstitial fluid pressure in the stroma, increase vascularity, and 

improve drug delivery in genetically engineered mouse models of PDAC (17). A recent clinical 
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trial with PEGPH20 in advanced PDAC patients has shown some therapeutic benefit, especially 

in the tumors with high hyaluronic acid (24). 

Over the past decades, it has been increasingly evident that PDAC and its stroma have very 

dynamic interactions, and these interactions play a critical role in tumor initiation, progression 

and metastasis. Much more work has to been done to understand the complex interactions and the 

signaling pathways involved before we can develop novel therapeutic targets or overcome the 

problems of the existing therapies for pancreatic cancer.  

2. EMT AND CANCER 

During early metazoan embryogenesis, a process called EMT happens. EMT enables an epithelial 

cell to convert into a mesenchymal cell with the ability to migrate and invade adjacent tissues. 

The hallmarks of the EMT include loss of cell-cell junctions, loss of apical-basal cell polarity, 

and acquisition of migratory and invasive properties (25). Through changing their phenotype and 

taking on mesenchymal characteristics, cells can migrate long distances and move into the 

interior of the embryo, and eventually settle, proliferate, and differentiate into different organs (25, 

26). Cells disrupt cell-cell adhesion contacts within the primitive epithelial layer and ingress. For 

example, the ingression of mesendodermal precursors at the primitive streak in amniotes and the 

delamination of the neural crest all involve EMT. Moreover, all vertebrate adult tissues originate 

from cells that underwent at least one EMT. 

Like embryonic tissues, EMT also happens in many types of cancer including PDAC (27). Cancer 

cells undergo EMT and convert into mesenchymal cells with migratory and invasive properties in 

order to escape from primary carcinomas (25). The application of sophisticated imaging 

techniques in mouse and rat cancer models and the characterization of circulating tumor cells 

(CTCs) from patients have shown cancer cells with EMT signatures (28-30). These provided 

evidence that EMT occurs during dissemination of metastatic cells from a primary tumor. Cancer 
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can be initiated and propagated by the certain group of cells that go through EMT and gain stem 

cell properties (31). Even though there are many similarities between the EMT during 

development and the one in cancer, there are also obvious differences. So EMT can be classified 

into three different types (32). Type 1 refers to developmental EMT, type 2 refers to the EMT 

happening during wound healing and tissue regeneration, and type 3 refers to the EMT in cancer. 

Tumor cells undergo type 3 EMT, which is different from the other two types, that often involves 

intravasation of delaminated cells into lymphatic and blood vessels and then extravasation. 

However, cells that have not undergone EMT are not able to intravasate into blood vessels to 

develop blood-borne metastasis (33). Although EMT often means loss of epithelial traits and gain 

of mesenchymal features, it is important to bear in mind that EMT is not necessarily an “all-or-

nothing” or “black-or-white” transition. Partial EMT also happens, in which cells have both 

epithelial and mesenchymal traits (34, 35).  

EMT can be triggered by many different extracellular signals in cancer. For example, members of 

transforming growth factor–β (TGFβ)/bone morphogenetic protein (BMP) family, Wnt, Notch, 

epidermal growth factor (EGF), and fibroblast growth factor (FGF) have been shown to induce 

EMT very potently (25). Different extracellular signals converge in cancer cells and further 

activate one or several EMT transcription factors including Snail, Twist and Zeb, which repress 

the epithelial phenotype, enhance mesenchymal traits and cause a dramatic change in cell 

behavior by increasing the capability of migration and survival in adverse environments (36). 

Once the EMT transcription factors are activated, they can in turn increase the transcription of 

genes encoding proteins in the same signaling pathways in order to generate positive regulatory 

loops that help maintain the mesenchymal phenotype in cancer cells (37).  

EMT has been shown to be associated with multidrug resistance and tumor relapse after 

chemotherapy (38, 39). Cells undergone EMT gain stem cell–like properties and resistance to cell 

death (40), so it is important that besides classical cytotoxic chemotherapy, we also need to 



9 
 

develop new therapeutic strategies to target the EMT process or cells that have undergone EMT, 

in order to prevent cancer from recurring. To target EMT, we can inhibit the signaling pathways 

that induce EMT, including TGFβ, Wnt, Notch, EGF, and FGF signaling pathways, as mentioned 

earlier. Moreover, we should combat cancer cells that have already undergone EMT and gained 

stem-like properties. A combination of classical chemotherapy with drugs targeting EMT   

simultaneously may be a good strategy for cancer treatment. As mentioned in the earlier section, 

the tumor microenvironment is very important in pancreatic cancer progression, and our lab 

found that PDAC stroma can also induce EMT in pancreatic cancer cells (41). Therefore, 

therapeutic strategies should also consider targeting the stroma as well as the interaction between 

stroma and pancreatic cancer cells.      

3. CADHERINS AND CANCER 

One of the hallmarks of the EMT is loss of cell-cell junctions. Epithelial cell-cell junctions help 

maintain tissue integrity and cell polarity. The junctional complex includes tight junctions, 

adherens junctions and desmosomes. The adherens junctions play a very important role in 

regulating the activity of the whole junctional complex, and they are formed by proteins called 

cadherins. Cadherins are transmembrane glycoproteins that mediate cell-cell adhesion in a Ca2+-

dependent manner (42). They mediate cell-cell adhesion through their extracellular domains and 

connect to the actin cytoskeleton by associating with catenins through their cytosolic domain. 

Classical cadherins include E-cadherin (which is expressed in epithelial cells), N-cadherin (in 

neural tissue, muscle and fibroblasts), R-cadherin (in the forebrain and bone), and P-cadherin (in 

the basal layer of stratified epithelia) (43). Classical cadherins, which consist of an adhesive 

extracellular domain with five external cadherin (EC) repeats, EC1-EC5, can be divided into two 

subtypes, type I and type II. Type I cadherins, which include E-cadherin, N-cadherin, R-cadherin 

and P-cadherin, are different from type II cadherins in that they have a highly conserved His-Ala-

Val (HAV) tripeptide within the most distal external cadherin repeat (EC1), which can mediate 
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homophilic adhesion (44). Synthetic peptides containing the HAV sequence can inhibit cadherin-

based compaction. Studies have shown that short cyclic HAV peptides such as ADH-1 (N-Ac-

CHAVC-NH2) can inhibit N-cadherin function (45). Besides the HAV sequence, it has also been 

reported that a conserved tryptophan residue within EC1 is required for trans-cadherin binding 

(46). EC2, although it does not mediate cell-cell adhesion directly, has been reported to form the 

"minimal essential unit" together with EC1 and is responsible for homophilic adhesion activity 

(47). EC3-5 are also important for cell adhesion, but they may have some other roles also. Our lab 

found that a 69-amino acid portion of EC4 of N-cadherin can promote EMT in squamous 

epithelial cells and increase cell motility (48). Other groups reported that EC4 of N-cadherin 

interacts with the fibroblast growth factor receptor (FGFR), forming a complex that can facilitate 

cell motility, invasion, and metastasis (49, 50). 

The cytoplasmic domain of classic cadherins is highly conserved and can interact with many 

cytosolic proteins. This domain can be associated with many catenin family members, including 

alpha-catenin, beta-catenin and p120 catenin (51, 52), and form a cadherin-catenin complex. p120 

catenin binds to the juxtamembrane region of cadherins and stabilizes cadherins by masking an 

endocytic signal conserved in classical cadherins (53, 54). It can also regulate the actin 

cytoskeleton through Rho GTPases (55, 56). Beta-catenin is another catenin family member that 

binds to cadherins. Beta-catenin has also been identified as a nuclear trancriptional co-activator 

for the lymphoid enhancer-binding factor-1 (LEF-1)/T-cell factor (TCF) family of transcription 

factors, and it plays a very important role in the Wnt signaling pathways (57, 58), and E-cadherin 

binding can prevent beta-catenin nuclear localization and beta-catenin/LEF-1-mediated 

transactivation (51). Moreover, alpha-catenin, also associated with cadherins, has been reported 

to interact with yes-associated protein 1 (YAP1) and prevent YAP1 nuclear localization (59, 60). 

Therefore, besides mediating cell-cell adhesion, cadherins can also modulate many different 

signaling pathways through their binding partners.  
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Adherens junctions will be disrupted when cells undergo EMT, and a process called cadherin 

switching often happens (61). Cancer cells, which are originally epithelial cells, will switch from 

expressing E-cadherin, the epithelial type of cadherins, to expressing N-cadherin, the 

mesenchymal type. However, in some situations, E-cadherin expression levels do not change 

significantly, while N-cadherin expression levels are up-regulated. In some cases, instead of 

turning on N-cadherin, some other cadherins will be up-regulated, including R-cadherin, cadherin 

11, T-cadherin and even P-cadherin. The expression of these “inappropriate cadherins” will 

change the behavior of the cancer cells so a certain population of cells can gain the ability to 

leave the site of the primary tumor and metastasize.      

Many groups, including ours, have shown that N-cadherin increases motility in cancer cells 

regardless of E-cadherin expression (62, 63). As it was mentioned earlier, we found that EC4 of 

N-cadherin can promote EMT and increase cell motility in cancer. Many studies have suggested 

that N-cadherin is involved in fibroblast growth factor signaling (49, 64, 65). Moreover, we have 

also shown that the scaffolding molecule Na+/H+ exchanger regulatory factor (NHERF) links the 

N-cadherin/beta-catenin complex to the platelet-derived growth factor receptor to modulate the 

actin cytoskeleton and regulate cell motility (66). Therefore, when tumor cells up-regulate N-

cadherin expression, they also gain the ability to activate many growth factor receptor signaling 

pathways to promote cell growth and metastasis. We have generated transgenic mice that 

expressed N-cadherin under control of the mouse mammary tumor virus (MMTV) promoter, and 

found that expression of N-cadherin alone in the mouse mammary glands does not initiate tumors 

(67). Moreover, even when we crossed the mice with the neu oncogene transgenic mice which 

can develop focal mammary tumors, there was no difference between the mice expressing neu 

alone and the ones expressing both neu and N-cadherin regarding aggressiveness of the tumors 

(67). However, another group crossed the MMTV-N-cadherin mice with mice expressing 

polyoma virus middle T antigen in the mammary epithelium, and they found that N-cadherin can 
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increase tumor metastasis (68). Therefore, role of N-cadherin in tumor progression might be 

context dependent. Our lab used orthotopic mouse models to study role of N-cadherin in 

pancreatic cancer (69). We injected mice with BxPC-3 human pancreatic cancer cells expressing 

endogenous N-cadherin, shRNA targeting N-cadherin, or exogenous N-cadherin (69). We found 

that N-cadherin promotes tumor metastasis in pancreatic cancer. Furthermore, we treated the 

orthotopic pancreatic cancer mouse models with short cyclic HAV peptides ADH-1 antagonizing 

N-cadherin (70). As a result, we found significant reductions in tumor growth and lung metastasis 

with ADH-1 treatment.    

N-cadherin promotes cancer cells to become more aggressive by many different mechanisms. We 

need more studies to understand how N-cadherin influences cell behavior and how various 

signals, including signals from the tumor microenvironment, up-regulate the expression of N-

cadherin. By better understanding more mechanisms in the pathways of cadherin switching, we 

may be able to develop some novel therapeutic strategies.   

4. COLLAGEN-INDUCED EMT IN PANCREATIC CANCER  

By using the pancreatic cancer cell line BxPC-3, our laboratory found that collagen I mediates 

up-regulation of N-cadherin and a cell scattering morphological change through cooperative 

signals from two collagen receptors, alpha2beta1 integrin and discoidin domain receptor 1 

(DDR1) (41). In the previous study, knocking down beta1 integrin or DDR1 alone partially 

inhibited up-regulation of N-cadherin in BxPC-3 cells. However, knocking down both receptors 

resulted in complete inhibition of N-cadherin up-regulation. We found that when α2β1 integrin 

was activated, it further activated its downstream effector Focal adhesion kinase (FAK), while 

when DDR1 was activated, it activated another downstream effector Proline-rich tyrosine kinase 

2 (Pyk2), which is very similar to FAK (Figure 2). Signals activated by collagen from both arms 

of the pathway fused to a scaffold protein called p130 Crk-associated substrate (p130CAS). Since 
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integrin or DDR1 binding to collagen each only initiated a partial response, the two partial signals 

are integrated by p130CAS to give a full response. Once p130CAS is activated, it activates the 

small GTPase Rap1. Then Rap1 activates the mixed lineage kinases (MLK) 3-MAPK kinase 

(MKK) 7-JNK1-cJun cascade, which promotes up-regulation of N-cadherin.  
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Figure 2. Model of the signaling pathway in BxPC-3 cells during collagen I-induced up-

regulation of N-cadherin.  

Collagen I mediates up-regulation of N-cadherin through cooperative signals from two collagen 

receptors alpha2beta1 integrin and DDR1. 
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In this study, we have focused on the DDR1 arm of the signaling pathway and tried to identify the 

early steps in the signaling pathway that is initiated downstream of DDR1 when pancreatic cancer 

cells are exposed to collagen.  

5. DISCOIDIN DOMAIN RECEPTORS 

Discoidin domain receptors (DDRs) are type I transmembrane receptor tyrosine kinases (RTKs) 

characterized by an N-terminal extracellular discoidin domain containing a collagen binding site 

(71, 72) (Figure 3). There are two types of discoidin domain receptors, DDR1 and DDR2. DDR1 

is expressed in epithelial cells, while DDR2 is expressed in mesenchymal cells (73). The collagen 

binding sites within the discoidin domains are highly conserved and DDRs can be activated by 

many different types of collagen (74-76). They all recognize the GVMGVO (O, hydroxyproline) 

motif within fibrillar collagens I–III and V. In addition, DDR1 and DDR2 also have their own 

binding specificity, with DDR1 only binding to collagen IV, and DDR2 only binding to collagen 

X. Since DDR binding sites on collagens are distinct from integrin binding sites, simultaneous 

activation of DDRs and integrins is possible, both of which contribute to up-regulation of N-

cadherin in pancreatic cancer (41). Although the structures of DDRs are similar to many other 

RTKs, they are unique among RTKs because they have unusually slow kinetics of activation. 

After binding to collagen, DDRs can be autophosphorylated on tyrosine residues but requires 

hours to reach full activation, which can persist up to 18 hours.   

The extracellular discoidin domain is followed by an extracellular (JM) membrane region, then a 

single transmembrane (TM) domain and an unusually large cytosolic JM domain which contains 

phosphorylatable tyrosines that may serve as docking sites for many other proteins. A catalytic 

kinase domain follows the cytosolic JM domain and at the very end comes a short C-terminal tail. 

There are five different isoforms of DDR1 (a-e) generated through alternatively splicing. The 

isoforms termed DDR1a and DDR1b are the most widely distributed, while the others are less 
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common (77). DDR1a lacks a 37-residue segment present in the cytosolic juxtamembrane region 

of DDR1b. This segment contains important phosphorylation sites. In the shorter DDR1a isoform, 

two tyrosines (Y513 and Y520) are missing. After phosphorylation, these Tyrosines are reported 

to bind Src homology and collagen homology 1 (Shc1) and c-src tyrosine kinase (Csk), 

respectively (71, 78, 79).  

More and more studies indicate that DDR1 plays an important role in many cancers (80-84). 

However, we still don’t understand the detailed molecular mechanisms of DDR1 signaling during 

cancer progression. Such understanding may result in inhibition of the signaling pathways and 

new therapeutic interventions for cancers including pancreatic ductal adenocarcinoma.  Therefore, 

in this study, we tried to investigate how collagen initiates the signaling through DDR1 to up-

regulate N-cadherin.  
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Figure 3. Structure of DDR1b.   

DDR1 is a receptor tyrosine kinase characterized by an N-terminal extracellular discoidin domain. 

The discoidin domain is followed by an extracellular juxtamembrane region, then a single 

transmembrane domain and an unusually large cytosolic juxtamembrane domain which contains 

phosphorylatable tyrosines that may serve as docking sites for many other proteins. A catalytic 

kinase domain follows the cytosolic juxtamembrane domain and at the very end comes a short C-

terminal tail. All the tyrosines within the cytoplasmic tail of DDR1b are shown (the yellow ones 

indicate they are conserved in human and mouse, and the blue one only exists in human). DDR1a 

lacks a 37-residue segment present in the cytosolic juxtamembrane region of DDR1b. This 

segment contains two important tyrosines (Y513 and Y520).  
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Chapter II 

 

Materials and Methods 
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1. REAGENTS AND ANTIBODIES 

The mouse mAb against E-cadherin (HECD-1; hybridoma supernatant, western blot dilution 

1:100) was a gift from Dr. M. Takeichi (RIKEN Center for Developmental Biology, Kobe, Japan) 

and the mouse mAb against N-cadherin (13A9; hybridoma supernatant, no dilution for 

immunohistochemistry, western blot dilution 1:100) has been previously described (85). Anti-

tubulin mouse mAb E7 (western blot dilution 1:1000) (developed by Drs. M. McCutcheon and S. 

Carroll) was obtained from the Developmental Studies Hybridoma Bank (University of Iowa, IA, 

USA). Anti-DDR1 rabbit pAb (C-20; immunohistochemistry dilution 1:100, immunoprecipitation 

dilution 1:100, western blot dilution 1:1000) and anti-Shc1 mouse mAb (PG-797; 

immunoprecipitation dilution 1:100, western blot dilution 1:1000) were obtained from Santa Cruz 

Biotechnology, Inc. (Dallas, TX, USA). Anti-JNK1 mouse mAb (2C6; western blot dilution 

1:1000), anti-JNK phosphospecific (Thr183/Tyr185) rabbit Ab (9251; western blot dilution 

1:1000), anti-Pyk2 mouse mAb (5E2; western blot dilution 1:1000), anti-Pyk2 phosphospecific 

(Tyr402) rabbit Ab (3291; western blot dilution 1:1000), anti-Shc1 rabbit Ab (2432; western blot 

dilution 1:1000) and anti-HA rabbit mAb (C29F4; western blot dilution 1:1000) were obtained 

from Cell Signaling Technology (Danvers, MA, USA). Anti-phosphotyrosine mouse Ab (PY20; 

western blot dilution 1:1000) was obtained from BD Biosciences (San Jose, CA, USA). Anti-

FLAG mouse mAb (M2; immunoprecipitation dilution 1:100) was obtained from Sigma-Aldrich 

Co. (St. Louis, MO, USA). Anti-HA mouse mAb (16B12; immunoprecipitation dilution 1:100) 

was obtained from Covance Research Products Inc. (Princeton, NJ, USA). Anti-GFP rabbit Ab 

(632376; western blot dilution 1:200) was obtained from Clontech Laboratories (Mountain View, 

CA, USA). Collagen I-coated dishes and rat tail collagen I were obtained from BD Biosciences. 

The synthesis of the DDR1-specific inhibitor 7rh has been described (86).  

2. CULTURED CELLS  



22 
 

The identity of all the cell lines used in these experiments was verified by the University of 

Arizona Genetics Core (http://uagc.arl.arizona.edu/services/cell-line-authentication-human), and 

each cell line was shown to be free from mycoplasma using a PCR kit (PK-CA91-1048 from 

PromoCell (Heidelberg, Germany)).  L3.6pl (87) was a gift from Drs. R. Singh and M. Ouellette 

(University of Nebraska Medical Center, Omaha, USA). PSN-1 was a gift from Dr. P. Tofilon 

(National Cancer Institute, Bethesda, USA). T3M-4 was a gift from Dr. T. Hollingsworth 

(University of Nebraska Medical Center, Omaha, USA). BxPC-3 was obtained from American 

Type Culture Collection. L3.6pl and T3M-4 were maintained in DMEM, and BxPC-3 and PSN-1 

were maintained in RPMI 1640 containing 10% FBS respectively, in an atmosphere of 5% CO2 at 

37 °C.  

3. DETERGENT EXTRACTION, SDS-PAGE, IMMUNOBLOT, AND 

IMMUNOPRECIPITATION 

Monolayers of cultured cells were extracted with Tris/NP40/EDTA (TNE) buffer (10 mM Tris-

HCl, pH 8.0, 0.5% Nonidet P-40, and 1 mM EDTA) for SDS-PAGE or immunoprecipitation as 

previously described (88). Protein was determined using a protein assay kit (Thermo Scientific 

(Waltham, MA, USA)). Antibodies were added to the indicated volume of cell extract and gently 

mixed overnight at 4°C. Anti-mouse or anti-rabbit IgG affinity gel (MP Biomedicals, Santa Ana, 

CA, USA) was washed with TNE buffer once. The cell extract-antibody mix was added to the 

IgG affinity gel and mixed at 4°C for 2 hours. Immune complexes were washed once with Radio-

Immunoprecipitation Assay (RIPA) buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.1% SDS, 

0.5% sodium deoxycholate and 1% Nonidet P-40) and two times with TBST (10 mM Tris-HCl, 

pH 7.5, 150 mM NaCl, 0.05% Tween 20). After the final wash, the packed beads were 

resuspended in 50 μL of 2× Laemmli sample buffer, boiled for 5 min, and the proteins were 

resolved by SDS-PAGE. Proteins were electrophoretically transferred to nitrocellulose 

membranes and blocked in 5% nonfat dry milk or 5% bovine serum albumin in TBST for 1 hour. 
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Blocking solution was removed, and primary antibody in TBST was added followed by 

incubation for 1 h. Membranes were washed 15 min followed by 2×5 min in TBST. Membranes 

were incubated with horseradish peroxidase-conjugated anti-mouse or rabbit secondary antibody 

(Jackson ImmunoResearch Laboratories, West Grove, PA, USA) at 1:5,000 for 1 hour. The 

secondary antibody was removed by washing 15 min followed by 2×5 min in TBST. 

Immunoreactive bands were detected using SuperSignal West Pico substrate (Thermo Scientific).  

4. CONSTRUCTS, TRANSFECTION, AND INFECTION 

Phoenix cells (89) were transfected using TransIT-LT1 reagent (Mirus, Madison, WI, USA). 

Production of viral supernatants and infection of target cells have been described previously (90). 

4 μg/mL puromycin, 200 μg/mL hygromycin or 1 mg/mL G418 was used for selection of the 

target cells.   

The human DDR1a and DDR1b cDNAs were gifts from Dr. Teizo Yoshimura (National Cancer 

Institute, Bethesda, USA) (91). The DDR1a and DDR1b cDNAs were sequenced and shown to 

encode proteins identical to NP_001945.3 and NP_00054699.2, respectively. For stable 

expression in cells a monomeric EGFP (mEGFP, A206K) tag was added to the C-terminus of 

each isoform, eliminating the 3’ UTRs. The tagged constructs were inserted into pLZRS-MS-

Hygro or pLZRS-MS-Neo for stable expression. Gatekeeper mutants were generated by 

introducing a T664A mutation in DDR1a and a T701A in DDR1b using the QuikChange II Site-

Directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA, USA). The primers for the 

gatekeeper mutants were a sense primer, 5’-CTCTGCATGATTGCTGACTACATGGAGAAC-3’, 

and an antisense primer, 5’- GTTCTCCATGTAGTCAGCAATCATGCAGAG-3’. DDR1b 

Y513F, Y520F and Y513F/Y520F mutants were generated using QuikChange Lightning Multi 

Site-Directed Mutagenesis Kit (Agilent Technologies). The primers for these mutants were (sense 

oligos only), 5’-CAATCCAGCCTTCCGCCTCCTTC-3’ for Y513F, and 5’-



24 
 

CAATCCAGCCTTCCGCCTCCTTCTGGCCACTTTCGCCCGTCCC-3’ for Y513F/Y520F. We 

obtained the single Y520F mutant when we used the Y513F/Y520F primer.  

Human p66Shc1 pcDNA3.1His was purchased from Addgene (Plasmid #32574, Accession 

NM_001130040.1) (92). The human p52Shc1 cDNA was purchased from GE Dharmacon 

(Lafayette, CO, USA; Clone ID: 4541216, Accession BC014158.2). Mouse 2X HA p46Shc1 (AA 

46-469 of NP_035498.2), mouse 2X HA p52Shc1 (NP_035498.2), mouse 3X FLAG p52Shc1 

wild-type, R397K, R175Q, Y313F, Y239F/Y240F and Y239F/Y240F/Y313F mutants were gifts 

from Dr. P. Siegel (McGill University, Montreal, Canada) and were all inserted into pMSCV-

Blast vectors (93). We moved human p66Shc1, human p52Shc1 and mouse p46Shc1 into 

pLZRS-MS-Neo for stable expression. All mouse p46Shc1 truncation mutants (T1 through T7) 

were PCR products made using mouse 2X HA p46Shc1 in pMSCV-Blast as a template. The 

primers used were the common sense primer 5’-CTCCTTCTCTAGGCGCCGG-3’ and the 

antisense primers T1: 5’-GAATTCTCACCTGTCATGGGGGGTGAC-3’, T2: 5’-

GAATTCTCAGTGGAACCAGGGCTCCG-3’, T3: 5’-

GAATTCTCAAGCAGCCCCTTCCCGAAG-3’, T4: 5’-

GAATTCTCAGTCTAGATTCTGGATGTTG-3’, T5: 5’-

GAATTCTCAGACTTCATGGTCTCCTGC-3’, T6: 5’-

GAATTCTCAATGCTGCCCTATAGGC-3’, T7: 5’-

GAATTCTCAGGACATCTGGGCACTAGG-3’. Both human p46Shc1 truncation mutants T6 

and T7 were PCR products made using human p52Shc1 cDNA as a template. The primers used 

were the common sense primer 5’-GCTAGCACCATGGGACCCGGGGTTTCC-3’ and the 

antisense primers T6: 5’-GGTACCGAATTCTCAAGGCTGTCCTACAGGCAATG-3’, T7: 5’-

GGTACCGAATTCTCAGGGGGTCTGGGCATTGGG-3’. The PCR products were inserted into 

pCR2.1 TOPO vectors and tagged at their N-termini with 2X HA. Then the human 2X HA 

p46Shc1 T6 and T7 were moved into pMSCV-Blast vectors. All the truncation mutants as well as 
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each construct we generated via PCR that was used in the experiments described in this 

manuscript were completely sequenced and shown to encode the desired AA sequences with no 

unintended changes.   

Rat Pyk2 (Accession NP_59124.2, C-terminally myc tagged) and the mutants Y402F and K457A 

in pcDNA3 were gifts from Dr. Lee Graves (University of North Carolina at Chapel Hill, Chapel 

Hill, USA) (94). The truncation mutants of rat Pyk2 (NP_59124.2) were gifts from Dr. Jean-

Antoine Girault (Institut du Fer à Moulin, Inserm, Paris, France) and were tagged at their N-

termini with EGFP (95). The mouse EST cDNA of shorter Pyk2 isoform was purchased from GE 

Dharmacon (Clone ID: 1429254, Accession AI153373) and we inserted it into pEGFP-C2 vector.  

cDNA fragments encoding portions of rat Pyk2 and mouse p46Shc1 were cloned into pGST-

Parallel or pMBP-Parallel vectors (96).  The fusion proteins were expressed in Rosetta2 cells 

(Novagen; Madison, WI USA) and purified on glutathione agarose or cross-linked amylose beads. 

The human FLAG-tagged CrkII was a gift from Dr. Bruce Mayer (University of Connecticut 

Health Center, Farmington, USA; Accession BC001718.1) (97). We inserted the tagged cDNA 

into pLZRS-MS-Neo. GST-Grb2 was purchased from Addgene (Plasmid #46442; Grb2 accession 

NM_002086.4) (98). We inserted the cDNA into pLZRS-MS-Neo. The human 3X HA-tagged 

Nck1 cDNA was a gift from Dr. Wei Li (University of Southern California, Los Angeles, USA; 

Accession NM_006153.3) (99).  

The shRNA constructs were as follows: DDR1 (TRCN0000121082, Sigma), Shc1 (shShc1 991, 

TRCN0000332991; shShc1 997; TRCN0000295997; shShc1 208, TRCN0000040208; shShc1 

434, TRCN0000010434, Sigma). All the shRNAs were in the vector pLKO.1-Puro. For a 

negative control, we used pLKO.1-puro carrying a sequence targeting EGFP (a gift from Dr. 

Angie Rizzino, University of Nebraska Medical Center, Omaha, USA).   

5. CONVENTIONAL REVERSE TRANSCRIPTION (RT)-PCR 
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Total RNA was extracted with the RNeasy Plus Mini Kit (Qiagen; Alameda, CA USA) and 

analyzed by RT-PCR using a Titanium One-Step RT-PCR kit (Clontech). Primers used for PCR 

were the sense primer, 5’-GAGCTGACGGTTCACCTCTCTGTC-3’, and the antisense primer, 

5’-CAATGTCAGCCTCGGCATAATGG-3’. The conditions for PCR were as follows: 94°C for 

45 s, 60°C for 30 s, and 72°C for 90 s for 15, 25 or 35 cycles. PCR products were analyzed by 

electrophoresis on 1.5% agarose gels. 

6. IMMUNOHISTOCHEMISTRY 

Tissue microarray slides were obtained from Rapid Autopsy Program at the University of 

Nebraska Medical Center (100). Slides were deparaffinized with xylene, rehydrated with an 

alcohol gradient and washed with water. Antigen retrieval was performed with an alkaline citrate 

buffer and microwave treatment. Peroxidase activity was quenched by 3% hydrogen peroxide. 

Slides were blocked with 5% bovine serum albumin and incubated with primary and secondary 

antibodies. 3, 3'-Diaminobenzidine substrate was added followed by hematoxylin counterstaining. 

Slides were evaluated and annotated by a pathologist (Dr. Audrey J. Lazenby). The score scale 

ranged from 0 to 3, with 0 being no staining or <10% cancer cells stained, 0.5 being faint to weak 

staining in >10% cancer cells, 1 being weak staining in >10% cancer cells, 1.5 being weak to 

moderate staining in >10% cancer cells, 2 being moderate staining in >10% cancer cells, 2.5 

being moderate to strong staining in >10% cancer cells, 3 being strong staining in >10% cancer 

cells, and 3.5 being very strong staining in >10% cancer cells. Spearman correlation analysis was 

then performed.   

7. CELL INVASION ASSAY 

Cells (1.5 × 105) were plated in the upper chamber of BD BioCoat Matrigel Inserts (24-well 

plates, pore size = 8 μm; BD Biosciences). Culture medium containing    0.5% FBS was added to 

the upper chambers, and medium containing 10% FBS was added to the bottom chamber. When 
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it was used, 1NM-PP1 (Calbiochem; San Diego, CA USA) was added to both upper and bottom 

chambers. Cells were incubated on the membranes for 18 hours, and motility was quantified as 

described (101).   
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Chapter III 

 

DDR1b is More Potent than DDR1a in Mediating Collagen I-induced Up-regulation of N-

cadherin in Pancreatic Cancer Cells 
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First of all, we examined the expression of DDR1 and N-cadherin in tissues from human 

pancreatic cancer patients, comparing cancerous with uninvolved tissues (Figure 4). The 

immunohistochemistry showed that both DDR1 and N-cadherin are up-regulated in primary 

pancreatic cancer tissues as well as in liver metastases. Moreover, we performed correlation 

analysis in both primary and metastatic sites, and found that expression levels of DDR1 and N-

cadherin in the cancerous tissues are highly correlated (Figure 4b). 

We have shown that collagen I can activate DDR1 and induce the up-regulation of N-cadherin 

(41). As noted above, DDR1a and DDR1b are the two major isoforms of DDR1. We first 

determined which isoforms are expressed in several pancreatic cancer cell lines by performing 

RT-PCR with primers flanking the alternatively spliced exon to semi-quantitatively measure the 

mRNA levels of DDR1a and DDR1b. We found that both DDR1a and DDR1b are expressed in 

BxPC-3, T3M-4 and L3.6pl cells, and the expression levels of transcripts encoding DDR1a and 

DDR1b are similar (Figure 5).  We then set out to test if both of them could mediate collagen I-

induced up-regulation of N-cadherin. We used L3.6pl cells to dissect the details of the DDR1 

signaling pathway because we found the response of these cells to collagen is primarily mediated 

by the DDR1 arm of the pathway.   

We stably knocked down DDR1 in L3.6pl cells with a lentiviral shRNA targeting the 3’UTR. 

DDR1 knockdown cells as well as control cells were plated on collagen I-coated dishes (Figure 6). 

We found that after DDR1 knockdown, collagen I failed to induce N-cadherin up-regulation 

when compared to the control. We then introduced either DDR1a-mEGFP or DDR1b-mEGFP 

into the DDR1 knockdown cell lines (Figure 6). We found that up-regulation of N-cadherin in 

response to collagen I was fully rescued in cells expressing DDR1b but not in cells expressing 

DDR1a.   
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Figure 4. Expression of DDR1 and N-cadherin is correlated in human pancreatic cancer 

tissues. 

(a) Immunohistochemical staining for DDR1 or N-cadherin was performed on uninvolved 

pancreatic tissues and primary pancreatic cancer tissues, as well as liver metastases. Two 

representative samples (Case 1 and Case 2) representing low DDR1/N-cadherin and high 

DDR1/N-cadherin expression, respectively, are shown. Cancerous lesions are indicated by red 

arrows. Original magnification, 400x. (b) Immunohistochemical staining for DDR1 or N-cadherin 

in uninvolved pancreatic tissues (n=5), primary pancreatic cancer tissues (n=10; labeled P on the 

graph) and liver metastases (n=30; labeled M on the graph) were scored and analyzed. P values 

reflect pairwise comparisons using Student’s t-test. Spearman correlation analysis was performed 

with primary tumor tissues or liver metastases, r=0.85468, p<0.01 (primary tumor); r=0.8084, 

p<0.001 (metastasis). 
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Figure 5. Pancreatic cancer cells express both DDR1a and DDR1b.  

RT-PCR was performed with primers flanking the alternatively spliced exon to semi-

quantitatively measure the mRNA levels of DDR1a and DDR1b in pancreatic cancer cell lines 

BxPC-3, T3M-4, and L3.6pl. Human DDR1a and DDR1b cDNAs were used as templates to 

generate the markers (arrows). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

 

 

 

                                                                

 

 

 



34 
 

Figure 6. DDR1b is more potent than DDR1a in mediating collagen I-induced up-regulation 

of N-cadherin. 

Parental L3.6pl cells and a number of derived cell lines were plated on tissue culture plastic 

(lanes 1-4, w/o col I) or collagen-coated plates for 18 hours (lanes 5-8, col I). Cell extracts were 

blotted with antibodies for DDR1, E-cadherin, N-cadherin and β-tubulin as a loading control. 

L3.6pl cells were stably infected with constructs expressing shRNA to EGFP (lanes 1&5) or 

shRNA targeting DDR1 (lanes 2-4, 6-8). We then introduced either DDR1a-mEGFP (lanes 3&7) 

or DDR1b-mEGFP (lanes 4&8) into the knockdown cells. The DDR1 cDNAs were fused to 

monomeric EGFP (mEGFP) to shift the molecular weight in order to verify that endogenous 

DDR1 was stably knocked down in cells expressing the isoform-specific cDNAs. In some 

experiments, as seen here in lanes 1&5, the level of endogenous DDR1 was down-regulated in 

cells plated for 18 hours on collagen, perhaps due to endocytosis or proteolysis of the receptor 

following exposure to its ligand. The asterisk marks a non-specific band recognized by the DDR1 

antiserum. 
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Protein kinases such as DDR1a and DDR1b have residues termed gatekeepers that limit access to 

the ATP-binding pocket (102). In DDR1a and DDR1b, the gatekeeper residues are T664 and 

T701, respectively. When the gatekeeper residues are mutated to Ala or Gly, the mutant kinases 

have larger ATP-binding pockets than wild-type DDR1.  As a result, the mutant enzymes ought 

to be more sensitive to protein kinase inhibitors such as 1NM-PP1 (103). This approach allows 

the use of inhibitors such as 1NM-PP1 to mimic the effects of a specific DDR1 inhibitor.  We 

mutated the gatekeeper residues in DDR1a and DDR1b to either Gly or Ala and expressed the 

mutants fused to mEGFP in PSN1 cells, a human pancreatic cancer cell line lacking endogenous 

DDR1 (Figure 7).  The mutants with Gly in the gatekeeper position were no longer active (results 

not shown) while those with Ala in the gatekeeper position were activated by collagen.   

Collagen I-induced tyrosine phosphorylation of DDR1a-mEGFP (T664A) and DDR1b-mEGFP 

(T701A) was inhibited by 1NM-PP1. Importantly, the collagen-dependent phosphorylation of 

wild-type DDR1a and DDR1b was not affected by the drug (Figure 7). We then performed 

Boyden chamber assays with Matrigel-coated filters to test the effects of the DDR1 isoforms with 

gatekeeper mutations on invasion of L3.6pl cells with endogenous DDR1 knocked down (Figure 

8). We found DDR1b but not DDR1a promoted cell invasion, and this invasion was inhibited by 

1NM-PP1. We plated the L3.6pl cells expressing the gatekeeper mutants on collagen I and found 

that in the presence of 1NM-PP1 DDR1b-mEGFP (T701A) failed to rescue the up-regulation of 

N-cadherin (Figure 9). The data show the kinase activity of DDR1b but not DDR1a is necessary 

to mediate collagen I-induced up-regulation of N-cadherin and to increase cell invasiveness.  

Recently, specific inhibitors of DDR1 have been developed (104, 105).  The specific inhibitor 7rh 

(86) inhibited collagen I-dependent up-regulation of N-cadherin (Figure 10), consistent with the 

results we obtained with 1NM-PP1 and the gatekeeper mutant form of DDR1b (Figure 9). As 

mentioned above, in pancreatic cancer cell lines we have shown collagen can signal through both 

integrins and DDR1 (41).  L3.6pl cells respond to collagen almost exclusively through the DDR1 
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arm of this signaling pathway while the inhibition seen with 7rh in T3M-4 was partial, 

presumably due to signaling through integrins (Figure 10).    
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Figure 7. Collagen I-induced activation of the gatekeeper mutants of DDR1a and DDR1b is 

inhibited by 1NM-PP1.  

(left panel) In contrast to T3M-4 cells, PSN1 cells do not express DDR1 so we used it for testing 

the sensitivity of the gatekeeper mutants to 1NM-PP1. (right panel) Wild-type DDR1a-mEGFP 

(lanes 1-4), wild-type DDR1b-mEGFP (lanes 9-12) or the gatekeeper mutants DDR1a-mEGFP 

T664A (lanes 5-8) and DDR1b-mEGFP T701A (lanes 13-16) were stably expressed in PSN1 

cells. The cells were plated on tissue culture plastic (w/o col I) or collagen-coated plates (col I) 

for 18 hours and treated with DMSO (lanes 1, 2, 5, 6, 9, 10, 13, 14), 0.1 μM 1NM-PP1 (lanes 3, 7, 

11, 15) or 1.0 μM 1NM-PP1 (lanes 4, 8, 12, 16). DDR1 was immunoprecipitated and the activity 

of DDR1 was measured by blotting with anti-phosphotyrosine. 
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Figure 8. Inhibiting DDR1b reduces pancreatic cancer cell invasiveness. 

Boyden chamber assays were performed with L3.6pl cells expressing shRNA to EGFP or shRNA 

targeting DDR1 or knockdown cells expressing DDR1 gatekeeper mutants. 1.0 μM 1NM-PP1 

inhibited the increased invasion seen in the knockdown cells expressing DDR1b T701A. The p 

values (n=3) in the graph reflect pairwise comparisons using Student’s t-test. NS: not significant. 
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Figure 9. Inhibiting DDR1b reduces collagen I-dependent up-regulation of N-cadherin. 

L3.6pl cells were stably infected with constructs expressing shRNA to EGFP (lanes 1&9) or 

shRNA targeting DDR1 (lanes 2-8, 10-16). The gatekeeper mutants DDR1a-mEGFP T664A 

(lanes 3&7) or DDR1b-mEGFP (lanes 4&8) were stably expressed in the knockdown cells. Cells 

were plated on uncoated (lanes 1-8) or collagen-coated plates (lanes 9-16) for 18 hours and 

treated with DMSO (lanes 1, 2, 3, 6, 9, 10, 11, 14), 1.0 μM 1NM-PP1 (lanes 4, 7, 12, 15) or 10 

μM 1NM-PP1 (lanes 5, 8, 13, 16). Cell extracts were blotted with antibodies for DDR1, E-

cadherin, N-cadherin or β-tubulin.  Asterisks indicate non-specific bands recognized by the 

DDR1 antiserum. 
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Figure 10. Collagen I-dependent up-regulation of N-cadherin can be inhibited by the 

specific DDR1 inhibitor.   

L3.6pl or T3M-4 cells were plated on uncoated or collagen-coated plates for 18 hours and treated 

with DMSO or the specific DDR1 inhibitor 7rh. Cell extracts were blotted for N-cadherin or β-

tubulin. In our previous studies, signaling though both DDR1 and beta1-integrin contributed to 

the collagen-dependent up-regulation of N-cadherin. The response of L3.6pl to collagen is 

strongly dependent upon signaling through the DDR1 arm of the pathway.           
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Chapter IV 

 

Tyrosine513 of DDR1b Plays a Crucial Role in Collagen I-induced Up-regulation of N-

cadherin 
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As we mentioned earlier, due to alternative splicing, DDR1b has an extra 37-residue segment in 

the cytosolic juxtamembrane region, which includes two tyrosines (Y513 and Y520) that are 

lacking in DDR1a. Since DDR1 is a tyrosine kinase, we focused on these tyrosines and 

constructed the DDR1b-mEGFP Y513F, Y520F and Y513F/Y520F (YFYF) mutants. The 

mutants as well as wild-type DDR1b-mEGFP were expressed in L3.6pl cells with endogenous 

DDR1 knocked down (Figure 11a). We found that up-regulation of N-cadherin was fully restored 

only when Y513 was intact.   

Previously we showed that activation of JNK1 is necessary for collagen I-dependent up-

regulation of N-cadherin (41) (Figure 2). Activation of JNK1 is indicated by the phosphorylation 

of T183 and Y185 (106).  In knockdown cells, we found JNK1 was activated in response to 

collagen I when the knockdown cells expressed DDR1b-mEGFP but not when they expressed 

DDR1b-mEGFP Y513F (Figure 11b). This shows that Y513 of DDR1b is critical for collagen I-

induced signaling to JNK1 and the resulting up-regulation of N-cadherin. 

 

 

 

 

 

 

 

 

 



48 
 

Figure 11. Tyr513 of DDR1b is required for collagen I-induced up-regulation of N-cadherin 

and activation of JNK1. 

(a) Derivatives of L3.6pl cells were cultured on uncoated (w/o col I) or collagen-coated (col I) 

plates for 18 hours. Lysates were run on SDS gels and then blotted for DDR1, E-cadherin, N-

cadherin or β-tubulin. Cells were infected with viral constructs expressing an shRNA targeting 

EGFP (lanes 1&7) or one targeting DDR1 (lanes 2-6, 8-12). Cells with DDR1 stably knocked 

down were then infected with viral constructs encoding wild-type or mutant DDR1b (lanes 3-6, 

9-12) fused to mEGFP. Asterisks indicate non-specific bands recognized by the DDR1 antiserum. 

(b) The collagen I-induced activation of JNK1 was examined in the L3.6pl cell lines. Cells 

expressing an shRNA targeting DDR1 (lanes 2-7, 9-14) were infected with constructs encoding 

wild-type or mutant forms of DDR1b fused to mEGFP (lanes 3-7, 10-14) and cultured on 

uncoated (w/o col I) or collagen-coated plates (col I) for 18 hours. Lysates were run on SDS gels, 

and then blotted for JNK1 and phospho-JNK (Thr183/Tyr185). As a positive control for phospho-

JNK, L3.6pl cells expressing an shRNA targeting EGFP were treated with anisomycin (25 μg/ml 

for 30 minutes) activating all the isoforms of JNK, which are recognized by the phospho-JNK 

antibodies. 
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Chapter V 

 

Shc1 Interacts with Y513 of DDR1b through Its Phosphotyrosine Binding (PTB) Domain 

and the Interaction is Necessary for the Up-regulation of N-cadherin 
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Since Y513 is responsible for the collagen-I activated signaling pathway, we sought to determine 

which protein interacts with this residue to mediate the downstream signaling. Y513 of human 

DDR1 is in the sequence NPAY. Other mammalian species as well as the Xenopus 

(NP_001083540.1) and Zebrafish (XP_009290548.1) orthologues of DDR1 also have the 

sequence NPAY embedded in highly homologous sequences that are encoded by alternatively 

spliced exons (Figure 12).   

Shc1 is a prototypical signaling adaptor with three isoforms (p66, p52 and p46) named according 

to relative molecular weight (107). All three isoforms of Shc1 have a  C-terminal Src Homology 

(SH) 2 domain, which can bind to phosphotyrosine, as well as an N-terminal PTB domain, which 

also binds phosphotyrosine residues including phospho-Y513 of DDR1b (79, 108, 109). The two 

domains are connected by a central collagen homology (CH) 1 region containing consensus 

tyrosine residues that can be phosphorylated and serve as recognition motifs for other signaling 

effectors (110). The three isoforms share the same PTB-CH1-SH2 region and are only different at 

their N-termini. p46Shc1 and p52Shc1 are generated from the same transcript due to translation 

initiation at different start codons, while p66Shc1 is from a transcript initiated from a different 

promoter (111).  

In order to determine if Shc1 interacts with DDR1b in pancreatic cancer cells, we performed co-

immunoprecipitation assays. Only DDR1b-mEGFP was co-immunoprecipitated by antibodies to 

Shc1, and the interaction was collagen-dependent. Mutating Y513 largely prevented the co-

immunoprecipitation (Figure 13). This suggested there was a direct collagen-dependent 

interaction between Y513 of DDR1b and Shc1. In order to determine if Shc1 was involved in the 

collagen I-induced signaling pathway leading to the up-regulation of N-cadherin, we knocked 

down Shc1 in L3.6pl cells with 4 different lentiviral shRNA targeting the 3’UTR, which is 

common to all the transcripts (Figure 14a). We found that up-regulation of N-cadherin in 

response to collagen I was eliminated by knocking down Shc1 (Figure 14b). We introduced  
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Figure 12. The NPAY sequences within the cytosolic juxtamembrane regions of DDR1b are 

highly homologous.    

The extra 37 amino acids of human DDR1b are aligned with those of other species (XENLA = 

Xenopus laevis; DANRE = Danio rerio (zebrafish)). The NPAY sequences are in red. The amino 

acid sequences were aligned with UniProt. 
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SP|Q08345|DDR1_HUMAN    ALLLSNPAYRLLLATYARPPRGPGPPTPAWAKPTNT-Q 541 
SP|Q03146|DDR1_MOUSE    ALLLSNPAYRLLLATYARPPRGPGPPTPAWAKPTNT-Q 539 
TR|E1BBP4|E1BBP4_BOVIN  ALLLSNPAYRLLLATYARPPRGPGPPTPAWAKPTNT-Q 544 
TR|Q6P9I0|Q6P9I0_XENLA5 ALLLNNPAYELLLTTYSRPITEHGGLQ---AKPVN--- 573 
TR|E7F3X9|E7F3X9_DANRE  ALLLNNPAYHLLLSDLTHGPNRLTNCHSQQEKPLNLSQ 583 
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Figure 13. Shc1 interacts with Y513 of DDR1b in pancreatic cancer cells.  

L3.6pl cells were infected with viral shRNA constructs targeting EGFP (lanes 1&8) or DDR1 

(lanes 2-7 and 9-14). The DDR1 knockdown cells were then infected with viral constructs 

encoding various forms of DDR1 fused to mEGFP (lanes 3-7, 10-14). Endogenous Shc1 was 

immunoprecipitated, and the immunoprecipitates were blotted with antibodies to DDR1 or Shc1. 

The amount of DDR1 in the lysates is shown in the bottom panel. In some experiments, lysates of 

cells expressing DDR1-mEGFP fusion proteins had a protein migrating at the position of 

endogenous DDR1. However, these proteins only show collagen-dependent association with Shc1 

if the full-length fusion protein does, suggesting they are not endogenous DDR1. An antibody 

against GFP did not recognize these bands but detected bands at the size expected for mEGFP 

(data not shown).  These data are consistent with cleavage of the mEGFP tag from the fusion 

proteins. 
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Figure 14. DDR1b up-regulates N-cadherin through Shc1. 

(a) Shc1 was knocked down in L3.6pl cells with 4 different shRNAs targeting the 3’UTR (shShc1 

991, 997, 208, 434). shRNA targeting EGFP was used as a control. The three major protein 

isoforms of Shc1 (p66, p52 and p46, see Figure 16a) were detected. (b) Cells expressing shRNA 

targeting EGFP as well as Shc1 knockdown cells were cultured on uncoated (w/o col I) or 

collagen-coated plates (col I) for 18 hours. Lysates were run on SDS gels and blotted for N-

cadherin or β-tubulin. Cells expressing shRNAs 208 and 434 were selected for further 

experiments. 
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p46Shc1, p52Shc1 or p66Shc1 into Shc1 knockdown cells and found that all three isoforms could 

rescue the up-regulation of N-cadherin induced by collagen I (Figure 15). 

Point mutations have been identified that inactivate the PTB and SH2 domains of Shc1 (107).  

Using the amino acid numbers from mouse p52Shc1 (AAC52146.1), R175Q inactivates the PTB 

domain and R397K inactivates the SH2 domain (112). Phosphorylation of Y239/Y240 and Y313 

of Shc1 is important in binding the SH2 domain of another adaptor protein Grb2 (113).  We 

reintroduced 3X FLAG-tagged wild-type or mutated mouse p52Shc1 (R175Q, R397K, Y313F 

(mutant 1F), Y239F/Y240F (mutant 2F), Y239F/Y240F/Y313F (mutant 3F)) into L3.6pl cells 

with endogenous Shc1 knocked down, and found that only the PTB domain of Shc1 is necessary 

for collagen I-dependent up-regulation of N-cadherin. Neither inactivation of the SH2 domain nor 

mutation of the tyrosine residues prevented up-regulation of N-cadherin (Figure 16b). Since Y513 

of DDR1b is within the Shc1 PTB domain consensus binding motif LLSNPAY (114), these 

results further support that up-regulation of N-cadherin induced by collagen I is mediated by 

interaction between Y513 of DDR1b and the PTB domain of Shc1.  
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Figure 15. All three isoforms of Shc1 rescued collagen I-dependent up-regulation of N-

cadherin. 

Cells expressing shRNA constructs targeting Shc1 (lanes 2-9, lanes 11-18) were stably infected 

with viral constructs encoding one of the isoforms of Shc1: p46Shc1 (lanes 4, 7, 13, 16), p52Shc1 

(lanes 5, 8, 14, 17), or p66Shc1 (lanes 6, 9, 15, 18). Cells were cultured on uncoated (w/o col I) or 

collagen-coated plates (col I) for 18 hours. Cell extracts were blotted with antibodies for N-

cadherin or β-tubulin. 
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Figure 16. A functional PTB domain of Shc1 is necessary for collagen I-induced up-

regulation of N-cadherin. 

(a) Schematic representation of p66Shc1, p52Shc1 and p46Shc1. In mouse p52Shc1 

(AAC52146.1) R175Q inactivates the PTB domain and R397K inactivates the SH2 domain. 

Y239/Y240 and Y313 are consensus sites for phosphorylation-dependent binding to scaffold 

proteins such as Grb2. (b) L3.6pl cells were infected with shRNAs targeting either EGFP (lanes 

1&9) or Shc1 (shShc1 208, lanes 2-8, 10-16). The Shc1 knockdown cells were then infected with 

various constructs of mouse p52Shc1.  Constructs labeled with “YF” have one or more Y residues 

mutated to F. YF indicates Y313F; 2YF indicates Y239F/Y240F; and 3YF means mutation of all 

three residues. The cells stably expressing these constructs were then cultured on uncoated (w/o 

col I) or collagen-coated plates (col I). Cell extracts were blotted with antibodies for N-cadherin 

or β-tubulin.  Only inactivation of the PTB domain prevented collagen-dependent up-regulation 

of N-cadherin.   
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Chapter VI 

 

In the Collagen I-induced Up-regulation of N-cadherin Shc1 Interacts with Pyk2 
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In the collagen I-induced up-regulation of N-cadherin signaling pathway, we have shown that 

Proline-rich tyrosine kinase 2 (Pyk2) is downstream of DDR1 (41). The structure of Pyk2 

includes an N-terminal protein 4.1, ezrin, radixin, moesin (FERM) domain, a central kinase 

domain, two proline rich motifs (PR1, PR2), and a C-terminal focal adhesion targeting (FAT) 

domain (Figure 21a) (115, 116). Using endogenous proteins in L3.6pl cells, we observed collagen 

I-dependent association between DDR1 and Pyk2 (Figure 17a, lanes 1 and 8).  Using L3.6pl cells 

with endogenous DDR1 knocked down, we showed that Y513 of DDR1b is necessary for the 

collagen I-dependent co-immunoprecipitation of DDR1b and Pyk2 (Figure 17a).   

In order to determine if Shc1 provides the connection between endogenous DDR1 and Pyk2, we 

performed co-immunoprecipitations with an antibody to Shc1 using lysates from L3.6pl cells. We 

found the interaction between endogenous Shc1 and Pyk2 was detectable even in the absence of 

collagen, but exposure to collagen dramatically enhanced the interaction (Figure 17c, lanes 1 and 

8).  In addition, Pyk2 that co-immunoprecipitated with Shc1 following exposure of cells to 

collagen I was activated, as shown by an increased signal with anti-phosphoY402 antibodies. We 

also observed that Y513 of DDR1b is necessary for the strong association between Shc1 and 

Pyk2 (Figure 17c).    

When they were transiently expressed in Phoenix cells (a derivative of HEK293T (89)), Shc1 and 

Pyk2 co-immunoprecipitated with one another. We took advantage of this to more carefully 

characterize the interaction between Shc1 and Pyk2. We transiently expressed the three different 

isoforms of mouse Shc1 together with wild-type rat Pyk2 (NP_059014, 1009 aa, with a C-

terminal myc tag) or the Pyk2 mutants Y402F and K457A (kinase dead, (117)) in Phoenix cells 

(Figure 17b).  Phosphorylation at Y402 of Pyk2 provides a binding site for the SH2 domain of 

Src-family tyrosine kinases. The recruitment of Src-family kinases leads to phosphorylation of 

Y579 and Y580 within the activation loop, which increases Pyk2 kinase activity (118-120).  
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We found that all three Shc1 isoforms interact with Pyk2 (Figure 17b), which is consistent with 

our earlier finding that all three isoforms of Shc1 rescue collagen-dependent up-regulation of N-

cadherin (Figure 15). The interaction of Shc1 with full-length Pyk2 was not dependent on Y402 

but was dependent on the kinase activity of Pyk2 (Figure 17b). We also tested a rat Pyk2 

construct with L176A/Q177A mutations in the FERM domain that disrupt the interaction of Pyk2 

with calmodulin (121) and found Shc1 interacted with this mutant (not shown) suggesting that 

calcium signaling is not playing a major role in the collagen-dependent interaction between Shc1 

and Pyk2.   

We transiently expressed Pyk2 and 3X FLAG-tagged wild-type or mutated mouse p52Shc 

(R175Q, R397K, Y313F, Y239F/Y240F, Y239F/Y240F/Y313F) in Phoenix cells and performed 

co-immunoprecipitations (Figure 17d). We found that all the mutated forms of p52Shc1 

interacted with Pyk2. Thus we ruled out the possibilities that Pyk2 interacts with the PTB or SH2 

domains of Shc1. In addition, the interaction between Pyk2 and the 3F mutant of Shc1 strongly 

suggests the interaction between Shc1 and Pyk2 is not mediated by Grb2, since Grb2 is known to 

couple to one or more of these sites. We do not know why kinase-dead Pyk2 failed to bind Shc1, 

especially since further mapping (see below) showed the kinase domain itself was not needed for 

the interaction between Shc1 and Pyk2. We also observed a significant signal for phosphorylated 

Y402 when Phoenix cells expressed the kinase-dead mutant. Even though it is commonly thought 

to be an autophosphorylation site, these data suggest endogenous tyrosine kinases can 

phosphorylate Y402 in the kinase-dead construct. One candidate is endogenous Pyk2, although 

Phoenix cells express relatively low levels of endogenous Pyk2 (Figure 18). The signal with anti-

phosphoY402 seen in cells expressing the Y402F mutant is probably due to endogenous Pyk2 

expressed by Phoenix cells. Other likely candidates are the Src-family kinases (120).  
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Figure 17. DDR1b and Shc1 interact with Pyk2, and collagen-dependent signaling via 

DDR1b strengthens the interaction. 

(a) L3.6pl cells were infected with viral constructs encoding shRNAs targeting either EGFP 

(lanes 1&8) or DDR1 (lanes 2-7, 9-14). The DDR1 knockdown cells were then stably infected 

with viruses encoding various DDR1 constructs (lanes 3-7, 10-14). Cells were cultured on 

uncoated (w/o col I) or collagen-coated plates (col I) for 18 hours. DDR1 was 

immunoprecipitated and the immunoprecipitates were blotted with antibodies to Pyk2 or DDR1.  

Pyk2 exhibits collagen-dependent association with DDR1 that requires Y513.  (b) p46Shc1 (lanes 

1-3), p52Shc1 (lanes 4-6) or p66Shc1 (7-9) as well as either wild-type Pyk2 (lanes 1, 4, 7), Pyk2 

Y402F (lanes 2, 5, 8), or Pyk2 KA (kinase dead, lanes 3, 6, 9) were transiently expressed in 

Phoenix cells. Immunoprecipitations were performed with an antibody against Shc1, and the 

immunoprecipitates were blotted with antibodies to Pyk2 or Shc1. As shown in the bottom two 

panels, cell lysates were blotted for total Pyk2 and phospho-Pyk2 (Tyr402). (c) L3.6pl cells 

expressing the same constructs as (a) were cultured on uncoated (w/o col I) or collagen-coated 

plates (col I) for 18 hours. Shc1 was immunoprecipitated and the immunoprecipitates were 

blotted with antibodies to Pyk2 or phospho-Pyk2 (Tyr402). The amount of endogenous Pyk2 in 

the lysates is shown in the bottom panel.  The collagen-dependent association of Shc1 with Pyk2 

requires Y513 of DDR1b. (d) Wild-type Pyk2 (lanes 1-7) as well as various p52Shc1 constructs 

tagged with 3X FLAG (lanes 1-6) were transiently expressed in Phoenix cells. 

Immunoprecipitations were performed with antibody against FLAG, and the immunoprecipitates 

were blotted with antibodies to Pyk2 or Shc1. The amount of total Pyk2 in the lysates is shown in 

the bottom panel.   None of the mutations altered the association of Shc1 with Pyk2. 
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Figure 18. Expression levels of Pyk2 and Shc1 in different cell lines.  

(a) Cell extracts from parental L3.6pl, T3M-4, BxPC-3 and Phoenix cell lines were blotted with 

antibodies to Pyk2, Shc1 or β-tubulin as a loading control. (b) Pyk2 and p52Shc1 were transiently 

overexpressed in Phoenix cells. Cell extracts from these cells as well as parental Phoenix cells 

were blotted with antibodies for Pyk2, Shc1 and β-tubulin. 
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Chapter VII 

 

A Short Sequence in the Central Domain of Shc1 is Necessary for the Interaction with the 

Proline-rich Region of Pyk2 

 

 

 

 

 

 

 

 

 

 



71 
 

Since neither the PTB nor SH2 domains of Shc1 are needed for its interaction with Pyk2, we 

made a series of truncated mouse p46Shc1 constructs (Figure 19a). We expressed Pyk2 and 

mouse 2X HA-tagged wild-type or truncated p46Shc1 (T1, T2, T3, T4, T5, T6, T7) in Phoenix 

cells and performed co-immunoprecipitations with an antibody against the HA tag (Figure 19b). 

We found that neither T1 nor T3 interacted with Pyk2 but T7, as well as the longer constructs, did. 

This indicates that interaction of mouse Shc1 with Pyk2 requires the sequence RPTLPSAQMS.  

Since the sequences of mouse and human Shc1 differ in this region (Figure 19a), we prepared 

truncated human Shc1 constructs and found the same region of human Shc1 was also required for 

the interaction between human Shc1 and Pyk2 (Figure 20).   

We then transiently expressed different truncated Pyk2 constructs together with wild-type 

p46Shc1 in Phoenix cells to identify which region of Pyk2 interacts with Shc1 (Figure 21a). Co-

immunoprecipitation was performed, and we found that amino acids 700-840 were necessary and 

sufficient for Pyk2 to interact with Shc1 (Figure 21b).  This region contains 42 amino acids (aa 

739-780) encoded by an alternatively spliced exon.  The shorter Pyk2 isoform thus encodes 967 

amino acids (122, 123). We inserted a mouse EST encoding amino acids 635-967 of the shorter 

isoform of Pyk2 into pEGFP-C2. Transient expression of this construct with p52Shc1 showed the 

two proteins still interacted (Figure 22).  Thus Shc1 will interact with either isoform of Pyk2.  

We tested if the interaction between Shc1 and Pyk2 is direct. We inserted a fragment encoding 

amino acids 700-840 of rat Pyk2 into pGST-Parallel and truncations T3 and T5 of mouse 

p46Shc1 into pMPB-Parallel (96) and purified the fusion proteins from E. coli. We incubated the 

two fusion proteins together but found no evidence for a direct interaction (Figure 23a). Using 

transient transfections, we then co-expressed Pyk2, p52Shc1 and either Grb2, CrkII or Nck1 in 

Phoenix cells to determine if one of these scaffolds could mediate the interaction between Shc1 

and Pyk2.  We found no evidence that one of these scaffolds serves to link Shc1 with Pyk2 

(Figure 23b).    
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Overall, the interaction between Pyk2 and Shc1 requires a portion of the proline-rich region of 

Pyk2 and a small region in the central linker of Shc1 that has not previously been identified as 

interacting with a partner protein.  The interaction between Shc1 and Pyk2 is not mediated by any 

of the common adaptors that function downstream of receptor tyrosine kinases.   
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Figure 19. A short segment of the central domain of Shc1 is necessary for the interaction 

with Pyk2. 

(a) Shown are schematic representations of the p46Shc1 constructs (p46Shc1, T1-T7). Numbers 

on the right represent the last amino acid of the truncated protein using the amino acid numbers of 

mouse p52Shc1 (NP_035498.2). Portions of the sequences of mouse and human Shc1 are aligned 

and the boundaries of truncations T3, T6 and T7 are shown. The amino acids necessary for 

human and mouse Shc1 to interact with Pyk2 are underlined. (b) Wild-type Pyk2 (lanes 1-13) as 

well as various p46Shc1 constructs tagged with 2X HA (lanes 1-3, 5-8, 10-12) were transiently 

expressed in Phoenix cells. Immunoprecipitations were performed with antibody against HA, and 

the immunoprecipitates were blotted with antibodies to Pyk2 or HA. The amount of total Pyk2 in 

the lysates is shown in the bottom panel.      
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Figure 20. Human truncated p46Shc1 mutants T6 and T7 also interact with Pyk2.  

Wild-type Pyk2 as well as mouse wild-type p46Shc1 (Msp46Shc1), human T6 or T7 p46Shc1 

truncated mutant (HuT6 or HuT7) constructs tagged with 2X HA were transiently overexpressed 

in Phoenix cells. Immunoprecipitation was performed with antibody against HA, and the 

immunoprecipitates were blotted with antibodies to Pyk2 or HA. The amount of total Pyk2 in the 

lysates is shown in the bottom panel. 
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Figure 21. The proline-rich region of Pyk2 interacts with Shc1.  

(a) Schematic representations of wild-type rat Pyk2 and the various constructs are shown. The 

FERM, kinase and FAT domains are indicated.  ASE represents the amino acids encoded by the 

alternatively spliced exon.  PR1 and PR2 indicate proline-rich sequences. All the Pyk2 constructs 

were N-terminally tagged with GFP (thin box). (b) Wild-type p46Shc1 tagged with 2X HA (lanes 

1-6) as well as various Pyk2 constructs (lanes 1-12) were transiently expressed in Phoenix cells. 

Immunoprecipitations were performed with an antibody against HA, and the immunoprecipitates 

were blotted with antibodies to GFP or HA. The amount of total Pyk2 variants in the lysates is 

shown in the bottom panel.  Amino acids 700-840 of Pyk2 are necessary and sufficient for the 

interaction with Shc1.   
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Figure 22. The shorter isoform of Pyk2 interacts with Shc1. 

Pyk2 (full-length rat Pyk2) or Pyk2 short (mouse EST encoding amino acids 635-967 of the 

shorter isoform of Pyk2) was transiently expressed in Phoenix cells with or without wild-type 

p52Shc1 tagged with 3X FLAG. Immunoprecipitations were performed with an antibody against 

FLAG, and the immunoprecipitates were blotted with antibodies to Pyk2. The amount of total 

Pyk2 isoforms in the lysates is shown in the bottom panel.   
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Figure 23. The interaction between Shc1 and Pyk2 is not direct.  

(a) GST-Pyk2’ (amino acids 700-840 of rat Pyk2 N-terminally tagged with GST) and truncations 

T3 and T5 of mouse p46Shc1 (see Figure 19a) N-terminally fused with Maltose Binding Protein 

(MBP) were purified from lysates of E. coli (input). Purified GST-Pyk2’ was incubated with 

glutathione Sepharose beads.  The washed beads were then incubated with buffer alone or with 

purified MBP-T3 or MBP-T5, pelleted, washed and solubilized in SDS sample buffer.  The SDS-

PAGE gel was stained with Coomassie Blue. GST-Pyk2’ did not interact with MBP-T5, 

suggesting the interaction between Shc1 and Pyk2 is not direct. (b) Several candidate scaffolds 

that could mediate the interaction between Shc1 and Pyk2 were tested, but none promoted the 

interaction.  Full-length rat Pyk2, as well as 3X FLAG-tagged mouse p52Shc1 in combination 

with one of the scaffold proteins Grb2, CrkII, or Nck1 (all human), were transiently expressed in 

Phoenix cells. Immunoprecipitations were performed with an antibody against Shc1, and the 

immunoprecipitates were blotted with antibodies to Pyk2 or Shc1. The amount of total Pyk2 in 

the lysates is shown in the bottom panel.  None of the scaffold proteins increased the association 

between Shc1 and Pyk2. 
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Chapter VIII 

 

Discussion and Future Directions 
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Despite progress made in cancer biology and the development of new therapeutic strategies, the 

prognosis of patients with pancreatic cancer remains poor. Since EMT is important in the 

progression of pancreatic cancer, combining standard chemotherapy with inhibitors of EMT may 

hold some promise (39).  Pancreatic cancer is characterized by extensive deposition of collagen I 

which can initiate EMT through activating DDR1 (81). Thus, targeting collagen I-induced EMT 

through inhibiting DDR1 may be a therapeutic option in pancreatic cancer.  

To determine if the kinase activity of DDR1 was needed for collagen-dependent up-regulation of 

N-cadherin, we used the approach pioneered by the Shokat laboratory (103). We found when its 

gatekeeper residue was mutated to Ala, DDR1 retained collagen-dependent kinase activity and 

that 1NM-PP1 inhibited the collagen-dependent activation of mutant but not wild-type DDR1 

(Figure 7). Specifically inhibiting the kinase activity of the gatekeeper-mutant form of DDR1b 

with 1NM-PP1 inhibited collagen-dependent cell migration as well as collagen-dependent up-

regulation of N-cadherin (Figure 8&9). Recently, small molecule inhibitors specifically targeting 

the kinase activity of DDR1 have been developed (104, 105).  Importantly, the DDR1-specific 

inhibitor 7rh (124) inhibited collagen-I induced N-cadherin up-regulation in pancreatic cancer 

cells (Figure 10). We have shown that signaling through both beta1-integrins and DDR1 

contributes to collagen-dependent up-regulation of N-cadherin (41).  Thus, inhibiting only the 

DDR1 arm of the pathway would typically be expected to only partially block the up-regulation 

of N-cadherin.   

Knocking down DDR1 in lung cancer cells reduced cell survival, homing, and colonization in 

bone metastasis (125). In K-Ras-mutant lung cancers, Ambrogio et al. (2016) showed that 

combining 7rh to inhibit DDR1 with a Notch inhibitor was effective (126).  In addition Ali-

Rahmani et al. have shown inhibiting DDR1 with 7rh in combination with an immunotoxin 

caused shrinkage of tumor xenografts (127). Aguilera et al. (128) used the KIC mouse model of 

pancreatic cancer to argue for the importance of collagen-dependent signaling through DDR1 in 
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their studies of anti-VEGF therapy. In our studies, we showed a strong correlation exists between 

the expression of DDR1 and N-cadherin in primary and metastatic pancreatic cancer tissues 

(Figure 4). However, the roles played by signaling through DDR1 in the progression of pancreatic 

cancer are not well characterized. In future studies it will be important to determine how effective 

specific inhibitors of DDR1 (such as 7rh) are in treating mouse models of pancreatic cancer.  

Such studies have been initiated with the KIC model (129) and are planned for the KPC model 

(130). 

In studies with pancreatic cancer-derived cell lines, we previously found that activating DDR1 

initiates a pathway leading to the up-regulation of N-cadherin and that Pyk2 is a downstream 

effector (41). In the experiments described here, we extended this work and found that up-

regulation of N-cadherin was due to activation of the specific isoform DDR1b (Figure 6).  After 

DDR1b is activated by collagen, Shc1 via its PTB domain is recruited to Tyrosine 513 of DDR1b, 

leading to the up-regulation of N-cadherin (Figures 11, 13-16). Our data suggests Shc1 is 

associated with Pyk2 even before the activation of DDR1, perhaps because of signaling through 

other receptor tyrosine kinases.  However, the activation of DDR1 significantly increases the 

association between Shc1, Pyk2 and DDR1, resulting in the activation of Pyk2 (Figure 17).   

Neither the SH2 domain nor any of the well-characterized tyrosine phosphorylation sites of Shc1 

are necessary for its interaction with Pyk2 or for the collagen-dependent up-regulation of N-

cadherin (Figures 16b&17d). Although Pyk2 Y402F interacts with Shc1, the kinase-dead mutant 

(K457A) of Pyk2 does not (Figure 17b). This result is somewhat surprising since the region of 

Pyk2 that interacts with Shc1 is in between the kinase and FAT domains.  This region of Pyk2 

has two proline-rich sequences but does not itself contain a recognizable domain.  

Faure et al. (95) mapped several activities, such as nuclear accumulation of Pyk2 to the same 

region we identified.  However, they found serine phosphorylation in the alternatively-spliced 
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region played a role (95).  Thus in their studies, the shorter isoform of Pyk2 lacked the activities 

while we found the shorter isoform of Pyk2 still interacts with Shc1.  

Our data suggest inhibiting Pyk2 may prevent the DDR1-dependent up-regulation of N-cadherin.  

Pyk2 knockout mice are viable and fertile (131) while knocking out FAK results in embryonic 

lethality (132), suggesting the selective inhibition of Pyk2 may have therapeutic advantages.  In 

this regard, it is notable that recently inhibitors with strong selectivity for Pyk2 over FAK have 

been identified (133).    

Using fusion proteins purified from E. coli, we showed the interaction between Shc1 and Pyk2 is 

probably not direct (Figure 23a). The short stretch of amino acids we identified in mouse and 

human Shc1 has a PxxP sequence (Figure 19), suggesting that an adaptor with 2 or more SH3 

domains (134) could bridge Shc1 with the proline-rich sequences in Pyk2. We tested several 

candidate adaptors (Grb2, CrkII or Nck1), but none enhanced the association of Shc1 with Pyk2 

(Figure 23b).  In this context, it is worth noting that the PxxP motif in human and mouse Shc1 is 

not conserved in some mammalian species, plus the context of the PxxP in mouse and human 

Shc1 does not conform well with known consensus SH3-binding sequences (135). The details of 

how Shc1 interacts with Pyk2 are the subject of ongoing studies. It is important to note the region 

we identified in Shc1 is not conserved in Shc2, Shc3 or Shc4 (Figure 24) suggesting other family 

members cannot substitute for Shc1. 

In summary, this study is the first to report that the b isoform of DDR1 mediates collagen-

dependent up-regulation of N-cadherin in pancreatic cancer and the adaptor protein Shc1 is 

necessary in this process. Using an orthotopic model, we have previously shown a cyclic peptide 

N-cadherin antagonist suppresses pancreatic cancer progression (70). Since it may be 

advantageous to inhibit the up-regulation of N-cadherin rather than inhibit N-cadherin itself, we 
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will pursue using the kinase inhibitor 7rh in an orthotopic model of pancreatic cancer to 

determine if inhibiting the kinase activity of DDR1 provides any therapeutic benefit.  
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Figure 24.  Alignment of portions of the 4 human Shc sequences.   

Shown are portions of the 4 human Shc proteins in the vicinity of the region we identified (see 

Figure 19. The 10 amino acids we identified in Shc1 are underlined and in bold.  In this region, 

there is no similarity between the family members, suggesting that other family members cannot 

substitute for Shc1 in mediating collagen-dependent up-regulation of N-cadherin. The amino acid 

sequences were aligned with ClustalW.   
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Shc1  GVVDMRLR----------------EGAAPGAAR--PTAPNA-QTPSHLGATLPVGQPVGGDPEVRK 

Shc2  GLVDSRLALTQ---------PCALTALDQGPSP--SLRDAC-SLPWDVGST---GTAPPGDGYVQA 

Shc3  GFLDTRLKPRP---------HAPDTAQFAGKEQ--TYYQGR-HLGDTFGEDWQQTPLRQGSSDIYS 

Shc4  GVSDMRIKVQATEQMAYCPIQCEKLCYLPGNSKCSSVYENCLEQSRAIGNVHPRGVQSQRDTSLLK 
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