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ABSTRACT 

The aim of this thesis is to develop combination therapy of small molecules and miRNAs 

for treating liver fibrosis and pancreatic cancer. New amphiphilic biodegradable polymers capable 

of carrying small hydrophobic molecules and hydrophilic anionic nucleic acids were synthesized, 

characterized and evaluated in vitro and in vivo liver fibrosis and pancreatic cancer mouse 

models.  

In Chapter 1, an overview of liver fibrosis, current treatments and the role of miRNAs in 

liver fibrosis as well as the design of their delivery systems is given. Further, a general introduction 

about pancreatic cancer and role of miRNAs in pancreatic cancer is given. In Chapter 2, small 

molecules GDC-0449 and rosiglitazone were encapsulated into nanoparticles prepared using a 

biodegradable copolymer mPEG-b-p(CB-co-LA) and used for the treatment of common bile duct 

ligation (CBDL) induced liver-fibrotic rats. GDC-0449 and rosiglitazone loaded nanoparticles 

could reverse early stage liver fibrosis by reducing ECM deposition in the liver and inhibiting Hh 

signaling pathway. 

Chapter 3 reports the design of a cationic biodegradable copolymer methoxy 

poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylenecarbonate-graft-dodecanol-graft-

tetraethylene-pentamine) (mPEG-b-PCC-g-DC-g-TEPA) for encapsulation of GDC-0449 into the 

micelle core and complexation of miR-let7b via electrostatic interaction with TEPA. These micelles 

were characterized for particle size, surface morphology, drug loading, and cytotoxicity and 

transfection efficiency in vitro. Micelles containing both these drugs were evaluated in a 

subcutaneous pancreatic tumor model. The combination therapy effectively inhibited tumor 

growth compared to micelles carrying either GDC-0449 or miR-let7b. Immunohistochemical 

analysis of tumor sections revealed decreased tumor cell proliferation and increased apoptosis of 

tumor cells of the animals treated with miR-let7b and GDC-0449 combination.  



 
 

 
 

Chapter 4 describes the use of mPEG-b-PCC-g-DC-g-TEPA copolymer for delivery of 

miR-29b1 and GDC-0449 in CBDL mice. Systemic administration of these micelles into CBDL 

liver fibrotic mice resulted in high concentrations of GDC-0449 and miR-29b1 to the liver cells as 

determined by in situ liver perfusion. We observed a significant decrease in collagen deposition 

in the liver and serum injury markers, leading to improvement in liver morphology and disease 

condition. Combination therapy was effective in providing hepatoprotection, lowering liver injury 

related serum enzyme levels and reducing fibrotic protein markers such as collagen, α-SMA, FN-

1 and p-AKT compared to monotherapy.  

Finally, Chapter 5 summarizes the results of this thesis and gives suggestions for future 

research.  
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CHAPTER 1. DELIVERY AND TARGETING OF MIRNAS FOR TREATING LIVER FIBROSIS 

1.1. INTRODUCTION 

 Liver fibrosis is a histological change caused by liver inflammation. This pathological 

condition originates from liver damage and accompanied by excess accumulation of 

extracellular matrix (ECM) proteins. Causes of liver damage could be diverse including alcoholic 

abuse, hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, metabolic disease, toxins, 

and ischemia-reperfusion (IR) injury [1]. Excess of ECM production in the perisinusoidal 

space (or space of Disse) results in a physical barrier between sinusoidal lumen and 

hepatocytes. Blood flow to hepatocytes is reduced, and liver function gets altered which can 

advance to cirrhosis. Currently, liver transplantation is the only option available to treat cirrhosis, 

which itself suffers from complications such as a complex procedure and limited organ donors. 

In the current situation, reversal of liver fibrosis before reaching the advanced stage of cirrhosis 

is the only possible approach [2].  

 Cessation of the causative agent is the most effective approach to fibrosis regression. 

Removal of excess alcohol consumption, treating viral infection, removing toxins and 

cholestasis are of major importance. Treatment approaches include the inhibition of collagen 

synthesis and abrogation of ECM deposition, stimulation of matrix degradation, modulation of 

hepatic stellate cell (HSC) activation, induction of HSC apoptosis and modulation of immune 

responses at the affected site. Interruption of fibrotic pathways and regulation of gene 

expression is an attractive approach to treat liver fibrosis. Various gene silencing methods used 

for treating liver fibrosis include antisense oligodeoxynucleotides (ODNs), triplex forming 

oligonucleotides (TFOs), small interfering RNA (siRNA), and miRNAs. The use of transgene 

modulating molecule is a highly specific and powerful technique to inhibit aberrant protein 

production, as it works at mRNA levels rather than at protein levels [3]. miRNAs are known to 
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alter gene expression at the post-transcriptional level in many developmental and physiological 

processes, especially in cell death and proliferation. Their expression profiles are different at 

normal and disease conditions and can also serve as diagnostic and prognostic purposes [4]. In 

this review, we will critically discuss the roles of miRNAs in liver fibrosis, current status and 

strategies for utilizing miRNAs as therapeutics to treat liver fibrosis.   

1.2. PATHOGENESIS OF LIVER FIBROSIS  

 In normal injury healing mechanism, there is a balance between production and 

degradation of ECM, but this balance gets disturbed in liver fibrosis. The activation of tissue 

repair process following liver injury and complex cellular and molecular mechanisms of liver 

fibrosis have been well characterized. Local inflammatory responses and oxidative stresses are 

the major contributing factors to onset and progression of liver fibrosis [5]. Excessive production 

of ECM including collagen is the hallmark of fibrosis. ECM consists of collagen type I, II and V, 

laminin, proteoglycans and matricellular proteins. After the chronic liver injury, there is excess 

ECM production compared to its degradation, and there is net deposition of ECM due to the 

reduced activity of matrix metalloprotease (MMPs) in the presence of active forms of tissue 

inhibitors of metalloprotease (TIMPs) [6]. Hepatic fibrosis develops as a result of the progressive 

thickening of fibrotic septa and chemical cross-linking of collagen. Collagen is also known as an 

important mediator of cell survival and proliferation and promotes HSC proliferation in liver 

fibrosis [7]. The collapse of hepatic parenchyma and its substitution with a collagen-rich ECM 

reduces blood supply and associated with the onset of cirrhosis.  

Cirrhosis is the advanced stage of liver fibrosis and is characterized by the replacement 

of liver tissue by unresolvable scar and regenerative nodules. Cirrhosis can lead to 

hepatocellular dysfunction and increased intrahepatic resistance to blood flow and results in 

portal hypertension. Ultimately, liver functions are lost, and there is fluid retention in the 

abdominal cavity called ascites or leads to visceral hemorrhage/encephalopathy [8]. Since 
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cirrhosis is irreversible end-stage disease, its treatment usually focuses on preventing 

progression or liver transplantation.   

 Various cell types such as activated HSCs, portal fibroblasts, bone marrow-derived 

myofibroblast precursors and hepatocytes after epithelial to mesenchymal transition (EMT) are 

considered as sources of ECM in liver fibrosis. However, among all these, HSCs are the main 

ECM-producing cells after liver injury.  HSCs are present in the space of Disse in the liver and 

primarily store vitamin A in the quiescent or normal state.  Damaged hepatocytes and Kupffer 

cells (KCs) release inflammatory cytokines and induce HSCs into the activated state (Figure 

1.1).  After activation, HSCs become proliferative, increase α-smooth muscle actin (α-SMA) 

expression, lose their vitamin-A content, acquire a myofibroblast-like phenotype (MF-HSC) 

 
Figure 1-1. Pathology of liver fibrosis and role of miRNAs. 
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losing their typical star shape and start producing an excess of ECM [9].  Hepatocytes constitute 

the main tissue of the liver and are responsible for metabolism. Upon injury, hepatocytes 

experience high oxidative stress and endoplasmic reticulum stress resulting in lysosomal 

activation and mitochondrial damage leading to apoptosis or necrosis. Myofibroblasts phagocyte 

apoptotic hepatocytes and get activated themselves via NADPH oxidase 2 (NOX2) and the 

JAK/STAT and PI3K/Akt pathways [10].  

 Portal fibroblasts are essential for organ integrity, and their elimination promotes tissue 

necrosis and inflammation. In liver fibrosis, portal fibroblasts get converted into activated 

myofibroblast and contribute to fibrous scar tissue [11]. In portal fibrosis, biliary progenitors (also 

called activated cholangiocytes) proliferate and tend to form small clusters around the bile duct. 

Activation of Hh pathway promotes EMT in cholangiocytes and as a result, they acquired 

migratory phenotype and increased expression of various mesenchymal markers [12]. Upon 

activation, these cells secrete several chemoattractants that attract and activate 

HSCs/myofibroblasts to proliferate and deposit ECM [13,14].  CD4+ T cells with Th2 and Th17 

polarization are the major driver of fibrogenesis.  Th2 produce inflammatory cytokines such as 

IL-4 and IL-13, which stimulate macrophages in the liver [15]. Transforming growth factor beta 

(TGF-β1) and interleukin-6 (IL-6) induce Th17 cells, and they start secretion of IL-17A; which 

acts itself as profibrotic for myofibroblasts and further stimulates inflammatory cells for TGF-β1 

secretion [16]. Regulatory T cells a have a dual function in fibrogenesis; subsets produce TGF-

β1 and promote fibrosis, whereas other release immunosuppressive cytokines IL-10 [17].  

 KCs, which are resident macrophages of the liver, release inflammatory cytokines upon 

liver injury, which activate HSCs. After activation, HSCs starts producing cytokines, which 

stimulate macrophages. On the other hand, macrophages produce profibrotic mediators that 

directly activate fibroblasts, including TGF-β1 and platelet-derived growth factor (PDGF). They 

also propagate antigen-specific T cell responses; secrete MMPs, and TIMPs. As antifibrotic, 
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macrophages remove dead cells and debris by phagocytosis and dampen proinflammatory and 

profibrotic signals and thus play a significant role in the resolution of fibrosis [18]. Dendritic cells 

(DCs) are also implicated in inducing inflammation during fibrosis. DCs proliferate during liver 

fibrosis and start secreting several proinflammatory cytokines including tumor necrosis factor α 

(TNFα) and activate natural killer (NK) cells, cytotoxic T cells, and even HSCs [19].  

 Intra-hepatic inflammatory responses after liver injury play a critical role in the 

development of liver fibrosis. The process involves the recruitment of various cell populations in 

the liver microenvironment including sinusoidal endothelial cells, KCs, and even HSCs. 

Leukocytes are recruited at the site of hepatic injury. After reaching the affected site, they start 

adhering to blood vessels and transmigrate using various adhesion molecules of the integrin 

family, e.g. β2 integrins, and immunoglobulin gene superfamily, e.g. intercellular adhesion 

molecule-1 (ICAM-1). Infiltrated leukocytes and KCs secrete compounds and which can directly 

activate HSCs [20]. Monocytes and macrophages also produce nitric oxide (NO) and 

inflammatory cytokines such as TNFα, which is responsible for HSC activation and excess 

collagen synthesis [21]. KCs express TNF-related apoptosis-inducing ligand (TRAIL) with fas-

ligand and mediate apoptosis in the liver, which further contribute to liver inflammation and 

fibrosis. KCs, as well as hepatocytes also secrete IL-8; which is a potent chemokine responsible 

for recruiting neutrophils, and T cells into inflammatory sites. IL-8 is secreted by cooperative 

interaction of nuclear factor κβ (NF-κβ), activator protein 1 (AP -1), and IL -6 [22,23]. 

 A number of growth factors and cytokines are known to promote liver fibrosis. After liver 

injury, damaged hepatocytes and other surrounding cells in the liver secrete multiple signaling 

molecules and inflammatory cytokines including Hh ligands, TGF-β1, vascular endothelial 

growth factor (VEGF), PDGF-β, ILs, and TNF-α. Hh pathway plays an important role in the 

construction and remodeling of injured tissues and found to be active in liver fibrosis. In the 

presence of Hh, a cell surface transmembrane protein called Smoothened (SMO) gets 
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accumulated and inhibits the proteolytic cleavage of Gli proteins from microtubules. Decreased 

degradation of Gli enables them to accumulate in the cytoplasm and then translocate into the 

nucleus and allows transcription of growth factor family proteins. Activation of Hh pathway plays 

a key role in the transition of quiescent HSCs into myofibroblast and controls this mechanism 

via regulating their metabolism [24,25].  

 TGF-β plays a critical role in the progression of liver fibrosis. TGF-β is produced by KCs 

and HSCs, or establishes it’s autocrine and paracrine loop production and upregulate collagen I 

and II protein expression. TGF-β mediates fibrosis via Smad3 and Smad4 proteins, while this 

signaling is intervened by Smad7. Some studies also conclude that TGF-β enhances collagen 

production via reactive oxygen intermediates in general, and H2O2 in particular. IL-6 is 

overexpressed by HSCs in the injured liver and implied to upregulate TGF-β expression and 

accordingly enhances its fibrogenic action [26-28].   

VEGF is a well-characterized angiogenesis modulator, which is known to be upregulated 

during HSC activation and stimulates cell proliferation, migration, and collagen production [29]. 

Liver sinusoidal endothelial cells (LSECs) are known to secrete TGF-β and PDGF. Increased 

VEGF level in liver fibrosis promotes the growth of LSECs and thereby, increases hepatic levels 

of TGF-β1 [30]. PDGF is a dimeric protein that is one of the most potent mitogens for HSCs. 

PDGF signals via tyrosine kinase receptors PDGFR-α and PDGFR-β and sequentially activate 

Raf-1, MEK and extracellular-signal regulated kinase (ERK). Nuclear translocation of ERK 

phosphorylates transcription factors Elk-1, SAP, and triggers a proliferative 

response. Activated PDGF receptors also trigger phosphatidylinositol 3-kinase (PI3-K) which is 

involved in inflammation and fibrosis [31-33]. PDGF also induces liver fibrosis by expanding the 

population of collagen-producing cells and aid in TGF-β-stimulated ECM production. 

 MMPs are the family of endopeptidases, which are capable of tissue remodeling and 

degradation of all types of ECM proteins. MMPs are secreted by different cell types including 
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fibroblasts, osteoblasts, endothelial cells, macrophages, neutrophils, and lymphocytes in 

response to hormones and cytokines [34]. In the liver, HSCs are the key source of MMPs, and 

their level is regulated by a family of endogenous proteinase inhibitors known as TIMPs. In 

normal liver, the ratio between MMPs and TIMPs plays an important role in ECM turnover. In 

liver fibrosis, MMP level is down due to HSC activation and a net increase in TIMPs, resulting in 

higher ECM production but low degradation. Moreover, TIMP-1 also has an antiapoptotic effect 

on HSCs through BCl-2 pathway and promotes their survival [35]. TGF-β is also known to 

induce TIMP-1 expression, and results in reduced collagen degradation [36].  

NF-κB is a heterodimer of p50 and p65 proteins and regulates inflammation, wound-

healing response, and cell survival in various tissues [37]. NF-κB is an important mediator 

responsible for the activation and survival of HSCs in liver fibrosis. It maintains high Bcl-2 (pro-

survival) expression and decrease BAX and PUMA (pro-apoptotic) expression in HSCs and 

prevents their apoptosis. Tissue transglutaminase (tTG) is an enzyme that catalyzes protein 

cross-linking in liver fibrosis.  NF-kB increases tTG gene expression in liver fibrosis, and this 

enzyme stabilizes the fibrotic bands during hepatic fibrogenesis [38].  

1.3. CURRENT TREATMENT OF LIVER FIBROSIS 

Removing the primary cause is the most effective approach of treating liver fibrosis. 

Alcohol abstinence in patients with alcohol-induced liver fibrosis is recommended. In chronic 

hepatitis C virus (HCV) infection, treatment with antiviral drugs (i.e. ribavirin) to clear viral 

infection is recommended treatment. In obstructive cholestasis, removal of obstructive agent or 

surgery is the main option. This section will discuss various treatment strategies currently being 

explored including the inhibition of HSC activation, induction of HSC apoptosis, reduction of 

collagen production and deposition, a decrease in inflammation, and liver transplantation 

(Table. 1). These treatments are based on small drug molecules, antibodies, oligonucleotides 

(ODNs), siRNA and miRNAs. 
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  Table 1-1. Current anti-fibrotic treatments 

Small Drug 
molecules  

Mechanism  Limitations   Ref. 

Cyclopamine, GDC-
0449 

Hh inhibitor/inhibits HSC 
activation 

Short half-life  [39] 

Colchicine  Anti-inflammatory  Highly toxic [40,41]  

Silymarin Decrease NF-kβ activity, 
inhibit HSC activation/ 
proliferation 

Short half-life, low bio 
availability 

[42,43] 

Rosiglitazone  PPAR-γ agonist, anti-

inflammatory 

Poor water solubility, 
Short half life 

[44]  

Pentoxyfyline  Phosphodiesterase (PDE) 
inhibitor, antioxidant, anti-
inflammatory 

Poor bio-availability [45,46] 

Pirfenidone Decrease TGF-β1 Short half-life  [47] 

 Amiloride Na+/H+ pump inhibitor, 
PDGFR inhibitor, decrease 
oxidative stress 

 [48,49]  

Imatinib  PDGFR inhibitor  Poor water solubility [50,51]  

Ursodeoxycholic acid  Reduce cytotoxicity bile 
acids, and reduce 
inflammatory cytokine  

Not consistent in 
treating fibrosis 

[52-54] 

Farnesylthiosalicylic 
acid 

RAS inhibitor   [55] 

Cytokines     

Cardiotrophin-1  Reduced hepatocellular 
injury and oxidative stress 

 [56] 

Antibodies  Neutralize TIMP-1 Poor in vivo delivery [57] 

 Neutralize TGF-β1 Stability, poor in vivo 
delivery 

[58] 

 Neutralize PDGF- β  [59] 

Peptides and 
hormones 

   

P11 and P12 Decrease TGF-β1 activity Poor in vivo delivery  [60] 

Relaxin Decrease TIMP-1 Poor in vivo delivery [61] 

 

1.3.1. Small Drug Molecules 

Drugs currently being investigated for treating liver fibrosis are Hh inhibitors, TGF-β 

inhibitors, angiotensin inhibitors, endothelin inhibitors, PDGFR inhibitors, anti-inflammatory, and 

peroxisome proliferator-activated receptor (PPAR) agonists. Hh signaling plays a critical role in 

cellular proliferation, migration, differentiation, and the growth of HSCs. In the liver, Hh ligands 

such as Sonic Hh (SHh) and Indian Hh (IHh) are expressed by hepatocytes, bile ductular cells, 
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and HSCs. Quiescent HSCs respond to these ligands and transform into myofibroblasts and 

start producing excess ECM [62]. Hh inhibitors such as cyclopamine and vismodegib (GDC-

0449) have been found effective in treating early stage liver fibrosis (Figure 1.2) in common bile 

duct ligated (CBDL) rats [39]. Realizing the role of activated HSCs in ECM production and liver 

fibrosis, various strategies to inhibit their activation or promote apoptosis are being explored. 

Small molecules such as silymarin, phosphatidylcholine, Vitamin-E, and S-adenosyl-L-

methionine inhibit HSC activation/ proliferation. Inhibiting key signal transduction pathways 

involved in liver fibrogenesis can also be used to treat liver fibrosis. Disrupting TGF-β pathway 

using gene therapy results in decreased collagen production and retard the fibrosis progression. 

Other treatments such as the phosphodiesterase inhibitor (pentoxifylline), Na+/H+ pump inhibitor 

(amiloride), and Ras antagonist (S-farnesylthiosalicylic acid) have also been proven to be 

effective in a rodent model. PPAR-γ agonist keeps HSCs in a quiescent state by blocking the 

profibrotic effects in the liver.  

Loss of these receptors is reported and leads to transdifferentiation of HSCs from the 

retinoid storing state to the ECM-producing myofibroblasts. Thiazolidinediones are PPAR-γ 

agonist that exerts beneficial effects on experimental liver fibrosis. Angiotensin-II mediates and 

exacerbates liver fibrosis through HSC activation and by stimulating TGF-β1 via angiotensin 

type-1 (AT1) receptors. Inhibition of the renin-angiotensin system can also be used as a strategy 

to treat liver fibrosis. Blockade of endothelin-1 type A receptors and administration of 

vasodilators (prostaglandin E2 and nitric oxide donors) have also been reported to exert 

antifibrotic activity in rodents [63,64]. 

Inflammation has a major contribution in the progression of liver fibrosis; therefore, 

various anti-inflammatory drugs are being explored to retard the progression of liver fibrosis. 

Mainly, corticosteroids, colchicine, and vitamin D are shown to be effective in treating hepatic 

fibrosis in animal models [40]. Due to excess deposition of ECM, antifibrotic drugs are unable to 
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efficiently taken up by the liver and activated HSCs and may produce unwanted side effects. 5-

methyl-1-phenylpyridine-2-one (commonly known as pirfenidone) is a small molecule that has 

well-established antifibrotic and anti- inflammatory properties. Pirfenidone has shown to reduce 

the production of fibrogenic mediators such as TGF-β and inflammatory cytokines such as TNF-

α and IL-1β in a variety of fibrotic animal models [47]. Ursodeoxycholic acid (UDCA), also 

known as ursodiol, is one of the secondary bile acids which lower the progression rate of liver 

fibrosis in an early stage. UDCA binds to hepatocytes and exerts cytoprotective effect and 

Figure 1-2. Effect of treatment with nanoparticles containing GDC-0449 on liver 
fibrosis in experimental animals. (A) Masson’s trichrome staining shows increased 
collagen deposition in CBDL rats which is reduced after systemic treatment with GDC 
nanoparticles. (B and C) reduction in expression levels of Hh ligands after GDC 
nanoparticle treatment.   
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reduces local inflammation. It is not an anti-fibrotic agent in the liver; rather it may impede the 

progression of fibrosis in primary biliary cirrhosis via effects on biliary ductal inflammation. A 

peptide hormone relaxin is known to decrease TIMP-1 and TIMP-2 expression in HSCs [61]. 

Decreased expression of TIMP results in degradation of ECM and reduction in deposition of 

interstitial collagen. PDGF-β is a profibrotic stimulus and potential inducer of HSC 

transdifferentiation. PDGF-β overexpression causes liver fibrosis via the TGF-β1 independent 

mechanism. Small molecules imatinib and nilotinib block the tyrosine kinase activity of PDGF 

receptors [50,51]. These molecules also bind to the ATP-binding pocket of Abelson kinase (c-

Abl) which is an important downstream signaling molecule of TGF-β signaling thus blocks two 

major pro-fibrotic pathways. A number of approaches and drug molecules have been applied to 

treat liver fibrosis. The main limitations of these drugs are either low uptake by activated HSCs 

or unwanted side effects. Targeted delivery to HSCs by different researchers has generated 

some encouraging results, but that has to be optimized to be an approved therapy.  

1.3.2. Antibodies  

 Antibodies (Abs) against specific fibrosis causing disease have been studied by various 

researchers. Abs against TIMP-1, TGF-β1, and PDGF-β has been studied for reversing liver 

fibrosis in animal models [57-59]. Simtuzumab is a humanized monoclonal antifibrotic antibody. 

It binds to lysyl oxidase-like 2 (LOXL-2) enzyme, which promotes crosslinking of type-1 

collagen. This Ab acts as an immunomodulator for treating liver fibrosis and is being currently 

tested in clinical trials [65].  

1.3.3. Antisense Oligodeoxynucleotides  

 Antisense ODNs inhibit gene expression at post-transcriptional levels. ODN's bind to 

their target mRNA by the reverse complementarity and inhibit translation either by steric 

blocking of mRNA sequences important for translation or degrade mRNA by RNase H, which is 
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an endonuclease present in abundance in cytoplasm and cleaves only mRNA component of 

RNA: DNA hybrids. Therefore, each ODN can hybridize and degrade multiple RNA molecules 

[66]. The efficiency of ODNs to hybrid with mRNA depends on their physicochemical and 

thermodynamic properties. Minimum 12-15 bases are required to make stable duplex with 

mRNA, and for the practical purpose, ODNs are typically synthesized from 13 to 35 nucleotides 

(nt) in length. Chemical modification of ODNs can be used for enhancing their stability, 

efficiency, and target specificity. Phosphorothioate (PS) ODNs show enhanced stability without 

affecting RNase H activation efficiency. Modification with methyl phosphonate (MP) significantly 

reduces enzyme activation. These observations lead to synthesize ODNs containing nuclease-

resistant MP modifications at the 3’ and 5’ ends while six to eight unmodified or PS-modified 

linkages in the middle portion [67,68]. 

1.3.4. Anti-gene Therapy 

 ODNs can form triple helices with genomic DNA and inhibit gene expression at the 

transcription level, which is advantageous as it blocks repopulation of mRNA. Furthermore, 

mRNA can have variant isoforms and inhibition of translation by ODNs may not be fully efficient. 

The triplex formation is sequence-specific and polypurine: polypyrimidine portion of DNA favors 

stable hybrid formation. Triplex-forming oligonucleotides (TFOs) are of typically 10–30 nt in 

length and bind to the major groove of duplex DNA. TFO can be both polypurine or 

polypyrimidine molecules, and they bind to the purine-rich strand of their target. Inhibition of 

gene transcription through TFO depends on its residence time on its target sequence and its 

stability against nuclease [69]. Some of the limitations of TFO are its inability to target gene 

sequence in condensed chromatin structure and the need of TFO translocation to the nucleus. 

TFO approach has been used and shown to treat liver fibrosis in our laboratory. Panakanti et al. 

used TFO against collagen type α1 (I) and demonstrated inhibition of liver fibrosis induced by 

CBDL in rats [70]. For site-specific delivery of TFOs to HSCs after systemic administration, 
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Yang et al. conjugated mannose 6-phosphate (M6P) to poly(N-(2-hydroxypropyl) 

methacrylamide (HPMA) polymer and then to TFO via GFLG linker. Compared with free TFOs, 

M6P conjugated TFO significantly accumulated in the liver and was mainly taken up by HSCs 

having upregulated M6P receptors in liver fibrotic animals [71]. 

 RNA interference (RNAi) is a specific regulatory pathway that results in gene silencing at 

the post-transcriptional level [72]. Mechanistically, small double-stranded RNAs (siRNA) get 

incorporated into the RNA-induced silencing complex (RISC), where guide strand is used as a 

template to recognize the complementary or near-complementary region of target mRNA by 

RISC. When RISC finds its complementary strand, gene expression is suppressed either by 

degrading or blocking translation of target mRNA. Two proteins, Dicers and Argonaute (Ago) 

have been identified as essential for RNAi or as components of the RISC. Dicers are ∼200 kDa 

proteins complex and contain ATPase/RNA helicase, and Piwi–Ago–Zwille (PAZ) domains, two 

catalytic RNase III domains, and a C-terminal dsRNA binding domain (dsRBD). Among the two 

Dcrs, Dcr-1 process precursor molecules into siRNAs and miRNAs, while Dcr-2 function in 

downstream steps of RNAi. Ago is a ∼100 kDa protein consistently found in all RISC and 

microRNA ribonucleoprotein complex (miRNP) has characteristic PAZ and P-element induced 

wimpy testis (PIWI) domains. Among all Ago proteins, only Ago2 is believed to be responsible 

for mRNA degradation and gene silencing effect. Ago2 has three functional domains, PAZ, 

middle (MID) and PIWI. PIWI has an RNase H domain and performs the cleavage of the target 

mRNA substrates. Guide-strand 5′ monophosphate group tucks in between the MID and PIWI 

domains. Meanwhile, PAZ domain specifically recognizes the guide-strand 3′ dinucleotide 

overhang. This positioning exposes the guide strands “seed region” to complementary target 

mRNA for base pairing. Next base pairing at 10–11 nt correctly orients the scissile phosphate 

between them for cleavage by PIWI domain [73,74].  
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 siRNA is a chemically synthesized short (usually 21bp), double-stranded RNA having a 

well-defined structure with a phosphorylated 5′ end and hydroxylated 3′ ends with two 

overhanging nt. siRNA get incorporated into RISC and its guide strand binds with perfect 

complementary to the target mRNA and degrade it. Within the RISC, mRNA cleavage ATP-

independent and specific between residues base paired to nt 10 and 11 of the siRNA. After 

degradation, cleaved mRNA is released, and a new cycle of target mRNA degradation is started 

using the same guide strand in the RISC.  Therefore, one siRNA molecule once associated with 

RISC can degrade several molecules of target mRNAs. Despite very attractive traits, there are 

some inherent problems associated with siRNA delivery: (1) being negatively charged 

macromolecules poor penetration into the cell membrane; (2) being a nucleotide, it's highly 

susceptible to degradation by RNases; (3) they can cause sequence dependent/independent 

off-target effects; (4) ineffective where target mRNA has mutated sequence, and (5) silencing 

effect is of short duration [75]. To improve stability and reduce off-targeting siRNAs can be 

covalently linked with functional or targeting molecules via either cleavable or non-cleavable 

bond. Zhu et al. conjugated 3′-sense strand of TGF-β1 siRNA to M6P and galactose via 

poly(ethylene glycol) (PEG) spacer to enhance cellular uptake by HSCs and hepatocytes, 

respectively [76].  

 Short hairpin RNA (shRNA) makes a tight hairpin turn and has been developed as an 

alternative RNAi molecule. An external expression vector bearing a short double-stranded DNA 

transcribes shRNA in the nucleus. Depending on the promoter driving their expression, shRNAs 

are transcribed by either RNA polymerase II or III. The shRNA transcript is then processed by 

Drosha, an RNase III endonuclease, which results in pre-shRNA and exported to the cytoplasm, 

wherein it is processed by Dicer (another RNase III enzyme) and forms siRNA, which is then 

incorporated into RISC. Depending on the type of expression vector shRNA can constantly be 

produced in the host cells leading to more durable gene silencing compared to siRNA [77]. 
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Moreover, a shRNA technique is cost effective as an expression vector cost less than the bulk 

manufacturing of siRNA. Cheng et al. used two siRNAs targeting 769 and 1033 start sites of rat 

TGF-β1 mRNA and then converted into shRNA by cloning to enhance TGF-β1 gene silencing 

[78].   

1.4. MICRORNAS 

 miRNAs are small regulatory non-coding RNA molecules of approximately 21-23 nt in 

length, which can modulate gene expression at post-transcriptional level. miRNAs are known to 

affect cell proliferation, apoptosis, inflammation, oxidative stress, and metabolism. Aberrant 

miRNA expression can be a key pathogenic factor in liver fibrosis. Therefore, there is an urgent 

need to understand the mechanisms involved in miRNA dysregulation to treat liver diseases 

[79]. Unlike siRNAs, miRNA do not require perfect base pairing of the seed region with mRNA 

for its degradation, and therefore, one miRNA can target several mRNAs. This is advantageous 

in term of efficiency especially when target mRNA has a mutation or alternative isoforms, but at 

the same time, it can induce off-target effects. This section will discuss the biogenesis, target 

prediction, possible chemical modification and some important deregulated miRNA in liver 

fibrosis [80].  

1.4.1. Biogenesis and Mechanism of Action of miRNAs 

 More than 4000 miRNAs are known so far in the genomes of over 80 species. Multiple 

steps are involved in the process from 200 nt long primary transcripts translated from miRNA 

genes to form mature 19-25nt long miRNA. The majority of primary transcripts of miRNA 

originate from splicing of introns of other protein-coding genes, but miRNAs from the 

independent gene are also known. The primary transcript is in the form of hairpin conformation 

and called pri-miRNAs. This pri-miRNA contains a 5-cap structure and a poly-A tail similar to 

mRNA. These structures are recognized by RNAs III (Drosha) and cleaved into 70-100 
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nucleotide precursor miRNA called pre-miRNAs [81]. Pre-miRNA transcripts are recognized by 

Exportin-5 (Exp5) in the nucleus and transported to the cytoplasm. Exp5 is a nucleocytoplasmic 

factor and a member of karyopherin family that requires a GTP-bound form of Ran GTPase in 

RNA binding and nuclear export. Exp5 recognizes double-stranded RNA binding domain and 

double-stranded RNAs as well as RanGTP, which is present in high levels in the nucleus. This 

trimeric complex of RanGTP: Exp5: pre-miRNA then translocates in the cytoplasm, where RNA 

and Ran are released upon GTP hydrolysis. Exp5 is then recycled to the nucleus by diffusion 

through the nuclear pore complex for another round of transport. The expression level of Exp5 

is a key factor and can affect the RNA-mediated gene silencing. In cytoplasmic Dicer enzyme 

recognizes pre-miRNA and cleaves the hairpin loop to produce mature miRNA duplex. 

Depending on the thermodynamic stability of the ends of the duplex, one strand functions as a 

mature miRNA and another strand is degraded. Within the original duplex, a strand with 

hydrogen bonding at its 5’ end is stabilized and selectively becomes the mature miRNA. 

Usually, miRNA strand having U residue at 5’ end forms less stable base pair (U: G or U: A) 

compared to G:C base pair and most likely the selection criterion for mature miRNA [82]. 

Despite various proposed modes of action, most studied and recognized mode of gene 

silencing by miRNAs is by inhibiting translation. Mature miRNA strand incorporates into RISC. 

RISC complex recognizes its target mRNA, based on the complementarity of different degrees 

as described. Perfect complementarity between a miRNA-target mRNA pair leads to mRNA 

degradation, whereas imperfection in pairing leads to several alternative mechanisms of 

repression including: 

1. Promoting ribosome drop-off  

2. Degradation of the nascent polypeptide 

3. Sequestration of mRNAs in P-bodies or stress granules  

4.  Inhibition of translation initiation 
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5.  Inhibition of translation at a step after translation initiation, and 

6. Deadenylation of mRNA 

In animals, miRNAs repress target protein expression by repressing mRNA translation 

either at the initiation stage or during the elongation phase [83].  

1.4.2. Thermodynamic Properties of miRNAs 

Thermodynamic stability of miRNAs correlates with their ability to induce RNA 

interference. In miRNA molecule, pair mismatches, gaps, and bulges generate low internal 

energy and important for duplex unwinding, strand selection, and RNAi pathway. When pre-

miRNA is processed to mature miRNA, strand instability and sequence asymmetry play a major 

contribution in the selection of sense strand and entry into RISC. miRNA loading into Ago is 

divided into two different steps, physical association, and activation. Activation is the rate-

limiting step of the unwinding process and facilitated by the thermodynamic instability rather 

than structure of the duplexes [84]. Normally, the first base pair of the 5’ antisense terminus is 

most destabilizing elements within the pre-miRNA precursors and is required for the RNAi 

processing. On average, the 5′ region of the antisense strand is less stable than the 5′ terminus 

of the sense strand. While unwinding step by RISC helicase, strand with 5’ low internal stability 

is selectively processed and retained by the RISC. Thus, selective modification of the guide 

strand utilized for loading into RISC for higher efficacy. Elmen et al. designed locked nucleic 

acid (LNA) at 5’ terminus of siRNA sense strand and increased loading of the antisense strand 

[85]. Nucleotides 2–8 from 5’ terminal (known as a seed region) overlap with the 5′-end. Gene 

silencing efficiency of miRNA-is mediated both by stability between seed and target pair and 

stability of 5’ end.  Seed-target duplex stability is the function of the nucleotide sequence, 

whereas the stability in the 5′-terminal is a structural feature [86].  
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miRNA gene silencing can be correlated, with the correlation score ‘miScore’ and 

calculated as follows: 

                                                    

Where,  
Tm 2–8 is the melting temperature (Tm) of the seed-target duplex (positions 2–8),  

miTm 1–5 is Tm value of positions 1–5 of 5′-end of miRNA duplex, and 0.5 is a multiplier coefficient 

as the contribution of miTm 1–5 might be half of Tm 2–8.  

Thus for efficient gene silencing miRNA should have an unstable 5′-end 5-bp duplex and 

a stable 7-bp seed-target duplex.  

Antisense strand thermodynamic stability in the position 9-14 from 5’ terminal also 

affects the functional ability of miRNA. For efficient gene silencing, multiple turnovers of the 

target mRNA release from RISC is a necessary step. Antisense strand 9-14 positions bases 

have low internal stability compared to sense strand bases. Low internal stability of this region in 

the stands may facilitate cleavage of target mRNA for release, and allows the RISC to find the 

next target mRNA [87]. However, it is worth to mention that the thermodynamic stability of seed 

region and target mRNA also reduces the off-targeting effects [88]. G: U base pair in the seed 

region of miRNA are known to decrease miRNA silencing efficacy significantly, although they 

are thermodynamically similar to A: U base pair. G: U wobble base pairs within miRNA behave 

like a mismatch and reduce RISC loading and unwinding [89]. Sequence analyses of miRNAs 

from different species show that a U or an A at the 5’ position of the antisense strand. The 

reason is simply that the mid-domain of Ago2 has a greater affinity for ATP or UTP than CMP or 

GMP. Therefore, A/U nucleotide 5’ terminal influences the incorporation of the guide strand into 

RISC strongly [90]. 

 

 

miScore = T𝐦 𝟐−𝟖 − 0.5 × miT𝐦 𝟏−𝟓                                                (1.1) 
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1.4.3. Target Prediction of miRNA   

Target gene identification of miRNAs is critical for functional analysis. Biological studies 

to predict targets are slow and complicated, because of multiple targeting capabilities. For fast 

prediction of miRNA functions/targets, numerous bioinformatic methods are being used. Some 

of these algorithms including miRanda, TargetScan, Pictar, TargetBoost, and PITA are the gold 

standard before starting any biological assay. Within the RISC, miRNAs form specific base 

pairing with mRNA, which forms the basis for in target recognition algorithms. Normally, 5’ 

region base pairing of the miRNA is considered more important compared to 3’ region. Bases of 

miRNA seed region form a perfect complement with 3’ region of mRNA. Most of the miRNA 

target prediction programs use the same general principles in the development of their algorithm 

and search for targets in the 3’-UTR region of various mRNAs. Base pairing at 3′ region of 

miRNA is considered less important for target prediction [91,92]. The RNAfold program predicts 

the minimum energy of secondary structures and thus pairing probabilities, and the RNAduplex 

program predicts possible hybridization sites within the duplex. One another fact these 

algorithms apply in target predictions is the degree of sequence conservation. It is believed that 

if 3’-UTR sequences of miRNA is conserved in orthologous species, their targets are also 

conserved. This phenomenon provides a useful filter in target prediction [93,94].  

 To begin target scanning one of the most popular algorithms miRanda first retrieves the 

mRNA’s 3’-UTR sequences and finds out maximum complementarity alignments with 5’ UTR of 

mature miRNA. G: C and A: T are assigned +5 score, while G: U is given +2.  The gap opening 

is considered unsuitable for complementarity and given a negative score (-8) and gap 

elongation if any is assigned -2. The complementarity scores up to certain regions depending on 

program and parameters from the miRNA 5’ end is multiplied by a scaling factor of 2. No 

mismatching at positions 2 to 4 at the 5’ end is tolerated, and less than five mismatches 

between positions 3-12; and in the last five positions less than two mismatches of the alignment 
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are considered as a potential target. Based on the alignment and matching scores, the 

algorithm creates a ranking of all non-overlapping hybridization down to some cut-off values. 

The key difference between most of the algorithms is the difference in weight score of certain 

positions in the alignment [95]. Another well-established algorithm TargetScan emphasizes on 

the seed pairing and scan for matching between 2 to 8 positions from the 5’ end of the miRNA 

for perfect Watson-Crick complementarity (G: C or A: U) [96].  

 Thermodynamic properties of the miRNA: mRNA duplex in vivo is another important 

factor which estimates free energy of RNA secondary structure. The stability of base-pairing 

depends on the G:C content of the nucleic acid sequence. However, vertical stacking of bases 

in a sequence-dependent manner also contributes to helix stability and thermodynamic 

properties of the sequence and is the function of its structure [97]. Stability of the predicted 

miRNA: mRNA duplex, is estimated by calculating the free energy of the duplex and checked 

against a threshold value, usually Gibb’s free energy (G)<-17 kcal/mol or G<0-14 kcal/mol 

depending on the type of algorithm being used in miRanda.  

In TargetScan calculated Z score is used to rank the possible target for the miRNA: 

 

Where, 

n is the number of seed matches in the UTR 

GK is the free energy of the duplex for the kth target site  

T is the relative weighting of UTRs binding affinity and the total number of sites. 

Identification of orthologous 3′ UTR mRNA sequences and checking if the potential 

miRNA target site is conserved in other species is another criterion of target prediction. In this 

method, conserved target site between orthologous species is predicted and compared to the 

reference species. For example, if we want to predict target in the human genome, the 

alignment of the target sites is generated in UTR of a human with miRNA UTR of mouse or rat. 

                              𝐙 = ∑ 𝐞−𝐆𝐤−/𝐓𝐧
𝐊=𝟏                                                                               (1.2)    
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The complementary pair’s position of target sites between species must fall within ±10 residues 

in the aligned 3’ UTRs. Conserved target sites sequence between two species must also meet a 

certain threshold value (≥ 90% used for analysis in humans) (Figure 1.3). Based on the 

alignment score, free energy secondarily and after passing the conservation filter, predicted 

target sites for each miRNA are sorted. If more than single miRNA shows targetability, miRNA 

with the highest complementary score and lowest free energy is considered appropriate. An 

important drawback of using this prediction is that miRNAs are present in different 

concentrations at different cell cycles. Many miRNAs may have single binding sites, but do not 

compete because they are never expressed at the same time, thus can result in false negative 

prediction. Algorithm PicTar considers co- direct relation with a number of binding miRNAs 

available at that time [98]. Seed region of miRNA is short and miRNA–mRNA duplexes may not 

Figure 1-3. Representative steps used for miRNA target prediction by computational 
analysis. 
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be entirely complementary, which increases the complexity of gene regulation by miRNA and 

decrease the accuracy of target prediction. There are some reported cases where miRNAs 

regulate target gene independent of base pairing in the seed region. Algorithm program 

determines duplex stability by calculating the threshold free energy. The value of appropriate 

thresholds free energy is difficult to determine because it differs from organisms to organisms. 

At present, we have limited data sets of known free energy of miRNA–mRNA duplexes. 

Moreover, stable binding does not always represent the target genes. 

1.5. DYSREGULATION OF miRNAs IN LIVER FIBROSIS  

Aberrant expression of several miRNAs has recently been implicated in liver fibrosis and 

carcinogenesis. Various genes including CTGF, TGF-β1, PDGF-β, and TIMPs are markedly 

upregulated during hepatic fibrogenesis (Table 1.2). All of these genes can be manipulated by 

different miRNAs, and therefore disease progression can be reversed. Two different 

approaches are being used for delivery and targeting of miRNAs to different cells and organs. 

First, is to increase the level of miRNAs in the target cells using miRNA mimic, and the second 

approach is to block upregulated miRNAs by using anti-miRNA, commonly known as antimiR.  

1.5.1. Anti-Fibrotic miRNA  

This approach uses synthetic ODNs that enhance the expression of a specific miRNA 

which possesses anti-fibrotic properties, but its expression is downregulated upon liver fibrosis. 

After entering the cells, one strand of this anti-fibrotic miRNA mimic is stabilized and get 

associated with the miRISC complex and inhibit the target mRNAs. Liver fibrosis leads to 

downregulation of several miRNAs which target several pro-fibrotic genes post-transcription 

level, and their overexpression decreases liver fibrosis (Figure 1. 4).  
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1.5.1.1. miR-29b  

 Several recent studies have shown that miR-29 levels get significantly decreased by NF-

kB in liver fibrosis, and its downregulation is inversely related to the activation of HSCs. There 

are three members in its family: miR-29a, b, and c. all of these target fibrosis associated key 

genes such as Akt, SP-1, laminin, collagen I and IV. Some studies have shown that 

replenishment of miR-29 family members leads to a significant decrease in collagen I and IV as 

well as phospho-FADD, cleaved caspase-8, 3, Bax, Bcl-2, PARP, and NF-κB expression. These 

results indicate that miR-29a can decrease cholestatic liver injury and fibrosis [99]. 

Table 1-2. Various Anti-fibrotic and pro-fibrotic miRNAs involved in liver fibrosis and 
their targets 

 

Anti-fibrotic miRNA Target Gene Reference 

miR-29b  Akt, SP-1, collagen [100] 

miR-150 C-myb, collagen, α-SMA [101] 

miR132 MeCP2 [102] 

miR- 449  YKL40, NOTCH-1  [103] 

miR-122 P4HA1 [104] 

miR-335 TNC [105] 

miR-15b and miR-16 Bcl-2 [106] 

miR-126 CRK [107] 

miR-19b, miR-101b TGF-β [108,109] 

miR-449a,miR-107 IL-6R, JAK-1 [110] 

miR-200a Nrf2 [111] 

miR-214 CCN2 [112] 

miR-483 PDGF-β and TIMP2 [113] 

miR-195 cyclin E1 [114] 

Profibrotic miRNA   

miR-33a  PPAR-α [115] 

miR-200c  FAP-1 [116] 

miR-34a ACSL1 [117] 

miR-27a, 27b  RXR gene [118] 

miR-21 PTEN/Akt signaling [119] 

miR-221/222 CDKN1B, PPP2R2A [120,121] 

miR-93 and miR-106b c-Myc [122] 

miR-181b p27 [123] 

miR-615 IGF-II [124] 
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1.5.1.2. miR-150  

TGF-β1 suppresses miR-150, which target c-myb expression and inhibits the activation 

of HSCs and LX-2. c-myb is a proto-oncogene, and its activity level is increased in activated 

HSCs. In the influence of c-myb, HSCs gets activated and induces both collagen-I and α-SMA 

[125]. Overexpression of miR-150 in HSCs resulted in the inhibition of cell proliferation and 

reduction in ECM proteins and α-SMA. In another study, miR-150 was shown to target and 

downregulate ECM protein transcription factor Sp-1, without affecting Sp-1’s upstream 

mediators, such as Smad2 and p-Smad2 [99].   

1.5.1.3. miR-132 

 MeCP2 is a fibrosis promoting gene and regulates transdifferentiation of HSCs by 

inhibiting PPAR-γ transcription in hepatic fibrosis. miR-132 binds 3’-UTR of MeCP2 and inhibits 

its translation, and its expression is lost in HSCs upon activation. When miR-132 was incubated 

with myofibroblasts, it represses MeCP2 gene and hence activation [102].  

1.5.1.4. miR-122 

 miR-122 is a liver-specific and most abundant miRNA found in the adult human liver and 

is downregulated in activated HSCs and fibrotic liver. miR-122 targets prolyl 4-hydroxylase 

(P4HA1) which is an enzyme that regulates the maturation of collagen. Overexpression of miR-

122 inhibits the proliferation and activation of HSCs and collagen production [104].  

1.5.1.5. miR- 449  

 miR-449a is an anti-fibrotic miRNA, and its level is downregulated in HCV infection 

mediated liver fibrosis. miR-449a plays as an anti-fibrotic role by targeting YKL40, which is 

upregulated in fibrosis. HCV infection upregulates TNF-α, which eventually increases NF-B 

activity leading to increased inflammatory response and promote cell proliferation in the liver. 
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NOTCH-1 and YKL40 help TNF-α in the induction and nuclear retention of NF-B. Increased 

NF-B transcription factor leads to increased inflammatory response and promotes cell 

proliferation. Overexpression of miR-449a resulted in downregulation of NOTCH-1, and thus 

decreases overall progression of liver fibrosis [103].  

1.5.1.6. miR-335 

 miR-335 is downregulated in activated HSCs compared to non-activated control. miR-

335 targets Tenascin-C (TN-C), ECM glycoprotein, upregulated in liver fibrosis and promotes 

HSC migration and activation via integrin β1. Overexpression of miR-335 resulted in a 

decreased α-SMA and collagen Type-I level by decreasing the expression of TNC [105].  

Figure 1-4. Role of various miRNA in progression as well as attenuation of liver 
fibrosis. 
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1.5.1.7. miR-126 

 v-crk avian sarcoma virus CT10 (CRK) expression increases during HSC's activation 

and has a key role in signaling pathways regulating cell adhesion, proliferation, and migration 

[126]. Gong et al. confirmed that due to overexpression of CRK, there was a low expression of 

miR-126 in activated HSCs. miR-126 directly targets 3'-UTR of CRK and controls the cell shape, 

cell to cell adhesion and locomotion of HSCs. Overexpression of miR-126 after transduction 

with lentiviral vector encoding miR-126 decreased α-SMA and collagen α (1) expression. 

Although miR-126 decreases HSC migration, it did not affect their proliferation [107]. 

1.5.1.8. miR-19b, miR-101, and miR-146a  

Members of the miR-17-92 family and miR-106b-25 clusters play an important role in 

liver fibrosis. Ashley M. Lakner reported miR-17-92 cluster (19a, 19b, 92a) expression levels 

were significantly low in activated HSCs upon transfection with miR-19b, which also resulted in 

significant reduction in TGF-β receptor 2 (TGFBRII) expression. miR-19b also decreased 

SMAD3 expression post transfection and inhibited TGF-β signaling. The overall impact of miR-

19b regulated HSC transdifferentiation and decreased myofibroblast marker α-SMA expression 

[108]. In a study by Tu et al., significant down-regulation of miR-101a and miR-101b was 

observed in the carbon tetrachloride (CCl4)-induced fibrotic liver. Using computational analysis 

TGF-βRI mRNA, and Krueppel-like factor 6 (KLF6) mRNA were found two conserved targets of 

miR-101. miR-101 delivery through lentivirus suppressed liver fibrosis by reducing target genes 

along with collagen, vimentin, SMA , and snail [109]. He et al. investigated the antifibrotic role of 

miR-146a in HSCs and demonstrated that miR-146a targets SMAD4 and therefore, decreases 

profibrotic TGF-β pathway. miR-146a also reduces HSC proliferation and induces HSC 

apoptosis [127].  
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1.5.1.9. miR-107 and miR-449a 

In a study, Sharma et al. reported down-regulation of miR-107 and miR-449a after HCV 

infection in patients. They demonstrated that miR-449a and miR-107 regulate IL-6-mediated 

chemokine (C-C motif) ligand 2 (CCL2) expression and STAT3 phosphorylation by targeting IL-

6R and JAK1. CCL2 expression in HSCs. This regulates HSC chemotaxis to the site of injury 

and promotes HCV-induced liver fibrosis. When hepatocytes were transfected with a construct 

containing IL-6R UTR or JAK1 UTR along with the vector expressing miR-449a or miR-107, 

reduced expression of IL-6R and JAK1 was observed at RNA and protein levels [110]. 

1.5.1.10. miR-200a  

Oxidative stress is known to involve in the activation of HSCs, ECM production, and 

induction of liver fibrosis. Nuclear factor-erythroid-2-related factor 2 (Nrf2) regulate transcripts of 

several antioxidant enzymes including NQO1 (NAD(P) H-quinone oxidoreductase, glutathione 

S-transferases (GSTs), and glucuronosyltransferases Kelch-like ECH-associated protein 1 

(Keap1) negatively regulate (Nrf2) level and thus contribute to oxidative stress during liver 

fibrosis. In normal liver, miR-200 family target Keap-1 factor, and is often found down-regulated 

in liver fibrosis. Yang et al. demonstrated that miR-200a down-regulates Keap1 and ultimately 

results in Nrf2-dependent antioxidant pathways active in HSCs. miR-200a also decreased TGF-

β induced α-SMA expression in HSCs [111].  

1.5.1.11. miR-214 

In fibrotic liver, connective tissue growth factor (CCN2) is activated by TGF-β1, and it 

stimulates connective tissue cell proliferation and ECM synthesis [128]. In HSCs, CCN2 levels 

are high during liver fibrosis, and in inverse relation with miR-214.  miR-214 is transferred to 

neighboring HSCs or hepatocytes via exosomes to keep checking on CCN2, and its level is 

downregulated during fibrosis. Chen et al. when transfected pre-activated mouse HSCs with 
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pLmiR-214, decreased CCN2 mRNA and protein levels along with its downstream markers such 

as α-SMA or collagen α(I) were observed. Although collagen and SMA mRNA is not the direct 

target of miR-214, their levels decreased in a CCN2-dependent manner [112].  

1.5.1.12. miR-483  

miR-483 is down-regulated in HSCs during their activation in liver fibrosis. Fuyuan et al. 

determined the role of miR-483 in vivo using pre-miR-483 overexpressing transgenic mice. 

Compared to normal mice, pre-miR-483 overexpressing transgenic mice inhibited CCl4-induced 

liver fibrosis and showed low expression of collagen and α-SMA. In LX-2 cells, miR-483 

decreased TGF-β induced PDGF-β and TIMP2 expression in vitro and in CCl4 induced fibrotic 

mouse model. Both PDGF-β and TIMP2 are the direct targets of miR-483. Interestingly, 

overexpression of miR-483 induced carcinogenesis in mouse liver by suppressing cytokine 

signaling 3 (Socs3) [113]. 

1.5.1.13. miR-195 

IFNs are immunomodulatory cytokines with antiviral, and cell growth suppression 

effects. IFN-α is known to have antifibrotic properties in the liver [129]. Sekiya et al. reported 

that IFN-β induced miR-195 expression, and otherwise has low expression in normal mouse 

HSCs. miR-195 induction reduces cyclin E1 expression levels while increases p21 thereby 

inhibits cell proliferation by delaying their G1 to S phase. The direct interaction between miR-

195 and cyclin E1 was studied by luciferase reporter activity by cloning two miR-195 target sites 

(497 bp) of the cyclin E1 3′-UTR from LX-2 cells. There was a significant decrease in luciferase 

activity after transfection of LX-2 cells with the miR-195 precursor. These results show the 

antifibrotic role of miR-195 and explain the antifibrotic mechanism of IFNs [114]. 
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1.5.1.14. miR-15b and miR-16 

 Both of miR-15b and miR-16 are downregulated in HSCs upon activation. These 

miRNAs downregulate Bcl-2 gene expression and induce apoptosis of activated HSCs [106].  

1.5.2. Pro-fibrotic miRNAs 

 Aberrantly up-regulated miRNA can cause a significant change in critical biological 

pathways. The inhibition of target miRNA is based on specific annealing with a synthetic 

complementary sequence known as antagomir or anti-miR. An ant-miR is usually 

complementary to the specific miRNA target with either mispairing at Ago2 cleavage site or 

some base modification to inhibit Ago2 cleavage. Studies by various groups have shown that 

modulating miRNA by anti-miR can effectively regulate biological process in liver fibrosis and 

can produce beneficial therapeutic effects.  

1.5.2.1. miR-33a  

 miR-33a with its host gene sterol regulatory element-binding protein 2 (SREBP2) is 

overexpressed in activated Lx-2 cells than in quiescent cells. PPAR-α is one of the predicted 

targets of miR-33a using bioinformatics analysis. Anti-miR-33a significantly increases target 

gene PPAR-α at mRNA and protein levels, suggesting that miR-33a modulates HSC functions 

by targeting PPAR-α. Also, miR-33a activates PI3K/Akt pathway and induces expression of 

ECM through HSCs [115].  

1.5.2.2. miR-200c  

 HCV infection results in the up-regulation of miR-200c, which is in direct correlation with 

increasing growth factors and hormones. HCV infection results in the inhibition of Fas-

associated phosphatase 1 (FAP-1) that regulates the function of oncogenic SRC kinase and 
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upregulates different growth factors. Increased level of miR-200c decreases FAP-1 expression, 

and thus promotes fibrosis by modulating growth factor signaling Src activation [116].  

1.5.2.3. miR-34a  

 miR-34a is upregulated in di-nitrosamine (DMN) induced liver fibrosis. It targets and 

decreases the levels of acyl-CoA synthetase long-chain member 1 (ACSL1) gene. ACSL1 

regulates hepatocellular lipid metabolism and its low-level results in accumulation of high 

intracellular fat, which eventually leads to apoptosis, chronic liver injury and nonalcoholic liver 

fibrosis [117].  

1.5.2.4. miR-27a, 27b 

 In one of the studies, miR-27a and 27b are found up-regulated in HSCs. miR-27a/b 

directly targets receptor retinoid X (RXR) gene and downregulate its expression in fibrosis. 

RXRα is involved in multiple signaling pathways related to cell proliferation and differentiation by 

forming a heterodimer with PPAR-γ. Transfection with anti-miR-27 partly reverses the 

phenotype of activated HSCs [118].  

1.5.2.5. miR-21 

 miR-21 is upregulated in various organ fibrosis including liver fibrosis and plays an 

important role in PDGF-BB-induced liver fibrosis. In a recent study, miR-21 was found to 

regulate PTEN/Akt pathway and promote liver fibrosis [119]. miR-21 also targets Smad7, a 

negative regulator of TGF-β signaling. Overexpression of miR-21 enhances TGF-β signaling 

and leads to increased fibrogenesis [130].  

1.5.2.6. miR-222 

Ogawa et al. reported upregulation of miR-221/222 in human fibrotic patients and fibrotic 

rodent model. There was a direct correlation between miR-221/222 expression level with that of 
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collagen-1. miR-222 was found to target CDKN1B gene [121]. Wen-Jun et al. reported that high 

expression level of miR-222 in activated HSCs, with a direct correlation between miR-222 

expression levels and biliary atresia (BA) disease. Pathology of early BA includes the absence 

of patent extrahepatic bile ducts (EHBD) with inflammation and fibrosis in the hepatic portal area 

and ultimately leading to cholestasis and liver fibrosis in infants. Increased miR-222 expression 

levels target PP2R2A gene and activate the Akt pathway. Phosphorylated Akt inhibits the 

release of mitochondrial cytochrome-c and active caspase-9, thus prevents apoptosis and 

stimulate proliferation of HSCs [120].  

1.5.2.7. miR-93 and miR-106b 

During chronic fibrosis, hepatocytes up-regulate c-Myc expression and consequently 

alters the levels of several miRNAs. Specifically, c-Myc up-regulate MCM7 gene, and miR-106b-

25 cluster as this cluster is embedded in the intron of MCM7 gene. Pineau et al. reported up-

regulation of miR-93 and miR-106b during the development of hepatic cirrhosis, which 

eventually leads to HCC. Target genes of this cluster induce cell proliferation or decreased 

apoptosis and metastasis in hepatocellular carcinoma [122]. 

1.5.2.8. miR-181 

Wang et al. demonstrated significantly high levels of miR-181a and miR-181b in TGF-β1 

treated HSC-T6 cells. miR-181b is a growth regulator and increases S phase of cell cycle, and 

thereby promotes HSC-T6 proliferation. Cyclin-dependent kinase inhibitor 1B (CDNK1B) gene 

encodes a p27 protein that binds to and controls the cell cycle progression at G1 phase by 

preventing cyclin E-CDK2 or cyclin D-CDK4 complex activation. 3’-UTR mRNA of p27 

encompasses binding site for miR-181a and miR-181b. Experimentally, miR-181b, but not miR-

181a, targets p27 and downregulates its endogenous expression in HSC-T6 cells. Moreover, 
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there is an elevated miR-181b expression in the serum of cirrhosis patients. Therefore, miR-

181b can also serve as a biomarker for liver fibrosis and cirrhosis [123].  

1.5.2.9. miR-615 

 Tayebi et al. investigated the role of miR-615 in hepatocellular carcinoma (HCC).  The 

mir-615 level was undetectable in healthy liver tissues, but its expression was up-regulated 

significantly in HCC patient liver tissues. miR-615 represents a scenario where an anticancer 

miRNA only appears in cirrhotic and cancerous tissues. miR-615 showed a significant 

retardation in cellular proliferation and migration effect in HuH-7 and HepG2 cells. Using 

luciferase reporter assay 3’-UTR of IGF-II gene was found the direct target for miR-615-5p, 

which is a potent mitogen frequently overexpressed in HCC [124]. 

1.6. CHEMICAL MODIFICATION OF miRNAs  

miRNAs are not stable molecules and tend to hydrolyze in the acidic or basic 

environment. Moreover, naked miRNAs are susceptible to degradation by various RNases 

present in the serum as well as in the intracellular environment and thus possess very short 

half-life in vivo. However, miRNA can be chemically modified to alter their properties such as 

nuclease resistance, binding affinity, increased cellular uptake and decreased off-target effects 

[131]. Resistance to degradation can be enhanced by chemical modifications in the backbone or 

in the sugar moiety. Type and site selection for modification can pose challenges while 

designing modified miRNAs. Some of the common modifications used for improving the stability 

and potency of miRNAs are:  

1. PS modification includes replacement of non-bridging oxygen atom with sulfur atom.   

2. 2’-O-methyl- (2′-OMe) or 2′-O-methoxyethyl oligonucleotides (2′-O-MEO) 

3. Locked nucleic acid (LNA) oligonucleotides  

4. Peptide nucleic acid (PNA)  
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5. Fluorine derivatives (FANA and 2′-F)  

 Most of these modifications are preferred in the passenger strand or at 3’ end of the 

guide strand to avoid any functionality issue of miRNA. There are certain rules which are 

followed while modifying RNA. The 5’-end of the guide strand is critical for activity, hence cannot 

be modified and should have free hydroxyl or phosphate group. Modification on 3’-end of both 

strands is less prone to efficacy loss and can be modified by various means. 5’-end of the 

passenger strand can be modified with protecting functional groups to reduce enzymatic 

degradation. Ribose sugars of both strands can be modified at 2’ position with halogens or small 

hydrocarbons. Large molecules such as 2’-OMe can only be acceptable in a passenger strand. 

O-methyl groups at 2’ position of the ribosyl ring in the guide strand alter the thermodynamic 

properties of the duplex and reduce off-target effects. With this modification, the binding affinity 

(melting temperature or Tm) of the duplex becomes higher than one without modification [132]. 

3’-Exonucleases are the primary enzymes responsible for ODN degradation in the serum. 2’-

OMe modified miRNA is less susceptible to degradation by these degrading enzymes. On the 

other hand, heavy 2’- OMe modification can abolish RNA potency completely. Pyrimidines in the 

guide strand can be halogenated for increasing the potency of miRNA. The 2’-F modification 

allow more favorable interactions of miRNA with the RISC and dramatically improve the 

efficacy. The combined use of 2′-F pyrimidines with 2′-OMe purines can result in enhanced 

stability of RNA duplexes and improved performance in-vivo [133].  

  Nucleic acid phosphate bonds between the nucleotides are cleaved by both endo- and 

exonucleases. The PS backbone modification is most common and can be used in either strand 

to stabilize the RNA structure. In this modification, a non-bridging oxygen atom in the phosphate 

backbone is replaced with a sulfur atom. This modification reduces the nuclease degradation of 

this bond. However, it has a significant impact on miRNA efficacy, as it reduces binding affinity, 

lower Tm and increases toxicity as the number of PS is increased. Therefore, it is critical to 
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place PS modification at selective locations only [134]. Combining 2’-OMe nt and PS 

modification at selective molecule can be a better strategy to protect from exonuclease attack 

and without additional negative effects [135]. An alternative backbone modification to PS is a 

boranophosphate linkage that not only increases serum stability but also substantially increases 

its potency. Mayumi et al. investigated the effect of the modification of anti-miR-21 and anti-miR-

122 by 2′-OMe-4-thioribonucleoside in terms of potency and duration of activity in vitro. 

Moreover, after systemic administration modified miRNAs using a liposomal delivery system, 

there was an increase in the levels of target miRNA [136]. 

  Locked nucleic acid (LNA) is a modified RNA nucleotide whose ribose moiety is modified 

with an extra bridge connecting the 2’-O of sugar is to the 4’-C via a methylene bridge and lock 

the structure into 3’ conformation. This modification stabilizes the molecule against nucleases, 

but more importantly it increases binding affinity by increasing Tm from 1-6 C per modification 

of miRNA duplex. Gunter et al. showed that 2’-OMe modified antimiR-21, but not 2’-DNA 

specifically inactivate target miRNA activity in HeLa cells [137]. LNA can be used alone or in 

combination with other modifications to get the desired properties of miRNA molecule. 

Modifications resulting in increased binding affinity make a miRNA nonspecific to its target. 

Joacim et al. used LNA and PS modified antimiR-122 to silence miR-122 function in non-human 

primates. Results show that highly substituted LNA modification enabled to reduce the dose in 

antagonizing miR-122 in vivo [138].  In morpholino modification, a six-membered morpholine 

ring replaces the sugar moiety to improve the physicochemical and binding affinity of oligomers. 

Morpholinos are non-toxic, charged neutral, stable against nucleases, and increase the binding 

affinity of oligomers to miRNAs. Wigard et al. used morpholino-modified oligo complementary to 

miR-206 and induced complete or near complete loss of target miRNA [139].  
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1.7. DELIVERY OF miRNAs  

 Despite their therapeutic potential, in vivo applications of miRNAs are limited due to their 

anionic charge, poor stability, and high molecular weight. These factors pose major obstacles to 

their therapeutic application. Several approaches have been explored for in vivo delivery and 

targeting of miRNAs to modulate gene expression. These include cationic polymers, 

nanoparticles, and bioconjugates. This section will discuss some of these approaches.   

1.7.1. Non-Targeted Particulate Systems  

 Nanocarriers can overcome aforementioned challenges associated with the in vivo 

delivery of miRNAs. These miRNA carrying nanoparticles offer several advantages including 

increased stability and reduced dose frequency, tunable small nano-scale size facilitates 

passive targeting, possesses favorable biodistribution, they can neutralize the polyanionic 

charge of miRNAs and can facilitate its crossing through negatively charged cell membranes. 

Normally, these particles are non-immunogenic compared to viruses, allowing repeated 

treatment for chronic diseases, thus providing a platform for targeting and imaging. Several 

nano-delivery systems made of different materials with varying physicochemical properties have 

been pursued in vivo miRNA therapeutics (Figure 1.5). They include polymer/lipid-based 

nanoparticles, lipid-based liposomes, and virus-like particles [140]. 

 Ammar et al. designed nanoparticle complexes for the photo-activated miRNA delivery. 

miR-148b mimic was conjugated to the surface of silver nanoparticles via a photocleavable (PC) 

link. Upon discrete photo trigger, miRNA was released and upregulate its level in cell culture to 

modulate osteogenesis [141]. Shu-Hao et al. designed cationic lipid nanoparticles (LNP) for 

delivery of miR-122 for restoring deregulated gene expression in HCC cells. These LNP were 

safe upon systemic administration and did not cause an innate inflammatory response or 

systemic toxicity in immune competent mice. In miR-122 knockout (KO) mice LNP-DP1 loaded 
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with miR-122 when injected intravenously increased the expression level of miR-122 compared 

to the negative control and with a concomitant decrease in the protein levels of two of its 

validated targets namely, Adam10 and Mapre1. This delivery system was able to reduce 

angiogenesis in tumors and suppress tumor growth [142]. Similarly, Pasqualino et al. developed 

stable nucleic acid-lipid particles (SNALPs) that encapsulate miR-199b-5p and decreased 

medulloblastoma (MB) cancer stem cells (CSCs) through a decrease in CD133+/CD15+ cell 

population [143].  Dipankar et al. developed a systemic miRNA delivery to pancreatic cancer by 

liposomes prepared using cationic lipid DOTAP and co-lipids cholesterol and DSPE-PEG-OMe. 

They have evaluated these formulations for the systemic miRNA delivery and demonstrated the 

growth inhibition of subcutaneous pancreatic cancer xenografts [144]. 

 miRNAs can degrade mRNA even without perfect base pairing of the seed region and 

may often lead to off-target effects. Therefore, it is important to track miRNA containing 

formulation into the transfected cells. For this purpose, Gomes et al. developed nanoparticles 

composed of poly(lactide-co-glycolide) (PLGA) carrying MRI detectable PFCE for cell tracking 

and simultaneous delivery of miR-132 [145]. Aramaki et al. developed a liposomal system that 

can encapsulate ultrasound contrast gas and miRNA. They utilized these bubble liposomes 

(BLs) for miR-126 delivery for an ischemia-induced angiogenic response. BLs contains perfluoro 

propane gas and can be tracked using ultrasound detection method in vivo [146].   

 Polyethylenimine (PEI) is protonated at acidic pH and can form complexes with 

negatively charged ODNs. These polyplexes internalized via caveolae- or clathrin-dependent 

mechanism into cells and followed “proton sponge effect” and thereby facilitate RNAi release 

from endosomes. For this property, PEI has been extensively studied to deliver RNAi in the past 

decades, but high toxicity limits its utilization as a carrier system. Low molecular weight PEI is 

less toxic and thus Ahmed et al. delivered miR-145 and miR-33a after complex formation with 

low molecular weight PEI for antitumor effects [147]. Pan et al. developed 
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miRNA delivery system based on bacteriophage MS2 virus-like particles (VLPs). These 

particles were loaded with a single plasmid expression system for the production of VLPs 

containing pre-miR-146a or negative control RNA. HIV Tat47–57 was conjugated to MS2 VLPs 

by reacting amino group of MS2 VLP capsids and the cysteine of Tat47–57 peptide with the 

help of sulfosuccinimidyl 4-(p-maleimidophenyl) butyrate (sulfur-SMPB). These MS2 VLPs had 

high transfection efficacy and suppressed its target gene IRAK-1 significantly in vivo [148]. 

Although transfection efficiency of virus-based systems is excellent, they are not considered 

safe for human use.  

1.7.2. Targeted Particulate Systems 

 Transfection efficiency of chemically synthesized carriers can be enhanced by relatively 

optimizing particle size and surface properties and by attaching targeting moiety for a favorable 

biodistribution in vivo. Furthermore, targeted polymeric carrier system allows higher 

accumulation at the disease site and higher receptors based uptake in appropriate cells and 

minimize side effects. Normally, targeting ligands have high affinity to specific cell receptors and 

are attached to the exterior surface of carrier delivery system or directly to the miRNA. Various 

types of ligands including functional peptides, antibodies (Ab) and aptamers have been explored 

for targeting miRNA carriers. Huang et. al. developed a polycation-hyaluronic acid (LPH) based 

liposomal nanocarrier formulation conjugated with tumor targeting single-chain antibody 

fragment (scFv). These tumors targeted formulations were used for systemic delivery of miR-

34a into experimental lung metastasis of murine B16F10 melanoma. Formulations containing 

miR-34a were more effective in inhibiting the tumor growth compared to non-targeted 

formulations [149]. Wang and coworkers have developed PEGylated cyclic RGD (cRGD) 

peptide modified LPH NP formulation delivery of anti-miR-296. These formulations were used to 

target αvβ3 integrin present on endothelial cells of the neo tumor vasculature. cRGD modified 

LPH NPs have shown the potential of delivering miRNA at target sites and produced significant 
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anti-angiogenic effect [150]. Hu et al. synthesized polyethylenimine-β-cyclodextrin (PEI-CD) by 

crosslinking β-CD with low molecular weight PEI (600Da), and conjugated a tumor homing and 

penetrating bifunctional peptide CC9 (CRGDKGPDC). Formulation complexed with miR-34a 

was able to accumulate significantly at the tumor site and downregulated target genes, such as 

E2F3, Bcl-2, c-Myc and cyclin D1 [151].  

1.7.3. Non-particulate Systems  

 Esposito et al. used tyrosine kinase AXL receptor binding nucleic acid aptamer (GL21.T) 

as carriers for cell-targeted delivery of a miRNA. This aptamer itself antagonizes oncogenic 

receptors and also deliver tumor suppressor miRNA function in AXL-expressing tumors.  

Figure 1-5. Strategies used for delivery and targeting of miRNA in vivo. 
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Conjugation of miR-let7g to GL21.T ensures its specific delivery to target cells and decreases 

the tumor growth (Figure 1.5) [152]. Krutzfeldt et al. developed 2′-OMe PS modified, 3′-end 

cholesterol-conjugated single-stranded RNA analogs complementary to miR-122. Whereas non-

conjugated, but partially or fully PS modified backbone, and 2′-OMe sugar modifications led to 

only incomplete effect [153]. Neri et al. used similar modification for anti-miR-221/222 for 

treating a prostate tumor in mouse xenograft model [154]. Anti-tumor effect of cholesterol 

conjugated miR-199a/b-3p was determined by Jin et al. both in vitro and in vivo for treating 

hepatocellular carcinoma. After intratumoral injection of conjugated miR-199a/b-3p, its 

expression in the tumor was elevated while there was dramatic repression of HCC growth [155]. 

1.8. PANCREATIC DUCTAL ADENOCARCINOMA 

Pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of the pancreatic cancers 

with 5-year survival rate of only 6.7% [156]. PDAC is considered to be a fatal malignancy with 

estimated 53000 new cases and estimated 41000 deaths in 2016. Gemcitabine is the first line 

therapy of PDAC, and it has been tried in combination with several other chemotherapeutic 

drugs. However, improvement in overall survival failed in almost all up-to-date trials, which may 

be attributed to the emergence of chemoresistance and desmoplasia in PDAC [157].  

1.8.1. Pathogenesis of Pancreatic Cancer  

Advancement in the molecular analysis has revealed several molecular aberrations 

involve in the development and progression of PDAC.  Wherein, a number of oncogenes are 

found activated, and several tumor-suppressor genes get inactivated leading to the clinical 

symptoms. In a study, averages of 63 genetic alterations affecting 12 cellular signaling 

pathways were found altered in 67–100% of the tumors [158]. Among various commonly found 

pathways, point mutations in K-RAS oncogene were observed in as high as 80–90% of 

pancreatic cancers. K-RAS is a GTP-binding protein, which is upstream of B-RAF, ERK, MEK 

proteins, and transmits signal from outside of the cell to the nucleus. In wild-type K-RAS 



40 

 

 
 

signaling, epidermal growth factor (EGF) receptor binding activates the cascade and results in 

increased cell growth and proliferation. The mutated K-RAS results in constitutive activation of 

signaling, leading to uncontrolled cell growth. The p16 gene is also found inactivated in most of 

the pancreatic cancer patients either by deletion, mutation or hypermethylation.  p16 gene 

inactivates cyclin D1 and CDK4/6, which inhibits the cell cycle progression mediated by 

retinoblastoma (Rb) protein. Mutation in p16 results in uncontrolled cell growth and is directly 

correlated with larger tumor size and short survival of patients [159].  

p53 gene arrests the cell cycle in G1 phase by activating p21WAF1 and controls cell 

cycle. Approximately 50% of pancreatic cancer patients have inactivated p53 gene either due to 

mutation or deletion [160]. Notch receptor is a single-pass transmembrane protein, its 

extracellular domain after binding to Notch ligands (D11-1, D11-3, D11-4, Jagged-1, and 

Jagged-2) translocate the intracellular notch into the nucleus and regulates target gene 

expression [159,161-163]. Further, Notch also induces nuclear factor-κB (NF-κB) and control 

the pancreatic cancer progression. Hh signaling is also found aberrantly activated in around 

70% of pancreatic cancer patients [164]. Hh pathway components Shh, IHh, PTCH, and SMO 

levels are prominent during PDAC [165]. The Hh pathway is involved in epithelial to 

mesenchymal transition (EMT), desmoplasia, and cancer stem cell (CSCs) maintenance. 

Another gene DPC4 (SMAD4) plays a pivotal role in cellular growth and angiogenesis. It is 

found to be inactivated in approximately 50% of pancreatic cancer cases [166]. EGF receptors 

are a transmembrane protein. EGF ligand binding to its receptors activates several downstream 

pathways including PI3K, MAPK, Src, and STAT, which are involved in cell proliferation, 

invasion, metastasis and survival [167].  

1.8.2. Chemoresistance  

Chemoresistance is a major barrier to the treatment of PDAC. Resistance can be 

intrinsic due to the capability of cancer cells to bypass the drug effects, or acquired during 
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multiple treatment phases after which patients are irresponsive to therapy. Reduced uptake of 

chemotherapeutics is one of the mechanisms by which cells resist to therapy. For example, 

epigenetic changes in the tumor cells reduce nucleoside transporters and as a result 

gemcitabine uptake is reduced. ATP-binding cassette (ABC) efflux transporters like MDR1 or 

MRP1-6 upregulation can increase efflux of the drug by cancer cells, and result in resistance to 

chemotherapy [168]. Drug resistance by cancer cells could also be acquired by activating DNA-

repair capacity and by a mutation in apoptosis-inducing pathways [169].  

EMT in pancreatic cancer is well documented in acquiring chemoresistance. For 

example, EMT program is associated with gemcitabine drug resistance and poor patient 

survival. EMT process involves several cytokines and signaling pathways such as Wnt, TGF-β, 

Hh, Notch1, and NF-κB [170]. The mesenchymal cells morphology is characterized by 

decreased expression of CDH1 gene (up to 5-folds) which encodes for E-cadherin and 

increased expression of SNAI2 genes (up to 51-fold) which encodes for Slug. Moreover, drug-

resistant CSCs are known to have decreased expression of E-cadherin and increased 

expression of vimentin a typical EMT feature [171,172]. Therefore, targeting EMT could be a 

promising strategy to eradicate SCCs and to chemosensitize cancer cells. ` 

1.8.3. Pancreatic Cancer Microenvironment 

PDAC microenvironment is characterized by dysfunctional vasculature and intense 

desmoplastic reactions, resulting in high interstitial pressure. Therefore, delivery of 

chemotherapeutic drugs to the bulk of the pancreatic tumor is greatly impeded. Pancreatic 

stellate cells (PSCs) and activated fibroblasts are implied to secrete ECM proteins in PC. 

Secretion of ECM is regulated by several growth factors including FGF, EGF, TGF-β, and 

connective tissue growth factors (CTGF). TGF-β stimulates collagen 1 production in PCC 

increasing SNAIL through SMAD pathway and stimulates fibroblast induces through inducing 
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FGF [173]. Importantly, Hh signaling plays a crucial role in desmoplastic reactions in PC, and 

its pharmacological inhibition can overcome stroma. Further, inhibition of Hh has been reported 

to sensitize tumor cells to radiation therapy [174].  

1.9. ROLE OF miRNAS IN PANCREATIC CANCER  

 Recent advances in cancer biology have revealed several miRNAs that take part in 

pancreatic cancer initiation and progression by regulating cell cycle, DNA repair, apoptosis, 

invasivity, and metastasis. Therefore, several miRNAs have been discovered and being 

investigated to overcome the inefficacy of chemotherapeutics [175]. miRNAs can be tumor 

suppressors (found down-regulated in cancer) or tumor initiators called “oncomiRs” (found 

upregulated). Dysregulated levels of various miRNAs correlate well with poor overall survival 

rate, drug resistance, EMT, and invasion and metastasis. Interestingly, a single miRNA can 

have multiple targets, and several of the cancer targets or phenotypes are interconnected. 

Therefore, the exact function of a particular miRNA can be overlapping. Some of the miRNAs 

which is directly related to PDAC are discussed blow.   

1.9.1. Diagnostic  

Detection of pancreatic cancer at the early stage is difficult and because mostly it’s 

asymptomatic, but if present any is non-specific. Early detection of the disease may increase 

chances of treatment. Therefore, early stage biomarkers of PDAC have high importance. The 

expression profiles of miRNAs could differentiate among normal pancreas, chronic pancreatitis, 

and pancreatic cancer, therefore, could be used as the diagnostic tools. For example, in 

pancreatic tumors miR-103 and miR-107 are up-regulated, and miR-155, and miR-200 are 

down-regulated in PDAC and could be used to discriminate tumor tissue from the normal 

pancreas [176].  
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1.9.2. Growth and Proliferation  

Several miRNAs have been directly correlated with KRAS-EGFR pathway in PDAC. 

miR-146a is a tumor suppressor miRNA, which is reported to target EGFR directly and 

thereby decreases cell proliferation and invasion.  miR-200c can target mitogen-inducible 

gene 6 which is a negative regulator of EGFR. AKT signaling pathway contributes to cancer 

cell survival and proliferation. miR-375 negatively regulates the expression of 3-

phosphoinositide-dependent protein kinase 1 (PDK1) and reduces malignant behavior of 

PDAC cells through the AKT signaling pathway. MUC4 protein overexpression in PDAC up-

regulates Her2 expression which is a key regulator of oncogenesis. The expression of miR-

150 is downregulated in PDAC, and it targets MUC4 mRNA. Treatment with nanoparticles 

containing miR-150 showed decreased growth and clonogenicity of PDAC cells [177]. 

1.9.3. Chemoresistance 

Various miRNAs play a pivotal role in the induction as well as suppression of 

chemoresistance in PDAC. For example, miR-21, miR-196a, miR-221, miR-200 family, and 

miR-214 can increase drug tolerance capacity of PC cells [178]. On the other hand, the miR-let7 

family has demonstrated the potential chemosensitizer role in pancreatic cancer [179]. We 

delivered miRNA-205 with gemcitabine, in a pancreatic cancer ectopic tumor model developed 

using gemcitabine-resistant MIA PaCa-2R cells. We found miR-205 in combination with 

gemcitabine formulations effectively reversed chemoresistance. In pancreatic tumor model, the 

combination formulation treated group showed significant inhibition of tumor growth and 

decreased tumor cell proliferation [180]. TGF-β upregulation increases expression of membrane 

type-1 MMP and ERK1/2 and downregulates miR-let7 [181]. Thus, targeting TGF-β using RNAi 

could provide an attractive strategy to diminish desmoplasia mediated chemoresistance. 
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1.9.4. Stem Cells  

 miRNAs play an important role in CSCs maintenance and drug resistance capacity of 

CSCs [182]. miR-200 a/b/c is one such widely investigated miRNA family which suppresses 

stemness of cancer cells by inhibiting stem cell factors such as Sox2, SIP 1 and ZEB-1 [183]. 

Overexpression of miR-26a using metformin has been shown to decreased expression of 

EpCAM and EZH2 (CSC markers) in pancreatic cancer. Further, miR-200c works cooperatively 

with miR-203 and miR-183 to suppress the expression of stem cell factors. Moreover, 

decreased levels of Let-7a, miR-30c, miR-30b and miR-30a also helped stem cell to gain 

resistance. Activation of Notch has also been implicated in EMT and drug resistance. Notch 

activation is mediated through overexpression of miR-21 and downregulation of miR-200 family 

and let-7 family [184]. 

1.10. CONCLUSIONS  

miRNA-based research is expanding because it gives the opportunity to control 

multiple targets simultaneously in various disease models. The role of miRNAs in liver 

fibrosis and as tumor suppressors, or oncogenic in cancer including PDAC, has been 

witnessing rapid progress. However, there is a significant vacuum regarding their in vivo 

delivery and product development at clinical scale. Further, their delivery aspect in 

diseases like liver fibrosis and PDAC is negatively affected by the stromal 

microenvironment. To overcome ECM barrier and drug resistance, we successfully co-

delivered miRNA and small drug molecule using the micellar system in vivo. Apart from 

these delivery-related considerations, an investigation into the cellular and long-term 

effects of the delivered miRNA is crucial for the development of safe, effective and 

clinically relevant miRNA therapeutics. During the development of next generation 

delivery system some points should be considered, which are as follows: (i) simplicity of 
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the drug and its delivery system: the drug should be easy for manufacturing, quality 

control, handling and comparatively low-cost. (ii) Safety problems should be minimal. 

No extra chemical entities should be used which may affect structural stability. (iii) Oral 

delivery is still a challenge for therapeutic genes due to their resistance to proteolysis. 

Despite of these challenges, the ongoing miRNA-based human clinical trials including 

the use of miR-122 ODN (Miravirsen) in null responders to PEGylated IFN-α plus 

Ribavirin subjects with chronic HCV (Phase 2 clinical trial, NCT02031133), SPC3649 

(Santaris Pharma, Horsholm, Denmark), a miR-122 antisense LNA, and MRX-34 (a 

liposomal miR-34 mimic) in primary HCC metastatic liver cancer (phase 1) have 

generated hope for better future of miRNA-based therapy [185].  
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CHAPTER 2. NANOMEDICINES OF HEDGEHOG INHIBITOR AND PPAR-γ AGONIST 

FOR TREATING LIVER FIBROSIS 

2.1. INTRODUCTION 

Hh pathway plays an important role in the construction and remodeling of injured tissues 

[186]. Hh ligand initiates smoothened (SMO) mediated signaling to activate Gli family 

transcription factors. Activation of Gli proteins results in the induction of epithelial to 

mesenchymal transition (EMT) which is a key event in the initiation and progression of fibrosis 

[187]. Upon activation, HSCs lose PPAR-, a nuclear family receptor, which maintain the 

quiescent state of HSCs through dimerization with liver X receptor-α and alters the transcription 

of numerous genes including PDGF-β, TNF-α, and TGF-β1 [188,189].  

Although much is known about the molecular basis and pathophysiology of liver fibrosis, 

successful application of new therapeutic approaches is limited. Thus, there is an urgent need 

to develop an alternative and effective treatment for liver fibrosis. CBDL activates HSCs and 

increases the expression of patched homolog 1 (Ptch-1), sonic hedgehog (Shh) and Gli-1, but 

downregulates PPAR-  expression [190,191]. We have recently shown that Hh inhibitor such as 

cyclopamine and GDC-0449 can significantly reduce the progression of liver fibrosis induced by 

CBDL in rats [39,192]. Treatment with PPAR- agonist rosiglitazone (RSG) inhibits HSC 

activation and inflammatory pathways such as nuclear factor κB (NFκB), IL-6, and TNF-α [193].  

Since GDC-0449 has anticancer activity and RSG causes cardiac complications, the 

purpose of this study was to determine whether we can treat liver fibrosis by co-delivery of these 

two drugs at the half of their individual doses [194,195]. Since these two drugs are poorly 

soluble in water and RSG has a short half-life, we decided to encapsulate them into 

biodegradable nanoparticles. Since nanoparticles can improve their pharmacokinetic profiles 

and reduce their side effects, we first synthesized methoxy-polyethylene-glycol-b-

poly(carbonate-co-lactide) [mPEG-b-P(CB-co-LA)] copolymer and characterized it by 1H NMR. 
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Nanoparticles were characterized by particle size distribution, drug loading, and drug release. 

Anti-fibrotic properties of the formulations were determined by measuring the levels of Hh 

ligands, PPAR-γ and other fibrosis related markers in normal and CBDL rats after systemic 

administration of nanoparticles loaded with GDC-0449 and RSG as a single drug or both at half 

of their individual doses. Our main objective was to determine whether the combination 

treatment even at half dose can provide hepatoprotection and treat liver fibrosis.  

2.2. MATERIALS AND METHODS 

2.2.1. Materials  

2, 2-Bis (hydroxymethyl) propionic acid, methoxy poly (ethylene glycol) (mPEG, Mn = 

5000, PDI= 1.03), stannous 2-ethylhexanoate (Sn(Oct)2), and benzyl bromide were purchased 

from Sigma-Aldrich (St. Louis, MO). Enzyme color endpoint assay kit for alanine 

aminotransferase (ALT) and aspartate aminotransferase (AST) was purchased from ID Labs™ 

Inc. (London, ON, Canada), and rat TNF-α ELISA, total bilirubin (BIL) detection kit from Bio-

scientific (Austin, TX). Radioimmunoprecipitation assay (RIPA) buffer was purchased from 

(Roche, Indianapolis, IN). L-lactide (LA) was purchased from PURAC Biochem BV (Gorinchem, 

Netherlands) and recrystallized from ethyl acetate. All other reagents were obtained from 

Sigma-Aldrich and used without further purification. 

2.2.2. Synthesis and characterization of mPEG-b-P(CB-co-LA) 

mPEG-b-p(CB-co-LA) copolymer was synthesized by ring opening polymerization (ROP) 

as described previously [196]. Briefly, mPEG, 5-methyl-5-benzyloxycarbonyl-1, 3-dioxane-2-one 

(MBC) and L-lactide were taken at a ratio of 1:2.5:2.5, respectively to synthesize a copolymer of 

targeted average molecular weight of 30 kDa. Sn(Oct)2 (10 mol% relative to mPEG) was used 

as a catalyst for the reaction. The mixture was stirred for 24 h at 130°C under vacuum. After 

cooling, the product was dissolved in chloroform and purified by precipitation in excess of diethyl 
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ether and hexane (1:2). The copolymer was characterized by 1H NMR and spectra were 

recorded with a Varian (500 MHz, T =25) using deuterated dimethyl sulfoxide (DMSO-d6) as a 

solvent. Chemical shifts were calibrated using tetramethylsilane as an internal reference and 

given in parts per million. 

2.2.3. Preparation of Nanoparticles  

Nanoparticles were prepared using mPEG-b-p(CB-co-LA) copolymer by the 

emulsion/solvent evaporation technique [197]. Briefly, the 30mg copolymer was dissolved in 

dichloromethane and acetone mixture (50:50) containing 1.5mg GDC-0449 or 0.6mg RSG.  For 

combination therapy, GDC-0449 and RSG nanoparticles were co-formulated by dissolving both 

the drugs with copolymer in dichloromethane and acetone mixture. The solution was then added 

to a vial containing 5ml of 1% aqueous poly (vinyl alcohol) solution and emulsified by a probe 

sonicator (50 W, 2 min) on an ice bath. Organic solvents were evaporated under vacuum. 

Nanoparticles were collected by ultracentrifugation at 25000 rpm for 35 min, (Du point, Sorvall 

Inc.), washed three times with distilled water and lyophilized.   

2.2.4. Characterization of Nanoparticles 

Mean particle size and size distribution of the nanoparticles were determined by dynamic 

light scattering using a Zeta SizerTM (Malvern 3800-ZLS, Boston, MA). Drug loading and 

encapsulation efficiency were determined using HPLC analysis. Briefly, GDC-0449 and RSG 

loaded nanoparticles with 0.5mg theoretical drug loading were dissolved in DCM for drug 

extraction using a bath sonicator for 30 min at 37°C. DCM was evaporated, and acetonitrile was 

added to dissolve residues. Drug content was determined by HPLC (Waters, MA) by using a 

reverse phase C-18 Inertsil ODS column (150 mm × 4.6 mm, 5 μm) (GL Sciences Inc.). Mobile 

phase composition was acetonitrile and 10 mM acetate buffer (pH 4.5) (60/40, v/v) at a flow rate 

of 1.0 ml/min.  Detection wavelength of 330nm and 254nm were used for GDC-0449 and RSG, 
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respectively. Drug loading and encapsulation efficiency were calculated using the following 

equations: 

            

       

 

2.2.5. In-vitro Drug Release 

Drug-loaded nanoparticles containing 1mg of GDC-0449 and 0.5 mg of RSG were 

placed in a dialysis bag with a molecular weight cutoff of 1000 Da (Spectrum Labs Inc., Rancho 

Dominguez, CA). Dialysis bag was suspended in 50 mL of PBS (pH 7.4) containing 1.0% (w/w) 

Tween 80 to facilitate drug wetting and to maintain the sink conditions. The study was 

performed in a closed chamber orbital shaker at 37oC, with a rotation speed of 100 rpm. 

Samples (1 mL) were taken at regular time intervals and replaced with the PBS (pH 7.4) 

containing 1.0% (w/w) Tween 80. The drug content in the samples was analyzed by HPLC-UV 

method as described above and cumulative drug release was plotted against time. 

2.2.6. Animal Experiments  

Animal experiments were performed in accordance with the NIH guidelines using a 

protocol approved by the Institutional Animal Care and Use Committee (IACUC) of the 

University of Tennessee Health Science Center. Male Sprague-Dawley (SD) rats weighing 230–

250g were purchased from Charles River Laboratories, Inc. (Wilmington, MA), housed under the 

care of a licensed veterinarian and monitored daily for signs of sickness or pain after surgery. 

The animals were maintained on a 12h light-dark schedule and had free access to normal rat 

chow and water. To induce fibrosis in the liver, common bile duct of SD rats was ligated as 

described previously [70].  Animals were divided into the following five groups (5 per group): 

control (sham-operated), CBDL untreated, CBDL treated with GDC-0449 nanoparticles at a 

dose of 10mg/kg, CBDL treated with RSG nanoparticles at a dose of 4mg/kg, and CBDL treated 

Encapsulation efficiency (%) =
𝐰𝐞𝐢𝐠𝐡𝐭 𝐨𝐟 𝐝𝐫𝐮𝐠 𝐞𝐧𝐜𝐚𝐩𝐬𝐮𝐥𝐚𝐭𝐞𝐝

𝐢𝐧𝐢𝐭𝐢𝐚𝐥 𝐰𝐞𝐢𝐠𝐡𝐭 𝐨𝐟 𝐝𝐫𝐮𝐠 𝐭𝐚𝐤𝐞𝐧 
× 100                 (2.1)    

 Drug loading (% w w⁄ ) =
𝐰𝐞𝐢𝐠𝐡𝐭 𝐨𝐟 𝐝𝐫𝐮𝐠 𝐞𝐧𝐜𝐚𝐩𝐬𝐮𝐥𝐚𝐭𝐞𝐝 

𝐭𝐨𝐭𝐚𝐥 𝐰𝐞𝐢𝐠𝐡𝐭 𝐨𝐟 𝐟𝐨𝐫𝐦𝐮𝐥𝐚𝐭𝐢𝐨𝐧
× 100                              (2.2) 
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with GDC-0449 and RSG nanoparticles at a dose of 5mg/kg and 2mg/kg of GDC-0449 and 

RSG respectively. Nanoparticles containing GDC-0449, RSG, and both drugs were 

administered daily after three days of CBDL via intravenous tail vein injection for a week. 

Animals were euthanized under isoflurane anesthesia at the end of the study to collect serum 

and liver tissues. Serum was used for biochemical analysis, and the liver was fixed in 10% 

neutral buffered formalin or snap frozen in liquid nitrogen for further analysis. 

2.2.7. Measurement of Serum Enzyme Levels and Liver Histology 

Serum concentrations of liver injury markers such as ALT, AST, and BIL were measured 

using standard assay kits according to the manufacturer’s instructions. For staining, liver 

specimens were fixed in 10% buffered formalin overnight, saturated in 30% sucrose solution 

and embedded in OCT (optimum cutting temperature) compound.  For standard histology, 5μm 

thick sections were stained with Hematoxylin–Eosin (H&E) for detection of tissue architecture. 

Masson’s trichrome staining was used to determine the levels of collagen deposition.  

2.2.8. Immunofluorescent Staining 

For immunofluorescent staining, snap frozen liver sections were fixed on glass slides in 

95% cold ethanol for 10 min and blocked with 10% goat serum. This was followed by overnight 

incubation at 4°C with polyclonal antibodies for TGF-β1, Gli-1, (Santa Cruz, CA), and α-SMA 

(Abcam, Cambridge, MA). After washing with tris-buffered saline containing (0.05% w/w) Tween 

20 (TBST), slides were incubated with anti-rabbit or anti-goat secondary antibodies (IgG - H&L 

DyLight® 488 (Abcam) for 2h at room temperature and visualized under a fluorescent 

microscope. 
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2.2.9. Quantitative Real Time RT-PCR 

 Total RNA was extracted from the liver tissues using RNeasy Mini Kit (Qiagen, MD) and 

reverse transcribed to cDNA using Taqman RT kit (Carlsbad, CA).  Gene expression levels 

were determined by Light Cycler 480 (Roche, IA) using primer pairs (Table 2-1) and standard 

protocol as described previously [192]. All the real-time RT-PCR results were analyzed using 

comparative CT method and gene expression was normalized as compared to the control.  

Table 2-1. Primers Sequences Used for Real Time RT-PCR Amplification 

 

 

Gene NCBI Accession # Sequence 

β- actin  NM_031144 CAACTGGGACGATATGGAGAAG (Sense)  
CTCGAAGTCTAGGGCAACATAG (AntiSense) 

Shh       NM_017221 CTGGATTCGACTGGGTCTACTA (Sense) 
GCTTTCCCGGTTGCTTATCT (AntiSense) 

Ptch-1     NM_053566 CAAAGCCAAGGTTGTGGTAATC (Sense) 
GCGGTCAGGTAGATGTAGAAAG (AntiSense) 

Gli-1       NM_001191910.1 ACCTCCCTACCTCTGTCTATTC (Sense) 
GGCAGGATAGGAGACTGATTTG (AntiSense) 

SMO      NM_012807 CCAGGACATGCACAGTTACA (Sense) 
GGAAGTAGCCTCCCACAATAAG (AntiSense) 

α-SMA    NM_031004.2 CTGGCACCACTCCTTCTATAAC (Sense) 
CTCCAGAGTCCAGCACAATAC (AntiSense) 

IL-6        NM_012589 CCGTTTCTACCTGGAGTTTGT (Sense) 
GTTTGCCGAGTAGACCTCATAG (AntiSense) 

TGF-β1  NM_021578.2 CTGTGGAGCAACACGTAGAA (Sense) 
GGGTGCAGGTGTCCTTAAATA (AntiSense) 

E-cadherin  NM_031334.1 AAGAGGGAGGTGGAGAAGAA (Sense) 
ACAGACAGACTGGTAGGTAGAG (AntiSense) 

PPAR-γ  NM_013124.3 CTGGCCTCCCTGATGAATAAAG (Sense) 
GCGGTCTCCACTGAGAATAATG (AntiSense) 

TNF-α  NM_012675 CAGCCGATTTGCCATTTCATAC (Sense) 
GGCTCTGAGGAGTAGACGATAA (AntiSense) 

FN-1  NM_019143.2 GTGTCCTCCTTCCATCTTCTTAC (Sense) 
GTTCCCTCTGTTGTCCTTCTT (AntiSense) 

COL1A1  NM_053304.1 CGGACTATTGAAGGAGCCTAAC (Sense) 
TGATGCAGGACAGAGAGAGA (AntiSense) 
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2.2.10. Western Blot Analysis 

Snap frozen liver tissues were homogenized in RIPA buffer containing protease inhibitor 

cocktail to extract total protein. After resolving in sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE), proteins were transferred to Immobilon polyvinylidene fluoride 

membrane using iBlotTM Dry Blotting System (Invitrogen, Carlsbad, CA). Transferred 

membranes were blocked in Odyssey blocking buffer and incubated with Shh, Gli-1, FN-1, NF-

κB, α-SMA, TGF-β1, and PPAR-γ primary antibodies for 16h at 4°C. The membrane was then 

incubated with anti-goat or anti-rabbit IRDye 680RD secondary antibodies for 1h at room 

temperature. All the blots were re-probed with total β-actin antibody as a control. Target proteins 

were imaged using Odyssey IR imaging system (Li-Cor, Lincoln, NE). 

2.2.11. ELISA for Tumor Necrosis Factor-α 

 TNF-α in rat serum was determined according to the manufacturer’s instructions of 

ELISA kit. Briefly, ELISA plate provided in the kit was coated with capture antibody overnight at 

4°C. The plate was washed and blocked with assay diluent and incubated at room temperature 

for 1h. Rat serum samples were added and incubated at 4°C overnight. After washing, detection 

antibody was added and incubated at room temperature for 1h. Avidin-HRP conjugated 

secondary antibody was added and incubated at room temperature for 30min. The plate was 

washed, and substrate solution was added to each well and read at 450nm.  

2.2.12.  Statistical Analysis 

All values in the figures and text were expressed as the mean ± S.D. The results were 

analyzed, and individual group means were compared using Student’s unpaired t-test. A p-value 

of at least 0.05 was considered statistically significant. 
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2.3. RESULTS  

2.3.1. Preparation and Characterization of Drug-Loaded Nanoparticles 

 We synthesized mPEG114-b-p(CB55-co-LA160) amphiphilic triblock copolymer and 

characterized by 1H NMR. The polymer had an average molecular weight of 30,000 Da with 

carbonate and lactic acid contents of 55 ± 5 and 160 ± 5 moles, respectively, and mPEG 

content of 16.6 ± 2 % as determined by 1H NMR (Figure 2.1A). Using the above-synthesized 

copolymer, we were able to formulate nanoparticles with a mean particle size of 120-130nm and 

a polydispersity index of less than 0.2 (Figure 2.1B). Drug loading was found to be 5.0% and 

2.0% w/w for GDC-0449 and RSG, respectively, with little effect on the mean particle size and 

size distribution. The encapsulation efficiency was 98% and 95% for GDC-0449 and RSG, 

respectively.  Nanoparticles carrying these two drugs were prepared using half of 5% & 2% 

theoretical drug loading with encapsulation efficiencies of 95% and 90% for GDC-0449 and 

RSG, respectively (Figure 2.1C). In vitro release profile of drug-loaded nanoparticles was 

determined in PBS at 37°C. Nanoparticles carrying GDC-0449 and RSG followed Higuchi model 

with 80 ± 2.7% release in 10 days and 96 ± 3.1% in 4 days’ cumulative release for GDC-0449 

and RSG, respectively (Figure 2.1D). At the end of the study, remaining unreleased drug was 

recovered from the dialysis bags. There was an initial burst release for about 5h possibly due to 

the dissolution and diffusion of surface adsorbed and poorly entrapped drug in the 

nanoparticles. 

2.3.2.  Effect of Drug Treatment on Liver Histology  

For the treatment of CBDL-induced liver fibrosis in rats, drug-loaded nanoparticles were 

injected daily intravenously after three days of CBDL for a week. CBDL resulted in bile 

accumulation in the bile duct, resulted in proliferation and enlargement of the bile duct [198]. In 

untreated CBDL rats, maximum proliferation was observed but reduced after intravenous 
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injection of nanoparticles encapsulated with GDC-0449, RSG or in combination. These results 

suggest that treatment with GDC-0449 and RSG improved the overall condition of these liver 

fibrotic rats. 

CBDL is known to cause an increase in intra-biliary pressure and leakage of bile into the 

liver parenchyma, which aggravates bile infarcts due to hepatocyte death [199]. Liver 

specimens from CBDL rats demonstrated extensive bile infarcts, while the number and area of 

infarction were significantly reduced upon administration of GDC-0449 or RSG loaded 

nanoparticles as evident from H&E staining. These results suggest that Hh inhibitor and PPAR-γ 

 

Figure 2-1. Polymer synthesis, formulation and characterization of nanoparticles. (A) 1H 
NMR spectra of mPEG

114
-b-p(CB

54
-co-LA

160
) copolymer in DMSO-d6 (B) Particle size 

distribution of nanoparticles (C) Polydispersity index (PDI), Drug encapsulation efficiency (EE) 
and loading efficiency (LE) of nanoparticles (D) Release of GDC and RSG from nanoparticles 
at 37°C by dialysis in PBS (pH 7.4) containing 1.0% Tween 80. All data are presented as the 
mean ± S.D. (n = 3).   
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agonist can attenuate liver injury and protect liver architecture (Figure 2.2A). Liver sections 

were stained with Masson’s trichrome stain for collagen. The increased deposition of collagen 

was evident by intense blue color staining for the interstitial collagen in CBDL rats (Figure 

2.2B). 

 

Figure 2-2. Hematoxylin & Eosin and Masson trichrome staining of liver sections of 
CBDL rats after systemic administration of nanoparticles loaded with GDC, RSG or 
combination. (A) Treatment with GDC and RSG loaded nanoparticles reduced 
histological liver injury, including bile infarcts. Geographic borders of infarcts indicated by 
black arrows were large in number and area in untreated CBDL rats and reduced upon 
treatment with nanoparticles carrying GDC and RSG (original magnification ×20). (B) Dark 
blue staining shows increased collagen deposition in CBDL rats (Black Arrows). Systemic 
administration of GDC and RSG loaded nanoparticles effectively reduced blue collagen 
staining (original magnification, ×10). 
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However, collagen staining was much weaker when nanoparticles loaded GDC-0449, 

RSG either alone or in combination were administered into CBDL rats, indicating significant 

inhibition of collagen accumulation in the enlarged periductal area and essentially no collagen 

accumulation in the liver interstitium. 

2.3.3.  Measurement of Liver Injury Markers 

 ALT, AST, and BIL are surrogate markers for liver injury, and their levels are 

known to increase upon bile duct ligation [200]. As evident from Figure 2.3, CBDL rat had many 

fold increase in serum AST, ALT, and BIL levels as compared to the sham-operated control 

rats. Treatment with GDC-0449 and RSG loaded nanoparticles resulted in decreased serum 

levels of all of these markers. These results indicate that the liver is susceptible to 

hepatocellular injury following CBDL, and GDC-0449 and RSG loaded-nanoparticles protected 

livers from the injury resulting in significant decrease in ALT, AST, and BIL (Figure 2.3, **P < 

0.005). 

2.3.4. Expression Levels of Hh Ligand and PPAR-γ  

Hh signaling controls proliferation and migratory activities of Hh-responsive HSCs by 

promoting EMT [12].  Therefore, we measured Hh pathway ligands expression in CBDL rats 

after 7 days of systemic administration of GDC-0449 or RSG loaded nanoparticles and 

compared with the sham-operated control by RT-PCR and western blotting method. Shh mRNA 

was increased by 4.3 folds in CBDL rat livers. There was also a significant increase in 

transcription of Ptch-1 by 2.7 folds, SMO by 2.8 folds and Gli-1 by 3.6 folds as compared to the 

control (Figure 2.4A).  

Systemic administration of GDC-0449 loaded nanoparticles significantly decreased Shh 

expression levels.  Ptch-1, SMO, and Gli-1 expressions were also significantly reduced in the 

liver when CBDL rats received nanoparticles carrying GDC-0449 alone or with RSG. Decrease 
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in mRNA expression of Shh and Gli-1 was confirmed by Western blot analysis of liver tissue 

protein extract (Figure 2.4B).  

 

In contrast to Hh signaling, PPAR-γ mRNA was significantly downregulated in CBDL rat 

livers, which is in good agreement with the literature [191]. Treatment of CBDL rats with RSG-

loaded nanoparticles significantly restored PPAR-γ gene expression to the basal level (Figure 

2.4C). These results were also confirmed by Western blot analysis (Figure 2.4D). Progression 

of liver fibrosis leads to an increase in the synthesis and deposition of ECM proteins, particularly 

collagen in the liver interstitium [201]. We determined mRNA expression level of collagen type-I 

(COL1A1) and observed 4.7 folds higher expression in the CBDL rats as compared to the 

A 

Figure 2-3. Serum biomarkers. Effect of GDC and RSG loaded nanoparticles on serum. 
(A) AST, (B) ALT, and (C) BIL levels. Serum markers in CBDL rats after systemic administration 
of GDC and RSG loaded nanoparticles were significantly lower than those in the CBDL rats. 
Results are presented as mean ± S.D. (n=5); (**p<0.001 treated rats as compared to CBDL). 
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control, but its expression decreased upon treatment with nanoparticles carrying GDC-0449 

(1.48 fold) or RSG alone (1.8 fold) or combination (1.34 fold) which is consistent with the results 

observed in Masson’s trichrome staining (Figure 2.5A).  

α-SMA and FN-1 are characteristic markers of EMT [202]. Therefore, we determined 

transcription levels of α-SMA and FN-1 and found upregulation of their expression by 2.3 and 

3.2-folds, respectively in CBDL rats (Figure 2.5A). After systemic administration of 

nanoparticles carrying GDC-0449 or RSG either alone or in combination into CBDL rats, α-SMA 

and FN-1 expression decreased significantly both at mRNA and protein level (Figures 2.5A, 

5B). NF-kB promotes secretion of inflammatory factors, and its expression is known to be 

Figure 2-4. Real time RT-PCR and Western blot analysis of hedgehog ligands and 
PPAR-γ. (A) Systemic administration of GDC loaded nanoparticles into CBDL rats reduced 
gene expressions of Shh, Gli-1, Smo, and Ptch-1 as quantified by Real-Time RT-PCR. (B) 
Western blot analysis of liver tissues for Shh and Gli-1 proteins levels (C) mRNA expression 
levels of PPAR-γ and IL-6. (D) Western blot analysis of PPAR-γ protein. β-actin was used as 

an internal control. Results are presented as mean ± S.D. (n=3) (**p<0.001 compared to 
CBDL). 
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elevated in liver fibrosis [189]. We found its level elevated in CBDL rats and upon treatment with 

nanoparticles containing drugs decreased its protein level (Figure 2.5B). 

TGF-β1 is involved in the early proliferation of HSCs through SMAD3 /SMAD7 signaling 

after CBDL [203]. Similarly, TGF-β1 expression was upregulated (3.64 folds) at mRNA level and 

significantly increased at proteins levels after CBDL, and was decreased in GDC-0449 or RSG 

alone or in combination treatment groups to the basal level (Figures 2.5A, 2.5B). E-cadherin is 

a transmembrane glycoprotein found in most epithelial cells and promotes cell adhesion by 

forming a complex with β-catenin. Upon EMT, epithelial cells lose E-cadherin expression [204]. 

Therefore, we determined E-cadherin expression and found its expression was decreased to 

Figure 2-5. Real time RT-PCR and Western blot analysis of liver fibrosis markers. 
Systemic administration of RSG and GDC-0449 nanoparticles into CBDL rats reduced gene 
expression of Col1A1, α-SMA, FN-1, and TGF-β1. (A) RT-PCR (B) Western blot analysis of 
TGF-β1, α-SMA, FN-1 and NF-κB proteins from liver tissues of various groups. (C) RT-PCR 
of E-cadherin. Results are presented as mean ± S.D. (n=3) (*p<0.05, **p<0.001, treated vs. 
CBDL). 
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40% in CBDL rats as compared to the sham-operated control rats. After treatment with 

nanoparticles carrying GDC-0449 or RSG alone or in combination, we observed a significant 

increase in its mRNA level (Figure 2.5C).   

2.3.5. Expression of proinflammatory cytokines   

Increased TGF-β1 induces IL-6 secretion at the site of injury [205]. We observed mRNA 

levels of IL-6 be significantly upregulated in CBDL rats compared to the control rats. Significant 

down-regulation of IL-6 mRNA was seen in the CBDL rats treated with GDC-0449 and RSG 

loaded nanoparticles (Figure 2.4C). Moreover, we determined TNF-α expression which is an 

important proinflammatory cytokine in the progression of liver injuries and fibrosis [206]. RT-

PCR and ELISA results showed TNF-α mRNA and protein levels were significantly higher in 

CBDL rats as compared to the sham-operated control rats. Upon systemic administration of 

GDC-0449 or RSG alone or combination loaded nanoparticles to CBDL rats resulted in reduced 

TNF-α gene expression at both mRNA and protein level (Figure 2.6A and B). 

 

Figure 2-6. Real time RT-PCR and ELISA of inflammatory cytokine TNF-α. (A) mRNA 
level. (B) Serum TNF-α level. Results are presented as mean ± S.D. (n=3) (**p<0.001 
treated vs CBDL). 
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2.3.6. Immunofluorescent Staining 

 Immunofluorescence for a Hh-regulated transcription factor, Gli-1 overexpression was 

localized in the nucleus of the Hh-responsive cell population. This observation suggests that Hh 

ligands are highly activated in CBDL rats, resulting in intense immunofluorescent staining of Gli-

1. However, Gli-1 expression was significantly reduced in CBDL rats after systemic 

administration of nanoparticles carrying GDC-0449 alone or with RSG (Figure 2.7A). 

Immunoreactivity of mesenchymal cell markers, α-SMA and TGF-β1 correlate well with the 

progression of liver fibrosis. Immunofluorescent staining of the liver sections indicates that 

CBDL rats have increased the number of α-SMA expressing myofibroblasts in and around portal 

tracts (Figure 2.7B). TGF-β1 positive cells were distributed with high density in the portal venule 

pericytes with perisinusoidal distribution. Treatment groups showed decreased the number of α-

SMA and TGF-β1 producing cells in CBDL rats treated with nanoparticles carrying GDC-0449 or 

RSG. However, there was still fair a number of TGF-β1-positive cells in the liver sections of 

CBDL rats treated with GDC-0449 or RSG loaded nanoparticles, which distributed mainly at the 

fibrous septa-band (Figure 2.7C). 

2.4. DISCUSSION 

Liver fibrosis is affecting millions of people and is a significant cause of morbidity and 

mortality worldwide. Liver fibrosis is the result of a wound-healing response to the liver injury, 

viral hepatitis or biliary tract disease. Fibrosis is characterized by the excessive production and 

deposition of ECM proteins. Chronic liver injuries result in the transformation of quiescent HSCs 

into active myofibroblasts [207]. Initiation and progression of liver fibrosis involve multiple 

regulatory events in the liver and coordinated changes in the activity of several transcription 

factors. A number of different approaches have been used earlier for treatment, including the 

inhibition of collagen synthesis, interruption of matrix deposition, stimulation of matrix 

degradation, modulation of HSC activation, induction of HSC apoptosis and modulation of 
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immune responses at the affected site [192,208-211]. However, the complexity and rapid 
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Figure 2-7. Immunofluorescent staining of liver sections: (A) Gli-1 expression in the liver 
sections of CBDL rats as reflected by intense green staining. GDC or combination treatment 
reduced Gli-1 expression as evident from faint green staining. (B) Sections from sham 
operated control rats do not express α-SMA, whereas CBDL rats showed strong fluorescent 
staining around the fibrous septa. α-SMA expression was decreased significantly after 
systemic administration of GDC and RSG loaded nanoparticles into CBDL rats. (C) Sham 
operated control rats showed weak staining for TGF- β1, whereas strong green staining can be 
seen in CBDL rats. Treatment groups showed weak staining for TGF-β1 as compared to CBDL 
group. Shown are representative images (original magnification, ×40).  
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progression of the disease requires the use of multipronged approach by targeting more than 

one factor. PPAR- is one of the key factors whose activity is decreased in activated HSCs. On 

the other hand, there is an increase in Hh activity in fibrotic livers. Therefore, inhibition of 

inflammation and EMT by combining of PPAR- agonist and Hh inhibitor can be a potential 

strategy to reverse liver fibrosis. 

PPAR-γ agonist keeps HSCs in a quiescent state by blocking the profibrotic effects of 

TGF-β1 and reducing TNF-α activity. Thus, the loss of these receptors leads to 

transdifferentiation of HSCs from the retinoid storing state to the ECM-producing myofibroblasts 

[191,212,213]. RSG is a PPAR- agonist which is a thiazolidinediones derivative used as an 

anti-hyperglycemic agent [214]. In this study, RSG was chosen because it is non-toxic to the 

liver and does not induce cytochrome enzymes, like other members of this family [215]. 

Previously, we found that the progression of liver fibrosis is accompanied by the activation of Hh 

pathway leading to the proliferation and EMT of HSCs [39]. Treatment with Hh inhibitor, GDC-

0449 ameliorated a fibrotic condition in CBDL rats [192]. However, administration of GDC-0449 

required complex formation with β-CD (beta-cyclodextrin) at the low pH range, which is not 

suitable for systemic administration. Moreover, GDC-0449 shows poor complex formation with 

β-CD.  

Taking care of their poor aqueous solubility and potential side effects of GDC-0449 and 

RSG, in this study we aimed to formulate nanoparticles encapsulating these two drugs using 

mPEG-b-p(CB-co-LA) copolymer. First, we synthesized amphiphilic mPEG-b-p(CB-co-LA) 

copolymer and characterized it using 1H NMR (Figure 2.1A). We have selected this copolymer 

because of its capacity to encapsulate poor water soluble drugs with high drug loading, 

biodegradable and nontoxic properties [196]. We have simultaneously encapsulated these 

drugs into nanoparticles successfully and tested this combination at half of their individual doses 

for treating liver fibrosis for minimizing any drug related toxicity. These nanoparticles were not 
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specifically targeted to liver. However, our group previously reported that micelles prepared from 

similar backbone copolymer PEG block- poly(2-methyl-2-benzoxycarbonyl-propylenecarbonate) 

tend to accumulate in the liver and spleen [216]. Based on these results, we expect 

nanoparticles containing GDC-0449 or RSG to be having same biodistribution profile. 

Drug-loaded nanoparticles were formulated using o/w emulsification followed by solvent 

evaporation. Using this copolymer, we formulated uniform size distributed nanoparticle with high 

drug loading (Figure 2.1B and 2.1C). The outer coating shell of mPEG prevents particles from 

aggregation and also provides stealth properties. This is necessary for nanoparticles to escape 

from the reticuloendothelial system (RES) and prolong systemic circulation. Owing to the 

differences in their hydrophobicity, their loading capacity in the formulated nanoparticle was 

different. At higher payload, the encapsulation capacity of both drugs decreased, which may be 

due to the saturation of the hydrophobic inner core. Nanoparticles carrying GDC-0449 and RSG 

were prepared at 5% and 2% w/w initial drug loading of GDC-0449 and RSG, respectively. 

Drug-loaded nanoparticles had a mean particle size of 130-140 nm. Nanoparticles provided 

sustained release with 80% drug release in 10 days and 96% in 4 days for GDC-0449 and RSG, 

respectively (Figure 2.1D). We observed difference release profile for these two drugs as GDC-

0449 is more hydrophobic than RSG, and thus GDC-0449 had slower release rate. PBS 

containing 1.0% Tween 80 was used as release medium to maintain the sink conditions and to 

prevent drug precipitation upon release.  

CBDL rats showed large infarcts and intense blue collagen staining, whereas systemic 

treatment with nanoparticles containing GDC-0449, RSG or combination reduced the number as 

well as the area of infarcts and decreased the intensity of collagen-specific staining (Figure 

2.2A and 2.2B). Liver injury markers such as serum AST, ALT and BIL were found significantly 

elevated in CBDL rats as compared to GDC-0449, RSG or combination nanoparticles treated 

rats (Figure 2.3). A significant increase in Hh ligand and Gli-1 expression in CBDL rats was 
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observed, as analyzed by RT-PCR, (Figure 2.4A) Western blot analysis (Figure 2.4B), and 

immunofluorescence (Figure 2.7A). Upon systemic administration of GDC-0449 and RSG 

loaded nanoparticles to CBDL rats, a significant decrease in HSC activation and liver fibrosis 

was observed.  

There was a significant decrease in PPAR-γ expression in CBDL rats as compared to 

the sham control. This reduction is related to upregulation of TNF-α, which is known to inhibit 

PPAR-γ expression [188]. However, the treatment of CBDL rats with nanoparticles of RSG or in 

combination with GDC-0449 restored PPAR-γ expression at mRNA as well as protein levels, 

suggesting upregulation of this gene (Figures 2.4C and 2.4D). There was a significant increase 

in TGF-β1 gene expression after CBDL in rats, possibly due to HSC activation (Figures 2.5C 

and 2.7C). Moreover, activated HSCs showed an abundance of α-SMA proteins which is a well-

known EMT marker and used to identify the early stages of liver fibrosis (Figures 2.5AB and 

2.7B) [217]. Epithelial marker E-cadherin expression was decreased significantly in fibrotic livers 

(Figure 2.5C). GDC-0449 and RSG carrying nanoparticles decreased TGF- β1 and α-SMA 

expression and also restored E-cadherin (Figures 2.5 and 2.7B) suggesting nanoparticles 

loaded with these drugs have prevented EMT. FN-1 is among the first ECM proteins which are 

upregulated after liver injury and mediates differentiation into myofibroblasts [218]. After CBDL, 

upregulation of TGF-β1 also resulted in increased FN-1 expression [219]. Treatment with GDC-

0449 and RSG significantly abrogated FN-1 expression (Figures 2.5A and 2.5B). 

Downregulation of these regulators is possibly the result of reduced activation of HSCs. The 

increase in collagen deposition was observed by Masson’s trichrome staining and real-time RT-

PCR. Following treatment with RSG and GDC-0449 carrying nanoparticles, reduced collagen 

level was observed in CBDL rats (Figures 2.2B and 2.5C). Upon liver injury, Kupffer cells 

increase TNF-α production via NF-κB pathway and its increased activity is found in activated 

HSCs” [189]. TNF-α induces neutrophil infiltration and stimulates mitochondrial reactive oxygen 
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species (ROS) production in hepatocytes. These reactive oxidants activate HSCs and stimulate 

inflammatory as well as fibrogenic signals [220]. TNF-α was elevated in CBDL rats, which 

indicates the high inflammatory state in the liver.  RSG decreased the expression of genes 

implicated in the inflammation of liver tissues during the progression of liver fibrosis. RSG 

negatively interferes with NF-κB inflammatory pathway by blocking its nuclear translocation and 

by reducing the production of TNF-α (Figure 2.6) and IL-6 (Figure 2.4C).  

2.5. CONCLUSIONS 

In conclusion, mPEG-b-p (CB-co-LA) copolymer of 30,000 Da was synthesized and 

GDC-0449 and RSG loaded nanoparticles were prepared. Systemic administration of 

nanoparticles encapsulating GDC-0449 and RSG provided hepatoprotection by reducing Hh 

pathway ligands and increasing PPAR-γ activity, respectively. GDC-0449 was more effective 

than RSG in treating experimental liver fibrosis when the single drug was used. Combination 

therapy of GDC-0449 and RSG was able to treat early stage liver fibrosis even at a reduced 

dose and may provide a new strategy for treating liver fibrosis.  
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CHAPTER 3. CO-DELIVERY OF SMALL MOLECULE HEDGEHOG INHIBITOR AND miRNA 

FOR TREATING PANCREATIC CANCER 

3.1. INTRODUCTION 

Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related mortality 

with a dismal 2-5% five-year survival rate [221]. Due to its late-stage clinical manifestation, 85% 

of patients have metastatic disease at the time of diagnosis making surgical and therapeutic 

interventions ineffective. The current FDA-approved chemotherapeutic agent for pancreatic 

cancer is gemcitabine, which provides an only symptomatic improvement in a lesser proportion 

of patients. New combination therapy FOLFIRINOX (fluorouracil [5-FU], leucovorin, irinotecan, 

and oxaliplatin) showed improvement compared to gemcitabine alone; however, there was a 

significant rate of grade 3/4 toxicity in PDAC patients [222].  

PDAC is characterized by a dense desmoplastic/ stromal reaction that consists of large 

fibroblasts, pancreatic stellate cells (PSCs), and ECM proteins including collagen I and 

fibronectin.  PSCs form a niche for cancer stem cells (CSCs) and promote their self-renewal and 

invasiveness. CSCs are a subset of cancer cells that not only drive tumor growth but also 

resistant to chemotherapy and radiation. Hh signaling promotes desmoplasia causing PSC 

differentiation into myofibroblasts that result in poor delivery of therapeutic agents. Hh ligands 

also facilitate the maintenance of CSCs [223]. Blocking the Hh pathway decreases desmoplastic 

reactions, eliminates CSCs and increases tumor vascular density thus ultimately improves the 

chemotherapy [224]. GDC-0449 antagonizes Hh signaling by inhibiting the Smoothened (SMO) 

and Shh-Gli signaling selectively [225]. But due to poor aqueous solubility and low 

bioavailability, its clinical benefits are limited.   

miRNAs are endogenous non‑coding single-stranded RNAs of 19-24 nt that regulate 

gene expression through mRNA cleavage or translational inhibition. miRNA plays a crucial role 
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in the initiation, progression, and maintenance of CSCs. Pancreatic CSCs express differential 

levels of miR-99a, miR-100, miR-125b, miR-192, and miR-429 compared with controls and miR-

200c, miR-203, and miR-183 activity can lead to the downregulation of stem cell factors 

[226,227].  Expression levels of miRNAs correlate well with drug resistance, invasion, 

metastasis, and epithelial to mesenchymal transition (EMT) [185]. Despite their promise, the 

clinical potential of miRNAs has not been realized owing to the challenges involved in their in 

vivo delivery. Several barriers such as serum instability, non-specific accumulation, improper 

intracellular release and rapid excretion limit the clinical application of therapeutic miRNAs. 

Further, miRNAs are highly hydrophilic, which decreases their extravasation into the 

desmoplasmic PDAC tissue. Previous studies including our own show that miR-let7b is 

downregulated in pancreatic cancer cells and primary pancreatic cancer [228,229]. miR-let7b 

can target several tumor-promoting genes including K-RAS, MUC4, NCOA3, HMGA2, TGFβR1, 

and STAT3 phosphorylation [230-232]; thus its restoration can inhibit PDAC growth and 

progression.  

A combination of two drugs having different mechanisms of action can inhibit tumor 

progression with synergistic or additive effects [233-235]. Previously, we have synthesized 

cationic polymer (mPEG-b-PCC-g-GEM-g-DC-g-CAT) for simultaneous delivery of miR-205 and 

gemcitabine, where gemcitabine was covalently attached to polymer backbone [180]. However, 

GDC-0449 has no functional group for chemical conjugation to the polymer. Therefore, in this 

study, we synthesized poly (ethylene glycol)-block-poly (2-methyl-2-carboxyl-

propylenecarbonate-graft-dodecanol-graft tetraethylenepentamine) (PEG-b-PCC-g-DC-g-TAPA) 

which can self-assemble in micelles, form complex with miR-let7b, and encapsulate GDC-0449. 

These micelles were characterized for particle size, zeta potential, drug loading, miRNA 

complexation, stability, and transfection efficiency. The formulations were tested for the effect 

on proliferation of pancreatic cancer cell lines (HPAF-II, T3M4, CAPAN-1, and MIA PaCa-2). 
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Finally, these formulations were injected into subcutaneous pancreatic tumor bearing mice to 

determine whether there is synergism between these two drugs in inhibiting tumor growth.   

3.2. MATERIALS & METHODS 

 Materials & Reagents 3.2.1.

Benzyl bromide, 2, 2-bis (hydroxymethyl) propionic acid, methoxy poly (ethylene glycol) 

(mPEG, Mn = 5000, PDI= 1.03) and stannous 2-ethylhexanoate (Sn(Oct)2) were purchased 

from Sigma-Aldrich (St. Louis, MO). Tetraethylenepentamine and dodecanol were purchased 

from Alfa-Aesar (Ward Hill, MA). TaqMan® reverse transcription reagent kit was purchased from 

Life Technologies (Grand Island, NY). Radioimmunoprecipitation assay (RIPA) buffer and SYBR 

green-1 were purchased from (Roche, Indianapolis, IN). miR-let7b (mature sequence 

UGAGGUAGUAGGUUGUGUGGUU) and scrambled miRNA were purchased from Invitrogen 

(Carlsbad, CA). All other reagents were purchased from Sigma-Aldrich and used without further 

purification. 

 Synthesis of Copolymer 3.2.2.

For the synthesis of the mPEG-b-PCC-g-DC-g-TAPA copolymer, monomer 2-methyl-2-

benzyloxycarbonyl-propylene carbonate (MBC) was synthesized by reacting 2, 2-bis 

(hydroxymethyl) propionic acid with benzyl bromide for 16h under nitrogen at 100°C [196]. 

mPEG-MBC was synthesized by ring opening polymerization in the presence of Sn(Oct)2 as a 

catalyst at 100°C 8h. mPEG-MBC was then dissolved in THF: Methanol (1:1, v/v) and 

hydrogenated in the presence of 10 wt% palladium on carbon to obtain the copolymer 

containing pendant carboxyl groups (mPEG-PCC) [236]. Finally, tetraethylenepentamine 

(TEPA) and dodecanol were conjugated by carbodiimide coupling reaction at room temperature 

for 48h to obtain mPEG-b-PCC-g-DC-g-TEPA. This final product was purified by repeated 
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precipitation in isopropyl alcohol followed by diethyl ether. Copolymer mPEG-b-PCC-g-DC-g-

TEPA was characterized using 1H NMR (Bruker 400 MHz) after dissolving in DMSO-d6. 

 Preparation of Micelles 3.2.3.

Micelles encapsulating GDC-0449 and complexing miR-let7b were formulated by the film 

hydration method as reported earlier with slight modifications [180]. Briefly, 20 mg of mPEG-b-

PCC-g-DC-g-TEPA was dissolved in chloroform in a glass vial, and a thin film was formed by 

solvent evaporation under reduced pressure. Chloroform was removed completely by placing 

the vial overnight in a vacuum desiccator. miR-let7b was added to 1 ml HEPES buffer (10 mM, 

pH 6.5) and mixed gently. HEPES buffer containing miR-let7b was then added to the copolymer 

film and vortexed for 5 min.  The suspension was shaken for 30 min at 37°C to enable miRNA 

complexation. The formulation was then centrifuged at 5000 g for 5 min and filtered using 0.22 

μm filter (Millipore) and lyophilized. miR-let7b and GDC-0449 combination formulations were 

prepared by dissolving the drug and copolymer in chloroform and then followed by film 

formation and hydration with HEPES buffer containing miR-let7b.   

 Characterization of Formulations 3.2.4.

Micelles carrying miR-let7b and GDC-0449 were characterized by the particle size 

distribution and zeta potential using Malvern Zetasizer (NanoZS Series) and for morphology 

using Transmission electron microscope (TEM). Micelles containing miRNA and used for 

particle size characterization or drug release were formulated at N/P ratio of 32:1. Micellar drug 

loading was measured by HPLC-UV as reported earlier [237]. For the determination of the 

critical micelle concentration (CMC) of the cationic copolymer, pyrene fluorescence was used as 

previously described [238]. From pyrene stock solution of 2.6 mg/ml in chloroform, 19.23 µl (50 

µg pyrene) aliquots were transferred to a series of clean, dry glass vials. The solvent was 

evaporated under vacuum while protected from light. Copolymer solutions were prepared at 
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concentrations ranging from 1X 10-9 -1.0 mg/ml in distilled water and added to each dry pyrene 

vials to obtain the final concentration of 6.18X 10-5 M. Vials containing mixtures were shaken for 

24h at room temperature in the dark. Undissolved pyrene was removed by filtration and pyrene 

concentration solubilized in the micelles was determined by spectrofluorometer at wavelengths 

of excitation 339 nm and emission at 390 nm.  

For the determination of the GDC-0449 release, a formulation containing 0.5 mg GDC-

0449 was placed in a dialysis bag (MWCO 1000 Da) and suspended in PBS (pH 7.4) containing 

Tween 80 (1.0% w/v) at room temperature. 1 ml samples at a regular interval were withdrawn 

and replaced with fresh media (PBS + 1.0% Tween 80). Samples were analyzed using HPLC. 

Drug release was determined in the absence and presence of miR-let7b. Agarose gel 

retardation assay was used to evaluate miR-let7b condensation. Copolymer/miR-let7b 

complexes were prepared at different N/P ratios ranging from 4 to 64, and the complexes 

containing 1X loading buffer were loaded onto 1% agarose gel premixed with 0.05 mg/ml 

ethidium bromide. The mixture was separated in 1X Tris/Borate/EDTA (TBE) buffer at 100V for 

30 minutes. miR-let7b bands were visualized using a UV Gel Doc EZ system (Bio-Rad, 

Hercules, CA).  

miRNA release from GDC-0449 encapsulated and miR-let7b complexed micelles (N/P 

ratio: 32/1) was determined using heparin polyanion competition. Heparin sodium was added to 

miR-let7b at different weight ratios (0, 4, 8, 16, 32 and 64 μg) in 10 μl PBS were added to the 

nano-complex suspension and incubated at room temperature for 45 min. The miRNA released 

from the complex was analyzed by gel electrophoresis. miRNA stability within nano-complexes 

was determined by incubating the complexes (N/P ratio: 32/1) in 25% fetal bovine serum (FBS) 

for different time points at 37°C. After indicated time points, complexes were taken out and then 

incubated with heparin sulfate solution for 45 min. The mixture was then electrophoresed. 
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 Transfection Efficiency  3.2.5.

 MIA PaCa-2 cells were seeded into Nunc Chamber Slides (Lab-Tek, Rochester, NY) at a 

density of 4 ×104 cells/well in serum free DMEM for Lipofectamine 2000® and DMEM with 10% 

serum for transfection with nano-complex for 24h. Copolymer/Block-IT™ fluorescent oligo 

complexes were prepared at the N/P ratio of 32:1. Lipofectamine transfection was carried out as 

per the manufacturer's instructions, and these cells were considered as the control. Nano-

complexes were added to the respective wells (oligo 20pmol/well) with gentle shaking and 

incubated for 3h at 37°C. Cells were then washed twice with PBS containing Ca2+ and Mg2+, 

fixed with 10% paraformaldehyde (PFA) in PBS for 15 min at room temperature. After fixing 

cells observed under a fluorescent microscope (Zeiss, Jena, Germany) and images were 

recorded.  

 Endosomal Escape Study  3.2.6.

 Cells were plated in Nunc Chamber slides at a density of 40,000 cells/well in 300μl 

DMEM. CellLight™ Early Endosomes-GFP was added for staining the endosomes as per the 

manufacturer's instructions. After overnight incubation, 50 μL of nano-complexes (20 μM) 

formulated from fluorescent Block-IT™ oligo were added to each well. After incubation for 

certain time points, cells were fixed with 10% PFA. For each time point, images were captured 

using Endosomes-GFP channel (excitation 488 nm, bandpass filter 500–550 nm) and Block-

IT™ channel (excitation 543 nm, bandpass filter 560-615 nm). Image processing and analysis 

was conducted with ZEN software (Zeiss, Jena, Germany). 

 Cell Viability Assay 3.2.7.

 Cytotoxicity of the micelles carrying GDC-0449 and miR-let7b was determined by 

carrying out the cell viability assays. HPAF-2, M3T4, Capan-1, and MIA PaCa-2 cells (5000 

cells/) were seeded 24h before transfection. Transfection was carried out using micelles 
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carrying GDC-0449 (1-10µM) and constant miR-let7b (10 pmol) concentration. Micelles carrying 

scrambled miRNA and GDC-0449 formulations were used as the positive control. Cell viability 

was assessed after 48h by MTT assay using a microplate reader (Epoch, BioTek Instruments 

Inc., Winooski, VT).  % cell viability was calculated using equation:  

 

 

 In vivo Study 3.2.8.

 All animal experiments were performed in accordance with the protocol approved by the 

Institutional Animal Care and Use Committee (IACUC) at the University of Nebraska Medical 

Center (UNMC, Omaha, NE). Flank tumors were established in 8-10 week old male athymic 

nude mice by subcutaneous injection of 3X106 MIA PaCa-2 cells suspended in a total 200 μl of 

1:1 serum-free media and Matrigel® (BD Biosciences, CA). When the tumor volume reached 

200-300mm3, animals were randomly divided into five groups (n=5): blank micelles, micelles 

containing GDC-0449, GDC-0449 and scrambled miRNA (SCR), micelles containing miR-let7b, 

and micelles carrying miR-let7b and GDC-0449. Formulations were administered intratumorally 

thrice a week for two weeks at an equivalent dose of 10 mg/kg GDC-0449 and 2 mg/kg miR-

let7b or the negative control (NC). Tumor size was measured at regular intervals using digital 

vernier calipers. Body weight of the animals was recorded three times a week. At the end of the 

study, tumor tissues were excised, weighed, and either fixed in formaldehyde or snapped frozen 

for further analysis. 

 Real-time RT-PCR 3.2.9.

 Gene expression levels of downstream targets of miR-let7b and GDC-0449 were 

determined using real-time RT-PCR. Total RNA from specimens was extracted using RNeasy 

RNA isolation kit (Qiagen, MD) as per manufacturer's protocol. mRNA was then reverse 

Cell viability % =
𝐀𝐛𝐬𝐨𝐫𝐛𝐚𝐧𝐜𝐞 𝐓𝐞𝐬𝐭

(𝐀𝐛𝐬𝐨𝐫𝐛𝐚𝐧𝐜𝐞 𝐂𝐨𝐧𝐭𝐫𝐨𝐥)
 100                                                        (3.1) 
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transcribed into cDNA using TaqMan qRT-PCR kit (Life Technologies, Carlsbad, CA). cDNA 

templates were then amplified by real-time PCR on a Light Cycler 480 (Roche, Indianapolis, IN) 

using SYBR Green dye universal master mix. Primer sequences used were Shh (forward: 

CCAGAAACTCCGAGCGATTTA, reverse: TTTCACCGAGCA GTG GATATG) and GLI-1 

(forward: CTACATCAACTCCGGCCAATAG reverse: GGT TGGGAGGTAAGGATCAAAG). β-

actin (primer sequence forward: AGCCATGTACGTTGCTATCC, reverse: 

CGTAGCACAGCTTCTCCTTAAT) was used as a housekeeping gene, and the relative amount 

of mRNA was calculated using Crossing point (Cp) values. 

 Western Blot  3.2.10.

Total proteins from tissues were extracted by homogenizing in RIPA buffer premixed 

with protease inhibitor cocktail (Sigma, St. Louis, MO). Proteins concentrations were determined 

using a BCA Protein Assay Kit (Thermo Scientific, Rockford, IL). Total protein (50 µg) was 

separated on 12 % Mini PROTEAN® polyacrylamide gels and then transferred to polyvinylidene 

fluoride (PVDF) (Life technologies Carlsbad, CA) using iBlot gel transfer system. The membrane 

was blocked using Odyssey blocking buffer for 1h at room temperature. Membranes were 

incubated overnight with rabbit polyclonal to Gli-1 (SC-20687), rabbit polyclonal to Shh (SC-

h160), goat polyclonal to β-actin (SC-1616) (1:1000) (Santa Cruz Biotech., Dallas, TX) and 

mouse monoclonal to KRAS (ab-55391) (1:1000) (Abcam, Cambridge, MA). After washing with 

TBST buffer, the membrane was further incubated with their corresponding anti-rabbit, anti-goat 

and anti-mouse IR dye-conjugated secondary antibodies (1: 10,000) (LI-COR Biosciences, 

Lincoln, NE) for 60 min and visualized using the LI-COR imaging system. Expression levels of 

desired protein were normalized against β-actin (SC-1616) protein expression levels. 
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 Histochemical and Immunofluorescence Assays  3.2.11.

 Tumors were excised, and specimens were fixed in 10% PFA overnight and embedded 

in paraffin. For the evaluation of the tissue morphology, sections (4μm) were stained with 

Hematoxylin & Eosin (H&E) and then analyzed blindly. For cell proliferation marker Ki-67, 

sections were probed with rabbit polyclonal Ki-67 antibody (1:50) (ab-15580). Sections were 

incubated for 45 min at room temperature with anti-rabbit horseradish peroxidase (HRP) 

conjugated secondary antibody diluted to 1:500 in 2% BSA/1×PBS solution. All stained slides 

were visualized under a microscope (Leica, Germany). 

 Terminal Deoxynucleotidyl Transferase nick end Labeling (TUNEL) Staining 3.2.12.

 DeadEnd® fluorometric TUNEL staining to identify apoptotic cells by fluorescein-12–

dUTP labeling of fragmented DNA was carried out as per manufacture's protocol (Promega). 

Briefly, paraffin-embedded tumor tissue sections were deparaffinized by immersing in xylene 

and rehydrated by sequentially immersing the slides through graded ethanol. After washing with 

PBS, sections were fixed with 5% formaldehyde, washed with PBS and permeabilized by 

incubating with Proteinase K solution for 15 min. After fixing with 5% PFA and washing, slides 

were covered with 100µl of Equilibration Buffer for 15 min and washed with PBS. Subsequently, 

slides were coated with rTdT incubation buffer (equilibration buffer + nucleotide mix 5µl + rTdT 

enzyme) and incubated at 37°C for 60 min. For the negative control, incubation buffer was 

prepared without rTdT enzyme and incubated. Slides were then washed with 1X SSC buffer and 

PBS, and incubated in 1µg/ml propidium iodide (PI) in PBS for 20 min. Finally, slides were 

washed with deionized water twice and observed under confocal microscope. 

 Statistical Analysis 3.2.13.

 Student's unpaired t-test was used to compare the mean values of individual groups. A 

p-value <0.05 was considered as statistically significant. 
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3.3. RESULTS 

 Micelles containing miR-let7b and GDC-0449 were formulated and evaluated both in 

vitro and in vivo for treating pancreatic cancer. We have complexed hydrophilic miR-let7b and 

encapsulated hydrophobic GDC-0449 in our cationic polymeric micelles.  

 Copolymer Synthesis and Characterization 3.3.1.

  The cationic amphiphilic copolymer was synthesized by attaching dodecanol (DC) and 

TEPA to methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate) 

(PEG-PCC) by carbodiimide coupling (Figure 3.1A). mPEG-PCC was characterized with 

1HNMR and showed copolymer backbone peaks corresponding to PEG (–CH2–CH2–O) at δ 3.5, 

PCC (–CH2–) at δ 4.2. After hydrogenation the characteristic peak of phenyl ring at δ 7.3 

disappeared and a peak at δ 13 corresponding to exposed carboxyl group was observed which 

indicates the complete removal of pendant benzyl group [236]. Based on the peak integrals of 

mPEG and PCC protons, a number average molecular weight (Mn) of the mPEG-PCC 

copolymer was calculated to be 10,370 g/mol with 31 PCC units. EDC/HOBt coupling reaction 

was used to conjugate, DC and TEPA chains to the copolymer. 1HNMR characterization 

Figure 3-1. Design of amphiphilic copolymer for co-delivery of GDC-0449 and miR-let7b 

for treating for pancreatic cancer. (A) Schematic representation of copolymer (B) 
1

H NMR. 
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showed peaks for TEPA at δ7–8 (–CO–NH–) and dodecanol peaks at δ of 1-2 (CH2) (Figure 

3.1B).  

The degree of polymerization (DP) of the copolymer was calculated based on 1H NMR 

integration ratio of peaks assigned at δ 3.63 to ethylene protons of PEG backbone. 

Approximately 12 units of DC and 8 units of TEPA were present in the final copolymer with the 

disappearance of COOH peak and Mn calculated was approximately 14,000 g/mol. Gel 

permeation chromatography of the copolymer showed a unimodal peak with weight an average 

of 13776 g/mol (PDI of 2.0) and an increase in molecular weight compared to mPEG-MCC. This 

confirms the successful engraftment of DC and TEPA into the copolymer (Figure 3.2). The 

CMC value of copolymer in the aqueous system as determined using pyrene was 5.5 X 10-4 

(g/L) (Figure 3.3). 
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Figure 3-3. Plot of fluorescence intensity of pyrene vs. logarithm of the 
mPEG-b-PCC-g-DC-g-TEPA copolymer.  

Figure 3-2. Refractive index-gel permeation chromatography (RI-GPC) traces of mPEG-b-

PCC-g-DC-g-TEPA copolymer and specifics of molecular weight data and characteristics.  
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 Formulation characterization  3.3.2.

Mean particle size of micelles encapsulating GDC-0449 or in combination with miRNA 

was measured using DLS and TEM (Figure 3.4 A&B). Micelles encapsulated only GDC-0449 

showed a mean size of 95±10 nm (with PDI 0.11), while there was a slight decrease in the 

mean size (80±10 nm) (with PDI 0.10) when micelles contained both GDC-0449 and miRNA. 

TEM showed the morphology of GDC-0449 loaded miR-let7b complexed micelles as well-

dispersed spherical particles. Compared to the hydrated state in DLS size of micelles (80±10 

nm), TEM was carried out in the dried state, resulting in small size particles (60±10 nm). Zeta 

potential of miR-let7b polyplex micelles was in the range of 5 ± 2 mV compared to -15± 2 mV for 

a free miR-let7b solution. 

 These micelles carrying GDC-0449 and miR-let7b were fairly stable at room 

temperature, and thus there was little change in their particle size distribution even after a week 

(data not shown). There was the little release of miRNA from the polyplex, suggesting the high 

stability of this formulation. mPEG-b-PCC-b-DC-g-TEPA significantly increased solubilization of 

GDC-0449 up to 1560 ± 50 µg/ml, as determined by HPLC-UV. GDC-0449 release in the 

Figure 3-3. Plot of fluorescence intensity of pyrene vs. logarithm of the mPEG-b-PCC-g-

DC-g-TEPA copolymer.  
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presence and absence of miRNA from the combination formulations was determined at 7.4. 

Drug release showed a controlled release of 80% in 2 days, with no effect of the presence of 

miR-let7b on GDC-0449 release from the polyplexes (Figure 3.4C).  

To determine the effect of N/P ratio on miR-let7b complexation, miR-let7b was 

complexed with mPEG-b-PCC-b-DC-g-TEPA at N/P ratios ranging from 1:1 to 64:1. Complete 

retardation of miRNA was observed at N/P ratio of 32:1 (Figure 3.4D). Heparin (170U/mg) was 

able to dissociate miR-let7b from the polyplexes at the ratio of 1:16 (Figure 3.4F). miR-let7b 

was stable in 25% FBS for 24h when formulated in micelles, while naked miRNA degraded 

within 1h, suggesting polyplex formation stabilizes miRNA against exonucleases (Figure 3.4E). 

Figure 3-4. Micelle preparation and characterization. (A) Particle size distribution of miR-
let7b complexed and GDC-0449 encapsulated micelles using dynamic light scattering; (B) 
Micelle morphology determined by transmission electron microscope (TEM); (C) GDC-0449 
release profile from micelles with or without miRNA, (D) complex formation ability of micelles 
to miRNA at different N/P ratios, (E) miRNA dissociation from micelles by heparin; and (F) 
miRNA stability in presence of 25% FBS. Equal amount of each sample was incubated with 
10 μL FBS at 37°C for 0, 6, 12 and 24h prior to gel electrophoresis.  
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Cellular uptake and intracellular distribution of these micelles were evaluated by confocal laser 

scanning microscopy. Although our cationic polymer showed transfection efficiency similar to 

Lipofectamine 2000® (Figure 3.5), significantly lesser cytotoxicity was observed based on the 

N/P (+/-) ratio of the complexes. Also, uptake study using our formulation was carried out using 

serum containing media, unlike Lipofectamine 2000® lipoplexes which required serum-free 

media for transfection. The N/P ratio of lipofectamine: miR-let7b was ~22:1 while our polymer 

was non-toxic even at N/P ratio of 64:1. 

  

Figure 3-5. Transfection efficiency of fluorescent labeled Block-ITTM oligo loaded 

micelles into Capan-1 cells. (A) Oligo complexed micelles and (B) oligo/Lipofectamine-2000 

complexes. Right panel is optical images of cells (DIC). After 4h post-transfection, cells were 

washed, fixed, and mounted for microscopy. 
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 Transfection Efficiency and Lysosomal Escape 3.3.3.

 For endosomal escape study, MIA PaCa-2 cells were labeled with GFP and transfected 

with Cy3 labeled oligonucleotide formulation for different time points. After 1h of incubation, the 

co-localization of both fluorescent signals were observed, suggesting efficient uptake of micelles 

by the cells (Figure 3.6A). The majority of fluorescence was localized in endosomal 

compartments and after 3h, both fluorescent colors were separated and clearly showed that 

micelles were not restricted to early endosomes (Figure 3.6B), indicating its potential to be 

used as a miRNA carrier.  

 Cell Viability Assay  3.3.4.

 Cytotoxicity of micelles carrying GDC-0449 and miR-let7b were determined at N/P ratios 

of 32:1 with 10pmol miR-let7b. Cell viability was determined by MTT assay after 48h of 

Figure 3-6. Confocal microscopy of MIA-PaCa-2 cells exposed to CY3 oligo 
complexed micelles. Cells were exposed to micelles for 1-5h. Fluorescence of the micellar 
core (red) and shell of the endosomes (green) is highly co-localized as indicated by the 
yellow signal in the merged images. (Scale bar: 20 μm.) 
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incubation and compared to the cells incubated with micelles carrying either GDC-0449 or miR-

let7b alone or GDC-0449 and scrambled miRNA. The combination formulations reduced cell 

viability to 47% in HPAF-II, 20% in Capan-I, 30% in T3M4, and 37% in MIA PaCa-2 cells at the 

dose of 10 pmol miR-let7b and 10 µM GDC-0449 while both miR-let7b and GDC-0449 

monotherapy failed to kill cells at the low doses (Figure 3.7). Therefore, combination 

formulation was quite effective leading to a significant decrease in cell viability, suggesting 

synergism between these two drugs.  

Figure 3-7. Effect of GDC-0449 and miR-let7b on cell viability in human pancreatic 
cancer cell line by micelles. (A) HPAF-II, (B) M3T4, (C) Capan-1 and (D) MIA PaCa-2 
cells (5000/well) were treated with micelles containing ( ) GDC-0449 (0, 1, 5 and 10 µM), (

) GDC-0449 and scrambled miRNA ( ), GDC-0449 and miR-let7b (10pmol), ( ) miR-
let7b alone and ( ) blank for 48h. Cell viability was measured by MTT assay at the end of 
incubation period. Data represent the mean ± S.D. (n=3) 
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 In vivo Evaluation 3.3.5.

 The in vivo efficacy of micelles containing miR-let7b and GDC-0449 was 

determined in subcutaneous tumor bearing athymic nude mice generated using MIA PaCa-

2 cells. All the animals did not show any signs of toxicity or loss in body weight during the 

treatment period (Figure 3.8A). All the treatment groups had significantly low tumor growth 

Figure 3-8. In vivo efficacy of mPEG-b-PCC-b-DC-b-TEPA micelles carrying GDC-
0449 and miR-let7b in tumor bearing mice. Tumors were developed by subcutaneous 
injection of (3 X 106) MIA PaCa-2 cells in in the left flank of athymic mice. When the tumor 
size reached 200 mm3, mice were injected intratumorally with one of the following 
formulations: blank micelles, micelles carrying GDC-0449, micelles carrying GDC-0449 
and scrambled miRNA and micelles carrying GDC-0449 and miR-let7b. Dose was 10 
mg/kg GDC-0449 and 2 mg/kg miR-let7b or scrambled miRNA. A) Animals body weight 
during treatment; B) tumor volume and C) representative tumor size of various treatment 
groups. GDC-0449/miR-let7b micelles decreased the rate of tumor growth compared to 
monotherapy. Data expressed as the mean ± S.E. (n= 5).  
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compared to the control group (537.30 ± 38.43 mm3). However, significant tumor growth 

inhibition was observed in the mice which received micelles carrying miR-let7b and GDC-0449 

(119.07 ± 13.25 m m3) compared to the formulations containing miR-let7b (350.35 ± 64.15 mm3) 

or GDC-0449 alone (249.19 ± 32.74) or formulations containing GDC-0449 and SCR miRNA 

(285.12 ± 58.63 mm3) (Figure 3.8B & C).  

RT-PCR was used to determine the mRNA expression of Shh and Gli-1 in tumor tissues 

where relative expression of Shh mRNA was inhibited by GDC-0449 and GDC-0449 + SCR 

treatment groups to 59.15% ± 10.19 and 69.07 % ± 10.86 respectively, wherein its levels were 

47.62% ± 7.05 in the combination treatment group. Relative Gli-1 mRNA also displayed the 

similar trend, where its transcripts were decreased to 63.45% ± 5.64 and 68.65 % ± 3.03 by 

GDC-0449 and GDC-0449 + SCR formulations respectively, and up to 31.82% ± 2.47 

reductions by the combination treatment group (Figure 3.9A). We did not observe any 

significant reduction in the level of either of these transcripts in mice treated with the 

formulations containing miR-let7b alone. Western blot analysis shows reduced Gli-1 and K-RAS 

protein expression in treatment groups (Figure 3.9B). 

 Immunohistochemical analysis of tumor sections revealed that the treated mice 

displayed lower Ki-67 staining compared to untreated mice. Among treatment groups, mice 

treated with combination therapy had least Ki-67 staining (Figure 3.10A). Treatment with 

micelles carrying GDC-0449 and miR-let7b resulted in loosened groups of epithelial cells, 

whereas the control group had dense cells within tumor mass (Figure 3.10B). Tumor sections 

were examined for apoptosis of cancer cells using TUNEL assay. No apoptotic (TUNEL-positive 

green fluorescent) cells were observed in sections from the control mice. Mice treated with 

micelles containing miR-let7b or GDC-0449 alone showed an only modest increase in the 

number of apoptotic cells, while miR-le7b and GDC-0449 combination therapy significantly 

enhanced apoptosis (Figure 3.10C).  
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3.4. DISCUSSION  

PDAC is among the most lethal human cancers and poses a medical challenge due to 

its insensitivity to the majority of proven chemotherapeutic agents. Hh signaling promotes 

proliferation of most cancer cell types including breast cancer, prostate cancer, colon cancer, 

brain tumors, pancreatic cancer, and basal cell carcinomas [165,239-243]. Hh signaling controls 

EMT and enhances cell proliferation by MAPK- and PI3-kinase-dependent manner decreases 

apoptosis by regulation of Bcl-2 and Bcl-X and also proliferates CSCs. Hh pathway also 

Figure 3-9. Real time RT-PCR and Western blot of tumor samples. A) GDC-0449/miR-
let7b treated animals showed down regulated relative mRNA levels of Shh and Gli compared 
to control animals (n=3, p<0.05). B) Western blot of Gli-1 and K-RAS. 
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promotes cell invasion, migration, and chemoresistance [244,245]. By inhibiting Hh signaling, 

GDC-0449 has shown the potential of reducing tumor cell growth [246].   

 GDC-0449 and miR-let7b represent diverse physicochemical properties with GCD-0449 

being a hydrophobic small molecule while miR-let7b is an oligonucleotide with high aqueous 

solubility. Therefore, we have synthesized an amphiphilic cationic mPEG-b-PCC-g-DC-g-TEPA 

copolymer, which self-assembles into micelles to encapsulate GDC-0449 and bears cationic 

pendant chains to form complexes with miR-let7b. Apart from co-delivery, our system offers 

distinct advantages in terms of a) PEG corona on the polymer imparting stealth property, b) 

small size of these micelles can take advantage of the EPR effect to maximize drug delivery to 

pancreatic tumor, and c) co-delivery will ensure similar biodistribution profiles of both the active 

Figure 3-10. Analysis of tumor samples for Ki-67 staining, hematoxylin and eosin 
(H&E) staining and C) Tunnel Assay for apoptosis. A) Immunohistochemical staining of 
Ki-67; B) H & E staining of peripheral tumor regions; and C) apoptosis in tumor cells as 
indicated by the green fluorescence of TUNNEL, while red spots mark the cells with 
propidium iodide (PI) staining. 

Control GDC-0449 GDC-0449 + SCRmiR-let7b GDC -0449 + miR-let7b

Control GDC-0449 GDC-0449 + SCRmiR-let7b GDC-0449 + miR-let7b

A) Immunohistochemical staining of Ki-67

B) Hematoxylin and Eosin (H&E) Staining

C) TUNEL Assay: (PI +Tunnel) merge

Control miR-let7b GDC-0449 GDC-0449 + SCR GDC-0449 + miR-let7b
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therapeutic moieties. Further, these nanomedicines are stable and scalable and hence bear 

high translational potential. 

While miR-let7b has been reported to retard pancreatic cancer cell growth and 

proliferation in vitro, it failed to inhibit PDAC progression in vivo due to the lack of efficient 

delivery [247]. Therefore, there is a great need to develop an efficient delivery system for 

miRNAs. We complexed miR-let7b with cationic chains of mPEG-b-PCC-g-DC-g-TEPA 

copolymeric in micelles. This copolymer self-assembles into micelles and encapsulates GDC-

0449 into its core and allows complex formation between miR-let7b and cationic pendant 

chains. The entrapment of miR-let7b into these micelles offers advantages of its improved in 

vivo stability, enhanced mean residence time and ensuring similar biodistribution of both GDC-

0449 and miR-let7b. Cells of RES recognize particles of large size while particles smaller than 

200 nm manage to escape. The mean particle size of our polyplexes ranged from 80 nm to 

100 nm with spherical morphology (Figure 3.4A and 4B). Moreover, mPEG corona on the 

polymer imparts stealth property for longer mean residence time at the tumor site [248]. By 

micellization, the aqueous solubility of GDC-0449 was increased from 0.1 μg/ml to 1560 ± 50 

μg/ml.  

Efficient miR-let7b complexation with the primary copolymer amines was observed at 

N/P ratio of 16/1 (Figure 3.4D). Low zeta potential value of the formulations suggests that PEG 

corona surrounds the polyplex core [249]. Decrease in polyplex mean particle size was 

observed in the DLS analysis after miRNA addition, may be due to the strong interaction 

between miRNA and cationic chains leading to decrease in the inter-chains force of repulsion 

[250]. Complete displacement of miRNA from polyplexes observed in the presence of 

polyanionic heparin, demonstrating that miRNA can be effectively released from the carrier 

(Figure 3.4E). Serum stability study shows that the naked miRNA degraded within 6h of 

incubation, while miRNA in the formulation was stable up to 24h (Figure 3.4F).  
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We determined the effect of GDC-0449 and miR-let7b formulations on cell viability using 

four pancreatic cancer cell lines known to express high levels of Hh ligands [251]. miR-let7b or 

GDC-0449 alone in formulations was ineffective in reducing cell viability, whereas cytotoxicity 

was increased significantly when GDC-0449 and miR-let7b were used as combination 

formulations (Figure 3.7). This synergy may be due to the fact that Hh signaling pathway works 

cooperatively with K-RAS in pancreatic cancer [164]. Thus, GDC-0449 reduces proliferation and 

induces apoptosis of these cells via Gli-1 dependent manner and chemosensitizers them to anti-

K-RAS miR-let7b. 

In vivo efficacy of the formulations was evaluated in athymic nude mice bearing ectopic 

tumor generated by subcutaneous implantation of MIA PaCa-2 cells. Treatment of these mice 

with micelles carrying miR-let7b and GDC-0449 resulted in a significant reduction in tumor 

growth rate and tumor weight compared to the control group (Figure 3.8B and 8C). There was 

a significant reduction in Shh and Gli-1 expression as analyzed by RT-PCR and K-RAS 

expression as analyzed by Western blot (Figure 3.9). 

We observed a high expression of proliferation marker Ki-67 in control group showing a 

high cell growth, whereas treatment with miR-let7b and GDC-0449 combination reduced cellular 

proliferation to a significantly low level (Figure 3.10A). Histological analysis of tumor specimens 

revealed a compact mass of epithelial cells in the control group, whereas combination treatment 

tumors appeared as loose epithelial cell aggregates with a larger amount of interspersed 

mesenchymal cells (Figure 3.10B), which is in line with the literature [164]. TUNEL assays 

demonstrated that GDC-0449 and miR-let7b treatment resulted in increased number of 

apoptotic cells compared with the control or single drug-treated groups (Figure 3.10C).  

All of these observations conclude that by combining K-RAS targeting tumor suppressor 

miR-let7b with Hh inhibitor GDC-0449 reduces tumor growth synergistically. Although the 

precise mechanisms of this cooperation are subject to further investigation, it appears that 
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inhibition of Hh signaling sensitizes tumor cells to anti K-RAS therapy. This is in line with 

previous studies, where Hh pathway activation reduced sensitivity to treatment with therapeutics 

that target K-RAS signaling pathway. Further, targeting both Hh and anti-K-RAS pathways 

reduced pancreatic tumor initiation and growth [252].  

We are aware of the outcome of a recent clinical trial, which revealed a remarkable 

decrease in Shh and proliferation marker Ki-67 after treatment with GDC-0449, but the 

combination of GDC-0449 and gemcitabine failed to improve the median survival of pancreatic 

cancer patients [253]. Furthermore, in a separate study, aggressive and undifferentiated tumor 

growth upon Hh deletion has been reported [254,255]. This tumor-promoting effect of Hh 

signaling suppression may be due to increased angiogenesis within tumor mass by a very high 

dose of GDC-0449 used (100 mg/kg) [256]. This is because, in a different clinical study, GDC-

0449 in combination with gemcitabine and nab-paclitaxel showed higher overall survival 

compared to gemcitabine plus nab-paclitaxel [257]. Therefore, successful inhibition of tumor 

growth requires a delicate balance between the beneficial and harmful effects of Hh signaling 

[258]. 

3.5. CONCLUSIONS 

In conclusion, we demonstrated that mPEG-b-PCC-g-DC-g-TEPA efficiently 

encapsulates GDC-0449 and forms complexes with miR-let7b, and this combination therapy 

has the potential to inhibit pancreatic cancer both in vitro and in vivo. This combination 

formulation represents a promising therapeutic approach to treat advanced pancreatic cancer 

with dense desmoplasia.  
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CHAPTER 4.  CO-DELIVERY OF SMALL MOLECULE HEDGEHOG INHIBITOR AND MIRNA 

FOR TREATING LIVER FIBROSIS 

4.1. INTRODUCTION 

Recently, we demonstrated that Hh ligands are upregulated in the livers of the CBDL 

rats, and blockage of Hh signaling using small molecule Hh inhibitor, GDC-0449 can prevent 

early-stage liver fibrosis [192]. Our miRNA profiling has clearly shown that among various 

miRNAs, the miR-29 family is significantly downregulated during the activation of HSCs and 

progression of liver fibrosis. The mir-29 family is composed of four members: miR-29a, miR-

29b1 (previously known as miR-29b), miR-29b2, and miR-29c. Their seed sequences are 

identical but have different flank regions [259]. Among them, miR-29b1 is gaining increasing 

attention for treating liver fibrosis.  

Our in-silico analysis indicated that miR-29b1 targets several profibrotic genes like 

collagen type I & IV, c-MYC, platelets derived growth factor beta (PDGF-β), and PI3K/AKT 

through their 3’-UTR regions. Notably, miR-29b1 downregulates phosphorylation of protein 

kinase B (AKB) which is involved in growth and proliferation, adhesion, migration, and collagen 

production by HSCs [260,261]. TGF-β1 is upregulated in liver fibrosis and known to 

downregulate miR-29b1 through SMAD3 pathway [262,263]. Therefore, inhibition of fibrogenic 

signaling at multiple levels and inhibiting expression of ECM proteins by restoring intracellular 

levels of miR-29b1 could be an effective therapeutic strategy for liver fibrosis.  

Due to the involvement of multiple signaling pathways and diverse cell type, the 

combination of two or more therapeutic agents with different mechanisms of action or targets is 

expected to show a synergistic antifibrotic effect [264]. Furthermore, profibrotic TGF-β is also 

known to induce Hh downstream transcription factor GLI proteins through SMAD pathway and 

activate Hh signaling independent from smoothened (SMO) [265]. Therefore, suppression of Hh 
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pathway alone without reduction of TGF-β or vice-versa is likely to result in partial treatment of 

liver fibrosis. Moreover, even when one or both types of suppressing agents are delivered 

separately, the only suboptimal effect can be expected. For spatial–temporal synchronization of 

hydrophobic GDC-0449 and hydrophilic miR-29b1, a specialized carrier system, capable of 

encapsulating and delivering them simultaneously, is required. 

Recently, we have developed cationic polymer mPEG-b-PCC-g-DC-g-TEPA based 

micelles for simultaneous delivery of miR-let7b and GDC-0449, where GDC-0449 was 

encapsulated, and miRNA was complexed in the core of micelles. Micelles carrying miR-Let-7b 

and GDC-0449 were characterized by particle size, zeta potential, drug loading, miRNA 

complexation as well as stability and transfection efficiency, and evaluated for treating 

pancreatic cancer [179]. In this study, we extended our prior work by systemic delivery of GDC-

0449 and miR-29b1 loaded micelles into CBDL mice to evaluate their anti-fibrotic efficacy. 

CBDL procedure induces proliferation and differentiation of intrahepatic biliary epithelial cells 

into myofibroblasts which result in overproduction and deposition of ECM [266]. Mechanistically, 

bile acid (BA) concentrations in animals act as pro-inflammatory signals, which trigger CXC 

chemokine formation in hepatocytes. These chemokines together with osteopontin derived from 

biliary epithelial cells recruit neutrophils to the areas of biliary leakage in the liver during 

obstructive cholestasis. Thus, CBDL-induced liver injury is caused by a neutrophil-mediated 

inflammatory response [267]. Here, we report micelles that are scalable, carry GDC-0449 and 

miR-29b1 simultaneously, and have high transfection efficiency with low cell toxicity. Systemic 

administration of micelles carrying miR-29b1 and GDC-0449 into CBDL mice resulted in a 

significant decrease in collagen deposition and serum injury markers as well as improvement in 

liver morphology. Further, we report a significantly upregulated expression of mature miR-29b1 

following micelles mediated systemic delivery of miR-29b1 to CBDL mice. Finally, we 

demonstrated that systemic delivery of miR-29b1 and GDC-0449 containing micelles 
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significantly suppressed profibrotic genes like Shh, GLI, α-SMA, PDGFR-β and p-AKT in a 

mouse model of liver fibrosis. Our results suggest a new approach for co-delivery of miRNA and 

hydrophobic small molecule by biodegradable polymeric micelles. 

4.2. MATERIALS AND METHODS 

 Materials and Reagents 4.2.1.

Benzyl bromide, 2, 2-bis (hydroxymethyl) propionic acid, methoxy poly (ethylene glycol) 

(mPEG, Mn = 5000, PDI= 1.03) stannous 2-ethylhexanoate (Sn(Oct)2) and 

radioimmunoprecipitation assay (RIPA) buffer were purchased from Sigma-Aldrich (St. Louis, 

MO). Tetraethylenepentamine (TEPA) and dodecanol (DC) were purchased from Alfa-Aesar 

(Ward Hill, MA). TaqMan® reverse transcription reagent kit was purchased from Life 

Technologies (Grand Island, NY) and SYBR green-1 was purchased from (Roche, Indianapolis, 

IN). miR-29b1 (mature sequence:  GCUGGUUUCAUAUGGUGGUUUA) and scrambled miRNA 

were purchased from Invitrogen (Carlsbad, CA). miR-29b1 mimic is a double-stranded construct 

consisting of a guide and passenger strands. All other reagents were purchased from Sigma-

Aldrich and used without further purification. 

 In silico miR-29b1 Target Prediction and miRNA Profiling 4.2.2.

We used three algorithms computationally to predict potential targets of miR-29b1 

including TargetScan, miRDB, and DIANA MicroT-CDS. The computationally predicted best 

miRNA-target pairs were selected by comparing the results from the three target prediction 

databases. miRNA profiling of liver samples from the sham control and CBDL fibrotic mice was 

done using our standardized protocols [229]. Briefly, total RNA including small non-coding 

miRNA was isolated from the liver tissues using miRNEasy RNA isolation kit (Qiagen, MD) with 

phenol-chloroform method. RNA quality was then determined using a microplate reader (Epoch, 

BioTek Instruments Inc., Winooski, VT) and converted to cDNA template using miScript II RT 
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Kit. miRNA PCR array was performed with a 96 well plate SYBR green based pathway-focused 

miScript miRNA PCR Array (Qiagen, MIMM-117ZF). This array profiles the expression of 84 

miRNAs known to play a role in mouse liver fibrosis. This array includes 6 housekeeping genes 

(SNORD61, SNORD68, SNORD72, SNORD95, SNORD96A, RNU6B/RNU6-2) and quality 

controls assays. Roche Light Cycler 480® with thermo-cycle consisted of activation (95°C for 15 

min) 45 cycle of denaturation (94°C for 15s) annealing (55°C for 30s) extension (70°C for 30s). 

Relative quantification was performed using miScript miRNA PCR Array Data Analysis web-

based service (SA Biosciences, MD).  

 Synthesis of Copolymer and Preparation of Micelles  4.2.3.

Copolymer mPEG-b-PCC-g-DC-g-TEPA was synthesized, and micelles were prepared 

by film hydration as previously described [179]. Briefly, GDC-0449 loaded micelles were 

prepared by dissolving GDC-0449 (1.5mg) and copolymer (30mg) in chloroform (0.5mL) and 

evaporated under reduced pressure to form a thin film and was further dried overnight in a 

desiccator. The film was then hydrated with HEPES buffer (1mL, pH 6.5) and vortexed for 5 min 

at room temperature. Micelles carrying GDC-0449 and miR-29b1 were prepared by hydrating 

the polymeric film containing GDC-0449 with HEPES buffer containing miR-29b1, vortexed for 5 

min and suspension was shaken for 25-30 min at RT to enable miRNA complexation. The 

mixture was then centrifuged at 5000 rpm for 5 min and filtered using 0.22 μm filter (Millipore). 

 Characterization of Formulations 4.2.4.

 Micelles carrying GDC-0449 and miR-29b1 were characterized by the particle size 

distribution using a Malvern Zetasizer (NanoZS Series) and their morphology using transmission 

electron microscope (TEM) as described earlier [179]. All the formulations containing miRNA 

(used for characterization and as well as for in vivo studies) were formulated at N/P ratio of 

32:1. The stability of micelles was assessed in PBS (pH 7.4) by monitoring changes in particle 
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size stored at RT with regular sampling for up to 6 days [268]. We determined the kinetic 

stability of micelles carrying GDC-0449 and miR-29b1 using two independent methods. 

Fluorescence resonance energy transfer (FRET)-based method was used to study the stability 

of micelles [269]. Briefly, 5mg mPEG-b-PCC-g-DC-g-TEPA, 250µg GDC-0449, 50µg Dil, and 

50µg DiO were dissolved in 500 µL chloroform and dried to make a film. HEPES buffer (500 µl, 

pH 6.5) containing miR-29b1 was then added to the copolymer film, vortexed for 5 min and 

shaken for 30 min on an orbital shaker. Micelles were filtered through a microfilter (0.45 μm) and 

incubated with 100% FBS (1:4 volume ratio) at 37°C with gentle agitation, and time-resolved 

spectra were measured over 36h with an excitation wavelength at 484 nm. In the second 

method, the stability of the drug-containing micelles was probed in serum containing medium by 

size exclusion chromatography (SEC) [270]. The drug-containing micelles (1 mL) were 

incubated with 250 µl FBS at 37°C. At certain time intervals (0-24h), aliquots (100 μL) of the 

mixtures was withdrawn and analyzed by SEC (Ultrahydrogel 250, Waters, Japan) connected to 

a UV detector. Samples were eluted with 1× PBS (pH 7.4) at a flow rate of 1.0 mL/min. 

 Cellular Uptake Study 4.2.5.

 HSC-T6 cells were seeded in in 4-wells Nunc Chamber Slide (Lab-Tek, Rochester, NY) 

at a density of 4 ×104 cells per well and incubated in 500 μL DMEM with 10% FBS overnight. In 

Lipofectamine 2000/oligo complex transfected cells, the medium was removed by aspiration and 

replaced with serum free Optimum media. Lipofectamine2000/oligo complexes (20 pmol each 

well) were added to the respective wells and incubated for 3h. For micelle transfection, micelles 

loading oligo (20 pmol each well) were added to the wells directly, without removing the media 

(with serum) and incubated. For imaging, cells were washed twice with PBS containing Ca2+ 

and Mg2+, fixed with 10% PFA in PBS for 10-15 min at room temperature and observed under a 

fluorescent microscope (Zeiss, Jena, Germany). Micelles containing 50 nmol/L of Cy5 labeled 

miR-29b1 (GE Dharmacon, Lafayette, CO) were formulated and incubated with HSC-T6 cells 
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for 4h to determine transfection efficiency as described before. Cells were then trypsinized and 

washed three times with heparin (20 U/ml heparin in PBS) and resuspended in 500 μl ice-cold 

PBS (0.2% BSA and 1 mmol/l ethylenediaminetetraacetic acid then analyzed by flow cytometry 

(BD FACSAria-II, San Jose, CA). The effect of GDC-0449-449 and miR-29b1 loaded micelles 

on cytotoxicity was determined by measuring cell viability and calculating as % of the cell 

viability of blank micelles treated cell samples. HSC-T6 cells were seeded in a 96-wells plate at 

a density of 3000 cells per well in DMEM medium containing 10% of FBS and grown overnight. 

After 48 h post-incubation of GDC-0449 and miR-29b1 containing micelles, MTT assay was 

carried out [179]. 

 Animal Studies 4.2.6.

 C57BL/6J male mice (8-10 week old 20–25 g) were purchased from Charles River 

Laboratories, Inc. (Raleigh, NC). All animal experiments were performed in accordance with the 

protocol approved by the Institutional Animal Care and Use Committee (IACUC) at the 

University of Nebraska Medical Center (UNMC, Omaha, NE). CBDL was performed as 

described [192]. Intrahepatic bio-distribution of micelles containing GDC-0449 and miR-29b1 

was determined at 30min in normal and fibrotic mice. Micelles containing GDC-0449 (10 mg/kg) 

and fluorescent cy5 dye labeled miR-29b1 (3 mg/kg) were injected intravenously after 7 days of 

CBDL. After 30 min, blood was collected via cardiac puncture, and livers were perfused with 

pronase E and collagenase P solutions, and cellular fractions (hepatocytes, HSCs and Kupffer + 

endothelial cells) were isolated as described earlier [271]. Cells were lysed with RIPA buffer. 

miR-29b1 and GDC-0449 were extracted, and their concentrations were determined using a 

fluorescent plate reader and LC–MS/MS, respectively [272-274]. 

Formulations were administered intravenously thrice a week for two weeks into sham-

operated and CBDL mice to determine the therapeutic effect. During this period, survival was 
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>90% in all groups of mice. On day 14, post-surgery, blood was collected via cardiac puncture, 

mice were sacrificed, and livers were harvested and stored for further evaluation.  

  Serum Enzymes 4.2.7.

Liver injury serum markers such as alanine transaminase (ALT), aspartate transaminase 

(AST), and total bilirubin (BIL) levels from various animal groups were measured using standard 

kits (Max Discovery™ Color Endpoint Assay kit. (Bioo Scientific Co. Austin, TX) following the 

manufacturer’s instructions. 

  Histology 4.2.8.

Liver tissue pieces from different animal groups were fixed in 10% PFA solution 

overnight and then embedded in paraffin. Sections of 5 μm thickness were cut and stained with 

H&E, Masson’s trichrome (MT), and Sirius red by using standard protocols. Sections were 

scanned at 40X using iScan HT Slide Scanner (Ventana Medical Systems, Inc, AZ) and 

representative views of sections are shown. For quantitative analysis of the fibrous area, MT 

slides analyzed using Definiens Tissue Studio-4 software using four microscopic fields for each 

specimen.  

  Real Time RT-PCR 4.2.9.

 Total RNA from liver tissues was isolated using as described above. Two-step RT-PCR 

was performed to determine the levels of isolated mRNA. In the first step, Real- mouse liver 

RNA was converted to cDNA by using TaqMan reverse transcription reagents (Life 

Technologies) on S1000 Thermal Cycler (Bio-rad). Primers were designed using primer 

designing tool (Primer quest, IDT). Primer sequences used are given in table 4.1. Real-time 

amplification was then performed with SYBR® Green PCR master mix reagent (Applied 

Biosystems) using a LightCycler 480® machine (Roche). The expression level of mature miR-

29b1 in mouse livers was analyzed by qRT-PCR using assay method and reagents from 
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Qiagen. First, the total RNA was reverse transcribed into cDNA using the miScript II RT kit. The 

qRT-PCR amplification of cDNA was then performed using miScript Primer Assays (Qiagen; 

MS00024703). The mature miR-29b1 expression was determined by the ΔΔCT method and 

normalized to RNU6-2 (Qiagen; MS00033740), which is the endogenous control in the 

corresponding samples. 

 Table 4.1. Quantitative Real Time PCR primer sequences 

Primer Sequence Name 
 

GAPDH fwd 
GAPDH rev 

GGGTGTGAACCACGAGAAATA 
GGGTCTGGGATGGAAATTGT 

Glyceraldehyde-3-phosphate  
Dehydrogenase 

Col1A1 fwd 
Col1A1 rev 

AGACCTGTGTGTTCCCTACT 
GAATCCATCGGTCATGCTCTC 

Collagen, type I, alpha 1 

Shh fwd 
Shh rev 

CGTCTTCTGTACTGCCTTCTT  
GTGCGT TAACAGTCTTGGTTTC 

Sonic hedgehog 

Gli-1 fwd                        
Gli-1 rev 

TCGACCTGCAAACCGTAATC 
CATCTGAGGTGGGAATCCTAAAG 

Gli-1 

FN1 fwd 
FN1 rev 

TACGGAGAGACAGGAGGAAATA 
CATACAGGGTGATGGTGTAGTC 

Fibronectin 1 

-SMA fwd 

-SMA rev 

CCATCATGCGTCTGGACTT 
GGCAGTAGTCACGAAGGAATAG 

Alpha smooth muscle actin 

TIMP-1 fwd   
TIMP-1 rev 

CCCTTCGCATGGACATTTATTC 
AAGGTGGTCTCGTTGATTTCT 

TIMP metallopeptidase inhibitor 1  

mmu-miR-
29b1 

GCUGGUUUCAUAUGGUGGUUUA Mus musculus miR-29b-1 

 

 Western Blot Analysis 4.2.10.

 Liver tissues (10 mg) were lysed in 1 mL RIPA buffer freshly supplemented with 

protease inhibitor cocktail using a tissue homogenizer keeping on ice. The lysates were 

then maintaining constant agitation for 2h keeping on the ice and then centrifuged for 20 min at 

12000 rpm at 4°C. Supernatants were diluted with 4× Laemmli buffer, and samples were boiled 

for 5 min before gel loading. 30-50 μg proteins were separated on 7-15% SDS–polyacrylamide 

gel then transferred to PVDF membrane (Life Technologies) and blocked with Odyssey blocking 



98 

 

 
 

buffer (Li-Cor) for 1h at RT. Membranes were blotted with antibody against α-SMA (dilution 

1:000; A-5228), antibody against GLI-1 (dilution 1:1000; SC-20687), antibody against collagen-1 

(dilution 1:1000; nb600-408), antibody against total AKT (dilution 1:500; 9272S) antibody 

against p-AKT1/2/3 (dilution 1:1000; SC-101629), antibody against FN-1 (dilution 1:1000; SC-

9068), and antibody against PGDFR-β (dilution 1: 1000; SC-432). The membranes were 

washed 3 × 5 min with washing buffer (TBS 1X + 0.05% Tween-20) and incubated with an 

infrared (IR) dye-conjugated secondary antibody (LI-COR) against the host IgGs. Subsequently, 

the blots were detected using Odyssey Clx imager (LI-COR). Membranes were probed with anti- 

β-actin (dilution 1:000; SC-1616) antibody for loading control. 

 Immunohistofluorescence (IHF) 4.2.11.

  For immunological detection of GLI-1, α-SMA, and p-AKT in the liver tissues, 5µm thick 

sections were first fixed with the pre-cooled acetone for 10 min rinsed 3-4 times in TBST 

(0.025% Triton X-100), and then blocked in 10% normal serum (host species of secondary 

antibody) with 1% BSA for 2h at RT. Next, slides were incubated with respective primary 

antibodies (dilution 1:200) against GLI-1, α-SMA, and p-AKT overnight at 4°C. After washing, 

slides were incubated with fluorescence dye conjugated secondary IgG against rabbit IgG (SC-

2012) and goat IgG (ab-96932). Results were analyzed by fluorescence microscopy (Zeiss, 

Jena, Germany) and representative views of sections are shown. Fluorescent signal intensity 

was determined using Image-J software. 

 Statistical Analysis  4.2.12.

  Each in vitro experiment was performed in triplicate. In animal studies, data were 

typically obtained from 3-5 animals in each experimental group using duplicate or triplicate 

determinations for each animal. For the comparison of individual data points, student t-test was 

applied, and statistical significance set at p < 0.05. 
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4.3. RESULTS 

 In Silico miR-29b1 Target Prediction  4.3.1.

 29 family is predicted to target matrix-related genes (COL11A1, COL4A1, FN-1), HSC 

growth-related genes (PDGF-β, SMAD4), and ECM production related genes (MYC-N, SP-1) 

(Figure 4.1).   

 miRNA PCR Array 4.3.2.

 miRNA expression profiling between sham-operated and CBDL livers revealed 38 

differentially expressed miRNAs with greater than 2-fold change, wherein 24 miRNAs were 

upregulated, and 14 miRNAs were downregulated (Table 4.2). Based on previous reports, it 

was revealed that 7 of upregulated miRNAs were related to the progression of liver fibrosis 

(miR-199a, miR-200b, miR-497, miR-31a, miR-17, miR-222b and miR-27a) [118,275-279]. 

Figure 4-1. miR-29b1 target prediction. miRNA target gene prediction software revealed the 
downstream profibrotic targets of miR-29b1.  Wherein, TargeScan predicts 828 conserved 
targets, with a total of 931 conserved sites and 196 poorly conserved sites, miRDB showed 426 
targets and DIANA MicroT-CDS revealed 44 predicted targets (miTG score set at 0.9).  
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Among the downregulated miRNAs, 8 (miR-378, miR-29a/b/c, miR-19b, miR-335, miR-449, 

miR-132, miR-16, miR-126a, miR-495, and miR-196a) are reported in liver fibrosis 

[102,105,108,114,276,280,281]. In particular, the level of miR-29b-3p was found decreased 

significantly in mouse livers upon CBDL (Figure 4.2). Therefore, the antifibrotic effect of miR-

29b1 was investigated further using our formulations in CBDL mice.  

Table 4.2. Differential miRNAs expressed in CBDL mice. More than 2 fold changed 

miRNAs are listed  

 

Upregulated 
miRNAs 

miR-338-5p, miR-146-5p, miR-122-5p, miR-874-3p, miR-205, miR-222-3p, 
miR-99a-5p, miR-34a-5p, miR-101a-3p, miR-142-3p, miR-27a-3p,miR-
10a-5p, miR-223-3p miR-365-3p, miR-200b-3p, miR-31a-5p, miR-384-5p, 
miR-199a-5p, miR-192-5p, miR-19a-3p, miR-338-5p, miR-205-5p, miR-
497-5p, miR-17-5p 

Downregulated 
miRNAs 

miR-145-5p, miR-93-5p, miR-19b-3p, miR-196a-5p, miR-495, miR-378a-
3p, miR-132-3p, miR-29a-3p, miR-126a-3p, miR-16-5p, miR-335, miR-
29c-3p, miR-449a-5p, miR-29b-3p 

 

Figure 4-2. miRNA expression is changed in liver after CBDL induced liver fibrosis. 
14 days after CBDL, mouse livers were harvested, RNA was isolated and miRNA array 
analysis was performed. 
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 Micelle Formulation and Characterization  4.3.3.

Micelles carrying GDC-0449 and miR-29b1 were well dispersed, spherical in shape and had the 

mean particle size of 80 ± 10 nm (with PDI 0.20) (Figures 4.3 A and B). Zeta potential of these 

micelles was found to be in the range of negative 0.5 ± 5 mV compared to −15 ± 2 mV for a free 

miR-29b1 solution. These micelles carrying GDC-0449 and miR-29b1 maintained their size and 

narrow distribution in a physiological saline even after a week (Figure 4.3C), suggesting that the 

micelles are stable for extended period of time.  

 The kinetic stability of FRET-micelles was determined in the presence of FBS over 36h. 

In the FRET experiment, an increase in the fluorescence intensity of DiO molecule and a 

decrease in fluorescence intensity of DiI molecule was observed over time (Figure 4.4A), which 

suggested that FRET molecules were slowly released from the micelles when incubated with 

serum. The FRET ratio, I566/(I566 + I502), was calculated to determine the relative peak shift 

between I502 (the emission of DiO at 502 nm) and I566 (the emission of DiI at 566 nm). For 

micelles in serum, a decrease in the FRET ratio from 1 to 0.55 was observed over 36h (Figure 

4.4B). Micelle stability by SEC method over 24h also demonstrate that there was a minimal 

reduction of peak area at 17 min, suggesting micelles were not largely dissociated the following 

Figure 4-3. Characterization of micelles. (A) Particle size distribution of miR-29b1 
complexed and GDC-0449 encapsulated micelles by dynamic light scattering (DLS). (B) 
Transmission Electron Microscope (TEM) image showing morphology of micelles. (C) 
mean particle size of micelles in PBS as a function of time. 
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incubation with FBS (Figures 4.4C and D). Transfection efficiency of fluorescent Oligo (F-

Oligo)/polymer complexes was determined at 32:1 N/P ratios in HSC-T6 cells. After 4h of 

incubation, cells were observed for the uptake of F-Oligo/cationic polymer complexes 

(Figure 4.5A). Based on the N/P ratio of the complexes with Lipofectamine 2000 (22:1) and our 

cationic polymer (32:1), formulations showed similar cellular uptake. Transfection efficiency of 

micelles was determined my measuring fluorescence intensity of transfected cells by flow 

cytometry (Figure 4.5B). Furthermore, our formulations have the advantage of being able to 

transfect cells in the presence of serum. In contrast, Lipofectamine needs serum free media, 

limiting its in vivo application. Moreover, these micelles carrying GDC-0449 and maintained their 

size and narrow distribution in a physiological saline even after a week (Figure 4.3C), 
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Figure 4-4. Stability of miR-29b1 and GDC-0449 containing micelles. (A) time-resolved 
spectra of FRET micelles in FBS (B) Time traces of the FRET ratio, I566/ (I5656+ I502), 
normalized to time 0, in FBS. (C) SEC traces of micelles incubated with 25 vol. % FBS. (D) 
Peak area of micelles as a function of incubation time.  
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suggesting that the micelles are stable enough for extended periods of time. In contrast, 

Lipofectamine 2000 lipoplexes need serum free media, limiting their in vivo application. These 

results demonstrate the capability of our micelles for carrying cargo in vivo. Cytotoxicity of 

micelles containing GDC-0449 at different concentrations and keeping miR-29b1 concentration 

constant (10pmol) was determined in HSC-T6 cells. We did not observe significant cell killing by 

micelles containing GDC-0449 alone, miR-29b1 alone or their combination as compared to the 

control (Figure 4.6A).  

 

For determining the subcellular distribution of micelles containing GDC-0449 and miR-29b1, we 

perfused the liver at 30 min post administration and isolated different liver cells after in situ 

perfusion. A significant difference in the uptake of micelles by different liver cells was observed. 

GDC-0449 and miR-29b1 concentrations (µg/mg of cell protein) were in the following order: 

Figure 4-5. Cellular uptake and transfection efficiency of the micelles. (A) Cellular 
uptake of fluorescent labeled Block-IT™ oligo loaded micelles into HSC-T6 cells. Left panel 
is oligo complexed micelles (upper panel) and oligo/Lipofectamine 2000 complexes (lower 
panel). Right panel is optical images of cells (DIC) (B) Flow cytometric analysis showing 
HSC-T6 cells transfected with Lipofectamine 2000 or micelles (Fluorescein-miR-29b1 (50 
nmol/l) complexes in serum-free medium (blue curve, 63.6% positive) or complete medium 
(red curve 48.6% positive) for 6h and as compared with untreated cells (orange curve). 

BA
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Kupffer and endothelial cells ≥ HSCs ≥ hepatocytes (Figures 4.6 B and C), whereas in liver 

fibrotic mice there were increased uptake by HSCs and hepatocytes but decreased uptake by 

Kupffer and endothelial cells. This observation is `similar to our previous publication for triplex 

forming oligonucleotides (TFOs) [271]. 

   Liver Morphology  4.3.4.

 CBDL induced submaximal stimulation of hepatic fibrosis in all mice. We have tested our 

formulations in CBDL mice. At the time of sacrifice, livers of control animals showed normal 

Figure 4-6. Cytotoxicity study and intrahepatic biodistribution of micelles in 
normal and common bile duct ligated (CBDL) mice after systemic administration. 
(A) % viability of HSC-T6 cells after treatment with GDC-0449 and miR-29b1 containing 
micelles. (B&C) amount of miR-29b1 and GDC-0449 found in each cell type. Data are 
presented as the mean (SD, combined cells types N = 3). 
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gross morphology while CBDL mouse livers were grossly enlarged and cholestatic with pitted 

and rough surface.  

Treatment with GDC-0449 or miR-29b1 alone showed some improvement in liver 

condition, whereas combination treatment resulted in a smooth and shiny appearance as of the 

normal liver. Thus, combination treatment with GDC-0449 and miR-29b1 exerted a more potent 

anti-fibrotic effect than administration of either single agent (Figure 4.7). Notably, the bile duct 

proliferation from the livers of the combination group was significantly less than those from the 

single agent therapy groups and untreated fibrotic group, suggesting low bile production in 

these animals [282]. 

 Liver Enzyme Level  4.3.5.

We observed significantly higher serum levels of ALT (177±6.8 U/L), AST (779±60 U/L), 

and BIL (10±1.7 mg/dl) in CBDL mice compared to the sham controls. Systemic administration 

of micelles carrying miR-29b1 and GDC-0449 into CBDL mice led to significant decrease in ALT 

Figure 4-7. Liver morphology after common bile duct ligation (CBDL) and/or 
systemic delivery of micelles. Macroscopic images of mouse livers harvested after 
completion of treatment with micelles containing GDC-0449, miR-29b1, GDC-0449 + SCR 
or a combination of GDC-0449 + miR-29b1.  

 

SHAM CBDL GDC-0449 

GDC-0449   SCR miR-29b1 GDC-0449   miR-29b1 
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(127±5.3, 108±10 U/L), AST (444±52, 348±25 U/L), and BIL (3±0.33, 5±1.96 mg/dl) levels. 

Among the various treatment groups, mice receiving the micelles carrying GDC-0449 and miR-

29b1 had significantly lower levels of injury markers (ALT 38±12.1 U/L, AST 207±18.7 U/L and 

total BIL 2±0.51 mg/dl) than those receiving the GDC-0449 or miR-29b1 alone (Figures 4.8).  

 Histological Analysis  4.3.6.

 CBDL causes bile acid accumulation and exerts toxic effects on hepatocytes that result 

in the replacement of normal parenchyma with scary tissue and generates infarcts. Hematoxylin 

A B 

C 

Figure 4-8. Effect of GDC-0449 and miR-29b1 loaded micelles on serum alanine 
transaminase (ALT), aspartate transaminase (AST), and total bilirubin (BIL) levels. 
Serum marker in common bile duct ligated (CBDL) mice after systemic administration of 
GDC-0449 and miR-29b1 loaded micelles were significantly lower than those in the CBDL 
mice. Results are presented as mean ± S.D. (*P < 0.05 versus CBDL, n = 4). 
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and eosin (H & E) staining assessed bile infarcts in the liver and histological examination shows 

no fibrosis in the healthy liver, whereas confluent foci of infarcts around proliferating bile ducts 

were observed in CBDL animals. CBDL livers had edematous adjacent portal tracts with 

infiltrated neutrophils and disseminated liver cell necrosis representing hepatocellular injury. 

This difference was evident when liver sections were stained with H&E (Figure 4.9A). The 

amount of collagen deposition in the liver sections was assessed by Masson's trichrome and 

Sirus red staining. Staining was significantly positive in CBDL mouse livers as compared to 

sham. Periportal fibrosis of the liver was reduced by treating with GDC-0449 and miR-29b1  

  

Figure 4-9. Hematoxylin & eosin (H & E), collagen specific Masson's Trichrome and 
Sirus red staining of liver sections of common bile duct ligated (CBDL) mice after 
systemic administration of micelles loaded with GDC-0449, miR-29b1 or their 
combination. (A) Treatment with micelles carrying GDC-0449 and miR-29b1 reduced 
histological liver injury, including bile infarcts. (B) Dark blue staining (C) Red staining shows 
increased collagen deposition in CBDL mice. (D) Systemic administration of GDC-0449 
and miR-29b1 loaded micelles effectively reduced relative collagen level staining (original 
magnification, × 10, Scale bar 200 μM). 
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containing micelles and was seen a minimum in the livers treated with micelles carrying both 

GDC-0449 and miR-29b1 (Figures 4.9 B, C and D).  

 Mature miR-29b1 Expression Levels  4.3.7.

Compared to the sham control, there was a significant decrease in mature miR- 

29b1 expression in CBDL mice (42±10.8) while there was not much difference in miR-29b1 level 

in mice after treatment with micelles carrying GDC-0449 (89±9.3) or GDC-0449 and SCR 

(112.2±13.4). In contrast, there was a significant increase in the level of mature miR-29b1 (169± 

6.4) when CBDL mice received micelles carrying miR-29b1 or GDC-0449 and miR-29b1 

(165±11.5), respectively (Figure 4.10). These results suggest that systemic administration of 

micelles carrying miR-29b1 either alone or with GDC-0449 could increase the levels of mature 

miR-29b1 in mice. 

Figure 4-10. Expression level of mature miR-29b1. miR-29b1 was found down 
regulated in CBDL mice, and its level was restored upon treatment with micelles 
containing GDC-0449 and miR-29b1. (*P < 0.05 versus sham, n=3) 
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 mRNA and Protein Expression Levels  4.3.8.

To determine the influence of drug loaded micelles on the expression levels of profibrotic 

mediators such as Shh, GLI-1, and TIMP-1 as well as ECM components such as collagen and 

FN-1 and activation marker α-SMA in CBDL induced liver fibrosis were determined. Hepatic 

mRNA levels of these genes were verified by RT-PCR, which demonstrated that relative 

expression of Shh (1082±30.1), GLI-1 (645±51.6), Col1A1 (938±154.4) TIMP-1, (1664±209.8) 

α-SMA (446±19.14) and FN-1 (456±21.36) was greater in CBDL untreated mice compared to 

sham-operated mice (Figure 4.11).  

 

E C 

B 
D 

A 

F 

 
Figure 4-11. Real time RT-PCR and Western blot analysis of liver fibrosis markers. (A-F) 
mRNA levels. Systemic administration of micelles containing GDC-0449 and miR-29b1 into 
CBDL mice reduced mRNA expression of Shh, Gli-1, Collagen-1 TIMP-1, α-SMA and FN-1. 
(*P < 0.05 versus CBDL; data represented as mean of four animals). 
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Hepatic expression of all these mRNAs was lower in in mice treated with micelles 

carrying GDC-0449 (338±115.5, 148±74.4, 278±41.36, 361±150.1, 193±12.56, and 147±17.56), 

GDC-0449 + SCR (210±27.6, 182±23.8, 288±107.5, 323±128.6, 195±15.65, and 149±22.36), 

and miR-29b1 (384±130.9, 285±57.9, 386±98.2, 679±109.6, 196±8.35, and 165±22.23). By 

comparison, significant downregulation of all these genes was observed in CBDL mice treated 

with micelles carrying GDC-0449 and miR-29b1; Shh (163±16.4), GLI-1 (114±22.6), Col1A1 

(110±60.3), TIMP-1(102±32.73), α-SMA (108±17.25), and FN-1 (111±13.25). Similarly, liver 

protein lysate from CBDL mice demonstrated an increase in GLI-1, α-SMA, Collagen-1, FN-1 

PDGFR-β, and p-AKT levels compared to the sham operated mouse liver lysate as determined 

by Western blot analysis (Figure 4.12).  

β-actin 

GLI-1 

β-actin 

Collagen-1 

α- SMA 

FN-1 

Total AKT 

p-AKT (Ser 473) 

β-actin 

PDGFR-β 

Figure. 4-12. Western blot analysis. Protein expression of PDGFR-β, p-AKT, FN-1, 
Gli-1, α-SMA, and collagen-1.  
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Liver lysates from the animals treated with drug-containing micelles showed a similar 

trend of decrease in GLI-1, α-SMA, Collagen-1, and FN-1 expression levels. miR- 29b1 reduces 

the phosphorylation of AKT and the effect of miR-29b1 containing micelles on protein 

expression of p-AKT [283]. As shown in Figure 4.12, protein expression of p-AKT was 

significantly high in the fibrotic liver tissues in CBDL mice. In contrast, CBDL mice 

supplemented with miR-29b1 showed significantly reduced expression of p-AKT without 

affecting the total AKT, indicating the improvement in histological severity of liver fibrosis.  

 Immunohistoflurescence  4.3.9.

 In response to liver injury, the activity of GLI-1, α-SMA, and p-AKT increased in the liver. 

Hence, immunofluorescence staining of GLI-1, α-SMA, and p-AKT showed an increase in 

CBDL mice (Figure 4.13). Upon treatment with GDC-0449, and miR-29b1 containing micelles, a 

decrease in fluorescent intensity in the liver sections reflected their low expression levels.  

p-AKT 

SHAM CBDL GDC-0449 miR-29b1 
GDC-0449 
+ SCR 

GDC-0449  

+ miR-29b1 

α-SMA 

Gli-1 

Figure 4-13. Immunohistofluorescence staining. CBDL results in increased GLI-1 a 

downstream mediator of Hh signaling, α-SMA a HSC activation marker and p-AKT a growth 

and ECM promoter expression. Staining was found highest in CDBL untreated mice 

whereas was reduced by treatment with GDC-0449 and miR-29b1 containing micelles. 
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4.4. DISCUSSION 

 Despite advancement in research on the molecular pathogenesis of liver fibrosis, 

monotherapy mostly results in a poor prognosis. In this setting, combination drug therapy has 

emerged as a potential treatment alternative for liver fibrosis. Previously, combination therapy of 

retinoic acid (TGF-β1 inhibitor) and ursodeoxycholic acid (immunomodulator), GDC-0449 (Hh 

inhibitor) and rosiglitazone (peroxisome proliferator-activated receptor agonist), imatinib 

mesylate (PDGF inhibitor) and perindopril (TGF-β1 inhibitor) and losartan (angiotensin II 

receptor inhibitor) and perindopril has been employed in preclinical studies to treat liver fibrosis 

[237,282,284,285]. However, treatment with conventional anti-fibrotic and anti-inflammatory 

drugs even in combination is not successful because of their poor efficacy or side effects. Our 

aim in this study was to evaluate the antifibrotic efficacy of micelles carrying GDC-0449 and 

miR-29b1 in a CBDL mouse model of obstructive cholestasis.  

The Hh pathway plays a significant role in embryogenesis multiple species. However, its 

activity is usually reduced or absent in adult organisms [258]. Moreover, if in a healthy liver if 

any Hh ligand appears liver sinusoidal cells (e.g., endothelial cells and quiescent HSC) strongly 

express Hhip, and prevents its binding to Ptc receptors [286]. In CBDL cholestasis rodent 

model, a significant upregulation of Hh ligands is observed [39]. Hh pathway through its 

mediator transcription factor, GLI-1 promotes growth and viability of myofibroblasts, 

accumulation of which leads to abnormal liver repair and fibrosis [25]. Inhibition of Hh signaling 

with GDC-0449 substantially reduces the hepatic content of myofibroblasts and progenitors 

[287]. In good agreement with previous reports, in the current study, we have also found Hh 

components Shh and GLI-1 upregulated upon CBDL in mice. 

miRNAs are known to repress target gene expression post-transcriptionally, and their 

role as a therapeutics is being accepted in a diverse array of diseases [288-290]. The use of 

miRNAs in liver fibrosis is advantageous in that a single miRNA can target multiple 
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genes/pathways involved in the progression of the disease, and due to their endogenous 

nature, they are safe to use. Recent studies have shown that miR-29b1 is downregulated in 

most of the liver fibrosis patients and animal models. miR-29b1 can target several genes 

involved in fibrosis including ECM production (collagen, fibronectin, elastin), HSC growth and 

proliferation/activation (PDGF-β, PI3/AKT) and immunomodulation through the intervening TGF-

β1 (SMAD4) and NF-κB signaling [263,291]. Moreover, our web-based target prediction 

algorithm also confirmed that several of miR-29b1 targets are well known profibrotic genes 

(Figure 4.1). We also analyzed the expression profile of miRNAs in CBDL mice and identified 

highly differential expression of miRNAs including miR-29b1 (Table 4.2, Figure 4.2). 

There is a cross-talk between TGF-β1 and Hh pathway as TGF-β1 activates 

transcription factor GLI via SMAD3 and increases Indian hedgehog (Ihh) production [292,293]. 

Therefore, it is of great interest to deliver GDC-0449 and miR-29b1 simultaneously for a 

complete shutdown of Hh signaling, resulting in the inhibition of liver fibrosis progression. 

However, in vivo use of both of these therapeutic agents is a challenge, because miRNA is 

highly unstable in biological fluids, and with high molecular weight and anionic charge do not 

cross cellular membrane, whereas GDC-0449 has low water solubility and bioavailability. 

Micellar encapsulation of miRNA is a viable approach to improve its half-life, tissue uptake and 

off-target issues [294]. Although several lipid-based carriers have been reported for 

siRNA/miRNA delivery, they are not suitable for co-delivery of miRNA with small hydrophobic 

molecules. Moreover, simultaneous encapsulation can ensure similar pharmacokinetic profiles 

needed for dual inhibition effect. We have successfully encapsulated both of these therapeutic 

agents simultaneously in the micelle formulated using our mPEG-b-PCC-g-DC-g-TEPA 

copolymer. Previously, we had used the similar approach for delivering GDC-0449 and miR-

let7b simultaneously in ectopic tumor model of pancreatic cancer. After intratumoral injection, 

we observed a significant reduction in tumor growth [179]. 
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Here, we extended our previous work and evaluated our system for co-delivery of 

miRNA and small molecule systemically. Micelles were prepared with mPEG-b-PCC-g-DC-g-

TEPA copolymer by film hydration. TEM image showed micelles are of spherical shape and 

well-dispersed particles with the mean diameter of 60±10nm (Figure 4.3B). The Smaller size of 

micelles can be advantageous for penetration into fibrotic liver tissue as reported earlier 

[295,296]. Cellular uptake study indicated that micelles can transfect miRNA efficiently in HSC-

T6 cells even in the presence of serum, which indicates the in vivo applicability of these micelles 

over many of the commercially available transfection reagents (Figure 4.5). For pharmaceutical 

use, the stability of the formulations is one of the critical parameters, and we investigated the 

storage stability of miR-29b1 and GDC-0449 containing micelles. We found that the micelles 

formulations were stable for least a week at work bench storage (Figure 4.3C). We did not 

observe any significant cell killing with micelle formulations, which indicate that Hh inhibition 

does not produce cytotoxicity in HSCs and also confirms micelles itself are nontoxic and safe to 

use in vivo (Figure 4.6A). Previous reports indicate higher uptake of TFOs by different liver 

cells, with higher concentration in HSCs and other liver cells. In this study, there was also 

similar intrahepatic biodistribution of GDC-0449 and miR-29b1 in different liver cells [271]. 

Moreover, the similar distribution profile of GDC-0449 and miR-29b1 confirms that the micelles 

are stable in vivo (Figure 4.6BC). 

We evaluated antifibrotic properties of these micelles in CBDL mice. Repeated systemic 

administration of micelles containing miR-29b1 and GDC-0449 did not impact the normal 

behavior of animals nor did it produce any histological evidence of toxicity at any of dose tested. 

The ability to deliver multiple anti-fibrotic agents and favorable safety profiles suggest that the 

micelles might be effective as a targeted therapy for liver fibrosis [294]. As shown in Figure 4.8, 

untreated CBDL mice demonstrated consistently higher serum ALT, AST and BIL levels, in 

keeping with other evidence that CBDL provokes chronic hepatocyte injury [297]. Gross 
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morphology of the normal livers exhibited ordinary reddish color and smooth surface, whereas 

CBDL livers showed, abnormal color, and an uneven, pitted surface with evident mixed-sized 

fibrotic nodules (Figure 4.7). Histology also confirmed that the sham control animals had an 

intact lobular architecture with no inflammation or deposited collagen around the portal areas, 

whereas CBDL mice exhibited signs of liver damage, a high number of infarcts with signs of 

neutrophil infiltration and ductal proliferation (Figure 4.9A). In CBDL untreated mice, collagen 

accumulation was evident in hepatic lobules mostly around the bile ducts, resulting from 

increased fibrosis (Figure 4.9B). miR-29b1 and GDC-0449 both are anti-fibrotic agents and 

inhibitors of collagen deposition in vitro and in vivo [298-300]. Therefore, the antifibrotic effect of 

micelle treatment in mice was evident, as liver tissues from mice receiving GDC-0449 and miR-

29b1 containing micelles represented a significantly decreased number of infarcts, reduced 

inflammation, which is accompanied by depletion of collagen in the liver. Additionally, it is 

noteworthy that our combination therapy showed the complete reversal of fibrotic signs and bile 

duct proliferation. 

After systemic administration of micelles containing miR-29b1, we observed a significant 

increase in mature miR-29b1 level in the liver samples, which indicate that these micelles are 

capable of delivering miRNA in vivo (Figure 4.10). Transcript of collagen-1 and TIMP-1 were 

significantly higher in CBDL mice and were correlated with the progression of liver fibrosis. The 

upregulation of TIMP-1 in activated HSCs inhibits the activity of interstitial collagenases such as 

matrix metalloproteases (MMPs), which additionally favors the accumulation of ECM [301]. 

Reduced TIMP-1 mRNA levels after micelle treatment is an indicator of the resolution of liver 

fibrosis and increased matrix degradation. However, reduction in the TIMP-1 transcript was low 

with miR-29b1 alone treatment, which is in agreement with previous reports [263] α-SMA protein 

is expressed by activated HSCs and is an early marker of hepatic fibrogenesis. α-SMA reflects 

their myofibroblast-like phenotypes and is in direct correlation to experimental liver fibrogenesis 
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[217]. We observed high mRNA and protein expression level of α-SMA in untreated CBDL mice 

when compared to the sham mice. Herein, a combination of miR-29b1 and GDC-0449 treatment 

reduced the mRNA of TIMP-1, α-SMA, and FN-1 as well as proteins levels of α-SMA, and FN-1 

to a significantly low level indicating the resolution of liver fibrosis. Collagen-1 and FN-1 are 

ECM components, and their decreased expression after micelle treatment is in agreement with 

previous reports [302,303]. Previously, we have shown that GDC-0449 loaded micelle treatment 

decreased Hh component in an in vivo model, and we observed similar trend after systemic 

delivery of micelles containing GDC-0449 (Figures 4.11, 12 and 13). Consistently, the current 

study showed that combination therapy decreased expression of profibrotic mRNAs and 

proteins in CBDL mice. 

Previous studies demonstrate that there is a putative GLI binding site at 424 (50 

GCCCGCCCA) in the human miR-29b1 promoter sequence. GLI transcription factor binds 

directly to this site in the miR-29b1 promoter region and decreases its activity in H69 non-

malignant cholangiocytes [304]. We observed expression level of mature miR-29b1 in mice liver 

samples is in good correlation with the degree of liver fibrosis, as determined by 

immunohistochemistry. Therefore, after treatment CBDL mice showed increased levels of 

mature miR-29b1 not only in miRNA-treated but also in GDC-0449-449 treated mice. The 

possible reason could be by inhibiting Hh signaling with GDC-0449 reduced accumulation of 

myofibroblasts and decreased expression of GLI-1 and its miR-29b1 suppression effect. This is 

in agreement with the other reports suggesting miR-29b1 is in negative correlation with TGF-β1 

expression, and Hh inhibitors are a well-known suppressor of TGF-β1 [305,306].  

During the recovery phase of liver fibrosis, one of the potential fates of activated HSCs is 

apoptosis [307]. PI3K/Akt signaling pathway regulates HSC activation, proliferation and also 

reduces their apoptosis by inactivating downstream of apoptogenic factors [261,308]. In this 

study, we found increased AKT phosphorylation in untreated CBDL mouse livers.  Moreover, 
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our search of databases and recent reports suggest that miR-29b1 can target PDGF ligands 

and receptor family [309]. PDGFR upregulation in liver fibrosis is known to trigger HSC 

proliferation and activation onto myofibroblasts. Overexpression of miR-29b1 by systemic 

administration of miR-29b1 containing micelles resulted in decreased p-AKT and PDGFR-β 

levels (Figure 4.12) and explained the antifibrotic mechanism of miR-29b1 through negatively 

regulating PI3K/AKT and PDGFR signaling pathway. This work provides evidence that our 

micelle carrier system is efficient in delivering physicochemically diverse miRNA and small 

hydrophobic molecules in the cholestatic induced fibrotic liver.  

4.5. CONCLUSIONS 

 In conclusion, the present study demonstrates that our cationic polymer based micelles 

can be a new strategy for co-delivery of small hydrophobic molecules and miRNA. The 

presence of cationic chains protects miRNA from enzymatic degradation without showing any 

signs of toxicity, which was a major concern in previously reported RNAi delivery vehicles. Co-

delivery ensured similar biodistribution profiles of both the therapeutics and improved the 

outcome of anti-fibrotic therapy. Blocking the Hh and AKT pathway simultaneously along with 

decreasing the ECM component like collagen and FN-1 reduced the fibrosis severity. Thus, the 

combination of GDC-0449 and miR29b1 can be a promising strategy to treat liver fibrosis. 

Further, these nanomedicines are stable, scalable and hence bear high translational potential.  
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CHAPTER 5. SUMMERY AND FUTURE DIRECTIONS 

5.1. SUMMARY 

Liver fibrosis is excessive scarring process resulting from chronic insults of 

heterogeneous etiology. Together with primary liver cancer, it represents the end-stage liver 

pathology with high mortality. The major hallmark of liver fibrosis is deposition of fibrous ECM 

with the main culprit being the HSCs. Various growth factors and inflammatory cytokines are 

known to be involved in the induction and progression of this disease. Hh and PPAR-γ are major 

signaling pathways involved in the pathogenesis of liver fibrosis. We synthesized biodegradable 

mPEG-b-p(CB-co-LA) copolymer (30,000 Da) and formulated nanoparticles encapsulating Hh 

inhibitor, GDC-0449 and PPAR-γ agonist, RSG for treating liver fibrosis. Nanoparticles were 

prepared using emulsification/solvent evaporation. Nanoparticles were monodispersed with a 

mean particle size of 120–130 nm. Drug loading was 5% and 2% w/w for GDC-0449 and RSG, 

respectively. Nanoparticles carrying both GDC-0449 and RSG were formulated at half of their 

individual drug loading. Anti-liver fibrotic efficacy of drug loaded nanoparticles was evaluated 

after tail vein injection into CBDL fibrotic rats. Drug-loaded nanoparticles protected liver injury in 

CBDL rats by suppressing the activation of HSCs and decreasing inflammatory cytokines. 

Combination drug containing nanoparticles have the potential to treat liver fibrosis by 

intervening complex fibrotic cascade. 

Successful treatment of PDAC remains a challenge due to its poor diagnosis, 

metastasis, and resistance to chemotherapy. Recent advances in cancer biology have revealed 

that several miRNAs take part in processes associated with pancreatic cancer initiation and 

progression including cell cycle, DNA repair, apoptosis, invasivity, and metastasis. While Hh 

levels are increased in pancreatic cancer cells, the level of tumor suppressor miR-let7b is 

downregulated. We inhibited Hh pathway with GDC-0449 and restored miR-let7b level by its 

synthetic mimic simultaneously for treating PDAC synergistically. miR-let7b and GDC-0449 
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were co-formulated into micelles using mPEG-b-PCC-g-DC-g-TEPA. This copolymer self-

assembled into micelles of <100 nm and encapsulated hydrophobic GDC-0449 into its core with 

5% w/w drug loading and allowed complex formation between miR-let7b and its cationic 

pendant chains. miR-let7b and GDC-0449 inhibited the proliferation of human pancreatic cancer 

cells, synergistically. miRNA in the micelle formulation was stable for up to 36h in the presence 

of serum, and high uptake efficiency was achieved with low cytotoxicity. This combination 

therapy effectively inhibited tumor growth when injected into athymic nude mice bearing ectopic 

tumor generated using MIA PaCa-2 cells compared to micelles carrying GDC-0449 or miR-let7b 

alone.  

Decreased expression of miR-29b1 is observed in liver fibrosis. Our in-silico analysis 

indicated that miR-29b1 targets several profibrotic genes like collagen type I & IV, c-MYC, 

PDGF-β, and PI3K/AKT.  From previous studies, we found that GDC-0449 has great potential 

for treating liver fibrosis. We co-formulated miR-29b1 and GDC-0449 into micelles using mPEG-

b-PCC-g-DC-g-TEPA copolymer and injected systemically into CBDL mice. High concentrations 

of GDC-0449 and miR-29b1 were delivered to liver cells as determined by in situ liver perfusion 

at 30 min post systemic administration of their micelle formulation. There was a significant 

decrease in collagen deposition in the liver and serum injury markers, leading to improvement in 

liver morphology. Combination therapy was more effective in providing hepatoprotection, 

lowering liver injury related serum enzyme levels, reducing fibrotic protein markers such as 

collagen, α-SMA, FN-1, and p-AKT compared to monotherapy.  

5.2. FUTURE DIRECTIONS  

The findings presented in this thesis demonstrated that micelles prepared with cationic 

amphiphilic polymers can simultaneously upload hydrophobic drug(s) in their hydrophobic cores 

and form complex with RNA molecules. Systemic administration of these micelles significantly 

increased the circulation time of miRNA and small drug molecule, leading to their enhanced 



120 

 

 
 

accumulation to the target organ (tumor in case of pancreatic cancer and liver in case of liver 

fibrotic mice). Since our copolymers consist of ester bonds and polycarbonate as a backbone, 

these polymers will degrade into carbon oxide and aliphatic alcohols.  

To further increase the drug loading and prolong their release, we will synthesize polymer 

with different lipids and different cationic chains including spermine and N, N- 

dimethyldipropylenetriamine to optimize formulation characteristics such as complexation, 

stability, release, and endosomal escape of miRNA. We will also evaluate whether changes in 

these parameters affect downstream target genes of miR-29b1. 

Successful treatment of liver fibrosis and pancreatic cancer requires site-specific drug 

delivery to target cells. In the case of liver fibrosis conjugate mannose -6-phosphate (M6P), 

vitamin A, and C1-3 short chain fragment variable (ScFv) to our amphiphilic polymer to 

maximize delivery to HSCs of liver fibrotic mice. Similarly, in the case of pancreatic cancer, 

micelles will be decorated with anti-EGFR ScFv antibody. Since miRNA is known to be unstable 

in vivo, we will test the effect of backbone modifications of serum and thermodynamic stability of 

these miRNAs (miR-29b1, miR-let7b). We will also check if backbone modifications also affect 

the efficacy of miRNAs in vivo. Since high cationic component needed for a high dose of miRNA 

can have toxic effects, we will evaluate various cationic components for minimum toxic effects. 

We would like to determine pharmacokinetic, and biodistribution of targeted vs. non targeted 

micellar formulations both in pancreatic cancer and liver fibrosis.  
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