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Hanjun Li, Ph.D. 

University of Nebraska, 2016 

ABSTRACT 

Advisor: Paul L. Sorgen, Ph.D.  

 

Gap junctions are intercellular channels that permit the free passage of ions, small metabolites, 

and signaling molecules between neighboring cells. In the diseased human heart, altered 

ventricular gap junction organization and connexin expression (i.e., remodeling) are key 

contributors to rhythm disturbances and contractile dysfunction. Connexin43 (Cx43) is the 

dominant gap junction protein isoform in the ventricle which is under tight regulation by 

serine/tyrosine phosphorylation. Phosphorylation and dephosphorylation regulate many aspects of 

Cx43 function including trafficking, assembly and disassembly, electrical and metabolic coupling 

at the plaque, as well as to modulate the interaction with other proteins.  

Serine phosphorylation has long been reported to regulate Cx43, however, the understanding 

of tyrosine kinases/phosphatases in the modulation of gap junction intercellular communication 

and subsequent down-stream effects on cellular processes is limited to Src. Using a combination 

of biophysical and cellular biology techniques, we identified and characterized a novel tyrosine 

phosphatase T-Cell Protein Tyrosine Phosphatase (TC-PTP) and a tyrosine kinase Tyrosine Kinase 

2 (Tyk2) that directly interact with the Cx43 carboxyl terminal domain (CT). Cx43CT residues 

Y247 and Y265, which are phosphorylated by c-Src and v-Src, are also directly targeted by both 

TC-PTP and Tyk2. Additionally, activation of both TC-PTP and Tyk2 also indirectly affect serine 
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phosphorylation of Cx43. Specifically, TC-PTP leads to dephosphorylation of Cx43 S368 by 

inactivating PKCα and PKCδ, while Tyk2 increases phosphorylation of S368 and S279/282 

through activation of PKC and MAPK, respectively. These effects are independent of Src.  

In the cardiovascular system, an increased level of angiotensin II (Ang II) is associated with 

increased risk of ventricular arrhythmia, hypertrophy, and sudden death. Ang II reduces TC-PTP 

expression while increasing Tyk2 activity. Our data show that TC-PTP dephosphorylation 

maintains Cx43 gap junctions at the plaque as well as partially reverses channel closure caused by 

v-Src phosphorylation. Conversely, Tyk2 inhibits gap junction communication and increases 

turnover rate by phosphorylating Cx43. These findings suggest that a decrease of TC-PTP and an 

increase of Tyk2 may mediate Cx43 gap junction remodeling by altering phosphorylation in Ang 

II induced cardiovascular pathology.   
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1. Gap Junction Overview 

Many mechanisms enable cells to influence the behavior of one another in order to 

maintain proper tissue and organ function. Cells secrete signal molecules that can 

influence itself (autocrine signaling), neighboring cells (paracrine signaling), or cells 

from large distances (endocrine signaling). In addition, cells can directly communicate 

with adjacent cells by exchanging ions and low molecular weight metabolites (<1 kDa) 

through gap junction channels.  

Gap junctions are integral membrane proteins that provide an intercellular pathway 

for the propagation and/or amplification of signal transduction cascades triggered by 

cytokines, growth factors, and other cell signaling molecules involved in growth 

regulation and development. Gap junctions are formed by the apposition of connexons 

from adjacent cells, where six connexin proteins make each connexon. Connexins are 

proteins with four transmembrane domains (TM1-TM4), two extracellular loops (E1 

and E2), and intracellular N-terminal (NT), cytoplasmic loop (CL), and C-terminal (CT) 

domains (Figure 1.1). In mammals, there are 21 human and 20 mouse isoforms, of 

which 19 can be paired orthologously (Sohl and Willecke, 2004). In invertebrates, gap 

junctions are assembled from another class of tetra transmembrane proteins named 

innexins (Phelan et al., 1998). The most frequently used nomenclature of connexin is 

based on their molecular weight differences. For example, the 43 kDa connexin is 

named Cx43. Also, connexin genes can be categorized into 3 subgroups (α, β, or γ) 

based on their overall gene homology and structure motifs (Eiberger et al., 2001), as 

well as named according to the order of discovery in the subgroup (e.g. Cx43 gene is 
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also named Gja1). 

Connexins are differentially expressed in almost all tissues within the human body, 

with exceptions in skeletal muscle and mobile cell types such as sperm and erythrocytes 

(Rackauskas et al., 2010). Commonly, a cell can express several connexin isoforms. 

The same isoform of connexins oligomerize to form a homomeric connexon, different 

isoforms oligomerize to form a heteromeric connexon. To date, all heteromeric 

connexons are composed of two isoforms from the same subgroup (Falk et al., 1997). 

In addition, a gap junction channel can be formed from two identical connexons 

(homotypic) or different connexons (heterotypic) (Figure 1.1). Since different types of 

gap junction channels have different channel properties, including pore size, 

conductance, and ion selectivity, alterations in both the amount and distribution of 

connexins in cells are associated with a number of pathological situation such as 

arrhythmia , atherosclerosis (Morel et al., 2009), deafness (Martinez et al., 2009), and 

cancers (Naus and Laird, 2010). For example, Cx40, Cx43, and Cx45 expression in a 

cardiomyocyte can form either homomeric pattern or heterogeneous pattern with each 

other. The unitary conductance, which reflects single channel current-voltage 

relationship, is Cx40 (150 ps)>Cx43 (115 ps)>Cx45 (32 ps) (Bukauskas et al., 2002; 

Rackauskas et al., 2007). Cx40 and Cx45 channels exhibit smaller permeability to 

anions than cations, whereas Cx43 channels are nonselective to charge (Rackauskas et 

al., 2007). In failing human hearts, decreased expression of Cx43 correlates with an 

increase of Cx45. These gap junctions exhibit a decreased conductance which increase 

the risk of ventricular arrhythmias (Teunissen et al., 2004). 
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Figure 1.1 Structure and molecular organization of gap junctions. (A) Gap junction 

channels are composed of hemichannels (connexons) from adjacent cells docking with 

each other. Three different types of gap junctions have been shown: 

homomeric/homotypic (1,4), heterotypic (2), and heteromeric (3). (B) A connexon is an 

assembly of six connexins. A connexin has four transmembrane domains (TM1-TM4), 

two extracellular loops (E1 and E2), and one cytoplasmic loop (CL), cytoplasmic 

carboxyl termini (CT) and amino termini (NT). 

.   
Figure 1.1 Structure and molecular organization of gap 

junctions 
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Gap junction intercellular communication is essential in many physiological 

processes, including cell growth and sorting, differentiation and synchronization, 

metabolic coordination, as well as in the immune response. Loss-of-function mutations 

of connexin genes are often associated with hereditary diseases. Mutations in Cx26 

gene are responsible for a large proportion of autosomal recessive hearing impairment 

in human (Rabionet et al., 2002). Mice with homozygous ablation of Cx26 in the 

epithelial network of the inner ear leads to deafness and cell death in cochlear epithelial 

network and sensory hair cells shortly after birth (Cohen-Salmon et al., 2002). More 

than 240 mutations in Cx32 have been found to be related to Charcot-Marie-Tooth 

disease (CMTX), one of the most common inherited neurological disorders in the 

United States (Bergoffen et al., 1993). Cx32 knockout mice also developed CMTX-like 

phenotype, including a progressive, demyelinating peripheral neuropathy (Rabionet et 

al., 2002). Both Cx46 and Cx50 are required for lens development in human and mouse 

eyes (White, 2002). Tissue specific deletion of Cx46 or Cx50 in a mouse model resulted 

in cataract formation (White, 2002). Knockout of some connexin isoforms are lethal to 

animals. For example, Cx45-deficient mice died before birth and Cx43-knockout mice 

died shortly after birth (Kruger et al., 2000; Reaume et al., 1995). These results suggest 

the importance in development of these isoforms and their function cannot be 

substituted by other isoforms (Sohl and Willecke, 2004). Mutations in Cx43 lead to 

oculodentodigital dysplasia (ODDD) in humans, which is characterized by multiple, 

variable craniofacial, limb, ocular and dental abnormalities. A mouse model harboring 

the same mutation shows a similar phenotype (Churko et al., 2011).  
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2. Gap Junction Regulation 

As an important channel that enables communication between adjacent cells, gap 

junctions are under tight regulation. First, different tissues and cell types express 

different connexin isoforms and their expression levels vary over time even in the same 

cell. Multiple mechanisms are involved in tissue and time specific control of connexins 

at the mRNA level, protein synthesis, trafficking, assembly, and degradation. 

Additionally, the function of gap junction channels at the plaque is regulated by various 

factors such as phosphorylation, voltage, Ca2+, pH, and binding partners. In this section, 

we will discuss the regulation of connexins in details.  

 

2.1 Transcriptional Regulation of Connexins 

The gene structure of connexins usually contains two or more exons. Classically, 

the last exon has the coding region that is preceded by uncoding exons containing a 5′ 

untranslated region (5′-UTR). These uncoding exons allow alternative splicing to 

generate different transcripts (Oyamada et al., 2005). This is important for connexin 

tissue-specific expression. One example is Cx32, which has two transcripts. The first 

promoter P1 is activated by hepatocyte nuclear factor-1 that leads to the synthesis of 

one transcript in liver epithelial cells (Koffler et al., 2002). The second promoter P2 is 

activated by Sox-10 that results in another transcript in Schwann cells (Bondurand et 

al., 2001). Transcription factors play important role in connexin expression by 

regulating alternative splicing. For example, nine Cx43 mRNA species have been 

identified due to three promoter regions in Cx43 and alternative splicing mechanisms 
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(Pfeifer et al., 2004). These alternatively spliced 5′-UTRs regulate Cx43 at the post-

transcriptional level. Since transcription factor profiles are diverse from different cell 

lines or tissues, the splicing mechanisms of Cx43 vary which generate different Cx43 

transcripts, leading to different expression level of Cx43 (Pfeifer et al., 2004). Like 

most genes, transcription of connexins is regulated by a cooperation of tissue specific 

and universal transcription factors. For example, universal transcription factor Sp-1 

binding sites have been found in connexin genes such as Cx32, Cx40, and Cx43 which 

regulates the basal transcription of the mentioned connexin isoforms (Echetebu et al., 

1999; Linhares et al., 2004; Piechocki et al., 2000). Also, Cx40 can be regulated by 

cardiac specific transcription factor Nkx2-5, GATA4, and Tbx5 (Linhares et al., 2004). 

Cx40 is expressed in ventricles up to 14 days postcoitum, and disappears on day 19 

(Delorme et al., 1995). This change within a very short period can be explained by 

transcriptional factor HRT2 repressing the transcription of Tbx5 and GATA4 (Kathiriya 

et al., 2004). The ubiquitous transcription factors can also be regulated by different 

physiological conditions, leading to the different expression of connexins at different 

periods. For example, progesterone inhibits Cx43 transcription by downregulating the 

universal transcription factor AP-1 which results in the low expression level of Cx43 

during pregnancy (Mitchell and Lye, 2002; Ou et al., 1997). At the time of labor, due 

to the stretch of the myometrium and increase of estrogen, AP-1 expression is 

upregulated which activates Cx43 transcription (Petrocelli and Lye, 1993; Presley et al., 

2005).   

Epigenetic regulation also plays an important role in regulating connexin mRNA 
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levels. This epigenetic regulation includes histone acetylation, DNA methylation, and 

micro-RNAs. Histone acetylation, which usually associates with loss of chromatin 

structure and activation of transcription, is mediated by histone acetryltransferases 

(HATs). The deacetylation is mediated by histone deacytylases (HDAC). In some 

studies, inhibition of HDAC is associated with increase of connexin expression in some 

tissues, but this is not always the case (Ogawa et al., 2005) (Hernandez et al., 2006) 

(Xu et al., 2013). Using a HDAC inhibitor to treat nonmalignant human peritoneal 

mesothelial cells led to a rise of Cx43 mRNA and protein level in a dose-dependent 

manner (Ogawa et al., 2005). A similar result was found in prostate cancer cell lines 

(Hernandez et al., 2006). However, in primary cultured neonatal mouse ventricular 

myocytes, HDAC inhibitors TSA and vorinostat dose-dependently decreased Cx43 

mRNA and protein expression levels as well as the area of Cx43 gap junction plaques 

(Xu et al., 2013). Interestingly, in primary cultures of adult rat hepatocytes, TSA 

increased Cx32 protein levels while decreasing Cx26 protein levels (Vinken et al., 

2006). These differential regulatory mechanism by histone acetylation on connexins 

expression may correlate to particular patterns of histone modification and different 

transcriptional factors that are involved in connexin tissue-specific expression 

(Hernandez et al., 2006; Vinken et al., 2006).  

Methylation of cytosines regulates connexin expression in both normal 

physiological and pathological situations, especially in cancer cells. In the normal 

situation, DNA methylation contributes to the differential expression of different 

isoforms. For example, in liver epithelium which expresses Cx43, the Cx32 promotor 
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is methylated; whereas in hepatocytes which expresses Cx32, the Cx43 promotor is 

methylated (Piechocki et al., 1999). In most cancer cells, connexin expression is 

generally lower than in normal tissue or completely lost which is associated with the 

uncontrolled growth. A high frequency of connexin promoter methylation is often 

observed in connexin-silenced patients or cells (Yamasaki et al., 1999). For example, 

methylation of Cx43 promotor decreasing the level of Cx43 has been found in non-

small cell lung cancer (Chen et al., 2003) and nasopharyngeal carcinoma cells (Yi et al., 

2007). Cx26 methylation at the promotor region are associated with gene silencing in 

lung cancer (Shimizu et al., 2006), breast cancer (Tan et al., 2002), and hepatocellular 

carcinoma (Tsujiuchi et al., 2007). In colorectal carcinomas, hypermethylation was 

found in Cx37, Cx30, Cx36, and Cx45 at various frequencies, however, only Cx45 

methylation status was correlated with gene expression (Sirnes et al., 2011). Treatment 

with the demethylating drug 5-aza-2'deoxycytidine restored Cx45 expression in cell 

lines (HCT15, HT29, RKO and SW48) (Sirnes et al., 2011). Demethylation also re-

expressed Cx43 and decreased cell growth in HeLa cells (King et al., 2000). 

MicroRNA can also regulate connexin mRNA stability and translation. Cx43 is a 

target for miR1. In coronary artery disease and ischemia, increased miR1 associates 

with a reduction of Cx43 (Abdellatif, 2012). During skeletal muscle development, the 

expression of Cx43 is lost in myoblasts, which is associated with the upregulated miR1 

and miR-206 (Anderson et al., 2006). In the sciatic nerve of a chronic constriction injury 

rat model, the downregulation of miR1 corresponds to the increase of Cx43 (Neumann 

et al., 2015). This high expression of Cx43 contributes to the induction and/or 
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maintenance of pain (Neumann et al., 2015). Furthermore, a recent study reported that 

Cx43 is a functional target of miR-1298 in arteriosclerosis obliterans (Hu et al., 2015). 

To date, Cx43 is the only isoform that has clear linked to the physiological relevance 

mediated by microRNA. However, on Cx36 and Cx45 genes, multiple binding sites of 

microRNA have been identifed (Rash et al., 2005).   

In most cancers, such as breast cancer (reviewed in (McLachlan et al., 2007)), 

colorectal cancer (reviewed in (Sirnes et al., 2015)), liver cancer (reviewed in (Vinken 

et al., 2012)), and ovarian cancer ((Umhauer et al., 2000)), connexin protein expression 

level decreases or connexins relocalize from the plasma membrane to intracellular 

compartments. However, mRNA levels do not always correspond to these protein 

levels. Caltabiano et al. (2010) found 90% of high histological grade astrocyte tumors 

showed an intracytoplasmic positivity for Cx43 mRNA, although 80% of the high grade 

astrocyte tumors had a significant reduction or negativity for Cx43 protein (Caltabiano 

et al., 2010). Likewise, in malignant grade IV glioma samples with minimal Cx43 

protein levels, 27.3% of the dataset exhibited a 2-fold decrease of Cx43 mRNA, while 

20.3% showed a 2-fold increase of Cx43 mRNA (Gielen et al., 2013). Not only in brain 

cancers, in lung cancer cell lines, traceable level of Cx43 mRNA and variable level of 

Cx45 mRNA were detected by RT-PCR, but neither Cx43 nor Cx45 protein could be 

detected by Western blot (Zhang et al., 2004). These findings suggest that the lack of 

Cx43 protein in some cancer samples or cell lines are not due to a reduction of 

transcription. Post-transcriptional and post-translational mechanisms could also play 
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important roles in the regulation of Cx43’s life cycle, such as protein synthesis, 

trafficking, gap junction assembly, internalization, and degradation. 

 

2.2 Connexin Life Cycle  

2.2.1 Synthesis of Connexin 

Most connexins co-translationally insert into the ER membrane and fold into a 

mature form with assistance from chaperones and disulphide-isomerases (John and 

Revel, 1991) (Figure 1.2). A small portion of Cx26 and Cx43 can also be post-

translationally incorporated into ER microsomes (Ahmad et al., 1999; Zhang et al., 

1996). These misfolded or superfluous connexins will be removed through ER-

associated degradation mechanism (ERAD) which will be discussed later (VanSlyke 

and Musil, 2002). 

 Once translated, most connexins have a very short life span. The half-life of 

connexins usually ranges from 1 to 5 h in both tissue and cultured cells (Beardslee et 

al., 1998; Fallon and Goodenough, 1981; Laird, 2006). Connexins’ very short half-lives 

contribute to the up- or down-regulation of gap junction coupling in order to meet the 

quickly changed physiological requirement such as gap junction clear-up after laboring 

(Laird, 2006). Similar to most proteins that form channels, oligomerization of 

connexins occurs before delivery to the plasma membrane. Depending on the connexin 

subtype, oligomerization can occur either in the ER–Golgi intermediate compartment 

(Cx32) or trans-Golgi network (Cx43) (Koval, 2006). 
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Figure 1.2 Life cycle of connexins. 
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Figure 1.2 Life cycle of connexins. Connexins typically co-translationally insert into 

the ER. Misfolded connexins are targeted for ERAD. Mature connexins can 

oligomerize in either trans-Golgi network (TGN, such as Cx43) or in ER-Golgi 

intermediate compartment (ERGIC, such as Cx32). Connexons are subsequently 

transported to the plasma membrane, which is facilitated by microtubules. Connexons 

may be functional as hemichannels or dock with another connexon from neighboring 

cells to form a gap junction channel. Gap-junction channels assemble into plaques, 

opening and exchanging secondary messengers. Old channels are found in the center 

of plaques and new channels are at the boundaries. Gap-junction plaques internalize 

into one of two adjacent cells as a double-membrane structure named annular junction 

(connexosome). Also, connexons may internalize via endocytic pathways. Gap junction 

degradation occurs in lysosomes or proteasome. This figure is adopted from (Laird, 

2010). 
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2.2.2 Connexin Trafficking and Gap Junction Assembly  

Trafficking of connexins from Golgi to the cell membrane occurs by successive 

vesicles budding and fusion from the ER through the Golgi stacks, and then the vesicles 

are transported to the cell membrane. Some isoforms (e.g. Cx43) require microtubules 

transport to reach the membrane while some others (e.g. Cx32 and Cx30) trafficking 

independently from the microtubules (Qu et al., 2009; Thomas et al., 2005). Once 

inserted into the plasma membranes, connexons diffuse freely within the lipid bilayer 

(Thomas et al., 2005). A pulse–chase experiment demonstrated that new connexons 

incorporate at the outer margins of old gap junction plaques (Gaietta et al., 2002). In 

the Cx43 gap junction plaque, old and new channels can be distinctly separated (Lauf 

et al., 2002; Thomas et al., 2005), whereas Cx26 plaque has substantially larger mobility 

(Thomas et al., 2005). Older channels in the middle of a plaque internalize into vesicles 

with various sizes (Gaietta et al., 2002). Interestingly, the traditional model of how new 

synthesized Cx43 gap junction incorporate into the plaque was challenged by Shaw et 

al. (Shaw et al., 2007). They found that Cx43 hemichannels were directly guided to gap 

junction plaque dependent on EB1 (microtubule plus-end-tracking protein) which 

tethers microtubules to the adhesion junctions (Shaw et al., 2007). Their model 

emphasizes the importance of adhesion junction in the gap junction assembly, which 

could be essential in the gap junction organization.  

 

2.2.3 Gap Junction Internalization and Degradation 

The internalization of large double-membrane gap junction vesicles termed 
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“annular junctions” (also called connexosomes) were identified by electron microscopy 

(Bjorkman, 1962; Ginzberg and Gilula, 1979). Accumulated evidence confirm that 

annular junctions exist in cell lines and tissues (Kojima et al., 1996; Mazet et al., 1985; 

Murray et al., 1997; Naus et al., 1993). When gap junction channels internalize, one 

cell plays the role of acceptor and the other performs as a donor, as the double-

membrane vesicle internalizes into one of two opposing cells (Jordan et al., 2001). The 

internalization of annular gap junction is clathrin-dependent (Larsen et al., 1979; Piehl 

et al., 2007), while adaptor proteins such as Dab2, AP-2, and dynamin assist the process 

(Gumpert et al., 2008). Besides annular junctions, gap junctions also internalize through 

other mechanisms. In regenerating hepatocytes, the Cx32 gap junction plaque 

disassembles into smaller aggregates, possibly for internalization (Fujimoto et al., 

1997). Caveolin also has been shown to co-immunoprecipitate and colocalize with 

Cx43 and Cx26, indicating that connexins can be guided to lipid rafts and internalized 

in a caveolae-dependent mechanism (Schubert et al., 2002).  

Connexin degradation depends on both the proteasome and lysosome pathways. 

The participation of the proteasome has been found for Cx43 and Cx32 degradation in 

the ER (VanSlyke and Musil, 2002). Although most of the connexin proteins degraded 

by the proteasome via ERAD are incorrectly folded, VanSlyke et al. (2002) estimated 

that over 40% of Cx43 and Cx32 undergo ERAD under normal conditions. Inhibition 

of ERAD increases gap junction channel formation and function (VanSlyke and Musil, 

2002). One possible reason is that ERAD may regulate gap junction stability by 

regulating Cx43’s binding partner, like ZO-1 (Girao et al., 2009). Ubiquitination is an 
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important step for lysosomal degradation. Eps-15 interacts with unbiquitinated Cx43 

that leads to degradation of Cx43 via endocytic pathway (Girao et al., 2009). Lysosomal 

degradation is also important to gap junction. Annular gap junctions were detected in 

lysosomes by electron microscopy (Ginzberg and Gilula, 1979; Qin et al., 2003). 

Inhibition of lysosomal function increases the protein level of connexins (Laing et al., 

1997; Qin et al., 2003). Blocking lysosomal degradation associates with an increase of 

Cx43 protein half-life but not preservation of gap junction plaques, while inhibition of 

proteasomal degradation also increases the level of Cx43 as well as stabilizes Cx43 in 

gap junction plaques in most cell types (Solan and Lampe, 2016). 

Gap junctions are also degraded via autophagy. Cx43 and Cx50 annular gap 

junctions were detected being enclosed by the autophagy-related protein LC3 via 

electron microscopy (Lichtenstein et al., 2011). Knockdown of autophagy-related 

protein Atg5 blocks the starvation induced connexin degradation (Lichtenstein et al., 

2011). In the liver, an increased enrichment of Cx26, Cx32, and Cx43 in 

autophagosomes and lysosomes was identified in starved mice compared with fed wild-

type mice (Bejarano et al., 2012). 

     

2.3 Gap Junction Channel Gating 

 Gap junction channel gating is characterized by conductance. Gap junction 

conductance Gj is described as Gj=N × Po × γ, where N is the amount of active channels 

in the plasma membrane, Po is the open probability, and γ is the conductance of a single 

channel. N is determined by gap junction expression, trafficking, assembly, and 
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degradation, which was discussed in the last section. γ is dependent on the property of 

different connexin isoforms. Po is controlled by the voltage, Ca2+ pH, phosphorylation, 

and protein partner interaction which will be discussed in this section (Imanaga et al., 

2004).  

 

2.3.1 Voltage Gating 

Most gap junction channels are influenced by voltage. Gap junction channel detect 

voltage changes by a “voltage sensor”, which includes charged amino acids. Then, the 

voltage sensor transfers the electrical energy into mechanical energy, leading to the 

conformational changes that affect channel gating (Gonzalez et al., 2007).  

All vertebrate junctional conductance can be regulated by the transjunctional 

voltage (Vj) and some gap junctions are sensitive to both Vj and Vm (transmembrane 

voltage) (Gonzalez et al., 2007). Mutational analyses on Cx32 and Cx26 indicate that 

charged amino acids on the NT-domain are essential to the Vj dependence (Oh et al., 

1999; Purnick et al., 2000; Verselis et al., 1994). The CT-domain is also an important 

component of fast Vj-gating. Truncation of the CT-domain at Cx32220stop and Cx43257stop 

lead to the loss of fast conductance and induce novel gating properties mostly dependent 

on the slow gating (Revilla et al., 1999). A “ball-and-chain” model has helped to 

describe the mechanism of fast Vj-gating in Cx channels. In this model, the movement 

of the CT-domain toward the channel pore would cause the physical blockage of the 

pore (Gonzalez et al., 2007). A similar model (so called “particle-receptor” model) was 

used in the chemical gating of gap junction channels, such as acidification and 
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phosphorylation that drive the channels into the closed state (will be discussed later)  

 

Figure 1.3 “Receptor-and-particle” model (also “ball and chain” model) of 

connexin regulation. (A) Under normal conditions, the particle (CT) is apart from the 

pore. Under the particular stimulus (such as pH, Ca2+, phosphorylation), the particle 

swings toward the channel, interacts with a receptor (CL) and blocks the channel. (B) 

the bottom view of receptor and particle model.   
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(Figure 1.3) (Homma et al., 1998; Liu et al., 1993; Zhou et al., 1999).  

In some connexin channels, such as the rat Cx43 and the mouse Cx45, junctional 

conductance is also sensitive to membrane potential, Vm (Barrio et al., 1997). 

Interestingly, Vm sensitivity of Cx43 was observed in Xenopus oocytes but not in HeLa 

cells (Bukauskas et al., 2001; Revilla et al., 2000). The uncoupling by membrane 

depolarization may be a protection mechanism to keep neighboring cells from 

electrotonic effect (passive spread of charge) of damaged cells.  

 

2.3.2 pH-dependent Channel Gating 

In the pathological situation, acidification closes most gap junction channels 

(Bevans and Harris, 1999; Eckert, 2002; Liu et al., 1993; Werner et al., 1991), which 

may be a mechanism for minimizing injury to normal cells via the bystander effect 

(Spray et al., 2013). Gap junctions composed of different connexin isoforms have 

different opening rates at physiological pH. For example, Cx43 channels are mainly 

open at pH 7.2 (Ek-Vitorin et al., 1996), whereas only 1% of mouse Cx57 channels 

open at this pH (Palacios-Prado et al., 2009). Under various pH conditions, some 

connexin CT domains have different secondary structures. For example, circular 

dichroism (CD) data identified that the soluble Cx43CT domain at pH 5.8 contains 7% 

α-helical whereas little-to-no α-helical content was observed at pH 7.5 (Bouvier et al., 

2009). Besides Cx43, the Cx32 and Cx45 soluble CT domains gain α-helical structure 

outside the membrane interface under acidic pH conditions (pH 5.8) (Spagnol et al., 

2016). Trexler et al. (1999) observed rapid closure with low pH application in Cx46 
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hemichannels which demonstrates direct action of H+ on connexins (Trexler et al., 

1999). The pH sensor (H+ binding site) is located on the cytoplasmic side, probably 

near the entrance of the pore (Trexler et al., 1999). As mentioned previously, pH 

induced channel gating can also be explained by “particle-receptor” model (Morley et 

al., 1996). Several studies in Xenopus oocytes have suggested the participation of 

residues located in the CL and the CT in the pH gating (Ek-Vitorin et al., 1996; Ek et 

al., 1994) (Peracchia and Wang, 1997; Wang and Peracchia, 1996). Truncation of 

Cx43CT led to pH-insensitivity of the channel (Morley et al., 1996). pH sensitivity was 

restored when co-expression of Cx43CT domain and the truncated pH-insensitive Cx43 

(Morley et al., 1996). Additionally, co-expressing the Cx43CT with Cx32 (a less pH-

sensitive connexin isoform) increased the pH sensitivity (Morley et al., 1996). The 

potential pharmaceutical applications of pH-dependent channel gating include a 

cyclized heptapeptide, CyRP-71, which binds to Cx43CT and partially inhibits channel 

closure by acidification (Verma et al., 2009).  

 

2.3.3 Ca2+-dependent Channel Gating 

Gap junctional communication can be inhibited by elevated intracellular Ca2+ 

concentration. Ca2+ effect on gating is mediated by calmodulin (CaM) via Ca2+-

dependent interactions with connexin cytoplasmic domains (Blodow et al., 2003; 

Peracchia et al., 1983; Sotkis et al., 2001). Channel gating regulated by CaM has been 

found for Cx32 (Peracchia et al., 2000), Cx36 (Burr et al., 2005), Cx43 (Lurtz and Louis, 

2007), Cx44 (Zhou et al., 2009), Cx45 (Peracchia et al., 2003) and Cx50 (Chen et al., 
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2011). The interaction of CaM with connexins usually induces a conformational change 

on the connexin proteins. Zhou et al. (2007) used multiple biophysic methods to identify 

that CaM directly bound to the Cx43CL (aa 136-158) in a Ca2+ dependent manner (Zhou 

et al., 2007). Upon CaM binding, the α-helical content in this Cx43CL increased (Zhou 

et al., 2007). Cx32 has two CaM binding sites on the NT and the CT domains 

respectively (Torok et al., 1997). Cx32CT, which is an intrinsically disordered protein, 

exhibits an increased α-helical content upon binding CaM (Stauch et al., 2012). 

Likewise, the induced α-helix by CaM was also found in the other connexin isoforms, 

such as Cx44 and Cx50 (Chen et al., 2011; Zhou et al., 2009). This induced 

conformational change in the cytosolic domains may block the pore of the gap junction 

channel to limit passage of ions (Dodd et al., 2008; Peracchia et al., 2000). Addition of 

connexin-derived peptides or CaM inhibitor to counteract the Ca2+/CaM-connexin 

interaction can alter channel gating from the closed to open state (reviewed in (Zou et 

al., 2014)).  

 

2.4 Importance of the CT Domain for Regulation on Connexins 

2.4.1 Intrinsically Disordered Proteins 

Many proteins need to adopt a unique and well-ordered structure to be functional. 

The precise conformation of functional groups is crucial for protein binding or catalysis 

of a chemical reaction. However, over the last several decades, there has been a growing 

recognition of functional proteins that do not adopt a defined three-dimensional 

structure (nearly 40% in eukaryotic proteome). These proteins, which are defined as 
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having over 30 continuous residues forming unstructured regions or domains, are 

classified as intrinsically disordered proteins (IDPs). Indeed, the intrinsically 

disordered portions in a protein are crucial. First, the unstructured regions may provide 

a large interaction surface area for protein binding. Second, the conformational 

flexibility of IDPs allows binding motifs to overlap, thus they can interact with 

numerous other proteins. Third, various post-translational modification may induce a 

conformation change in order to regulate the function of the protein (Babu et al., 2011).  

  

2.4.2 Connexin Cytoplasmic Domains 

The connexin cytoplasmic domains (NT, CL, and CT) play roles in gap junction 

channel gating and modulating channel formation and function. They contain sites for 

post-translational modifications and are able to interact with multiple protein partners 

(Goodenough and Paul, 2009). NT is relatively conserved in length, whereas CL and 

CT are various among different isoforms. Chimeric and point mutants are used to study 

different features of cytoplasmic domains; CD, AUC and NMR have allowed for the 

structural study of these domains. The following sections will provide detailed 

information regarding the important features and structural aspects of connexin 

cytoplasmic domains.  

The connexin NT domains are composed of 22 (α-group connexins) or 23 (β-group 

connexins) amino acids except Cx36 (24 residues) and Cx47 (25 residues) (Kyle et al., 

2008). NT domain is necessary for proper incorporation into the membrane as several 

positively charged residues which act as anchors for the insertion are essential (Thomas 
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et al., 2008). Mutation of a positively charged residue on the NT to a negatively charged 

amino acid on Cx50 lead to the completely failure of plaque formation (Thomas et al., 

2008). Many mutations in the NT domain have been found to associate with different 

diseases including CMTX (Cx32) (Bergoffen et al., 1993), deafness (Cx30) (Common 

et al., 2002) and ODDD (Cx43) (Shibayama et al., 2005); most of these mutations cause 

cytoplasmic retention or non-functional channels. The NT domain also participates in 

regulating voltage gating and plays a fundamental role in ion permeation since it is 

close to the channel where it can act as a voltage sensor (Purnick et al., 2000). The 3.5 Å 

X-ray structure of Cx26 channel showed that the NT domains of six connexins compose 

the funnel in the pore and could form the plug to close the pore while sensing the Vj 

change (Maeda et al., 2009). A few post-translational modifications were found in the 

NT domain of different connexins by MS. These include phosphorylation (Cx26 and 

Cx32), hydroxylation (Cx26), deamidation (Cx46), and acetylation Cx26 (Locke et al., 

2006; Wang and Schey, 2009). However, functional study of these modifications are 

lacking. Although the length of the NT domain is conserved among different connexin 

isoforms, the structures are different. Solution NMR was used to determine the NT 

domain structure from two β-group connexins: while Cx26NT contains a α-helix, 

Cx32NT is completely disordered (Kalmatsky et al., 2009; Piechocki et al., 2000).   

The length of the CL domains varies among the different connexin isoforms. Based 

on length, they can be divided into three categories: short (30-35 aa), medium (50-55 

aa), and large (80-105 aa) (Sohl and Willecke, 2004). The CL is also involved in 

connexin trafficking and gap junction plaque formation. Studies show that deletion of 
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the Cx43CL (aa 130-134) forms gap junction plaques but not deletion of aa 130-137, 

suggesting the amino acids 135-137 could be critical for gap junction assembly 

(Oyamada et al., 2002; Seki et al., 2004); notably, none of these mutants form functional 

gap junctions. Similarly, deletion of Cx32CL (aa 111-116) shows less efficiency in the 

dye transfer assay compare with wild-type (Martin et al., 2000). CL domain is also 

important for protein interactions, which are involved in channel function. For example, 

CaM binding sites have been identified in the second half of the CL domain of Cx43, 

Cx44, and Cx50 (Chen et al., 2011; Zhou et al., 2009; Zhou et al., 2007). As previously 

mentioned, CaM binding is important for the Ca2+-dependent closure of gap junctions. 

Cx43CL also has been implicated to interact with the CT domain in a pH-dependent 

manner; in the “particle-receptor” model, the Cx43CL domain plays the role as  receptor 

(Duffy et al., 2002). Post-translational modification on residues of CL domain includes 

phosphorylation (Cx49, Cx50, and Cx56) and carboxylation (Cx26 and Cx32) (Locke 

et al., 2006; Wang and Schey, 2009) (Berthoud et al., 1997). Phosphorylation on 

Cx56CL S118 leads to down-regulation of intercellular communication and increased 

degradation (Berthoud et al., 1997). The CL domain is largely unstructured but contains 

α-helical propensity. The NMR structure of the Cx43CL peptide (D119-K144) shows 

two α-helices (N122-Q129, K136-G143) in the second half of the loop (Duffy et al., 

2002). Cx32 and Cx36 also contain α-helical propensity in the second half of the loop 

(Fort and Spray, 2009). Acidification or binding with calmodulin induce helical 

structure in the Cx43CL, which increases the affinity for the Cx43CT (Duffy et al., 

2002; Zhou et al., 2007).  
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In the connexin primary sequence, the most variable domain among connexin 

isoforms is the CT domain. Different connexin CT domains are diverse in size, which 

range from 10 amino acids in Cx26 to more than 310 amino acids in Cx62. CD analysis 

of the soluble CT domain of Cx26, Cx32, Cx37, Cx40, Cx43, Cx45, and Cx50 shows 

that they are all primarily disordered (Spagnol et al., 2016). However, some of the CT 

domains have propensity to become α-helical upon post-translational modification or 

protein-protein interaction (Bouvier et al., 2009). The structure of the Cx43CT domain 

determined by solution NMR shows that the Cx43CT has two α-helical regions (A315-

T326 and D340-A348) (Sorgen et al., 2004). These two helical regions are involved in 

the Cx43CT dimerization and the pH-dependent interaction with the CL domain, 

indicating their roles in channel gating and pH sensitivity (Duffy et al., 2002; Sorgen et 

al., 2004). In the Cx43CT structure when attached to the 4th transmembrane domain 

(TM4-Cx43CT) reported by our laboratory, seven α-helical regions (H1-7) have been 

predicted in the CT portion (Grosely et al., 2013). H4 (K303-A322) and H5 (D340-

L353), which contain the two helical regions identified in the soluble Cx43CT, span a 

greater area (Grosely et al., 2013). The disordered regions outside of these helices are 

responsible for binding with protein partners, and can undergo structural transitions 

upon binding (Kieken et al., 2009; Saidi Brikci-Nigassa et al., 2012). Cx32CT and 

Cx36CT also contain two distinctive regions with helical propensity (Fort and Spray, 

2009). These α-helical domains may allow the formation of more ordered structure 

during chemical gating or facilitate the cross-talk between different binding partners 

(Sorgen et al., 2004). To date, among connexin isoforms, Cx45CT contains the largest 
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α-helix (33.6%) that is involved in dimer formation (Kopanic and Sorgen, 2013).  

Many post-translational modifications occur on the connexin CT domain; these 

include phosphorylation, ubiquitination, hydroxylation, acetylation, nitrosylation, 

oxidation, and palmitoylation ( reviewed in (Axelsen et al., 2013)). Gap junctions are 

known to be highly regulated by phosphorylation and ubiquitination (except Cx26, 

which is the only connexin has not been shown to be phosphorylated to date) (Traub et 

al., 1989). The frequency of phosphorylation on connexin CT domain is extremely high, 

because phosphorylation predominantly occurs in the disordered region of a protein 

(Iakoucheva et al., 2004). Indeed, the disordered structure is crucial for establishing 

hydrogen bonds between the substrates and its kinase partners, which is less likely if 

the site is in ordered region (Iakoucheva et al., 2004). Phosphorylation can result in 

changes of charge (each phosphorylation creates 2 negative charges at pH 7), 

hydrophobicity, and structural transition (e.g. disorder-to-order) which mediates many 

of the major functions in channel gating and life cycle (Davis, 2011; Fuxreiter et al., 

2004; Nishi et al., 2011). Phosphorylation can also regulate protein-protein interactions 

by altering the thermodynamic favorability of binding (Boehr et al., 2009). Indeed, 

many of the phosphorylation sites on the connexin CT domains are included within 

protein binding regions (Kopanic and Sorgen, 2013; Solan and Lampe, 2005). Details 

about how phosphorylation regulates gap junction communication will be discussed 

later.  

Many binding partners of the connexin CT domain have been identified, including 

Zonula Occludens 1 (ZO-1), tubulin, mitogen-activated protein kinase (MAPK), v- and 
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c-Src, casein kinase 1 (CK1), Drebrin, cAMP-dependent protein kinase, and CaM 

(Ambrosi et al., 2016; Cooper and Lampe, 2002; Giepmans, 2004; Giepmans et al., 

2001; Li et al., 2004; Saez et al., 1990; Zou et al., 2014). A disordered connexin CT 

domain is an ideal substrate for the regulation of intercellular signaling by facilitating 

both high specificity and low affinity interaction with many different binding partners 

to allow the rapid feedback to cytoplasmic signals (Dunker and Obradovic, 2001; 

Sorgen et al., 2004).  

The connexin CT alone has been observed in both of cytoplasm and nucleus to 

regulate cell growth (de Feijter et al., 1996; Maqbool et al., 2015; Mennecier et al., 

2008; Moorby and Patel, 2001). Transfection of the Cx43CT domain in cardiomyocytes 

and HeLa cells indicate that nuclear localization of the Cx43CT inhibits cell growth 

(Dang et al., 2003). The 20 kDa fragment which was higher than the expected size of 

Cx43CT (15 kDa) suggests the presence of post-translational modifications (Dang et 

al., 2003). Further research discovered that in the Cx43CT down-regulated primary 

human breast cancer samples, the decrease of Cx43CT is associated with the decrease 

of p53, suggesting the regulatory role of nuclear localized CT domain on particular 

genes (Maqbool et al., 2015). Since no DNA-binding motif has been found on the CT 

domain, it may interact with transcription factors or complexes to regulate cell cycle 

related gene expression.   

 

3. Phosphorylation of Connexins 

3.1  General Introduction of Connexin Phosphorylation 
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Since connexins were first uncovered as phosphoproteins in the 1980s (Lowenstein, 

1985; Saez et al., 1986), numerous phosphorylation sites have been identified (Table 1). 

Phosphorylation regulates connexin proteins (except Cx26) in all stages of the connexin 

life cycle (i.e. trafficking, assembly/disassembly, degradation, and channel gating 

(Solan and Lampe, 2007)), electrical gating, and metabolic coupling (Lampe and Lau, 

2004; Solan and Lampe, 2005, 2007; Thevenin et al., 2013). To date, Cx26 is the only 

connexin not identified to be phosphorylated (Traub et al., 1989). Since Cx26 can form 

functional channel, together with the fact that truncated Cx43 mutants that lack most of 

the CT domain (the dominate phosphorylation domain of Cx43) can also form 

functional channels, phosphorylation is not required for channel formation (Lampe and 

Lau, 2004).  

Most of the phosphorylation events that occur on connexins are serine/threonine 

residues. Serine/threonine kinases that phosphorylate connexins include PKC, MAPK, 

p34(cdc2)/cyclin B kinase, PKA, CK1, p34cdc2, PKG, CaMKII, and Akt (Lampe and 

Lau, 2004; Palatinus et al., 2012). Several connexin isoforms are also phosphorylated 

on tyrosine residues. To date, tyrosine kinases that have been identified to directly 

phosphorylate connexin isoforms include Src (Loo et al., 1995), Fps (Kurata and Lau, 

1994) and EGFR (Diez et al., 1998). In this section, we will discuss the methods for 

studying phosphorylation on connexins, serine/threonine phosphorylation, and more 

emphasis will be on tyrosine phosphorylation. Since Src is the most well studied 

tyrosine kinase that directly phosphorylates Cx43 on tyrosine residues of the CT 

domain and Cx43 phosphorylation by Src is fundamental to my dissertation, I will  
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Table 1.1 Reported phosphorylation sites of connexins, responsible kinases and the 

effect on gap junctions. 

Kinases Connexins Phosphorylated residues Reported effects on GJs 

PKA 

Cx32 S233 increase GJIC 

Cx35/36 S110, S276 
reduce GJIC 

Increase GJIC 

Cx40 n/a increase GJIC 

Cx43 S364, 365, 368, 369, 373 
rapid GJ assembly, 

increase GJIC 

Cx50 S395 increase GJIC 

 Cx43 S373 increase GJ size and GJIC 

Cx50 n/a increase GJIC 

PKC 

Cx43 S365, 368, 369, 372, 373 

decrease GJ assembly, 

decrease GJIC, reduce 

half-life of Cx43, decrease 

coupling 

Cx32 S233 n/a 

Cx56 chicken 

homologue of 

Cx46 

S118 decrease GJIC 

PKG Cx35/36 S110, S276, S289 decrease GJIC 

CaMKII 

Cx43 

S244, 255, 257, 296, 297, 

306, 314, 325, 328, 330, 

364, 365, 369, 372, 373 

de-phosphorylation of 

S306 during ischemia 

reduces GJIC 

Cx32 n/a n/a 

Cx36 n/a increase GJIC 

Cx45 
S326, T337, S381, 382, 

384, 385, 387, 393 
n/a 

CK1 
Cx43 S 325, 328, 330 increase GJ assembly 

Cx45 S 326, 382, 384, 387, 393 n/a 

Cdk5 Cx43 S279, S282 

prevents membrane 

targeting, promotes 

proteasome dependent 

degradation 

P34cdc2 Cx43 S255, S262 GJ internalization 

MAPK 
Cx43 S 255, 262, 279, 282 

GJ internalization, 

decrease GJIC 

Cx50 n/a n/a 

Src Cx43 T247, 265 reduce GJIC 

EGFR Cx32 Y243 n/a 

This table is modulated from (Pogoda et al., 2016). 

Table 1.1 Reported phosphorylation sites of connexins, responsible kinases and the effect on gap junctions. 
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discuss the mechanism and the biological effects of Src phosphorylation on Cx43 in 

detail. 

 

3.2  Methods of Studying Phosphorylation on Connexins 

Traditionally, direct incorporation of 32P was the primary choice to study the 

phosphorylation on connexins. In this method, tagged-Cx transfected cells were 

metabolically labelled with [32P] orthophosphate, immunoprecipitated and ran on 2D 

SDS-PAGE. Serine, tyrosine, and threonine phosphorylation can be separated and 

analyzed by autoradiography. Although this method does not identify the 

phosphorylation site(s), it does provide information regarding the type of 

phosphorylation. To study the function of phosphorylation on connexins, however, 

identification of the phosphorylation sites is crucial. Before the wide use of MS for this 

purpose, Edman degradation and site-directed mutagenesis were the main methods 

employed to identify the specific phosphorylation sites. Cx43 S368 phosphorylated by 

PKC (Lampe et al., 2000) and S255/279/282 phosphorylated by MAPK (Warn-Cramer 

et al., 1996) were identified by these methods. In many connexin isoforms, 

phosphorylation results in slower migration on SDS-PAGE gels, such as Cx40 (Chen 

et al., 2004), Cx50 (Pelletier et al., 2015), and Cx43 (Solan and Lampe, 2009). 

Differentially phosphorylated Cx43 results in multiple electrophoretic isoforms: a fast 

migrating isoform (P0) and multiple slower migrating isoforms (P1 and P2) (Crow et 

al., 1990; Matesic et al., 1994; Solan and Lampe, 2005). Solan et al. (2009) summarized 

some of P0, P1, and P2 components in (Solan and Lampe, 2009). Phosphorylation-
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dependent shifts may be caused by two reasons: first, phosphorylated residues adjacent 

to proline could induce structural perturbations of the protein, which change the 

electrophoretic mobility in SDS-PAGE (Smith et al., 1989). Second, the negative 

charges on the phosphate group could disturb the charge-to-mass ratio by affecting the 

protein-SDS interaction (Grosely et al., 2013b).  

Within the past decade, a number of Cx43 phospho-specific antibodies were 

developed and played important roles in study of phosphorylation sites in cyto or in 

vivo. For example, by using phospho-specific antibody, Lampe et al. (2006) found 

phosphorylation of S325/328/330 is involved in the P2 level (Lampe et al., 2006). 

However, due to the complicated cell-signaling network, phosphorylation by a single 

kinase on Cx43 is less likely. Thus, using phospho-specific antibody is hard to define 

the components of the different migration levels of Cx43. For example, Solan et al. 

(2008) showed pY247 and pY265 exist in all three migration levels in v-Src activated 

LA-25 cells, suggesting the contribution of other phosphorylation sites (Solan and 

Lampe, 2008). Therefore, to define the contribution of a single kinase to the migration 

levels of Cx43, Grosely et al. (2013) used phospho-mimetic of Cx43CT (S/Y-D 

mutation) and discovered that the nonphosphorylated Cx43CT, Src, PKC, and cdc2 

phospho-mimetic isoforms migrate at P0, MAPK at P1, and CK1 at P2 (Grosely et al., 

2013b).  

Phosphorylation can regulate the conformation of proteins, affecting their 

subcellular localization. Thus, structure-specific antibodies can help to study the 

relevance between phosphorylation and connexin localization. Lampe’s group in Fred 
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Hutchinson Cancer Research Center developed two monoclonal antibodies, CT1 and 

IF1, using the same peptide representing Cx43 360-382. However, two antibodies 

selectively labelled different subcellular fractions of Cx43. Epitope of Cx43 IF1 

developed by mapping to 375PRPDD379 requires P375 and P377 for binding (Sosinsky et 

al., 2007). This antibody stains only gap junction plaques and recognizes the P0, P1, 

and P2 forms, suggesting that the tertiary structure of P375–A379 is essential in targeting 

Cx43 at the gap junction plaque (Sosinsky et al., 2007). Whereas, Cx43 CT1 labels 

mainly perinuclear Golgi-like structures detecting a conformation that is non-

phosphorylated on S364 and/or S365, suggesting that conformation of pS364/S365 may be 

essential for membrane localization (Sosinsky et al., 2007).  

Since the mid-1990s, MS has been consistently used for site-specific 

phosphorylation analysis due to the development of several technologies. Matrix-

associated laser desorption ionization (MALDI)-time-of-flight (TOF)-MS, collision-

induced dissociation (CID)-MS/MS, and electron-capture dissociation (ECD)-MS/MS 

have been successfully used in analyzing phosphorylation sites on connexin isoforms 

both in vitro and in vivo (Cooper et al., 2000; Huang et al., 2011; Locke et al., 2006). 

Compare with traditional methods, MS is highly sensitive which can detect femtomole 

of phosphopeptides, sensitive enough to detect most of phospho-proteins (Ficarro et al., 

2002). Also, it does not require phosphopeptides to be radioactively labeled. Moreover, 

MS can detect phosphorylation more rapidly and efficiently with relatively low cost. 

Although MS is the most widely used technique to identify phosphorylation sites, the 

accuracy can be affected by the following reasons. First, a given phospho-protein is 
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heterogeneous. Commonly, in sample treated with a kinase, the phosphorylated form of 

the target protein represents only a small portion of the total protein. Second, due to the 

limitation of fractionation methods and primary sequence of the given protein, the full 

coverage of the protein is difficult. Third, when two phosphorylation sites are close to 

each other, especially next to another, the identification of the exact phosphorylated 

residue is difficult. Besides, the detection of phosphorylation sites from cell lysate is 

also affected by the low abundance of phosphorylated proteins and dephosphorylation 

caused by phosphatases in cells. Thus, although phosphorylation events were studied 

in most of the known connexin family members, it is possible that more 

phosphorylation sites will be identified in the future. Some databases based on MS data 

provide good sources for studying connexin phosphorylation residue, such as 

http://www.phosphosite.org.  

Identification of new kinases that phosphorylate connexins would also be very 

important for characterizing the function of connexins. One method is combining the 

computer algorithm with the in vitro kinase-screening assay. Many of the online 

programs can be used to predict connexin’s kinase binding partners based on the 

consensus motifs, such as GPS 3.0 (Xue et al., 2008) and NetPhos 2.0 Server (Blom et 

al., 1999). Once a list of kinase candidates is identified, purified connexin substrates 

can be used to conduct in vitro kinase screening. More details of this methodology will 

be discussed in the method section of Chapters 2 and 3.  

 

3.3  Serine Phosphorylation  

javascript:void(0);
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To date, Cx43 is the most well understood isoform in terms of serine 

phosphorylation. Since my dissertation focuses on Cx43, a detailed review of serine 

phosphorylation on this isoform will be emphasized in this section. The Cx43CT is 

differentially phosphorylated on at least 21 residues including 19 serine and significant 

progress has been achieved in characterizing these phosphorylation sites (Figure 1.4) 

(Axelsen et al., 2013; Lampe and Lau, 2004; Solan and Lampe, 2005, 2014).  

Phosphorylation on some sites increase gap junctional intercellular communication 

whereas others decrease gap junctional intercellular communication (Table 1.1). 

Generally, MAPKs, PKC, and Src associate with channel closure, inhibition of 

intercellular communication, and enhancement of gap junction internalization (Cottrell 

et al., 2003; Li et al., 2014; Pogoda et al., 2016; Warn-Cramer et al., 1996). This 

phenotype has been observed in many different cell models and tissues (Cottrell et al., 

2003; Li et al., 2014; Naitoh et al., 2009; Warn-Cramer et al., 1996). To the contrary, 

phosphorylation of Cx43 by CK1 and PKA promotes gap junction trafficking, assembly, 

and increase intercellular communication (Cooper and Lampe, 2002; Shah et al., 2002; 

Solan and Lampe, 2016). 

Phosphorylation on Cx43 is spatio-temporally regulated in a “kinase program”. 

Falk et al. (2016) provide a model of consecutive serine phosphorylation events to 

regulate gap junction assembly and turnover: (1) phosphorylation on S373 (Akt) and 

S365 (PKA) promote forward trafficking of connexons to the membrane. (2) 

dephosphorylation on S373 (Akt) allows the binding with ZO-1 which facilitates  
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Figure 1.4 Connexin43 phosphorylation sites 

Figure 1.4 Connexin43 phosphorylation sites. 21 residues have been observed to be 

phosphorylated on the Cx43CT domain.Y247 and Y265 are Src phosphorylation sites, 

the other 19 residues are serine. Residues phosphorylated by Src (Y247 and Y265), 

MAPK (S255,262,279,282), CK1 (S325,328,330), PKA (S364,365,369,323), PKC 

(S368 and S372), Akt (S373 and S369) are firmly confirmed in cells (Cooper and 

Lampe, 2002; Lampe et al., 2000; Nimlamool et al., 2015; Park et al., 2007; Shah et al., 

2002; Solan and Lampe, 2007, 2008; Yogo et al., 2002). Residues phosphorylated by 

CaMKII are only identified by MS but lack of further evidence in cells (Huang et al., 

2011). This figure is reprinted with permission (Pogoda et al., 2016).    
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connexon docking and channel formation. (3) during the transition from functional to 

closed gap junction channels, phosphorylation on S365 (PKA) decreases which allows 

phosphorylation on S368 (PKC). (4) during the prime for internalization, S279/S282 

(MAPK) phosphorylation increases. (5) phosphorylation on S279/282 and S368 are 

linked to clathrin recruitment and endocytosis of annular gap junction (Falk et al., 2016) 

(Figure 1.5). Early events which include S373 and S365 phosphorylation or de-

phosphorylation occur on the far C-terminal portion of the Cx43CT domain, while later 

events (S279/282 phosphorylation) occur upstream of the around AP-2/clathrin binding 

sites (Falk et al., 2016). Notably, in their model, S325/328/330 phosphorylated by CK1 

which promote gap junction assembly is not mentioned (Cooper and Lampe, 2002; 

Lampe et al., 2006). Solan and Lampe (2016) proposed a similar model of 

phosphorylation on Cx43 in response to growth factor (EGF), wounding, or other 

stimuli (TPA). They measured the time points of these phosphorylation events. 

According to their study, the involved kinases that phosphorylate Cx43 are Akt at 5–30 

min, PKC and MAPK at 15–60 min, and Src at 30 min–24 h (Solan and Lampe, 2016). 

There are slight differences between these two models. First, in the response to the 

stimuli, Akt phosphorylation is strong enough to exhaust incoming Cx43 pool to form 

large gap junction plaques which prepare for annular gap junction formation. This is 

not the case in normal situation. Second, Src phosphorylation participates in facilitating 

gap junction internalization in Solan and Lampe’s model. The overall effect is the 

decrease of Cx43 level and gap junction communication, which is necessary for wound 
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healing because of its role in upregulation of proliferation and migration, or 

downregulation of the inflammatory response (Solan and Lampe, 2016).    

Cx43 phosphorylation does not often occur only at a single site but rather a number 

of sites that work in concert to coordinate other phosphorylation events and protein 

partner interactions. For instance, phosphorylation at S365 by PKA serves as a 

gatekeeper via blocking S368 phosphorylation-induced channel closure by PKC (Solan 

et al., 2007). Some kinases share common phosphorylation sites. Both PKA and Akt 

phosphorylate S373. Since they both facilitate Cx43 trafficking to the plasma 

membrane (Paulson et al., 2000; Solan et al., 2007), their phosphorylation events may 

be cell-cycle or cell-type dependent.  

In some situations, phosphorylation is directly involved in the interaction between 

Cx43 and other binding partners (Saidi Brikci-Nigassa et al., 2012; Spagnol et al., 2016). 

Phosphorylation can alter both local structure and long-range structure. At region near 

the phosphorylation sites, phosphorylation can induce steric or electrostatic effects 

which impact the secondary structure (Lim et al., 2014). On Cx43CT, serine 

phosphorylation is usually associated with an increase of α-helical content whereas 

tyrosine phosphorylation leads to a loss of α-helical structure (Grosely et al., 2013b). 

Studies from our laboratory compared the secondary structure of Asp-substituted TM4-

Cx43CT isoforms (phosphorylation mimetics) with TM4-Cx43CT wild type (Grosely 

et al., 2013b). CK1, MAPK, PKA and PKC isoforms are more helical than wild type at 

both pH 7.5 and pH 5.8, while Src isoform is less helical than wild type at acidification 

situation (Grosely et al., 2013b). 
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Figure 1.5 Schematic of the post-translational modifications that regulate 

gap junction assembly and internalization 
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Figure 1.5 Schematic of the post-translational modifications that regulate gap 

junction assembly and internalization. Steps [1 – 5] promote and coordinate the process 

from functional (green) to close, internalization-prone gap junction channels (yellow, 

orange) that then are primed to interact with clathrin components which mediate their 

internalization (red). This figure is reprinted with permission (Falk et al., 2016). 
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Phosphorylation on some serine residues promote Cx43CT interacting with its binding 

partners. S373 phosphorylated by Akt is required for 14-3-3 binding, which facilitates 

Cx43 trafficking to the plasma membrane and incorporation into gap junction plaques 

(Park et al., 2007). MAPK phosphorylation on serine residues (pS282 and pS279) increases 

the binding affinity by two-fold for the Nedd4 WW domains which explains why MAPK 

phosphorylation is involved in Cx43 degradation (Spagnol et al., 2016).  

Although many studies have provided a wealth of information on Cx43 serine 

phosphorylation, there are still a number of questions to be addressed. For example, S365 

phosphorylated by PKA and S368 phosphorylated by PKC are in close proximity and both 

induce an increase in α-helical content compare to the WT TM4-Cx43CT at pH 7.5 

(Grosely et al., 2013b), however, their effect on gap junctional intercellular communication 

is opposite. What mechanism mediates the differential response in gap junctional 

intercellular communication to S365 and S368 phosphorylation? Another example is that 

both phosphorylation and dephosphorylation on S368 have been reported in ischemia 

(Axelsen et al., 2006; Solan et al., 2007). The controversial results suggest a complexity of 

phosphorylation events arise from a large number of phosphorylation sites, differential 

phosphorylation level or different time frame. What are the particular cellular conditions 

that result in differential phosphorylation to regulate gap junction communication?  

 

3.4  Tyrosine Phosphorylation 
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3.4.1 Mechanism of Src Interaction with Cx43 

In the 1980s, pp60v-src was shown to decrease gap junctional communication in 

NIH3T3 cells (Azarnia et al., 1988; Lowenstein, 1985). However, understanding about 

tyrosine kinases directly phosphorylating Cx43CT is still limited to v-Src and v-Fps. Since 

v-Fps induces phosphorylation of Cx43 in a similar manner to v-Src and is far less studied, 

here we will only focus on the mechanism of Src interaction with Cx43.  

The Src kinase is composed of a conserved membrane-associated region on its NT that 

is myristoylated, followed with SH3, SH2, and kinase domains (Boggon and Eck, 2004). 

Phosphorylation on the Y416 in the kinase domain is required for Src activation and the 

autoinhibitory phosphorylation site is Y527 at the CT domain (Boggon and Eck, 2004). v-

Src, the oncogene which lacks the Y527, is therefore constitutively active as opposed to 

normal Src (c-Src) (Smart et al., 1981). Two identified tyrosine sites on Cx43, Y265 and 

Y247, are sequentially phosphorylated by v-Src. The interaction of v-Src and Cx43 is 

dependent on the SH3 and SH2 domains of v-Src (Kanemitsu et al., 1997). The proline-

rich sequence of Cx43 P274–P284 (contains a PXXP motif) is required for the interaction 

with the v-Src SH3 domain which adopts a left-handed type II helix upon binding (Kieken 

et al., 2009); this interaction leads to the phosphorylation of Cx43 Y265 site occurring first, 

which creates a docking site for the v-Src SH2 domain (Lin et al., 2001). Consequently, 

the Cx43 Y247 is phosphorylated (Lin et al., 2001). Additionally, in Cx43 Y265F and v-

Src co-transfected HEK293 cells, co-immunoprecipitation between Cx43 Y265F and v-Src 

was lost, and phosphorylation on Cx43 was significantly decreased. These data indicate 
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that Y265 is the prime site of phosphorylation (Kanemitsu et al., 1997). This potential 

mechanism would explain why pY265 appears in this and other studies to label a larger 

population of plaques than pY247 (Solan and Lampe, 2008). 

Early study indicates that v-Src phosphorylated Cx43 on tyrosine residues and 

expression of v-Src completely blocked the communication induced by Cx43 in paired 

Xenopus oocytes (Swenson et al., 1990). Later, investigations showed that Src also 

increasesd phosphorylation level of MAPK (S279/282 and S262) and PKC (S368) sites, 

and decreased PKA phosphorylation at S364/365 (Li et al., 2014; Solan and Lampe, 2008). 

Results of biological effects caused by Src on gap junctional communication are 

controversial from different groups. In Cx43 knock-out mouse cell line, expression of 

Y247F, Y265F, or Y247F/Y265F Cx43 mutants was resistant to disruption of gap 

junctional intercellular communication by v-Src (Lin et al., 2001). However, in another 

study using Xenopus oocyte system, junctional conductance established by Y247F, Y265F, 

or Y247F/Y265F mutants were disrupted by v-Src (3-6 hrs after v-Src injection), which 

suggested that phosphorylation sites other than the two tyrosines are involved in the 

disruption of gap junctional intercellular communication induced by the v-Src (Zhou et al., 

1999). Why are results different between using stable cell lines and Xenopus oocyte? First, 

the different cell system could have different activation of signaling pathways by Src, thus, 

the effects caused by Src may be different. Considering half-life of Cx43 in Xenopus 

oocyte is around 22 hours (Lin et al., 2006), Solan and Lampe (2014) hypothesized that 

tyrosine phosphorylation by v-Src is necessary for decreasing gap junction communication 
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chronically but not acutely; Src induced phosphorylation by MAPK and PKC are 

responsible for the rapid gap junction closure (Solan and Lampe, 2014). 

Src kinase can also directly affect the interaction between the Cx43CT and other 

molecular partners by inducing favorable/unfavorable conformations or blocking the 

binding site. ZO-1 is a PDZ domain containing scaffolding protein and the interaction 

between Cx43 and ZO-1 is essential in regulating gap junction size, stability, localization,  

and turnover in cardiomyocyte (Hunter et al., 2005; Toyofuku et al., 1998). The binding of 

ZO-1 to Cx43 can be disrupted by Src (Toyofuku et al., 2001). NMR results indicate that 

the interaction between SH3 and Cx43CT induces indirect long range changes in the 

Cx43CT structure, which disrupts binding of the PDZ-2 domain of ZO-1 to the last residues 

of Cx43CT (S372-I382) (Kieken et al., 2009; Sorgen et al., 2004).  

 

3.4.2 Regulation of Receptor Tyrosine Kinases on Cx43 Phosphorylation 

Tyrosine kinases increasing the level of Cx43 serine phosphorylation indirectly is 

commonly observed since tyrosine kinases activate serine kinases in cell signaling 

networks. Activation of EGFR, PDGFR, and VEGFR are associated with a decrease in gap 

junctional intercellular communication (reviewed in (Warn-Cramer and Lau, 2004)). These 

receptor tyrosine kinases do not directly phosphorylate Cx43, but indirectly induce Cx43 

serine phosphorylation via downstream activation of MAPK and/or c-Src (Warn-Cramer 

and Lau, 2004). The activation of insulin receptor tyrosine kinase also increases serine 

phosphorylation of Cx43 via activation of PKCγ, and induces a decrease of gap junctional 
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intercellular communication in rabbit lens epithelial cells (Lin et al., 2003). Tropomyosin 

receptor kinase A (TrkA) activated by nerve growth factor also rapidly increases Cx43 

serine phosphorylation in bovine thecal (Mayerhofer et al., 1996).  

Some tyrosine kinases can regulate Cx43 expression at the transcription level. Long-

term activation of basic fibroblast growth factor receptor (bFGR) (>6 h) up-regulates Cx43 

mRNA and protein levels in cardiac fibroblasts (Doble and Kardami, 1995). Since 

fibroblast growth factor is important in wound healing, this would be consequential in 

injured myocardium. 

 

3.4.3 The Significance of Tyrosine Residues on Cx43CT in Binding Motifs 

The Cx43CT domain has 6 tyrosine residues (Y247, Y265, Y267, Y286, Y301, Y313). 

Some of them are involved in binding motifs of Cx43 protein partners, thus, 

phosphorylation or de-phosphorylation on these residues could affect the protein-protein 

interaction. An NMR study using a nonphosphorylated and phosphorylated Cx43CT 

peptide (K234–D259) found that phosphorylated Y247 negatively regulated the interaction 

between Cx43 peptide and tubulin by destabilizing the hydrophobic face necessary for the 

interaction (Saidi Brikci-Nigassa et al., 2012). The disorder nonphosphorylated-peptide 

adopts an α-helix upon interaction with tubulin where Y247 is on the hydrophobic face 

(Saidi Brikci-Nigassa et al., 2012). Because microtubules play important roles in rapid 

connexin delivery to gap junction plaques (Shaw et al., 2007), phosphorylation on Y247 

would be detrimental to Cx43 trafficking and intercellular communication.  
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Y265 is located in the domain essential for many binding partners that regulate gap 

junction endocytosis. As mentioned above, phosphorylation on Y265 establishes a docking 

site for the SH2 domain of Src, increasing binding affinity (Lin et al., 2001). Moreover, 

Ambrosi et al. (2016) reported that the point mutation Y265D (phosphorylation mimetic) 

abolished the interaction with drebrin, an F-actin-binding protein that is required for 

stabilizing gap junctions at the plasma membrane (Ambrosi et al., 2016; Butkevich et al., 

2004) (del Valle et al., 2012). Another function of Y265 is to form part of a tyrosine-based 

sorting motif (YXXΦ, where Y is tyrosine, X is any amino acid, and Φ is a bulky 

hydrophobic amino acid) which enables an interaction with the μ subunit of the 

heterotetrameric adaptor protein complex AP-2 to mediate clathrin-dependent 

internalization of Cx43 (Fong et al., 2013) (Gumpert et al., 2008; Piehl et al., 2007). 

However, the ability of this tyrosine residue to bind AP-2 is negatively influenced by 

tyrosine phosphorylation. For example, phosphorylation of GluN2B residue Y1472 within 

the YEKL tyrosine-based sorting signal motif by Fyn inhibits AP2 binding and 

internalization of GluN2B-containing NMDA-type glutamate receptors (Nakazawa et al., 

2001). Similarly, phosphorylation of GluN2A by Src inhibits endocytosis of GluN2A-

containing NMDA-type glutamate receptors (Hayashi et al., 2009; Yang et al., 2012). 

These results suggest that Y265 phosphorylation may not be directly involved in clathrin-

dependent internalization, but indirectly increase internalization by destabilizing gap 

junctions at the plaque. To date, there is no published data regarding phosphorylation of 

Y267. However, we can not exclude it as a potential target of phosphorylation. Since Y267 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ambrosi%20C%5Bauth%5D
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is very close to Y265 and it is also involved in the AP-2 binding motif, the phosphorylation 

of Y267 could interfere with the phosphorylation of both Y265 and Y247, as well as 

decrease AP-2 binding capability.  

Y286 is located in the other YXXΦ AP-2-binding motif (286YKLV289); additionally, 

this residue is involved in the binding site PPXY motif (283PPGY286) of a ubiquitin ligase, 

NEDD4 (Leykauf et al., 2006; Spagnol et al., 2016). All three WW domains of NEDD4 

interact with the 283PPGY286 motif (Spagnol et al., 2016). Of note, the WW domains, named 

after the presence of two conserved tryptophan residues, regulate substrate selection. Our 

NMR study shows that any modification of Y286 (mutation, Y286A; phosphorylation, 

pY286) significantly decreased the binding affinity with all three WW domains, suggesting 

that Y286 is crucial for the NEDD4 binding (Spagnol et al., 2016). Also, Y286 is required 

for targeting Cx43-eYFP to the basolateral membrane domain of MDCK cells since 

mutagenesis of Y286 to A or substitution of 284PGYKLV289 by a sequence containing the 

transferrin receptor internalization signal disrupted basolateral targeting (Chtchetinin et al., 

2009). Although phosphorylation on Y286 and the kinase that phosphorylates Y286 site 

are unknown, the potential important role of phosphorylation on Y286 in Cx43 degradation 

and cell polarity is expected.  

Y313 phosphorylation was observed in FGF-2 stimulated human embryonic stem cells 

(phosphoproteomics data) (Li et al., 2016; Lundby et al., 2013). Located in one of the 

helical regions identified in the TM4-Cx43CT (K303-A322) (Grosely et al., 2013), Y313 

phosphorylation may induce a conformational change since the negative charge of 
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phosphate would disrupt or form electrostatic interactions. FGF has been reported to 

increase serine phosphorylation (Sakurai et al., 2013; Srisakuldee et al., 2009). However, 

no study show which tyrosine kinase directly targets to Y313. In Chapter 3 and Chapter 4, 

we will discuss our study which identify that Src and Pyk2 that phosphorylate Y313. 

   

3.4.4 Cx43 Tyrosine Phosphorylation and Diseases 

A. Cx43 Tyrosine Phosphorylation in Cancer 

As a proto-oncogene, c-Src is found to be over-expressed and/or highly activated in a 

wide variety of human cancers (Irby and Yeatman, 2000). Phosphorylation on Cx43 by Src 

affects cancer initiation, development, and treatments. One of the problem in cancer 

chemotherapy is the resistance of cancer cells to chemotherapeutic drugs like cisplatin. 

Previous research suggested that the cytotoxic signal triggered by cisplatin could transmit 

to a neighboring cell via gap junctional intercellular communication to cause cell death 

(Jensen and Glazer, 2004). Active Src phosphorylating Cx43 could increase cell survival 

of the neighboring cells in response to cisplatin while using Src inhibitor Dasatinib (sprycel) 

could be a strategy to enhance the efficacy of cisplatin (Peterson-Roth et al., 2009). In 

radiotherapy, irradiated cells can pass signals through the gap junctional intercellular 

communication to neighboring non-irradiated cells or release signals through connexin 

hemichannels causing bystander effect (Edwards et al., 2004; Ohshima et al., 2012). 

Closure of Cx43 gap junctions which is associated with hyperphosphorylation of Cx43 is 

proportional to the dose of ultrasoft X-rays received (Edwards et al., 2004). Thus, radiation 
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type and dose need to be carefully considered in order to get best anti-tumor effect by 

allowing the spread of cytotoxic metabolites (Edwards et al., 2004).  

  

B. Cx43 Tyrosine Phosphorylation in Cardiovascular Diseases 

Gap junctions are essential for normal electrical propagation in heart. Many cardiac 

diseases are associated with remodeling of gap junction organization and connexin 

expression, including ischemic cardiomyopathy, heart failure, and sudden cardiac death 

(Severs et al., 2006). In the normal situation, gap junctions preferentially locate at 

intercalated discs, which is the region between two adjacent cardiomyocytes in longitude 

(Severs, 1985). In this way, gap junctions mediate myocyte-to-myocyte electrical coupling 

and communication. In the pathological situation, Cx43 redistributes and localizes at the 

cardiomyocyte lateral membranes, which would result in a reduction of ventricular 

conduction velocity (Severs, 2001). Evidence show that Src is crucial for Cx43 expression 

and distribution in some cardiac pathologies. In epicardial border zone myocytes after 

myocardial infarction, active c-Src is significantly increased and colocalized with Cx43 at 

the intercalated disk 1 hr after postcoronary occlusion while the colocalization of ZO-1 and 

Cx43 decreases (Kieken et al., 2009). These alternations are associated with the loss of 

Cx43 from the intercalated disk (Kieken et al., 2009). Another group used the similar 

myocardial infarction mice model (12-week-old mice by coronary artery occlusion) and 

found that inhibition of Src by PP1 treatment increased Cx43 level in both scar border 

(69%) and distal ventricle (73%) (Rutledge et al., 2014). Chronically, c-Src activation is 
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associated with the decrease of Cx43 level in different animal models. In an angiotensin II 

(Ang II) over-activation mice model (ACE8/8), c-Src was increased and Cx43 was 

decreased in ventricular myocytes (Sovari et al., 2011). Further study indicated that the 

decreased Cx43 level and impaired Cx43 gap junction is caused by caveolin-1 (Cav-1) 

dissociation from c-Src which resulted in the c-Src activation (Yang et al., 2014). Although 

the tyrosine phosphorylation level of Cx43 in these animal model was not studied, c-Src 

and ZO-1 competitively interact with Cx43 which results in the destabilization of Cx43 at 

the gap junction plaque. In hereditary cardiomyopathic model Syrian BIO 14.6 hamsters, 

c-Src activation in the late stage of congestive heart failure is associated with increased 

Cx43 tyrosine phosphorylation level (Toyofuku et al., 1999). These are directly evidence 

that tyrosine phosphorylation by Src plays a role in cardiac pathology.  

 

C. Cx43 Tyrosine Phosphorylation in Other Diseases 

A variety of extracellular pathological and inflammatory stimuli regulating changes in 

gap junction communication includes lipopolysaccharide (LPS) and tumor necrosis factor 

α (TNFα). LPS not only induces Cx43 tyrosine phosphorylation and decreases gap junction 

coupling in cultured rat microvascular endothelial cells (Lidington et al., 2002), but also 

leads to the degradation of Cx43 in rat astrocytes (Liao et al., 2013). Airway epithelial cells 

initiate immune signaling caused by inhaled bacteria, which play a surveillance role in the 

respiratory tract. TNFα rapidly closes Cx43 gap junction channels in the airway epithelial 

cells (Huang et al., 2003; Huang et al., 2003). TNFα induces the activation of c-Src in 
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airway epithelial cell but not in cystic fibrosis airway epithelial cells (Huang et al., 2003). 

Expression of a dominant negative version of c-Src or transfection of Cx43 mutants on 

Y247 and Y265 prevented the effect of TNFα on gap junction closure, which suggests that 

c-Src mediates the closure of gap junction channel caused by TNFα (Huang et al., 2003). 

In diabetes, c-Src participates in down-regulation of Cx43 protein level. In high glucose 

stimulated glomerular mesangial cells, Cx43 downregulation by NF-κB activates c-Src 

which in turn activates NF-κB, resulting in renal inflammation (Xie et al., 2013). In this 

situation, activated NF-κB regulates the further decrease of Cx43 in kidneys of diabetic 

animals (Xie et al., 2013).  

 

3.4.5 Tyrosine Phosphorylation on Isoforms Other Than Cx43 

Despite Cx43 phosphorylation being well studied, our understanding of the complex 

symphony of tyrosine phosphorylation events and their outcomes is lacking. Furthermore, 

tyrosine phosphorylation of other Cx family members has not been studied as extensively 

as Cx43 and thus poorly characterized. Diez et al. (1998) found that the only two tyrosine 

residues on Cx32, Y243 on the CT and/or Y7 on the NT, were phosphorylated directly by 

the EGFR in vitro (Diez et al., 1998). However, they did not test if the phosphorylation 

occurs in cells. Locke et al. (2006) used MALDI–TOF-MS to detect post-translational 

modification in Cx32 transfected HeLa cells and found tyrosine phosphorylation on the 

Cx32 NT domain (Locke et al., 2006). Traub et al. (1998) studied the different types of 

phosphorylation in the mouse Cx37 transfected HeLa cells by autoradiography and found 
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phosphorylation mainly on serine, less on tyrosine and little on threonine residues (Traub 

et al., 1998). Hertlein et al. (1998) used autoradiography and found that in the mouse Cx45 

stable transfected HeLa cells, serine, tyrosine, threonine phosphorylation are detectable 

(Hertlein et al., 1998). Of note, most of the phosphorylated residues are found on the CT 

domain (Hertlein et al., 1998). Using a tyrosine phosphatase inhibitor pervanadate 

increases phosphorylated form of Cx45 suggesting the exist of tyrosine phosphorylation 

on Cx45 (van Veen et al., 2000). Although there is no direct evidence that Cx40 has 

tyrosine phosphorylation, Bolon et al. (2007) found that lipopolysaccharide treatment 

decreased the electrical coupling in cultured mouse microvascular endothelial cells by 

targeting Cx40 via tyrosine-, ERK1/2-, PKA-, and PKC-dependent signaling (Bolon et al., 

2007). Evidence has been found that tyrosine phosphorylation can occur on connexin 

isoforms other than Cx43, nevertheless, new phosphorylation sites and additional kinases 

that target connexins need to be identified and characterized.  

 

4. Regulation of Connexins by Phosphatases  

Phosphorylation is a highly regulated dynamic interplay between protein kinases and 

phosphatases. Phosphatase counterbalance the effects of kinases, thus plays important roles 

in regulating connexins life cycle, channel gating as well as interaction with other cellular 

proteins (Herve and Sarrouilhe, 2002). Although kinases play established roles in the life 

cycle of connexin, less information exists about the involvement of phosphatases. In this 
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section, regulation of connexins by phosphoserine/phosphothreonine protein phosphatases 

(PS/PTPP) and protein-tyrosine phosphatases (PTP) will be discussed.  

 

4.1 PS/PTPP and Connexins      

PS/PTPP are divided by function into two classes, protein phosphatase 1 (PP1) and 

protein phosphatase 2 (PP2). The latter includes PP2A, PP2B, and PP2C (Ingebritsen and 

Cohen, 1983). In ventricular myocytes of newborn rats, inhibition of PP1 and PP2A, but 

not PP2B and PP2C, preserved the channel activity (Duthe et al., 2001). In MDCK, WB-

F344 and cultured astrocytes, PP1/PP2A inhibitors also increased Cx43 phosphorylation 

(Berthoud et al., 1992; Guan et al., 1996; Li and Nagy, 2000). In another study, serine 

phosphatases PP1, PP2A, PP2B, and PP2C were used to test the dephosphorylation of 

immunoprecipitated Cx43, and PP2A was the most efficient (Cruciani et al., 1999). 

However, the same study also found PP2B participated in the maintenance of intercellular 

communication in TPA-treated V79 fibroblasts, although did not dephosphorylate 

immunoprecipitated Cx43 (Cruciani et al., 1999). This could associate with 

dephosphorylation of Cx43 binding partners by PP2B, since PP2B has been shown to 

regulate PKC(Lum et al., 2001). In arrhythmogenic rabbit model of non-ischemic heart 

failure and heart failure patients, Cx43 colocalized and coimmunoprecipitated with both 

PP1 and PP2A (Ai and Pogwizd, 2005). An increased colocalization of PP2A and Cx43 

(but not PP1 and Cx43), which is responsible for a decrease of phosphorylated Cx43, 

contributed to uncoupling (Ai and Pogwizd, 2005). In TNF-α acutly treated FS TtT/GF cell 
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line, there was a transient dephosphorylation of S368 caused by recruitment of PP2A at the 

plasma membrane; this led to a transient cell uncoupling (Meilleur et al., 2007). Although 

phosphorylation of S368 is accepted as a factor of cell uncoupling, the author emphasized 

that the length of the treatment is the key point (Meilleur et al., 2007). Specifically, PMA 

treated cells exhibit transient (within 5min and only last for 5 min) increase of gap junction 

coupling, and followed up with fast decrease of gap junction coupling (Meilleur et al., 

2007). Similarly, during the acquirment of the epidermal barrier function in embryonic 

development, there is a transient interaction between Cx43 and ZO-1. PP2A is necessary 

both for the initial interaction between ZO-1 and Cx43 and the consequential 

dephosphorylation of Cx43 on S368 (Gerner et al., 2013). 

 

4.2  PTPs and Connexins    

Traditionally, PTPs have been categorized into two types, the receptor-like and the 

intracellular PTPs (Zhang, 1998). The receptor-like PTP generally contains an extracellular 

domain, a single transmembrane region, and a cytoplasmic PTP domains (Zhang, 1998). 

The intracellular PTP is composed of a single catalytic domain and various amino or 

carboxyl terminal domains usually determining substrate binding or regulating 

phosphatase functions (Zhang, 1998). The importance of PTP on gap junction regulation 

was initially evidenced from studies using pervanadate, a PTP inhibitor, which was found 

to decrease gap junctional intercellular communication and enhance Cx43 tyrosine 

phosphorylation in syrian hamster embryo cells, and in V79 Chinese hamster lung 
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fibroblasts (Husoy et al., 1993). In Cx45 transfected HeLa cells, pervanadate reduced the 

junctional conductance and relatively increased the 48 kD signal, suggesting PTP is 

involved in the regulation of Cx45 phosphorylation (van Veen et al., 2000).  

In 2003, two potential Cx43 tyrosine phosphatases were identified – vascular protein 

tyrosine phosphatase 1 (identified by mass spectroscopy) and receptor protein tyrosine 

phosphatase μ (RPTPµ) (identified by immunoprecipitation) (Giepmans et al., 2003; Singh 

and Lampe, 2003); however, direct interactions were not verified, and direct roles in cell-

to-cell communication were not established. Lezcano et al. (2014) showed that Cx43 and 

RPTPµ colocalized throughout the entire ROS 17/2.8 cells, although RPTPµ is a 

transmembrane protein and the interaction was expected to occur at the plasma membrane 

(Lezcano et al., 2014). 

 

5. Objective  

Phosphorylation is one of the most important post-translational modifications of 

connexins. Although significant strides have been made in understanding connexin 

regulation by serine phosphorylation, few tyrosine kinases and phosphatases that interact 

with connexins have been identified.   

The objective of this dissertation is to identify novel tyrosine phosphatase and kinases 

that directly interact with Cx43 to affect the function and to characterize the biological 

function of the interactions, in vitro and in cyto. Chapter 2 includes the mechanistic study 

of Cx43 dephosphorylation by a novel protein-tyrosine phosphatase, TC-PTP. In Chapter 
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3, we will discuss a novel kinase, Tyk2, that phosphorylates Cx43 in a manner similar to 

Src but independent from Src activation. Chapter 4 contains additional studies on connexin 

phosphorylation and dephosphorylation extending from my dissertation. In Chapter 5, I 

will summarize my projects and propose future directions.  

The important roles of gap junction in growth control, electronic coupling, cell 

differentiation, cell sorting and immune response indicate the possibility of using gap 

junction as therapeutic target in particular diseases. Understanding phosphorylation and 

dephosphorylation might lead to methods that modulate the regulation of gap junction 

channels, with potential benefits for human health.  
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CHAPTER 2 

 

 

Tyrosine Phosphatase TC-PTP Directly Interacts with Connexin43 to 

Regulate Gap Junction Intercellular Communication 

 

Material in this chapter has been published in the following article: 

Li H, Spagnol G, Naslavsky N, Caplan S, Sorgen PL. Journal of cell science, 2014, 127 

(15), 3269-3279, doi: 10.1242/jcs.145193 

Manuscript is linked to http://jcs.biologists.org/content/127/15/3269.long 

CHAPTER 2  Tyrosine Phosphatase TC-PTP Directly Interacts with 

Connexin43 to Regulate Gap Junction Intercellular Communication 
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6.  Introduction 

In Chapter 1, we discussed that kinases have well-established roles in the regulation 

of a connexin’s function. However, phosphorylation are highly regulated and dynamic due 

to the action of phosphatase, and to date, very little is known about the regulation of Cx43 

by phosphatase. In this Chapter, we will discuss our findings that a tyrosine phosphatase, 

TC-PTP (also known as PTPN2), is a novel bind partner for Cx43.  

TC-PTP was cloned from a peripheral human T-cell cDNA library and despite its name, 

is ubiquitously expressed in all tissues and at all stages of mammalian development (Cool 

et al., 1989). Alternative splicing in the C-terminus gives rise to a 48-kDa form ( PTP1B, 

minor) localized to the ER and a 45-kDa form (TC-PTP, major) that is targeted to the 

nucleus (Cool et al., 1989). Mice lacking the TC-PTP gene die within five weeks of birth 

from defects in hematopoiesis and immune function (You-Ten et al., 1997). Heterozygous 

TC-PTP+/- mice implicated TC-PTP as an important regulator of inflammatory cytokine 

signaling and in the pathophysiology associated with inflammatory bowel disease (Hassan 

et al., 2010). Several substrates, such as the insulin receptor and EGFR (Galic et al., 2003; 

Tiganis et al., 1998), as well as cytoplasmic JAK and STAT proteins (Lu et al., 2007; 

Simoncic et al., 2002; ten Hoeve et al., 2002), have implicated broad roles of TC-PTP in 

regulation of celling pathways. Additionally, a high level of Ang II (10-7 M) decreases TC-

PTP in vascular smooth muscle cells, suggesting that TC-PTP is improtant in pathogenesis 

of Ang II induced cardiovascular diseases (Tsiropoulou S, 2014). We provide evidence of 

a relationship between Cx43 tyrosine phosphorylation by v-Src and de-phosphorylation by 
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TC-PTP. TC-PTP increased gap junction stability at the plasma membrane and partially 

reversed closure of Cx43 gap junction channels caused by v-Src phosphorylation. 

 

7.  Materials and Methods 

7.1   Expression and Purification of Recombinant GST-tagged Proteins 

     Rat Cx43CT236-382 was expressed and purified as described previously (Duffy et al., 

2002). TC-PTP1-314 was cloned into the pGEX-6p-2 vector and overexpressed in the BL21 

(DE3)-derived Rosetta strain (Novagen). A 20 ml overnight culture was diluted 1:50 and 

grown at 37°C to A600 = 0.6, then induced with 0.5 mM isopropyl β-D-thiogalactoside for 

20 h at 19°C. 1 L of cultured cells was lysed by an EmulsiFlex-C3 in 25 ml of the following 

buffer: 25 mM Tris-HCl (pH 7.5), 5 mM DTT, 0.1% Brij 35, and one protease inhibitor 

cocktail tablet (Roche). The cell lysate was incubated with glutathione-Sepharose beads 

(Genescript) for 2 h at 4°C, then the beads were incubate with Tris-HCl buffer (50 mM 

Tris-HCl, 2 mM ATP, 10 mM MgSO4) for 10 min at 37°C to remove a contaminating 

chaperone protein. The beads were washed in Tris-HCl buffers containing high salt (300 

mM NaCl) or detergent (1% Brij 35) and then washed 4x with 25 mM Tris-HCl (pH 7.5) 

and 5 mM DTT. Turbo 3C protease (Accelagen) was used to cleave TC-PTP1-314 from 

glutathione S-transferase tag at 4°C for two days.   

 

7.2   NMR 

     All NMR data were acquired using a 600 MHz Varian INOVA NMR Spectrometer 
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outfitted with a cryo-probe at the NMR Facility of the University of Nebraska Medical 

Center. Gradient-enhanced two-dimensional 15N-HSQC experiments were acquired to 

detect backbone amide bond resonances from the 15N-Cx43CT (30 μM) in the absence and 

presence of different concentration of unlabeled TC-PTP1-314. NMR spectra were processed 

using NMRPipe (Delaglio et al., 1995) and analyzed with NMRView (Johnson and Blevins, 

1994). Binding affinity from the 15N-HSQC titration experiments were calculated by 

Graphpad Prism 5 (GraphPad Software, Inc.). 

 

7.3   Cell Culture and transfection 

     NRK and LA-25 cells (NRK cells containing temperature sensitive v-Src) were 

generous gifts from Dr. Paul Lampe (Fred Hutchinson Cancer Research Center). Both cell 

lines were grown in Dulbecco's modified Eagle's medium (DMEM) (Hyclone, Thermo 

Fisher Scientific Inc.) supplemented with 10% fetal bovine serum (FBS) (Hyclone, Thermo 

Fisher Scientific Inc.) and antibiotics in an atmosphere of humidified 5% CO2. NRK cells 

were serum staved for 4 hrs in DMEM with 0.1% FBS before EGF treatment. TC-PTP 1-

314 was cloned in pcDNA 3.1 vector and transfected in to NRK or LA-25 cells following 

lipofectmine 2000 protocol (Thermo Fisher Scientific).  

 

7.4   Antibodies and Immunostaining 

     The following antibodies were used in this study: Cx43 monoclonal antibodies against 

amino acids 360-382 (Cx43CT1 and Cx43IF1, described in (Cooper and Lampe, 2002; 
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Lampe et al., 2006)), rabbit anti-phosphorylated Y247, rabbit anti-phosphorylated Y265, 

and rabbit anti-phosphorylated S279/282 (described in (Solan and Lampe, 2008)) (all 

generous gifts from Dr. Paul Lampe, Fred Hutchinson Cancer Research Center); Cx43 

monoclonal antibody against residues 1-20 (Cx43NT1, Fred Hutchinson Cancer Research 

Center Hybridoma Development Facility); rabbit anti-phosphorylated S368 (Millipore); 

TC-PTP antibodies against the N-terminus and C-terminus (SAB4200495 and 

SAB4200249, Sigma-Aldrich); non-specific phospho-tyrosine antibody (Abcam); and 

antibodies against total and active Src (phosphorylated Y416, Millipore).  

     Cells were immunostained as described previously (Mehta et al., 1991). Briefly, cells 

grown on cover slips to ~60% confluence were fixed with 2% para-formaldehyde for 15 

min. Cells were blocked for 30 min at room temperature (RT) by MPS buffer (1x PBS, 1% 

Goat Serum) containing 0.2% TX100 for permeabilization. Then, cells were 

immunostained with appropriate primary antibodies at RT for 1 h, followed by several 

PBS-0.5% Tween washes. Secondary antibodies (Alexa 594-conjugated goat anti-rabbit 

antibody and/or Alexa 488-conjugated goat anti-mouse antibody) were applied for 1 h at 

RT. Images of immunostained cells were acquired with a Zeiss 510 Meta Confocal Laser 

Scanning Microscope using a 63×1.4 numerical aperture objective with appropriate filters. 

Colocalization was quantified using the Manders method in Image J plugin JACoP, by 

which the Cx43 signal (green) coincident with a signal in the red channel over the total 

intensity of Cx43 was measured (Bolte and Cordelieres, 2006).  

 

http://www.millipore.com/catalogue/item/05-677
http://en.wikipedia.org/wiki/Phosphate_buffered_saline
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7.5   Co-IP and Western blot 

     NRK cells were lysed in complete lysis buffer (50 mM Tris-HCl [pH 7.4], 150 mM 

NaCl, 0.5% Na-deoxycholate, 1% TX 100, 5 mM NaF, and one-half tablet of complete 

protease inhibitor [Roche] in 20 ml buffer), maintained on ice for 30 min, precleared with 

protein G beads for 30 min at 4°C, and then spun at 12,000 rpm for 15 min. Total protein 

was assessed using the BCA protein assay kit (Pierce). 2 mg lysate was incubated with 2 

μg of anti-TC-PTP-NT or anti-TC-PTP-CT or rabbit IgG (4 h at 4°C) and then incubated 

with 100 μl of protein G sepharose (GE Healthcare) (overnight at 4°C). The sepharose was 

washed 4x with cold lysis buffer and the co-IP was analyzed by SDS-PAGE and Western 

blot. Anti-Cx43 antibody Cx43NT1 was used to detect Cx43 co-IP with TC-PTP.  

     Protein levels were detected by SDS-PAGE and Western blot. One exception for 

detecting tyrosine phosphorylation was that 5 mM Na3VO4 was added in the blocking 

buffer and primer antibody buffer in order to minimize the loss of phosphorylation. Western 

blot data were scanned and quantified using Image J as described in (Schneider et al., 2012). 

 

7.6   GST Pull Downs 

The GST pull down assay was modified from (Leykauf et al., 2006). Briefly, purified 

GST-fusion TC-PTP1-314 and GST control protein were bound to glutathione-Sepharose 

beads in buffer 1 containing 25 mM Tris-HCl (pH=7.4),150 mM NaCl, 0.1% TX100, 1 

mM DTT, 0.1 mM EDTA and one-half tablet of complete protease inhibitor in 20 ml buffer. 

5 mg of purified Cx43CT were incubated with GST-fusion TC-PTP1-314 or the GST control 
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overnight at 4°C on a rotating wheel. Beads were washed for 5 times with buffer 1 and 

bound protein were eluted with SDS-PAGE sample buffer and were used for SDS-PAGE. 

Western blot was used to analyze GST pull down results.   

 

7.7   In vitro Phosphatase Assay   

     Cx43 phospho-peptides pY247 (KGKSDPpYHATSGA) and pY265 (GSQKpYAYFNG) 

were used in the malachite green assay (Millipore) to detect if they are substrates of TC-

PTP in vitro. Positive and negative controls were DADEpYL (described in (Peters et al., 

2000)) and ARKRIpYPP (described in (Ren et al., 2011)), respectively. Peptides and 

enzyme were dissolved and diluted in reaction buffer (60 mM Hepes [pH 7.2], 150 mM 

NaCl, 1 mM EDTA, 0.17 mM DTT, 0.83% glycerol, 0.017% BSA, and 0.002% Brij-35) 

and temperature-equilibrated for 15 min at 25°C. 500 μM of each peptide was added into 

a 96-well plate, and then TC-PTP1-314 was added to each peptide at different time points. 

The final concentration of TC-PTP1-314 was 0.6 nM. All reactions were terminated by 

adding 100 μl malachite green solution and incubated for 15 min at RT to allow color 

development. Absorbance at 650 nm was read using a SpectraMax 190 spectrometer 

(Molecular devices).  

     The Malachite green assay was also used to measure the kinetic parameters of de-

phosphorylation (Peters et al., 2000). The reaction was performed in 96-well plates with a 

final volume of 25 μl. A standard curve of KH2PO4, used for calculating the release of 

inorganic phosphate, was determined on the same plate as the reaction samples. Different 
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concentrations of peptides [substrate] were combined with 1.2 nM TC-PTP1-314. Time 

points of the reaction were sampled from 0-15 min to calculate the initial velocity (v) versus 

[substrate]. Lineweaver-Burk double-reciprocal plot (rearranged from the Michaelis-

Menten equation) was created based on 1/v and 1/[substrate]. The kinetic parameters were 

determined by the linear equation from the lineweaver-Burk double-reciprocal plot. All the 

reactions were conducted at pH 7.5, 25°C. The reported results were calculated from three 

independent experiments.     

The in vitro phosphatase screening assay was conducted by SignalChem (Richmond, 

Canada). The CDC25A, CDC25B, CDC25C, PP1A, PP1B, PP2Aalpha, PP2Calpha and 

PP2Cgamma phosphatase activity to pS279/282 phospho-peptide (Cx43CT 276-289) was 

determined by performing assays at 37°C for 15 min in a final volume of 25μl according to 

the following assay reaction recipe: 

Component 1 5 μl of diluted active protein phosphatase 

Component 2 

10 μl of substrate assay solution OMFP for CDC25 family, Thr-

phosphopeptide T69-58 for PP1 and PP2 family 

Component 3 5 μl Phosphatase assay Buffer 

Component 4 5 μl of compound (50 μM) or assay buffer. 

 

 The assay was started by incubating the reaction mixture at 37°C for 15 minutes. After 

the 15 minutes incubation period, the assay was terminated by the addition of 100 μl of 

Malachite Green reagent. The absorbance of the reaction solution was measured in a 
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spectrophotometer at 650 nm. Blank control was set up that included all the assay components 

except the addition of the substrate (replace with equal volume of phosphatase assay buffer). 

The corrected activity for CDC25A, CDC25B, CDC25C, PP1A, PP1B, PP2Aalpha, 

PP2Calpha and PP2Cgamma targets was determined by removing the blank control value. 

 

7.8   Scrape-loading Assay 

Cells were scrape-loaded as described in (Stauch et al., 2012). Briefly, LA-25 cells 

seeded on cover slips were transfected with TC-PTP1-314 or pcDNA3.1 vector (mock group) 

for 24 h at 37°C and then incubated at 40°C for 1 hr before addition of the MAPK inhibitor 

(U0126, 50 μM) or PKC inhibitor (BIM, 0.1 μM) at 40°C for another 30 min. Then, cells 

were incubated at 35°C for 12 hrs. The medium with the inhibitor was changed every 3 hrs 

to ensure a consistent effect during the treatment. The confluence of cells was 100% on the 

cover slips. Cell culture medium from 100% confluent cells was removed and replaced 

with 1 ml of PBS containing 0.25% Lucifer Yellow and Texas Red-conjugated fluorescent 

dextran (10 kDa, 1.5 mg/ml: fixable). Cells were scrape-loaded with a sterile scalpel by 

two longitudinal scratches and then incubate at RT for 1 min. Cells were washed quickly 

3x with warm PBS (contain MgCl2 and CaCl2) or cell culture medium followed by 

incubating at 37°C for 5 min. After incubation, cells were washed 2x with warm PBS, and 

fixed with 3.7% buffered paraformaldehyde for 15 min. 0.1 M glycine was used to quench 

autofluorescence for 15 min. Cover slips were mounted on glass slides in a droplet of 

SlowFade (invitrogen). The result was confirmed by repeating the experiment 3x and for 
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each trial, capturing 4 side-by-side images. The method to quantify dye transfer was 

described previously (Stauch et al., 2012). Briefly, cells with Lucifer yellow were counted 

while the cells with dextran which indicated the initially loaded cells were excluded.   

 

7.9   TX 100 (TX100) Solubility  

The TX100 solubility assay was modified from the method described in (Mitra et al., 

2006). LA-25 cells grown in 10 cm petri dishes were rinsed 3x with PBS and scraped into 

1 ml lysis buffer (50 mM Tris-HCl [pH 7.4], 1 mM EGTA, 1 mM EDTA, 1 mM PMSF, 

100 mM NaCl, one-half tablet of complete protease inhibitor for 25 ml of buffer [Roche], 

5 mM NaF, 5 mM Na3VO4). Then, cells were sonicated for 10 s on ice. Protein estimation 

was determined using the BCA method. 450 μl cell lysate samples were added to 50 μl of 

10% SDS, which was saved as total protein, or to 10% TX100 (final concentration of 1%) 

and incubated at 4°C for 30 min. Lysates were then separated into cytosolic (supernatant, 

soluble) and membrane (pellet, insoluble) fractions by centrifugation at 100,000 g for 1 h 

at 4°C. The pellets were dissolved in 500 μl dissolving buffer (70 mM Tris-HCl [pH 6.8], 

8 M urea, 2.5% SDS, 0.1 M DTT, 5 mM NaF, 5 mM Na3VO4, and one-half tablet of 

complete protease inhibitor for 25 ml of buffer). Equal volume of total lysate, TX100 

soluble and insoluble portions, were loaded on a 12% SDS-PAGE and immunoblotted with 

the Cx43NT1 antibody.  

     For the detergent extraction in situ, LA-25 cells on cover slips were extracted in situ 

with 1% TX100 buffer (1% TX100, PBS pH 7.4, 1mM CaCl2, 1 mM MgCl2, and protease 
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inhibitor cocktail) for 30 min at 4°C, gently shacked every 10 min. The control cells were 

treated in the same way without 1% TX100. The cover slips were fixed and immunostained 

as described in (Johnson et al., 2013).  

 

7.10   TC-PTP siRNA Treatment 

Oligonucleotides siRNA1 (5’AACAGATACAGAGATGTAAGC3’) and siRNA 2m 

(5’AAGATTGACAGACACCTAAAT3’ ) used to knockdown TC-PTP in LA-25 cells 

according to (Galic et al., 2005). Oligonucleotide from the non-target pool (Dharmacon, 

Lafayette, CO) was used as negative control. Lipofectmine RNAi MAX (Invitrogen) was 

used to carry the oligonucleotide according to manufacture protocol. Cells were incublated 

at 35°C for another 12 hrs after 36 hrs of siRNA treatment. Protein levels were detected by 

Western blot.  

 

7.11   Subcellular Fractionation 

Analysis of subcellular colocalization of the PKC isoforms was performed according 

to (Saxon et al., 1994; Zang et al., 1995). Briefly, cells with different treatments from 60-

mm petri dishes were washed with ice-cold PBS and then suspended in 0.4 ml digitonin 

buffer (0.5 mg/ml digitonin in 20 mM Tris-HCl pH 7.5, 140 mM NaCl, 25 mM KCl, 5 mM 

MgCl2, 2 mM EDTA, 2 mM EGTA, 1/4 protease inhibitor tablet, and 1 phosphatase 

inhibitor tablet for 10 ml buffer). Cells were dispersed by pipetted up and down, incubated 

on ice for 5 min, and the cell lysate was centrifuged at 100,000g for 1 h. The supernatant 
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was collected as cytosolic fraction. The pellet was re-suspended in the same volume of 

triton buffer (1% TX100 to substitute for the digitonin in the digitonin buffer) and 

incubated on a rotating wheel for 30 min at 4°C. The suspension was centrifuged as 

described above and the supernatant was collected as the membrane fraction.  

 

7.12   Statistical Analysis 

All data were analyzed by GraphPad Prism 5.0 and presented as the standard error of 

the mean (±S.E.M). Paired t-test was used to compare differences between the 

experimental group and control or the two parallel experimental groups. P<0.05 was 

considered to be statistically significant. 

 

8.  Results  

8.1   TC-PTP Directly Interacts and Dephosphorylates the Cx43CT Domain 

Identification of proteins that interact with connexins has been invaluable towards 

understanding the regulation of gap junctional communication. Based upon the well-

characterized role of Src phosphorylation to inhibit gap junctional communication, we 

sought to identify if a tyrosine phosphatase could reverse this effect. Interestingly, a 

correlation exists between the activation of Src by stress conditions (e.g. oxidation stress) 

(Zhuang and Schnellmann, 2004) or mitogens (e.g. insulin and EGF) (Goi et al., 2000; Li 

et al., 2010; Rosenzweig et al., 2004) and redistribution of the tyrosine phosphatase TC-

PTP (diffusion from the nucleus and/or prevented from (re)entry into the nucleus) to the 
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plasma membrane (Fukushima et al., 2010; Lam et al., 2001; Tiganis et al., 1998). To 

identify if a direct interaction exists between TC-PTP and the Cx43 carboxyl terminal (CT) 

domain, nuclear magnetic resonance (NMR) titration experiments were performed with 

purified TC-PTP catalytic domain (TC-PTP1-314) and Cx43CT. NMR is an ideal method to 

detect protein-protein interactions because chemical shifts are sensitive to the environment 

and even small changes in structure and/or dynamics can influence the chemical shift of an 

amino acid. Different concentrations of unlabeled TC-PTP1-314 were titrated into 15N-

labeled Cx43CT (residues 236-382) and 15N-HSQC spectra were acquired. The 15N-HSQC 

is a 2D experiment in which each residue (expect proline) gives one chemical shift that 

corresponds to the amide group. Therefore, the Cx43CT resonance assignment is necessary 

to determine which residues are affected by the interaction. Our lab has published the 

Cx43CT 15N-HSQC assignment (Grosely et al., 2013c), however the spectrum was 

collected in Phosphate Buffered Saline (PBS), a buffer that caused TC-PTP1-314 to 

precipitate at elevated concentrations, unlike Tris-NaCl buffer. To assign the Cx43CT 

domain in Tris-NaCl buffer at pH 7.5, Cx43CT in PBS was initially titrated from pH 5.8 to 

pH 7.5 and then PBS was titrated to Tris-NaCl buffer at pH 7.5. The optimal buffer to 

visualize the peaks and maintain solubility of TC-PTP1-314 was 25% PBS/75% Tris-NaCl 

buffer at pH 7.5 (a sampling of the reassignments is shown in Figure 2.1A). Titration of 

TC-PTP1-314 caused a subset of Cx43CT residues to broaden beyond detection. These are 

highlighted on the Cx43CT sequence (Figure 2.1B). Strongly affected Cx43CT residues 

G261-T275 include Y265 and Y267. Also affected were areas which include Y247, Y286, 

http://en.wikipedia.org/wiki/Phosphate_buffered_saline
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Y301, and Y313. The decrease in signal intensity caused by increasing TC-PTP1-314 

concentrations was fit according to the nonlinear least square method. The binding affinity 

(KD) was determined to be 350±80 μM. A glutathione S-transferase (GST) pull down 

experiment was performed to validate the NMR results. Purified GST or GST-TC-PTP1-314 

bound to glutathione agarose were incubated with purified Cx43CT and immunoblotting 

using an anti-Cx43CT antibody identified that GST-TC-PTP1-314, but not GST, directly 

interacted with the Cx43CT (Figure 2.1C).  

Of the 6 Cx43CT tyrosine residues affected by TC-PTP1-314, Y265 and Y247 are known 

sites phosphorylated by c- and v-Src, leading to closure of Cx43 gap junction channels 

(Kanemitsu et al., 1997; Lin et al., 2001). To identify if TC-PTP dephosphorylates these 

residues, an in vitro phosphatase assay was conducted using peptides containing phospho-

Y247 (pY247) or phospho-Y265 (pY265) incubated with TC-PTP1-314. Following the 

protocol for the Malachite green assay (Millipore), we observed an increase in the amount 

of inorganic phosphate production indicating TC-PTP dephosphorylates Cx43 on pY247 

and pY265 (Figure. 2.2). The rate of de-phosphorylation was different between the two 

sites, with pY265 being a more efficient substrate for TC-PTP than pY247. This 

observation is consistent with the kinetic rate constant data (Km and kcat) which indicate 

that TC-PTP is more efficient in dephosphorylating pY265 than pY247 (Table 1.1).  
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Figure 2.1 Cx43CT residues affected by the 

direct interaction with TC-PTP 

  

Figure 2.1 Cx43CT residues affected by the direct interaction with TC-PTP. (A) 

Overlaid 15N-HSQC spectra of the 15N-Cx43CT (residues 236-382; 30 μM) in the presence 

of different concentrations (60 μM - 540 μM) of unlabeled TC-PTP1-314. The cross-peak 

color changes according to the concentration ratio. A sample of the affected peaks is labeled. 

(B) Amino acid sequence of Cx43CT. Residues strongly affected by addition of TC-PTP1-

314 are highlighted in green (residues broadened beyond detection at 1:12 molar ratio) and 

those less affected in yellow (residues broadened beyond detection at 1:18 molar ratio). In 

red are the Cx43 residues Y247 and Y265 phosphorylated by Src. The remaining four 

tyrosine residues have been underlined. (C) Purified GST or GST-TC-PTP1-314 on 

glutathione agarose beads were incubated with (+) and without (-) purified Cx43CT236-382. 

After washes, the anti-GST antibody (top) detected both GST alone (26 kDa) and GST-

TC-PTP1-314 (58 kDa), however the anti-Cx43CT antibody (bottom) only detected Cx43CT 

when incubated with GST-TC-PTP1-314.  
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Figure 2.2 TC-PTP dephosphorylated Cx43 residues pY247 and pY265 in vitro. Plot 

of the Malachite green assay showed the time course of Cx43 phospho-peptides (600 nM) 

containing pY247 or pY265 dephosphorylated by the TC-PTP catalytic domain (0.6 nM). 

Statistic data were recorded based on readings at OD650. Each experiment was repeated 

three times. 

  

Figure 2.2 TC-PTP dephosphorylated Cx43 

residues pY247 and pY265 in vitro 
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 Table 2.1. Kinetic constants for de-phosphorylation of pY265 and pY247 by TC-PTP 1-314 

 Km 

(mM) 

kcat  

(s-1) 

kcat/Km•10-6 

(M-1s-1) 

Positive control*# 0.022±0.001  52.820±10.622 2.418±0.473 

pY265* 0.075±0.003  56.588±3.320 0.751±0.197 

pY247* 0.224±0.035  14.164±1.295 0.064±0.012 

*All data were collected at pH 7.5, 25°C 

#Notably, the kinetic constants determined for the positive control (DADEpYL) by TC-

PTP1-314 are consistent with a previous report of the same peptide with the PTP1B catalytic 

domain, whose sequence is very similar with TC-PTP1-314 (Peters et al., 2000).  

Table 2.1 Kinetic constants for de-phosphorylation of pY265 and pY247 by TC-PTP 1-314 
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8.2   TC-PTP Dephosphorylates Cx43 in Normal Rat Kidney (NRK) Epithelial Cells 

To determine if de-phosphorylation of pY265 and pY247 by TC-PTP occurs in cells, 

we initially tested whether endogenous Cx43 and TC-PTP colocalize in NRK cells. 

Immunostaining in the absence of EGF shows TC-PTP in the nucleus and Cx43 at the 

plasma membrane (Figure. 2.3A, -EGF). Within one hour after EGF treatment, TC-PTP is 

recruited to the plasma membrane and partially colocalizes with Cx43 (Figure. 2.3A, 

+EGF). Co-immunoprecipitation (IP) using an anti-TC-PTP antibody that interacts with 

the CT domain (anti-TC-CT) followed by Western blot analysis demonstrated TC-PTP and 

Cx43 are in the same complex (Figure. 2.3B). Numerous studies have shown that 

differentially phosphorylated Cx43 results in multiple electrophoretic isoforms: a fast 

migrating isoform (P0), and multiple slower migrating isoforms (P1 and P2) (Crow et al., 

1990; Matesic et al., 1994; Solan and Lampe, 2005). TC-PTP has a preference for the P2 

isoform in NRK cells.  
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Figure 2.3 EGF induced TC-PTP to colocalize 

with Cx43 in NRK cells. 

 

 

 

Figure 2.3 EGF induced TC-PTP to colocalize with Cx43 in NRK cells. (A) Cellular 

localization of endogenous Cx43 and TC-PTP in NRK cells with or without human 

recombinant EGF (50 ng/ml; 1 hr, Peprotech, Rocky Hill, NJ) using immunofluorescence 

(green, Cx43; blue, DAPI; red, TC-PTP). Colocalization of Cx43 and TC-PTP (yellow) is 

highlighted by white arrows. Scale bar is 20 μm. Colocalization of Cx43 and TC-PTP was 

analyzed based on 10 images from 3 independent experiments. Manders method was used 

to measure green signal (Cx43) coincident with red signal (TC-PTP) over the total intensity 

of green signal. Error bars indicate S.E.M. (B) Lysates of NRK cells were IP with anti-TC-

NT, anti-TC-CT, or IgG and then blotted for Cx43 and TC-PTP. Input was lysates of NRK 

cells. The Cx43 mobility shift P0, P1, and P2 have been labeled.  
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TC-PTP can interact with protein partners through both the N-terminal (NT) catalytic 

domain and the CT inhibitory and nuclear targeting domain (Iversen et al., 2002). De-

phosphorylation of Cx43 would therefore depend on the interaction with the TC-PTP 

catalytic domain. Co-IP using an anti-TC-PTP-CT antibody pulled down Cx43 (Figure. 

2.3B). However, an anti-TC-PTP-NT antibody was unable to pull down Cx43, suggesting 

that the epitope was blocked due to the interaction of the catalytic domain with Cx43; 

results consistent with the in vitro binding experiments. Based on these observations, the 

catalytic domain alone (TC-PTP1-314; missing nuclear localization domain and localized in 

the cytoplasm) was transfected into NRK cells to test for TC-PTP de-phosphorylation of 

Cx43. Immunostaining demonstrates that TC-PTP1-314 colocalizes with Cx43 on the plasma 

membrane with or without EGF treatment (Figure. 2.4A). Next, Cx43 phospho-specific 

antibodies were used to test if TC-PTP can decrease Cx43 tyrosine phosphorylation levels 

in cells (Figure. 2.4B). The amount of pY265 and pY247 was decreased in the TC-PTP1-

314 transfected group compared with the pcDNA 3.1 vector transfection group. Of note, the 

basal level of Cx43 tyrosine phosphorylation observed in the NRK cells (Figure. 2.4B, -

TC-PTP1-314) is significantly greater than what has been observed in other cell lines 

(Kanemitsu et al., 1997; Lampe et al., 1998; Lau et al., 1992; Lidington et al., 2002). While 

to the best of our knowledge the basel level of tyrosine phosphorylation in NRK cells has 

not been previously reported, a basel level of tyrosine phosphorylation has been observed 

in a derivative of the NRK cell line (called LA-25 (Solan and Lampe, 2014), discussed 

further below). The differences may be the result of higher sensitivity by the specific   
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Figure 2.4 TC-PTP causes Cx43 de-

phosphorylation in NRK cells 

 

Figure 2.4 TC-PTP causes Cx43 de-phosphorylation in NRK cells. (A) 

Immunofluorescence of NRK cells transfected with the catalytically active, cytoplasmic 

TC-PTP domain (TC-PTP1-314) with or without EGF (50 ng/ml; 1 hr). Colocalization of 

Cx43 and TC-PTP (yellow) is highlighted by white arrows. Scale bar is 20 μm. 

Colocalization of Cx43 and TC-PTP was analyzed based on 8 images from three 

independent experiments. (B) Western blot using Cx43 Y247 and Y265 phospho-specific, 

as well as Cx43 and TC-PTP antibodies in NRK cells. Relative protein levels were 

quantified by analyzing scanned blots by Image J software. The data are representative of 

three independent experiments.  
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tyrosine antibodies (used in this study and in (Solan and Lampe, 2014)) and/or TC-PTP 

might be somewhat less active in NRK (and LA-25) cells under the given conditions. 

Altogether, these studies indicate that TC-PTP and Cx43 exist in the same complex in cells 

and that TC-PTP can cause a decrease in the levels of Cx43 tyrosine phosphorylation.  

 

8.3   TC-PTP Dephosphorylates Cx43 Residues pY247 and pY265 in LA-25 cells 

NRK cells containing a temperature sensitive v-Src, called LA-25, are commonly used 

in the gap junction field to characterize Cx43 regulation by v-Src (Solan and Lampe, 2008; 

Zhou et al., 1999). v-Src is active in this cell line at the permissive temperature (35°C) and 

not at the non-permissive temperature (40°C). Worth mentioning, temperature alone does 

not affect gap junction communication in NRK cells (Atkinson et al., 1981). Here, the LA-

25 cells were used to characterize the interplay between TC-PTP and v-Src on Cx43 

tyrosine phosphorylation levels. To begin with, immunostaining data indicate that active v-

Src at 35°C resulted in v-Src colocalization with Cx43 at the plasma membrane (Figure. 

2.5A). Immunostaining data then confirmed that after activation of v-Src, endogenous TC-

PTP colocalizes with Cx43 at the plasma membrane (Figure. 2.5B). These data suggest TC-

PTP could mitigate the effect caused by v-Src in order to maintain cell-to-cell 

communication. 
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Figure 2.5 v-Src induces TC-PTP to colocalize 

with Cx43 in LA-25 cells 

 

Figure 2.5 v-Src induces TC-PTP to colocalize with Cx43 in LA-25 cells. 

Immunostaining studies show (A) active Src (Src pY416, red) and (B) TC-PTP (red) co-

localized with Cx43 at the permissive temperature (35°C) in LA-25 cells. For each panel, 

green and blue represent Cx43 and DAPI, respectively. Colocalization of Cx43 and active 

v-Src or TC-PTP (yellow) is highlighted by white arrows. Scale bar is 50 μm for (A) and 

20 μm for (B). Colocalization of Cx43 and active v-Src or TC-PTP was analyzed based on 

12 images from three independent experiments.  
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To test this possibility, tyrosine phosphorylation levels were evaluated in the LA-25 

cells using the Cx43 pY265 and pY247 phospho-specific antibodies (Figure. 2.6). Active 

v-Src at 35°C increased both Y265 and Y247 phosphorylation levels as compared to 40°C. 

However, if transfected with TC-PTP1-314 prior to v-Src activation, Y265 and Y247 

phosphorylation levels decreased significantly. Additionally, at 35°C, TC-PTP1-314 did not 

dephosphorylate v-Src (Src pY416), which supports that the decrease of pY247 and pY265 

in the TC-PTP1-314 transfected group is caused by TC-PTP and not by decreased kinase 

activity of v-Src. Since MAPK and PKC were reported to phosphorylate Cx43 to down 

regulate Cx43 gap junction intercellular communication in response to active v-Src in the 

LA-25 cells (as well as other cell lines (Mitra et al., 2012; Solan and Lampe, 2008)), we 

investigated if TC-PTP indirectly affected serine phosphorylation. Cx43 serine 

phosphorylation levels were evaluated using phospho-serine specific antibodies to 

pS279/282 (MAPK target) and pS368 (PKC target). pS279/282 and pS368 levels were up-

regulated at 35°C as expected; interestingly, expression of TC-PTP1-314 indirectly led to 

decreased pS368 levels but not pS279/282 at 35°C. S368 is a known phosphorylation site 

by different PKC isoforms (α, δ, and ) (Cone et al., 2014; Mitra et al., 2012) as well as 

PKCα and PKCδ, in particular, can be up-regulated by v-Src expression (Zang et al., 1995). 

To address if TC-PTP is affecting activation of PKC, we initially identified that LA-25 cells 

express PKCα and PKCδ (Figure. 2.6B) but not PKCε (data not shown). Next, a well-

established method of measuring membrane-associated PKC isoforms was used since PKC 

isoforms translocate from cytosolic to membrane distribution when activated. (Borner et 
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al., 1992; Ha and Exton, 1993; Saxon et al., 1994). The level of activated PKCα and PKCδ 

increased at 35°C compared to 40°C (16.3±2% to 25.7±3% for PKCα; 13.0±2% to 

36.7±0.3% for PKCδ). Transfection of TC-PTP1-314 caused a decrease in the level of both 

membrane-associated PKCα (14.3±4%) and PKCδ (16.7±5% ) indicating that TC-PTP can 

inhibit the activation of PKCα and PKCδ by v-Src (Figure. 2.6B). 

To determine the specificity of TC-PTP to decrease the level of Cx43 tyrosine 

phosphorylation, TC-PTP siRNA was used to knockdown endogenous TC-PTP in the LA-

25 cells. Colocalization between TC-PTP and Cx43 was investigated at 35°C, where 

endogenous TC-PTP colocalizes with Cx43 at cell membrane (Figure 2.5B). In the TC-

PTP siRNA group, both pY265 and pY247 increased approximately 2-fold in the TC-PTP 

siRNA group (even with a decrease in the total levels of Cx43), compared to the scramble 

siRNA group. The decrease of Cx43 correlates with the decrease observed for pS279/282, 

indicating that down-regulation of TC-PTP does not affect MAPK phosphorylation. On the 

other hand, the relative decrease of Cx43 was greater than that of pS368, indicating up-

regulation of PKC activity in the absence of TC-PTP. This result is consistent with the 

down-regulation of PKCα and PKCδ with the transfection of TC-PTP 1-314 (Figure 2.6B). 

Next, we addressed the functional significance of Cx43 de-phosphorylation by TC-PTP. 
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Figure 2.6 TC-PTP dephosphorylated Cx43 

residues pY247 and pY265 in LA-25 cells. 
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Figure 2.6 TC-PTP dephosphorylated Cx43 residues pY247 and pY265 in LA-25 

cells. (A) Western blot of TC-PTP (wild type-WT and transfected TC-PTP1-314-NT), 

active v-Src (Src pY416), total v-Src, pY265, pY247, pS279/282, pS368, and total 

Cx43 (blot with Cx43NT1) levels from LA-25 cells at 40°C and 35°C (12 hr) with or 

without TC-PTP1-314 transfection. Relative protein levels were quantified by analyzing 

scanned blots by Image J software with normalization of protein expression to the - TC-

PTP1-314 lane at 35°C lane (value = 1). The data is representative of three independent 

experiments. (B) Activation of PKC isoforms α and δ in LA-25 cells at 40°C and 35°C 

with or without TC-PTP1-314 transfection. PKC isoforms α and δ in cytosolic (C) and 

membrane (M) fractions were analyzed by Western blot. Na+/K+ ATPase was blotted as 

membrane fraction marker, GAPDH was blotted as cytosolic fraction marker. Relative 

protein levels were quantified by analyzing scanned blots from 3 independent 

experiment by Image J software. (C) Scramble RNA or TC-PTP siRNA treated LA-25 

cells were incubated at 35°C for 12 hrs. Cx43 phosphorylation level were analyzed by 

Western blot.   
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8.4   TC-PTP Increases Gap Junction Intercellular Communication and Stability 

of the Gap Junction Plaque 

To determine if TC-PTP de-phosphorylation of Cx43 affects cell-to-cell 

communication, the junctional transfer of the fluorescent tracer Lucifer yellow (MW 

443) was measured in a scrape-loading using the LA-25 cells (Figure 2.7A). Gap 

junctions were functional at 40°C and the number of fluorescent cells was significantly 

reduced at 35°C from 115.2±5 to 8.6±3 (Figure 2.7B). Conversely, transfection of TC-

PTP1-314 increased the number of fluorescent cells at 35°C, albeit not to levels observed 

without active v-Src (from 8.6±3 to 56.4±3 vs. 115.2±5). These findings indicate that 

the inhibition of Cx43 gap junction intercellular communication caused by v-Src can 

be partially rescued by TC-PTP. A plausible explanation for the “partial” rescue of gap 

junction intercellular communication is that Cx43 MAPK phosphorylation levels were 

unaffected (Figure 2.6). Using the MAPK specific inhibitor U0126, the number of 

fluorescent (non-TC-PTP1-314 transfected) cells at 35°C increased greater than what was 

observed with TC-PTP1-314 transfection alone (88±5), but still reduced from 40°C. 

Finally, we used the PKC specific inhibitor BIM to test the contribution of PKC 

phosphorylation on channel closure. BIM treatment also resulted in increased 

fluorescent cells (43±5) from control (DMSO), but not to the levels of TC-PTP1-314 

transfection or the presence of the MAPK specific inhibitor U0126.  
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Figure 2.7 Scrape loading assay shows TC-PTP 

increased gap junction intercellular 

communication in LA-25 cells. 
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Figure 2.7 Scrape loading assay shows TC-PTP increased gap junction 

intercellular communication in LA-25 cells. (A) Cells grown on glass cover slips 

were scrape-loaded with Lucifer Yellow (LY, green) and Texas Red-conjugated dextran 

(red). Cell nucleus was stained by DAPI to show the confluence of cells. Scale bar is 

100 μm. (B) Quantification of fluorescent cells shows the effect of TC-PTP1-314 and 

serine kinase inhibitors on gap junctional permeability. Number of fluorescent cells at 

40°C is significantly more than at 35°C (p<0.0001). At 35°C, transfection of TC-PTP1-

314 or addition of the MAPK inhibitor U0126 (50 μM) or PKC inhibitor BIM (0.1 μM) 

significantly increased the number of fluorescent cells compared with control (DMSO) 

at 35°C (p<0.0001). Each experiment was repeated for three times.  
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Both MAPK and PKC phosphorylation contribute to gap junction channel closure. 

TC-PTP can prevent the phosphorylation and channel closure caused by PKC but not 

MAPK. S279/282 phosphorylated by MAPK could increase binding with Nadd 4, that 

is associated with Cx43 internalization (Spagnol et al., 2016). Thus, the 

dephosphorylation on Cx43 MAPK sites is important for indirectly increasing gap 

junction intercellular communication. Previous studies showed that PP2A 

dephosphorylated TPA-treated immunoprecipitated Cx43, however they did not test 

phosphorylation sites that PP2A affects (Cruciani et al., 1999). To further study which 

phosphatase targets MAPK sites, the MAPK phospho-peptide was used as the substrate 

in in vitro phosphatase screening assay, several phosphatases were used in the assay 

(Table 2.2). The results show that the PP2A was the most specific phosphatase to 

dephosphorylate S279/282 compare to the other tested phosphatases, with 39% of 

control activity. PP2A could also dephosphorylate the PKC site (pS368) with high 

efficiency, which is 122% activity of control (Figure 2.8). 

Cx43 gap junction channels are localized in detergent-insoluble junctional plaques 

(Musil and Goodenough, 1991; Sirnes et al., 2008). To test the possibility that rescue 

of gap junctional coupling by TC-PTP was caused by an increase in the amount of Cx43 

at junctional plaques, we assessed levels of TX100 detergent solubility. The detergent 

extraction in situ fluorescence and Western blot data show that active v-Src in LA-25 

cells at 35°C decreased the detergent-insoluble fraction of Cx43 (Figure. 2.9A, B). 

Quantification of the data revealed that the insoluble to insoluble+soluble ratio (I/(S+I)) 

was 79.6±8% at 40°C (Figure. 2.9C). However, the number of assembled gap junctions   
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Table 2.2 PP2Aalpha dephosphorylated pS279/282 peptide 

 

 

 

 

 

 

 

 

 

 

 

In vitro phosphatase screening assay using pS279/282 peptide as substrate. The 

profiling data for the peptide substrate pS279/282 against various protein phosphatase 

targets using the melachite green assay method showed weak to moderate de-

phosphorylation of the peptide substrate pS279/282 by 2 phosphatase targets PP2A 

alpha and CDC25C. The protein phosphatase target PP2A alpha showed the highest 

activity against the peptide substrate pS279/282. The rest of the phosphatase targets did 

not show any significant activity against the peptide substrate pS279/282 (values of >10% 

to be significant).  

Table 2.2 PP2Aalpha dephosphorylated pS279/282 peptide 

 

phosphatase % Activity 

PP1A 6 

PP1B 3 

PP2A alpha 39 

PP2C alpha -1 

PP2C gamma 0 

CDC25A 5 

CDC25B 6 

CDC25C 18 
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Figure 2.8 in vitro phosphatase assay using Cx43CT pS279/282 or Cx43CT pS368 phospho-peptides as substrate 
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Figure 2.8 In vitro phosphatase assay using Cx43CT pS279/282 or Cx43CT pS368 

phospho-peptides as substrates. (A) Using PP2B to dephosphorylate the Cx43CT 

pS279/282 peptide. (B) Using PP2A to dephosphorylate the Cx43CT pS279/282 

peptide. (C) Using PP2B to dephosphorylate the Cx43CT pS368 peptide. (D) Using 

PP2A to dephosphorylate the Cx43CT pS368 peptide. Lanes 1, 2, and 3 are different 

negative controls. Lane 4 is a positive control. In Lane 5, Cx43CT phospho-peptides 

were used as substrates. 
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significantly decreased at 35°C to 45.1±10%. The effect of v-Src was substantially 

blocked by transfection of TC-PTP1-314. TC-PTP1-314 increased the Cx43 resistant to 

TX100 (I/(S+I) = 72.9±8%) at 35°C, suggesting that TC-PTP contributed to the stability 

of Cx43 at the junctional plaque. 

9.  Discussion 

Here we identified that TC-PTP is the first tyrosine phosphatase, to the best of our 

knowledge, which directly interacts with Cx43 to modulate gap junction intercellular 

communication. TC-PTP-mediated de-phosphorylation of Cx43 tyrosine residues 

Y265 and Y247, as well as indirect serine de-phosphorylation at S368, increased gap 

junction intercellular communication, and stability of gap junction channels at the 

plaque. Our studies are consistent with prior observations that TC-PTP is a negative 

regulator of cytokine signaling as EGF stimulation of NRK cells caused TC-PTP to co-

localize with Cx43 at the plasma membrane. In addition, v-Src expression alone was 

able to mimic the effects of cytokine stimulation. How cytokines and/or v-Src induce 

TC-PTP redistribution is not clear. TC-PTP has been reported to exit from the nucleus 

via passive diffusion after cellular stress, while another possibility is that cytoplasmic 

accumulation occurs by inhibiting nuclear import (Lam et al., 2001).  

Closure of Cx43 gap junction channels by v-Src was first observed over 30 years 

ago (Atkinson et al., 1981); however, the specific sites of Cx43 phosphorylation 

required for this process are still a matter of debate. Several studies implicate the 

activation of v-Src in both the direct phosphorylation of Cx43 tyrosines (Y247 and 

Y265) and the indirect phosphorylation of serines by MAPK (S279/S282) and PKC   
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Figure 2.9 TX100 solubility assay shows TC-

PTP stabilized Cx43 at the gap junction plaque 

in LA-25 cells 

 

Figure 2.9 TX100 solubility assay shows TC-PTP stabilized Cx43 at the gap 

junction plaque in LA-25 cells. (A) Cx43 was extracted in situ with 1% TX100 and 

immunostained for Cx43 (green). Scale bar is 10 μm. (B) Equal amounts of total protein 

fraction (T), TX100 soluble fraction (S), and insoluble fraction (I) were run on SDS-

PAGE and blotted with anti-Cx43 antibody. (C) Protein levels were quantified to 

determine the insoluble to insoluble+soluble ratio I/(I+S). I/(I+S) at 40°C is 

significantly higher than at 35°C (p<0.001). At 35°C, I/(I+S) in the TC-PTP1-314 

transfected group is significantly different from the empty vector transfected control 

(p<0.01).  
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(S368) (Mitra et al.,2012; Solan and Lampe, 2008). We also show that v-Src increased 

the level of Y265, Y247, S279/282 and S368 phosphorylation. Conversely, TC-PTP 

decreased the phosphorylation level of Y265 (direct), Y247 (direct), and S368 (indirect), 

but not S279/282. The indirect decrease of pS368 was caused by inactivation of PKCα 

PKCδ. No change in pS279/282 levels is consistent with a previous study in which TC-

PTP had no effect on MAPK signaling after EGF-induced activation (van Vliet et al., 

2005). Of note, one mechanism by which EGF up regulates MAPK signaling is through 

c-Src activation (Faivre and Lange, 2007; Zhang et al., 2012). The use of kinase 

inhibitors identified that v-Src, MAPK, and PKC are all involved in gap junction 

closure, although they decreased the level of communication differently. MAPK 

phosphorylation had the greatest effect on channel closure and the observation that TC-

PTP did not affect the phosphorylation level of S279/282 explains why TC-PTP only 

partially reversed gap junction closure caused by v-Src.  

To detect the phosphatase(s) that dephosphorylate Cx43CT residues S279/282, we 

performed in vitro phosphatase screening assays. We found that only PP2A could 

dephosphorylate the pS279/282 sites, however, only 39% of control. Future studies to 

validate this finding would include cell studies. Western blot using Cx43 phospho-

specific antibodies could be applied on PP2A transfected cells with TPA stimulation. In 

fact, some of MAPK substrates can be dephosphorylated by PP2A, such as Caspase 3 

(Alvarado-Kristensson and Andersson, 2005) and pro-apoptotic protein Bad (Grethe 

and Porn-Ares, 2006). These evidence suggest the possibility of dephosphorylation on 

Cx43 S279/282 by PP2A. Other strategies targeting MAPK phosphorylation sites, such 
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as peptide or small molecule drugs to block S279/282 on Cx43, could be applied to 

maintain functional gap junction.   

Several hypotheses, which are not mutually exclusive, could describe the 

mechanism(s) by which phosphorylation regulates gap junction intercellular 

communication. First, the negative charge of the phosphate could affect the 

permeability of ions through the pore via electrostatic attraction or repulsion. In this 

study, the negatively charged Lucifer yellow was used as probe for gap junction 

intercellular communication. The placement of at least 60 negative charges (5 

phosphorylation sites: 2 Src, 2 MAPK, and 1 PKC; phosphate charge of -2) within a 

connexon (6 connexins) caused by v-Src could contribute to the reduction of Lucifer 

yellow transport. Second, phosphorylation can directly (and possibly indirectly, see 

(Grosely et al., 2013c)) alter the binding affinities of proteins involved in Cx43 

regulation. As mentioned in the introduction section, Y247 is directly involved in 

microtubule binding and pY247 would be detrimental to Cx43 intercellular 

communication.(Saidi Brikci-Nigassa et al., 2012). This is consistent with our results 

that dephosphorylation of pY247 by TC-PTP correlates with an increase in the number 

of Cx43 gap junctions at the plaque. Phosphorylation on Y265 also facilitates gap 

junction endocytosis by disrupting the interaction with drebrin, an F-actin-binding 

protein that is required for stabilizing gap junctions at the plasma membrane (Ambrosi 

et al., 2016; Butkevich et al., 2004) (del Valle et al., 2012). These results are in 

agreement with our finding that TC-PTP dephosphorylation of Y265 also correlates 

with an increase in Cx43 gap junction channels at the plaque. Finally, Cx43CT 
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phosphorylation could alter the structure of the transmembrane α-helices to influence 

pore size and/or drive gating by a “ball and chain” mechanism, similar to what had been 

shown for pH gating of Cx43 (ek-vitorin 1996 and Morley 1996).  

Phosphorylation is a primary means of mediating signal transduction events that 

control cellular processes via a highly regulated dynamic interplay between protein 

kinases and phosphatases. Many kinases are known to phosphorylate Cx43 with the 

predominant effect being a decrease in gap junction intercellular communication. While 

kinases have established roles in the life cycle of a connexin, unfortunately, a 

significantly less amount of information is known about the involvement of 

phosphatases. Identification of a new tyrosine phosphatase TC-PTP, which 

dephosphorylates Src-mediated phosphorylation of Cx43, presents an opportunity to 

contribute beyond what other studies have focused upon, which is channel closure, by 

characterizing the timeline of gap junction channel opening. Understanding both 

phosphorylation and de-phosphorylation will help build a better foundation to target 

gap junction channels to benefit human health. For example, inhibitor treatment of c-

Src in a myocardial infarction mouse model significantly increased Cx43 expression in 

scar border and distal ventricle, leading to improved conduction velocity and lower 

arrhythmic inducibility (Rutledge et al., 2014). Our data demonstrating that TC-PTP 

dephosphorylates Cx43 and increases the level of Cx43 level on the cell membrane 

supports their conclusion, from a cellular perspective. Future research using an animal 

model to study the relevance of Cx43 de-phosphorylation by TC-PTP may provide new 

avenues for disease therapy.     
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CHAPTER 3 

 

 

Regulation of Connexin43 Function and Expression by Tyrosine Kinase 2 

 

Material in this chapter has been published in the following article: 

Li H, Spagnol G, Zheng L, Stauch KL, Sorgen PL. (2016) J Biol Chem. 2016 May 27. 

pii: jbc.M116.727008. [Epub ahead of print] doi: 10.1074/jbc.M116.727008. 

Manuscript is linked to http://www.jbc.org/content/291/30/15867.long 

CHAPTER 3  Regulation of Connexin43 Function and Expression by 

Tyrosine Kinase 2 

  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Zheng%20L%5BAuthor%5D&cauthor=true&cauthor_uid=27235399
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stauch%20KL%5BAuthor%5D&cauthor=true&cauthor_uid=27235399
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sorgen%20PL%5BAuthor%5D&cauthor=true&cauthor_uid=27235399
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10.  Introduction 

The Cx43CT is differentially phosphorylated on at least 20 residues and significant 

progress has been achieved in characterizing the kinases involved (Axelsen et al., 2013; 

Lampe and Lau, 2004; Solan and Lampe, 2005, 2014). Unfortunately, an understanding 

of the mechanism(s) by which Cx43 phosphorylation alters channel function is lacking. 

Several problems contributing to this difficulty include the transient nature of a 

particular CT phosphorylation state, the ability of many kinases to phosphorylate more 

than one CT residue, the ability of various kinases to phosphorylate the CT at the same 

time, and the inability to precisely control which residue(s) are phosphorylated. 

Strategies employed to overcome these difficulties include the use of phospho-specific 

CT antibodies (Sosinsky et al., 2007) and short CT phosphopeptides (Chen et al., 2008; 

Saidi Brikci-Nigassa et al., 2012). Also well appreciated is the use of Asp (or Glu) 

substitutions as a mimetic for phosphorylation (Grosely et al., 2013b; Solan et al., 2007). 

Numerous serine protein kinases have been identified to directly phosphorylate Cx43 

(for review see (Axelsen et al., 2013)), however tyrosine protein kinases have been 

limited to the well-studied cases involving c- and v-Src-induced phosphorylation 

(Azarnia et al., 1988; Filson et al., 1990; Kanemitsu et al., 1997; Kurata and Lau, 1994; 

Loo et al., 1995). In this study, we identified Cx43 as a novel substrate of Tyrosine 

kinase 2 (Tyk2). 

Tyk2, a JAK family member, is a ubiquitously expressed non-receptor tyrosine 

kinase. Tyk2 associates with the intracellular domains from a wide range of cytokine 

and growth factor receptors via its N-terminal FERM and SH2-like (Firmbach-Kraft et 
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al., 1990; Strobl et al., 2011; Wallweber et al., 2014). This leads to recruitment and 

phosphorylation of STATs (Ghoreschi et al., 2009), which translocate to the nucleus 

where they induce transcription of genes involved in diverse biological processes (e.g. 

cellular proliferation and differentiation, inflammation, and defense against infection 

(Leonard, 2001; Stark and Darnell, 2012)). Patients with non-functional Tyk2 display a 

number of immunodeficiency conditions and increased susceptibility to infections 

caused by defects in IFNα/β, IL-6, IL-10, IL-12 and IL-23 signaling (Minegishi et al., 

2006). Tyk2 deficient mice display reduced responses to IFNα/β and IL-12 and a 

deficiency in STAT3 activation (Karaghiosoff et al., 2000). The Tyk2/STAT3 axis has 

also been implicated in the induction of neuronal death in Alzheimer disease (Wan et 

al., 2010), as a biomarker for Crohn’s disease (Sato et al., 2009), and in controlling 

allergic asthma (Ubel et al., 2014). Marrero et al. (Marrero et al., 1995) first showed 

that Ang II induces Tyk2 activation in rat aortic smooth muscle cells; a finding verified 

in other studies (Kodama et al., 1998; Pan et al., 1997; Pan et al., 1999; Yoon et al., 

2013). The renin-angiotensin system (RAS) is a key signaling pathway associated with 

the pathogenesis of cardiovascular disease (Lonn et al., 1994; Pagliaro and Penna, 

2005). Increased Ang II levels are linked with an increased risk of ventricular 

arrhythmia, and treatment with angiotensin-converting enzyme (ACE) inhibitors has 

demonstrated survival benefits in congestive heart failure and myocardial infarction 

(1991; Akar et al., 2004; Pfeffer et al., 1992). A transgenic mouse model of RAS 

activation by overexpression of ACE restricted to the heart (ACE8/8) has normal 

ventricular structure; however, it exhibits cardiac oxidative stress, a high incidence of 
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ventricular tachycardia and subsequent sudden cardiac death. With no significant 

change in Na+ current, these observations were associated with downregulation of Cx43 

gap junction intercellular communication (Kasi et al., 2007). Altered cardiac Cx43 

protein level and change in cellular localization were also observed in other models of 

RAS activation (hypertension, hypertrophy, mechanical stress; (Emdad et al., 2001; 

Hussain et al., 2010; Tan et al., 2013; Wang et al., 2014)). We provide evidence of a 

relationship between Tyk2 activation by Ang II and Tyk2 phosphorylation of Cx43. 

Tyk2 decreased gap junction stability at the plasma membrane, and through STAT3 

activation increased the intracellular protein level of Cx43. 

 

11.  Materials and Methods 

11.1   Cell Culture 

Normal rat kidney (NRK) and LA-25 cells (NRK cells containing temperature 

sensitive v-Src) were generous gifts from Dr. Paul Lampe (Fred Hutchinson Cancer 

Research Center). The MDA-MB-231 cell line was from Dr. Melissa Teoh-Fitzgerald 

(University of Nebraska Medical Center). All cells were grown in Dulbecco's modified 

Eagle's medium (DMEM) (Hyclone, Thermo Fisher Scientific Inc.) supplemented with 

10% fetal bovine serum (FBS) (Hyclone, Thermo Fisher Scientific Inc.) and antibiotics 

in an atmosphere of humidified 5% CO2. 

  

11.2   Antibody and Immunostaining 

The following antibodies were used in this study: Cx43 monoclonal antibodies 



101 
 

against amino acids 360-382 (Cx43CT1 and Cx43IF1, described in (Cooper and Lampe, 

2002; Lampe et al., 2006)); Cx43 polyclonal antibody (C6219, Sigma-aldrich); rabbit 

anti-Cx43 phosphorylated Y247, rabbit anti-phosphorylated Y265, and rabbit anti-

phosphorylated S279/282 (described in (Solan and Lampe, 2008)) (all generous gifts 

from Dr. Paul Lampe, Fred Hutchinson Cancer Research Center); rabbit anti-Cx43 

phosphorylated S368 (Millipore); non-specific phospho-tyrosine antibody (P-Tyr-100, 

Cell Signaling); anti-Tyk2 (Santa Cruz), anti-active Tyk2 (phosphorylated 1054/1055); 

anti-tubulin β (Sigma); and antibodies against total and active Src (phosphorylated 

Y416, Millipore), STAT antibodies sampler kit (9939, Cell Signalling).  

Cells were immunostained as described previously (Mehta et al., 1991). Briefly, 

cells grown on cover slips to ~60% confluence were fixed with 3.7 % para-

formaldehyde for 10 min. Cells were blocked for 30 min at room temperature (RT) by 

MPS buffer (1x Phosphate-buffered saline (PBS), 1% Goat Serum) containing 0.2% 

TX-100 for permeabilization. Then, cells were immunostained with appropriate 

primary antibodies at RT for 1 h, followed by several PBS-0.5% Tween washes. 

Secondary antibodies (Alexa 594-conjugated goat anti-rabbit antibody and/or Alexa 

488-conjugated goat anti-mouse antibody) were applied for 1 hr at RT. Images of 

immunostained cells were acquired with a Zeiss 510 Meta Confocal Laser Scanning 

Microscope using a 63×1.4 numerical aperture objective with appropriate filters. 

Colocalization was quantified using the Manders method in Image J (Bolte and 

Cordelieres, 2006).  

 

http://www.millipore.com/catalogue/item/05-677
http://www.millipore.com/catalogue/item/05-677
http://en.wikipedia.org/wiki/Phosphate_buffered_saline
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11.3   In vitro Kinase Assay 

Rat Cx43CT236-382 was expressed and purified as described previously (Duffy et al., 

2002). An in vitro kinase screen was performed by Eurofins Scientific using the purified 

protein. The catalytic domain of JAK1 (866-1154), JAK2 (808-1132), and Tyk2 (875-

1187) were used to phosphorylate the Cx43CT. A positive control was used for each 

kinase (JAK1, GEEPLYWSFPAKKK; JAK2, 

KTFCGTPEYLAPEVRREPRILSEEEQEMFRDFDYIADWC; Tyk2, 

GGMEDIYFEFMGGKKK). Controls and Cx43CT were incubated with the tyrosine 

kinase and ATP [γ-33P] for 40 min at 30°C and then transferred to P30 Filtermat for 

substrate capture. Assays were performed in duplicate and acid blanks were used as a 

negative control.  The level of phosphorylation for each sample was determined 

according to Merck Millipore’s radiometric assay.  

11.4   Mass Spectrometry 

Purified rat Cx43CT236-382 (12.5 nmol) was incubated with 1.5 µg Tyk2 (amino 

acids 833-1187, ThermoFisher Scientific) and 500 µM ATP at 30°C for 15 hrs. In the 

control group, the volume of Tyk2 was substituted by reaction buffer (25 mM HEPES 

[pH 7.5], 10 mM MgCl2, 0.5 mM EGTA, and 0.005% Brij-35). The reaction was 

stopped on ice, and 1 nmol of protein was ran on a SDS-PAGE gel and Western blotted 

using a phospho-tyrosine antibody. 10 nmol of protein was run on a SDS-PAGE gel and 

stained with Coomassie. The Cx43CT band was cut and sent to the Beth Israel 

Deaconess Medical Center Mass Spectrometry Facility for analysis (Breitkopf and 

Asara, 2012).  
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11.5   Glutathione S-transferase (GST) Pull-down Assay 

The GST pull-down assay was modified from (Leykauf et al., 2006). Briefly, 

purified GST-fusion Cx43CT and GST control proteins were bound to glutathione-

Sepharose beads in buffer containing 25 mM Tris-HCl [pH=7.4], 150 mM NaCl, 1 mM 

DTT, 0.5% TX-100 and Complete protease inhibitor (Roche). 4 mg of MDA-MB-231 

or LA-25 cell lysate protein (in cell lysis buffer containing 25 mM Tris-HCl (pH 7.4), 

150 mM NaCl, 0.5% TX-100, 0.5% sodium deoxycholate, 2 mM EDTA, PhosSTOP 

(Roche), and Complete protease inhibitor) were incubated with GST-fusion Cx43CT or 

the GST control for 6 hrs at 4°C on a rotating wheel. Beads were washed 5x with cell 

lysis buffer and bound proteins were eluted with SDS-PAGE sample buffer, and 

analyzed by Western blot. 

   

11.6   Co-immunoprecipitation (IP) 

NRK or LA-25 cells were lysed in complete lysis buffer (50 mM Tris-HCl [pH 7.4], 

150 mM NaCl, 0.5% Na-deoxycholate, 0.5 % TX 100, 5 mM NaF, and Complete 

protease inhibitor), maintained on ice for 30 min, precleared with protein G beads for 

30 min at 4°C, and then spun at 12,000 rpm for 15 min. Total protein was assessed using 

the bicinchoninic acid (BCA) protein assay kit (Pierce). 2 mg lysate was incubated with 

2 μg of Cx43 polyclonal or rabbit IgG (4 h at 4°C) and then incubated with 100 μl of 

protein G sepharose (GE Healthcare) (overnight at 4°C). The sepharose was washed 4x 

with cold lysis buffer and the co-IP product was analyzed by SDS-PAGE and Western 

blot.  



104 
 

When detecting tyrosine phosphorylation levels, 5 mM Na3VO4 was added in the 

blocking and primary antibody buffer in order to minimize the loss of phosphorylation. 

Western blot data were scanned and quantified using ImageJ software as described in 

(Schneider et al., 2012). 

 

11.7   Tyk2 siRNA Treatment 

Tyk2 siRNA (Invitrogen) was used to knockdown Tyk2 expression in LA-25 cells. 

Oligonucleotide from the non-target pool (Dharmacon) was used as negative control. 

Lipofectmine RNAi MAX (Invitrogen) was used to carry the oligonucleotide according 

to manufacturer’s protocol. Cells were treated with Tyk2 siRNA for 36 hrs and then 

incubated at 35°C for another 12 hrs. Protein levels were detected by Western blot. 

 

11.8   Cycloheximide Treatment and Cx43 Degradation 

Cells equally seeded on 60-mm dishes were grown for 24 hrs to 70-80% confluency 

before transfection. 24 hrs post-tranfection, cells were treated with 100 μg/ml 

cycloheximide (Cell Signaling) for 1, 1.5, 2, 2.5, 3, 4 hrs to inhibit protein synthesis. 

Cells were then scraped off and lysed for Cx43 immunoblotting. β-actin was also 

blotted for quantification. 

 

11.9   TX 100 Solubility 

The T100 solubility assay was modified from the method described in (Mitra et al., 

2006). NRK cells grown in 10-cm dishes were rinsed 3x with PBS and scraped into 1 
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ml lysis buffer (50 mM Tris-HCl [pH 7.4], 1 mM EGTA, 1 mM EDTA, 1 mM PMSF, 

100 mM NaCl, PhosSTOP, and Complete protease inhibitor). Then, cells were 

sonicated for 10 s on ice. Protein estimation was determined using the BCA method. 

450 μl cell lysate samples were added to 50 μl of 10% SDS, which was saved as total 

protein, or to 10% TX-100 (final concentration of 1%) and incubated at 4°C for 30 min. 

Lysates were then separated into cytosolic (supernatant, soluble) and membrane (pellet, 

insoluble) fractions by centrifugation at 100,000 g for 1 h at 4°C. The pellets were 

dissolved in 500 μl dissolving buffer (70 mM Tris-HCl [pH 6.8], 8 M urea, 2.5% SDS, 

0.1 M DTT, 5 mM NaF, 5 mM Na3VO4, and Complete protease inhibitor). Equal 

volume of total lysate, TX-100 soluble and insoluble portions, were loaded on a 10% 

SDS-PAGE and immunoblotted with the Cx43 polyclonal antibody. 

 

11.10   Surface Biotinylation Assay 

Surface biotinylation assay followed the method described in (Johnson et al., 2013). 

Briefly, cells were seeded in 60-mm dishes in replicate and grown to 70-80% 

confluence. 24 hrs after transfection, cells were washed once with PBS and then 5 ml 

of ice cold DMEM plus HEPES buffer (pH = 7.4, final concentration 30 mM) was 

added for 10 min at 4°C. Cells were washed twice with cold PBS-plus (PBS with 1 mM 

CaCl2 and 1 mM MgCl2). The biotinylation reaction was performed at 4°C using freshly 

prepared EZ-LinkSulfo-NHS-SS Biotin reagent (Pierce) at 0.5 mg/ml in PBS-plus for 

30 min. The reaction was terminated by adding PBS-plus containing 20 mM glycine. 

Cells were lysed in lysis buffer (25 mM Tris-HCl pH 7.5, 0.05% SDS, 20 mM Glycine, 
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and Complete protease inhibitor) with homogenization by passing through a 25G 

needle. 500 µg of total protein were incubated with 100 µl of streptavidin-agarose beads 

(Pierce) on a rotator overnight at 4°C. Beads were then washed 6x and the streptavidin-

bound biotinylated proteins were eluted and resolved by SDS–PAGE followed by 

Western blotting.  

 

11.11   Biotin Peptide Pull Down Assay 

Biotin-tagged phosphorylated (Y247) and non-phosphorylated Cx43CT234-255 

peptides (LifeTein) were bound to streptavidin-agarose resin (GenScript) in PBS. NRK 

cells were lysed in HEPES lysis buffer (50 mM HEPES, 150 mM NaCl, 0.25% TX-100, 

2 mM PMSF, 10 mM EDTA, 50 mM NaF, 5 mM Na3VO4, and PhosSTOP and Complete 

tablets, pH 7.4) and total protein concentration was assessed using the BCA protein 

assay. A total of 2.5 mg of protein lysate was incubated with each of the resin-bound 

peptide, overnight at 4°C. Beads were washed 3x with PBS before analyzing the pull-

down products by SDS-PAGE and Western blot. 

 

11.12   Semi-Quantitative Reverse Transcription (RT) PCR 

Semiquantitative RT-PCR was modified from the method described in (Marone et 

al., 2001). Briefly, NRK cells grown in 35-mm dishes were transfected with Tyk2V678F 

and pretreated with the inhibitor Nifuroxazide (50 µM, Millipore) or SH-4-54 (5 µM, 

Millipore). RNA extractions were carried out with the RNeasy mini kit (Quiagen), 

according to the manufacturer's protocol. RT was performed with ProtoScript cDNA 



107 
 

synthesis kit (New England Biolab). The following primers were used: Cx43 5’-

AGCCTCCAAGGAGTTCCA-3’ and 5’-AGAGCACTGACAGCCACA-3’, β-actin 

5’-CACCCGCGAGTACAACCTTC-3’ and 5’-CCCATACCCACCATCACACC-3’. 

Cx43 yielded an amplification product of 160 bp and β-actin of 207 bp. DreamTaq 

green PCR master mix (Thermo Fisher Scientific) was used for PCR amplification. To 

find out the exponential phase of amplification, different PCR cycles from 16 to 30 

were tested. Each set of reaction included a no-sample negative control.  

 

11.13   Statistical Analysis 

All data were analyzed by GraphPad Prism 5.0 and presented as the standard error 

of the mean (±S.E.M). Paired t-test was used to compare differences between the 

experimental group and control or the two parallel experimental groups. P<0.05 was 

considered to be statistically significant. 

12.  Results 

12.1   Tyk2 Directly Interacts and Phosphorylates the Cx43CT Domain 

Src (c-/v-Src) is the only known tyrosine kinase to both directly phosphorylate the 

Cx43CT domain (pY247 and pY265) and affect gap junction intercellular 

communication (Kieken et al., 2009; Sorgen et al., 2004). However, proteomic 

discovery-mode mass spectrometry (MS) data identified other tyrosine residues (Y267, 

Y286, Y301, and Y313) as potential phosphorylation targets (PhosphoSitePlus web 

site). Unfortunately, the kinases involved were not identified nor was the functional 

significance of phosphorylation at these sites. In this study, we focused on the JAK 
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family of tyrosine kinases because of the potential direct link between Cx43 and RAS 

in the pathogenesis of cardiovascular disease (Delmar and Makita, 2012; Lonn et al., 

1994; Pagliaro and Penna, 2005; Palatinus et al., 2012). An in vitro tyrosine 

phosphorylation screen performed by Eurofins Scientific (KinaseProfiler) found that 

Tyk2 phosphorylated purified Cx43CT (236-382; Figure 3.1A). JAK1 and JAK2, also 

JAK family members, had significantly less ability to phosphorylate the Cx43CT 

domain (JAK3 was not tested because it is not expressed in the heart). To confirm the 

interaction between Cx43 and Tyk2, purified GST-tagged Cx43CT236-382 was 

immobilized on glutathione-Sepharose beads and lysate from MDA-MB-231 cells that 

express Tyk2 (but not Cx43) was used in a pull-down assay (Figure 3.1B). Tyk2 can be 

pulled-down by GST-Cx43CT but not GST in MDA-MB-231 cells. v-Src was used as 

a positive control.  

 

12.2   Identifying the Cx43CT Tyrosine Residue(s) Phosphorylated by Tyk2 

Purified Cx43CT236-382 was incubated in vitro with active Tyk2 (Life Technologies) 

as described in (Cooper et al., 2000; Huang et al., 2012) and phosphorylation was 

confirmed using an anti-phospho-tyrosine antibody (Figure 3.2B). After trypsin 

digestion, Tandem MS/MS identified phosphorylation at Y247, Y265, Y267, and Y313 

(Figure 3.2A and Table 3.1). To confirm tyrosine phosphorylation can occur at residues 

other than Y247 and Y265, the in vitro kinase assay was performed using the 

Cx43CT236-382(Y247,265F) (2YF) construct and phosphorylation detected with an anti-

phospho-tyrosine antibody (Figure 3.2B). The data indicate that while a majority of   

http://www.unmc.edu/mspcf/
http://www.unmc.edu/mspcf/
http://www.unmc.edu/mspcf/
http://www.unmc.edu/mspcf/
http://www.unmc.edu/mspcf/
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Figure 3.1 Phosphorylation of the Cx43CT domain by JAK tyrosine kinases. (A) 

An in vitro kinase assay was performed using the catalytic domain of Jak1, Jak2, and 

Tyk2 to phosphorylate purified Cx43CT. The amount of Cx43CT phosphorylation was 

compared with a positive control peptide for each kinase (100% signal) (**P<0.01). 

(B) Purified GST (26 kDa) or GST-Cx43CT (42 kDa) bound on glutathione-agarose 

beads were incubated with or without MDA-MB-231 cell lysate (top) and the pull-

downed product was analyzed by Western blot using an anti-Tyk2 antibody. GST-

Cx43CT pull down of v-Src from LA-25 cell lysate was used as positive control 

(bottom). 

 

Figure 3.1 Phosphorylation of the Cx43CT domain by JAK tyrosine kinases 
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Figure 3.2 Identification of the Cx43CT 

tyrosine residues phosphorylated by Tyk2 

 

Figure 3.2 Identification of the Cx43CT tyrosine residues phosphorylated by Tyk2. 

(A) Sequence of the Cx43CT domain. Highlighted (bold and underlined) are the 

tyrosine residues identified from mass spectrometry to be phosphorylated from an in 

vitro kinase assay using the Tyk2 catalytic domain to phosphorylate the Cx43CT. (B) 

The same in vitro kinase assay in (A) was performed using wild type Cx43CT236-382 or 

a Y247,265F (2YF) mutant as substrate and phosphorylation was detected by Western 

blot using a general anti-phospho-tyrosine antibody. The control (Ctrl) group did not 

contain Tyk2. The phospho-tyrosine level was quantified using ImageJ software (n=3, 

**P<0.01)
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Table 3.1 Phospho-tyrosine containing peptides identified from mass spectrometry of the Cx43CT domain phosphorylated in vitro by Tyk2 

* Peptides with Mascot Delta Ion Score >7 were used to obtain the average Mascot Delta Ion Score according to (Savitski et al., 2011). 

Table 3.1 Phospho-tyrosine containing peptides identified from mass spectrometry of the Cx43CT domain phosphorylated in vitro by Tyk2 

 

Peptide sequence Start-end 

Average 

Mascot Delta 

Ion Score 

*Number of 

phospho-

peptides  

Actual 

peptide 

mass  

Calculated 

+1H peptide 

mass  

Phosphorylation 

site localization 

GRSDPyHATTGPLSPSK 242-258 15.35 4 1849.84 1850.84 Y247 

SDPyHATTGPLSPSK 244-258 18.5 6 1636.72 1637.72 Y247 

GRSDPyHATTGPLSPSKDc(Carbamidomethyl)GSPK 242-264 9.37 2 2667.04 2668.05 Y247 

QASEQNWANySAEQNR 304-319 13.7 2 1974.79 1975.79 Y313 

yAYFNGc(Carbamidomethyl)SSPTAPLSPm(Oxidation)SPPGYK 265-287 7.14 1 2588.07 2588.09 Y265 

yAyFNGc(Carbamidomethyl)SSPTAPLSPm(Oxidation)SPPGYK 265-287 13.8 1 2667.05 2668.05 Y265, Y267 
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Tyk2 phosphorylation occurs on Y247 and Y265 (of note, Y247 and Y265 phospho-

specific antibodies will be used in the next sections to further characterize these sites), 

other tyrosine sites (i.e., Y267 and Y313) can be phosphorylated by Tyk2 in vitro. 

 

12.3   Tyk2 Phosphorylates Cx43 Residues Y247 and Y265 Leading to Decreased 

Stability of the Gap Junction Plaque in Normal Rat Kidney Epithelial (NRK) cells. 

To determine if Tyk2 phosphorylation of Cx43 occurs in cells, we initially tested 

in NRK cells if Cx43 (endogenously expressed) and Tyk2 (not expressed; transiently 

transfected with a constitutively active construct, Tyk2V678F) colocalize (Figure 3.3). 

The images suggest little-to-no colocalization in NRK cells that are over-expressing 

active Tyk2. However, in those same NRK cells, Cx43 is significantly decreased at the 

plasma membrane. The data suggests over-expressing active Tyk2 is leading to 

internalization of Cx43 from the plasma membrane.    

Next, tyrosine phosphorylation levels were evaluated in the NRK cells using the 

only available Cx43 tyrosine phospho-specific antibodies pY247 and pY265 (Figure 

3.4). Constitutively active Tyk2 increased both Y247 and Y265 phosphorylation levels 

as compared to control (non-transfected cells). Importantly, the presence of active Tyk2 

did not cause activation of c-Src. Since MAPK and PKC were reported to phosphorylate 

Cx43 to down regulate Cx43 gap junction intercellular communication in response to 

active Src in different cell lines (Mitra et al., 2012; Solan and Lampe, 2008), we 

investigated if Tyk2 also indirectly affects serine phosphorylation. Cx43 serine 

phosphorylation levels were evaluated using phospho-serine specific antibodies to 
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pS279/282 (MAPK target) and pS368 (PKC target). pS279/282 and pS368 levels were 

up-regulated in the presence of active Tyk2. Finally, while the amount of Cx43 at the 

plasma membrane decreased (Figure 3.3A), active Tyk2 directly or indirectly caused 

an overall increase in the total amount of Cx43. Numerous studies have shown that 

differentially phosphorylated Cx43 results in multiple electrophoretic isoforms: a fast 

migrating isoform (P0), and multiple slower migrating isoforms (P1 and P2) (Crow et 

al., 1990; Matesic et al., 1994; Solan and Lampe, 2005). In particular, the P2 isoform 

has been found at the stage of gap junctional plaques. Consistently, Western blots (here 

and next sections) show an increase in the lower migrating P0 and P1 isoforms of Cx43 

in the presence of active Tyk2. 

Cx43 gap junction channels are localized in detergent-insoluble junctional plaques 

(Musil and Goodenough, 1991; Sirnes et al., 2008). To confirm the increased amount 

of Cx43 is not leading to an increase in the amount of Cx43 at junctional plaques, we 

assessed the level of TX-100 detergent solubility. The detergent extraction Western blot 

data show that active Tyk2 in NRK cells decreased the detergent-insoluble fraction of 

Cx43 (Figure 3.5A). Quantification of the data revealed that the control insoluble to 

insoluble + soluble ratio (I/(S+I)) was 67.1±6.0%. However, the number of assembled 

gap junctions significantly decreased to 19.5±0.9% in the presence of active Tyk2. The 

decreased amount of Cx43 in junctional plaques was corroborated by a biotinylation 

assay which detected a significant decrease in the amount of Cx43 at the plasma 

membrane (Figure 3.5B).  
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Figure 3.3 Effect of Tyk2 on the cellular localization of Cx43. (A) Cellular 

localization of endogenous Cx43 and constitutively active Tyk2 (Tyk2V678F) in NRK 

cells detected by immunofluorescence (green, Cx43; blue, DAPI-stained DNA; red, 

active Tyk2). Scale bar is 20 μm. (B) Quantification of Cx43 expression level at the 

plasma membrane. Cx43 pixel intensity of 204 cell pairs containing p-Tyk2 was 

normalized to the Cx43 pixel intensity of 204 cell pairs without p-Tyk2 (Ctrl) by ImageJ 

software. Cell pairs with p-Tyk2 or without p-Tyk2 were from the same images. The 

data are representative of three independent experiments (***P<0.001).   

Figure 3.3 Effect of Tyk2 on the cellular localization of Cx43. 
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Figure 3.4 Phosphorylation of Cx43 by Tyk2 in NRK cells. Western blot of active 

Tyk2 (p-Tyk2), total Tyk2, active c-Src (p-Src), total c-Src, Cx43 pY247, pY265, 

pS279/282, pS368 and total Cx43 from NRK cells without (Ctrl) or with transfection 

of Tyk2V678F. The Cx43 mobility shifts (P0, P1 and P2) are labeled. Relative protein 

levels were quantified by analyzing scanned blots using ImageJ software, with 

normalization of protein expression to the control lane (value set arbitrarily as 100%). 

The data are representative of three independent experiments (*P<0.05, ***P<0.001). 

Figure 3.4 Phosphorylation of Cx43 by Tyk2 in NRK cells 
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Figure 3.5 Effect of Tyk2 on the plasma membrane localization of Cx43 in NRK 

cells. (A) TX-100 solubility assay: Equal amounts of total protein fraction (T), TX-100 

soluble fraction (S) and the insoluble fraction (I) were run on SDS-PAGE and blotted 

with anti-Cx43 antibody. Protein levels were quantified to determine the insoluble to 

insoluble + soluble ratio [I/(I+S)] (*P<0.05). (B) Biotinylation assay: NRK cells with 

or without Tyk2V678F transfection were cell-surface biotinylated. Biotinylated proteins 

were pulled down by immobilization on streptavidin agarose beads, and immunoblotted 

for Cx43. Protein levels of biotinylated Cx43 were quantified (*P<0.05). Input shows 

active Tyk2 and Cx43 protein in the cell lysate. 

Figure 3.5 Effect of Tyk2 on the plasma membrane localization of Cx43 in NRK cells 
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12.4   Interplay between Src and Tyk2 in the Regulation of Cx43 

Murakami et al. (1998) observed that v-Src transfected cells indirectly caused 

constitutive activation of Tyk2 and STAT3. Therefore, a modified NRK cell line 

containing a temperature sensitive v-Src (called LA-25), commonly used in the gap 

junction field to characterize Cx43 regulation by v-Src (Solan and Lampe, 2008; Zhou 

et al., 1999), was used to study the effect of Tyk2 on Cx43 tyrosine phosphorylation 

levels upon Src activation. v-Src is active in this cell line at the permissive temperature 

(35°C) and not at the non-permissive temperature (40°C). Of note, temperature alone 

does not affect gap junction communication in NRK or LA-25 cells (Atkinson et al., 

1981) and Tyk2 is endogenously expressed in LA-25 cells. To begin with, Western blot 

data confirmed that active v-Src at 35°C resulted in activation of endogenous Tyk2 

(Figure 3.6A). Immunostaining data then indicated that after 4 hrs of v-Src activation, 

endogenous Tyk2 colocalizes with Cx43 at the plasma membrane (Figure3.6B). After 

12 hrs, there was a decrease in the level of Cx43 and Tyk2 colocalization as well as the 

amount of Cx43 at the plasma membrane. These results are similar to the 

overexpression of active Tyk2 in the NRK cells (Figure 3.3). Next, Tyk2 siRNA was 

transfected into the LA-25 cells (35°C) to differentiate the effect of v-Src and Tyk2 on 

direct and indirect phosphorylation of Cx43 (Figure 3.7). Tyk2 siRNA significantly 

reduced the level of active Tyk2 (>75%). As important, the Tyk2 siRNA does not affect 

the level of active v-Src. Knock-down of Tyk2 in the presence of active v-Src 

significantly decreases the level of Y247 and Y265 phosphorylation as compared to 

control (scramble siRNA). Indirect serine phosphorylation was also affected by the 
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knock-down of Tyk2. While pS279/282 phosphorylation was reduced by ~50%, 

phosphorylation of pS368 was reduced by almost ~75% in the absence of Tyk2. Finally, 

the knock down of Tyk2 led to a decrease in the total level of Cx43. Altogether, the data 

indicate that similarities exist in the residues affected by Src or Tyk2, but differences 

exist in the level of phosphorylation at each site and the overall amount of protein. 

 

12.5   Tyk2 Increases Total Cx43 Protein Level through the STAT3 Pathway 

In both the NRK and LA-25 cells, active Tyk2 caused an increase in the total protein 

level of Cx43. To determine the mechanism for this effect, cycloheximide was used to 

compare the turnover rate of Cx43 with or without Tyk2 (Figure 3.8). Western blot 

analysis of Cx43 from NRK cells revealed that active Tyk2 increased the Cx43 turnover. 

The data suggest the increased protein level of Cx43 is not a result of direct tyrosine or 

indirect serine phosphorylation. Next, RT-PCR from cell lysate of NRK cells 

transfected with active Tyk2 was used to determine if active Tyk2 indirectly affects the 

level of Cx43 mRNA. Using different numbers of RT-PCR cycles, the data revealed 

that active Tyk2 caused an increase in the level of Cx43 mRNA (Figure 3.9A). Actin 

was used as a loading control. Because Tyk2 activates the STAT signaling pathway, we 

tested if this is the mechanism leading to the increased mRNA and protein levels. 

Experiments performed using NRK cells incubated with the STAT1/3/5 inhibitor 

Nifuroxazide or the STAT3/5 inhibitor SH-4-54 eliminated the effect of active Tyk2 

increasing Cx43 mRNA (Figure 3.9B) and protein levels (Figure 3.10A). Based upon 

NRK cells expressing a very small amount of STAT1 and no STAT5 (Figure 3.10B),   
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Figure 3.6 Colocalization of endogenous Tyk2 and Cx43 in LA-25 cells. (A) Western 

blot of active v-Src (p-Src), total v-Src, active Tyk2 (p-Tyk2), total Tyk2, and Cx43 in 

LA-25 cells at 40°C and 35°C. (B) Cellular localization of endogenous Cx43 and active 

Tyk2 in LA-25 cells at 40°C or 35°C was visualized by using immunofluorescence 

(green, Cx43; blue, DAPI-stained DNA; red, Tyk2). Scale bars is 20 µm. Colocalization 

of Cx43 and p-Tyk2 was analyzed based on 12 images from three independent 

experiments. Manders method was used to measure green signal (Cx43) coincident with 

red signal (active Tyk2) over the total intensity of green signal (**P<0.01). 

Figure 3.6 Colocalization of endogenous Tyk2 and Cx43 in LA-25 cells 
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Figure 3.7 Effect of Tyk2 knockdown on the phosphorylation level of Cx43 in LA-

25 cells. Western blot of active Tyk2 (p-Tyk2), total Tyk2, active v-Src (p-Src), total v-

Src, Cx43 pY247, pY265, pS279/282, pS368 and total Cx43 from LA-25 cells at 40°C 

or 35°C treated with scrambled or Tyk2 siRNA for 12 h. Relative protein levels were 

quantified using ImageJ software, and normalized to the expression level in the 

scramble-RNA-treated sample at 35 ˚C (*P<0.05, **P<0.01). 

Figure 3.7 Effect of Tyk2 knockdown on the phosphorylation level of Cx43 in LA-25 cells 
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Figure 3.8 Effect of Tyk2 on the turnover rate of Cx43 in NRK cells 

 

Figure 3.8 Effect of Tyk2 on the turnover rate of Cx43 in NRK cells. Control (A) or transfected (B) NRK cells with the constitutively active 

Tyk2 (Tyk2V678F) construct were treated with 100 μg/ml cycloheximide for different durations prior to lysis. Total Cx43 protein was immunoblotted. 

(C) Protein level of three independent experiments quantified using ImageJ software and normalized to protein level at 0 hr. 
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Figure 3.9 Effect of STAT3 activation by Tyk2 

on Cx43 mRNA level. 

 

Figure 3.9 Effect of STAT3 activation by Tyk2 on Cx43 mRNA level. (A) RT-PCR 

shows Cx43 mRNA level with or without transfection of active Tyk2 (Tyk2V678F). An 

appropriate number of cycles was determined by testing different number of cycles (16, 

21, 24, 27, 30) for Cx43 amplification (top panel). Cx43 intensity increased up to 24 

cycles where a plateau was reached, thus 24 cycles was used to run semi-quantification 

RT-PCR. Cx43 and β-actin were amplified for 24 cycles and ran on 2% agarose gel 

(right panel). (B) NRK cells with or without active Tyk2 (Tyk2V678F) transfection for 8 

hrs were treated with the STAT3/5 inhibitor SH-4-54 (5 µM) or STAT1/3/5 inhibitor 

Nifuroxazide (50 µM) for another 16 hrs. Cx43 and β-actin were amplified for 24 cycles 

and ran on 2% agarose gel. Cx43 and β-actin mRNA levels were quantified by 

densitometry from three independent experiments (*P<0.05, **P<0.01).  
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Figure 3.10 Effect of STAT3 activation by Tyk2 on Cx43 protein level. (A) Western 

blot of active Tyk2 (p-Tyk2), active STAT3 (p-STAT3), total STAT3, and Cx43 in NRK 

cells transfected with or without active Tyk2 (Tyk2V678F) and treated with and without 

SH-4-54 or Nifuroxazide. Cx43 protein level was quantified using ImageJ software 

(*P<0.05, **P<0.01). (B) Western blot of STAT1, STAT3, and STAT5 from NRK cell 

lysate. Cell extracts from HeLa cells treated with IFN-α (100ng/ml) for 5 min (9173, 

Cell Signalling) were used as positive control for blotting STAT1 and STAT5. Jurkat 

cell lysate was used as positive control for blotting STAT3. 

Figure 3.10 Effect of STAT3 activation by Tyk2 on Cx43 protein level 
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the data strongly indicates Tyk2 activation of STAT3 is responsible for the increased 

Cx43 mRNA and subsequent protein levels. 

12.6   Tyk2 Mediates Ang II Regulation of Cx43 

Dysregulation of the RAS affects many aspects of the cardiovascular system 

(Delmar and Makita, 2012; Lonn et al., 1994; Pagliaro and Penna, 2005; Palatinus et 

al., 2012). RAS activation also decreases Cx43 gap junction intercellular 

communication and changes cellular localization (Emdad et al., 2001; Hussain et al., 

2010). Based upon the involvement of Tyk2 in RAS signaling via the Angiotensin II 

receptor 1 (AT1R), we tested if the changes observed for Cx43 are caused by Tyk2. 

Western blot analysis was used to investigate wild type (WT) Tyk2 transfected NRK 

cells treated with Ang II (Figure 3.11). The transfection of WT Tyk2 alone caused a 

basal level of activation, however the presence of Ang II significantly increased the 

amount of active Tyk2. The presence of Tyk2 or Ang II alone caused a significant 

increase in the level of Y247, Y265, S279/282 and S368 phosphorylation. While the 

phosphorylation level of Y247, S279/S282, and S368 was the greatest in the presence 

of both Tyk2 and Ang II, only S279/282 phosphorylation was statistically significant 

compared to Tyk2 alone. Interestingly, while the presence of Tyk2 or Ang II alone 

caused an increase in the level of total Cx43 that was further increased in the company 

of both, the presence of Tyk2 but not Ang II caused an increase in the lower migrating 

P0 and P1 isoforms of Cx43. 
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Figure 3.11 Effect of angiotensin II (Ang II) activation of Tyk2 on the 

phosphorylation level of Cx43. Western blot of active Tyk2 (p-Tyk2), total Tyk2, Cx43 

pY265, pY247, pS279/282, pS368, total Cx43 and the Angiotensin II type 1 receptor 

(AT1R) from NRK cells with or without transfected wild-type (WT) Tyk2 and treated 

with or without Ang II (10-7 M). Protein phosphorylation level were quantified using 

ImageJ software (*P<0.05). 

Figure 3.11 Effect of angiotensin II (Ang II) activation of Tyk2 on the phosphorylation level of Cx43 
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Figure 3.12 Effect of Cx43 Y247 phosphorylation on the interaction with β-tubulin. 

Western blot of β-tubulin from a biotin pull-down assay using a biotinylated-phospho-

peptide Cx43CT234-255 (pY247) or non-phospho-peptide (Y247nop) bound to 

streptavidin beads and incubated with NRK cell lysate. Biotin bound to streptavidin 

agarose beads was used as negative control. Protein level were quantified using ImageJ 

and normalized by input (1:20 loaded compared to pull-down groups) from three 

independent experiments.  

Figure 3.12 Effect of Cx43 Y247 phosphorylation on the interaction with β-tubulin. 
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12.7   Phosphorylation of Cx43 residue Y247 Prevents the Binding of Tubulin 

Previous studies have identified that Cx43 phosphorylation can inhibit the 

interaction with the ZO-1 PDZ-2 domain (pS373; (Chen et al., 2008)) or enhance the 

interaction with the Nedd4 WW2 domain (pS279/282; (Spagnol et al., 2016)). 

Additionally, a Cx43 phospho-peptide (pY247) was not able to interact with purified 

tubulin in vitro (Saidi Brikci-Nigassa et al., 2012). Since pY247 level was significantly 

increased by Tyk2 in cells (Figures 3.4 and 3.11), a biotin-tagged Cx43 pY247 

phosphorylated peptide or non-phosphorylated (K234-S255) version was used in a pull 

down assay to assess the interaction with β-tubulin in NRK cell lysate (Figure 3.12). 

The data indicate that Tyk2 phosphorylation of Y247 would inhibit the interaction with 

β-tubulin.  

 

13.  Discussion 

Up until now, Src has been the only non-receptor tyrosine kinase to directly 

phosphorylate Cx43 leading to an inhibition of gap junctional intercellular 

communication and subsequent gap junction disassembly (Lin et al., 2001; Swenson et 

al., 1990). In this study, we identified another tyrosine kinase, Tyk2, which can directly 

phosphorylate Cx43 on residues Y247 and Y265, and lead to indirect phosphorylation 

on residues S368 and S279/282. While this phosphorylation pattern is similar to what 

has been observed after Src activation (Solan and Lampe, 2008), importantly, the 

response caused by Tyk2 (e.g. overexpression of the constitutively active version) 

occurred when c-Src was inactive in NRK cells. This indicates that different signaling 
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pathways can lead to the same cellular response to regulate Cx43 gap junctions. 

Unexpectedly, when v-Src was activated in the LA-25 cells at the permissive 

temperature, Tyk2 was activated as well. This observation is not unique to the LA-25 

cells as constitutive activation of Tyk-2 was observed in a human gallbladder 

adenocarcinoma cell line transfected with v-Src (Murakami et al., 1998). A significant 

decrease in the phosphorylation of Cx43 residues Y247, Y265, S279/282, and 

especially S368 (75% decrease) was observed in the LA-25 cells at the permissive 

temperature when the expression of Tyk2 was knocked down. The data suggest that 

although activation of Tyk2 and v-Src lead to phosphorylation of the same Cx43CT 

residues they are not identical in level at each site. Additionally, the data would suggest 

that activation of both Tyk2 and v-Src would work together to amplify the 

phosphorylation response on Cx43. Differences in the level of phosphorylation between 

Tyk2 and Src can be explained from the knowledge that the Tyk2 SH2 domain does not 

need a phosphate to interact with its substrate, combined with the absence of the SH3 

domain (Smyth et al., 2010).  

A consistent observation from the immunofluorescence experiments was that 

prolonged activation of Tyk2 led to a near complete removal of Cx43 from the plasma 

membrane. Brikci-Nigassa et al. (Saidi Brikci-Nigassa et al., 2012) showed that a 

Cx43CT phosphopeptide (pY247) does not interact with purified tubulin. We used a 

biotinylated Cx43CT control (K234-S255) and phosphopeptide (pY247) in a pull down 

assay using NRK cell lysate to show that phosphorylation inhibits the Cx43CT/β-

tubulin interaction. Increased levels of pY247 by Tyk2 (or Src) would block the Cx43 
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interaction with tubulin (Saidi Brikci-Nigassa et al., 2012). At the gap junction plaque, 

this may be a mechanism in the disassembly process; at the trans-Golgi network, this 

may re-route trafficking to the plasma membrane (e.g., lateral membrane vs. 

intercalated disc) or inhibit trafficking to the plasma membrane, leading to increased 

intracellular proteasomal and/or lysosomal degradation (Alberts et al., 2002). Other 

mechanisms that would contribute to the lack of Cx43 at the plasma membrane include 

phosphorylation of residues S279/282 (MAPK) and S368 (PKC). Phosphorylation of 

S279/282 increases the binding affinity by two-fold for the WW2 domain from the 

ubiquitin ligase Nedd4 leading to Cx43 gap junction degradation (Girao et al., 2009; 

Leykauf et al., 2006; Spagnol et al., 2016). Activation of PKC can halt the assembly of 

new gap junctions and phosphorylation on S368 has been implicated in affecting gating 

and/or disassembly (Lampe, 1994; Lampe et al., 2000; Saez et al., 1997). Of note, 

although not investigated in this study, Src activation also leads to phosphorylation of 

Cx43 on S373 by Akt (Park et al., 2007). The importance of phosphorylation on this 

site is that the interaction with ZO-1 is inhibited, transitioning Cx43 from the non-

junctional plasma membrane into the gap junction plaque, and then through the 

degradation pathway(s).  

One difference observed in our (and others) studies performed in vitro as compared 

to in vivo is the effect of Ang II on Cx43 protein level. We identified that activation of 

Tyk2 by Ang II in vitro causes an increase in Cx43 protein level via the STAT3 pathway. 

Other in vitro examples of an increase in Cx43 protein level include exposing freshly 

isolated aortas of wild-type mice to Ang II for 4 hrs and the aorta smooth muscle cell 
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line A7r5 to Ang II from 2 hrs to 48 hrs (maximum expression was observed at 4 hrs 

and was maintained to the last time point of 48 hrs) (Alonso et al., 2010; Stein et al., 

2009). Conversely, chronic exposure of Ang II in animal models shows a decrease in 

the protein level of Cx43. This was seen in the atria and ventricles of the transgenic 

mouse model of cardiac-restricted overexpression of ACE (ACE8/8) described above 

(Kasi et al., 2007) and in the double transgenic rat which harbors the human renin and 

angiotensinogen genes (dTGR) (Fischer et al., 2007). While the length of Ang II 

exposure (acute vs. chronic) and experimental conditions (in vitro and in vivo) are 

important factors when interpreting the protein level of Cx43, the combined data can 

be explained from the study of Kostin et al. (Kostin et al., 2004). Cx43 expression was 

increased in the compensated hypertrophic stage from the left ventricles of pressure-

overloaded human hearts with valvular aortic stenosis, but decreased and 

heterogeneously distributed throughout the ventricles in the decompensated stage. 

We identified that the effect Tyk2 elicited on the Cx43 protein level in NRK cells 

was mediated through activation of STAT3. However, this increase did not correlate 

with increased gap junction intercellular communication as Cx43 was not localized to 

the plasma membrane. Evidence that STAT3 directly increases the transcriptional 

activity of Cx43 was provided by Ozog et al. (Ozog et al., 2004). Three putative ciliary 

neurotrophic factor-response elements (binding sites for STAT3 dimers that contain 

base sequences TTCCN3-5AA) were identified in the promoter region of the mouse 

Cx43 gene (located at regions -1510, -1179, and -893) as essential for enhanced Cx43 

expression. Interestingly, STAT3 activation also leads to down-regulation of E-cadherin 
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(Xiong et al., 2012). One mechanism for the decreased gap junction assembly may be 

explained by the observation that expression of E-cadherin is necessary to enable the 

assembly of Cx43 into gap junctions (Govindarajan et al., 2010).  
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In the following chapter, we will discuss additional studies that are still on going 

in the lab at various stages as extension from my main projects. The first section 

contains the identification of a kinase and a phosphatase that interact with Cx32. 

Tyrosine phosphorylation has been found to modify Cx32 by different groups (Diez et 

al., 1998; Locke et al., 2006; Stauch et al., 2012), Thus, understanding the regulatory 

mechanism of tyrosine phosphorylation of Cx32 is crucial. Using in vitro kinase and 

immunoprecipitation assays, we identified direct phosphorylation on Cx32 by EphB1. 

We also showed evidence that TC-PTP directly dephosphorylates Cx32.  

In the second section, we will discuss a novel phosphorylation site on Cx43CT, 

Y313. Although phosphorylated Y313 was detected in multiple phosphoproteomic data, 

for the first time, we identified that Y313 is phosphorylated by Src, Tyk2 and Pyk2 in 

vitro.  

When we identified that Tyk2 kinase phosphorylates Cx43 by the in vitro kinase 

assay, we found that Pyk2 and Itk can also phosphorylate the Cx43CT. Cx43 gap 

junction remodeling has been found in heart failure where Pyk2 is activated (Ai et al., 

2011; Glukhov et al., 2012); additionally, increase of Cx43 phosphorylation occurs at 

the immunological synapse which is coincident with the activation of Itk (Andreotti et 

al., 2010; Mendoza-Naranjo et al., 2011). These pieces of evidence implicate the 

potential interplay between Cx43 and Pyk2 or Itk. In the third section, I will show data 

regarding the phosphorylation of Cx43CT by Pyk2 and Itk. Future research will be 

conducted to characterize the biological function of phosphorylated Cx43 in particular 

situations.  
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14. EhpB1 and TC-PTP Regulate Tyrosine Phosphorylation of Cx32 

14.1    Introduction 

Cx32 is the major gap junction protein in liver (Gingalewski et al., 1996). Cx32 is 

also found in other tissues such as nervous tissue (myelinating cells), lung, placenta, 

and kidney (Grazul-Bilska et al., 2011; King and Lampe, 2004; Wilgenbus et al., 1992). 

Cx32 deficient mice have an increased chance of getting spontaneous liver tumors and 

are more vulnerable to chemical-induced liver tumorigenesis (King and Lampe, 2004; 

Temme et al., 1997). These mice exhibit other pathological phenotypes such as decrease 

of nerve-dependent bile secretion, enhanced pancreatic amylase secretion, and 

peripheral nerve demyelination (Chanson et al., 1998; Scherer et al., 1998; Temme et 

al., 2001).  

Cx32 is phosphorylated on its tyrosine residues in cytoplasm domains (Diez et al., 

1998; Locke et al., 2006; Stauch et al., 2012). So far, the only identified tyrosine kinase 

that directly phosphorylates Cx32 is EGFR (Diez et al., 1998). Cx32 has three tyrosine 

residues on its intracellular domains: one is on the NT domain (Y7) and two are on the 

CT domain (Y211 and Y243). Since Y211 is at the juxtamembrane region, we speculate 

that only Y7 and Y243 are accessible to tyrosine kinases. In Cx32 transfected HeLa 

cells, phosphorylated Y7 has been observed by MS (Locke et al., 2006). However, to 

date, no direct evidence of Y243 phosphorylation has been reported.  

Using an in vitro kinase screening assay, we identified EphB1 as a novel tyrosine 

kinase that phosphorylates Cx32. EphB1 is a erythropoietin-producing hepatocellular 
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(Eph) receptor family member which has a wide expression in human organs including 

liver, colon, brain, kidney, and in the cardiovascular system (Adams et al., 1999; Davy 

et al., 2006; Ivanov et al., 2005; Kosinski et al., 2007; Zhou et al., 2014). Eph family is 

the largest known subfamily of receptor tyrosine kinases (Lisabeth et al., 2013). This 

family is divided into two groups, EphA and EphB, both of which need to interact with 

their ligands, the Eph family receptor interacting proteins (Ephrins), for activation. 

Ephrins are also divided into EphrinA and EphrinB groups due to structural and 

functional differences. Membrane-bound or Fc-clustered Ephrins are capable of 

activating Eph receptors. Eph-Ephrin complexes induce bidirectional signals that 

influence cells that express both Eph receptor and Ephrin (Lisabeth et al., 2013). Eph-

ephrins signaling is important for proper cell sorting during development, cell-cell 

adhesion, migration, repair after nervous system injury, and maintenance of 

intercellular junctions (Pasquale, 2008; Poliakov et al., 2004). A recently study showed 

that the EphB4 receptor co-immunoprecipitated with Cx43 and its activation in primary 

cultures of rodent cardiomyocytes inhibited gap junctional intercellular communication 

(Ishii et al., 2011). Another study indicated that junctional Cx43 was decreased at 

ectopic Eph/ephrin boundaries in mice (Davy et al., 2006). These studies suggest a 

possibility of EphB interacting with gap junction proteins. However, whether Cx32 also 

interacts with an EphB member is not known.  

In this study, we used multiple approaches and identified that EphB1 

phosphorylates the Cx32CT but not the NT in HeLa cells expressing Cx32 and EphB1. 

We also tested TC-PTP, a tyrosine phosphatase that dephosphorylates Cx43, and 
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discovered that TC-PTP directly dephosphorylates the Cx32CT in vitro and in HeLa 

cells.   

 

14.2   Results 

14.2.1   EphB1 Directly Interacts and Phosphorylates the Cx32CT Domain 

Softwares GPS 2.0, NetPhos 2.0 Server, and KinasePhos 2.0 were used to predict 

novel kinases that phosphorylate Cx32. Five tyrosine kinases were selected for an in 

vitro tyrosine phosphorylation screening assay performed by Eurofins Scientific 

(KinaseProfiler) using the Cx32NT (1-21) or the Cx32CT (217-283) as substrates 

(Figure 4.1A). Only the Cx32CT phosphorylated by EphB1 gave over 50% of control 

signal. None of kinases efficiently phosphorylated the Cx32NT. Then, we repeated the 

kinase assay using EphB1, Ron, and EGFR in our laboratory. Consistant with data from 

Eurofins Scientific, EphB1 and Ron phosphorylated the Cx32CT but not EGFR (Figure 

4.1B). Of note, EGFR was reported to phosphorylate immunoprecipitated Cx32 in vitro 

(Diez et al., 1998). To confirm the Cx32 interaction with EphB1 and Ron kinases, the 

purified GST, GST-tagged Cx32NT or CT were immobilized on glutathione-Sepharose 

beads and lysates from HeLa cells that express EphB1 and Ron (but not Cx32) were 

used in a pull-down assay (Figure 4.2A). EphB1 was pulled down by GST-Cx32CT but 

not GST nor GST-Cx32NT in cells, whereas Ron could not be pulled down by any of 

the three GST-tagged purified proteins. The crosslinker DTSSP (3,3 ́-

dithiobis[sulfosuccinimidylpropionate]) was used to capture weak and/or transient 

interactions (Liu et al., 2011). Co-immunoprecipitate also showed EphB1 and Cx32 
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were in the same complex in cells (Figure 4.2B). Ron could phosphorylate the Cx32CT 

domain but was not pulled down by Cx32CT or NT, indicating the interaction between 

Cx32 and Ron may be too weak to be detected in cells. Thus, Ron was excluded from 

the following studies.  

 

14.2.2   TC-PTP Interacts with and Dephosphorylates Cx32CT 

Our previous study showed that TC-PTP directly interacts and dephosphorylates 

Cx43CT (Li et al., 2014). Whether TC-PTP can dephosphorylate other connexin 

isoforms is unknown. To identify if a direct interaction exists between TC-PTP and the 

Cx32CT domain, NMR titration experiments were performed with purified TC-PTP 

catalytic domain (TC-PTP1-314) and Cx32CT. Different concentrations of unlabeled TC-

PTP1-314 were titrated into 15N-labeled Cx32CT (residues 217-283) and 15N-HSQC 

spectra were acquired (Figure 4.3A). Titration of TC-PTP1-314 caused a subset of 

Cx32CT residues to broaden beyond detection. These are highlighted on the Cx32CT 

sequence (Figure 4.3C). Strongly affected Cx32CT residues S240-G272 include Y243, 

which is the only accessible tyrosine residue in CT domain. The decrease in signal 

intensity caused by increasing TC-PTP1-314 concentrations was fit according to the 

nonlinear least square method. The binding affinity (KD) was determined to be 19.9 ± 

4.5μM (Figure 4.3B). A GST pull down experiment was performed to validate the NMR 

results. Purified GST alone, GST-Cx32CT, or GST-Cx32NT bound to glutathione 

agarose were incubated with purified TC-PTP1-314. Immunoblotting using an anti-TC-

PTP NT antibody identified that GST-Cx32CT, but not NT, directly interacted with the  
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Figure 4.1 EphB1 and Ron phosphorylate the Cx32CT domain in vitro. (A) 

Cx32NT and Cx32CT were used as substrates to be phosphorylated by EGFR, Blk, 

EphB1, Met, and Ron kinases. The amount of Cx32CT phosphorylation was compared 

with a positive control peptide for each kinase (% of control signal). Dash line 

highlights the 50% of the control signal. (B) in vitro kinase assay was performed to 

repeat the kinase screening assay done by Eurofin Scientific (EphB1, Ron, and EGFR). 

A general anti-phospho-tyrosine antibody was used to detect the phosphorylation level 

on Cx32CT by Western blot. Control group used buffer to substitute the kinases in the 

reactions.  

Figure 4.1 EphB1 and Ron phosphorylate the Cx32CT domain in vitro. 
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Figure 4.2 Cx32 interacts with EphB1. (A) Purified GST alone, GST-Cx32CT (CT), 

or GST-Cx32NT (NT) bound on glutathione-agarose beads were incubated with or 

without HeLa cell lysate and the pull-downed product was analyzed by Western blot 

using an anti-EphB1 or anti-Ron antibodies. The chemical crosslinker DTSSP was used 

to capture the weak and/or transient interaction. (B) Co-IP experiment was performed 

in HeLa cells stably expressing Cx32. Lysates were immunoprecipitated with anti-Cx32 

or IgG and then blotted for Cx32 and EphB1.  

Figure 4.2 Cx32 interacts with EphB1 
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TC-PTP catalytic domain (Figure. 4.4A, B). GST-Cx32CT also pulled down wild-type 

TC-PTP from HeLa cell lysate (Figure. 4.4C).    

To identify if TC-PTP dephosphorylates the Cx32 on residue Y243, an in vitro 

phosphatase assay was conducted using a peptide (H237-N249) containing pY243 

incubated with TC-PTP1-314. Following the protocol for the Malachite green assay 

(Millipore), we observed an increase in the amount of inorganic phosphate production 

indicating TC-PTP dephosphorylated Cx43 on pY243 (Figure. 4.5). The rate of 

dephosphorylation shows TC-PTP is efficient in dephosphorylating pY243 (table 4.1).  

 

14.3   EphB1 Phosphorylates and TC-PTP De-phosphorylates Cx32 in HeLa Cells 

We show that EphB1 phosphorylates Cx32 and TC-PTP dephosphorylates Cx32 in 

vitro. To determine if EphB1 and TC-PTP affect pY243 level in cells, HeLa cells stably 

expressing Cx32 wild-type were transfected with EphB1 or the TC-PTP catalytic 

domain, and tyrosine phosphorylation level were detected on immunoprecipitated Cx32. 

Results show that EphB1 increased Cx32 tyrosine phosphorylation and TC-PTP1-314 

decreased tyrosine phosphorylation. Cx32 Y7 on the Cx32 NT has been reported to be 

phosphorylated (Locke et al., 2006). To study if EphB1 phosphorylate Y7 as well, we 

immunoprecipitated Cx32 from HeLa cells stably expressing Cx32 wild-type or Cx32 

Y243F with or without EphB1 transfection, and Cx32 tyrosine phosphorylation level 

was measured. EphB1 increased Cx32 wild-type phosphorylation, and using EphB2-Fc 

to activate EphB1 further increased Cx32 phosphorylation. However, this effect was 

not observed in the Cx32 Y243F mutant, suggesting EphB1 only phosphorylates
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Figure 4.3 Cx32CT residues affected by the direct interaction 

with TC-PTP 
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Figure 4.3 Cx32CT residues affected by the direct interaction with TC-PTP. A) 

Overlaid 15N-HSQC spectra of the 15N-Cx32CT (residues 217-283; 30 μM) in the 

presence of different concentrations of unlabeled TC-PTP1-314. The cross-peak color 

changes according to the concentration ratio. The strongly affected peaks are labeled. 

B) The KD for the Cx32CT/TC-PTP1-314 interaction was estimated by fitting the 

decrease in signal intensity for the Cx32CT residues S229, S253, E247, K250, L263 as 

a function of TC-PTP1-314 concentration. C) Amino acid sequence of Cx32CT. Residues 

strongly affected by the addition of TC-PTP1-314 are highlighted in yellow (residues 

broadened beyond detection at 1:0.1 molar ratio) and those less affected in green 

(residues broadened beyond detection at 1:1 molar ratio). In red is the Cx32 residues 

Y243. 
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Figure 4.4 Cx32CT pulls down purified TC-PTP 

catalytic domain and wild-type 

 

Figure 4.4 Cx32CT pulls down purified TC-PTP wild-type and catalytic domain. 

(A) Purified GST or GST-Cx32CT or GST-Cx32NT on glutathione agarose beads were 

incubated with (+) and without (-) purified TC-PTP217-283. After washes, samples were 

ran on SDS-PAGE gel and stained with Coomassie Blue. (B) GST pull-down samples 

were blotted with the anti-TC-PTP NT antibody. The TC-PTP catalytic domain is 36 

kDa. (C) Purified GST, GST-Cx32CT, or GST-Cx32NT bound on glutathione agarose 

beads were incubated with HeLa cell lysate containing endogenous TC-PTP. Pull-

downed products were analyzed by Western blot using an anti-TC-PTP NT or anti-GST 

antibodies.   
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Figure 4.5 TC-PTP dephosphorylates Cx32 residues pY243 in vitro. Plot of the 

Malachite green assay shows the time course of Cx32 phospho-peptides (600 nM) 

containing pY243 dephosphorylated by the TC-PTP catalytic domain (0.6 nM). Statistic 

data were recorded based on readings at OD650. Each experiment was repeated three 

times. 

Figure 4.5 TC-PTP dephosphorylates Cx32 residues pY243 in vitro. 
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Table 4.1. Kinetic constants for de-phosphorylation of Cx32 pY243 by TC-PTP 1-314 

 Km 

(mM) 

kcat  

(s-1) 

kcat/Km•10-6 

(M-1s-1) 

Positive control*# 0.022±0.001  52.820±10.622 2.418±0.473 

pY243* 0.034±0.004  63.337±13.720 1.833±0.164 

*All data were collected at pH 7.5, 25°C 

#Notably, the kinetic constants determined for the positive control (DADEpYL) by TC-

PTP1-314 are consistent with a previous report of the same peptide with the PTP1B 

catalytic domain, whose sequence is very similar with TC-PTP1-314 (Peters et al., 2000).  

Table 4.1 Kinetic constants for de-phosphorylation of Cx32 pY243 by TC-PTP 1-314 
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Figure 4.6 EphB1 increases tyrosine 

phosphorylation level on Cx32 whereas TC-

PTP decreases tyrosine phosphorylation on 

Cx32 

 

Figure 4.6 EphB1 increases tyrosine phosphorylation level on Cx32 whereas TC-

PTP decreases tyrosine phosphorylation on Cx32. (A) HeLa cells stably expressing 

Cx32 were transfected with EphB1 or TC-PTP catalytic domain. Cx32 was pulled down 

and phospho-tyrosine antibody was used to detect tyrosine phosphorylation level. 

Tyrosine phosphorylation level were quantified by densitometry from three 

independent experiments (**P<0.01). (B) HeLa cells stably expressing Cx32 wild-type 

and Cx32 Y-F mutant were transfected with EphB1. EphrinB1-Fc was used to activate 

EphB1 receptor. Cx32 was pulled down and tyrosine phosphorylation level was 

detected.  
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Cx32CT on Y243 residue.  

 

14.4   Discussion and Future Direction 

In this study, we identified a tyrosine kinase EphB1, which phosphorylates Cx32 

on the Y243 residue in the CT domain but not Y7 on NT domain. Addtionally, we 

showed that TC-PTP, a tyrosine phosphatase, can dephosphorylate pY243. To the best 

of our knowledge, our work is the first demonstration of the direct interaction between 

a phosphatase and Cx32. 

The first reported tyrosine kinase that phosphorylates immunoprecipitated Cx32 is 

EGFR (Diez et al., 1998). However, in our in vitro kinase assay, EGFR did not directly 

phosphorylate purified Cx32CT. A possible explanation is that a complex, but not pure 

Cx32, could be pulled down in the immunoprecipitation assay. Thus, unknown Cx32 

binding partner(s) in the complex may mediate the phosphorylation on Cx32 by EGFR. 

We also found that Cx32 co-immunoprecipitated with EGFR which indicated that Cx32 

and EGFR were in the same complex (data not shown). Thus, we suspect that EGFR 

may indirectly increase tyrosine phosphorylation of Cx32.  

Cx32 is considered as a tumor suppressor in many different cancers (Fujimoto et 

al., 2005; King and Lampe, 2004; Temme et al., 1997). Cx32-deficient mice exhibit a 

higher incidence compare with wild-type mice in lung tumor and liver cancer (King 

and Lampe, 2004; Temme et al., 1997). Expression of Cx32 in renal cell carcinoma cell 

line (Caki-1 cell) reduces invasion capacity (Fujimoto et al., 2005). Besides, Cx32 can 

suppress human prostate cancer cell growth (Mehta et al., 1999). EphBs also play roles 
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as cancer suppressors. During metastatic progression, EphB expression is lost which 

leads to tight junction instability and allows cancer cells to become invasive (Park and 

Lee, 2015). Evidence shows that loss of EphB1 is associated with invasion and 

metastasis in gastric cancer and ovarian cancer (Wang et al., 2014; Wang et al., 2007); 

decreased expression of EphB1 has also been found in renal cell carcinoma patients 

(Zhou et al., 2014). Additionally, the tight junction protein E-cadherin interacts with 

both EphB and Cx32 (Lee and Daar, 2009). Activation of EphB enhances E-cadherin-

dependent adhesion in colorectal cancer cell lines (Lee and Daar, 2009). Also, positive 

correlation between the expression of E-cadherin and Cx32 has been found in colorectal 

cancers (Kanczuga-Koda et al., 2014), and colocalization of Cx32 and E-cadherin has 

been found in Schwann cells (Balice-Gordon et al., 1998). These pieces of evidence 

indicate a link between EphB and Cx32. Our data identify the direct interaction between 

Cx32 and EphB1, which could help to understand the mechanism of Cx32 gap junction 

decrease in cancer.  

One question that has not been answered in this study is the biological effects of 

phosphorylation on Cx32CT. The only well-defined phosphorylation site on Cx32 is 

S233 which increases gap junctional communication when phosphorylated (Saez et al., 

1990). Based on the fact that both EphB1 and Cx32 decrease in cancer, we hypothesize 

that phosphorylation on Y243 also increases gap junction intercellular communication. 

To further study the function of Y243, Y243F mutant and wild-type Cx32 stably 

expressed in HeLa cells will be transfected with or without EphB1. Dye transfer, TX100 

solubility, and cycloheximide assays will be used to test the gap junction coupling, 
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measure gap junction plaque, and study the gap junction turnover rate, respectively. 

 

15. Identification and Functional Study of a Novel Phosphorylation Site on 

Cx43CT 

15.1   Introduction 

We identified four tyrosine residues phosphorylated by Tyk2 (Y247, Y265, Y267, 

Y313) by MS. Y313, which is located in one helix (K303-A322) in the Cx43CT 

(predicted by our laboratory, (Grosely et al., 2013)), triggered our greatest interest. First, 

tyrosine phosphorylation associates with decrease of helical propensity in the Cx43CT 

(Grosely et al., 2013b). Therefore, Y313 phosphorylation may affect the secondary 

structure of Cx43. Moreover, MS data obtained from the PhosphoSitePlus database 

shows that Y313 is frequently detected as a phosphorylation site (Table 4.2). Of note, 

Src phosphorylation sites Y247 and Y265 are also detected to be phosphorylated in high 

frequency. Interestingly, when we studied Src in the in vitro kinase assay, we found that 

Y313 was also phosphorylated by Src in addition to Y247 and Y265. Our hypothesis is 

that Y313 phosphorylation induces a structure change in the Cx43CT and participates 

in Cx43 degradation. 

 

15.2   Results 

Purified Cx43CT236-382 was incubated in vitro with active Src (Life Technologies) 

as described in (Cooper et al., 2000; Huang et al., 2012) and phosphorylation was 

confirmed using an anti-phospho-tyrosine antibody (Figure 4.7B). After trypsin 
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digestion, Tandem MS/MS identified phosphorylation at Y247, Y265, Y267, and Y313 

(Figure 4.7A and Table 4.3 ). To confirm tyrosine phosphorylation occurs at residues 

other than Y247 and Y265, the in vitro kinase assay was performed using five 

Cx43CT236-382 mutants and phosphorylation was detected with an anti-phospho-tyrosine 

antibody (Figure 4.7B). The data indicate that Src phosphorylated Cx43 wild-type, 

which showed a slower migration on SDS-PAGE gel (Figure 4.7B). Y267 and Y313 

can be phosphorylated by Src in vitro. The Cx43CT mutant with all tyrosine residues 

except Y313 mutated to F also showed a slower migration on the SDS-PAGE gel 

suggesting a possible alteration of structure. 

 

15.3   Discussion and Future Direction 

Y247 and Y265 are well established as phosphorylation sites for Src (for review 

see (Lampe and Lau, 2004; Solan and Lampe, 2007)). Interestingly, for the first time, 

we found that Src can also phosphorylate the Y313 site in vitro. Since Y313 is contained 

within one of the CT α-helical domains, the negatively charged phosphate could induce 

a conformational change of the Cx43CT and further affect the function of Cx43 gap 

junctions. In fact, phosphorylated Y313 has been observed in proteomics data multiple 

times which strongly suggests its existent in cells. However, no study has identified a 

kinase that directly phosphorylates Y313.  

We hypothesize that Y313 phosphorylation by Src induces gap junction closure and 

Cx43 degradation. We recently acquired a custom phospho-specific antibody to pY313. 

This antibody will be used to test if Y313 is phosphorylated in cells after v -Src   

http://www.unmc.edu/mspcf/
http://www.unmc.edu/mspcf/
http://www.unmc.edu/mspcf/
http://www.unmc.edu/mspcf/
http://www.unmc.edu/mspcf/
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Table 4.2 Tyrosine phosphorylation sites on the Cx43CT domain summarized by 

PhosphoSitePlus. 

 

Modification site SS MS Species 

Y247-p 9 253 H, M, R 

Y265-p 14 12 H, M, R 

Y267-p 1 10 H, M, R 

Y286-p 1 12 H, M 

Y301-p 0 8 H 

Y313-p 1 312 H, M, R 

 

SS: the number of record in which this modification site was determined using site-

specific methods, including amino acid sequencing, site direct mutagenesis, 

modification site specific antibodies, etc. MS: The number of record in which this 

modification site was assigned using ONLY proteomic discovery mode. Species: H: 

human, M: mouse, R: rat 

Table 4.2 Tyrosine phosphorylation sites on the Cx43CT domain summarized by PhosphoSitePlus. 

  

http://www.phosphosite.org/siteAction.do?id=42142
http://www.phosphosite.org/siteGroupAction.do?id=465296&protOrg=949&showAllSites=true&showLTPRefsOnly=true
http://www.phosphosite.org/siteGroupAction.do?id=465296&protOrg=949&showAllSites=true&showHTPRefsOnly=true
http://www.phosphosite.org/siteAction.do?id=18573
http://www.phosphosite.org/siteGroupAction.do?id=454254&protOrg=949&showAllSites=true&showLTPRefsOnly=true
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Figure 4.7 In vitro kinase assay using active 

Src to phosphorylate Cx43CT wild-type and 

mutants 

 

 

Figure 4.7 In vitro kinase assay using active Src to phosphorylate Cx43CT wild-

type and mutants. Purified Cx43CT wild-type and mutants were incubated with or 

without (Control) Src for 16 hrs at 30°C. 2YF=Y247/265F, 

267Y=Y247/265/286/301/313F, 286Y=Y247/265/267/301/313F, 

301Y=Y247/265/267/286/313F, 313Y=Y247/265/267/286/301F  (A) Sequence of the 

Cx43CT domain. Highlighted in red are phospho-tyrosine residues identified by MS in 

an in vitro kinase assay using Src to phosphorylate the Cx43CT. show The two tyrosines 

which are not phosphorylated by Src are highlighted in blue. (B) Products from kinase 

assay were ran on SDS-PAGE gel, stained with Coomassie blue and Western blotted 

with anti-tyrosine antibody.
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Table 4.3 Phospho-tyrosine containing peptides identified from mass spectrometry of the Cx43CT domain 

 phosphorylated in vitro by Src. 

 

*Peptides with Mascot Delta Ion Score >7 were used to obtain the average Mascot Delta Ion according to (Savitski et al., 2011). 

 Table 4.3 Phospho-tyrosine containing peptides identified from mass spectrometry of the Cx43CT domain phosphorylated in vitro by Src.

Peptide sequence Start-end 

Average 

Mascot Delta 

Ion Score 

*Number of 

phospho-

peptides  

Actual 

peptide 

mass  

Calculated 

+1H peptide 

mass  

Phosphorylation 

site localization 

SDPyHATTGPLSPSK 244-258 17.1 9 1636.72 1,637.72 
 

1637.72 Y247 

GRSDPyHATTGPLSPSK 242-258 16.9 5 1849.84 1850.84 Y247 

GRSDPyHATTGPLSPSKDc(Carbamidomethyl)GSPK 242-264 17 1 2667.04 2668.05 Y247 

QASEQNWANySAEQNR 304-319 14.1 11 1974.79 1975.79 Y313 

yAYFNGc(Carbamidomethyl)SSPTAPLSPm(Oxidation)SPPGYK 265-287 9.8 13 2588.07 2588.09 Y265 

yAyFNGc(Carbamidomethyl)SSPTAPLSPm(Oxidation)SPPGYK 265-287 26.9 10 2667.05 2668.05 Y265, Y267 
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activation. Seven Cx43 mutants (Y247F, Y265F, Y313F, Y247/313F, Y256/313F, 

Y247/265F, Y247/265/313F) have been successfully cloned in pcDNA3.1 and pEGFP 

vectors. With these constructs, we will test the cellular localization of Cx43 wild-type and 

mutants after Src activation in HeLa cells (gap junction negative cell line) and Cx43 knock-

out NRK cells. Also, the localization of Cx43 phosphorylated at Y313 will be observed by 

immunofluorescence assay using the pY313 phospho-antibody. Gap junction closure and 

Cx43 degradation will be studied by dye transfer assay and surface biotinylation assay, 

respectively.    

Additionally, we briefly studied the Y267 phosphorylation site, however, our results 

are inconsistent with previous study. Giepmans et al. (2001) used COS-7 cells co-

transfected with Myc-tagged Cx43 (wild-type, Y265F, and Y267F) and c-Src, and they 

showed that wild-type Cx43 and Y267F mutants were phosphorylated on tyrosine but not 

Y265F mutant (Giepmans et al., 2001). They concluded that Y267 is not a phosphorylation 

site for Src (Giepmans et al., 2001). However, our MS study shows that Y267 was 

phosphorylated by Src in vitro. To test if Y267 is phosphorylated in cyto, a phospho-

specific antibody will be necessary. 

 

16.  Characterize the Mechanism and Biological Function of the other Tyrosine 

Kinases that Phosphorylate Cx43.   

16.1   Introduction 

One goal of my dissertation is to identify novel tyrosine kinases that phosphorylate 
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Cx43. By using the in vitro phosphorylation screen (Merck Millipore), we identified eight 

tyrosine kinases which have high likelihood of phosphorylating Cx43. Among these 

tyrosine kinases, Pyk2 and Itk showed the best affinity for the Cx43CT domain in a GST 

pull down assay, and will be the focus of this study.  

Pyk2 is a Ca2+-dependent non-receptor tyrosine kinase of the FAK family (Figure 4.8). 

Many factors can induce Pyk2 activation, including activation of Src and PKC, as well as 

an increase in intracellular Ca2+ level (Avraham et al., 2000). In normal adult heart, Pyk2 

is expressed in ventricular tissue and cardiomyocytes, but much less than in neonatal 

(Bayer et al., 2001). In animal models of heart failure (pressure-overload-induced or 

overexpression of tropomodulin), an increase in Pyk2 expression, activation, and 

phosphorylation has been reported (Bayer et al., 2002; Melendez et al., 2002). Since 

changes in the level and pattern of Cx43 phosphorylation are commonly observed in both 

ischemic and nonischemic forms of human heart failure (Ai et al., 2011; Glukhov et al., 

2012), our hypothesis is that in the failing heart, phosphorylation of Cx43 by Pyk2 leads to 

gap junction channel closure and relocation of Cx43 from the intercalated disc. 

Itk is a Tec kinase family member which is predominantly expressed in T-cell. The 

most important function that Itk is involved in is the antigen-dependent T cell activation. 

Interaction of the T-cell receptor with peptide-MHC complexes on antigen presenting cells 

promotes Itk recruitment to the membrane and its activation, leading to the phosphorylation 

of its downstream targets (Andreotti et al., 2010). Similar with Src, Itk also contains an 

SH3-SH2-kinase cassette (Figure 4.8). This structure similarity supports the possibility for 
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Itk to phosphorylate Cx43.   

Antigen-dependent T cell activation relies on cell-cell contact, therefore intercellular 

communication is necessary. Indeed, the increase of Cx43 expression and phosphorylation 

are observed to be associated with T cell activation (Oviedo-Orta et al., 2010). During T 

cell priming, Cx43 is recruited at the immunological synapse (Mendoza-Naranjo et al., 

2011). This accumulation is antigen-specific and time-dependent (Mendoza-Naranjo et al., 

2011). As both Itk activation and Cx43 relocation occur during the antigen-dependent T 

cell activation, we hypothesize that Itk phosphorylates Cx43 resulting in Cx43 

redistribution at the immunological synapse.  

 

16.2   Results 

To identify novel kinases that can phosphorylate Cx43CT, an in vitro phosphorylation 

screening assay was conducted using purified Cx43CT as substrate (by Eurofins Scientific, 

KinaseProfiler). 27 tyrosine kinases were selected for the kinase assay as they were 

predicted to phosphorylate the Cx43CT by GPS 2.0 software, and NetPhos 2.0 and 

KinasePhos 2.0 servers. Eight tyrosine kinases which gave over 50% of positive control 

signal were considered to be capable to phosphorylate Cx43CT (Figure 4.9). 

Then, we tested if these kinases that phosphorylated Cx43 can bind with Cx43 in cells 

by performing a GST pull down assay. Purified GST and GST-Cx43CT were immobilized 

on glutathione-sepharose beads, and cell lysates from cell lines that express each of kinase 
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Figure 4.8 Pyk2 and Itk Schematic. Pyk2 is composed of a N-terminal FERM (protein 

4.1, ezrin, radixin and moesin homology) domain, a CT focal adhesion targeting (FAT) 

domain, a kinase domain, and several proline rich regions (PRR). Phosphorylation of Pyk2 

at Y402 creates a SH2 binding site for Src. Association of Pyk2 with c-Src leads to further 

phosphorylation of Pyk2 at Y579 and 580 in the kinase domain. Itk contains an NT region 

that includes a pleckstrin homology (PH) domain, followed by a Zn++ binding region 

termed the Btk homology (BH) motif, a PRR that conforms to the consensus sequence of 

an SH3 ligand, SH3 and SH2 domains, and kinase domain at the C-terminus.  

Figure 4.8 Pyk2 and Itk Schematic. 
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of interest were added. Out of the eight candidates, six kinases were in the same complex 

with the Cx43CT. In particular, Pyk2 and Itk were pulled down by Cx43CT without 

crosslinker (Figure 4.10). Of note, the crosslinker DTSSP captures weak and transient 

interactions (Liu et al., 2011). These data suggest that Pyk2 and Itk have a greater binding 

affinity for the Cx43CT than the other tested kinases. 

To study which tyrosine residues are phosphorylated by Pyk2, we conducted an in vitro 

kinase assay followed by MS (Figure 4.11). In the in vitro kinase assay, Cx43CT wild type 

and Cx43 mutants were incubated with Pyk2 and products were ran on SDS-PAGE gel. 

Similar to Src phosphorylation on Cx43, MS data show that Pyk2 induced phosphorylation 

on Y247, Y265, Y267, and Y313. Western blot using a general phospho-tyrosine antibody 

conformed that Y313 is one of the sites phosphorylated by Pyk2. However, the Y267 

mutant did not show any signal suggesting little to no phosphorylation at Y267 by Pyk2. 

 

16.3   Discussion and Future Directions  

We showed that Pyk2 directly phosphorylates Cx43CT on Y247, Y265, Y267, and 

Y313, while Itk also phosphorylates Cx43CT in vitro. These residues have not been 

identified in a cell system yet. From our studies and others, we know that at least 3 tyrosine 

kinases target Cx43CT on Y247/265/313, suggesting a possible competition between these 

kinases. They may also coordinate with each other (for example, one kinase creating 

docking site to amplify the binding affinity for another kinase) to increase Cx4 3 
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Figure 4.9 Identification of tyrosine kinases phosphorylating Cx43. In vitro kinase 

assays were conducted using E. coli expressed Cx43CT as substrate. Peptides which can 

be phosphorylated by each kinase were used as positive control. The phosphorylated 

substrates were detected by radiometric assay. Quantification of phosphorylated Cx43CT 

was normalized to the control phospho-peptide for each kinase (% of control signal). Dash 

line highlights 50% of the control signal. 

Figure 4.9 Identification of tyrosine kinases phosphorylating Cx43 
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Figure 4.10 Itk and Pyk2 interact with Cx43CT. 

 

Figure 4.10 Itk and Pyk2 interact with Cx43CT. GST pull down assays using GST 

(negative control) and GST-Cx43CT immobilized on glutathione beads as baits were 

conducted in different cell lines. Eight kinases (giving >50% of control signal in the in vitro 

kinase assay) were blotted. Pyk2 and Itk were pulled down by GST-Cx43CT but not GST 

without crosslinker DTSSP. BTK, TrkA, EphB2 and PDGFRβ were pulled down by GST-

Cx43CT only in present of the crosslinker DTSSP. V-Src which is known to bind with 

Cx43CT was pulled down by GST-Cx43CT both with and without crosslinker DTSSP.    
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Figure 4.11 Identification of the 

phosphorylation sites on Cx43CT by Pyk2 
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Figure 4.11 Identification of the phosphorylation sites on Cx43CT by Pyk2. Active 

Pyk2 was used to phosphorylate Cx43CT wild-type and mutants in an in vitro kinase assay. 

Purified Cx43CT wild-type and mutants (2YF=Y247/265F, 

267Y=Y247/265/286/301/313F, 286Y=Y247/265/267/301/313F, 

301Y=Y247/265/267/286/313F, 313Y=Y247/265/267/286/301F) were incubated with or 

without (Control) Pyk2 for 16 hrs at 30°C. (A) Sequence of the Cx43CT domain. 

Highlighted in red are the phospho-tyrosine residues identified by MS in an in vitro kinase 

assay using Pyk2 to phosphorylate Cx43CT. Highlighted in blue show two tyrosines which 

are not phosphorylated by Pyk2. (B) Products from the kinase assays were ran on SDS-

PAGE gel followed with Coomassie staining, and western blotted with an anti-tyrosine 

antibody were performed.  
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phosphorylation level. Moreover, although these kinases phosphorylate on the same 

tyrosine residues, the phosphorylation levels could be different, suggesting that these 

kinases may regulate Cx43 gap junction in slightly different ways. To sum up, different 

kinases may permit a fine-tuning of Cx43 function to meet the specific needs of a certain 

tissue or developmental stage.  

Future direction will focus on the functional study in cells and particular disease model. 

To characterize the phosphorylation events caused by Pyk2 in cyto, the LA-25 cell line 

stably expressing Pyk2 will be used to study Cx43 phosphorylation levels (Western blot) 

and cellular localization (immunostaining) with or without v-Src activation. Structured 

illumination microscopy could be used to determine the relationship between Pyk2 and 

Cx43 at the gap junction plaque. Heart failure rat model could be used to study the effect 

of Pyk2 on Cx43 regulation in pathological situations. To find out the biological relevance 

between Pyk2 and Cx43 in heart failure, we will quantify mRNA and phospho-protein 

levels of Cx43 and Pyk2, and define the cellular distribution of Cx43 and Pyk2.  

The biological function of Cx43 phosphorylation by Itk in T cells activation will be 

characterized in co-cultured spleen dendritic and T cells with or without antigen 

presentation. We will test the relevance between phosphorylation of Cx43 and activation 

of Itk, observe the cellular localization of Itk and Cx43, and study the gap junctional 

communication. Itk inhibitors (BMS 509744 and CTA 056) will be used to test if the effects 

are caused by Itk specifically. These innovative studies will help to demonstrate how 

phosphorylation affects Cx43 channel gating and degradation, and provide a foundation 
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for understanding cardiac pathophysiology and T-cell activation.   
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17.  Summary 

Gap junctions mediate vitally important processes such as electrical impulse 

propagation and cell-to-cell metabolic coupling. A better understanding of the functional 

and structural basis of connexin regulation will lead to improved strategies to modulate 

and/or reestablish junctional communication that has been altered in different pathological 

situation such as heart failure and cancer. Our laboratory’s major focus has been to 

comprehensively address the regulatory mechanism of gap junction channel gating and a 

connexin’s life cycle. As one important post-translational modification, phosphorylation 

has been involved in all these regulatory mechansims. Falk et al. (2016) provide a model 

of continuous phosphorylation event to regulate Cx43 life cycle, in which Akt, PKA, PKC, 

MARK phosphorylation occur sequentially (Falk et al., 2016). In some particular situations 

including wounding and EGF stimulation, Src is responsible for chronic gap junction 

degradation (Solan and Lampe, 2016; Spagnol et al., 2016). The regulatory mechanism of 

phosphorylation on gap junctions is complicated. The negative charge of the phosphate 

could affect the permeability of ions to the pore, alter the structure of the transmembrane 

α-helices to influence pore size, or modify the binding affinities of protein binding partners 

involved in regulating gap junction (Grosely et al., 2013b). Notably, if phosphorylation 

modifies protein interactions to affect the kinetics of channel assembly/disassembly or 

degradation, cell-to-cell communication will also be altered. Evidence have been emerged 

that a phosphate can directly block the Cx43CT interaction with ZO-1 (Chen et al., 2008), 

tubulin (Saidi Brikci-Nigassa et al., 2012) and drebrin (Ambrosi et al., 2016) or enhance 
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the interaction with Nedd4 (Leykauf et al., 2006; Spagnol et al., 2016). This information is 

critical because a particular cellular condition can be correlated with a specific Cx43 

phosphorylation status to understand which proteins will and will not interact to affect 

regulation of Cx43.  

Numerous serine phosphorylation sites have been identified on the Cx43CT. Compare 

with serine phosphorylation, studies on tyrosine phosphorylation are relatively lacking. 

The objective of this project was to use a multidisciplinary approach to investigate the role 

of tyrosine phosphorylation in altering the structure and function of Cx43 gap junctions. 

By using a kinase screening assay, we identified eight tyrosine kinases that phosphorylate 

Cx43CT in vitro. One of them is a JAK family member, Tyk2. We focused on Tyk2 because 

of its role in Ang II induced cardiovascular diseases. Tyk2 can be activated by a high level 

of Ang II (Kodama et al., 1998; Marrero et al., 1995; Pan et al., 1997; Pan et al., 1999; 

Yoon et al., 2013). Over-activation of RAS signaling is associated with increased risk of 

ventricular arrhythmia, hypertrophy, and sudden death (Luft, 2011; Sadoshima and Izumo, 

1993). Besides, we found that among three JAK family members expressed in heart (JAK1, 

JAK2 and Tyk2), only Tyk2 phosphorylates Cx43CT. Our data described in Chapter 3 

identified that Tyk2 phosphorylates Cx43 on Y247 and Y265 both in vitro and in cyto. 

Similar to Src, Tyk2 leads to an indirect phosphorylation on residues S279/282 (MAPK) 

and S368 (PKC), and, this response occurred when Src was inactive in NRK cells. Y313 

phosphorylation was also detected by MS in the in vitro kinase assay and functional study 

will be conducted with phospho-specific antibody. Different kinases phosphorylating the 
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same sites is commonly occurring on Cx43, suggesting a fine-tuning mechanism on gap 

junction function.  

Tyrosine phosphorylation is regulated by the coordination of protein tyrosine kinases 

and protein tyrosine phosphatases. To date, only two potential Cx43 tyrosine phosphatases 

have been reported, however, the directly interaction was not demonstrated. We identified 

a ubiquitously expressed phosphatase TC-PTP which directly interacts and 

dephosphorylates Cx43 on Y247 and Y265 by NMR and in vitro phosphatase assay, 

respectively. By co-immunoprecipitation and immunofluorescence assay, we were able to 

observe that Cx43 and TC-PTP were in the same complex in NRK cells. In LA-25 cells 

which express a temperature sensitive v-Src, TC-PTP indirectly led to dephosphorylation 

of Cx43 S368 by inactivating PKCα and PKCδ, suggesting a cross-talk between tyrosine 

phosphatase and PKC pathways. However, TC-PTP does not affect S279 and S282 

phosphorylation levels.  

Since Cx43 is a highly phosphorylated protein, understanding the effect of 

phosphorylation would be fundamental for deciphering the regulatory mechanism of gap 

junction function. We know that Y247 phosphorylation disrupts tubulin binding; Y265 

phosphorylation is involved in the chronical decrease of gap junctional communication; 

while S368 and S279/282 phosphorylation lead to acute gap junction closure. By using dye 

transfer and TX100 assay, we observed that the activation of v-Src significantly decreased 

gap junctional communication, while dephosphorylation by TC-PTP partially reversed 

channel closure caused by v-Src as well as stabilized gap junctions at the plaque. Similar 
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as Src, Tyk2 phosphorylation decreases gap junction plaque stability and increase turnover 

rate. These observations are in agreement with reported effects of phosphorylation on these 

involved individual residues. Since TC-PTP does not decrease S279/282 phosphorylation 

level, we tried to identify if any serine phosphatase could dephosphorylate these sites. An 

in vitro phosphatase screening assay was conducted using phospho-peptides with 

pS279/282 or pS368 as substrate. Unfortunately, only PP2A present a moderate efficiency 

on dephosphorylating pS279/282, although PP2A targeted pS368 with a high efficiency. 

These results from in vitro experiment need to be validated in cell system. 

Our data implicate that Tyk2 not only regulates Cx43 translationally, but also increases 

Cx43 expression transcriptionally. Evidence show that the Cx43 protein level increased 

acutely (in cell lines) but decreased chronically (in animal model) with high level of Ang 

II stimulation (Iravanian et al., 2011; Jia et al., 2008; Sovari et al., 2011). Ang II increased 

Src while decreasing TC-PTP expression in vascular smooth muscle cells (Touyz et al., 

2002; Tsiropoulou S, 2014). Therefore, we propose a hypothetic model of Ang II induced 

pathogenesis in cardiovascular system: over-activation of Ang II increases Src and Tyk2 

activation and decreases TC-PTP expression, thus Cx43 phosphorylation level is increased 

resulting in Cx43 internalization. To compensate, Tyk2 may increase Cx43 level through 

STAT3 in the early stage; however, the Cx43 level eventually drops due to the increased 

degradation. Since our studies are based on Cx43 model cell lines (NRK and LA-25), not 

cardiovascular cells, further studies in a mouse model or cardiomyocytes may be needed 

to test our hypothetic model. Our findings provide a molecular mechanism of Cx43 

http://www.ncbi.nlm.nih.gov/pubmed/15052534
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remodeling in cardiac pathological situation. Understanding phosphorylation/de-

phosphorylation of Cx43 will help build a better foundation to modulate the regulation of 

gap junction channels and benefit human health. 

 

18.  Future Directions 

18.1   The Potential Role of PTP1B in the Regulation of Cx43 ERAD 

PTP1B and TC-PTP exhibit high identity in their catalytic domain (Iversen et al., 2002). 

PTP1B mainly locates in the ER while TC-PTP mainly locates in the nucleus and can 

translocate to the cytoplasmic membrane (Bourdeau et al., 2005). PTP1B and TC-PTP 

share some membrane protein substrates such as EGFR and PDGFR (Dube and Tremblay, 

2005). Inspired by our discovery of the interaction between TC-PTP and Cx43, we 

hypothesize that PTP1B interacts with Cx43 in ER and regulates Cx43 ERAD. The other 

rationale include the facts that 1) Cx43 is phosphorylated as early as in the ER or Golgi 

apparatus (Laird et al., 1995); 2) PTP1B is a mediator of ERAD (Nezvitsky et al., 2014); 

3) PTP1B dephosphorylates Tyk2 (Myers et al., 2001). These studies will provide a new 

perspective of the regulatory role of phosphorylation on Cx43 gap junction.  

 

18.2   The Mechanism for a Decreased Level of Cx43 in Cardiovascular Diseases   

Our Tyk2 study shows that Cx43 level increases in response to high level of Ang II 

stimulation in cells. However, in the ACS8/8 mouse model, Cx43 gap junctions decrease 

significantly compare with normal mice. We hypothesize that Ang II stimulation induces 
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the increase of Cx43 synthesis as a compensation mechanism of reduced gap junction 

channel at the plaque caused by increased internalization. In the long term, Cx43 level 

decreases due to degradation. Further studies are necessary to prove this hypothesis. Also, 

the mechanism of transition from the increase to the decrease of the Cx43 protein level 

could be essential to the progression of cardiovascular pathology. Moreover, we are 

interested in the cellular destiny of these redundant Cx43. Do they work as signaling 

molecules in the cytoplasm and trigger the feedback mechanism to decrease Cx43 

expression? And what degradation pathway do they undergo?  
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