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The transcription factor SOX2 is widely recognized for its critical roles during 

mammalian embryogenesis. SOX2 has also been examined in cancer; and it has been implicated 

in the growth, tumorigenicity, drug resistance, or metastasis of over 20 different cancers, 

including cancers of the brain and pancreas. Thus, we hypothesized that SOX2 is a major player 

in cancer and may be a potential therapeutic target; however, the effects of SOX2 on the many 

facets of human cancer have only begun to be explored. Recently, efforts to understand the 

mechanisms by which SOX2 mediates its effects have explored SOX2 protein-protein interaction 

landscapes in a number of cellular systems. Previous studies in our laboratory identified proteins, 

like the RNA-binding protein Musashi2 (Msi2), which interact with SOX2 in multiple cell types, 

including embryonic stem cells and brain tumor cells. We hypothesized that proteins that interact 

with SOX2 in multiple cell types are likely to be necessary for the continued growth and function 

of these cells. The studies presented in this dissertation demonstrate that ESC require Msi2 to 

maintain self-renewal and pluripotency; and that MSI2 is also required to support the growth and 

survival of DAOY, U87, and U118 brain tumor cell lines. This dissertation also examined the 

roles of SOX2 in pancreatic adenocarcinoma (PDAC). Multiple PDAC cell lines were engineered 

for either inducible overexpression of SOX2 or inducible knockdown of SOX2. Through in vitro 

growth and tumorigenicity studies with these inducible PDAC cell lines, we determined that 

SOX2 functions as a biphasic molecular rheostat in PDAC. Furthermore, we determined that 

inducible elevation of SOX2 in PDAC cells reduces the growth inhibitory effects of MEK and 
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AKT inhibitors, while the inducible knockdown of SOX2 enhanced growth inhibition in the 

presence of these inhibitors. Altogether, the work presented in this dissertation extends and 

strengthens our knowledge of SOX2 and its function as a master regulator in multiple cell types, 

and provides useful platforms for the continued study of these highly deadly malignancies. 
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1.1     Introduction 

The transcription factor SOX2 is widely recognized for its critical roles during 

mammalian embryogenesis. Although Sox2 was first shown to regulate the transcription of FGF4 

in mouse embryonal carcinoma cells [1], its importance was firmly established with the discovery 

that knocking out both alleles of SOX2 results in embryonic lethality in mice. SOX2 null 

embryos reach the blastocyst stage, but do not survive after implantation [2]. Shortly thereafter, 

knocking down Sox2 in mouse embryonic stem cells (ESC) was shown to disrupt their self-

renewal and induce differentiation [3]. One year later interest in Sox2 rose dramatically with the 

paradigm shifting discovery by Takahashi and Yamanaka demonstrating conversion of mouse 

embryonic fibroblasts into induced pluripotent stem (iPS) cells by the introduction of Sox2 along 

with Oct4, Klf4, and cMyc [4]. 

 The excitement surrounding the key roles of SOX2 in ESC and iPS cells, which are 

themselves tumorigenic, soon led to the search for SOX2 in cancer. Within a few years following 

the discovery of iPS cells, numerous reports of SOX2 expression in human cancer had already 

appeared. This soon turned into an avalanche of studies examining SOX2 in human cancer. The 

search terms SOX2 and cancer generate over 1600 hits in the PubMed database since 2006. 

During that period, SOX2 has been implicated in growth, tumorigenicity, drug resistance, and 

metastasis in over 20 different cancers, including cancers of the ovary, lung, skin, brain, breast, 

prostate, and pancreas. In the majority of these cancers, SOX2 has been reported to have 

increased expression or gene amplification in tumor tissue; however, the effects of SOX2 on 

tumorigenicity, prognosis, and drug resistance in human cancer have only begun to be explored. 

Nonetheless, it is evident from the impressive body of work published thus far that SOX2 is a 

major player in cancer and a potential therapeutic target.  
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1.2     Sox2 Gene Structure and Regulation 

 1.2.1     Transcriptional Regulation of Sox2 

 

 The transcriptional regulation of Sox2 has been extensively studied. However, it is 

evident that there is much more to learn about how this gene is regulated at the transcriptional 

level. Sox2 is a member of the SRY-related gene family, each member of which contains a well-

conserved high mobility group domain (HMG box, 79 amino acids), which mediates its binding 

to DNA. The Sox2 gene, a single exon, in mammals, as well as birds, is located within a gene 

desert (a large genomic region largely devoid of other protein coding genes). Analysis of a 200 

kilobase (kb) region of the chicken gene that surrounds the Sox2 single exon identified at least 27 

distinct enhancers that are transcriptionally active for the regulation of Sox2 during neuro-sensory 

development in the chicken [5]. Eleven of the enhancers are distributed fairly evenly over a 97 kb 

region located upstream of the coding region of the Sox2 gene, and 16 enhancers are fairly evenly 

distributed over a 110 kb region downstream of the coding region of the Sox2 gene. The large 

majority of the enhancers identified in the chicken genome are located in regions that are 

conserved in mammals. Thus, it is likely that the mammalian Sox2 gene is also transcriptionally 

regulated by a large number of distinct distal enhancers during different stages of development. 

However, far more work will be needed to define the regulatory regions of mammalian Sox2 gene 

that are active in specific cell types. As discussed below, only three enhancers have been 

identified as functionally active in mammalian cells, one of which is located ~100 kb downstream 

of the Sox2 gene. 

 In mammalian cells, transcriptional regulation of the Sox2 gene, including the enhancers 

that drive Sox2 expression, has been primarily studied in mouse ESC. In addition to the basal 

promoter of the Sox2 gene [6], early studies identified two enhancers, Sox2 regulatory region 1 

(SRR1) and SRR2, which influence the activity of the Sox2 promoter. SRR1 is located ~ 4kb 

upstream of the Sox2 transcription start site; whereas, SRR2 is located ~2.5 kb downstream of the 
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3’ end of the Sox2 coding region [7]. Although SRR1 has been shown to be active in 

promoter/reporter gene constructs expressed in ESC, its impact on the expression of Sox2 in ESC 

is minimal when SRR1 is deleted from the endogenous Sox2 gene [8]. However, deleting a region 

-5.7 to -3.3 kb upstream of the Sox2 transcription start site, which contains SRR1, abolished 

expression of SOX2 in telencephalic neural stem cells and precursors during murine development 

[9, 10]. SRR2 is not only active in mouse ESC; it has been used to isolate human iPS cells [11]. 

For these studies, the SRR2 enhancer was multimerized (4 tandem repeats) and inserted into a 

lentiviral vectors which drives the expression of enhanced green fluorescence protein (EGFP) via 

a minimal promoter only when SRR2 is active. Subsequently, and discussed further below, this 

lentiviral vector which drives EGFP was shown to be active in breast cancer cells [12]; and 

isolation of the subset of EGFP-expressing breast tumor cells were shown to exhibit enhanced 

tumorigenic potential, but only when NOD/SCID mice were engrafted with a large number of 

cells [13]. 

 Several studies have examined the transcriptional machinery that regulates the activity of 

SRR2. The sequence of SRR2 contains adjacent HMG and POU motifs (referred to as an 

HMG/POU cassette) that have been shown to be essential for the activity of SRR2 in ESC and 

bind Sox2 and Oct4 in ESC [7]. These studies led to the conclusion that Sox2 in combination 

with Oct4 contributes to the transcription of Sox2 in ESC. However, this may not be the only role 

of SRR2 in the transcription of Sox2. In fact, several recent studies lead us to suggest that a major 

role of SRR2 may be to repress, not activate, Sox2 transcription, especially during differentiation. 

First, as in the case of SRR1, deletion of SRR2 from the endogenous Sox2 gene did not 

significantly reduce Sox2 expression in ESC [8]. Even more suggestive of a repressive role for 

SRR2 is the finding that SRR2 is able to bind transcriptional repressors, such as p21, p27
Kip1

, and 

the p130/E2F4-SIN3A repressor complex, in neural stem cells and iPS cells undergoing 

differentiation [14, 15]. Consistent with these findings, Sox2 mRNA is elevated in Rb (p105) null 

and p130 (retinoblastoma family member) null mouse embryonic fibroblasts, and it is elevated in 
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the pituitary tissue of Rb heterozygous mice [16]. Moreover, in pituitary tumors, loss of Rb or 

p130 has been linked to a defect in the repression of Sox2 expression [16]. Given the roles of p21, 

p27
Kip1

, and Rb proteins in the G1 cell cycle check point, Sox2 expression may be reduced in G1 

phase of the cell cycle. Future studies should consider whether SOX2 expression is cell cycle 

regulated. 

 In ESC, a critical enhancer region (referred to as SCR – Sox2 control region) required for 

Sox2 transcription is located ~100 kb downstream of the Sox2 gene [8]. Previous studies had 

predicted 10 enhancers surrounding the Sox2 gene, including two that overlapped SRR1 and 

SRR2. When tested in promoter/reporter gene constructs, three of the 10 putative enhancers, 

which are located 18, 107, and 111 kb downstream of the Sox2 gene, were found to drive the 

expression of the reporter gene more potently than SRR1 and SRR2 in ESC. Importantly, more 

definitive results were obtained by generating deletions of these enhancers in one allele of the 

Sox2 gene using clustered regularly interspaced short palindromic repeats (CRISPR) based gene 

editing [8]. Deletion of SRR1, SRR2, or the enhancer located 18 kb downstream of Sox2 did not 

affect the expression of the targeted allele. In strong contrast, deletion of the SCR reduced 

expression in the targeted allele. (For these studies, expression of the targeted and non-targeted 

alleles was monitored separately by PCR in a heterozygous ESC line containing one allele from 

mouse strain Mus musculus and one allele from Mus castaneus.) Consequently, targeting one 

Sox2 allele in ESC did not impact the maintenance of pluripotent ESC, due to upregulation of the 

non-targeted Sox2 allele. This finding and earlier studies involving Sox2 overexpression in ESC 

(see below) indicate that Sox2 influences its own expression in ESC by a feedback loop. In the 

future, it will be important to determine whether the SCR that is active in ESC, is also active in 

other SOX2 expressing cells, in particular SOX2-positive tumor cells. Thus far, only SRR2 has 

been reported to be active in SOX2-positive tumor cells. 

 Sox2 not only positively influences Sox2 expression in ESC when it is under expressed, 

it has the opposite effect when Sox2 is overexpressed in ESC. As discussed later, ESC engineered 
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for inducible overexpression of Sox2 undergo differentiation when Sox2 is elevated by 2-fold or 

more. Interestingly, overexpression of exogenous Flag-tagged Sox2 in ESC reduces endogenous 

Sox2 expression at the protein level [17] and at the transcriptional level [18]. Specifically, it was 

determined that elevation of exogenous Sox2 activated a negative feedback loop mediated at least 

in part by increased phosphorylation of AKT and one of its downstream targets, FoxO1, which 

regulates transcription of Sox2 [18]. When FoxO1 is phosphorylated, it translocates out of the 

nucleus, thus reducing Sox2 transcription. Thus in ESC, Sox2 can regulate its own expression at 

the transcriptional levels by both positive and negative feedback loops when Sox2 expression is 

too low and when Sox2 expression is too high, respectively. While it is evident that the 

transcriptional regulation of SOX2 has been extensively studied, there is far more to learn how 

this gene is regulated at the transcriptional level. 

  

 1.2.2     MicroRNAs and SOX2 Expression 

 A large body of data has implicated microRNAs (miRs) in the function of normal 

embryonic and adult cells, as well diseased tissues, in particular cancer. More than 10 years ago, 

ChIP-Chip studies conducted by Boyer et al determined that SOX2 associates with the regulatory 

regions of many miR genes in human ESC [19]. This finding was extended by ChIP-seq analysis 

of Sox2 chromatin binding in mouse ESC [20]. More recently, Fang et al determined by ChIP-seq 

that SOX2 is bound to over 100 miR genes in a glioblastoma cell line [21]. Further study is 

expected to show that SOX2 regulates the transcription of a large number of miRs in a wide 

variety of SOX2-positive tumors. However, the specific miR genes regulated by SOX2 are 

expected to differ widely between tumor cell types due to differences in their transcriptional 

circuitries.  

 In addition to the regulation of miRs by SOX2, there is a growing list of miRs that are 

capable of regulating SOX2 at the post-transcriptional level. In the case of cancer, at least 18 

miRs have been reported to regulate SOX2 expression in tumor cell lines (Table 1.1), include 



7 
 

 



8 
 

 

NT/2). Of these, miR-145 has been implicated directly or indirectly in ESC and at least seven 

cancers, glioblastoma, prostate cancer, non-small cell lung carcinoma, Ewing sarcoma, 

hepatocellular carcinoma, pancreatic adenocarcinoma, and urothelial carcinoma [22-29]. 

Interestingly, in glioblastoma, SOX2 and miR145 have been reported to form a negative feedback 

loop with one another. In this tumor, Sox2 can associate with the gene regulatory regions of 

miR145, where it is believed to repress miR145 transcription; whereas miR145 reduces the 

expression of SOX2 by interfering with its translation [21]. In colorectal cancer, miR-200c and 

SOX2 also appear to regulate one another by a negative feedback loop [30]. With one notable 

exception [31], SOX2-targeting miRs are associated with downregulation of SOX2.  

 The association of SOX2 and miRs in specific cancers has been inferred predominately 

from the correlation between elevated SOX2 expression and low miR expression. In most studies, 

this association is supported by two additional lines of evidence, down regulation of SOX2 when 

the miR in question is ectopically elevated in tumor cell lines, and down regulation of a reporter 

gene construct, typically luciferase, containing a portion of the SOX2 3’ untranslated region 

(UTR) when the miR is ectopically expressed in tumor cell lines (Table 1.1). 

 For some cancers only a single miR has been implicated thus far in the regulation of 

SOX2. For example, when miR-30a is upregulated in nasopharyngeal carcinoma cells it appears 

to be capable of reducing SOX2 protein levels by targeting the 3’ UTR of SOX2 mRNA [32]. 

However, it is likely that SOX2 can be regulated by several miRs in the same cell type. In gastric 

carcinoma, prostate cancer, and colorectal cancer, more than one miR has been implicated in the 

regulation of SOX2 (Table 1.1). In prostate cancer, SOX2 expression is associated with low 

expression of both miR-145 and miR-34b [24, 33]. However, unlike miR-145, which has been 

shown to target the 3’ UTR of the Sox2 transcript [22], it is unclear whether miR-34b targets 

SOX2 directly. In the case of colorectal cancer, miR-200c, miR-638, miR-450-5p, and miR-429 

have been reported to regulate SOX2, but with different outcomes (Table 1.1). Lu et al reported 

that miR-200c, which is expressed at lower levels in colorectal specimens and highly metastatic 
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colorectal cell lines, exhibits an inverse relationship with SOX2 [30]. Similarly, Ma et al has also 

shown that miR-638, which is expressed at a lower level in colorectal tumors than adjacent non-

tumorigenic tissue, is able to target SOX2 [34], and Jin et al reported that miR-450-5p, which is 

downregulated in recurrent colorectal cancer, is capable of downregulating SOX2 [35]. In 

contrast, Li et al reported that higher levels of miR-429 and lower levels of SOX2 mRNA in 

colorectal cancer are correlated with poor survival after surgery [36]. Interestingly, these 

investigators argued that high miR-429 expression exerts its anti-apoptotic function by 

downregulating SOX2. However, this is inconsistent with the apparent oncogenic role of SOX2 

in a subgroup of in colorectal cancer patients. In this regard, Lundberg et al reported that SOX2-

positive colorectal cancer patients do not survive as long as SOX2-negative colorectal cancer 

patients; and this differential is larger for patients with BRAFV600E mutations who survive for 

substantially shorter periods than those who are SOX2-positive, but lack the BRAF mutation 

[37]. Going forward, it will be important to determine whether the levels of miR-429 are lower in 

colorectal cancer patients with BRAFV600E mutations. One of the mechanisms by which miR-

429 promotes colorectal cancer may be to help maintain SOX2 within optimal levels in the 

BRAFV600E-mutant subgroup of colorectal tumors, which is discussed in greater detail later.  

 More than one miR has also been reported to target SOX2 in gastric carcinoma. For both 

miRs, high miR expression is associated with low SOX2 expression. Li et al reported that miR-

371-5p, which is elevated in gastric carcinoma compared to adjacent normal tissue, targets SOX2 

[38]. In addition, these investigators reported that miR-371-5p downregulated a luciferase 

reporter gene construct containing a short sequence from the SOX2 3’ UTR; whereas blocking 

expression of this miR in gastric tumor cell line increased SOX2 expression and cell proliferation 

in vitro. A similar conclusion was reached for miR-126. Otsubo et al reported that transiently 

elevating miR-126 in gastric cancer cell lines decreased SOX2 and increased cell proliferation in 

vitro [39]. They also demonstrated that miR-126 reduced the expression of a luciferase reporter 

gene containing regions taken from the SOX2 3’ UTR. Furthermore, these investigators reported 
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low SOX2 expression and elevated miR-126 in some gastric tumor specimens, but the results 

reported do not appear to show a clear pattern. Although, elevated miR-126 expression and low 

SOX2 expression was observed in several gastric cancer tumor specimens, low miR-126 

expression was accompanied by low SOX2 expression in several other gastric tumor specimens. 

Thus, a larger number of tumors specimens will need to be evaluated to resolve the relationship 

between miR-126 and SOX2. In addition, the relationship between miR-126, SOX2, and patient 

survival remains to be determined. As expanded on below, high SOX2 in gastric cancer has been 

reported to be associated with longer patient survival [40-42]. Interestingly, there are reports that 

miR-126 can act as a tumor suppressor in other types of cancer. For example, Yang et al and 

Zhao et al reported that miR-126 behaves as a tumor suppressor in osteosarcoma and 

hepatocellular carcinoma, respectively, by targeting SOX2 [43, 44]. Additionally, Hamada et al 

reported that loss of mR-126 expression is observed in invasive pancreatic ductal adenocarcinoma 

[45].  

 Although miRs are recognized as important regulators of SOX2 expression, two 

important issues need to be considered. First, unless the cell of origin and its expression of miRs 

have been determined, it remains to be determined whether the miR in question and its putative 

loss during tumor progression did in fact contribute to elevated SOX2 expression. Second, the full 

spectrum of SOX2 targeting miRs is likely to be far greater than those already identified. 

 

 1.2.3     Long Noncoding RNAs and SOX2 Expression 

 In addition to miRs, several long noncoding RNAs (lncRNAs) have been reported to 

influence the levels of SOX2 in tumor cells. LncRNAs are a class of RNAs that are greater than 

200 nucleotides that lack protein-coding sequences. They are transcribed by RNA polymerase II 

and they are spliced, 5’ capped, and 3’ polyadenylated. The human genome contains several 

thousand lncRNAs, and there is growing evidence that many play major roles in gene regulation 

by influencing chromatin structure, gene transcription, and processing of mRNA [46]. More 
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recently, several lncRNAs have been implicated in the regulation of SOX2 expression and its 

transcriptional activity. The first direct link between SOX2 and lncRNAs was the discovery that 

the single exon SOX2 gene is embedded within an intron of a multi-exon lncRNA gene known as 

SOX2 overlapping transcript (SOX2OT, also known as non-protein-coding RNA 43) [47]. Like 

SOX2 itself, SOX2OT orthologues are expressed widely in other vertebrates, including in mouse, 

chicken, and zebrafish. SOX2 and SOX2OT are each transcribed in the same direction. SOX2OT is 

reported to possess at least 10 exons with up to four different transcription start sites. Through use 

of alternative transcription start sites and alternative splicing at least 8 splice variants of SOX2OT 

can be generated [48, 49]. 

 SOX2 and SOX2OT have been shown to be co-expressed in ESC, as well as breast, lung, 

brain, and esophageal tumors [50-54]. In each of these cancers, more than one splice variant is 

expressed, and the splice variants expressed differ between different cancers. SOX2 and SOX2OT 

are also likely to be co-expressed in hepatocellular carcinoma. Separate studies have reported that 

expression of SOX2 and SOX2OT in hepatocellular carcinoma is each associated with poor 

prognosis [55, 56]. Although the mechanistic relationship between SOX2 expression and 

SOX2OT remains to be determined, several studies support the conclusion that SOX2OT lncRNA 

contributes to the expression of SOX2. Knockdown of SOX2OT by small interfering RNA 

(siRNA) in the lung adenocarcinoma cell line A549 reduced the expression of SOX2 transcripts 

[53]. Conversely, forced overexpression of SOX2OT in the breast tumor cell line MDA-MB-231 

increased the expression of SOX2 transcripts and protein [51]. Intriguingly, SOX2 and SOX2OT 

expression may both be related by at least one miR. miR-211 has been reported to target the same 

sequence in transcripts of SOX2OT and SOX2 and lead to their downregulation when miR-211 is 

overexpressed in the human embryonal carcinoma cell line NT-2 [57]. 

 In addition to SOX2OT, several other lncRNAs have been directly implicated in the 

expression of SOX2. The lncRNA TUNA (Tcl1 Upstream Neuron-Associated), which can form a 

complex with three RNA-binding proteins, has been shown by performing chromatin isolation via 
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RNA purification (ChIRP) to associate with the Sox2 promoter in mouse ESC [58]. Furthermore, 

knockdown of TUNA by small hairpin RNA (shRNA) reduced the expression of Sox2 and led to 

the differentiation of mouse ESC. Interestingly, TUNA and Sox2 are also co-expressed in the 

brain [58]. Thus, it will be interesting to determine whether TUNA is expressed in glioblastoma 

and medulloblastoma and other SOX2-positive tumors, where it may also contribute to SOX2 

expression. However, further study will be needed to determine how TUNA influences SOX2 

expression. The lncRNA MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) 

also appears to influence the expression of SOX2. MALAT1 has been shown to be expressed in 

the glioma tumor cell line SHG139S and in two pancreatic tumor cell lines, AsPC1 and CFPAC-1 

[59, 60]. Knockdown of MALAT1 in each of these tumor cell lines reduced the expression of 

SOX2. However, it is unclear whether the effect of MALAT1 on SOX2 in these tumor cells is 

direct or indirect. Equally interesting is the report that lncRNA RoR supports SOX2 expression by 

functioning as a miRNA sponge. Specifically, RoR helps maintain SOX2 expression by serving 

as an RNA decoy that competes for miRs (e.g. miR145) that target SOX2 expression [61]. 

 LncRNAs also appear to regulate the transcriptional activity of SOX2. The lncRNA 

RMST (RhabdoMyoSarcoma 2-associated Transcript) has been reported to coregulate Sox2 target 

genes during neurogenesis [62]. RMST interacts physically with SOX2 and promotes the binding 

of SOX2 to the regulatory regions of neurogenic transcription factors. Impressively, knockdown 

of RMST reduces SOX2 association with approximately half of its chromatin binding sites [62]. 

Although RMST appears to enhance the transcriptional activity of SOX2, at least one lncRNA, 

MEG3 (Maternally Expressed Gene 3) that also physically associates with SOX2, can interfere 

with its action. Knockdown of MEG3 has been reported to increase the association of SOX2 with 

the BMP4 gene and decrease the transcription of this gene [63]. Thus far, the domains of SOX2 

that associate with these lncRNA have not been determined, nor has it been determined how they 

influence the transcriptional activity of SOX2. Going forward, it will be interesting to determine 

whether RMST and MEG3 are commonly expressed in SOX2-positive tumors, including 
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glioblastoma and medulloblastoma. Moreover, MEG3 has been shown to be expressed in 

pancreatic tumor cell lines, where its knockdown led to a reduction in cell number in vitro [64]. 

Thus, it will be interesting to determine whether knockdown of MEG3 alters the function of 

SOX2 in pancreatic tumor cells. 

 

 1.2.4     Post-translational Modifications of SOX2  

 Another important mechanism used to regulate SOX2, including its transcriptional 

activity, nuclear localization, and stability, is through its post-translational modifications. As 

discussed in this section, Sox2 is regulated at the post-translational level by a wide range of 

modifications, including phosphorylation, glycosylation, sumoylation, methylation, 

ubiquitination, and acetylation. Thus far, nearly all reports of SOX2 post-translational 

modifications have been conducted with mouse pluripotent stem cells and mostly with ESC. In 

the future, it will be important to characterize the post-translational modifications of SOX2 in 

tumor cells. However, at least one study has described a SOX2 post-translational modification 

(phosphorylation) in human lung squamous cell carcinoma cells [65]. For the purposes of clarity, 

and to avoid confusion, the reader is reminded that human SOX2 and mouse Sox2 differ in length 

by 2 amino acids: 317 amino acids and 319 amino acids, respectively due to a two amino acid 

insertion beginning at residue 23 in mouse Sox2 (Figure 1.1). 

 The most common and diverse post-translational modification reported for Sox2 is 

phosphorylation. Sox2 phosphorylation influences its transcriptional activity and its stability. 

Studies by several research teams have shown that Sox2 can be phosphorylated in vivo on at least 

6 serine residues (mouse S39, S83, S248, S251, S252, S253) and two threonine resides (mouse 

Sox2 T118 and human SOX2 T118) (Figure 1.1). Sox2 has also been reported to be 

phosphorylated when Sox2 is ectopically expressed in 293T cells, which express little if any 

endogenous SOX2 [66]. It remains to be determined whether these tyrosine residues are 
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phosphorylated in cells that endogenously express SOX2. The kinases responsible for serine 

phosphorylation of SOX2 have only begun to be determined. For example, Cdk2 can 

phosphorylate both S39 and S253 in vitro [66]. Modifying both serine residues by conversion to 

alanine (S39A, S253A) reduces the ability of mutant Sox2 to reprogram somatic cells into iPS 

cells. Surprisingly, even though S39 and S253 are phosphorylated in mouse ESC, and most 

highly phosphorylated during mitosis, a mutant form of Sox2 (S39A/S253A) is able support the 

self-renewal of mouse ESC when endogenous Sox2 is depleted [66]. It is possible that at different 

levels of Sox2, phosphorylation of theses serine residues is dispensable. 

 Serine S248 of mouse Sox2 has been reported to be phosphorylated in mouse ESC. 

Phosphorylation of this serine is likely to have a significant role in the function of Sox2, because 

this serine, along with T258 in mouse Sox2 (see below) can also be modified by O-

GlcNAcylation [67, 68]. Studies conducted thus far suggest that modification of S248 in mouse 

Sox2 may alter the transcriptional activity of Sox2, but further work will be needed to properly 

dissect the impact of phosphorylation and O-GlcNAcylation of Sox2 S248. Similar to this serine 

residue, the serine triplet S249-S250-S251 in human SOX2 appears to regulate another post-

translational modification, sumoylation. Human SOX2 has been shown to be sumoylated on 

K245 and K247 in mouse Sox2 [69, 70]. Importantly, sumoylation of K245 is abolished in the 

SOX2 mutant (S249A-S250A-S251A) [69]. Thus, phosphorylation of one or more serine residues 

in the triplet appears to serve as a priming step in the subsequent sumoylation of SOX2. Although 

the role(s) of SOX2 sumoylation remain to be fully characterized, sumoylation of mouse Sox2 

has been reported to reduce the ability of Sox2 to increase the transcription of Fgf4 and Nanog 

[70]. In the future, it will be important to determine whether this reduction in transcriptional 

activity is restricted to a small number of genes or is true for most Sox2-regulated genes.  

 The kinases that phosphorylate threonine residues of mouse Sox2 T118 and humanT118 

have been identified. These threonine residues are both located within a consensus nuclear 

localization sequence and the HMG domain of SOX2, which is responsible for DNA binding. 
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Phosphorylation of human SOX2 onT118 is mediated by the atypical PKCι [65]. Phosphorylation 

of this threonine is associated with an increase in the transcriptional activity of SOX2, which was 

shown using SOX2 mutants. The transcriptional activity observed with wild-type SOX2, was not 

observed with the SOX2 mutant (T118A), but exhibited by the SOX2 phospho-mimetic mutant 

(SOX2-T118D). Interestingly, human SOX2-T118A does not appear to alter SOX2 stability. In 

stark contrast, the mouse mutant Sox2-T118A reduces Sox2 stability. Mouse Sox2 can be 

phosphorylated on T118 by AKT in mouse ESC [71]. Phosphorylation of this serine not only 

increases the transcriptional activity of Sox2, it also increases its stability. Remarkably, 

phosphorylation of T118 blocks the monomethylation of Sox2 on the adjacent K119 by the 

methyltransferase set7 [72]. Methylation of K119 induces the ubiquitination of Sox2 by the E3 

ligase WWP2 and the degradation of Sox2 [72]. Thus, the antagonistic phosphorylation-

methylation switch mediated by T118-K119 alters the transcription activity and stability of Sox2, 

respectively. Importantly, we are not aware of any studies reporting that AKT inhibitors reduce 

the stability of SOX2 in tumor cells. This warrants attention given the use of AKT inhibitors in 

many cancer clinical trials. As discussed earlier, AKT has been implicated in a negative feedback 

top that influences the transcription of the Sox2 gene in ESC [18]. 

 Sox2 can also be ubiquitinated on K123, which is located just beyond the C-terminal 

portion of the DNA binding domain of Sox2 (the HMG domain). The ubiquitin-conjugating 

enzyme E2S (Ube2s) mediates K11-linked polyubiquitination of Sox2 at this site [73]. When 

ubiquitinated on K123, Sox2 is targeted for proteasome-mediated degradation. The comparable 

lysine of human SOX2 is K121. Although SOX2-T118A does not appear to be less stable than 

wild-type SOX2 in lung squamous cell carcinoma cells, it is possible in some tumor cells that 

phosphorylation of T118 (human SOX2) may block ubiquitination of SOX2 at K121, as was 

discussed above for T118 (mouse Sox2), and its influence on the methylation of K119 and the 

subsequent degradation of Sox2.  

 In addition to Sox2 methylation and O-GlcNAcylation discussed above, SOX2 can also 
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be methylated and O-GlcNAcylated on other amino acids. Sox2 T258 has been shown to be 

modified by O-GlcNAcylation in mouse ESC. Thus far, the function of T258 O-GlcNAcylation 

has only been studied in the context of double and triple mutants (T258A/S259A and 

S248A/T258A/S259A). The double mutant reduced the ability of Sox2 to reprogram somatic 

cells to iPS cells; whereas the triple mutant did not [68]. Additionally, Sox2 can be methylated on 

R113 by the arginine methyltransferase CARM1, which increases SOX2 self-association and 

increases the transcriptional activity of Sox2 [74]. However, further study will be needed to 

determine whether the increase in Sox2 transcriptional activity is linked to its self-association. 

Furthermore, it is possible that methylation of Sox2 R113 increases its association with other Sox 

family members [74, 75]. Additionally, R113, which is also located within HMG domain of 

Sox2, is located within a second Sox2 nuclear localization sequences (NLS2). Interestingly, the 

Sox2-R113K mutant, which cannot be methylated, did not alter the subcellular location or the 

stability of Sox2 [74]. 

 Finally, Sox2 has been shown to be acetylated within its DNA binding domain on K75 in 

vivo. Although the acetyltransferase that acetylates Sox2 in vivo has not been determined 

definitively, p300/CBP is a likely candidate, especially since Sox2 can be acetylated by 

p300/CBP on K75 in vitro[76]. Moreover, Sox2 has been shown to recruit p300 to the Fgf4 

enhancer in ESC [77]. Blocking acetylation of Sox2 in ESC, as shown with the Sox2-K75A 

mutant, led to retention of Sox2 in the nucleus and maintenance of its transcriptional activity; 

whereas, the acetyl-mimic Sox2-K75Q mutant, associates with the nuclear export machinery, 

specifically Crm1 [76]. Other studies indicate that Sox2 can be deacetylated by Sirt1, a member 

of the sirtuin family of NAD-dependent protein deacetylases [78, 79]. Acetylation of Sox2 not 

only affects its function in ESC, a low level of Sox2 acetylation enhances reprogramming of 

somatic cells to iPS cells [79]. 

 It is clear from the discussion in this section that post-translational modifications of 

SOX2 dramatically alter its function, and undoubtedly play key roles in helping to adjust the 
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levels of SOX2 needed to support cellular function. However, many questions remain to be 

addressed. In addition to the enzymes responsible for creating the variety of SOX2 post-

translation modifications, enzymes that remove some of these modifications of SOX2 have not 

been identified. Besides phosphatases, likely candidates include deubiquitinating enzymes 

(DUBs). Interestingly, proteomic analysis of the SOX2-interactome indicates that SOX2 

associates with several DUBs that exert important roles in tumor cells, including USP9X, USP7, 

USP15, USP24, and USP34 [80-82]. In the future, defining the roles of each of the SOX2 

modifications and the enzymes involved in tumor cells may provide valuable insights into 

possible strategies for targeting SOX2 in a large number of cancers. An equally important 

question that warrants careful attention is the extent to which any given SOX2 molecule is 

simultaneously modified by more than one post-translational modification. By analogy to the 

histone code, a “SOX2 code” of post-translational modifications is likely to play a key role in 

orchestrating the formation of the multitude of SOX2-protein complexes (SOX2-interactome) 

needed to properly control the level, transcriptional activity, subcellular localization, and stability 

of SOX2.  

 

1.3     SOX2 is Essential during Mammalian Embryogenesis 

 The essential role of Sox2 during mammalian embryogenesis was first shown by 

knockout of both Sox2 alleles and it was determined that Sox2 null embryos reach the blastocyst 

stage in which the inner cluster of cells in the developing embryo has formed an inner cell mass, 

but these developing embryos do not survive after implantation [2]. However, the stage at which 

Sox2 knockout embryos arrest may be influenced by Sox2 from maternal sources, which is 

present in mature oocytes as well as at fertilization [2]. The role of maternal Sox2 during 

embryogenesis was the subject of two studies that reached different conclusions. Keramari et al. 

used Sox2 siRNA to knockdown both maternal and zygotic Sox2 [83]. This study led to the 

conclusion that Sox2 is needed for the embryo to transition into the blastocyst stage. However, a 
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subsequent study reached a different conclusion. Initially, Wicklow et al used Zp3-Cre to delete 

maternal Sox2 in the early embryo [84]. Importantly, mating Sox2fl/fl/Zp3Cre females to wild-

type males led to healthy offspring at numbers expected for normal litters. Thus, maternal Sox2 is 

not required for normal development. Furthermore, Wicklow et al determined that combined 

knockout of both maternal and zygotic Sox2 did not block formation of the blastocyst [84]. Thus, 

despite the study by Keramari et al, Sox2 does not appear to be needed for the specification of the 

inner cell mass and surrounding trophectoderm in the early blastocyst [83]. It is also unclear why 

the use of Sox2 siRNA generated different results. The two most likely explanations, off-target 

effects of Sox2 siRNAs and the general toxicity of siRNA, were experimentally addressed by 

Keramari et al [83]. Thus, caution must be exercised when interpreting results where siRNA is 

used to study mammalian embryogenesis. Overall, studies of Sox2 null embryos established that 

Sox2 is essential during embryogenesis and argues that the first lineage decision during 

embryogenesis, specifically the formation of blastocysts, does not require Sox2. 

 However, additional studies have shown that Sox2 influences the second cell lineage 

decision, in particular primitive (extraembryonic) endoderm gene expression, in an Fgf4-

dependent manner. The second major cell lineage decision made during embryogenesis is the 

generation of the epiblast and primitive (extraembryonic) endoderm from the inner cell mass. As 

normal development proceeds to the blastocyst stage, Sox2 has already become restricted to the 

inner group of cells. At the blastocyst stage, the inner cell mass exhibits a restricted “salt and 

pepper” distribution where Sox2, is expressed in some cells and not in others [85]. Once the 

embryo reaches the epiblast stage, Sox2, Nanog, and Fgf4 are restricted to the epiblast. Wicklow 

et al reported that Sox2 null blastocysts express ~70% less Fgf4 than their wild-type counterparts 

[84]. This led them to test whether treatment of cultured Sox2 null embryos with Fgf4 would 

promote the expression of primitive (extraembryonic) endoderm markers. Treatment of wild-type 

embryos with Fgf4 increases Sox17 expression, but the increase in Sox17 expression exhibited by 

Sox2 null embryos treated with Fgf4 was substantially higher. In this connection, it is important 



20 
 

 

to note that although E3.75 Sox2 null embryos exhibit low Sox17 expression, E4.25 Sox2 null 

embryos express Sox17 and several other PrE-expressed genes (Gata6, Gata4, and Pdgfra). In 

fact, Sox2 null embryos at E4.25 express Sox17 and Gata6 at levels similar to wild-type embryos. 

Thus, Sox2 influences primitive (extraembryonic) endoderm differentiation. However, it is 

unclear whether Sox2 accelerates the onset of primitive (extraembryonic) endoderm gene 

expression or, as suggested by Wicklow et al, Sox2 is needed for initial expression of these genes, 

but not for their later expression [84]. Importantly, these investigators also reported that Sox2 is 

needed to maintain the epiblast starting at E4.25, again confirming the important role of multiple 

stages of mammalian embryogenesis. 

 

1.4     Sox2 levels are optimized to support both self-renewal and pluripotency of ESC 

 In addition to the critical functions of Sox2 in the developing embryo, numerous reports 

have examined the role of Sox2 in the self-renewal and pluripotency of ESC. Studies in this 

laboratory, which focused on the transcriptional activity of Sox2, led to the prediction that 

elevating Sox2 in ESC would induce differentiation [86, 87]. Initially, we determined that 

increasing the levels of Sox2 in F9 ECC inhibits the activity of the Fgf4 promoter [85]. 

Subsequently, we determined that elevating Sox2 decreased the activities of Oct4, Nanog, UTF1, 

and Sox2 promoter/reporter gene constructs that were transiently transfected into F9 ECC, as well 

as in ESC [87]. Interestingly, although elevating Nanog or Oct4 could inhibit their own 

promoters, only when Sox2 levels were elevated were the activities of all five promoters 

inhibited. Importantly, small increases in the levels of Sox2 not only decreased the activities of 

the five promoters, it also reduced the transcripts for Sox2, Oct4, Nanog, Utf1, and Fgf4 [87]. 

 Currently, relatively little is known about the mechanisms by which elevated levels of 

Sox2 inhibit Sox2, Oct4, Nanog, Utf1, and Fgf4 promoters. However, using promoter/enhancer-

reporter gene constructs, elevated Sox2 has been shown to act on the enhancers that are bound by 

Sox2 and Oct4 in each of these genes [87]. Additionally, we has shown that elevating Sox2 in i-



21 
 

 

OSKM-ESC inhibits the transcription of the endogenous Sox2 gene by activating a negative 

feedback loop that leads to the phosphorylation and the translocation of FoxO1 (an activator of 

Sox2 transcription) into the cytoplasm [18]. More recent studies also point to Sox2 autoregulation 

of Sox2. Allele-specific analysis of Sox2 transcripts in ESC indicates that inactivation of one 

allele leads to increased transcription of the remaining allele [8]. Thus, ESC are able to carefully 

regulate Sox2 transcription. It is proposed that this also occurs during embryogenesis. 

 The recognition that small increases in Sox2 reduce the expression of several genes 

known to be essential for the self-renewal of ESC led us to the hypothesis that small increases in 

Sox2 would trigger their differentiation. To test this hypothesis, we engineered ESC for inducible 

overexpression of Sox2 [17]. When Sox2 levels were elevated ~2-fold, the cells underwent 

pronounced morphological changes indicative of differentiation. Gene expression analysis 

demonstrated that pluripotency-associated genes (e.g. Nanog) were downregulated; whereas 

genes associated with neuroectoderm, mesoderm, and trophectoderm, but not endoderm, were 

upregulated. Interestingly, massive cell death occurs when Sox2 levels were elevated ~5-fold in 

ESC. Thus, it is imperative that Sox2 levels are limited in ESC, even when differentiation is 

initiated. 

 Reducing Sox2 levels in ESC has also been reported to induce differentiation. Chew et al 

demonstrated that stable transfection of ESC with a vector, which constitutively expresses Sox2 

siRNA, reduced Sox2 levels (~50%) and led to a loss of self-renewal [3]. Unlike Oct4 in ESC, 

~50% reduction in Sox2 appears to be sufficient to cause the ESC to differentiate. The 

differentiated cells exhibited a marked change in morphology and expressed trophectocerm 

markers Cdx2 and Hand1. Together, the knockdown and overexpression studies argue that Sox2 

levels are optimized in ESC: both small decreases and small increases disrupt their self-renewal 

and induce differentiation. 
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1.5     SOX2-Protein Interactomes Identify Critical Understudied Proteins, like Musashi2, in 

Multiple Cell Types 

 During the past 10 years, considerable effort has been devoted to understanding the 

mechanisms by which essential transcription factors mediate their effects. More recently, 

significant strides have been made toward mapping protein-protein interaction landscapes of 

essential transcription factors in a number of cellular systems. For example, extensive progress 

has been made in determining the proteome of transcription factors, in particular Sox2, Oct4, and 

Nanog, necessary for maintaining the self-renewal and pluripotency of ESC [82, 88-93]. The 

integration of interactomes for Sox2, Oct4, and Nanog, argues that these pluripotency associated 

transcription factors are part of a highly integrated protein-protein interaction landscape, which 

includes many other transcription factors, chromatin remodeling machinery, DNA repair 

machinery, and RNA binding proteins [82, 93-95]. Previous studies in our laboratory identified 

proteins which interact with SOX2 in multiple cell types, including ESC, ESC undergoing 

differentiation, DAOY, and U87 brain tumor cells. We hypothesized that proteins that interact 

with SOX2 in multiple cell types are likely to be necessary for the continued growth and function 

of these cells.  

 These unbiased proteomic screens have proven to be a powerful approach for identifying 

under-studied proteins, such as Banf1 and Musashi2 (MSI2), that significantly influence the fate 

of ESC [93-97]. Msi2 is part of a family of RNA-binding proteins that includes Musashi1 (Msi1). 

Msi1 and Msi2 each contain two RNA recognition motifs, and both Msi1 and Msi2 can be 

expressed as more than one isoform due to alternative splicing [98]. Although the roles of 

Musashi proteins are far from clear, Msi1 has been shown to block the translation of Numb by 

binding to the 3’ UTR of Numb mRNA [99]. Interestingly, knockdown of Msi2 in two leukemic 

cell lines led to an increase in Numb at the protein level, but it remains to be determined whether 

this is a direct effect of Msi2 [100]. 

 Musashi proteins appear to play important roles during development. Msi1 and Msi2 
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have been shown to contribute to the development of the nervous system, where they appear to 

work cooperatively to promote the maintenance of neural stem cells [101]. More recently, Msi2 

has been shown to influence the behavior of hematopoietic stem cells (HSC) and their 

progenitors. Overexpression of Msi2 in HSC in a transgenic mouse model increased the 

population of HSC progenitors and decreased the population of their downstream derivatives 

[100]. In contrast, knockdown of Msi2 by shRNA in lymphomyeloid progenitors led to an 

increase in the proportion of more mature differentiated myeloid cells [102]. The importance of 

Msi2 during hematopoiesis is also evident from the finding that Msi2 null mice exhibit significant 

defects in HSC. Interestingly, Msi2 null mice are smaller than their wild-type counterparts, they 

are produced at lower than expected frequencies, and Msi2 null mice are infertile when mated 

together [103, 104]. The reasons for each of these defects remain to be determined. 

 In addition to influencing development, Msi2 has also been linked to tumorigenesis. 

Importantly, recent studies have shown Msi2 is overexpressed in chronic myelogenous leukemia 

(CML) and acute myeloid leukemia (AML) [100, 103]. In CML, Msi2 is elevated ~10-fold 

during the more aggressive blast crisis phase than in the chronic phase, and elevated Msi2 

expression in CML has been linked to relapse and poorer prognosis [103]. Consistent with these 

findings, knockdown of Msi2 by shRNA in blast crisis CML cells led to a more differentiated cell 

population and diminished proliferation of the diseased cells [103]. Additionally, knockdown of 

Msi2 in several leukemic cell lines reduced their proliferation and led to increased differentiation 

and apoptosis [100]. While these studies have advanced our understanding of roles of Msi2 in 

multiple cell types, much remains to known, particularly in ESC and brain tumor cells.  

 

1.6     SOX2 Expression in Cancer: Amplification, Prognosis, and Survival 

 SOX2 expression has been reported at both the RNA and protein levels in over 20 

cancers. Data available from The Cancer Genome Atlas indicates that SOX2 mRNA is elevated 

in many cancers, relative to normal tissue. For example, SOX2 is reported to be elevated in >85% 
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of glioblastoma multiforme samples compared to normal controls [105]. Interestingly, 

hypomethylation of the SOX2 promoter was detected in over 250 glioblastoma specimens 

compared to normal controls [105]. In tumors such as glioblastoma, ovarian, esophageal, lung, 

oral, prostate, and sinonasal carcinoma, SOX2 has been shown to be amplified in some subsets of 

patient tumors [105-116]. One study found SOX2 to be amplified in 26% of serous ovarian 

cancers [107], and the SOX2 locus (3q26.33) was amplified in ~8% of glioblastoma cases [105], 

suggesting an increase in copy number is only a piece of a much larger puzzle regarding SOX2 

expression in cancer.  

 For most cancers, SOX2 expression has also been documented at the protein level by 

immunohistochemistry [42, 105, 106, 108, 111, 113, 114, 117-127]. For example, in a study of 

breast cancer patients, SOX2 was strongly detected by immunohistochemistry in the nucleus of 

breast carcinoma cells compared to weak or no SOX2 staining in normal mammary epithelial 

tissue [117, 128]. Although SOX2 expression has been reported in many cancers [105-126, 128-

131], the percent of SOX2-positive cells within SOX2-positive tumors is not consistently 

reported. However, in the case of ovarian cancer, both the percent of SOX2-positive tumors and 

the percent of SOX2-positive cells within these tumors have been reported [123]. Interestingly, 

the percent of SOX2-positive cells differs between different ovarian tumor subtypes [123]. 

 In several cancers, the levels of SOX2 expression at different stages of the cancer has 

been examined [122]. In pancreatic ductal adenocarcinomas (PDAC), SOX2 is rarely expressed 

in pre-malignant pancreatic intraepithelial neoplasia (PanIN), but its expression has been reported 

to increase to ~60% in poorly differentiated and neurally invasive components [125]. Similarly, 

studies in glioblastoma, esophageal, breast, and prostate cancers have reported that SOX2 levels 

increase with increasing tumor grade [106, 126, 128, 132, 133], and the percentage of SOX2-

positive cells correlates with Gleason score [134]. In the case of ovarian epithelial carcinoma, 

SOX2 expression was reported to increase from ~55% of normal ovarian epithelia to over 90% of 

serous and mucinous cystadenocarcinomas [123]. Interestingly, in the case of gastric cancer, 
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reports regarding the levels of SOX2 expression during tumor progression are conflicting. In one 

study, SOX2 mRNA was reported to be significantly elevated compared to adjacent benign tissues 

[129]. In contrast, other studies reported lower SOX2 expression in gastric cancer and its 

metastatic lesions compared to matched, normal gastric mucosa [40, 42, 127, 135]. However, 

SOX2 expression also appears to vary with different mucosal subgroups in gastric cancer [127, 

136]. Thus, for several cancers, there is a need to more carefully determine how SOX2 levels 

change during tumor progression. Undoubtedly, recognizing how SOX2 expression is altered 

between normal and tumorous tissues is important for understanding molecular changes 

necessary for tumor development and progression.  

 In addition to determining how SOX2 levels change during tumor progression, it is 

essential to determine whether SOX2 levels influence clinical prognosis for cancer patients. 

Studies reported thus far indicate that high SOX2 levels correlate with poor prognosis for patients 

with many different cancers, including breast (triple negative), colorectal, esophageal, ovarian, 

and lung tumors, as well as nasopharyngeal and sinonasal carcinoma (Table 1.2) [124, 133, 137-

141]. Furthermore, a higher incidence of recurrence was significantly correlated with SOX2 

amplification in sinonasal carcinomas [116], and rectal cancer patients with elevated SOX2 

displayed significantly lower disease-free survival following chemoradiotherapy [138]. 

Additional studies in esophageal, hepatocellular, oral/tongue, and some lung cancers, and have 

also found a correlation between elevated SOX2 and decreased survival [124, 133, 141-145]. In 

addition to survival and recurrence, in the majority of cancers examined thus far, high SOX2 

expression has been linked to the infiltrative and metastatic capacity of tumor cells [41, 42, 143, 

146-148]. For example, in the case of colorectal cancer, SOX2-expressing tumors have been 

shown to correlate with increased distant and lymphatic metastases [146]. Similarly, in 

esophageal squamous cell carcinomas, tumors in which more than 50% of the cells express SOX2 

were significantly correlated with increased lymphatic and vascular invasion, poor differentiation, 

and incomplete surgical resection [148]. However, high SOX2 levels may not be uniformly 
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indicative of poor patient prognosis. For at least four cancers, including gastric cancer and 

squamous cell lung cancer, low SOX2 expression has been reported to correlate with poor 

prognosis (Table 1.2) [41, 42, 113, 149]. Moreover, for gastric cancer elevated SOX2 levels are 

linked to reduced lymph node and distant metastases. The reasons for the contrasting results for 

SOX2 levels in different cancers remain to be determined. 

 Disappointingly, for some cancers, in particular head and neck squamous cell carcinomas 

and in ovarian cancer, there are conflicting reports regarding the levels of SOX2 expression and 

patient survival [107, 142, 145, 150]. In the case of head and neck squamous cell carcinomas, 

initial studies by Lee et al showed that SOX2 expression is correlated with poor prognosis and a 

nearly 5-fold higher risk of recurrence [142], but subsequent studies by Bayo et al determined that 

SOX2
high

 tumors had a median progression-free survival of 51 months compared to SOX2
low

 

tumors (16 months) and that SOX2
high

 tumors had a >110 month improved overall survival 

compared to SOX2
low

 tumors [150]. Questions also exist in the case of ovarian cancer. Belotte et 

al reported that tumors with SOX2 amplification had statistically significant improved survival 

[107]; however, an earlier study from Wang et al reported that high SOX2 levels in both primary 

and metastatic tumor components statistically correlated with significantly worse survival [145]. 

It is evident from the discussion in this section that there is a clear need for further investigation 

into the clinical implications of SOX2 expression, particularly in how SOX2 levels influence 

tumor progression and patient survival. 

 

1.7     SOX2 and Tumor-Initiating Cells/Cancer Stem Cells 

 SOX2 is not only expressed in many types of cancer, it has also been implicated in the 

tumor-initiating populations (proposed cancer stem cell population) of many of these tumors 

(Table 1.3). Many studies have used putative cancer stem cell markers, such as ALDH1, CD44, 

ABCG2, and side population via Hoechst efflux assay, to isolate and enrich for cells capable of 

forming tumors [tumor-initiating cells (TIC), sometimes considered cancer stem cells]   
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[112, 130, 151-155]. For example, in the case of an ovarian cancer cell line, the side population 

exhibited elevated levels of SOX2 mRNA and a higher percentage of TIC when assayed using a 

limiting cell dilution tumor assay, the gold standard for assessing the frequency of TIC within a 

tumor [154]. However, for most cancers, the link between SOX2 and their TIC has not been 

firmly established. For several tumor types, knockdown of SOX2 and/or ectopic expression of 

SOX2 have been used to implicate SOX2 in the biology of the TIC [137, 156-160]. For example, 

Lee et al and Santini et al determined that stable knockdown of SOX2 in limiting cell dilution 

tumor assays dramatically reduced tumor initiation/formation in both head and neck squamous 

cell carcinomas, and melanomas, respectively [142, 161]. Conversely, others [162, 163] 

generated lung and ovarian tumor cells that stably overexpress SOX2 and reported an elevated 

number of TIC when these cells were tested in limiting cell dilution tumor assays. However, as 

discussed below, there are concerns over the use of tumor cells engineered to stably overexpress 

SOX2. 

 Arguably the most conclusive studies have linked SOX2 to TIC by isolating the SOX2-

positive cell population rather than experimentally altering the levels of SOX2 within cells. This 

is important, because SOX2 is expressed heterogeneously throughout the cells of many tumors 

[137, 150, 164]. Moreover, for some tumors, only a percentage of the cells express SOX2. This is 

particularly evident for SOX2-positive tumor cell lines [137, 164, 165]. Thus far, the SOX2-

positive cells isolated from heterogeneous populations were engineered to either express GFP that 

was knocked into the endogenous SOX2 gene (GFP-SOX2 fusion protein) [164, 165] or GFP 

driven by a transgene under the control of the SOX2 promoter and enhancer [166]. In these three 

studies, SOX2-positive cells exhibited a higher frequency of TIC compared to the SOX2-negative 

cells of the same tumor cells population in a limiting cell dilution tumor assay. Furthermore, 

studies by Vanner et al not only showed SOX2-positive cells to be important for the tumor 

initiation, but also used thymidine-analog retention (label-retaining cells) to show that SOX2-

positive cells are members of a quiescent, slowly-cycling population within the tumor [164]. 
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Importantly, a recent study in bladder cancer has shown that the quiescent label-retaining cancer 

stem cell population does not respond to cytotoxic therapy and is capable of repopulating the 

tumor following drug removal [221]. Such studies not only call attention to a role for SOX2 in the 

TIC population, but also that this slowly-cycling, SOX2 positive population may be responsible 

for repopulating the tumor after drug treatment is suspended.  

 

1.8     SOX2 and Drug Resistance 

 Several recent studies have shown that exogenous elevation of SOX2 can promote 

resistance to chemotherapeutics currently being used clinically [126, 129, 137, 141, 142, 152, 

158, 163, 167-169]. In a report from Bareiss et al, ovarian cancer cell lines that did not express 

SOX2 and that were sensitive to carboplatin, cisplatin, and paclitaxel became resistant following 

stable, ectopic expression of SOX2 [163]. Furthermore, in a SOX2-expressing ovarian cancer cell 

line, SOX2 knockdown using shRNAs provided susceptibility to these drugs, which was reversed 

upon re-expression of SOX2 ectopically [163]. Similar results were seen in breast cancer cell 

lines, as stable overexpression of SOX2 in MCF-7 cells promoted resistance to tamoxifen, while 

stable downregulation of SOX2 using shRNAs enhanced the sensitivity of MCF-7 cells to 

tamoxifen [137]. While SOX2 may be acting to protect tumor cells through antiapoptotic 

signaling or quiescent-like phenotypes [126, 152, 158, 164], SOX2 may also be promoting drug 

resistance through various ATP-binding cassette transporters, including ABCG2, ABCC3, and 

ABCC6. In particular, ABCG2 has been shown in various tumors to be upregulated in the side 

population TIC [151, 154] and is, in some tumors, considered to be an additional cancer stem cell 

marker. Furthermore, studies in lung cancer, as well as head and neck squamous cell carcinoma, 

have shown that stable downregulation of SOX2 via shRNAs decreases ABCG2, which 

implicates this transporter in SOX2-related drug resistance [142, 159]. Recognizing and focusing 

on the role of SOX2 in drug resistance could greatly improve the treatment options for patients 

with a multitude of cancers, especially those with highly refractory tumors, as the ability to 
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eradicate the TIC population is likely to be the only way to prevent recurrence. 

 

1.9     SOX2 Levels and Tumor Growth 

 Many studies have used stable overexpression and/or knockdown of SOX2 in tumor cell 

lines to better understand the roles of this transcription factor in cancer. Knockdown of SOX2 

using either siRNA or shRNA have been used in multiple studies [12, 21, 105, 109, 110, 122, 

126, 128, 129, 141, 145, 154, 167, 170, 171]. Importantly, even partial reductions in SOX2 levels 

have been reported to significantly decrease cell viability, clonal growth, sphere formation, and 

tumorigenicity in multiple cancer types. Clearly, knockdown studies have established that SOX2 

plays important roles in these cancers. However, SOX2 overexpression studies have generated 

conflicting results. For example, stable overexpression of SOX2 in the gastric tumor cell line N87 

was reported to increase growth both in vitro and in vivo [129]. In contrast, stable overexpression 

of SOX2 in the gastric cell line MKN28 was reported to decrease growth both in vitro and in 

vivo. Currently, the reasons for the conflicting results are unclear. In both studies, SOX2 was 

substantially overexpressed in gastric tumor cell lines that endogenously express relatively little 

SOX2. Part of the explanation may be due to differences in the cell lines used. However, as 

discussed below other factors related to experimental design may also be a contributing factor. 

 Conflicting reports from SOX2 overexpression studies have also been reported for breast, 

prostate and pancreatic cancers. Stable overexpression in MCF7 (breast), DU145 (prostate), and 

Patu8988t (pancreatic ductal adenocarcinoma) cells have been reported to increase growth in 

vitro [126, 128, 155]. However, overexpression of SOX2 from a doxycycline-inducible transgene 

demonstrated that overexpression of SOX2, where one can monitor the early consequences of 

elevating SOX2, does not increase cell proliferation. Inducibly elevating SOX2 (~5 to 7-fold) in 

glioblastoma (U87, U118), medulloblastoma (DAOY), breast carcinoma (MCF7), and prostate 

carcinoma (DU145) cell lines led to growth inhibition in each case [172]. Thus, the immediate 

effect of elevating SOX2 in these tumor cell lines is growth inhibition. Clearly, it is important to 
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reexamine the effects of SOX2 in other cancers using inducible overexpression of SOX2, in 

particular where stable overexpression has been reported to increase tumor cell growth. 

 

1.10     Background on Brain Tumors and PDAC 

 While SOX2 has been shown to be important in over two dozen tumors, the studies 

described in this dissertation have focused on brain tumors and PDAC. Brain tumors, specifically 

glioblastomas (GBM) and medulloblastomas (MB) are highly debilitating diseases that are very 

difficult to treat. Despite improved therapeutic regimes, patients diagnosed with GBM, the most 

common primary adult brain tumor, have a median survival of 10-14 months [173]. Treatment of 

patients with MB, the most common pediatric brain cancer, poses an additional problem. Current 

therapies for MB cause dramatic impairment of cognitive function and predispose patients to 

future treatment-associated neoplasms [174]. Hence, there is a pressing need to identify novel 

proteins and signaling pathways that can serve as new targets for improved treatment of GBM 

and MB. As briefly outlined above, elevated levels of the transcription factor SOX2, which plays 

critical roles in the development of the nervous system, have been shown to correlate with poor 

clinical outcome for brain tumor patients [175]. The critical role of SOX2 in brain tumors is 

supported by the finding that knockdown of SOX2 by RNA interference reduces the in vitro and 

in vivo growth of GBM cells [170].  Moreover, SOX2 is expressed in MB cells [175] and, 

recently, it has been determined that the knockdown of SOX2 in DAOY MB cells reduces their 

proliferation (Cox and Rizzino, unpublished results). 

 Pancreatic ductal adenocarcinoma (PDAC) also expresses SOX2 and it is one of the most 

lethal malignancies. For several decades, the 5-year survival of patients with PDAC has remained 

at or below 7% with a median survival of less than one year for patients with locally advanced or 

metastatic disease [176]. In the United States, PDAC is the fourth most common cause of cancer 

deaths (~40,000/year), and it is predicted to become the second leading cause of cancer deaths in 

the United States by 2030 [177]. The high mortality of PDAC patients is due in large measure to 
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late diagnosis of the disease when tumor resection is not feasible and resistance of PDAC to 

chemotherapy designed to target aberrantly regulated signaling networks. Consequently, there is a 

desperate need to identify new therapeutic targets that influence drug-resistance. Thus far, a wide 

range of genes and signaling pathways have been shown to be aberrantly activated in PDAC. The 

most common mutation is in the coding region of the KRAS gene, which generates constitutively 

activated KRAS in >90% of all PDAC [178]. These tumors are highly dependent on upregulated 

AKT and RAF/MEK/ERK signaling, which are downstream of KRAS [179-182]. This led to a 

large number of PDAC clinical trials testing AKT inhibitors (AKTi), e.g. MK-2206, and at least 

five MEK inhibitors (MEKi), e.g. trametinib [183]. Disappointingly, these drugs have not 

produced significant responses in PDAC clinical trials, which has led to the general belief that 

PDAC is largely resistant to AKTi and MEKi. 

 As outlined earlier, SOX2 expression increases significantly during tumor progression 

rising from ~20% in pre-malignant PanIN3 lesions to nearly 60% of poorly differentiated PDAC 

[125]. Subsequent studies reported that SOX2 is expressed in many different human PDAC cell 

lines, with high expression in some PDAC cell lines, but little or no expression in others [155]. 

Importantly, this study demonstrated that SOX2 expression is closely associated with putative 

cancer stem cell markers previously reported to be expressed by PDAC tumor-initiating cells 

[155]. This study also demonstrated that knocking down SOX2 in PDAC cell lines reduced their 

growth in vitro; whereas, stable expression of SOX2 in a PDAC cell line, which does not 

endogenously express detectable levels of SOX2, increased their anchorage-independent growth 

[155]. Although this study provided support in vitro for a critical role of SOX2 in the stemness of 

PDAC, the effects of SOX2 on the tumorigenicity of PDAC tumor cells were not examined. 

Thus, our understanding of SOX2 in PDAC is incomplete, and many important questions remain 

unanswered.  
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1.11     Dissertation Objectives 

 The studies presented in this dissertation extend our knowledge of SOX2 and its function 

as a master regulator in multiple cell types, and further elaborate on the finding that proteins like 

Msi2, which associate with SOX2 in multiple cell types, are also required for continued cell 

growth and function.  

 In this dissertation, two major bodies of work are presented. The first major objective 

examined the role of the SOX2-associated protein Msi2 in both ESC and brain tumor cells. As 

described in Chapter 3, the results of these studies demonstrate that ESC require Msi2 to maintain 

self-renewal and pluripotency. This work regarding Msi2 in ESC was carried forward into studies 

of MSI2 in brain tumors, as MSI2 was also identified as a SOX2-associated protein in DAOY 

MB cells and GBM cells. Work outlined in Chapter 3 of this dissertation demonstrates that MSI2 

is required to support the growth and survival of DAOY cells and two GBM tumor cell lines, U87 

and U118.  

 The second major objective of this dissertation focused on SOX2 and its roles in PDAC. 

As described earlier, one study reported that elevation of SOX2 promoted PDAC cell growth; 

however previous studies in our laboratory found that inducible elevation of SOX2 in multiple 

other cancer cell lines in fact reduces tumor cell growth. To resolve this issue, multiple PDAC 

cell lines were engineered for either inducible overexpression of SOX2 or inducible knockdown 

of SOX2. Initially, these inducible PDAC cell lines were used to examine the growth in vitro and 

tumorigenicity following changes in SOX2 levels. Through these studies, we determined that 

SOX2 functions as a biphasic molecular rheostat in PDAC, as described in Chapter 4. 

Furthermore, we determined that the sensitivity of PDAC cells to small molecule inhibitors 

currently being tested in clinical trials can be altered by changes in SOX2 levels. Specifically, 

Chapter 5 details how inducible elevation of SOX2 protects PDAC cells from the growth 

inhibitory effects of MEK and AKT inhibitors; conversely, growth inhibition due to these 

inhibitors is enhanced by the inducible knockdown of SOX2.  



35 
 

 

 Altogether, the work presented in this dissertation strengthens our knowledge of SOX2 

and SOX2-associated proteins in multiple cell types, and provides useful platforms for the 

continued study these highly deadly malignancies. 
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CHAPTER 2:     Materials and Methods 
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2.1     Cell Culture Conditions 

D3 mouse ESC (obtained from T. Doetschman, 1985) and their genetically modified 

derivatives (see below) were cultured on tissue culture plastic pretreated with 0.1% gelatin 

(G2500, Sigma-Aldrich, St. Louis, MO), in Dulbecco’s Modified Eagle’s Medium (DMEM, 

12100046, Invitrogen, Carlsbad, CA) supplemented with 15% fetal bovine serum (FBS, 

SH30910.03, Hyclone, Logan, UT), 5 ng/mL leukemia inhibitory factor (LIF, ESG1107, 

Millipore, Billerica, MA) and 100 µM β-mercaptoethanol (M7522, Sigma-Aldrich), as described 

previously [17]. DAOY (HTB-186, ATCC, Manassas, VA), U87 (HTB-14, ATCC), U118 (HTB-

15, ATCC), HEK293T (CRL-11268, ATCC), T3M4 (obtained from T. Hollingsworth, UNMC), 

BxPC3 (obtained from T. Hollingsworth, UNMC), HPAF-II (obtained from T. Hollingsworth, 

UNMC), L3.6 (obtained from D. Billadeau, Mayo Clinic, Rochester, MN) cells and their 

genetically modified derivatives (see below) were cultured in DMEM supplemented with 10% 

FBS, as described previously [81, 184]. The identity of each of the PDAC cell lines was verified 

by genetic analysis, which was performed by the Molecular Diagnostics Laboratory at UNMC. 

To differentiate ESC, the cells were treated with 5 µM retinoic acid (RA, 207341000, Acros 

Organics, Morris Plains NJ) for 4 days. Doxycycline (Dox; Sigma-Aldrich) was suspended in 

phosphate buffered saline at the indicated concentrations. In all engineered lines, Flag-tagged 

SOX2 or SOX2 shRNA was induced by supplementing the culture medium with Dox for the 

times and at the concentrations indicated. Kinase inhibitors were obtained from companies listed 

in Table 2.1. The EC50 for each drug used for each cell line was determined by measurements of 

cell growth over a 4 day period (Table 2.1). Photomicrographs taken of cultured cells were 

obtained with a Canon Rebel XTi camera at 10X and/or 25X, where indicated.  
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2.2     Lentiviral Vector Engineering 

2.2.1     pLVX-PGK-TetOn-Advanced 

The CMV promoter responsible for driving the expression of the neomycin resistance 

gene in pLVX-Tet-On-Advanced (Clontech, Mountain View, CA, #632162) was replaced with a 

PGK promoter. For this purpose, the PGK promoter from pLVX-Tight-Puro (Clontech, #632162) 

was amplified by PCR, with primers that introduce ClaI and BamH1 restriction sites, upstream 

and downstream of the promoter, respectively. The sequence of the upstream primer for 

amplifying the PGK promoter was: 

CAGTTTATCGATTACCGGGTAGGGGAGGCGCTTTTCCCAAGGCAGTCTGG (ClaI site in 

bold font), and the sequence for the downstream primer was: 

CATGGTGGATCCCGAAAGGCCCGGAGATGAGGAAGAGGAGAACAGCGCGG (BamHI 

site in bold font). The PGK PCR product was digested with ClaI and BamH1 restriction enzymes, 

and the fragment was ligated into pLVX-Tet-On-Advanced, previously treated with ClaI and 

BamHI to remove the CMV promoter. The resulting modified plasmid is thenceforth referred to 

as pLVX-PGK-TetOn-Advanced.  

 

2.2.2     pLVX-Tight-Puro-Flag-Msi2 isoform 1 and pLVX-Tight-Puro-Flag-Msi2 

isoform 2  

To produce viruses for inducible expression of Flag-tagged Msi2 isoform 1 and Flag-

tagged Msi2 isoform 2, the coding sequence for Msi2 isoform1 and the coding sequence for 

Msi2-isoform2 were first cloned from RNA isolated from D3 ESC and cDNA synthesized, as 

described below. The Msi2 coding sequences were amplified by PCR. For this purpose, primers 

were designed to add a BamHI restriction enzyme site, Kozak sequence, and a Flag peptide to the 

N-terminus of each Msi2 coding sequence, as well as 3 stop codons and an EcoRI restriction 

enzyme site to the C-terminus. The upstream PCR primer used was: 

ATCGCGGATCCGCCACCATGGACTACAAGGACGACGATGACAAGATGGAGGCAAAT
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GGGAGCCCA (BamHI restriction enzyme site is shown in bold font, followed by the Kozak 

sequence, then the Flag peptide sequence, which is underlined). The downstream primer used 

was: TACCGGAATTCTTATTATCAGTGGTATCCATTTGTAAAGGCCGTTGC (EcoRI 

restriction enzyme site in bold font and stop codons in italicized font). The Flag-Msi2 products 

were digested with BamH1 and EcoRI restriction enzymes, and the fragments were ligated into 

pBluescript II KS+ (Stratagene), previously digested with BamH1 and EcoRI in the multiple 

cloning site. Due to the design of the primers, both Msi2 isoforms 1 and 2 were amplified via 

PCR, and ligated into pBluescript II KS+. Sequencing of this library was performed by UNMC 

High-Throughput DNA Sequencing Core to identify Flag-Msi2 isoform 1 or Flag-Msi2 isoform 2 

clones. Once identified, Flag-Msi2 isoform 1 or Flag-Msi2 isoform 2 fragments were isolated 

from the pBluescript II KS+ plasmids by digestion with BamH1 and EcoRI, and ligated into 

pLVX-Tight-Puro previously digested with the same enzymes. These plasmids were then called 

pLVX-Tight-Puro-Flag-Msi2 isoform 1 and pLVX-Tight-Puro-Flag-Msi2 isoform 2. 

 

2.3     Transient Transfection  

Transient transfection of HEK293T (293T) cells was performed using the calcium 

phosphate precipitation method, as described previously [185]. Specifically, plasmid DNA for 

transfection and 150 µl of 2.5M CaCl2 are added to 1.35 mL H2O. This mixture is then added to 

1.5 mL of HEPES buffered saline, pH 7.1 (HBS, 1.64% (w/v) NaCl, 1.19% (w/v) HEPES 

(H4034, Sigma-Aldrich), dropwise with bubbling to mix. The 3 mL DNA precipitate solution is 

then added dropwise over the surface of a 150 mm dish of cells plated 24 hours earlier. 

  

2.4     Lentiviral Production and Transduction  

To produce lentivirus, HEK293T cells were transiently transfected (as detailed above) 

with 45 µg transfer vector (pLVX-PGK-TetOn-Advanced, pLVX-Tight-Puro-Luc (632162, 

Clontech), pLVX-Tight-Puro-Flag-Msi2 isoform 1, or pLVX-Tight-Puro-Flag-Msi2 isoform 2, 



41 
 

 

RMM4534-NM_054043, RMM4534-NM_011443, pLVX-tetO-(fs)SOX2, RHS4696-201902991, 

or RHS4696-201899634, as specified below), 30 µg packaging vector psPAX2 (12260, Addgene, 

Cambridge, MA), and 15 µg envelope vector pMD2.G (12259, Addgene) using the calcium 

phosphate precipitation method described above. Twenty-four hours later, the cells were refed 

with 15 mL DMEM, 10% FBS, 10 mM HEPES, and 10 mM sodium butyrate (303410, Sigma-

Aldrich). After 24 hours, the media was collected, filtered (0.45 µm) and stored at 4°C overnight 

and transfected cells were refed with 15 mL of same media as day before. The following day, the 

second day media was again collected and filtered. The filtered media was combined, and viral 

particles were collected by ultra-speed centrifuge with an SW-28 rotor at 26,000 rpm at 4°C for 2 

hours. Lentiviruses were resuspended in 550 µL pre-chilled DMEM with 10% FBS and 10 mM 

HEPES at 4°C overnight, aliquoted into 50 µL, and stored at −80°C. To infect cells, one ~50 µl 

aliquot of lentivirus was diluted in ~7 ml of the appropriate cell medium for a given cell type 

supplemented with 10 mM HEPES and 6 μg/ml polybrene (H9268, Sigma-Aldrich).  

 

2.5     Engineering ESC that Inducibly Express Msi2 isoform 1 or isoform 2 

Lentiviral particles were produced from pLVX-Tight-Puro-Flag-Msi2 isoform 1, pLVX-

Tight-Puro-Flag-Msi2 isoform 2, or pLVX-Tight-Puro-Luc (632162, Clontech) in 293T cells as 

described above. To produce ESC that express either Flag-tagged Msi2 isoform 1 or Flag-tagged 

Msi2 isoform 2, D3 ESC were first infected with the lentiviral vector pLVX-PGK-TetOn-

Advanced to express the reverse tet transactivator. Virally transduced cells, referred to as D3-

rtTA ESC, were isolated after treatment with 300 µg/mL G418 sulfate (A1720, Sigma-Aldrich) 

for 6 days. To produce i-Msi2.1-D3 ESC and i-Msi2.2-D3 ESC, D3-rtTA ESC were infected with 

the virus pLVX-Tight-Puro-Flag-Msi2 isoform 1 or pLVX-Tight-Puro-Flag-Msi2 isoform 2. 

Twenty-four hours after infection, D3-rtTA ESC were cultured in the presence of 5 µg/ml 

puromycin (P8833, Sigma-Aldrich) for 48 hours to select for infected cells. Flag-tagged Msi2 

isoform 1 and Flag-tagged Msi2 isoform 2 were individually expressed from inducible transgenes 
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stably integrated into i-Msi2.1-D3 ESC and i-Msi2.2-D3 ESC, respectively. The recombinant 

proteins were induced by the addition of 1 μg/ml Dox. 

 

2.6     Knockdown of Msi2 in D3 mouse ESC 

Msi2 was knocked down in D3 ESC that had been seeded at a density of 105 cells per 

well in a 6-well plate. A previously validated non-specific shRNA (Scrambled) was used as a 

negative control in knockdown experiments [186]. One day later, cells were infected with 

lentiviruses that express either the scrambled shRNA or shRNAs targeting Msi2 (Msi2 shRNA 

#1, #4, or #5). Lentiviral vectors for expression of shRNA sequences that target mouse Msi2 were 

obtained from Open Biosystems (RMM4534-NM_054043, Huntsville, AL). Msi2 shRNA 

lentiviral constructs #1, #4, and #5 used in this study correspond to TRCN0000071973, 

TRCN0000071976, and TRCN0000071977, respectively. Sequences of these shRNAs are 

provided in Table 2.2. Production of these shRNA lentiviral particles in HEK293T cells is 

described above. 

 

2.7     Knockdown of MSI2 in Glioblastoma and Medulloblastoma Tumor Cells 

To knockdown MSI2 in DAOY, U87, and U118 tumor cells, cells were infected with 

lentivirus made using vectors containing shRNAs that target MSI2 (RMM4534-NM_011443, 

Open Biosystems), as well as the scrambled control shRNA. Sequences for these shRNAs are 

provided in Table 2.2. Notably, shRNA #4 and shRNA #5 target both mouse and human forms of 

MSI2 with the same targeting sequence. Production of these shRNA lentiviral particles in 

HEK293T cells is described above.  

 

2.8     Engineering PDAC cells for SOX2 overexpression and knockdown  

PDAC cell lines were engineered for Dox-inducible SOX2 expression as described 

previously [172]. T3M4 cells were first transduced with the reverse tet transactivator lentiviral 
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vector (pLVX-PGK-TetOn-Advanced) and a G418-resistant clone selected for in medium 

containing 300 µg/mL G418 sulfate for 9-12 days. Secondly, these cells were infected with 

lentivirus containing the pLVX-tetO-(fs)SOX2 lentiviral vector (Figure 2.1) and were selected for 

in medium containing 5 µg/ml puromycin for 48 hours, resulting in i-SOX2-T3M4 cells. The cell 

lines i-SOX2-BxPC3 and i-SOX2-HPAF-II were engineered by infection with both viruses 

simultaneously prior to selection.  

For inducible knockdown of SOX2, T3M4 and L3.6 cell lines were engineered for Dox-

inducible expression of an shRNA using a TRIPZ lentiviral vector obtained from Open 

Biosystems (now GE Dharmacon, Lafayette, CO). This vector, RHS4696-201902991, has a 

mature antisense sequence of ACATGCTGATCATGTCCCG, which targets the ORF of both 

human and mouse SOX2. In T3M4 cells a second, independent lentiviral vector was used. This 

second vector, RHS4696-201899634, has a mature antisense sequence of 

TTCTTGTCGGCATCGCGGT. The TRIPZ vector results in puromycin resistance and 

constitutive expression of a reverse tet transactivator as well as Dox-inducible expression of the 

shRNA and red fluorescent protein (RFP). I-KdSOX2-T3M4 and i-KdSOX2-L3.6 cell lines were 

isolated after puromycin selection, as described above. The i-KdSOX2-T3M4 cell population was 

further enriched by flow cytometry for cells with higher RFP expression following an 18 hour 

induction with 1 µg/mL Dox.  

 

2.9     Colony Forming Assays 

ESC were plated at clonal densities and maintained in ES-cell media for up to 6 days, at 

which point the number of colonies that exhibited only the morphology of ESC, a mix of ESC 

and differentiated cells, or only cells with a differentiated morphology were counted in 10 

random 40X fields by an observer unaware of sample designation. For PDAC cloning efficiency 

assays, cells were plated at clonal densities (80 cells per cm
2
) and maintained in serum containing 

media (as indicated above). After 8-12 days, the number of colonies (8 or more cells per colony) 
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was determined in 15-20 random 40X fields by an observer unaware of sample designation. For 

replating efficiency assays, cells were grown at subconfluent densities for 6 days with or without 

treatment in normal media (as indicated above), at which point the cells were trypsinized and 

replated at clonal densities in normal media. After an additional 7 or 11 days, the number of 

colonies that exhibited 8 or more cells per colony was determined in 8-15 random 40X fields by 

an observer unaware of sample designation.  

 

2.10     Soft Agar Growth Assays 

Soft agar growth assays were performed in serum-free, stem cell medium, as described 

previously [81]. The number of spheres that exhibited 8 or more cells per sphere was determined, 

and spheres larger than 50 µm in diameter were scored as large.  

 

2.11     Alkaline Phosphatase Staining 

 ESC were stained for alkaline phosphatase using an AP-staining kit, according to the 

manufacturer’s protocol (00-0009, Stemgent, San Diego, CA). 

 

2.12     MTT Assays 

 MTT assays of triplicate samples were used to assess relative cell growth, as described 

previously [187, 188]. MTT assays were used to assess proliferation using mitochondrial 

dehydrogenase activity as a measure of cell number, was described previously [187, 188]. Cells 

were cultured in 12-well plates and, when appropriate depending on experimental design, cells 

were refed 750 µL culture medium + 250 µL MTT reagent (5 mg/mL MTT (M2128, Sigma-

Aldrich) in PBS), and placed in a cell culture incubator for 2 hours. 750 µL of MTT solvent (20% 

(w/v) SDS in 1:1, water:DMF (D4551, Sigma-Aldrich), pH adjusted to 4.7 with 2.5% (v/v): 80% 

(v/v) acetic acid (A38C-212, Fisher) and 2.5% (v/v) 1N HCl [A144-500]) was added to each well, 

and the 12-well plate was returned to the cell culture incubator overnight. The next day, the 
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absorbance of each well was read at 570 nm using a spectrophotometer. Each sample was treated 

and measured in triplicate. Controls were averaged and set to 1. Error bars represent standard 

deviation between the three replicates and p values were determined by student’s t-test (*p<0.05, 

**p<0.01, and ***p<0.005).  

 

2.13     Protein Isolation and Micro BCA Quantification  

Nuclear and cytoplasmic protein extracts were prepared using NE-PER kits (Thermo-

Scientific, Rockford, IL) according to the manufacturer’s protocol to isolate proteins for western 

blot analysis. Whole cell protein extracts were prepared using RIPA extraction buffer [150 mM 

NaCl (S9888, Sigma-Aldrich), 50 mM Tris-HCl (pH 7.4, 10812846001, Sigma-Aldrich), 1% 

IGEPAL (I8896, Sigma-Aldrich), 0.25% sodium deoxycholate (D6750, Sigma-Aldrich), and 1 

mM EDTA (E6758, Sigma-Aldrich)] supplemented with the following protease and phosphatase 

inhibitors: Na3VO4 (5 mM, S6508, Sigma-Aldrich), PMSF (1 mM, P7626, Sigma-Aldrich), NaF 

(10 mM, S7920, Sigma-Aldrich), EDTA (10 mM, E6758, Sigma-Aldrich), leupeptin (1 µg/mL, 

L2884, Sigma-Aldrich), pepstatin A (2 μM, P5318, Sigma-Aldrich), chymostatin (1 µg/mL, 

C7268, Sigma-Aldrich), aprotinin (2.5 KIU/mL, A1153, Sigma-Aldrich), soybean trypsin 

inhibitor (20 µg/mL, T9003, Sigma-Aldrich), and NaPPi (30 mM, P8135, Sigma-Aldrich). 

Protein extract concentrations were quantified using the Micro BCA™ Protein Assay Kit (23235, 

Pierce), according to the manufacturer’s guidelines. 

 

2.14     Western Blot Analysis 

Western blot analysis was performed as described previously [82, 97]. Primary mouse 

antibodies used were: α-Msi2 (ab76148, Abcam, Cambridge, MA, 1:2,000), α-Sox2 (#2683-1, 

Epitomics, Burlingame, CA, 1:5,000), and α-Oct 4 (sc8628, Santa Cruz, Santa Cruz, CA, 1:500). 

Primary human antibodies used were: α-MSI2 (ab83236, Abcam, Cambridge, MA), α-NUMB 

(ab4147, Abcam), α-SOX2 (ab92494, Abcam, Cambridge, MA, 1:1,000), and α-phospho-p44/42 
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MAPK antibody (#9106, Cell Signaling Technology, Danvers, MA, 1:1,000). HDAC1 (ab-7028, 

Abcam, 1:5,000) and α-GAPDH (G8795, Sigma-Aldrich) were used as loading controls. MSI2, 

SOX2, and HDAC1 primary antibodies were detected with an anti-rabbit-IgG-AP secondary 

antibody (A3687, Sigma-Aldrich, 1:10,000). Oct4 and Numb primary antibodies were detected 

with an anti-goat-IgG-AP secondary antibody (A4187, Sigma-Aldrich, 1:10,000). Phospho-

ERK1/2 and GAPDH primary antibodies were detected with an anti-mouse-IgG-AP secondary 

antibody (A4312, Sigma-Aldrich, 1:10,000). 

 

2.15     RNA Isolation and Expression Analysis 

D3 ESC were infected with lentiviruses that express either scrambled shRNA or Msi2 

shRNA #1 for 24 hours followed by selection with puromycin for 24 hours. Cells were 

subcultured 48 hours after puromycin selection at a low density (4,500 cells per cm
2
). Cells were 

maintained for 4 days in normal ES cell media followed by RNA isolation and cDNA synthesis as 

described previously [17]. Expression of ES-related genes and lineage-specific genes in D3 ESC 

treated with Msi2 shRNA #1 and scrambled shRNA were analyzed by SYBR Green 

(SuperArrayBioscience Corporation, Frederick, MD) quantitative Real-Time polymerase chain 

reaction (RT-qPCR) [17, 82]. Similarly, i-Msi2.1-D3 and i-Msi2.2-D3 were treated with or 

without 1 μg/ml Dox for 48 hours prior to plating at 4,500 cells/cm
2
. Cells were then treated with 

and without Dox in the presence of 5 μM RA for 48 hours, followed by the removal of LIF for 48 

hours to further differentiate the cells prior to the RNA extraction and cDNA synthesis. Primers 

for Msi2 isoforms, Msi1, Numb, Sox7, and Tfec are provided in Table 2.3. Primers for ES cell- 

and lineage-specific transcripts have been described previously [17, 82, 87]. Gene expression of 

MSI2 in DAOY, U87, or U118 cells treated with targeting or scrambled shRNA were analyzed 

by SYBR Green RT-qPCR , as described above. Primers used for the PCR step in the analysis of 

MSI2 RNA were h-MSI2-F (AAGTATTAGGTCAGCCCCAC) and h-MSI2-R 
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(TTCTCAAAAGTGACAAAGCC). Primers for GAPDH control expression have been described 

previously [97]. 

 

2.16     Microarray Analysis 

RNA isolated from D3 ESC infected with lentiviruses that express either scrambled 

shRNA or Msi2 shRNA #1, as described above, was used for genome-wide RNA expression 

analysis. Sense-strand cDNA was generated from 300 ng total RNA using the Ambion WT 

Expression kit for Affymetrix Whole Transcript Expression Arrays (Affymetrix, Santa Clara, 

CA). This cDNA was fragmented and labeled using the GeneChip® WT Terminal Labeling and 

Hybridization (Affymetrix) followed by hybridization for 16 hours at 45°C to an Affymetrix 

GeneChip Mouse Gene 1.0 ST (Affymetrix). Gene chips were washed and stained with the 

Affymetrix Fluidics Station 450 (Affymetrix) prior to being scanned by the Affymetrix GeneChip 

Scanner 3000 7G (Affymetrix). Data was analyzed with Affymetrix Expression Console software 

(Affymetrix) using Robust Multichip Analysis (RMA) for normalization. Data collection and 

analysis were performed by the University of Nebraska Medical Center DNA Microarray Core 

Facility. Microarray data was sorted for genes that increase or decrease 2-fold or more when Msi2 

shRNA #1 was compared to the control scrambled shRNA. Of these genes, the Database for 

Annotation, Visualization and Integrated Discovery (DAVID) was used to classify them into 

broad-based cellular and molecular functions [189, 190]. All microarray data is available on Gene 

Expression Omnibus (Accession No. GSE33882, GEO, http://www.ncbi.nlm.nih.gov/geo/).  

 

2.17     Cell Cycle Analysis  

I-SOX2-T3M4 cells were seeded at subconfluent densities in the presence or absence of 

Dox (300 ng/ml) and MEKi were added the following day. After 3 days treatment with each 

MEKi in the presence or absence of Dox, cells were prepared for cell cycle analysis by the 

Telford Method, as described previously [191]. Floating cells were included in the cell cycle 

http://www.ncbi.nlm.nih.gov/geo/
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analysis. Flow analyses were performed by the UNMC Cell Analysis core facility. 

 

2.18     Determination of Tumorigenicity  

Female NCr-nu/nu mice (7 weeks of age) were obtained from Charles River 

(Wilmington, MA). All animal procedures were approved by the UNMC Institutional Animal 

Care and Use Committee. Where indicated, 2.5x10
5
 i-SOX2-T3M4 cells or 2.5x10

5
 i-KdSOX2-

T3M4 cells were trypsinized, washed, resuspended in 50 µl of sterile PBS and injected 

subcutaneously into the flank. Tumor growth was monitored daily. After palpable tumors had 

formed, tumor-bearing mice were randomized to size-matched control and experimental (Dox-

treated) groups. Dox-treatment for elevation or knockdown of SOX2 was accomplished by 

addition of Dox (2 mg/ml) to drinking water that contained 5% sucrose. Untreated mice were 

provided with 5% sucrose drinking water as a control. Tumor volumes were calculated based on 

measurements with a digital caliper at the times indicated. At the completion of the tumor growth 

study, mice were euthanized and tumors excised for weight measurements and 

immunohistochemical analysis.  

 

2.19     Immunohistochemical Analysis 

Formalin-fixed tumor sections were paraffin-embedded and stained for hematoxylin and 

eosin (H&E), SMA, and Ki-67 by the University of Nebraska Medical Center Tissue Sciences 

Facility. H&E, SMA, and Ki-67 stained photomicrographs were captured using either an iScan 

Coreo Au Scanner with iScan Coreo 3.4.0 software (Ventana Medical Systems, Inc., Tucson, 

AZ), or a Nikon Digital Sight DS-Fi1 camera with NIS Elements 4.0. software (Nikon, Inc., 

Melville, NY). Quantification of the stromal component of tumors was assessed by overlaying a 

grid on top of photomicrographs of SMA stained tumor tissues using Adobe Photoshop 2015.0.1. 

An area of 1 mm2 was divided into 864 squares, which were examined for positive staining, 

indicating stroma. Two independent tumors from each treatment condition (e.g. i-SOX2-T3M4 
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cells or i-KdSOX2-L3.6 cells, without Dox and with Dox) were assessed, and the percentages of 

SMA positive squares were averaged and standard deviation calculated for each condition. 

Proliferation in tumors was assessed by staining for Ki-67, and counting the number of positively 

stained cells out of at least 500 cells, only in the carcinoma or stromal components of each tumor 

growth condition. As with the stromal quantification, two independent tumors from each 

treatment condition were scored, and Ki-67 incidence in the stroma or carcinoma was averaged 

and standard deviation calculated. The student’s T-test (2-tailed) was used to determine statistical 

significance (p < 0.05) using Microsoft Excel for Mac (15.20).  

 

2.20     Immunofluorescence Assays 

 Immunofluorescence assays used to assess SOX2 expression in PDAC cell lines. Cells 

were cultured in 8-well chamber slides (354118, Corning Falcon Fisher) with 300 µL culture 

medium per well and placed in a cell culture incubator for 3 days. When appropriate, cells were 

washed with 1X PBS prior to fixation with 200 µl 100% methanol (chilled to -20°C) at room 

temperature for 5 minutes. Cells were then permeabilized with 0.3% TritonX-100 and blocked in 

animal serum (5% in 0.3% TritonX-100) corresponding to the animal the secondary antibody was 

raised in, with washes in 1X PBS between each step. Permeabilized cells were incubated with 

primary antibody overnight at 4°C (ab92494, AbCam, 1:100 in 1% BSA and 0.3% TritonX-100), 

washed with 1X PBS, and incubated in secondary antibody for 2 hours at room temperature (anti-

rabbit-IgG-FITC, F0382, Sigma, 1:500 in 1% BSA and 0.3% TritonX-100). Cells were also 

incubated with Hoeschst dye (33258, Fisher) at 2 µg/ml in 1X PBS for 3 min.  
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CHAPTER 3:     Musashi2 is required for the self-renewal and pluripotency of 

embryonic stem cells 

 

The studies described in this chapter, which were conducted  

by Erin Wuebben, are described in two studies [80, 96]. 
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3.1     Introduction 

 Sox2 is required during mammalian embryogenesis and it plays critical roles in the self-

renewal and pluripotency of ESC. SOX2 expression also influences the growth of brain tumor 

cells. Previous studies in our laboratory used unbiased proteomic screens to identify nuclear 

proteins that associate with Sox2 in ESC undergoing early stages of differentiation, as well as in 

MB and GBM brain tumor cells [80, 82]. Remarkably, Sox2 associates with >60 proteins during 

the early stages of differentiation and >280 in DAOY MB cells that participate in a diverse range 

of cellular processes; one of these Sox2-associated proteins identified in both networks is the 

RNA binding protein Musashi 2 (Msi2), which also associates with SOX2 in GBM. As discussed 

in the Introduction of this dissertation, Msi2 has been shown to play important roles in 

development. Specifically, Msi2 has been shown to contribute to the development of the nervous 

system, along with Msi1, and they have been shown to work together to promote the maintenance 

of neural stem cells [101]. Msi2 has also been shown to be elevated in several leukemias such as 

CML and AML and its elevated expression has been linked with poorer prognosis in these 

cancers [100, 103, 192]. Given the contribution of Msi2 to tumorigenicity, its roles during 

development, and its association with Sox2 in ESC and brain tumor cells we predicted that MSI2 

plays essential roles in cells where SOX2 and MSI2 associate with one another. Specifically we 

predicted that proteins that associate with SOX2 in multiple SOX2-dependednt cell types must 

also be essential in those cells.  

 

3.2     ESC express and require Msi2 

 To study the role of Msi2 in mouse ESC, we initially examined whether ESC express 

more than one isoform of Msi2. Studies in other systems [98, 193] identified two isoforms of 

Msi2: isoform 1 (full length) consisting of 346 amino acids and isoform 2 consisting of 328 

amino acids (Figure 3.1A). Using primers specific to Msi2 isoform 1 and isoform 2, we 

determined that D3 ESC express both isoforms of Msi2 at the RNA level (Figure 3.1B). In 
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addition, we determined by western blot analysis that ESC express both isoforms of Msi2 at the 

protein level (Figure 3.1C).  

 To investigate the role of Msi2 in ESC, we examined how ESC would be affected by the 

knockdown of Msi2. For this purpose, we used lentiviral vectors that express shRNA directed at 

both isoforms (shRNA #1 and shRNA #5) and only isoform 1 (shRNA #4) (Figure 3.2A). 

Specifically targeting isoform 2 will be more difficult, as isoform 2 shares the entirety of its 

sequence with isoform 1, differing only through an omission of a small region. Thus, to target 

isoform 2, an shRNA sequence will need to bridge the region that is spliced out from isoform 1. 

As a control, we also infected ESC with a lentivirus that expresses a scrambled shRNA sequence, 

which we previously determined does not influence the behavior of D3 ESC [97]. Initially, we 

examined the knockdown of Msi2 by comparing the protein levels of Msi2 in ESC infected with 

the lentiviral vector that expresses the scrambled shRNA control with the levels of Msi2 in cells 

infected with lentiviral vectors that express shRNA #1, #4 or #5. We determined that infection of 

ESC with the lentiviral vector that expresses shRNA #1 caused a significant reduction in both 

isoforms of Msi2, and infection of ESC with the lentiviral vector that expresses #4 caused a 

significant reduction in Msi2 isoform 1, but not isoform 2 (Figure 3.2B). In contrast, the lentiviral 

vector that expresses shRNA #5 appears to induce only a modest reduction in isoform 1 (~30%) 

and small reduction in isoform 2 (~10%).  

 Examination of the infected cells by light microscopy indicated that ESC infected with 

the control lentiviral vector, which expresses the scrambled shRNA sequence, did not induce 

morphological changes in the cells. In contrast, lentiviral vectors #1 and #4 caused extensive 

morphological differentiation (Figure 3.2C). As expected from the effects on Msi2 protein 

expression (Figure 3.2B), lentiviral vector #5 caused significantly less differentiation. To further 

characterize the observed change in morphology, we stained cells infected with the various 

shRNA constructs with alkaline phosphatase (AP), a cell-surface marker associated with 

pluripotency. Reduced AP-staining intensity in ESC infected with Msi2 shRNA constructs #1 and 
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#4 corroborated our observation that knockdown of Msi2 impairs the ability of ESC to self-renew 

(Figure 3.2C). To determine whether the differentiation observed was due to a loss in essential 

pluripotency factors, we conducted western blot analysis to examine the levels of Sox2 and Oct4 

following the knockdown of Msi2. Interestingly, the levels of Sox2 and Oct4 were not 

significantly altered after the knockdown of Msi2 (Figure 3.2D). 

  To quantitate the extent of differentiation induced by the knockdown of Msi2, virally 

infected cells were plated at clonal density. Six days later, colonies were scored by an observer 

unaware of sample designation as ES cell colonies, differentiated colonies or mixed colonies 

consisting of both ESC and differentiated cells. Typical of unmodified ESC, a high percentage of 

D3 ESC expressing the scrambled shRNA formed ES cell colonies (~80%) and relatively few 

mixed and differentiated colonies (Figure 3.3). In contrast, D3 ESC infected with lentiviral 

vectors expressing either shRNA #1 or shRNA #4 formed far fewer ES cell colonies (<15% in the 

case of shRNA #4) and a large percentage of mixed and differentiated cell colonies. In addition, 

shRNA #5 only modestly reduced the number of ES cell colonies (by ~40%) and increased the 

number of mixed and differentiated colonies. Importantly, our studies show that the extent of 

differentiation and the loss of self-renewal capacity correlate with the level to which Msi2 levels 

were decreased. Equally importantly, our studies indicate that the knockdown of isoform 1 

induces the differentiation of ESC. Studies discussed below suggest that the self-renewal of ESC 

may also require expression of Msi2 isoform 2. 

 

3.3     Msi2 knockdown alters gene expression 

 To further characterize the differentiation of ESC following the knockdown of Msi2, we 

initially examined the changes in gene expression by microarray analysis. Changes in global 

RNA expression were determined by comparing the RNA expression profiles of ESC that express 

either the scrambled shRNA or shRNA #1 by microarray. Of 29,000 transcripts examined, we 

determined that cells infected with Msi2 shRNA #1 exhibited increased expression of 40 genes 
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≥2.5-fold (Table 3.1) and decreased expression of 29 genes ≥ 2.5-fold (Table 3.2) compared to 

cells infected with scrambled shRNA. Broadening our parameters to genes whose expression 

increased or decreased by ≥ 2-fold (Figure 3.4A, Tables 3.3 and 3.4) expanded these subsets with 

an additional 49 and 46 genes, respectively. Gene ontology analysis (Figure 3.4B) indicated that a 

large percentage of the genes that exhibited >2-fold increased gene expression play roles in cell 

signaling (e.g. Tspan2, Irs2, Sfrp2, Ctgf) and cellular structure (e.g. Acta2, Actc1, Cald1, Myl9); 

whereas, genes that exhibited >2-fold decrease in expression participate in development (e.g. 

Amot, Pdgfr, Lama1) and metabolism (e.g. Nostrin, Nrg1, Inhbb). Given the morphological 

changes that accompany differentiation, in particular the increase in cytoplasmic to nuclear ratio, 

increases in genes associated with cellular structure is not surprising. Similarly, the large change 

in the expression of genes associated with metabolic processes when Msi2 is knocked down 

parallels the large changes in metabolic gene expression when somatic cells are reprogrammed to 

induced pluripotent stem cells [194]. A complete list of the differentially expressed genes and 

their associated ontologies are provided in a heatmap [96]. 

 To validate our microarray analysis, 23 genes were examined more closely using RT-

qPCR, which is a more quantitative approach to examine transcript expression. For this analysis, 

we examined a number of genes that increased or decreased according to our microarray data, and 

a number of genes critical for maintaining pluripotency in ESC. In concordance with our 

microarray data, analysis by RT-qPCR indicates that a number of genes associated with 

mesoderm development (Tpm1, Tagln, Brachyury, MyoD1), ectoderm development (Pax6, 

Nestin) and trophectoderm development (Cdx2, Esx1) were elevated when Msi2 was knocked 

down (Figure 3.5). Additionally, a number of markers associated with endoderm development 

(Gata6, Sox17, Gata4, Sox7) were reduced as determined by both our microarray and RT-qPCR 

(Figure 3.5). We also examined the expression of Numb and Msi1 mRNA by RT-qPCR, both of 

which exhibited a small increase when Msi2 was knocked down. The small increase in Msi1 

mRNA may reflect a compensatory mechanism that coordinates the expression of Msi1 and Msi2. 



61 
 

 



62 
 

 



63 
 

 



64 
 

 

 



65 
 

 



66 
 

 

 



67 
 

 

3.4     Msi2 enhances the cloning efficiency of ESC 

 Because of our observation that the knockdown of Msi2 leads to the loss of self-renewal 

in ESC, we examined whether the elevation of Msi2 would enhance the self-renewal of ESC. 

Recent studies have shown that elevating Msi2 helps in the maintenance of hematopoietic and 

tumor stem cells [100, 102, 103]. However, it was not clear whether Msi2, in particular isoform 1 

or isoform 2 could enhance ESC self-renewal. To examine this possibility, we engineered ESC 

for Dox-inducible overexpression of Flag-tagged Msi2, as described in the Methods section. 

Briefly, D3 ESC were infected with a lentivirus that constitutively expresses the reverse tet 

transactivator (rtTA), which binds Dox to mediate inducible transgene expression. These cells 

were then infected with a second lentivirus that expresses either Flag-tagged Msi2 isoform 1 (i-

Msi2.1-D3 ESC) or isoform 2 (i-Msi2.2-D3 ESC) when the cells are exposed to Dox.  

 Using this system, we determined that addition of Dox leads to a small increase (~1.8 

fold) in Flag-Msi2-isoform 1 (Figure 3.6A, left) and increases the cloning efficiency of ESC, 

specifically the number of ES cell colonies that form (Figure 3.6B, left). Conversely, ~2-fold 

overexpression of Flag-Msi2-isoform 2 (Figure 3.6A, right) in i-Msi2.2-D3 ESC had no 

significant effect on cloning efficiency, in particular the number of ES cell colonies that formed 

(Figure 3.6B, right). As a control, D3 ESC engineered for the inducible expression of luciferase 

did not demonstrate significant changes in the distribution of colony morphologies upon the 

addition of Dox (data not shown). 

 

3.5     Msi2 isoform 1 or Msi2 isoform 2 on their own do not rescue the knockdown of both 

isoforms of Msi2  

 Our initial experiment in which shRNA #4 was used to target only isoform 1 suggested 

that Msi2 isoform 2 may not be required to support the self-renewal of ESC (Figure 3.2). This 

finding, coupled with the observation that Msi2 isoform 1 enhances the self-renewal of ESC, led 

us to examine whether isoform 1 alone is sufficient to support the self-renewal of ESC. 
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 To determine whether Msi2 isoform 1 is sufficient to support ESC self-renewal, i-Msi2.1-

D3 ESC and i-Msi2.2-D3 ESC were cultured in the absence or presence of Dox (2 µg/mL) for 24 

hours. Next, the cells cultured in the presence or absence of Dox were infected with Msi2 shRNA 

#1 lentivirus, which targets both isoforms of Msi2 on their 3’ UTR. Cells pretreated with Dox 

were cultured in the presence of Dox for the entire experiment. Western blot analysis of proteins 

isolated from i-Msi2.1-D3 ESC verified that total Msi2 levels were reduced (~60%) in cells 

cultured in the absence of Dox; whereas, total Msi2 levels were near normal (~90%) when the 

infected cells were maintained in the presence of Dox, due in part to exogenous expression from 

the transgene (Figure 3.7A). Additionally, in i-Msi2.2-D3 ESC infected with shRNA #1, Msi2 

levels were knocked down (~60%, relative to endogenous Msi2) in the minus Dox control, but 

elevated ~2-fold when cultured in the presence of Dox (Figure 3.7B). The reason for the intensely 

staining band observed at the level of Msi2 isoform 2 in i-Msi2.2-D3 ESC cultured in the 

presence of Dox is not completely clear. We suspect that this is due to alternative translation start 

from our exogenous Flag-Msi2 isoform 2 transcript, which retains the endogenous Msi2 start 

codon. 

 To quantify any changes in self-renewal efficiency, i-Msi2.1-D3 ESC and i-Msi2.2-D3 

ESC expressing their respective isoforms of Msi2 and infected with Msi2 shRNA #1 were 

subcultured 72 hours after infection with shRNA lentivirus, and plated at clonal density. Our 

findings indicate that elevation of Msi2 isoform 2 did not block the differentiation of ESC 

following the knockdown of both isoforms of Msi2 (Figure 3.7C). Interestingly, isoform 1 was 

also unable to block the differentiation of ESC following the knockdown of Msi2 (Figure 3.7C). 

Thus, our data suggests that the expression of isoforms 1 and 2 are both necessary to support the 

self-renewal of ESC.  

 

3.6     Elevation of Msi2 during differentiation does not bias differentiation 

 Because of the role of Msi2 in hematopoietic stem cell maintenance and neural 
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development, we examined whether induction of Msi2 could skew the differentiation of ESC 

toward specific developmental lineages. For this purpose, i-Msi2.1-D3 and i-Msi2.2-D3 ESC, 

expressing their respective forms of Msi2, were differentiated using retinoic acid (RA). More 

specifically, i-Msi2.1-D3 and i-Msi2.2-D3 ESC were cultured continuously in the absence or 

presence of Dox. Two days after the addition of Dox to cells, RA was added to the culture 

medium, and cells were allowed to grow an additional 4 days. After treatment of cells with RA 

for 4 days (with and without Dox), RNA was isolated and examined by RT-qPCR analysis as 

described in the Methods. As expected, the pattern of differentiation induced by RA in the 

absence of Dox was highly similar for i-Msi2.1-D3 and i-Msi2.2-D3 ESC. More importantly, 

treatment of these ESC with Dox, which induces ectopic expression of Msi2 isoform 1 and Msi2 

isoform 2, respectively (Figures 3.6 and 3.7), did not alter the pattern of RA-induced 

differentiation (Figure 3.8). 

 

3.7     Musashi2 is necessary for the proliferation of DAOY MB cells 

 Previous reports demonstrated that MSI2 is essential for the progression of CML [100, 

103, 192], and the knockdown of another family member, Musashi1 (MSI1), disrupts the viability 

of DAOY MB cells and GBM cells [195, 196]. To determine whether MSI2 is necessary for the 

proliferation of DAOY MB cells, shRNA constructs were used to knock down endogenous MSI2. 

Specifically, lentiviruses that constitutively express shRNA against MSI2 were used to infect 

DAOY MB cells. Two independent shRNA constructs (described in Chapter 2 of this 

dissertation) were used to knockdown MSI2, and a previously characterized non-specific shRNA 

(Scrambled) was used as a control [97, 184]. Following selection of the infected cells with 

puromycin, western blot analysis demonstrated that MSI2 isoforms 1 and 2 were substantially 

knocked down (Figure 3.9A).  This reduction in MSI2 was verified at the RNA levels by RT-

qPCR (Figure 3.10A).  In addition, when compared to the growth of DAOY cells infected with 

the Scrambled shRNA lentiviral vectors, we observed a large reduction in growth when the cells 
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were infected with MSI2 shRNA lentiviral vectors (Figure 3.9B).  Moreover, photomicrographs 

taken 7 days after infection demonstrated that cells in which MSI2 had been knocked down were 

flatter and larger, reminiscent of post-mitotic cells, when compared to the Scrambled control 

(Figure 3.9C). 

 Currently, relatively little is known about the roles of MSI2, but in mouse model of 

leukemia it is believed to down-regulate the protein Numb [103], which has been shown to 

regulate both Notch and Wnt signaling [197, 198]. Therefore, we examined whether knockdown 

of MSI2 in DAOY cells influences the expression of NUMB. We determined that knockdown of 

MSI2 with shRNA lentiviral vectors #4 and #5 caused an increase in the protein levels of NUMB 

(Figure 3.9D). Thus, knockdown of MSI2 causes both a large reduction in the growth of DAOY 

MB tumor cells and increases the expression of NUMB. 

 

3.8     Musashi2 is necessary for the proliferation of GBM cells 

 We also examined the consequences of knocking down MSI2 in GBM tumor cells, 

because MSI2 was also identified as a SOX2-associated protein in U87 GBM cells (Wilder and 

Rizzino, unpublished results). For this purpose, we initially infected U87 GBM tumor cells with 

the same MSI2 shRNA lentiviral vectors described earlier. Again, a scrambled shRNA was used 

as a control. Three days after infection with the lentiviral vectors, western blot analysis 

determined that MSI2 isoform 1 and isoform 2 were both substantially reduced (Figure 3.11A) 

and the reduction in MSI2 was verified at the RNA levels by RT-qPCR (Figure 3.10B). As in the 

case of DAOY cells, U87 GBM cells infected with MSI2 shRNA constructs exhibited a marked 

decrease in cell proliferation (Figure 3.11B) and a significant increase in cell size (Figure 3.11C). 

To extend these findings, U118 GBM cells were infected with MSI2 shRNA lentiviruses. Similar 

to DAOY and U87 cells, knockdown of MSI2 in U118 cells resulted in a decrease in MSI2 

protein and RNA, a large reduction in cell growth, and a significant increase in cell size (Figure 

3.10C and Figure 3.12). Taken together, our data indicate that MSI2 is required to sustain the 
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survival of DAOY MB cells, and the proliferative capacity of U87 and U118 GBM cells. 

 

3.9     Discussion 

 In this study, we demonstrate that ESC express two isoforms of Msi2, and we determined 

that the knockdown of Msi2 disrupts the self-renewal of ESC and induces their differentiation. 

Moreover, our studies demonstrate that the extent of differentiation and the loss of self-renewal 

capacity correlates with the extent to which Msi2 levels were decreased. Remarkably, the 

knockdown of Msi2 causes ESC to differentiate despite continued expression of both Sox2 and 

Oct4.  

 Although knockdown of Msi2 isoform 1 is sufficient to induce the differentiation of ESC 

(Fig. 3.2 shRNA #4), a more rigorous demonstration that ESC strictly require Msi2 isoform 2 will 

require considerably more work. The most direct method for addressing this question would be to 

selectively knockdown Msi2 isoform 2. As mentioned earlier, addressing this question will 

require an shRNA that only targets isoform 2, which is currently not available. Thus far, this 

question has not been addressed in any study, including the recent reports that demonstrated 

prominent roles of Msi2 in the function HSC, CML, and AML [100, 102, 103]. In these seminal 

studies, the shRNA sequences used targeted both isoforms of Msi2.  

 We also determined that overexpression of Msi2 isoform 1, but not isoform 2, enhances 

the cloning efficiency of ESC, which is a measure of their self-renewal capacity. However, we 

determined that ectopic expression of either Msi2 isoform 1 or isoform 2 does not block the 

differentiation of ESC when both isoforms of Msi2 are knocked down. Moreover, ectopic 

expression of Msi2 isoform 1 or isoform 2 does not appear to alter the pattern of differentiation 

induced by the treatment of ESC with RA. Thus, our findings suggest that both isoforms of Msi2 

are required to maintain the self-renewal of ESC.  

 Finally, the studies presented in this Chapter support that MSI2 is required for the 

proliferation of medulloblastoma cells as well as glioblastoma cells. Although several SOX2-
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associated proteins have been implicated in brain cancer, the roles of the vast majority of SOX2-

associated proteins have not been examined in brain cancer. In this Chapter, we examined the 

SOX2-associated protein MSI2, which has been implicated in supporting the growth of other 

cancers. Knockdown of MSI2 in MB and GB cells impairs their ability to proliferate. Currently, it 

is unclear why the knockdown of MSI2 reduces the growth of brain tumor cells. Recent studies 

suggest that the translation of NUMB mRNA, which is a known target of MSI1 [99], inversely 

correlates with MSI2 expression in leukemia [192]. Interestingly, we observed an increase in the 

level of NUMB when MSI2 was knocked down in DAOY cells. Moreover, others have reported 

that overexpression of NUMB in DAOY cells reduces their colony-forming ability [199]. Thus, it 

is tempting to speculate that knockdown of MSI2 reduces the viability of DAOY cells because of 

the increase in NUMB. However, further study will be needed to verify whether this is in fact the 

case, because MSI2 is likely to affect the expression of other important genes. In this regard, 

studies conducted in HEK293T cells identified >60 mRNA that associate with MSI1 [200]. 

Hence, MSI2 is also likely to regulate the translation of a significant number of mRNA. The 

reason for the reduction in the proliferation of U87 and U118 GB cells when MSI2 is knocked 

down is also unclear. Recently, it has been reported that elevating NUMB in U87 cells does not 

affect their proliferation [201]. Thus, further study will be needed to define the roles of MSI2 in 

brain tumor cells. Importantly, the studies described in this Chapter substantiate our belief that 

identifying proteins that interact with SOX2 in multiple cellular contexts is a useful approach for 

identifying critical understudied proteins for diseases such as cancer.   



80 
 

 

 

 

 

 

 

 

CHAPTER 4:     SOX2 functions as a molecular rheostat in pancreatic ductal 

adenocarcinoma 

 

The studies described in this chapter, which were conducted  

by Erin Wuebben, and are published in Oncotarget [202]. 
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4.1     Introduction 

PDAC is presently one of the most lethal malignancies in the United States, as outlined in 

Chapter 1 of this dissertation, and SOX2 expression has been shown to increase as PDAC 

progresses. More recent studies reported that SOX2 is expressed in many different human PDAC 

cell lines, with high expression in some PDAC cell lines, but little or no expression in others 

[155]. Importantly, this study demonstrated that SOX2 expression is closely associated with 

putative cancer stem cell markers previously reported to be expressed by PDAC tumor-initiating 

cells [155]. This study also demonstrated that knocking down SOX2 in PDAC cell lines reduced 

their growth in vitro; whereas, stable expression of SOX2 in a PDAC cell line, which does not 

endogenously express detectable levels of SOX2, increased their anchorage-independent growth 

[155]. Although this study provided support in vitro for a critical role of SOX2 in the stemness of 

PDAC, the effects of SOX2 on the tumorigenicity of PDAC tumor cells were not examined. 

Here, we examined the growth responses of multiple PDAC cells lines engineered for 

either inducible overexpression of SOX2 or inducible knockdown of SOX2. In addition to 

examining how altering SOX2 expression influences PDAC cell growth in vitro, we examined 

how tumorigenicity is affected when SOX2 levels are increased and decreased.  

 

4.2     Engineering PDAC Cell Lines for SOX2 Overexpression  

To determine how elevating the levels of SOX2 influences the behavior of PDAC cells, 

we initially engineered T3M4 PDAC cells for inducible overexpression of epitope-tagged SOX2. 

Epitope-tagged SOX2 enabled us to distinguish exogenously expressed SOX2 from endogenous 

SOX2. SOX2 was tagged at its N-terminus with a sequence that codes for a Flag-Strep tag. 

Previous studies have shown that placement of this tag at the N-terminus does not interfere with 

its function [80, 87, 93, 172, 203]. T3M4 cells were selected because they express SOX2 at 

intermediate levels, ~15-fold lower than L3.6 cells (data not shown), which have been shown 

previously to express SOX2 at levels significantly higher than most other PDAC cell lines [155]. 
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Additionally, L3.6 cells express mutant KRAS (G12D) [204]; whereas, T3M4 cells 

heterozygously express a different KRAS mutant (Q61H/WT) [205]. Using T3M4 cells, we could 

determine how both inducible overexpression of SOX2, as well as inducible knockdown of SOX2 

(see below), influences the behavior of PDAC cells. T3M4 cells were engineered for inducible 

overexpression with the aid of two lentiviral vectors, which are similar to those used previously to 

engineer brain tumor cells for inducible expression of exogenous SOX2 [172]. One lentiviral 

vector codes for the expression of the reverse tet-transactivator driven by a PGK promoter, and 

the second lentiviral vector codes for the expression of epitope-tagged SOX2, which is driven by 

a Dox-inducible promoter (Figure 2.1). After viral transduction of T3M4 cells, cells stably 

transduced with both lentiviral vectors were isolated as described in Chapter 2. These cells are 

referred to as i-SOX2-T3M4 cells. 

 

4.3     Overexpression of SOX2 Reduces PDAC Cell Growth in vitro and in vivo 

To determine how inducible elevation of SOX2 influences the in vitro growth of i-SOX2-

T3M4 cells, we initially examined a Dox-dose response curve. As the concentration of Dox was 

increased, there was a dose dependent increase in the expression of Flag-SOX2. At 300 ng/ml of 

Dox there was a ~7.5-fold increase in total SOX2 (endogenous plus exogenous SOX2) (Figure 

4.1A). Treatment of i-SOX2-T3M4 cells with Dox over a 4 day period led to decreased cell 

growth at all Dox concentrations tested, reaching nearly 40% reduction in cell proliferation at 300 

ng/ml of Dox (Figure 4.1B). A significant reduction in cell growth was evident after 72 hr (not 

statistically different at 48 hr, Figure 4.1C). As a control, we tested the effects of Dox on parental 

T3M4 cells. At concentrations as high as 1 µg/ml, there were no effects on the growth of parental 

T3M4 cells (Figure 4.1B). To extend these studies, we assessed the effects of elevating SOX2 on 

the clonal growth of i-SOX2-T3M4 cells in both monolayer culture and under anchorage-

independent growth conditions. When plated at clonal densities in monolayer culture, inducible 

overexpression of SOX2 after 8 days significantly reduced the number of colonies, as well as the 
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size of the colonies (Figure 4.1D). Importantly, even after repeated passage in the presence of 

Dox (> 10 passages), we failed to observe the emergence of cells that exhibited accelerated 

growth due to elevation of SOX2. After each passage, there was a reduction in the growth of cells 

treated with Dox when compared to cells cultured in the absence of Dox (data not shown). Not 

surprisingly, inducible elevation of SOX2 also failed to increase the growth of i-SOX2-T3M4 

cells under anchorage-independent growth conditions. After treatment with Dox for 9 days in 

serum-free, stem cell medium, the number and size of the colonies formed in soft-agar was 

reduced significantly (Figure 4.1E). Under these conditions, there was a reduction in the total 

number of colonies, where the largest reduction was in the number of large colonies. 

To determine whether the effects of SOX2 overexpression were PDAC cell line 

dependent, we engineered two additional PDAC cell lines, BxPC3 and HPAF-II, for inducible 

overexpression of SOX2. BxPC3 cells endogenously express SOX2 at levels ~5-fold higher than 

T3M4 cells; whereas, HPAF-II cells express endogenous SOX2 at levels lower than T3M4 cells 

(data not shown). HPAF-II cells express activated, mutant KRAS (G12D) [206]; whereas, BxPC3 

cells express wild-type KRAS [207, 208]. Thus, BxPC3 cells could help determine whether the 

effects of inducible overexpression of SOX2 were related to the KRAS status of PDAC cells. 

BxPC3 cells and HPAF-II cells were each transduced with the same lentiviral vector set (Figure 

2.1) used to engineer T3M4 cells. As shown for i-SOX2-T3M4, we observed tunable induction of 

exogenous SOX2 when i-SOX2-HPAF-II cells and i-SOX2-BxPC3 were exposed to increasing 

concentrations of Dox (Figure 4.2A, D). In addition, at all Dox concentrations tested, elevation of 

SOX2 in i-SOX2-HPAF-II and i-SOX2-BxPC3 cells reduced both their short-term monolayer 

growth and their growth at clonal density (Figure 4.2B, C, E, and F). Elevating SOX2 in i-SOX2-

HPAF-II, led to ~40% reduction in growth (Figure 4.2E). In the case of i-SOX2-BxPC3 cells, 

reduction in growth was smaller, but statistically significant Figure 4.2B). Importantly, under no 

conditions examined did we observe an increase in proliferation when SOX2 levels were elevated 

in three different PDAC cell lines. Altogether these studies demonstrate that inducible 
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overexpression of SOX2 in PDAC cells reduces their growth in vitro.  

 

4.4     SOX2 Overexpression Decreases Subcutaneous Tumor Growth 

A key property of cancer cells is tumorigenicity. To assess the impact of overexpression 

of SOX2 on the tumorigenicity of PDAC cells, 2.5x105 i-SOX2-T3M4 cells were engrafted 

subcutaneously into NCr-nu/nu mice, as described in Chapter 2. Nine days after palpable tumors 

had formed, sized-matched tumors were randomly assigned to the control or the Dox-treated 

group. After 9 additional days, tumors in the control group (11 mice) had grown to an average > 

450 mm
3
; whereas tumors in the Dox-treated group (11 mice) exhibited much less growth, 

reaching on average ~90 mm
3
 (~80% smaller, p<0.001) (Figure 4.3A). In addition, tumor weight 

was reduced ~70% in the Dox-treated group (Figure 4.3B). There was also ~2-fold increase in 

fraction of the tumor consisting of desmoplastic stroma relative to that observed in the control 

tumor group, which were not treated with Dox, as determined by smooth muscle actin (SMA) 

staining (p<0.05, Figure 4.3D). Interestingly, the proliferation marker Ki-67 was ~75% lower in 

the tumor cell compartment of the Dox-treated tumors compared to untreated tumors (p<0.01); 

whereas, Ki-67 staining was ~2-fold higher in the stromal compartments of Dox-treated tumors 

compared to untreated tumors (p<0.05, Figure 4.3E). Altogether, our findings argue that inducible 

overexpression of SOX2 in PDAC cells does not increase cell growth, but, in fact, reduces their 

growth in culture as well as their tumorigenicity. 

 

4.5     Knockdown of SOX2 Decreases PDAC Cell Growth in vitro and in vivo 

We also assessed the impact of knocking down SOX2 on the growth and tumorigenicity 

of T3M4 cells. For this purpose, T3M4 cells were transduced with a single lentiviral vector that 

codes for an inducible promoter driving expression of a SOX2 shRNA, as well as coding for 

constitutive expression of the reverse tet-transactivator that is capable of binding to the Dox-

inducible promoter when Dox is added to the culture medium. Productively transduced T3M4 
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cells, referred to as i-KdSOX2-T3M4 cells, were isolated as described in Chapter 2. Treatment of 

these cells with increasing concentrations of Dox led to dose dependent reductions in the 

expression of endogenous SOX2 protein (Figure 4.4A) and dose dependent reductions in cell 

growth (Figure 4.4B). After 3 days of growth, there was a statistically significant reduction of 

growth, reaching >50% inhibition after 4 days (Figure 4.4C) when SOX2 was reduced ~60% 

(Figure 4.4A). As discussed below, treatment with Dox at this concentration also reduced the 

number of colonies as well as the size of colonies when plated at clonal density in monolayer 

culture. Additionally, a second, independent shRNA lentiviral vector was used in T3M4 cells to 

validate that observed effects were due to the knockdown of SOX2. As described above, 

increasing the concentration of Dox resulted in dose-dependent reductions in SOX2 protein 

expression and in cell growth after 4 days when using this second shRNA vector; however, this 

shRNA was less effective at knocking down SOX2 (~40% reduction) and less effective at 

reducing growth (<30%, Figure 4.5). Thus, in the studies described below, the cells engineered 

with the first SOX2 shRNA were used. 

Additionally, we examined whether knocking down SOX2 in another PDAC cell line 

would also alter their growth. For this purpose, L3.6 cells, which express high levels of SOX2, 

were transduced with the same Dox-inducible SOX2 shRNA lentiviral vector used to generate i-

KdSOX2-T3M4 cells. Treatment of i-KdSOX2-L3.6 cells with increasing concentrations of Dox 

led to a dose dependent decrease in the expression of SOX2 protein and a decrease in the growth 

of the cells in monolayer culture (Figure 4.4D-F).  

Next, we assessed the impact of knocking down SOX2 on the tumorigenicity of i-

KdSOX2-L3.6 cells. i-KdSOX2-L3.6 cells were engrafted subcutaneously into NCr-nu/nu mice. 

Once palpable tumors had formed by engrafted i-KdSOX2-L3.6 cells, mice with sized-matched 

tumors were randomly assigned to the control or the Dox-treated group. After an additional 8 

days, the tumors in the control group increased from an average of 20 mm
3
 to an average of 230 

mm
3
; whereas tumors in the Dox group increased from an average of 20 mm

3
 to an average of 70 
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mm
3
 – a reduction of ~70% (Figure 4.6A). Immunohistochemical staining for the proliferation 

marker Ki-67 was reduced ~50% in the tumor cell compartment of the Dox-treated tumors 

compared to untreated tumors (p<0.05, Figure 4.6C-E). In a smaller study, i-KdSOX2-T3M4 

cells were engrafted subcutaneously into NCr-nu/nu mice. Once palpable tumors had formed by 

engrafted i-KdSOX2-T3M4 cells, mice with sized-matched tumors were randomly assigned to the 

control or the Dox-treated group. After an additional 16 days, the tumors in the control group 

increased from an average of 50 mm
3
 to an average of 330 mm

3
; whereas tumors in the Dox 

group increased from an average of 70 mm
3
 to an average of 135 mm

3
 (Figure 4.7). While this 

small study was not statistically significant, is does lend credence to the previous study with i-

KdSOX2-L3.6 cells in which similar results were seen. Altogether, our studies demonstrate that 

either increasing SOX2 (Figure 4.3) or decreasing SOX2 reduces the growth of tumors. Thus, the 

tumorigenicity of these cells is highly dependent on the expression of optimal levels of SOX2.  

 

4.6     Summary 

As discussed in the Introduction of this dissertation, SOX2 levels have been studied in 

many different cancer types, with variable results. In this study, we demonstrate that inducibly 

either increasing or decreasing levels of SOX2 in PDAC cells reduces growth both in vitro and in 

vivo. Prior to the work described here, stable overexpression of SOX2 in a PDAC cell line had 

been shown to increase cell proliferation in vitro. We reexamined the role of SOX2 in PDAC, 

because we had previously determined that inducible elevation of SOX2 in various types of tumor 

cells leads to growth inhibition rather than growth promotion [172]. Importantly, the work 

described here demonstrates that this is also true for PDAC cells. Specifically, we demonstrate 

that inducible elevation of SOX2 in three different PDAC cell lines in vitro leads to growth 

inhibition, rather than growth stimulation. We also determined that increases in SOX2 lead to a 

reduction in tumorigenicity. Under no conditions was growth observed to increase when SOX2 

levels were elevated from an inducible promoter. 
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Although inducible elevation of SOX2 leads to PDAC growth inhibition in vitro as well as a 

substantial reduction in tumor growth, this does not indicate that SOX2 plays little or no role in 

promoting the growth of PDAC. Previous studies had shown that knockdown of SOX2 in four 

different PDAC cells lines reduces growth in vitro [155]. In the work presented here, we not only 

demonstrate that knockdown of SOX2 reduces growth in vitro; we also demonstrate that tumor 

growth of i-KdSOX2-L3.6 cells is reduced when SOX2 is knocked down in vivo. Thus, SOX2 is 

clearly required for the growth of PDAC both in vitro and in vivo. Equally important, our studies 

indicate that endogenous levels of SOX2 in PDAC cells are optimized for maximum growth, as 

both increases and decreases in SOX2 reduce PDAC cell growth. Hence, SOX2 functions as a 

biphasic molecular rheostat in the control of PDAC cell proliferation. Coupled with our 

demonstration that this is also true for ES cells [17] and four other tumor cell types [172], we 

suggest that this is a defining feature of SOX2. Going forward, it will be essential to gain a much 

deeper understanding of how SOX2 influences the growth of PDAC, and the genetically 

engineered PDAC cell lines described in this dissertation should provide a highly useful platform 

for addressing this question. 
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CHAPTER 5:     Inducible modulation of SOX2 levels alters the efficacy of drugs 

used clinically 

 

The studies described in this chapter, which were conducted  

by Erin Wuebben, and are published in Oncotarget [202]. 
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5.1     Introduction 

SOX2 has been implicated in drug resistance in a number of cancers including 

glioblastoma, bladder, breast, gastric, head and neck, lung, ovarian, and prostate cancers [129, 

137, 141, 142, 151, 152, 154, 158, 163, 168, 169]. As described in Chapter 4, SOX2 levels must 

be tightly regulated to maintain the growth of PDAC cells in vitro and in vivo, but no studies have 

examined the effects of SOX2 on drug resistance in pancreatic cancer. The Introduction of this 

dissertation outlined the desperate need to identify new therapeutic targets for PDAC as current 

therapeutics have yet to improve the high mortality rate for patients with PDAC. Many genes and 

signaling pathways have been shown to be aberrantly activated in PDAC; the most common of 

these is a constitutively activated KRAS mutation. Tumors with KRAS mutations are highly 

dependent on upregulated AKT and RAF/MEK/ERK signaling, which are downstream of KRAS 

[179-182], and thus, a variety of PDAC clinical trials have tested AKT inhibitors (AKTi), e.g. 

MK-2206, and at least five MEK inhibitors (MEKi), e.g. trametinib [183]. Disappointingly, these 

drugs have not produced significant responses in PDAC clinical trials, which has led to the 

general belief that PDAC is largely resistant to AKTi and MEKi. Given the association reported 

for SOX2 and drug resistance in several other cancers, in the following studies we examined how 

changes in the levels of SOX2 influence the responses of PDAC cells to MEKi and AKTi used in 

clinical trials. 

 

5.2     Inducible Elevation of SOX2 Alters Cell Cycle Effects in the Presence of MEKi 

To begin to understand the impact of altering SOX2 levels on the growth responses of 

PDAC cells to drugs used in PDAC clinical trials, we initially examined how elevating SOX2 

influences the cell cycle of i-SOX2-T3M4 cells when treated with five MEKi that have been, or 

that are currently, used in PDAC clinical trials. For this purpose, we initially determined the 

EC50 for each MEKi exhibited by i-SOX2-T3M4 cells based on the reduction in growth over a 4 
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day period (Table 2.1). Additionally, we confirmed the suppression of ERK1/2 phosphorylation 

when MEKi are used at their EC50 (Figure 5.1). When used at their respective EC50, each of the 

MEKi led to a sizable increase in the G1 population of the cells and a sizable decrease in S-phase 

after 48 hr (Figure 5.2). As expected, elevating SOX2 by treatment with Dox also altered the cell 

cycle of i-SOX2-T3M4. However, there was only a modest increase in G1 and a modest decrease 

S-phase. Remarkably, when the cells were treated simultaneously with Dox and any of the five 

MEKi, we observed a partial reversal of the cell cycle changes observed with each MEKi on its 

own. More specifically, the increase in G1 and the reduction of S-phase observed with the MEKi 

was partially reduced when SOX2 levels were elevated in the cells (Figure 5.2A). Interestingly, 

each of the five MEKi induced pronounced morphological changes exemplified by significant 

cell spreading, and this effect was also partially reversed when SOX2 was inducibly elevated 

(Figure 5.2B).  

 

5.3     Elevation of SOX2 Partially Reverses the Reduction in Clonal PDAC Growth Due to 

Treatment with Trametinib 

To more carefully assess the effects of elevating SOX2 on the growth responses of PDAC 

cells when treated with MEKi, we examined the clonal growth of i-SOX2-T3M4 cells cultured in 

the presence of one of the MEKi (trametinib) with and without Dox. For this purpose, 24 hr after 

the cells had been subcultured, trametinib and/or Dox were added to the cells where indicated. 

During the following 8 days, the cells were refed with fresh medium containing trametinib and/or 

Dox every other day. After 8 days of treatment, the number of colonies formed when the cells 

were treated with trametinib at its EC50 was significantly reduced. However, treatment with both 

trametinib and Dox led to a much smaller reduction in colony number (Figure 5.3). As a control, 

we determined that treatment of parental T3M4 cells with Dox did not affect the dose response 

curves of trametinib or a second MEKi, selumetinib (data not shown). 
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5.4     Replating Efficiency of Trametinib-treated PDAC Cells is Improved by SOX2 

Elevation 

To further evaluate the effects of trametinib on i-SOX2-T3M4 cells, the cells were 

cultured for 6 days at typical cell culture densities (1.2x10
4
/cm

2
) in the presence of trametinib 

with or without Dox. After 6 days, cells treated with trametinib or trametinib plus Dox both 

exhibited a change in morphology (Figure 5.4A) relative to untreated i-SOX2-T3M4 cells (Figure 

5.2B), but the cells treated with trametinib on its own exhibited the most pronounced 

morphological change. Next, the trametinib treated and the trametinib plus Dox treated cells were 

subcultured and replated at clonal densities in the absence of trametinib and Dox. Although the 

trametinib treated cells and the trametinib plus Dox treated cells were replated at equal cell 

numbers, the cloning efficiency of the trametinib plus Dox treated cells was substantially higher 

than those treated with trametinib on its own (Figure 5.4B). As a control, we determined that pre-

treatment with Dox on its own does not improve the cloning efficiency of i-SOX2-T3M4 cells 

when replated. In fact, treatment with Dox on its own for 6 days prior to replating in medium 

lacking Dox reduces cloning efficiency ~50%. Interestingly, the morphology of the few colonies 

formed from the trametinib treated cells continued to exhibit a flattened morphology; whereas the 

colonies formed from the trametinib plus Dox treated cells exhibited morphology much closer to 

that of untreated i-SOX2-T3M4 cells. In addition, we observed a similar differential in the 

number of colonies formed when the trametinib, and trametinib plus Dox treated cells were 

replated and grown under anchorage-independent conditions in serum-free, stem cell medium 

(Figure 5.4C). Thus, even though elevating SOX2 on its own inhibits the proliferation of i-SOX2-

T3M4 cells, elevating SOX2 in these cells reduces the growth inhibitory effects of trametinib 

under more than one condition. 

 

5.5     Drug Resistant Effects of Elevated SOX2 Are Not Cell Line Specific 

To determine whether the protective effects of elevating SOX2 were cell line dependent, 
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we examined how elevation of SOX2 influenced the clonal growth of i-SOX2-BxPC3 cells and i-

SOX2-HPAF-II cells. As in the case of i-SOX2-T3M4 cells, inducible elevation of SOX2 also 

reduced the inhibitory effects of trametinib on the clonal growth of i-SOX2-BxPC3 cells and i-

SOX2-HPAF-II cells (Figure 5.5). For these studies, trametinib was used at the EC50 for i-

SOX2-BxPC3 cells and i-SOX2-HPAF-II cells (Table 2.1). Thus, the protection afforded by 

elevating SOX2 was not limited to i-SOX2-T3M4 cells. Equally important, the protective effect 

of SOX2 was not limited to trametinib. Inducible overexpression of SOX2 in i-SOX2-T3M4, i-

SOX2-BxPC3, and i-SOX2-HPAF-II cells also reduced the inhibitory effects of the AKTi, MK-

2206 (Figure 5.3, Figure 5.6). Again, MK-2206 was used at the EC50 for each PDAC cell line 

(Table 2.1). Altogether, our studies show that although inducible elevation of SOX2 on its own 

reduces the clonal growth of three different PDAC cell lines, elevating SOX2 in these cells 

partially reverses the growth inhibitory effects of trametinib and MK-2206. 

 

5.6     Knockdown of SOX2 Enhances Growth Inhibitory Effects of MEKi and AKTi 

Finally, we examined whether knocking down SOX2 in PDAC cells would lead to further 

reduction in growth when the cells were treated with trametinib or MK-2206. Initially, we 

addressed this question using i-KdSOX2-T3M4 cells. As in the case of i-SOX2-T3M4 cells, 

treatment of i-KdSOX2-T3M4 cells with trametinib or MK-2206 each reduced the number and 

the sizes of the colonies that formed when the cells were plated at clonal densities (Figure 5.7A). 

Importantly, knocking down SOX2 in conjunction with trametinib or MK-2206 led to a further 

reduction in the number of colonies that formed. Like i-KdSOX2-T3M4 cells, growth of i-

KdSOX2-L3.6 cells at clonal densities was reduced by trametinib and MK-2206 (Figure 5.7B). 

Moreover, growth of these cells was reduced even further when SOX2 was knocked down and 

the cells were treated with drug. Thus, these findings, in conjunction with the SOX2 

overexpression studies described earlier, strongly support the conclusion that SOX2 helps protect 

PDAC cells from the growth inhibitory effects of MEKi and AKTi. 
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5.7     Summary 

Recent work has shown that SOX2 is not only expressed in ~20 different types of human 

cancer [12, 125, 129, 130, 132, 141, 148, 149, 151-155, 158-160, 162, 163, 167, 168, 170, 209], it 

also appears to influence drug resistance in at least eight of these cancers [129, 137, 141, 142, 

151, 152, 154, 158, 163, 168, 169]. SOX2 had been shown to be expressed in PDAC [125, 155], 

but its roles in tumor growth and drug resistance had not been examined prior to work described 

in this dissertation. In this study, we demonstrate that elevating the levels of SOX2 reduces the 

efficacy of several MEKi, including trametinib, and the AKTi MK-2206, which have thus far 

yielded disappointing patient responses in PDAC clinical trials. Our studies indicate that the 

effects of SOX2 on the responses to trametinib and MK-2206 are not dependent on the mutation 

status of KRAS. Going forward, it will be valuable to determine how SOX2 can reduce the action 

of MEKi and AKTi. As discussed in Chapter 6, targeting SOX2 or its mode of action could 

improve the effectiveness of these drugs against PDAC. 
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CHAPTER 6:     Conclusions & Future Directions 
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6.1     Overview 

 The studies presented in this dissertation examined the diverse roles of not only SOX2, 

but also the SOX2-associated protein MSI2 in multiple cell types. Previously, our laboratory 

performed proteomic screens in ESC, medulloblastoma cells, and glioblastoma cells. 

Interestingly, MSI2 interacted with SOX2 in each of these cell types, meriting further study of its 

role in ESC and brain tumor cells. We determined that Msi2 is required for ESC, as knockdown 

of both Msi2 isoforms induces the differentiation of ESC and reduces their cloning efficiency, 

which is not rescued by the overexpression of either Msi2 isoform alone. Furthermore, our studies 

of MSI2 in brain tumor cells determined that MSI2 is required for their continued proliferation, as 

knockdown of MSI2in DAOY medulloblastoma cells, and in U87 and U118 glioblastoma cells, 

dramatically reduces cellular growth.  

 We extended our study of SOX2 by examining its role in PDAC and found that SOX2 is 

necessary for the growth and proliferation of PDAC cells, and that SOX2 functions as a biphasic 

molecular rheostat in PDAC, as both small increases and small decreases in SOX2 levels 

dramatically alter PDAC growth both in vitro and in vivo. Furthermore, drug resistance of PDAC 

tumor cells was altered when SOX2 levels were changed. Elevating SOX2 protected PDAC cells 

from the growth inhibitory effects of MEK and AKT inhibitors, but the knockdown of SOX2 

enhanced the growth inhibition in the presence of these drugs.  

 The need for continued study in both of these areas is well established. In the sections 

below, the broader outlook and global implications of these studies are examined. Moreover, 

future perspectives for carrying this research forward are also presented.  

 

6.2     MSI2 is required for Embryonic Stem Cells and Brain Tumor Cells 

 The studies presented in Chapter 3 of this dissertation demonstrate that the SOX2-

associated protein MSI2 is a required protein in both ESC and two types of brain tumor cells. In 

ESC, we determined that the knockdown of Msi2 disrupts the self-renewal of ESC and induces 
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their differentiation. Furthermore, the extent of differentiation and the loss of self-renewal 

capacity correlates with the extent to which Msi2 levels were decreased. Remarkably, the 

knockdown of Msi2 causes ESC to differentiate despite continued expression of both Sox2 and 

Oct4. Similar results were observed in a related study from this laboratory, in which barrier to 

autointegration factor 1 (Banf1) was knocked down in human ESC [97]. In that report, human 

ESC lost their capacity for self-renewal following Banf1 knockdown even though the localization 

and nuclear expression of Sox2 and Oct4 did not change. Thus, it would suggest that the 

knockdown of Msi2, like the loss of Banf1, may alter the critical balance of Sox2 and Oct4 

relative to other essential proteins required for the self-renewal and pluripotency of ESC, rather 

than their absolute levels. 

 Our studies raise an important question. How does Msi2 regulate the behavior of ESC 

and brain tumor cells? Previous studies demonstrate that Msi1 binds to target mRNA transcripts 

to prevent their association with the ribosome and other translation machinery [99]. If Msi2 

functions through a similar mechanism to block the translation of several critical RNAs, it will be 

important to determine which RNAs are targeted. Moreover, it would be interesting to compare 

which transcripts Msi2 targets in different cellular contexts, including ESC, hematopoietic stem 

cells, brain tumor cells, and additional cancer cell types. Studies of differential RNA expression 

following knockdown of MSI2 in brain and other tumor cells could identify critical networks 

altered by MSI2 expression. Furthermore, RNA-Seq analyses of the different transcriptomes 

would yield insight into molecular mechanisms necessary for the growth of SOX2- and MSI2-

expressing tumors. 

 In the future, it will be important to determine whether Msi2 plays a role during 

embryogenesis. Although our studies argue that ESC require Msi2, gene ablation studies argue 

that Msi2 is not absolutely required for embryogenesis [103, 104]. However, it remains to be 

determined whether the reduced frequency of null Msi2 mice is the result of minor defects during 

embryogenesis [103, 104]. Moreover, it is possible that Msi1 can compensate for the absence of 
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Msi2 during embryogenesis, but is unable to for ESC grown in culture. Thus, much remains to be 

discovered regarding the functions and interactions of MSI2 across multiple cell types. 

 

6.3     SOX2 Expression must be maintained at Optimal Levels 

 Work presented in Chapter 4 of this dissertation demonstrates that SOX2 is clearly 

required for the growth of PDAC, as knockdown of SOX2 reduces PDAC growth both in vitro 

and in vivo. Furthermore, our studies indicate that endogenous levels of SOX2 in PDAC cells are 

optimized for maximum growth, as both increases and decreases in SOX2 reduce PDAC cell 

growth. Hence, SOX2 functions as a biphasic molecular rheostat to control PDAC cell 

proliferation.  

 The finding that SOX2 levels need to be maintained at optimal levels was first described 

in ES cells, and later in four other tumor types [172]. In ES cells, knockdown of SOX2 or a 2-fold 

increase in SOX2 disrupts the self-renewal of ES cells and triggers their differentiation [17]. The 

need to maintain SOX2 levels within narrow limits is not surprising when one examines the 

SOX2-interactome in different cell types. Proteomic analysis of the SOX2-interactome in ES 

cells, as well as medulloblastoma cells and glioblastoma cells, indicates that SOX2 associates in 

high molecular weight protein complexes with a large and diverse set of nuclear proteins [80, 93, 

210]. In ES cells, SOX2 is part of a highly integrated transcriptional circuitry that involves 

multiple master regulators known to control the self-renewal and pluripotency of ESC [93, 95]. 

Moreover, SOX2 and the other master regulators that it associates with in ES cells each form 

complexes with many of the same proteins. As a result, a small increase in the level of SOX2 is 

likely to lead to the formation of incomplete protein complexes that are essential for ES cells. 

Moreover, the potent biological impact of small changes in SOX2 levels seems all the more likely 

because SOX2 forms complexes with a wide variety of proteins involved in many critical cellular 

processes. In addition to transcription, SOX2 forms complexes with proteins involved in signal 

transduction, DNA repair [80, 93, 210], ubiquitination pathways [80], and RNA binding (MSI2, 
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as described in Chapter 3 of this dissertation). Thus, even small disturbances in SOX2 levels can 

lead to waves of change throughout multiple signaling networks.  

 

6.4     Strategies for Experimentally Altering SOX2 Levels 

 Unfortunately, even with abundant evidence pointing to links between SOX2 levels and 

tumor growth, there is a lack of consensus regarding the best methods to study changes in SOX2 

levels. Some studies outlined in the Introduction report that stable overexpression of SOX2 in 

PDAC enhances growth, while the studies described in Chapter 4 indicated that inducible 

overexpression of SOX2 in fact reduces growth. The contrasting results obtained studying SOX2 

by stable overexpression and inducible overexpression are likely to result from the fundamental 

difference in experimental design. Cell lines engineered for inducible overexpression of SOX2 

were generated via drug selection of lentiviral transduced cells, which occurred at frequencies 

greater than 70%, before SOX2 levels were altered. In direct contrast, cell lines engineered to 

stably overexpress SOX2 are subjected to drug selection while SOX2 levels are ectopically 

elevated. As a result, any cells that are growth inhibited or grow more slowly due to elevated 

levels of SOX2, as we have shown is the case for three different PDAC cell lines, will be lost 

during the drug selection period as the faster proliferating cells expand. Consequently, the cells 

present in the drug selected population represent only a subpopulation of the parental cells. 

Importantly, the studies presented in Chapter 4 of this dissertation argue that this subpopulation is 

likely to represent a very small minority of PDAC cells. This is especially clear in the case of i-

SOX2-T3M4 cells. Continual growth of these cells in the presence of Dox for >10 passages failed 

to lead to the emergence of cells that grow faster due to the elevation of SOX2. 

 

6.5     Increases in SOX2 Expression during Tumor Progression must be accompanied by 

Compensatory Changes in Other Key Signaling Proteins 

 It is evident from the studies where SOX2 was elevated from an inducible transgene that 
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many, if not nearly all, SOX2-expressing tumor cell lines are growth inhibited when SOX2 is 

initially elevated. However, this does not mean that SOX2 expression cannot rise during cancer. 

In fact, several lines of evidence argue that increases in the levels of SOX2 undoubtedly occur 

during oncogenesis. As discussed earlier, the SOX2 gene is amplified in several cancers [105, 

107, 108, 110], and SOX2 has been shown to be expressed in some tumors, but not in their 

surrounding tissue. Moreover, in some tumors, SOX2 expression has been shown to increase 

during tumor progression [106, 123, 126, 128, 132-134] and high levels of SOX2 correlate with 

poor prognosis in many cancers [124, 139, 140, 144, 148]. This raises a fundamental question. If 

SOX2 levels must be maintained within optimal limits to promote tumor growth, how can SOX2 

levels rise during tumor progression? It is likely that SOX2 must function within the constraints 

of its protein-protein interaction network, and therefore increases in the levels of SOX2 must be 

accompanied by corresponding changes in the expression of other genes that counterbalance the 

growth inhibitory effects of elevated SOX2. Or more specifically, accommodating the increases 

in SOX2 expression would require increased expression of genes required for growth promotion 

by SOX2 and/or downregulation of genes that interfere with the action of SOX2 when its levels 

rise during tumor progression. Clearly, changing SOX2 levels in isolation disrupts cell function. 

SOX2 is by no means unique in this regard. Our studies suggest that the effects of SOX2 are 

highly context-dependent, similar to other genes, notably TGFβ, which can act as a tumor 

suppressor or oncogene. As another example, MAP3K7 and CHD1 have been shown to be co-

deleted in prostate cancer and their co-deletion in ETS rearrangement-negative prostate cancers 

correlates with poor disease-free survival [211]. In a mouse xenograft model of prostate cancer, 

knockdown of MAK3K7 on its own had no significant effect on survival, and knockdown of 

CHD1 on its own enhanced survival. However, combined knockdown of MAK3K7 and CHD1 

led to larger tumor volumes and shorter survival [211]. Accordingly, the identification and 

targeting of genes that must change in concert with increases in SOX2 and permit SOX2 to 

contribute to tumorigenicity could provide a novel strategy for blocking, or at least, reducing the 
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growth of tumors dependent on SOX2. 

 

6.6     Tumor Cells do not Exhibit a Single Optimum for SOX2 Expression 

 In addition to intracellular changes taking place to balance the increased expression of 

SOX2 within individual cells, there may also be a rise in the number of SOX2-positive cells in 

the tumor population. Such a shift in the distribution of the tumor cell population may also 

contribute to the apparent rise in SOX2 during tumor progression. As shown previously, SOX2 

protein levels vary considerably between different PDAC cell lines [155]. In the case of T3M4 

and L3.6 PDAC cells, SOX2 expression differs by ~15-fold across cell lines [202]. Furthermore, 

we determined by immunofluorescence that SOX2 expression is not distributed evenly among 

L3.6 PDAC cells [~10% of the cells endogenously express SOX2 at high levels (SOX2
hi
), ~30% 

at moderate levels, and ~60% at low/undetectable levels (SOX2
low

), Figure 6.1].Thus, PDAC 

cells do not exhibit a single optimum for SOX2 expression. If SOX2 is required for the tumor-

initiating/cancer stem cell population, which is the case for at some, if not most SOX2-expressing 

cancers, the proportion of SOX2-positive cells in the tumor may rise as the population of tumor-

initiating cells increases during tumor progression. Correspondingly, increases in a SOX2-

positive tumor-initiating cell population would account for the decreased survival and worse 

prognosis seen in many SOX2-expressing patient tumors [124, 133, 137-145].  

 

6.7     SOX2 as a Potential Tumor-Initiating Cell Marker 

 The close examination of current literature presented in the Introduction revealed that 

SOX2 is expressed in over 20 different tumors. Importantly, of these SOX2-positive tumors, most 

studies have concluded from indirect evidence that SOX2 positive cells are likely to represent the 

tumor-initiating cell population of these tumors. However, the only direct evidence for the role of 

SOX2 in the tumor-initiating cell population has only been obtained recently using the limiting 

cell dilution tumor assay [142, 161-166]. The limiting cell dilution tumor assay measures the 



115 
 

 



116 
 

 

minimum number of tumor cells needed to reform a tumor when transplanted into a suitable host 

and, thus, is the gold standard for measuring the frequency of tumor-initiating cells in the tumor. 

An increase in the percentage of tumor-initiating cells would result in fewer cells necessary to 

form the tumor. In pancreatic cancer, for example, others have attempted to identify pancreatic 

tumor-initiating cells using markers such as CD133, CD44, CD24, ESA, and ALDH1 [212-219]. 

For example, ALDH+ cells have shown enhanced clonigenic growth in vitro and in vivo [216-

219], and studies performed by others argue that 10-15% of pancreatic cancer cells grown in 

culture are ALDH+ [215]. However, these markers are controversial for PDAC [220]. Studies in 

our laboratory with CD133 have shown that when isolated CD133- glioblastoma cells are grown 

in culture, CD133 expression rapidly reappears [172]. In addition, we have observed similar 

results with the reappearance of ALDH1 positive cells from ALDH1 negative PDAC cells 

(Wilder and Rizzino, unpublished results). Future studies will need to consider whether SOX2 

may also be a potential PDAC tumor-initiating cell marker, and determine whether SOX2 is co-

expressed with these other markers previously reported to associate with PDAC tumor-initiating 

cells.  

 Although SOX2 has been shown to be essential for the tumor-initiating cells of several 

other tumors, the roles of SOX2 in the tumor-initiating population of PDAC have not been 

determined in vivo. Knockin of GFP-SOX2 into the endogenous SOX2 locus using CRISPR 

technology may be the best means to study the role of SOX2 in PDAC tumor-initiating cells. 

Gene editing studies like this would enable the fractionation of PDAC cells on the basis of 

endogenous SOX2 expression and the isolation of viable SOX2
hi
 and SOX2

low
 cells via 

differential GFP expression. Using the isolated cells, one could determine whether the SOX2
hi
 

PDAC population exhibits a higher percentage of tumor-initiating cells than the unsorted or the 

SOX2
low

 cell population by performing limiting tumor cell dilution assays. These isolated SOX2
hi
 

and SOX2
low

 cells could then be further examined for expression of markers previously shown to 

be associated with PDAC tumor-initiating cells, as well as critical signaling networks in SOX2
hi
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and SOX2
low

 PDAC cell subpopulations. A recent study has shown that elevating SOX2 in PaTu-

8988t cells leads to the expression of CD133, CD44, and AKDH1, all are markers reported by 

others to be associated with PDAC tumor-initiating cells [155]. However, controversy surrounds 

these markers in the case of PDAC [220]. Co-expression of SOX2 with one or more of these 

markers may be a more reliable means of identifying the tumor-initiating cell population. Going 

forward, a better understanding of the networks used by SOX2 to influence the tumor-initiating 

cells in PDAC may allow future clinical trials to more accurately and reliably treat PDAC tumors 

that have elevated SOX2 expression.  

 

6.8     Elevated SOX2 may contribute to a Quiescent Tumor-Initiating Population 

 In addition to their ability to propagate the tumor, tumor-initiating cells are thought to be 

responsible for dormant/quiescent population, [217] but this property is rarely examined. 

Quiescent cells can be identified by thymidine analog label retention; these “label-retaining cells” 

proceed through the cell cycle at a greatly reduced frequency, resulting in thymidine analog label 

retention [164, 221, 222]. In medulloblastoma, SOX2
+
 cells have been shown to acquire the 

labeled thymidine analog more slowly, as well as retain the label following pulse chase 

experiments [164]. Furthermore, a recent study in bladder cancer has shown that the quiescent 

label-retaining cancer stem cell population does not respond to cytotoxic therapy and is capable 

of repopulating the tumor following drug removal [221]. Going forward, it will be important to 

determine whether elevation of SOX2 during advanced stages of PDAC affects its tumor-

initiating population as well as the treatment options for this highly deadly cancer, in particular 

the response of PDAC to specific classes of drugs currently being tested clinically. It may be 

possible that the SOX2
hi
 cells of the tumor remain in or enter a quiescent state during 

chemotherapeutic treatment, which are often designed to target the rapidly dividing cells of the 

tumor. In this way, upon removal of drug treatment the SOX2
hi
 cells may be the first cells primed 

and ready to re-enter the cell cycle and begin to repopulate the tumor. Understanding this 
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interplay between SOX2 and tumor cell quiescence will undoubtedly be important for the 

improved response of pancreatic tumors to current therapeutics. 

 

6.9     Inducible Modulation of SOX2 Levels Alters the Efficacy of Drugs Used Clinically 

 Multiple studies have shown that SOX2 also influences responses of tumor cells to other 

drugs used clinically [129, 130, 141, 154, 158, 163, 168, 169]. Chapter 5 of this dissertation 

demonstrates for the first time that inducible elevation of SOX2 in three PDAC cell lines leads to 

a reduction in the efficacy of several MEKi, including trametinib, and the AKTi MK-2206. This 

is particularly interesting for two reasons. First, elevation of SOX2 on its own inhibits growth, 

but when SOX2 is elevated it reduces the efficacy of MEKi and AKTi. Thus, the protective 

effects of SOX2 against these drugs are not coupled mechanistically with the effects of SOX2 on 

PDAC growth. Going forward, it will be valuable to determine how SOX2 can reduce the action 

of MEKi and AKTi. Second, knockdown of SOX2 in PDAC cells combined with drug treatment 

leads to further reductions in PDAC cell growth. Consequently, SOX2 appears to be a potential 

therapeutic target for improving the treatment of patients with SOX2-positive PDAC. Although it 

is generally believed that it is very difficult to develop drugs that directly interfere with the action 

of transcription factors, it may be practical to identify small molecule inhibitors that reduce SOX2 

gene expression, block the downstream mechanisms by which SOX2 reduces efficacy of MEKi 

and AKTi, or, as discussed earlier, target genes that work in concert with SOX2 to promote tumor 

growth. In this way, targeting SOX2 or its mode of action could improve the effectiveness of 

these drugs against PDAC. 

 While the studies presented in Chapter 5 have focused largely on the drug resistance of 

PDAC cells to MEKi and AKTi, going forward it remains to be determined how SOX2 may or 

may not protect PDAC cells from additional chemotherapeutics. Current treatment regimens 

include gemcitabine, a regimen combining fluorouracil, irinotecan, oxaliplatin, and leucovorin 

(called FOLFIRINOX), and another combining albumin-bound paclitaxel with gemcitabine; 
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however these strategies have done little to improve patient survival beyond a few months. The 

possibility remains that SOX2 does not selectively protect PDAC cells from only MEKi and 

AKTi. It will be important in future studies to evaluate whether SOX2 can also protect PDAC 

cells from current standards of care. Cells engineered for sorting based on endogenous SOX2 

expression as described above would be particularly useful in this regard, as one could examine 

drug resistance to current therapeutics on cells with different levels endogenous SOX2 

expression. These types of experiments could greatly enhance our understanding of SOX2 in drug 

resistant PDAC cells. 

 Currently, it is unknown how SOX2 reduces the effectiveness of chemotherapeutics in 

PDAC cells. However, progress has been made in understanding how SOX2 is regulated in 

PDAC as well has how SOX2 influences the growth of PDAC cells. A recent study points to an 

interesting connection between SOX2 and NFATc1. Knockdown of NFATc1, which is often 

overexpressed in PDAC, leads to a decrease in SOX2 expression, and this appears to be due to a 

direct effect of NFATc1 on SOX2 transcription [223]. In other studies, stable overexpression of 

SOX2 in Patu8988t PDAC cells, which do not express detectable levels of endogenous SOX2, 

has been shown to increase expression of Twist, Snail and Slug, while decreasing the expression 

of E-Cadherin and ZO-1 [155]. Conversely, knocking down SOX2 in PDAC cells increases the 

expression of p21Cip1 and p27Kip1 [155]. Thus, under the control of NFATc1, SOX2 appears to 

regulate the expression of genes involved in epithelial-mesenchymal transition and cell cycle 

regulation. 

 

6.10     SOX2 may influence Drug Efflux in Tumor-Initiating Cells 

 In addition to cell cycle control, SOX2 may be using additional means to protect PDAC 

cells from the growth inhibitory effects of chemotherapeutics used clinically. As outlined in the 

Introduction of this dissertation, SOX2 may be acting to protect tumor cells through antiapoptotic 
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signaling or quiescent-like phenotypes [126, 152, 158, 164], or SOX2 may promote drug 

resistance through various ATP-binding cassette transporters. For example, ABCG2 has been 

shown to be upregulated in the side population TIC [151, 154], has been considered to be an 

additional cancer stem cell marker, and additional studies have shown that stable downregulation 

of SOX2 via shRNAs decreases ABCG2 [142, 159]. An additional study found that induction of 

SOX2 in glioma stem cells promotes the expression of ABCC3 and ABCC6 transporters [158]. 

Furthermore, recent RNA-Seq from our laboratory identified 2 additional ATP-binding cassette 

transporters, ABCB6 and ABCC4, which increased >50% and over 5-fold, respectively, when 

SOX2 was elevated in PDAC cells. It is possible that SOX2 may be controlling the expression of 

these cell surface transporters on tumor cells to influence the efflux of drugs. Recognizing and 

focusing on the role of SOX2 in drug resistance could greatly improve the treatment options for 

patients with a multitude of cancers, especially those with highly refractory tumors, as the ability 

to eradicate the TIC population is likely to be the only way to prevent recurrence. 

 

6.11     Summary 

 In conclusion, SOX2 clearly plays critical roles in multiple cancers, including PDAC. 

SOX2 not only influences tumor growth in these cases, but also influences the responses of 

tumors to drugs used clinically. Thus continued study of SOX2 in PDAC and other cancers is 

clearly warranted, and could lead to major advancements desperately needed for these highly 

deadly malignancies. 
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