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ABSTRACT 

The ADA3 (Alteration/Deficiency in Activation 3) protein is a transcriptional adaptor protein 

that was initially discovered as a component of several HAT (Histone Acetyltransferase) 

complexes, the enzyme complex responsible for histone acetylation, which is a prerequisite for 

transcription. Earlier the studies from Dr. Band’s laboratory and that of others’ have deciphered a 

crucial role of ADA3 in cell cycle regulation (both through G1/S and G2/M phase transitions) and 

in maintaining the genomic stability.  

While our laboratory investigated the mechanism behind the role of ADA3 in G1/S transition, 

the same remained unknown for G2/M phase transition. Based on this prior knowledge about 

ADA3, I started out my Ph.D. thesis work in Dr. Band’s laboratory directed towards examining 

the role of ADA3 in mitosis. During my doctoral research, I demonstrated that ADA3 governs the 

recruitment of a key centromeric protein CENP-B on to the centromeres and regulates the 

chromosome segregation during mitosis. 

ADA3 protein has the potential to undergo posttranslational modification, including 

acetylation, and in the course of my Ph.D. research, I became interested in how these 

modifications might regulate the function of ADA3. I showed that ADA3 acetylation is regulated 

by coordinated actions of its associated HATs, GCN5, PCAF and p300, and a new partner I 

discovered, the deacetylase SIRT1. We used mass-spectrometry and site-directed mutagenesis to 

identify major sites of ADA3 acetylated by GCN5 and p300 and found that acetylation defective 

mutants were capable of interacting with HATs and other components of HAT complexes but 

deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation 

marks and cell proliferation in Ada3 deleted MEFs.  

A parallel focus of my studies was to define the role of ADA3 in HER2+ breast cancers, 

which basically emanates from a clinical study from our laboratory that revealed that ADA3 is 

overexpressed/mislocalized in these types of aggressive tumors. By using cell culture models I 
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have established a link between ADA3 and HER2 signaling pathways. In these cell lines, I found 

that ADA3 is a downstream target of HER2 and discovered a novel phospho-AKT-phospho-

p300-Ac-ADA3 signaling pathway. Importantly, ADA3 knockdown in these cells recapitulates 

the cell cycle inhibitory effects of a tyrosine kinase inhibitor lapatinib such as accumulation of 

CDK inhibitor p27 and reduced mitotic index. Taken together these results highlight the 

importance of ADA3 as a marker for treatment efficacy and a promising therapeutic target. Given 

the key importance of ADA3-containing HAT complexes in the regulation of various biological 

processes, including cell cycle, my thesis work provides an insight for the regulation of the 

function of these complexes through dynamic ADA3 acetylation. 
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CHAPTER 1 

INTRODUCTION 
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ADA3, as a component of SAGA complex 

 In eukaryotes histone acetylation is one of the major epigenetic modifications by which gene 

expression is   regulated  (1, 2) . Acetylation of histones is mediated by histone acetyl transferases 

(HATs) that exist as multi-subunit complex and one of the well-studied HAT complexes is known 

as Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex that was originally identified in yeast  (3) . 

The SAGA complex is highly conserved in eukaryotes, however the number of SAGA like 

complexes have increased during evolution and mammals have two SAGA like complex; SAGA 

itself (contains Ada2b) and ATAC complex (contains Ada2a), and both these complexes can be 

further diversified on the basis of their catalytic unit i.e. Gcn5 or the highly related HAT PCAF 

(4) . In general, the 1.8 MDa SAGA complex is composed of 18 to 20 subunits that can be 

divided into four separate groups of proteins (Table 1.1 and Figure 1.1) (5, 6) . The first group 

consists of Ada (alteration/deficiency in activation) proteins that form the acetyl transferase 

module of the complex. Second group consists of Spt (Suppressor of Ty) proteins that interact 

with TATA binding protein (TBP). Third group of proteins in the complex includes TAF proteins 

(TATA binding protein associated factors) that interact with basal transcription machinery and 

the last group is comprised of the protein that forms the de-ubiquitin (DUB) module of the 

complex  (5, 7) . 

Initial studies in yeast have established the partial structural organization of SAGA complex 

and phenotypic defects observed upon specific subunit deletion demonstrated that Ada1, Spt7 and 

Spt20 are required for structural integrity of the complex  (8) . On the other hand 

Ada2/Ada3/Gcn5 are required for nucleosome acetylation and have no major impact on structural 

integrity of the complex  (8) . Based on this a model was proposed for the structural organization 

of SAGA complex in which Ada2, Ada3 and Gcn5 were predicted to be peripheral whereas 

Ada1/Spt7/Spt20 were assumed to be localized in the center of complex  (8) . To a large extent 

this model was consistent in subsequent studies  (9-11) However defining direct interacting 
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Table 1.1: Eukaryotic GCN5/PCAF Complexes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1: Eukaryotic GCN5/PCAF complexes. The identified protein components of the 

distinct types of complexes currently known in yeast (y), Drosophila (d) and humans (h), and the 

total estimated size of the complexes are indicated. Subunits indicated in parentheses are variably 

or less stably associated (e.g. salt concentration-dependent) in the respective complexes. Shaded 

blocks are groups of homologs specific of each type of complex. The GCN5-ADA3-

STAF36/Sgf29 module is conserved in all complexes. HCF-1 is an abundant nuclear cofactor and 

promiscuous adaptor for several different co-activators; it was not detectable by LC-MS/MS in 

highly purified STAGA or ATAC, and thus may only be weakly associated (adapted from Wang 

et al., 2008). 
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partners of an individual protein in the complex has remained a challenge and subtle differences 

in subunit organization within the complex always existed from one study to another. The SAGA 

complex acts as a transcriptional co-activator complex that mediates transcriptional activation by 

at least four different ways. First, it can directly recruit the basal transcription machinery to the 

gene promoters and SAGA subunits such as Spt3 and Spt8 have been reported to facilitate the 

recruitment of TBP and formation of pre initiation complex at target genes  (12) . Second mode of 

activation comes from intrinsic histone acetyl transferase activity of Gcn5 (global and promoter 

specific) that helps opening of chromatin and making it accessible to transcription factors  (7) . 

Third mode of transcriptional activation by SAGA complex is attributed to another enzymatic 

activity i.e. deubiquitinase. Ubiquitin Specific Protease 22 (USP22) catalyzes the deubiquitinase 

activity of SAGA complex and mediates transcriptional activation primarily by deubiquitination 

of histone H2B; nonetheless, deubiquitination of histone H2A by USP22 is also reported  (13-15) 

. The fourth mode by which SAGA complex regulates transcriptional activation involves 

posttranslational modification of non-histone proteins most of them belong to transcription factor. 

For example Gcn5 have been shown to acetylate p53  (16)  and c-MYC  (17)  to positively 

regulate their activity. Similarly USP22 has been shown to regulate the ubiquitination of number 

of transcription regulators (18) . 

The structural and functional analysis of SAGA complex reveals two important features. First, 

each subunit in the complex has a distinct role and secondly certain subunits assemble to form a 

module in the complex that performs a specific function (Figure 1.1). Early studies done yeast 

indicate that both HAT and DUB enzymatic module of the complex can perform their function 

independently however a recent study demonstrates that deletion of Gcn5 decreases the ubiquitin 

protease activity of USP22 thus suggesting a cross talk between HAT and DUB module of the 

complex  (19)  explicitly suggesting that in order for SAGA to perform its complete function the 

overall integrity of the complex is required. 
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Figure 1.1: Modular Organization of SAGA Complex  

 

 

Figure 1.1: Organization of SAGA Complex. Based on various studies the image depicts the 

modular organization of SAGA complex. Please note that this is not an accurate model. 
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The alteration/deficiency in activation-3 (ada3) gene was discovered in yeast based on the 

mutation that confers resistance to GAL4-VP16 toxicity  (20)  and later on the protein was found 

to be an essential component of SAGA/SAGA like complexes  (3, 21) . In yeast SAGA complex, 

Ada3 forms a trimeric sub-complex with Ada2 and Gcn5 where Ada2 acts as a bridging molecule 

between Ada3 and Gcn5  (3, 22) . Both Ada2 and Ada3 significantly enhance the ability of Gcn5 

to acetylate nucleosomal histones and this trimeric sub-complex form the catalytic core of histone 

acetyl transferase module of the SAGA complex (23) . Consistent with yeast data a similar 

trimeric sub-complex also exists in humans that facilitate the GCN5 HAT activity (24) . Although 

as a component of SAGA complex, the primary function of Ada3 is in histone acetylation, work 

from our laboratory and that of others have reported several other functions of Ada3. Our 

laboratory has identified ADA3 as a novel human papilloma virus E6 oncoprotein binding protein 

(25) . Ada3 has also been reported to regulate the function of a non-histone protein p53, by 

mediating its acetylation  (26, 27)  and recent findings from our laboratory show that ADA3 is a 

novel cell cycle regulator  (28) and is crucial for maintaining the genomic stability (29) . 

Many of SAGA complex components have distinct domains that play certain functional role 

and as a whole complex the activity of SAGA appears to be autoregulated where one subunit 

regulates the function of other. For example, as described earlier, both Ada2 and Ada3 positively 

regulate the HAT activity of Gcn5. In the context of HAT activity of SAGA complex, Gcn5 and 

Ada2 have been studied extensively but how Ada3 regulate the SAGA HAT activity is not clear 

yet. Gcn5, the catalytic component of HAT module regulate the SAGA HAT activity is two 

manners. First, it possesses the intrinsic lysine acetyl transferase activity that catalyzes the 

transfer of acetyl group on histones (and non- histone proteins also) and second level of 

regulation of HAT activity is through bromodomain. The bromodomain is a protein module that 

recognizes the acetylated lysine residue. Thus binding of Gcn5 bromodomain to acetylated targets 

facilitates to localize and increase the retention of SAGA complex to its targets and thereby 

promoting the lysine acetyl transferase function in cooperative manner (30, 31) . The second 



 7 

component of HAT module Ada2 has two distinct domains namely SANT (Swi3, Ada2, N-Cor, 

and TFIIB) and SWIRM (Swi3, Rsc8, and Moira). Both these domains are also found in many 

other chromatin modifying proteins (32, 33) . In particular, the SANT domain of Ada2 is required 

for SAGA complex interaction with histone H3 tails and is indispensible for Gcn5 HAT activity 

towards nucleosomes (34) . Although not known mechanistically, the Ada2 SWIRM domain also 

plays an important role in SAGA mediated nucleosome acetylation (24) . Similarly, the DUB 

module catalytic component, USP22 contains an N-terminal Zn-finger domain in addition to C-

terminal peptidase domain. The ZnF domain of USP22 facilitates protein-protein interactions  

(35)  and other subunits of DUB module ATXN7L3 and ENY2 are required for USP22 assembly 

into SAGA complex and thus regulating the DUB activity of USP22  (36) .  

On the other hand third regulatory subunit of SAGA HAT module Ada3 does not possess any 

defined domain. Truncation mutation analysis of Ada3 has provided only a larger view of the 

protein according to which C terminus half of the protein is required for the interaction with Ada2 

and N terminus half is required for interaction with transcriptional activators  (22, 24, 26, 37)  and 

how Ada3 regulates the HAT activity of SAGA complex remains unclear.  
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ADA3 as a p300 Interacting Protein 

Although ADA3 was initially identified and classically known as an integral component of 

SAGA complex, it also interacts with KAT p300  (26, 38) . Unlike GNAT and MYST family 

KATs, p300 does not have canonical KAT domain thus called as orphan class KAT  (2) . The 

large structure and presence of three cysteine-histidine rich domains in p300 facilitate its 

interaction with other proteins and to date more than 400 cellular targets have been identified as 

p300 interacting partners  (39) . Wang et al. first discovered that ADA3, in addition to HATs 

GCN5 and PCAF, also interacts with p300. Furthermore, domain mapping of ADA3 revealed that 

C-terminus of ADA3 interacts with p300  (26) . Notably, the SAGA complex KAT GCN5 also 

interacts with C-terminus of ADA3 through ADA2 suggesting that C-terminus of ADA3 is 

critical for its interaction with KATs  (24) .  Later on using a combination of glycerol gradient 

sedimentation and co-immunoprecipitation analysis, our laboratory also identified ADA3 as a 

p300 interacting protein  (38) . ADA3 performs at least two distinct functions by interacting with 

p300. First, it helps recruit p300 to the promoter region to facilitate transcription and acts as a co-

activator of co-activator p300. For example ADA3 mediates the recruitment of p300 to the 

transcription factor Estrogen Receptor (ER) targets in estrogen dependent manner and the 

recruitment of ADA3 at ER responsive genes was found to be concomitant with RNA polymerase 

II  (37, 38) . The second function of ADA3 is correlated with its classical role i.e. the facilitator of 

acetylation. ADA3 enhances p300 KAT activity towards both histone and non-histone substrates. 

We have previously demonstrated that ADA3 not only increases the acetylation of histones in 

solution but also upon Ada3 deletion histone acetylation at various lysine residues is abrogated  

(28) . The acetylation of p53, a known substrate of p300, has been reported to be dependent of 

ADA3  (26, 27, 40) . p53 is acetylated by p300 upon DNA damage and acetylation of p53 

stabilizes the protein and thus ADA3 plays an important role in stabilization of p53  (26, 27) . So, 

how does ADA3 act as facilitator of p300 dependent acetylation? One interesting observation 

from our study was the significant reduction in p300 levels upon Ada3 deletion  (28) . Notably 
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this reduction in p300 was not at transcript levels, suggesting that ADA3 plays a crucial role in 

determining the stability of p300 protein that probably is attributed to its KAT activity. 
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The Non-KAT Interactome of ADA3 

In addition to various KATs and KAT complex components, a myriad of interacting partners of 

ADA3 have been identified so far.  The human ADA3 was initially identified as HPV16 E6 

interacting protein in the screening of a mammary epithelial cell yeast two-hybrid library  (25) . 

Our laboratory found that high risk but not low risk E6 binds to ADA3  (25) .  ADA3 does not 

have any recognizable protein domain however, the amino acid sequence analysis reveals that it 

contains five putative LxxLL motifs where L is leucine and x stands for any amino acid. The 

LxxLL motif is a generic feature of nuclear hormone receptor co-activators that facilitates its 

binding with nuclear hormone receptors. Many groups including ours have shown the direct 

association of ADA3 with nuclear hormone receptors such as RXR and ER  (37, 41, 42) . The 

other well-characterized non-KAT binding partner of ADA3 is p53 and this interaction is 

governed by DNA damage and N-terminal phosphorylation of p53  (25-27) . Studies directed 

towards understanding the molecular mechanisms of gene expression by transcriptional activators 

have further discovered novel ADA3 interacting partners and one such example of ADA3 

associated protein is ankyrin repeats-containing co-factors (ANCO). ANCO1 functions as a tumor 

suppressor protein by inhibiting ER mediated transactivation and also by augmenting the p53 

transcriptional activity. ADA3 directly interacts with C-terminal co-activator domain of ANCO1 

and related family member ANCO2  (43, 44) . Albeit the interaction of ANCO2 with ADA3 was 

direct, the same was weaker as compared to ANCO1 and interacting domain was not mapped  

(43) . ADA3 has also been shown to interact with β-catenin and armadillo domains present in the 

C terminus half of β-catenin facilitate its interaction with ADA3  (45) . A study also found ADA3 

interaction with IL-1α N-terminal peptide (IL-1 NTP), the matured and processed form of IL-1α  

(46) .  Identification of AATF (apoptosis-antagonizing transcription factor), and regulatory 

subunits of the PP1 (protein phosphatase 1) and PP2A (protein phosphatase 2A) [PPP1R7 (PP1 

regulatory subunit 7) and PPP2R5D (PP2A 56 kDa regulatory subunit δ isoform) respectively] as 
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interacting partners of ADA3 have further extended the list of non-KAT interactome of ADA3  

(47) .  
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Physiological and Pathological Roles of ADA3 

ADA3 is primarily involved in the regulation of transcription by recruiting various HATs and 

transcription factors to the promoter region. This function of ADA3 led biologists to place it 

under the category of co-activators. As described in preceding sections, ADA3 also enhances the 

acetylation non-histone substrates. In addition to these two major functions, ADA3 regulates wide 

spectrum of physiological and pathological processes including cell cycle, oncogenesis, DNA 

damage response, cellular senescence, and apoptosis. Before I discuss about the role of ADA3 in 

these cellular processes, it is noteworthy to mention that some of in the these functions have been 

studied vis-à-vis protein complexes that ADA3 is part of. An independent function of ADA3 is a 

debatable topic and still remains to be explored; nonetheless, ADA3 plays a very important role 

in maintaining cellular homeostasis.  

Ada3 null mice were embryonically lethal at day E3.5 (note that Ada3+/- mice are 

haplosufficient) and thus ADA3 was though to play a vital role of ADA3 in embryogenesis and 

cell proliferation  (28) . Further studies have deciphered a role of ADA3 in cell cycle (both 

interphase and mitosis) progression. ADA3 regulates c-MYC-SKP2-p27 pathway and conditional 

deletion of Ada3 has been shown to prolong the half-life of CDK inhibitor p27, thus causing G1 

arrest  (28) . An obvious consequence of G1 arrest is delay in cell cycle progression through G2/M 

phase. Indeed deletion/knockdown of Ada3 displays various mitotic, karyokinesis and cytokinesis 

defects such as lobulation/fragmentation in nuclei, formation of anaphase bridges, accumulation 

of lagging chromosome, increased number of centrosomes and increased midbody size  (28, 48) .  

Uncontrolled cell cycle is the hallmark of cancer and it is not surprising that ADA3, as a 

cell cycle regulator, has been found to be associated with cancer. ADA3 regulates c-MYC 

transcription that is overexpressed in many types of cancer  (28, 49) . ADA3 also promotes the 

proliferation of ER positive breast cancer cells under the hormonal response  (38) .  Furthermore, 

a study in large cohort of breast cancer patients has reported that expression/localization of ADA3 

closely related with clinical outcomes. In particular, ADA3 nuclear localization was found to be 
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co-related with ER positive breast cancer patients, the breast cancer with good prognosis whereas 

predominant cytoplasmic localization of ADA3 serves as a marker for ERBB2/EGFR positive 

breast cancer patients that more aggressive and bear poorer clinical outcomes  (50) .  

 The effect of Ada3 deletion in cells is manifold and one such effect is genomic instability. 

Ada3 deleted cells manifest various chromosomal aberrations spontaneously, which is further 

exacerbated upon DNA damage. At molecular level, lack of ADA3 is associated with various 

DNA damage response markers such as increase in pATM, p53BP1, pRAD51 and γ-H2AX  (29) 

. The role of ADA3 in DNA damage response is indeed well studied and reveals ADA3 as a 

positive regulator of p53, the guardian of genome. ADA3 not only interacts with p53 upon DNA 

damage caused by ionizing radiations, but also stabilizes it by enhancing its acetylation and as a 

consequence transcriptional activity of p53 is increased towards CDK inhibitor p21  (26, 27) . 

The evidence that ADA3 functions as positive regulator of p53 and the discovery of human 

ADA3 as E6 binding protein have further provided a link of ADA3 in E6 mediated oncogenesis. 

E6 targets ADA3 for proteasomal degradation that accounts for the abrogation of p53 mediated 

transactivation and its tumor suppressor function induced by DNA damage. Given the fact p53 

also tagged for degradation by E6, the observation that an E6 mutant incompetent to induce p53 

degradation still causes the inactivation of p53; certainly provides a bypass mechanism for E6 

mediated oncogenesis  (25) . These findings were further substantiated and ADA3 degradation by 

E6 demonstrated inhibition of RXR mediated transactivation and abolition of p14ARF-p53 

mediated senescence  (41, 51) . More recently, in a gene knockdown-screening ADA3 has 

emerged as a regulator of granzyme-B (GrzB) mediated mitochondrial dependent apoptosis. GrzB 

is a protease involved in Bid processing and in this study authors demonstrated that ADA3 

promotes apoptosis by regulating the expression of phosphofurin acidic-cluster sorting-protein 2 

(PACS2) that assists in GrzB mediated Bid cleavage  (52) .  
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Regulation of ADA3 by Post-translational Modifications 

Given that ADA3 plays an important role in the regulation of many physiological 

processes, one important question arises how ADA3 itself is regulated? Based on the studies 

mentioned in preceding sections, ADA3 levels generally do not change in response to any 

alteration in physiological conditions. For instance, ADA3 remains fairly constant during cell 

cycle progression or DNA damage response. Post-translational modifications of proteins are one 

common way by which their function is tightly regulated. Along the same line there has been 

some indirect evidences that ADA3 also post-transnationally modified that might regulate ADA3 

levels and consequentially its function. For example, viral oncoprotein E6 directed proteasomal 

degradation of ADA3 suggests that the protein is likely to be ubiquitinated  (25) . This 

observation was further substantiated and moreover ADA3 was also found to be modified by 

sumolyation.  (25, 53)   

One of the main and well-defined functions of ADA3 is to mediate histone acetylation. 

Serendipitously, while studying the effect of ADA3 on nucleosome/free-histone acetylation by 

GCN5 and p300 ADA3 itself was found to be a substrate of these HATs, which was another 

inkling for posttranslational modification of ADA3  (24, 28) . Mass spectrometry is widely used 

technique in proteomics and recent advancements in this area have allowed researchers to 

accumulate information about post-translational modifications of number of proteins. In fact 

high-throughput mass spectrometry have revealed some phosphorylated and acetylated ADA3 

peptides  (54, 55) . In addition to this many bioinformatics tools have also predicted the amino 

acid residues in ADA3 that have the potential for modification. A detailed list of such 

modifications can be viewed on http://www.phosphosite.org. Although substantial amount of 

evidence are there that ADA3 is post-transnationally modified, detailed studies are still warranted 

to explore molecular cues for these modifications and their functional relevance.  
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Based on this prior knowledge about ADA3 described above, I have addressed three broader 

questions in my thesis, which are addressed in detail as freestanding manuscripts in subsequent 

chapters. The three questions are as follows: 

1. How ADA3 regulates mitosis and maintains the genomic stability? 

2. How ADA3 is regulated by acetylation and is it a functionally relevant modification? 

3. Given the critical role of ADA3 in cell cycle progression, is it connected with cancer? 
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INTRODUCTION 

The centromere is a chromatin region that is essential for driving chromosome segregation in 

cell division, and is responsible for accurate inheritance of eukaryotic chromosomes during this 

process (1-3). It serves as the site of kinetochore assembly to which microtubule attachment 

occurs (4). The centromere-kinetochore is a complex network of proteins that work in concert for 

the faithful segregation of chromosomes (5,6). A major class of this network of proteins is, 

centromere proteins (CENPs)3 that includes CENP-A, -B, -C, -E, -F, -H, -I and others (2,7).  

In CENP group of proteins, CENP-B is highly conserved in several mammalian species (8). 

CENP-B specifically binds to a 17-bp sequence, known as CENP-B box through its amino-

terminal region and dimerizes through its carboxyl-terminal region (9,10). The CENP-B box is 

conserved in centromeric human alpha-satellite and mouse minor satellite region (11). CENP-B is 

required for de novo assembly of centromere and kinetochore nucleation (12,13). Yeast CENP-B 

homolog acts as a site-specific nucleation factor for the formation of centromeric heterochromatin 

by heterochromatin-specific modifications of histone tails (14). The centromere function mainly 

entails CENP-A, -B and -C, in which CENP-B plays a crucial role by recruiting CENP-A and 

stabilizing CENP-C at centromeres (15-17). 

Recent studies from our laboratory and that of others’ have shown a critical role of 

Alteration/deficiency in activation 3 (ADA3) in cell cycle regulation (18,19). ADA3 is an 

essential component of several transcriptional adaptor and HAT (histone acetyl transferase) 

complexes conserved among eukaryotes (20). HATs and histone deacetylases (HDACs) are 

required to maintain steady-state levels of acetylation (21-24). A number of HAT enzymes, 

including general control non-repressed 5 (GCN5), p300, p300/CBP associated factor (PCAF), 

and CREB-binding protein (CBP) have been demonstrated as part of large complexes, such as 

Spt/Ada/Gcn5 acetyltransferase (SAGA), TBP-free TAF (TFTC), and Ada2.2A-containing 

(ATAC) complexes in human (21-24).  
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Our laboratory previously reported that germ line deletion of Ada3 in mouse is embryonic 

lethal, and lack of ADA3 in mouse embryonic fibroblasts (MEFs) results in severe proliferation 

defect, dramatic changes in global histone acetylation, delay in G1 to S phase transition, mitotic 

defects, and delay in G2/M to G1 transition (18). Furthermore, we have shown a novel role for 

ADA3 in maintaining DNA repair process and genomic stability by controlling DNA repair 

checkpoints (25). Consistently, we observed ADA3 is over-expressed/mis-localized in breast 

cancers, and its over-expression predicts poor survival and poor prognosis in breast cancer 

patients, underscoring the critical function of ADA3 in physiology and pathology (26). 

To better understand how ADA3 is involved in multiple biological processes, we recently 

performed chromatin immunoprecipitation followed by sequencing (ChIP-seq) and found that 

ADA3 was significantly associated with human centromere regions across most chromosomes 

(unpublished) Interestingly, in yeast, GCN5 has been shown to play an important role in mitosis, 

by binding to centromeres (27). Given that GCN5 and ADA3 form an integral part of various 

HAT complexes and based on a clear role of ADA3 protein in mitosis, we explored if ADA3 

associates with centromeres. In this study, using a series of PCR primers corresponding to the 

centromere region of human X chromosome, we demonstrate that ADA3 specifically binds to 

high order repeat (HOR) region of centromere which is the site of kinetochore attachment. 

Given the known role of CENPs in centromere regulation, we examined if ADA3 associates 

with centromeric proteins such as CENP-A and CENP-B. We observed ADA3 is associated with 

CENP-B and this interaction of ADA3 with CENP-B was noticed throughout all phases of the 

cell cycle. Significantly, centromere binding of CENP-B was decreased with knockdown of 

ADA3. More importantly, in contrast to wild type ADA3, an ADA3 mutant that lacks the binding 

ability with CENP-B failed to rescue cell proliferation defects caused by the deletion of 

endogenous Ada3. Finally, we demonstrate that ablation of Ada3 leads to defective chromosomal 

segregation with increase in anaphase bridges and lagging chromosomes.  Taken together, these 

results provide a novel connection for the role of ADA3 in mitosis.  
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MATERIALS AND METHODS 

Constructs  

To generate N-terminally GST-tagged FLAG-ADA3 bacterial expression vector, full length 

FLAG-ADA3 was PCR amplified from pMSCV puro FLAG-ADA3 construct (18). 

Subsequently, BglII-SalI digested FLAG-ADA3 PCR amplicon was cloned into BamHI-SalI sites 

of pGEX6P-1 vector (GE Healthcare). Similarly, GST-tagged ADA3 C-terminal deletion (1-369, 

1-214 and 1-110) and N-terminal deletion (111-432) bacterial expression vectors were 

constructed by cloning the respective BglII-SalI digested PCR amplicons into BamHI-SalI sites 

of pGEX6P-1 vector. Generation of retroviral pMSCV puro FLAG-ADA3 construct has been 

previously described (18). Retroviral construct for FLAG-ADA3 (111-432) was generated by 

cloning BglII-SalI digested FLAG-ADA3 (111-432) PCR amplicon into BglII-XhoI site of the 

pMSCV puro vector (Clontech).  

Cell Culture, Transfections and Viral Infections 

76NTERT cells were cultured in DFCI media as described before (28). Ada3FL/FL MEFs were 

maintained in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum. 

Ada3FL/FL MEFs stably expressing full length FLAG-ADA3 or FLAG-ADA3 (111-432) were 

generated as previously described (18). Adenoviruses expressing EGFP-Cre or EGFP alone were 

purchased from University of Iowa (Gene transfer vector core). Cre mediated deletion of Ada3 

was performed as described previously (18). For ADA3 knockdown experiments in 76NTERT, 

cells were transfected with 50 nM of control (sc-37007, Santa Cruz Biotechnology) or ADA3 

siRNA (sc-78466, Santa Cruz Biotechnology), using the DharmaFECT 1 Transfection Reagent 

(T-2001-03, Dharmacon).  
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Chromatin Immunoprecipitation (ChIP) 

ChIP assay was performed using ChIP-IT Express kit from Active Motif according to 

manufacturer’s protocol with slight modifications in fixation and sonication conditions. 

76NTERT cells were washed twice with 1X PBS and fixed in EGS [ethylene glycol bis 

(succinimidyl succinate)] and formaldehyde at room temperature. In particular, cells were 

incubated in 1.5 mM EGS in 1X PBS on shaking platform for 15 min. To this formaldehyde (1% 

working concentration) was added for another 15 min. Fixation reaction was then stopped by 1X 

glycine at room temperature for 5 min. Chromatin from 76NTERT cells was isolated and 

sonicated for 12 minutes to obtain a fragment size of 200-1000 bp. Remaining steps for ChIP 

were followed exactly as per manufacturer’s protocol. Antibodies used for ChIP assay were: anti-

ADA3 monoclonal antibody (18); anti-CENP-A (ab13939, Abcam) and anti-CENP-B antibody 

(07-735, EMD Millipore). PCR amplification was performed using primers as described in Table 

2.1.  
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Table 2.1 - PCR primer sets used for ChIP-PCR ± 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

± PCR 

primers sequences were aligned with human genome (hg19). Sequences of PCR primer sets of γ-

ALR jxn, Xp mono-HOR jxn, HOR satellite (D’), Xq mono-HOR jxn, and Xq sat jxn were from 

Mravinac et. al. (32) 
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Immunofluorescence 

For immunofluorescence, 76NTERT cells were grown to 50% confluence on glass cover slips in 

12-well plates. After knocking down ADA3 in 76NTERT cells by siRNA, the cover slips were 

fixed in 4% paraformaldehyde for 20 minutes. Staining was performed as described earlier (25). 

The primary antibodies used were FITC labeled human anti-centromere antibody (ACA) (15-235-

F, Antibodies Incorporated), anti-CENP-B antibody (ab25734, Abcam or 07-735, EMD 

Millipore) and anti-ADA3 antibody (18). Secondary antibodies used were Alexa fluor 488, Alexa 

fluor 594 and Alexa fluor 647 from Life Technologies. Nuclei were counterstained with DAPI. 

The cover slips were then placed on slides using the mounting medium. Fluorescent images were 

captured using LSM 510 META Confocal fluorescence microscope (Zeiss).  

Duolink in situ Proximity Ligation Assay 

Anti-mouse PLA probe plus, anti-rabbit PLA probe minus, and detection kit Red 563 were 

purchased from OLink Bioscience. 4% Formaldehyde fixed cells were blocked with PBS 

containing 10% goat serum and 0.001% Triton X-100 for 1 hr, and incubated with primary 

antibodies for ADA3 and CENP-B (07-735, EMD Millipore or ab25734, Abcam) or p53 (sc-

6243, Santa Cruz Biotechnology) for overnight at 4oC. PLA probes were diluted 1:8 in blocking 

solution. Detection of the PLA signals was carried out with LSM 510 META Confocal 

fluorescence microscope (Zeiss).  

In vitro Binding Assays 

GST-FLAG-ADA3 full length or various GST-ADA3 truncated mutants were purified from 

bacterial lysates based on the protocol by Frangioni and Neel (29). 1µg of GST, GST-FLAG 

ADA3 full length or GST-ADA3 deletion mutants non-covalently bound to glutathione beads 

were incubated with 300 ng of purified 6xHis tagged CENP-B (ab73636, Abcam) in NETN 
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buffer (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.5% Nonidet P-40, 0.1 mM Na4VO3, 1 mM 

NaF, and protease inhibitor mixture) for 2 hours at 4oC and washed 5 times with NETN buffer. 

The bound proteins were resolved by SDS-PAGE, transferred to PVDF membrane and 

immunoblotted using anti-CENP-B antibody (07-735, EMD Millipore or ab25734, Abcam).  

CellTiter-Glo® Luminescent Cell Viability Assay  

The assay was performed three times independently. 2 x 105 Ada3FL/FL/Vector, Ada3FL/FL/FLAG-ADA3 (Full 

Length) or Ada3FL/FL/FLAG-ADA3 (111-432) MEFs were plated in p100 dishes. After overnight attachment, 

cells were infected either with Adeno-EGFP or Adeno-EGFP-Cre as previously described (18). 

24 h after infection (day 1), each plate was divided in six well plates and 96 well plates (one plate 

for each day). In particular, 1 x 104 cells were plated in one well of six well plate (for western 

blotting) while 150 cells per well were plated in six replicates of 96 well plate (for luminescence). 

Cells were cultured with change of media every alternate day. At day 1, 3, 5, 7 and 9 cell viability 

was measured by CellTiter-Glo® luminescent cell viability assay (Promega) following 

manufacturer’s protocol. To confirm the deletion of endogenous Ada3 and ectopic expression of 

ADA3 full length and (111-432), cells were also harvested for western blotting at aforementioned 

days and immunoblotted with indicated antibodies.  

Colony Formation Assay 

 Cells were infected with either Adeno-EGFP or Adeno-EGFP-Cre as described above. 24 h after 

infection (day 1), 10,000 cells per well were plated in six well plate and cultured till day 9 with 

change of media every alternate day. At day 9, cells were fixed and stained with crystal violet 

solution (0.25% crystal violet in 25% methanol) and imaged as described previously (18)  
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Cell Fractionation and Immunoblotting 

72 hours after infecting Ada3FL/FL MEFs with control or Cre adenovirus, cells were trypsinized, 

collected and washed once with PBS. Cell fractionation was performed according to previously 

published protocols with modifications (30,31). A fraction of the harvested cells was used to 

make whole cell extracts. The remaining cell pellet was suspended in lysis buffer (10 mM HEPES 

pH 7.4, 10 mM KCl, 0.05% NP-40, 0.1 mM Na4VO3, 1 mM NaF, 10 mM Nicotinamide, 2 µM 

Trichostatin A and protease inhibitor mixture), incubated on ice for 30 min, vortexed twice at 

high speed followed by centrifugation at 14000 rpm for 10 min at 4oC. The supernatant obtained 

was kept as cytoplasmic fraction and the pellet containing nuclei was washed once with lysis 

buffer. Nuclei were then resuspended in low salt buffer (10 mM Tris-HCl pH 7.4, 0.2 mM MgCl2, 

1% Triton X-100, 0.1 mM Na4VO3, 1 mM NaF, 10 mM Nicotinamide, 2 µM Trichostatin A and 

protease inhibitor mixture) and incubated on ice for 15 min followed by centrifugation at 14000 

rpm for 10 min at 4oC. The supernatant was stored as the nucleoplasmic fraction and the pellet 

was resuspended in 0.2N HCl and incubated on ice for 20 min. The soluble fraction was 

neutralized with 1M Tris-HCl pH 8 and used as the chromatin fraction. The cell fractions were 

quantitated using the BCA protein assay reagent (Pierce). The proteins were resolved by 

SDS/PAGE and transferred onto PVDF membrane. Immunoblotting was performed with primary 

antibodies against ADA3 [(mouse monoclonal antibody (18) or rabbit polyclonal antibody 

(HPA042250, Sigma)], CENP-B (ab25734, Abcam), FLAG (A8592, Sigma), HSC70 (sc-7298, 

Santa Cruz Biotechnology) GAPDH (MAB374, EMD Millipore) and Histone H3 (06-755, EMD 

Millipore).  

Chromosome Mis-segregation Analyses 

For analyzing chromosome mis-segregations, Ada3FL/FL MEFs were infected with control or Cre 

adenovirus. 24 hours after infection, cells were trypsinized and plated on 18-mm coverslips in 12 

well plates. The following day (48 hours after infection), cells were synchronized in S phase by 

souble thymidine block (18 hour first block with 2 mM thymidine, then release for 9 hours in 
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complete medium and then 2nd block with 2 mM thymidine for another 18 hours). After the 

second block, the cells were released in complete medium for 6 hours (approximately the time for 

cells to go into mitosis) followed by fixing cells in 4% PFA and mounting the coverslips in DAPI 

containing mounting medium (Vectashield). The images were captured at 63x using LSM 510 

META Confocal fluorescence microscope (Zeiss).  

Statistical Analyses 

The cell viability assay was performed three times independently. For each independent 

experiment, the luminescence from six replicates were recorded and averaged. The standard 

errors were calculated using luminescence from three independent experiments and p values were 

computed by Student’s t test (two tailed, unpaired) using Microsoft Excel 2010 and p value ≤ 

0.05 was considered as statistically significant. For the effect of ADA3 depletion on CENP-B and 

ACA co-localization a total of 120 cells were counted in control or ADA3 siRNA without bias 

and cells with > 5 CENP-B and ACA co-localization foci were considered positive for co-

localization. For chromosomal abnormalities, at least 50 anaphase chromosomes were counted in 

control or Ada3 deleted cells without bias and examined for segregation defects. The Chi square 

test was performed using SAS 9.3 (SAS Institute, Cary, NC) and p value ≤ 0.05 was considered 

as statistically significant. 
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 RESULTS 

ADA3 Associates with HOR Region of X Chromosome Centromere 

As mentioned above, we observed association of ADA3 with centromeric regions of most human 

chromosomes by performing ChIP-seq (unpublished)4. Since the centromere is an essential 

chromosomal domain that is required for chromosome segregation, and ensures the faithful 

inheritance of the chromosome during cell division (1-4), we assessed ADA3 interaction with 

centromere. We first confirmed the binding of ADA3 with centromere by performing ADA3 

ChIP-PCR using a series of PCR primers on human X chromosome centromere region in an 

immortal human mammary epithelial cell line, 76NTERT (32) (Table 2.1). To test the specificity 

of the ChIP primers, as well as the binding of ADA3 to centromeres, we performed ChIP using 

anti-CENP-A or CENP-B antibodies as both CENP-A and CENP-B are known to bind to high 

order repeats (HOR) in the centromeres (33). As expected, we observed binding of CENP-A and 

CENP-B only to HOR regions of the centromere as previously reported. Interestingly, ADA3 also 

associated with the alpha-satellite region in higher order repeats (HOR), which is the site of 

kinetochore assembly (Figure 2.1A and 2.1B) (34). The universal primer set which recognizes the 

alpha-satellite region on human genome was also amplified in ADA3 ChIP-PCR (Figure 2.1A 

and 2.1B); suggesting ADA3 may maintain genomic stability by regulating chromosome 

separation through association with centromere. 
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FIGURE 2.1. Association of ADA3 with HOR region of human X chromosome centromeric 

alpha satellite region by ChIP-PCR   
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FIGURE 2.1. Association of ADA3 with HOR region of human X chromosome centromeric 

alpha satellite region by ChIP-PCR. A, Structure of the centromere of human X chromosome 

along with putative CENP-A, CENP-B and ADA3 binding region shown in black color on the 

centromere of X chromosome as obtained from B. Note: The diagram is not drawn to scale. Xp: 

short arm; Xq: long arm. B, ADA3 associates with HOR region of human X chromosome 

centromere: ADA3, CENP-A or CENP-B protein was immunoprecipitated from cross-linked 

chromatin-protein complex prepared from 76NTERT cells. Associated chromatin was then eluted 

and amplified by PCR using primers against centromere regions depicted in A (Also see Table 

2.1). Mouse and rabbit IgGs were used as negative controls for immunoprecipitation. Universal 

alpha satellite primers were used as positive control whereas GAPDH primers were used as 

negative control in PCR.  
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ADA3 Associates with CENP-B Protein at the Centromere 

Several studies have identified a number of protein components that associate with centromere 

including CENPs  (2). Given the fact that ADA3 is a transcriptional co-activator and itself does 

not contain DNA binding domain, we hypothesized that some other centromeric protein may 

mediate ADA3 interaction with centromere. Among the well-known centromere binding proteins, 

CENP-B is highly conserved in several mammalian species, specifically binds to a 17-bp 

sequence (CENP-B box) which is conserved in centromeric human alpha-satellite region and 

associates with centromeric heterochromatin (10,11). Since ADA3 associated with the HOR 

region in alpha-satellite region on centromere where CENP-B also binds to, we examined 

whether ADA3 co-localizes with centromere marker CENP-B. Co-immunofluorescence assay 

using anti-ADA3 and anti-CENP-B antibodies clearly demonstrated CENP-B and ADA3 are co-

localized in the nucleus (Figure 2.2A). The specificity of ADA3 antibody used in this assay has 

been extensively determined in our previous publications (18,25,26). To further confirm ADA3 

association with centromeres we analyzed ADA3 interaction with CENP-B by DuoLink in situ 

proximity ligation assay (PLA). In addition to CENP-B, we assessed whether ADA3 also 

interacts with another centromeric protein, CENP-A. To determine the specificity of interactions 

in PLA, we used p53 protein, known to directly interact with ADA3 (35,36), and rabbit or mouse 

IgG as negative controls (Figure 2.2B). In this assay, primary antibodies raised in different 

species are used against two interacting proteins and when species specific secondary antibodies 

linked with complementary DNA probes come in close proximity (30-40 nm) the linked DNA 

can be amplified and visualized with a fluorescent probe as distinct foci.  ADA3 and CENP-A / 

CENP-B were immunostained with anti-mouse and anti-rabbit secondary antibodies, respectively, 

that were linked to complementary oligonucleotides.  PLA exhibited only CENP-B but not 

CENP-A (data not shown) interaction with ADA3, particularly in interphase of cell cycle (Figure 

2.2B). Out of total cells quantified in various cell cycle phases, approximately 80% of cells 
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showed more than three ADA3-CENP-B interaction foci (Figure 2.2C) and the interaction signals 

persisted when cells entered into prophase, but the signals were reduced when cells entered into 

metaphase and anaphase (Figure 2.2B). Taken together, these results demonstrate that ADA3 

associates with CENP-B during interphase and prophase, but its interaction with CENP-B is 

reduced in metaphase and anaphase, suggesting an important role of ADA3 in early phase of 

mitosis. 
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FIGURE 2.2:  ADA3 associates with CENP-B protein at the centromeres 
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FIGURE 2. ADA3 associates with CENP-B protein at the centromeres. A, Co-localization of 

ADA3 and CENP-B in 76NTERT cells. Cells were cultured on coverslips, fixed with 1% 

formaldehyde and co-immunostained for CENP-B and ADA3, followed by fluorescence 

microscopy using appropriate filters (Red: ADA3, Green: CENP-B, and Blue: DAPI) Mouse and 

Rabbit IgG (mIgG or rIgG) served as negative controls. B, Interaction of ADA3 with CENP-B 

during cell cycle using proximity ligation assay (PLA). 76NTERT cells were treated for 16.5 h 

with 100 ng/ml of Nocodazole, released in culture medium and harvested at different time points. 

Fixed cells were incubated with antibodies against ADA3 and CENP-B followed by DuoLink in 

situ PLA and fluorescence microscopy using appropriate filters (Blue: DAPI; Red: PLA signals). 

Interaction of ADA3 with p53 is shown as positive control whereas mouse or rabbit IgG served as 

negative controls for PLA. C, Quantification of cells with ADA3-CENP-B PLA interaction 

signals from B. More than 100 cells in different cell cycle phases were quantified for PLA 

interaction foci present in the nucleus. Cells with greater than 3 PLA interaction signals were 

considered positive for ADA3-CENP-B interaction.  

  



 39 

ADA3 Directly Interacts with CENP-B through its N-terminus 

Next, to assess if ADA3 and CENP-B directly interact, we performed GST pull down assay using 

purified GST-tagged human FLAG-ADA3 and 6xHis-CENP-B protein. As shown in Figure 

2.3A, CENP-B is detected in the GST pull down lysates after incubation of GST-FLAG-tagged 

ADA3 with CENP-B protein, demonstrating ADA3 directly interacts with CENP-B in vitro. 

Next, to map the region of ADA3 essential for binding to CENP-B, we generated a series of 

GST-ADA3 constructs; (1-369), (1-214), (1-110); in which a coding region from C-terminus was 

sequentially removed along with the one, (111-432); in which codons that code for the first 110 

amino acids from N-terminus were deleted (Figure 2.3B). Recombinant proteins from these 

constructs were used as baits and purified CENP-B as prey in our GST pull down assays. 

Immunoblotting with anti CENP-B antibody showed that all ADA3 fragments were able to 

efficiently pull down CENP-B except 111-432 fragment of ADA3, suggesting that N-terminus of 

ADA3 is critical for its interaction with CENP-B (Figure 2.3C). 
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Figure 2.3: ADA3 Directly Interacts with CENP-B through its N-terminus 
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FIGURE 2.3. ADA3 directly interacts with CENP-B through its N-terminus. A, In vitro 

binding assays were performed to determine if ADA3 directly interacts with CENP-B. 1µg of 

GST or GST-FLAG ADA3 bound to glutathione beads was incubated with 300 ng of purified 

CENP-B protein. After washes, the beads were loaded onto SDS-PAGE, transferred to PVDF 

membrane and immunoblotted using anti-CENP-B antibody. Input is 100%. B, Schematic 

representation of GST-ADA3 constructs used to determine the region in ADA3 required for its 

interaction with CENP-B. C, In vitro GST pull down assays were performed as in A using GST-

ADA3 constructs shown in B. Input is 10%.  
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CENP-B Binding Defective ADA3 Mutant Fails to Rescue Cell Proliferation Arrest Caused 

by the Deletion of Endogenous Ada3 

We have previously demonstrated that conditional deletion of endogenous Ada3 from Ada3FL/FL 

MEFs causes cell proliferation arrest (18). However, Ada3FL/FL/ADA3 MEFs in which human ADA3 

is ectopically expressed rescues the cell proliferation defects. Therefore, we tested the ability of 

111-432 fragment of ADA3, which lacks the binding ability with CENP-B, to rescue cell cycle 

arrest. For this purpose, FLAG tagged ADA3 full length or 111-432 fragment were stably 

expressed in Ada3FL/FL MEFs, followed by the deletion of endogenous Ada3 by adenovirus 

expressing Cre recombinase and cell proliferation was assessed at regular intervals up to 9 days 

by CellTiter-Glo® luminescent cell viability assay that determines the number of viable cells in 

culture based on quantitation of ATP (Figure 2.4A). Deletion of endogenous Ada3 and expression 

of ectopically expressed ADA3 was confirmed by immunoblotting (Figure 2.4E, 2.4F & 4G). 

Consistent with our previous report (18), we observed that in contrast to vector alone, wild type 

full length ADA3 was able to restore the cell proliferation arrest caused by the deletion of 

endogenous Ada3 (Figure 2.4B & 2.4C). Interestingly, we observed that the CENP-B binding 

defective 111-432 mutant failed to rescue the cell cycle defect (Figure 2.4D). To further confirm 

that 111-432 ADA3 mutant is defective in cell proliferation rescue, a colony formation assay was 

also performed at day 9. Similar results were obtained in this assay (Figure 4H & 4I) indicating 

CENP-B and ADA3 interaction may be required for ADA3’s ability to regulate cell proliferation. 
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FIGURE 2.4: CENP-B binding defective ADA3 mutant fails to rescue cell proliferation 

arrest caused by the deletion of endogenous Ada3. 

 



 44 

 
 

 

FIGURE 2.4. CENP-B binding defective ADA3 mutant fails to rescue cell proliferation 

arrest caused by the deletion of endogenous Ada3. A, Strategy used to perform ADA3 rescue 

cell proliferation assays. B-D, Cell viabilities of (B) Ada3FL/FL/Vector
, (C) Ada3FL/FL/FLAG-ADA3(Full 

Length)
, and (D) Ada3FL/FL/FLAG-ADA3 (111-432) MEFs after control adenovirus (Ctrl) or Cre adenovirus 

(Cre) infection obtained using CellTiter-GLO luminescent cell viability assay as described under 

“Experimental Procedures”. Data shown here are mean ± S.E. from three independent 

experiments performed in six replicates and p values were computed using Student’s t test. E-G, 

ADA3 protein levels at different time points after Cre adenovirus infection of indicated cell lines. 

Note that full length or mutant ADA3 reconstituted control cells express both mouse ADA3 and 

human FLAG-ADA3 proteins, whereas only human FLAG-ADA3 is seen in Cre adenovirus-

infected cells. H, Colony formation assay. Crystal violet staining of the indicated cells infected 

with control virus or Cre adenovirus grown for 9 days is shown. I, Western blotting of lysates 

from H showing exogenous and endogenous ADA3. 
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Depletion of ADA3 Abrogates CENP-B Recruitment to Centromeres 

Given the critical roles of CENPs in centromere regulation, we examined the role of ADA3 on 

CENP-B association to centromeres. For this purpose, we deleted Ada3 from Ada3FL/FL MEFs by 

Cre-mediated deletion, fractionated cell compartments and assessed the levels of CENP-B in 

whole cells, cytoplasmic, nucleoplasmic or chromatin fractions. As seen in Figure 2.5A, CENP-B 

protein was only observed in whole cell extract (WCE) and chromatin fraction. Notably, the 

levels of CENP-B were not altered in the whole cell extracts, consistent with our recent report 

where mRNA levels of CENP-B do not change upon deletion of Ada3 in microarray (18); 

however a significant decrease in CENP-B levels were seen in chromatin fraction (Figure 2.5A). 

To confirm the effect of ADA3 on CENP-B binding ability to centromere, we performed ChIP 

assay using PCR primers specific to HOR region on the centromere of human X chromosome 

(primer D’ in Table 2.1), and observed that binding of CENP-B to the centromere of X 

chromosome is dramatically decreased upon ADA3 knockdown. Notably, 80% knockdown of 

ADA3 led to 63% reduction in CENP-B recruitment to X-chromosome HOR region (Figure 

2.5B). However, no significant change in the recruitment of CENP-A onto HOR region upon 

ADA3 knockdown was noticed. In a different strategy, we knocked down ADA3 in 76NTERT 

cells using siRNA and then examined binding of CENP-B to centromeres by co-

immunofluorescence using anti-CENP-B and anti-centromere antibodies (ACA). As seen in 

Figure 2.5C & 2.5D, we observed a significant reduction (Chi square test p value < 0.0001) in co-

localization of CENP-B with ACA after knockdown of ADA3. Taken together, our results 

demonstrate ADA3 is required for association of CENP-B to centromeres. 
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FIGURE 2.5. Depletion of ADA3 abrogates CENP-B recruitment to centromeres 
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FIGURE 2.5. Depletion of ADA3 abrogates CENP-B recruitment to centromeres. A, 

Ada3FL/FL MEFs were infected with Control (Ctrl) or Cre adenovirus. 72 hrs after infection, cells 

were trypsinized and harvested. Cell compartments were fractionated as described under 

“Experimental Procedures”. The fractions were run on SDS-PAGE, transferred to PVDF 

membrane and immunoblotted with indicated antibodies. The values indicate intensities measured 

using ImageJ. The intensities were normalized against GAPDH (for WCE and cytoplasmic 

extract) or Histone H3 (for chromatin extract). WCE, Whole cell extract. B, 76NTERT cells were 

transfected with control or ADA3 siRNA. i, Western blot showing ADA3 depletion by ADA3 

siRNA. ii, ADA3, CENP-A or CENP-B protein was immunoprecipitated from cross-linked 

chromatin-protein complex and ChIP-PCR was performed using PCR primer D’ corresponding to 

the higher order repeat alpha satellite region on the X chromosome (Table 2.1). GAPDH was 

used as a negative control. The table shows the band intensities estimated by ImageJ software, 

normalized against inputs of Ctrl and ADA3 siRNA independently. C, 

Representative immunofluorescence images of the co-localization of CENP-B and ACA 

performed in 76NTERT cells after transfecting with either control siRNA or siRNA against 

ADA3. Cells were fixed on 18-mm coverslips with 4% paraformaldehyde after 48 hours 

of transfection. Indicated antibodies were used for immunofluorescence. ACA staining was used 

to identify centromeres. D, Quantification of cells exhibiting CENP-B and ACA co-localization 

from C. Control or ADA3 siRNA infected cells co-stained with ACA and CENP-B were 

quantified based on ACA-CENP-B co-localization foci. Cells with more than 5 CENP-B-ACA 

interaction foci were considered positive (n=120).  
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Deletion of Ada3 Causes Defects in Chromosome Segregation 

Previous studies have demonstrated CENP-B protein is important in ensuring faithful 

chromosome segregation during mitosis and thus assuring highest fidelity of centromere function 

(16,17) as deletion of CENP-B causes significant elevation in chromosome mis-segregation (17). 

As ADA3 knockdown/deletion in cells causes significant reduction in CENP-B recruitment onto 

centromeres, we speculated that deletion of Ada3 might cause chromosome mis-segregation in 

cells as seen upon depletion of CENP-B. To test this, we deleted Ada3 from Ada3FL/FL MEFs and 

measured defects in chromosome segregation. To enrich cells in mitosis, we synchronized control 

and Cre infected cells by double thymidine block in S phase and then fixed cells after release with 

complete medium for 6 hours (Figure 2.6A). Analyses of DAPI stained anaphase chromosomes in 

both control and Cre infected cells by Confocal microscopy revealed significantly higher 

percentage of anaphase bridges and lagging chromosomes in Ada3 deleted cells compared to 

control cells (Chi square test p value < 0.0001) (Figure 2.6B & 2.6C). These results reveal a novel 

role of ADA3 in the process of chromosome segregation through its binding to centromeres. 

Thus, ADA3 is required for maintaining the fidelity of chromosome segregation in mitosis 

(Figure 2.7).  
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FIGURE 2.6. Deletion of Ada3 causes defects in chromosome segregation 

 

FIGURE 2.6. Deletion of Ada3 causes defects in chromosome segregation. A, Strategy used to 

assess chromosome mis-segregation in Ada3 deleted cells. B, Representative confocal images of 

DAPI stained anaphase chromosomes from control or Cre infected Ada3FL/FL MEFs. Note that 

Ada3 deleted cells show various chromosomal segregation abnormalities, such as lagging 

chromosomes and anaphase bridges (indicated by white arrows). C, Quantification of 

chromosomal segregation defects in control or Cre infected Ada3FL/FL MEFs from B. Note: At 

least 50 anaphase cells each from Ctrl and Cre infected Ada3FL/FL MEFs were analyzed for 

quantification. 
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DISCUSSION 

Human centromeres are multi-megabase regions of highly ordered arrays of alpha satellite 

DNA that are separated from chromosome arms by unordered alpha satellite monomers and other 

repetitive sequences. The centromere is an essential chromosomal domain that is required for 

chromosome segregation, and ensures the faithful inheritance of the chromosome during cell 

division (1-4).  

Our recent study where conditional deletion of Ada3 from Ada3FL/FL MEFs using adenovirus 

Cre system demonstrated a critical role of ADA3 in cell cycle progression with defect in mitosis 

and another study where knockdown of Ada3 in NIH3T3 cells demonstrated role of ATAC 

(ADA3 associated complex) in mitosis provided the rationale to examine mechanism of ADA3 

regulation of mitosis (18,19). We performed ChIP-seq followed by ChIP assay using anti-ADA3 

antibody and demonstrated that ADA3 associates with high order repeat region in alpha satellite 

of X chromosome centromere, which is the site of kinetochore assembly. Our results together 

with a recent study that showed direct binding of GCN5 to centromere (27)  suggests a role of 

ATAC/SAGA complex in mitosis through regulation of centromere function. 

Several CENPs, including CENP-B, are known to bind to centromere and regulate 

centromere function and thus chromosome segregation (33,37). Amongst centromeric proteins, 

CENP-B is the only protein which has DNA sequence specific binding ability that is conferred by 

a 17-bp sequence, known as the CENP-B box, in alpha satellite region of the human and minor 

satellite region of the mouse centromere (8,38) suggesting a role of CENP-B in centromere 

identity. While studies of human artificial chromosome formation have revealed an essential role 

of CENP-B in de novo centromerization (12,13), the less severe mitotic defects in Cenpb 

knockout mice (39-41) and lack of CENP-B boxes in Y chromosome and neocentromeres (42,43) 

have led to the idea that CENP-B might be dispensable in centromere function. However, the two 

recent ne plus ultra studies (16,17) by Cleveland and colleagues have provided several lines of 

evidences that uncover the role of CENP-B in centromere function. They observed an increased 
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rate of chromosome mis-segregation in Cenpb null MEFs and CENP-B devoid Y and 

neocentromeres, a new concept according to which CENP-B ensures the highest fidelity of 

chromosome segregation. 

Our results using PLA and GST pull down assays showed direct interaction of ADA3 with 

CENP-B. Further, to determine the region of ADA3 required for its interaction with CENP-B, we 

generated various GST-tagged truncated mutants of ADA3 and demonstrated that the N-terminal 

110 amino acids of ADA3 are essential for its interaction with CENP-B. Accordingly, previous 

studies from our laboratory and that of others’ have demonstrated that N-terminal half of ADA3 

facilitates its interaction with transcription factors such as p53, AATF, estrogen receptor, ANCO-

1 and other non-HAT-complex components; whereas C-terminus of ADA3 is essential for its 

incorporation into HAT complexes through its direct interaction with ADA2 subunit and is also 

required for its association with p300 HAT (36,44-49). Thus, our finding that N-terminus of 

ADA3 directly interacts with CENP-B defines a new interactor of ADA3 N-terminus. More 

importantly, we showed that the ADA3 truncated mutant that does not interact with CENP-B 

failed to rescue the cell proliferation defects caused upon deletion of endogenous Ada3 in 

Ada3FL/FL MEFs. These findings imply that ADA3-CENP-B interaction is important for cell 

proliferation.   

Furthermore, sub-cellular protein fractionation, ChIP assay and direct immunofluorescence 

demonstrated the role of ADA3 in CENP-B recruitment to centromeres. These results along with 

published findings implicate the role of ADA3 in regulation of centromere. Nevertheless, how 

ADA3 controls the localization of CENP-B on chromatin still remains to be answered. We 

speculated that ADA3 might regulate the localization of CENP-B by mediating its acetylation by 

various KATs; however, in our assays neither p300 nor GCN5 was able to acetylate CENP-B 

protein (data not shown). One possibility is that direct interaction of ADA3 with CENP-B might 

enhance its DNA binding ability without the acetylation of CENP-B as we have demonstrated in 

the case of estrogen receptor (46,50). The second possibility is that ADA3 might regulate the 
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DNA binding ability of CENP-B indirectly. A recent report suggests that α-N-trimethylation of 

CENP-B protein enhances its binding ability to CENP-B box (51) and the role of ADA3 in this 

context is subject of future studies that might reveal a novel function of ADA3. 

Additionally, based on recent studies that show a vital role of CENP-B in maintaining the 

fidelity of chromosome segregation, we examined if ADA3 could regulate the chromosome 

segregation process through its interaction with CENP-B/centromere. Analyses of DAPI stained 

anaphase chromosomes in Ada3 deleted cells revealed a dramatic increase in the chromosome 

mis-segregation events compared to control cells suggesting an essential role of ADA3 in 

maintaining the faithful segregation of chromosomes during mitosis (Figure 2.7). These findings 

also provide a rationale for our earlier study that demonstrated an important role of ADA3 in 

maintaining genomic stability (25). In this study, we showed that deletion of Ada3 caused an 

increase in chromosomal aberrations such as chromosome breaks, fragments, deletions and 

translocations. As defect in the process of chromosome segregation is an important element 

leading to chromosomal aberrations in cells (3), the genomic instability observed in Ada3 deleted 

cells could be attributed to the critical role of ADA3 in regulating the process of chromosome 

segregation through its centromere binding ability.  

Although we demonstrated ADA3 association with centromere via CENP-B in the present 

study, given the role of ADA3 as a mediator protein of global acetylation of histones, it is 

possible that ADA3 also regulates histone acetylation at centromeric region. Indeed H3K9 and 

histone H4 acetylation have been shown to regulate kinetochore assembly (52,53). However, in 

our ChIP experiments we were unable to detect any significant changes in the levels of H3K9 

acetylation or H3K9 trimethylation at X-chromosome HOR region upon ADA3 knockdown (data 

not shown). However, we cannot rule out the possibility that ADA3 knockdown may change 

histone acetylation at centromeres of other chromosomes. Besides regulating the acetylation of 

histone proteins, ADA3 also promotes the acetylation of non-histone proteins (35) and we cannot 

rule out the possibility that ADA3 might play a role in acetylation of other centromeric proteins.   
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This study together with our previous studies where we demonstrated halt in cell cycle and 

genomic instability upon deletion of Ada3 (18,25) clearly demonstrate an important role for 

ADA3 in the regulation of mitosis. Given that ADA3 level/localization alter in breast cancers and 

predict poor prognosis and poor survival in patients (26), this study underscores the important 

role of ADA3 in abnormal proliferation that leads to oncogenesis. 
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FIGURE 2.7. Model displaying the role of ADA3 in chromosome segregation. 

 

 

 

 

 

 

 

 

 

FIGURE 2.7. Model displaying the role of ADA3 in chromosome segregation. i. ADA3 

associates with centromere by directly binding to CENP-B that interacts with centromeric 

proteins CENP-A and CENP-C to form functional centromere, which is required for proper 

chromosome segregation. ii, In conditions where ADA3 protein is depleted the recruitment of 

CENP-B at centromere is diminished leading to chromosomal segregation abnormalities viz. 

anaphase bridges and lagging chromosomes (ii). Note: For the simplicity of the model, the 

association of ADA3 and centromeric proteins with centromere is enlarged at only one 

chromosome and not shown for each chromosome.  
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Introduction  

Alteration/deficiency in activation 3 (ADA3) protein is a conserved component of key 

chromatin-modifying complexes that contain either GCN5 or PCAF histone acetyl transferases 

(HATs), such as SAGA (Spt/Ada/Gcn5) in yeast, ATAC (ADA2a containing complex), STAGA 

(SPT3/TAFII31/GCN5 Acetyltransferase) and TFTC (TATA binding protein free-TAF 

containing complex) in metazoans (1-7). Within these complexes, ADA3 associates with GCN5 

and ADA2 to form the HAT module. ADA3 has also been shown to associate with p300, the 

most well defined HAT of mammalian system (8, 9). ADA3 is essential for the HAT activity of 

p300 and GCN5 containing HAT complexes towards histones (10-14) as well as of non-histone 

proteins such as p53 and β-catenin (15, 16).  

Although strongly implicated in the regulation of HAT activity of ADA3-containing 

complexes, additional functions for ADA3 have been reported. For example, we identified ADA3 

as a novel human papilloma virus E6 oncoprotein-binding protein (17), and additional studies 

revealed that ADA3 binds to nuclear hormone receptors, such as estrogen receptor and retinoid 

acid receptor, and enhances their transcriptional activation function (8, 18-21). Recent studies 

have identified an essential role of ADA3 in normal cell cycle progression and maintenance of 

genomic stability (5, 13, 22, 23).  

Whether ADA3’s role in these processes is merely a passive structural one or is actively 

regulated is unknown. Post-translational modification represents one potential mechanism to 

regulate ADA3 function and in fact yeast ADA3 was found to be modified by acetylation (24).  

Consistent with this idea we observed that human ADA3 is also acetylated in vitro by its 

interacting HAT p300 (13). Here, we present evidence that, in addition to p300, mammalian 

ADA3 is acetylated by GCN5 and PCAF, and that ADA3 acetylation is balanced by deacetylation 

by histone deacetylase (HDAC) SIRT1. Mass spectrometry analyses identified seven p300 and 

one GCN5 acetylation sites on ADA3. ADA3 acetylation is cell cycle- phase dependent, and 

acetylation-defective mutants of ADA3 fail to restore global histone acetylation patterns or H3K9 
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acetylation at the c-myc enhancer, and failed to rescue cell cycle progression block caused by 

endogenous Ada3 deletion, demonstrating that acetylation plays an important role in ADA3 

function in histone modification and cell cycle progression. Taken together, our findings 

demonstrate that acetylation of ADA3 by its associated HATs is essential for its key role in 

histone acetylation and cell cycle progression.  
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Materials & Methods 

Plasmids, siRNA and Transient Transfections 

Construction of FLAG-ADA3 has been described previously (13). Various FLAG-ADA3 point 

mutants were generated using Invitrogen GeneArt site directed mutagenesis kit and then verified 

by DNA sequencing. Primers for site directed mutagenesis were designed using the GeneArt 

Primer design tool on the manufacturer’s website 

(http://www.thermofisher.com/order/oligoDesigner//). Primer sequences are available upon 

request. His-GCN5L2 HAT domain was a gift from Cheryl Arrowsmith (Addgene plasmid # 

25482). p300 wild-type, p300ΔHAT mutant, FLAG-HDACs, FLAG-SIRT1, -2 and -3 were 

generous gifts from Dr. Kishor Bhakat. FLAG-SIRT4, -5, -6 and -7 were purchased from 

Addgene (plasmid # 13815, 13816, 13817, 13818, respectively). FLAG-SIRT1-H363Y was 

generated using Invitrogen GeneArt site directed mutagenesis system kit and verified by DNA 

sequencing. For transient transfection experiments the indicated plasmids were transfected using 

X-tremeGene HP transfection reagent (Roche # 06366236001) according to manufacturer’s 

protocol. Control and SIRT1 (sc-40986) siRNA were purchased from Santa Cruz Biotechnology. 

For co-transfection of FLAG-ADA3 and control or SIRT1 siRNA, 3 µg FLAG-ADA3 and 20 nM 

siRNA was co-transfected using X-tremeGENE siRNA Transfection Reagent (04476093001) 

following manufacturer’s protocol.  

Cell Culture, Viral Infections and Cell Cycle Analysis 

76NTERT cells were cultured in DFCI media as described before (25). A549, HEK293T and 

Ada3FL/FL MEFs were maintained in Dulbecco's modified Eagle's medium supplemented with 

10% fetal calf serum. Ada3FL/FL MEFs stably expressing wild-type FLAG-ADA3 or acetylation 

defective mutants were generated as previously described (13). Adenoviruses expressing EGFP-

Cre or EGFP alone were purchased from University of Iowa (Gene transfer vector core). Cre 
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mediated deletion of Ada3 was performed as described previously (13). Cell cycle analysis by 

FACS in 76NTERT cells was performed as described previously (26). 

Antibodies  

FLAG-HRP (A8592), β-actin (A2228), and α-tubulin (T-5168) antibodies were purchased from 

Sigma. Anti-acetyl-H3K56 (04-1135), anti-acetyl-H3K9 (07-352), Histone H3 (06-755) and 

GAPDH (MAB374, EMD Millipore) were purchased from Millipore. ADA2a (ab-57489) and 

ADA2b (ab-57953) were purchased from Abcam, p300 (sc-584 and sc-585), PCAF (sc-13124), 

TRRAP (sc-5405), HSC-70 (sc-7298) and PARP (sc-8007) antibodies were from Santa Cruz 

Biotechnology, anti-acetyl lysine (9681), anti-acetyl lysine-HRP (6952), GCN5 (3305), SIRT1 

(9475) and HA-HRP (2999) were from Cell Signaling. Generation of mouse monoclonal anti-

ADA3 was described previously (Mohibi et al., 2012). ADA3 antibody was labeled with HRP 

using lightening-link HRP kit from Novus Biologicals (701-0030) following manufacturer’s 

protocol.  

Reagents  

Trichostatin A (TSA, T8552), Nicotinamide (NAM, N0636), β-Nicotinamide adenine 

dinucleotide sodium salt (NAD+, N0632), Acetyl co-enzyme A sodium salt (A2056) were 

purchased from Sigma. EX-527 was purchased from Selleckchem (S1541). Recombinant p300 

HAT domain was purchased from Active Motif, (31205).  

Immunoprecipitation and Immunoblotting 

For immunoprecipitation, cells were harvested in lysis buffer (20 mM Tris-HCl (pH 7.5), 150 

mM NaCl, 0.5% Nonidet P-40, 0.1 mM Na4VO3, 1 mM NaF, and protease inhibitor mixture, 2 µM 

TSA and 10 mM NAM for acetylation experiments) and whole cell extracts were subjected to 
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anti-FLAG M2 affinity gel (Sigma) overnight at 4oC and beads were then washed five times at 

5000 rpm for 1 minute with lysis buffer.  Unless otherwise indicated, the immunoprecipitated 

FLAG tag proteins were eluted with 0.25 µg/µl 3X FLAG peptide (Sigma) into lysis buffer. The 

elutes were subjected to SDS-PAGE and analyzed by immunoblotting, as indicated. For FLAG-

ADA3 and p300 co-immunoprecipitation, HEK-293T cells were cross-linked by Dithiobis 

(succinimidyl propionate) (DSP; Thermo Scientific 22585) before immunoprecipitation.  In brief, 

cells were incubated with 1.5 mM DSP in 1x PBS for 15 min at room temperature followed by 

quenching with excess Tris, pH 7.4. Cells were lysed in RIPA buffer and, FLAG 

immunoprecipitation remained the same as mentioned above except washing the beads with 

RIPA buffer. For endogenous ADA3 immunoprecipitation, equal amount of lysates were 

incubated with 5 µg anti-ADA3 mouse monoclonal antibody overnight at 4oC followed by 

incubation with protein A/G-agarose (sc-2003, Santa Cruz Biotechnology) for 2 h. Beads were 

washed with lysis buffer 5 times as mentioned above and eluted in 2x SDS sample buffer. Elutes 

were then subjected to SDS-PAGE analysis and immunoblotted with indicated antibodies.  

Immunofluorescence 

Ada3FL/FL MEFs stably expressing wild-type FLAG-ADA3 or acetylation defective mutants were 

infected with Adeno-EGFP or Adeno-EGFP-Cre in P-100 dishes, as described above.  One day 

after infection 2000 cells were re-plated on glass cover slips in 12-well plates and four days later 

cells were fixed in 4% paraformaldehyde for 20 minutes. Staining was performed with anti-

ADA3 antibody. Secondary antibody used was Alexa fluor 594 from Life Technologies. Nuclei 

were counterstained with DAPI. The cover slips were then placed on slides using the mounting 

medium. Fluorescent images were captured using LSM 510 META Confocal fluorescence 

microscope (Zeiss).  
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In vitro acetylation and deacetylation assays  

Purified GST-ADA3 or various GST-ADA3 mutants were acetylated by recombinant HATs 

GCN5 or p300. Briefly, 1 µg GST-ADA3 WT or mutants were incubated with 25 ng p300 HAT 

domain or 50 ng GCN5 HAT domain in HAT buffer (50 mM Tris HCl pH 8.0, 50 mM KCl, 5% 

glycerol, 0.1 mM EDTA, 1mM DTT, 2 µM TSA, 50 µM Acetyl co-enzyme A sodium salt and 1 

mM PMSF) at 30°C for 30 minutes. The reaction was stopped by adding 3x SDS sample buffer 

and products were subjected to SDS-PAGE analysis and immunoblotted with the indicated 

antibodies. For deacetylation reaction, the products of GST-ADA3 WT acetylation reactions 

(acetylated with p300 or GCN5) were then incubated with 20 ng BSA equivalent FLAG SIRT1 

wild-type (WT) or H363Y (FLAG-SIRT1 WT or H363Y were ectopically expressed and 

immunoprecipitated from HEK293T cells. The immunoprecipitates were eluted with 3X FLAG 

peptide and a fraction of it was analyzed on SDS-PAGE by CBB staining along with various 

amounts of BSA) in HDAC buffer (50 mM Tris HCl pH 8.0, 137 mM NaCl, 2.7 mM KCl, 1 mM 

MgCl2, 3 mM NAD+, 200 nM TSA) at 37°C for 1 hour.  Reaction was then stopped by 6x SDS 

sample buffer and analyzed by immunoblotting with pan anti-acetyl lysine antibody.  

 

GST-pull down assays 

GST-pull down assay was performed as described previously (23). Briefly 1 µg of bacterially 

purified GST or GST-ADA3 proteins bound to beads were used as bait and incubated with 300 ng 

of baculovirally purified SIRT1 protein purchased from R&D Systems (Catalog#7714-DA). 

Following incubation for 2 hours at 4oC, the beads were washed 5 times with lysis buffer and 

samples subjected to SDS-PAGE followed by immunoblotting with anti-SIRT1 antibody.  
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Identification of acetylation sites on ADA3 by mass spectrometry  

For identification of acetylation sites in vivo, 76NTERT cells stably overexpressing FLAG-ADA3 

or 293T cells transiently transfected with FLAG-ADA3, were treated with 1 µM Trichostatin A 

(TSA) and 5 mM Nicotinamide (NAM) for 10 hours. Following this procedure, whole cell lysates 

were immunoprecipitated with anti-FLAG conjugated agarose beads. Immunoprecipitates were 

then eluted with 3X FLAG peptide, ran on SDS-PAGE and stained with Coomassie stain. Band 

corresponding to FLAG-ADA3 was cut from the gel (about 1.5 µg) and then subjected to either 

chymotrypsin or trypsin digestion. The samples were cleaned up using Millipore µC18 ZipTip, 

resuspended in 0.1% Formic acid and injected through Eksigent cHiPLC column onto 5600 

TripleTOF. Database searching was performed using PEAKS studio 6 software and peptides 

identified with 95% confidence level. For identification of lysines specifically acetylated by 

either GCN5 or p300, 1.5 µg of bacterially purified GST-ADA3 was incubated with 50 ng of 

GCN5 catalytic domain or with 25 ng of p300 catalytic domain (aa 965-1810) for 30 min at 30oC. 

The samples were eluted on SDS-PAGE, stained with Coomassie stain and subjected to Mass 

spectrometric analysis, as indicated above.  

Examining ADA3 acetylation during cell cycle 

For examining ADA3 acetylation during cell cycle, 76NTERT cells were synchronized in G1 

phase by growth factor deprivation and released into cell cycle by stimulating with growth factor 

containing medium as described previously (26). Following stimulation, cells were harvested at 

various time points for FACS analysis by PI staining and lysates were prepared in the IP lysis 

buffer (described above). 450 µg lysates were used to perform endogenous ADA3 IP using anti-

ADA3 monoclonal antibody followed by immunoblotting with anti-acetyl lysine-HRP antibody 

and anti-ADA3-HRP antibody. 10 µg lysates (~2%) were loaded as input to determine the total 

levels of ADA3 during cell cycle.  
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Rescue proliferation and rescue colony formation assays 

Rescue proliferation assays for various acetylation defective mutants were performed as 

previously described (23). Briefly, Ada3 FL/FLMEFs stably overexpressing empty vector, ADA3 

WT, K418R, 7KR or 8KR were plated in triplicates in 96 well plates (150 cells/well) 24 h after 

infection with Adenovirus EGFP or EGFP-Cre. The cell proliferation was measured at various 

days after plating using CellTiter® Glo assay (Promega) according to manufacturer’s protocol. 

For calculating percentage rescue for each cell line, two levels of normalization were used. First, 

CellTiter® Glo values for each day for Cre infected cells were divided to their corresponding 

control infected cell values. Subsequently, the data obtained was normalized to Day 1 for each 

cell line. Rescue colony formation assays were performed as previously described (13) and 

colony numbers were counted followed by calculation of percentage rescue. Percentage rescues 

from both CellTiter® Glo assay or colony formation assay represent mean ± S.D. from three 

independent experiments and p values were computed using Student’s t test.  

Chromatin Immunoprecipitation (ChIP) 

 ChIP assay was performed using ChIP-IT Express kit from Active Motif according to 

manufacturer’s protocol with slight modifications in fixation and sonication conditions. Stably 

overexpressing empty vector, ADA3 WT, K418R, 7KR or 8KR Ada3 FL/FLMEFs were infected with 

adenovirus expressing GFP-Cre in order to delete endogenous Ada3. 48 h after infection cells 

were switched to 0.1% serum containing media for 72 h followed by stimulation with 10% serum 

containing media for 40 min. Cells were then fixed in EGS [ethylene glycol bis (succinimidyl 

succinate), Thermo Scientific] and formaldehyde at room temperature. In particular, cells were 

incubated in 1.5 mM EGS in 1X PBS on shaking platform for 15 min. To this formaldehyde (1% 
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working concentration) was added for another 15 min. Fixation reaction was then stopped by 1X 

glycine at room temperature for 5 min. Chromatin was isolated and sonicated for 12 minutes in 

BiotuptorTM UCD-200 (Diagenode) attached with NESLAB RTE7 water bath circulator (Thermo 

Scientific). Remaining steps for ChIP were followed exactly as per manufacturer’s protocol. 

Eluted chromatin from immunoprecipitation and input was then ethanol precipitated and used as 

templates in RT-PCR reactions preformed in four replicates. ChIP RT-PCR data was analyzed 

using percentage input method and normalized against vector. In brief, the percentage input was 

calculated as 100 x 2^ (Adjusted Input-Ct of IP) where adjusted input = Ct of input-log2(dilution 

factor).   
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Figure 3.1: ADA3 is subject to acetylation and deacetylation across different cell types 
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Figure 3.1 - ADA3 is subject to acetylation and deacetylation across different cell types (A) 

293T cells was transfected with FLAG-ADA3 and 30 h post transfection, as indicated, cells were 

treated with 1 µM Trichostatin A (TSA) and 5 mM Nicotinamide (NAM) or vehicle, for 

additional 10 h. Whole cell lysate were immunoprecipitated with anti-M2 FLAG agarose beads. 

Immunoprecipitates were then eluted with 3X FLAG peptide and analyzed on SDS-PAGE using 

anti-acetyl lysine antibody. Same blot was stripped and probed with HRP labeled FLAG 

antibody. (B) A549 cells were treated either with TSA (1 µM) and NAM (5 mM) for 10 h or 

vehicle. Whole cell extracts were then immunoprecipitated with normal mouse IgG or anti-ADA3 

antibodies and immunoblotted with indicated antibodies . (C, D & E) MCF7 (C) and 76NTERT 

(D & E) cells stably overexpressing FLAG-ADA3 were treated with TSA+NAM and whole cell 

lysate were immunoprecipitated with M2 agarose FLAG beads (C & D) or pan acetyl lysine 

antibodies (D) followed by immunoblotting with indicated antibodies.  
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ADA3 acetylation is mediated by its interacting HATs GCN5, PCAF and p300 

Since ADA3 is in a complex with HATs GCN5, PCAF or p300 (8-10), we reasoned that 

these HATs mediate ADA3 acetylation.  We first validated the association of ADA3 with these 

HATs by probing anti-FLAG immunoprecipitates from FLAG-ADA3 transfected HEK-293T 

cells for p300 (Figure 3.2A), GCN5 (Figure 3.2B) or PCAF (Figure 3.2C).  These experiments 

showed efficient co-immunoprecipitation of endogenous p300, GCN5 or PCAF with FLAG-

ADA3. Next, we used in vitro lysine acetyl transferase assays to assess the acetylation of 

bacterially purified ADA3 by the catalytic domains of recombinant p300 or GCN5. As shown in 

Figure 3.2D and E, both p300 and GCN5 were able to efficiently acetylate ADA3 in vitro. We 

corroborated these findings by co-expressing FLAG-ADA3 with wild-type p300 or GCN5, or 

their respective HAT activity-deficient mutants (p300ΔHAT or GCN5ΔHAT). Consistent with 

the in vitro analyses, we observed that acetylation of FLAG-ADA3 was increased with co-

expression of wild-type p300 or GCN5, but not when their HAT activity-deficient mutant were 

co-expressed (Figure 3.2F and G). Expression of PCAF also led to increased ADA3 acetylation in 

HEK-293T cells (Figure 3.2H). Taken together, these results demonstrate that ADA3-interacting 

lysine acetyl transferases GCN5, PCAF or p300 can acetylate ADA3.  
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Figure3.2: ADA3 interacts with and acetylated by GCN5, PCAF and p300 
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Figure 3.2: ADA3 interacts with and acetylated by GCN5, PCAF and p300: (A, B & C) 

Whole cell lysate from vector or FLAG-ADA3 transfected HEK293T cells were subjected to 

immunoprecipitation with M2 FLAG agarose beads and interaction with p300 and GCN5 and 

PCAF was assessed by immunoblotting with anti-p300 (C), anti-GCN5 (D), or anti-PCAF (C) 

antibodies (D & E) In vitro HAT assay using GST or GST-ADA3 as substrates and catalytic 

domains of p300 (D) GCN5 (E) as enzymes. The assay was followed by immunoblotting with 

anti-acetyl lysine antibody. (F, G & H) HEK293T cells were transfected with FLAG-ADA3 

along with empty vector, p300 WT or p300 ΔHAT mutant (F) GCN5 WT or GCN5 ΔHAT 

mutant (G) or PCAF (H). 48 h after transfection whole cell lysates were subjected to 

immunoprecipitation by M2 agarose beads and immunoblotted with indicated antibodies.  
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Acetylation of ADA3 is counteracted by class III HDACs (SIRTs)  

The marked increase in the levels of ADA3 acetylation upon global inhibition of 

deacetylation supported the likelihood that ADA3 is dynamically regulated by deacetylation. 

Histone deacetylases (HDACs), enzymes that remove the acetyl group from lysine, have been 

categorized into three classes:  Class I, consisting of HDACs 1, 2 and 3; Class II, consisting of 

HDACs 4, 5 and 6; and Class III, consisting of sirtuins (SIRTs) 1 to 7 (30). Trichostatin A (TSA) 

has been widely used as an inhibitor of class I and II HDACs activities (28) whereas 

Nicotinamide (NAM) has been demonstrated to be a broad inhibitor of SIRTs (29). In order to 

determine the class of HDACs responsible for ADA3 deacetylation, we ectopically expressed 

FLAG-ADA3 in HEK-293T cells and treated the cells with either TSA or NAM. We observed 

that ADA3 acetylation was markedly enhanced in the presence of NAM, whereas TSA had little 

or no effect on ADA3 acetylation (Figure 3.3A & B), suggesting that one or more SIRTs are 

likely to function in ADA3 deacetylation.  
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Figure 3.3 - Acetylation of ADA3 is counteracted by class III HDACs 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 - Acetylation of ADA3 is counteracted by class III HDACs (SIRTs). (A) HEK-

293T cells were transfected either with FLAG-ADA3 or empty vector. 30 h after transfection 

cells were treated either with vehicle or 1 µM HDAC class I and II inhibitor Trichostatin A (TSA) 

or 5 mM HDAC class III inhibitor Nicotinamide (NAM) for 10 h. Whole cell lysates were then 

subjected to immunoprecipitation by M2 FLAG agarose beads and immunoblotted with either 

anti acetyl lysine or FLAG-HRP antibodies. (B) The band intensities of acetylated FLAG-ADA3 

over immunoprecipitated FLAG-ADA3 were quantified using imageJ software and averaged 

from four independent experiments. The statistical significance between different groups was 

computed using Student’s t test. NS, Not Significant *, p≤0.05  



 80 

ADA3 exclusively interacts with SIRT1 among class I, -II and -III deacetylases 

Based on increased ADA3 acetylation specifically with a SIRT inhibitor, we further 

explored if one or more of SIRTs are involved in deacetylation of ADA3. We first examined the 

interaction of endogenous ADA3 with ectopically expressed FLAG-tagged HDACs or SIRTs in 

HEK-239T cells. Co-immunoprecipitation analyses demonstrated that, out of 13 HDACs 

(HDAC1 through 6 and SIRT1 through 7) tested, only SIRT1 specifically interacted with ADA3 

(Figure 3.4A). A reciprocal co-immunoprecipitation further verified the strong association of 

ectopically expressed FLAG-ADA3 with endogenous SIRT1 (Figure 3.4B). More importantly, 

immunoprecipitation with anti-SIRT1 antibody followed by western blotting with anti-ADA3 

antibody confirmed the association of endogenous ADA3 and SIRT1 (Figure 3.4C). 

Next, we assessed whether the interaction of ADA3 with SIRT1 is direct using purified 

recombinant GST-ADA3 and recombinant SIRT1 proteins. GST-ADA3, but not GST alone, was 

indeed able to bind to recombinant SIRT1, indicating a direct interaction (Figure 3.4D). Next, we 

tested if the catalytic activity of SIRT1 is required for its interaction with ADA3, by expressing 

either wild-type or catalytically inactive (H363Y) SIRT1 in HEK-293T cells. Notably, while 

wild-type SIRT1 was able co-immunoprecipitate ADA3, the interaction with SIRT1 (H363Y) 

mutant was markedly lower (Figure 3.4E), suggesting that SIRT1 activity is facilitating its 

physical interaction with ADA3.  
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Figure 3.4: ADA3 exclusively interacts with SIRT1 among class I, -II and -III deacetylases 
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Figure 3.4 ADA3 exclusively interacts with SIRT1 among class I, -II and -III deacetylases. 

(A) HEK-293T cells were transfected with empty vector or various FLAG tagged HDAC and 

SIRT constructs. 48 h after transfection whole cell lysates were subjected to immunoprecipitation 

by M2 FLAG agarose beads, eluted with 3X FLAG peptide and immunoblotted with anti-ADA3 

or FLAG-HRP antibodies. (B) HEK-293T cells were transfected either with empty vector or 

FLAG-ADA3. 48 h transfection whole cell lysates were subjected to immunoprecipitation by M2 

FLAG agarose beads and immunoprecipitates were immunoblotted with anti-SIRT1 or FLAG-

HRP antibodies. (C) HEK-293T cell lysates were subjected to immunoprecipitation using anti-

SIRT1 antibody and immunoprecipitates were analyzed by western blotting using anti-ADA3-

HRP and SIRT1 antibodies (D) In vitro GST pulldown assay; 300 ng recombinant SIRT1 was 

incubated with 1 µg glutathione bound GST or GST-FLAG-ADA3 followed by immunoblotting 

with anti-SIRT1 antibody. (E) Whole cell lysates of HEK293T cells transfected with FLAG-

SIRT1 wild-type or its catalytically inactive mutant H363Y, were immunoprecipitated as in (A), 

followed by immunoblotting with anti-ADA3 and FLAG-HRP antibodies. The values represent 

ratio of signal intensities of ADA3 bands over that of total SIRT1 immunoprecipitated as 

calculated using ImageJ.  
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SIRT1 deacetylates ADA3 in cells and in vitro  

To assess if SIRT1 functions as a deacetylase towards ADA3, we examined the 

acetylation of ADA3 in HEK-293T cells in the presence or absence of SIRT1 specific inhibitor 

EX-527, which inhibits SIRT1 activity by occupying the binding site for its co-factor NAD+ (31). 

Immunoprecipitation of FLAG-ADA3 followed by immunoblotting for acetylated lysine showed 

an increase in ADA3 acetylation in the presence of EX-527 (Figure 3.5A). Interestingly, SIRT1 

levels did not change significantly after EX-527 treatment, which strongly suggests that increased 

ADA3 acetylation with the inhibitor treatment, reflects inhibition of SIRT1 activity (Figure 

3.5A). In a complementary approach, we co-transfected HEK-293T cells with FLAG-ADA3 

along with scrambled or SIRT1-specific siRNA and then examined ADA3 acetylation. Similar to 

the effect of EX-527, we observed enhanced ADA3 acetylation upon SIRT1 knockdown (Figure 

3.5B). Finally, to directly test the ability of SIRT1 to deacetylate ADA3, we subjected 

recombinant purified ADA3 to in vitro acetylation using GCN5 or p300 as HATs, and then 

subjected this acetylated ADA3 for an in vitro deacetylation in the presence of purified SIRT1 

wild-type or its catalytic inactive mutant (H363Y). Consistent with observations in cells, a 

dramatic decrease in ADA3 acetylation was observed upon incubation with wild-type SIRT1 but 

not with catalytically inactive SIRT1-H363Y mutant (Figure 3.5C and D). Taken together, these 

results establish SIRT1 as a deacetylase for acetylated ADA3. The ability of SIRT1 to deacetylate 

ADA3 that was acetylated by either GCN5 or by p300 suggests that SIRT1 does not discriminate 

between ADA3 acetylation imparted by different HATs. 
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Figure 3.5: SIRT1 deacetylates ADA3 in cells and in vitro 
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Figure 3.5 - SIRT1 deacetylates ADA3 in cells and in vitro. (A) HEK-293T cells were 

transfected with FLAG-ADA3 or empty vector. 30 h after transfection cells were treated either 

with DMSO or with 10 µM EX-527, a SIRT1 specific inhibitor, for 16 h. Whole cell lysates were 

then subjected to immunoprecipitation by M2 FLAG agarose beads and immunoblotted with 

either anti-acetyl lysine or FLAG-HRP antibodies (B) HEK-293T cells were co-transfected 

together with FLAG-ADA3 and control or siRNA against SIRT1. 48 h transfection, ADA3 

acetylation was analyzed by immunoprecipitation followed by immunoblotting as in A. Whole 

cell extracts were also immunoblotted with anti-SIRT1 and anti-β-actin antibodies to examine 

SIRT1 knockdown. (C) Schematic depicting the strategy used for in vitro deacetylation assay of 

ADA3 (D) Bacterially purified 1 µg ADA3 was in-vitro acetylated by either recombinant p300 

HAT domain (25 ng) or recombinant GCN5 HAT domain (50 ng). Following this, acetylated 

ADA3, as a substrate, was subjected to in-vitro deacetylation assay. FLAG tagged SIRT1 wild-

type or catalytic inactive mutant SIRT1 H363Y was overexpressed in HEK293T cells, 

immunoprecipitated by FLAG M2 agarose beads and eluted by 3X FLAG peptide. 20 ng of these 

elutes were used as enzyme in presence or absence of SIRT1 cofactor NAD+ or SIRT1 inhibitor 

EX-527. Following the enzymatic reaction, the reaction mixtures were subjected to SDS PAGE 

and immunoblotted with anti-acetyl lysine antibody. 
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Mass spectrometry-based identification of lysine residues in ADA3 acetylated by GCN5 and 

p300 

To delineate specific lysine residues in AD3 that are modified by acetylation by GCN5 or 

p300 in intact cells, we utilized a mass spectrometry approach. HEK-293T or 76N-TERT cells 

transiently or stably overexpressing FLAG-ADA3, respectively, were treated with TSA and 

NAM and FLAG-AD3 was purified using anti-FLAG beads. The anti-FLAG bead bound FLAG-

ADA3 was eluted using a tandem triple FLAG peptide, resolved by SDS-PAGE, and the band 

corresponding to FLAG-ADA3 was excised and subjected to mass spectrometry analysis after 

digestion with trypsin or chymotrypsin. This analysis revealed three ADA3 acetylation sites in 

HEK293T cells (K109, K194 and K418) and four sites in 76NTERT cells (K109, K122, K124 

and K222) with K109 site common in both cell lines (Figure 3.6A-J). To determine if any of 

these lysine residues were specifically acetylated by GCN5 or p300, we performed in vitro 

acetylation of purified recombinant GST-ADA3 with either GCN5 or p300, followed by mass 

spectrometric analysis after trypsin or chymotrypsin digestion. This analysis demonstrated that 

GCN5 acetylated a single lysine residue on ADA3 (K418) whereas p300 acetylated seven distinct 

lysine residues (K109, K122, K124, K147, K194, K222 and K312) (Figure 3.6A-J). Notably, all 

but two (K147 and K312) acetylation sites identified on in vitro acetylated ADA3 were observed 

in one of the two cell types examined, supporting the idea that the identified ADA3 lysine 

residues are bona fide acetylation sites. Notably, the identified lysine residues are preserved in all 

mammals, and a majority are conserved among vertebrates (Figure 3.6K), supporting a likely 

functional role of ADA3 acetylation. 
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Figure 3.6: Mass spectrometry-based identification of lysine residues in ADA3 acetylated by 

GCN5 and p300 
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Figure 3.6 – Mass spectrometry-based identification and validation of lysine residues in 

ADA3 acetylated by GCN5 and p300.  (A) Summary of various acetylation sites identified on 

ADA3 in various experimental settings, as indicated, using mass spectrometry. (B & C) 

Summary of coverage by mass spectrometry and acetylated lysines identified in ADA3 by mass 

spectrometry of both trypsin and chymotrypsin digested samples immunoprecpitated from (B) 

HEK293T, (C) 76NTERT or (C) in vitro acetylated by GCN5 or p300. (D-J) Identification of 

various acetylated lysine residues on ADA3 by mass spectrometry – (D) K109 (E) K122, K124 

(F) K147 (G) K194 (H) K222 (I) K312 and (J) K418 (K) Sequence alignment of various ADA3 

vertebrate sequences reveals high conservation of acetylated lysine residues. 
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Validation of GCN5- and p300-mediated acetylation sites on ADA3 in vitro and in intact 

cells 

To further validate the GCN5- and p300-mediated acetylation sites on ADA3, we used site-

directed mutagenesis to mutate various lysine (K) residues to arginine (R) residues, to preserve 

their positive charge but render them acetylation-incompetent. Based on results presented above, 

a single K418R substitution was made to assess the GCN5-mediated ADA3 acetylation while we 

made two overlapping mutants to assess the p300-mediated acetylation: (1) K>R mutation of 

K109, K122, K124, K194 and K222 (5KR), or (ii) K>R mutation of all seven lysine residues 

identified above (K109, 122, 124, 147, 194, 222, 312; denoted 7KR). These mutants were 

expressed as recombinant protein in vitro or in cells to assess their ability to serve as substrates of 

acetylation by GCN5 or p300. The in vitro acetylation assay demonstrated that K418 was the 

major site of acetylation by GCN5 as the level of acetylation upon incubation with GCN5 was 

greatly reduced compared to wild-type ADA3 (Figure 3.7A). When co-transfected in HEK-293T 

cells, GCN5 efficiently acetylated the wild-type ADA3 but not the K418R mutant (Figure 3.7B). 

A similar defect in the K418R mutant acetylation was observed with PCAF (Figure 3.7C). Taken 

together, these results demonstrate that both GCN5 and PCAF acetylate ADA3 at lysine 418. 

Next, we analyzed the 5KR and 7KR mutants of ADA3 in vitro to assess the impact on p300-

mediated acetylation. The 5KR mutation of ADA3 greatly reduced its p300-mediated acetylation, 

whereas the 7KR mutation almost completely abrogated ADA3 acetylation (Figure 3.7D). These 

results were confirmed by co-expressing wild-type ADA3, ADA3-5KR or ADA3-7KR with HA-

tagged p300 in HEK-293T cells (Figure 3.7E). Next, we generated an ADA3 mutant with K>R 

substitutions of all eight lysine residues (those acetylated by either GCN5 or p300; referred to as 

8KR), and compared the level of acetylation of wild-type ADA3 vs. its K418R, 7KR and 8KR 

mutants expressed in HEK-293T cells upon treatment with TSA and NAM. Under these 

conditions, the 8KR mutant showed complete abrogation of acetylation (Figure 3.7F). Altogether 
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these results validate the eight lysine residues identified by mass spectrometry as the major 

acetylation sites on ADA3 that are modified by its interacting HATs. 
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Figure 3.7: Validation of GCN5- and p300-mediated acetylation sites on ADA3 in vitro and 

in intact cells 
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Figure 3.7: Validation of GCN5- and p300-mediated acetylation sites on ADA3 in vitro and 

in intact cells (A & D) In-vitro HAT assay was performed using GCN5 (A) or p300 (D) catalytic 

domains as acetyl transferases and recombinant GST-FLAG-ADA3, GST-ADA3K418R, -5KR or 

-7KR as substrates. The assay was followed by immunoblotting with anti-acetyl lysine antibody. 

(B, C & E) 293T cells were transfected with FLAG-ADA3 wild-type, -K418R, -5KR or -7KR 

with or without GCN5 (B), PCAF (C) and p300 (E). 48 h after transfection whole cell lysates 

were subjected to immunoprecipitation with M2 agarose FLAG beads and immunoblotted with 

indicated antibodies. (F) 293T cells were transfected with indicated plasmids. 42 h after 

transfection cells were treated with TSA (1 µM) and NAM (5 mM) for 6 h. Whole cell extracts 

were subjected to immunoprecipitation with M2 agarose. Immunoprecipitates were then eluted 

with 3X FLAG peptide and immunoblotted with indicated antibodies.  
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ADA3 acetylation levels change during cell cycle progression      

Having demonstrated that ADA3 acetylation is dynamically regulated by its associated 

HATs (GCN5, PCAF and p300) and the deacetylase SIRT1, we asked if the levels of ADA3 

acetylation are regulated under particular physiological conditions. Since we have established that 

ADA3 plays an important role in cell cycle progression (13, 23) we reasoned that its acetylation 

might vary with cell cycle progression. To assess if this is the case, we arrested 76N-TERT 

immortal mammary epithelial cells in G1 phase of cell cycle by growth factor deprivation, 

released the cells from G1 block by adding growth factor-containing medium and analyzed cells 

at various time points during cell cycle progression (based on FACS analysis) for levels of 

acetylation on immunoprecipitated ADA3 (26, 32). FACS analysis confirmed that a majority of 

cells were G1-arrested upon growth factor deprivation followed by robust S and G2/M phase 

entry by 16 h and 20 h, respectively, after culture in growth factor rich medium (Figure 3.8A). 

Western blotting of whole cell extracts showed that total ADA3 levels remained relatively 

invariant during cell cycle progression (Figure 3.8B). As antibodies recognizing specific ADA3 

acetylation sites are not available, ADA3 was immunoprecipitated from cell lysates followed by 

immunoblotting with pan acetyl-lysine reactive antibody. Compared to acetylation levels at time 

0 (G1-assrested cells), we observed an initial peak of ADA3 acetylation at 4 h followed by a 

second peak that persisted throughout S- and G2/M phases (Figure 3.8C). Notably, these dynamic 

changes in ADA3 acetylation are consistent with previous reports of increase in GCN5 protein 

levels as cells enter the S-phase (33) and a requirement of the HAT activity of p300 for G1-S 

transition (34-38). Taken together, our results demonstrate that ADA3 acetylation is cell cycle-

dependent and raised the possibility that acetylation of ADA3 could regulate its function in cell 

cycle progression. 
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Figure 3.8: ADA3 acetylation levels change during cell cycle progression      

 

 

Figure 3.8 - ADA3 acetylation levels change during cell cycle progression. 76NTERT cells 

were growth factor deprived in DFCI-3 medium for 72 h and then stimulated with growth factors 

containing DFCI-1 medium for indicated time points.  A. Cells were fixed in 70% ethanol, 

stained with propidium iodide and then subjected to FACS analysis. B. Whole cell extracts 

(Input) were immunoblotted either with anti-ADA3 or anti HSC70 antibodies. C. Equal amount 

of whole cell extracts from each time point were immunoprecipitated with normal mouse IgG or 

anti-ADA3 antibody. Immunoprecipitates were then immunoblotted with HRP labeled pan 

acetylated or anti-ADA3 antibodies. ADA3 acetylation band intensities were quantified using 

ImageJ software and normalized against 0 h which are represented underneath the blot.  
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Acetylation-defective mutants of AD3 fail to rescue the block in cell proliferation imposed 

by Ada3 deletion in Ada3FL/FL MEFs 

To investigate the functional importance of ADA3 acetylation, we assessed the ability of 

acetylation-defective ADA3 mutants vs. the wild-type (WT) ADA3 to rescue the block in cell 

proliferation and/or the defective histone acetylation observed upon induced Ada3 deletion in 

Ada3FL/FL MEFs (13).  For these experiments, we generated stable Ada3FL/FL MEF cell lines 

expressing either vector, WT FLAG-ADA3 or one of its acetylation-defective mutants, K418R, 

7KR or 8KR. Western blotting confirmed that the expression of ectopic WT ADA3 or its mutants 

were comparable (Figure 3.9N). As expected (13), deletion of endogenous Ada3 by adenovirus-

Cre infection led to a severe proliferation defects in vector-expressing Ada3FL/FL MEFs, whereas 

cells expressing wild-type FLAG-ADA3 showed unperturbed cell proliferation demonstrating a 

functional rescue (Figure 3.9A and B). Notably, partial proliferation defects were seen upon 

endogenous Ada3 deletion in cells expressing K418R or 7KR mutants (Figure 3.9C and D). More 

significantly, a severe proliferative block was seen upon Ada3 deletion in MEFs expressing the 

8KR mutant, suggesting that both GCN5- and p300- mediated acetylation is important for ADA3 

function in cell proliferation (Figure 3.9E).  

We confirmed the deletion of endogenous mouse Ada3 in the Adeno-Cre transduced 

MEFs by immunoblotting at various time points (Figures 3.9F-J). While, a significant 

endogenous ADA3 depletion was seen in each cell line until Day 7; the recovery in the 

expression of endogenous mouse ADA3 at Day 9 reflects the outgrowth of cells in which Ada3 

was not deleted. We calculated the percentage rescue in proliferation (see materials and methods) 

for WT ADA3 or each mutant at various time points after Adeno-Cre transduction (Figure 3.9K). 

A significant defect in the rescue of cells from proliferation block was observed with each 

acetylation-defective ADA3 mutant compared to WT ADA3 at Day 7 after Ada3 deletion (Figure 

3.9K). At Day 9, the defect in rescue with K418R or 7KR was not significant but was significant 
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with the 8KR mutant as also for the vector-alone expressing cells (Figure 3.9K), likely due to the 

outgrowth of MEFs in which endogenous Ada3 was not deleted, as suggested by the results of 

Western blotting (Figure 3.9H & I).    

We also observed similar defect in the ability of mutant ADA3 proteins to rescue 

proliferation defects in Ada3-deleted MEFs using an independent colony formation assay (Figure 

3.8L & M). In this assay, while vector-expressing cells showed about 90% defect in rescue, both 

ADA3 K418R- and 7KR-expressing cells showed about 40% defect, whereas 8KR showed about 

70% defect in rescue. Taken together, we demonstrate that both GCN5- and p300-mediated 

acetylation of ADA3 is required for its function in cell proliferation. 

  To test the possibility that the observed defect in cell cycle rescue is due to the 

mislocalization of mutants, we analyzed the localization of WT and acetylation-defective mutants 

5 days after control or Cre adenovirus infection of Ada3FL/FL MEFs expressing these mutants.  As 

expected, the endogenous ADA3 in vector control cells was exclusively localized to the nucleus; 

however, the overexpressed WT ADA3 was localized to both nucleus and cytoplasm even after 

deletion of endogenous ADA3 (Figure 3.9O). Similar to WT ADA3, all acetylation-defective 

mutants of ADA3 were present in both the nucleus and cytoplasm (Figure 3.9O). Thus, the 

acetylation defective mutants are competent at nuclear entry, excluding the possibility that their 

defective ability to rescue ADA3-depleted MEFs from a proliferation block might be due to 

exclusion from the nucleus. Taken together, our results conclusively show that acetylation of 

ADA3 is pivotal for its function to promote cell cycle progression.  
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Figure 3.9 - Acetylation-defective mutants of AD3 fail to rescue the block in cell 

proliferation imposed by Ada3 deletion in Ada3FL/FL MEFs. 
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Figure 3.9 - Acetylation-defective mutants of AD3 fail to rescue the block in cell 

proliferation imposed by Ada3 deletion in Ada3FL/FL MEFs. Ada3Fl/FLMEFs stably expressing 

either empty vector, ADA3 WT or acetylation defective mutants were infected either with only 

GFP or GFP-Cre expressing adenovirus followed by CellTitre-Glo, western blotting or colony 

formation assays were performed in these cells. (A-E) Relative luminescence units of various 

Ada3FL/FLMEFs at various days after the infection are shown. RLU shown here are mean ± S.D. 

from three independent experiments each done in three replicates and p values were computed 

using Student’s t test. (F-J) Western blots showing the expression of mADA3 and hADA3 WT or 

mutant proteins. HSC70 was used as a loading control. K. A composite computation of % rescue 

with respect to day 1 (L-N) Colony formation assay was performed 7 days after the infection and 

% rescue was calculated as described in Materials and Methods. Expression of mADA3 and 

hADA3 WT or mutants was examined by western blotting also with HSC70 as a loading control.  

O. Ada3 deleted MEFs stably expressing ADA3 WT or various acetylation defective mutants 

were fixed in 4% PFA and immunostained with DAPI and anti-ADA3.  
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Acetylation defective mutants retain the ability to interact with various HATs and other 

HAT complex components, yet fail to rescue the histone acetylation defects globally and at 

c-Myc enhancer  

Endogenous Ada3 deletion in Ada3FL/FL MEFs leads to defects in global histone 

acetylation and a reduction in the levels of various HATs, and these defects can be rescued by 

ectopic WT human ADA3 (13). As defective histone acetylation is likely to be the basis for 

functional defects associated with ADA3 depletion, we reasoned that the functional impairment 

of acetylation-defective ADA3 mutants may arise from impaired histone acetylation due either to 

their inability to help assemble the HAT modules or to promote HAT activity. To test these 

possibilities, WT FLAG-ADA3 or its acetylation-defective mutants expressed in HEK-293T cells 

were examined for their associations with endogenous HATs and other HAT complex 

components by co-immunoprecipitation. Notably, all three acetylation defective mutants were as 

efficient as wild-type ADA3 in their ability to co-immunoprecipitate endogenous GCN5, PCAF 

or p300 (Figure 3.10A & B).  In addition, these mutants retained a strong association with other 

STAGA complex subunits TRRAP and ADA2b, and the ATAC-specific subunit ADA2a (Figure 

3.10A). Importantly, while the vector cells showed dramatic decrease in the levels of various 

HATs upon Ada3 deletion, the HAT levels remained unaltered in cells reconstituted with 

acetylation-defective ADA3 mutants, similar to those expressing the WT ADA3 (Figure 3.10C).  

These results ruled out the possibility that acetylation-defective mutants may be defective in their 

assembly into HAT complexes or have diminished interaction with HATs.  

Next, we examined if the HAT complexes formed by the acetylation-defective ADA3 

mutants are functionally active by assessing global chromatin histone acetylation. As expected 

from our previous study (13), a dramatic decrease in H3K9 and H3K56 acetylation was observed 

upon Ada3 deletion in Ada3FL/FL cells. However, this defect was rescued by exogenous WT 

ADA3 (Figure 3.10D). Notably, the acetylation-defective mutants ADA3-K418R and ADA3-
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7KR showed only approximately 50% rescue of global H3K9 acetylation in comparison with 

wild-type ADA3 (Figure 3.10D), similar to the level of rescue of the proliferation block (about 

60%) with these mutants. While ADA3 K418R and 7KR mutants did not show any significant 

defect in the rescue of global H3K56 acetylation, the 8KR mutant showed about 70% defect in 

the rescue of both H3K9 and H3K56 acetylation (Figure 3.10D), again comparable to the deficit 

in its ability to rescue the proliferation block (about 70%). 

Given that H3K9 acetylation mark is important in gene transcription and is known to be 

present at active gene enhancers/promoters (39), we used chromatin immunoprecipitation (ChIP) 

to examine the relative rescue of the locus-specific H3K9 acetylation by WT vs. acetylation-

defective ADA3 mutants in Ada3FL/FL MEFs subjected to deletion of the endogenous Ada3. We 

chose c-Myc enhancer to assess the H3K9 acetylation status, as c-Myc is indispensable for cell 

proliferation and is a known target of ADA3 containing HAT complexes (13, 15, 18). We 

observed about a four-fold enrichment in H3K9 acetylation at the c-Myc enhancer in WT ADA3-

expressing Ada3-deleted MEFs as compared to those expressing the vector control (Figure 

3.10E). By contrast, H3K9 acetylation at the c-Myc enhancer was substantially less robust in cells 

reconstituted with ADA3 K418R or 7KR mutants, while acetylation levels in cells expressing the 

8KR mutant were essentially comparable to vector control cells (Figure 3.10E). Taken together 

these findings support the notion that ADA3 acetylation is essential for global and gene-specific 

histone acetylation by ADA3-containing HAT complexes, and that this activity, independent of 

ADA3’s role to facilitate the assembly of HAT complexes, may be key to ADA3’s role in cell 

cycle progression through histone acetylation at proliferation-associated genes such as c-Myc 

(Figure 3.10F).  
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Figure 3.10 Acetylation defective mutants retain the ability to interact with various HATs 

and other HAT complex components, yet fail to rescue the histone acetylation defects 

globally and at c-Myc enhancer  
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Figure 3.10: Acetylation defective mutants retain the ability to interact with various HATs 

and other HAT complex components, yet fail to rescue the histone acetylation defects 

globally and at c-Myc enhancer. (A) HEK-293T cells were transfected with empty vector, 

ADA3 WT or various acetylation defective mutants. 48 h after transfection whole cell extracts 

were subjected to immunoprecipitation by M2 agarose FLAG beads, eluted with 3X FLAG 

peptide and then immunoblotted with indicated antibodies. (B) HEK-293T cells were transfected 

with empty vector, ADA3 WT or various acetylation defective mutants. 48 h after transfection 

whole cell extracts were subjected to immunoprecipitation by M2 agarose FLAG beads and 

immunoblotted with indicated antibodies. (C) Whole cell lysates of Day 5 from cell cycle rescue 

experiment were immunoblotted anti-GCN5, -PCAF, -ADA2b or HSC70 antibodies. (D) Whole 

cell lysates of Day 7 from cell cycle rescue experiment were immunoblotted with indicated 

antibodies. The numbers underneath the blots indicate the band intensities computed from imageJ 

normalized over total H3 with respect to Ctrl (E) A ChIP quantitative PCR of H3K9(Ac) signals 

at c-Myc enhancer in Ada3 deleted MEFs overexpressing ADA3 WT or various acetylation 

defective mutants. Y-axis shows enrichment as % of input normalized over signals in vector cells. 

Data represents the mean + SD of three different experiments (F) Model showing the role of 

ADA3 acetylation in cell proliferation. 
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Discussion  

ADA3 is an evolutionarily-conserved protein that functions as a transcriptional co-

activator and forms a core component of the multi-subunit HAT complexes (3). Previous studies 

by us and others have shown that ADA3 associates with GCN5, PCAF and p300, HATs found in 

ADA3-containing complexes (8-10). Thus, ADA3 is ideally positioned to regulate the function of 

its associated HATs. How ADA3 carries out its function in this regard is unknown. In a previous 

study (13), we noted that ADA3 could be acetylated by p300 in vitro raising the possibility that 

acetylation could regulate ADA3 function in cells. The present study, for the first time, 

establishes that ADA3 is dynamically regulated by acetylation mediated by its associated HATs 

GCN5, PCAF and p300 and deacetylation by SIRT1; that ADA3 acetylation is required for the 

histone-modifying activity of ADA3-containing HAT complexes and that ADA3 acetylation is 

essential for its function in cell cycle progression.  

To gain more insights into ADA3 acetylation, we used a mass spectrometry approach to 

define a single lysine residue, K418, that is acetylated by GCN5 (and PCAF), and seven distinct 

lysine residues (K109, -122, -124, -147, -194, -222 and -312) that can be acetylated by p300 

(Figure 3.6A). Using site-directed mutagenesis followed by in vitro acetylation assays or 

expression in cells, we validated the lysine residues in ADA3 identified through proteomics to be 

the major sites of acetylation. As p300 is not an integral component of the HAT modules of 

STAGA or ATAC complexes (3), the seven distinct lysine residues acetylated by p300 are of 

considerable interest, suggesting that either ADA3 serves to recruit p300 as an accessory HAT 

into these complexes or that ADA3 functions together with p300 in a STAGA/ATAC-

independent manner. Our previous biochemical fractionation analyses (8), which showed that 

both GCN5 and p300 could be purified as components of ADA3-containing complexes in human 

cells support the former possibility, although more in depth analyses will be needed to determine 

if one or both of these models are operational in mammalian cells. 
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The K>R point mutants of the GCN5-targetd, p300-targeted or both sets of lysine 

residues allowed us to determine the functional importance of ADA3 acetylation. Our previously 

established Ada3FL/FL MEFs provided a system where any functional deficits of the K>R mutants 

could be established by assessing their abilities to rescue the cells from a proliferative block and 

associated biochemical defects upon Cre-induced deletion of endogenous mouse Ada3 (13). 

Importantly, analyses of cell proliferation or colony-forming ability showed that mutation of 

either GCN5-dependent (K418R) or p300-dependent (7KR) acetylation sites led to partial deficits 

in ability of the mutants to complement the loss of endogenous ADA3, with mutations at both the 

GCN5- and p300-mediated acetylation sites, essentially abrogating the ability of ADA3 to sustain 

cell proliferation (Figure 3.9K & M). These results underscore the critical functional importance 

of ADA3 acetylation in its function as a component of HAT complexes. The functional 

importance of ADA3 acetylation by two distinct HATs may reflect the possibility that acetylation 

by the two HATs occurs at discrete steps during cell proliferation or regulates discrete functional 

activities that are part of the complex process of cell proliferation. Notably, a previous study 

showed that ADA3-associated ATAC complex and p300 regulate the expression of distinct set of 

genes (40). 

Previously, we have established that deletion of ADA3 causes a dramatic deficit in global 

H3K9 and H3K56 acetylation on chromatin (13). By further analyzing the K>R mutants of 

ADA3 in the context of endogenous Ada3 deletion in MEFs, we established that ADA3 

acetylation is required for the role of ADA3 in promoting global as well as locus-specific 

acetylation of chromatin-associated histones. Notably, while mutations of the GCN5-dependent 

acetylation site (K418R) or p300-dependent acetylation sites (7KR) led to a significant deficit in 

global H3K9 acetylation in comparison with wild-type ADA3 (Figure 3.10D), these mutants did 

not affect the global H3K56 acetylation; on the other hand, the 8KR mutant, which eliminates 

acetylation by both GCN5 and p300, showed about 70% defect in the rescue of H3K9 and H3K56 

acetylation (Figure 3.10D). The extent of the deficit in histone acetylation correlated with the 
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extent to which the corresponding mutants were defective in cell cycle rescue in Ada3-deleted 

MEFs (Figure 3.9K & M). Furthermore, analysis of c-Myc enhancer associated histone 

acetylation showed that ADA3 is key to chromatin modification at key genes that function as 

master controllers of cell cycle progression and other functions. 

That ADA3 acetylation is critical for HAT complexes to promote global and locus-

specific histone acetylation could arguably arise from a defect in the ability of mutant ADA3 

proteins to be assembled into HAT complexes. By examining the association of the ADA3 K>R 

mutants used in our biochemical and functional analyses with components of HAT complexes, 

we established that acetylation of ADA3 is dispensable for its association with HATs (p300, 

GCN5 and PCAF) and other components that define major ADA3-containing HAT complexes 

such as STAGA and ATAC (Figure 3.10 A&B). Thus, the requirement of ADA3 acetylation to 

promote histone acetylation and cell cycle progression does not reflect the requirement of such 

acetylation in HAT assembly, but must reflect a discrete function. The important question 

remains is how ADA3 acetylation regulates HAT complex activity despite the fact that it does not 

affect the overall composition of the complex. One possibility is while the acetylation of ADA3 is 

not required for its association with HATs/HAT complex components, it remains possible that 

subunits are not incorporated in correct stoichiometry leading to defect in the overall activity of 

the complex. Alternatively, ADA3 acetylation might play an important role in chromatin 

recognition. Future biochemical studies are warranted to better understand the role of ADA3 

acetylation in this regard.  

Notably, detection of ADA3 acetylation in cells was facilitated by the incorporation of 

HDAC inhibitors (Figure 3.1A & B), suggesting the possibility that ADA3 acetylation status is 

bi-directionally-regulated by the action of HATs and deacetylases. By screening the members of 

various HDAC families for their interaction with ADA3, we identify SIRT1 as an ADA3 partner 

and establish that it helps regulate the low steady state level of ADA3 acetylation (Figure 3.4A). 

That ADA3 acetylation is determined by opposing actions of HATs and a deacetylase strongly 
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supports the potential importance of this post-translational modification in the functional 

regulation of ADA3-containing HATs. Our in vitro deacetylation assays (Figure 3.5D) showed 

that SIRT1 was able to deacetylate ADA3 regardless of whether ADA3 was acetylated by p300 

or GCN5. Future biochemical and cell-based studies are needed to further establish if SIRT1 is 

indeed a global deacetylase for ADA3 or if other deacetylases may be involved under specific 

scenarios. The functional consequence of ADA3-SIRT1 interaction could be manifold. A recent 

study showed that STAGA complex DUB module component USP22 associates with and is 

deacetylated by SIRT1 (41). However, the study did not identify any direct SIRT1-binding 

partner in STAGA complex. It remains possible that ADA3-mediated recruitment of SIRT1, aside 

from ADA3 deacetylation, also promotes deacetylation of USP22 in the DUB module, allowing 

ADA3 to indirectly regulate the function of HAT complexes.  

Our studies also suggest that the balance of ADA3 acetylation vs. deacetylation in cells is 

a regulated process, as we show the level of ADA3 acetylation to fluctuate during cell cycle 

progression. ADA3 acetylation increases early upon entry into cell cycle, followed by a decline in 

the late G1 phase and then re-accumulates as cells enter the S phase, persisting through the G2/M 

phase. Such dynamic regulation during cell cycle progression further supports the functional role 

of ADA3 acetylation, suggesting regulation at the levels/activities of HATs/HDACs targeting the 

acetylation/deacetylation of ADA3. The transient earlier peak and more sustained delayed ADA3 

acetylation during cell cycle progression may reflect the relative activities of GCN5 and p300, a 

possibility consistent with the reported increase in GCN5 levels from G1 to early S-phase (33) 

and the requirement for p300 HAT activity for progression through S phase (34-38). If 

established in future studies, such a scheme will support distinct roles for GCN5/PCAF vs. p300-

mediated acetylation of ADA3. Consistent with our observations, acetylation of yeast ADA3 was 

found to increase when quiescent cells (comparable to G0 phase of mammalian cell cycle) 

transited to growth phase (comparable to S phase of mammalian cell cycle), with persistent 

acetylation through the cell division phase (comparable to G2/M phase of mammalian cell cycle) 
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and a decline as the cells re-entered the next cell cycle (24). Future analyses of the dynamics of 

site-specific ADA3 acetylation during cell cycle progression and in other 

physiological/pathological scenarios will therefore be of great interest as acetylation site-specific 

antibodies become available. In conclusion, we establish that mammalian ADA3 is acetylated at 

distinct sites by its associated HATs, GCN5/PCAF and p300, and deacetylated via a novel 

interaction with SIRT1, and further demonstrate that ADA3 acetylation is essential for its 

physiological function in promoting histone acetylation and cell cycle progression in mammalian 

cells. These studies should provide a basis for future cell-based and/or animal-based knock-in of 

acetylation site mutations to examine the in vivo roles of ADA3 acetylation in chromatin 

modifications, and potentially other physiological processes. As we have shown that ADA3 is 

overexpressed and mislocalized in human cancers, correlating with poor patient survival (42), 

future studies of ADA3 acetylation in relation to its role in oncogenesis will be of substantial 

significance.  
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Introduction 

Breast cancer is one of the most common occurring cancers among women in the United 

States and it is the second leading cause of cancer related deaths following lung cancer  (53) . 

Based on molecular profiling of patient derived tumors breast cancer is classified into various 

subtypes  (54) . Among breast cancer molecular subtypes, HER2 (human epidermal growth factor 

receptor 2) is either amplified or overexpressed in 25-30% of total breast cancer and represents 

one of the most aggressive subtypes  (55, 56) . HER2 belongs to epidermal growth factor family 

of tyrosine kinases that regulates cell proliferation and transformation leading to cancer  (57) . 

The other members of this family are EGFR/HER1, HER3 and HER4, which contain an 

extracellular ligand-binding region, single membrane spanning region, and a cytoplasmic tyrosine 

kinase-containing domain. Upon binding to a specific ligand they either homodimerizes or 

heterodimerizes and activate several downstream signaling pathways. HER2 however, does not 

have a specific ligand and is activated by heterodimerization with other family members when 

bound to their ligands. The important downstream signaling pathways activated by HER2 are 

mitogen-activated protein kinase MAPK and the phosphatidylinositol 3-kinase (PI3K) −AKT 

pathway that function as mediators and essentially send the signals to effector proteins to regulate 

cell growth, differentiation and apoptosis. Since HER2 is a potent oncogene, much attention has 

been paid to target HER2. Of note, monoclonal antibodies and small molecule tyrosine kinase 

inhibitors (TKIs) against HER2 has been emerged as potential therapeutic approaches against 

HER2  (57, 58) .  

Lapatinib (GW572016, GlaxoSmithKline) is a dual EGFR/HER2 tyrosine kinase 

inhibitor that interrupts downstream cell proliferation and survival signaling by targeting 

PI3K/AKT and MAPK pathways  (59) .  In 2007 the U.S. Food and Drug Administration 

approved for treatment of patients with advanced HER2-positive breast cancer by lapatinib in 

combination with capecitabine  (60, 61) . Previous studies have revealed that treatment of 

lapatinib in cultured cells lead to cell cycle arrest in G0/G1 phase and thereby inhibiting cancer 
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cell proliferation. However, the molecular basis of lapatinib induced cell cycle arrest remains 

poorly understood. 

 The Alteration/Deficiency in Activation-3 (ADA3) is an evolutionary conserved 

component of several lysine acetyltransferase (KAT) complexes. We have earlier shown that 

ADA3 is required for normal cell cycle progression and its deletion in MEFs causes severe cell 

cycle arrest by stabilization of CDK inhibitor p27  (28) .  In this study we show that lapatinib 

targets ADA3 for degradation. We further show that ADA3 acetylation stabilizes the protein by 

preventing its ubiquitination and lapatinib mediated degradation in total ADA3 levels was 

attributed to abrogation in its acetylation. Our extensive experiments uncover a novel signaling 

pathway in HER2 positive breast cancers i.e. HER2 -AKT-p300-ADA3. Finally, we discover 

various stimuli that cause ADA3 acetylation and experimentally proved that ADA3 acetylation is 

induced by EGF and TNF-alpha. Taken together, our results demonstrate ADA3, a critical cell 

cycle regulator, as a target of lapatinib and uncover a novel mode of action of dual kinase 

inhibitor lapatinib. Inhibition of AKT-p300-ADA3 pathway by lapatinib certainly highlights the 

importance of ADA3 as a marker for treatment efficacy and a promising therapeutic target.  
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Materials and Methods 

Cell Lines and Cell Culture 

HEK-293T was cultured in DMEM, SkBr3 cells in RPMI 1640, UACC812 in MEM-alpha 

supplemented with 1 µg/ml hydrocortisone and 12.5 ng/ml EGF. All the cell lines were cultured 

in media supplemented with 2 mM glutamine, 1 mM sodium pyruvate, 10 mM HEPES, 1x 

minimal non-essential amino acids, 10 µg/ml gentamycin, 1 µg/ml insulin and 10% fetal bovine 

serum. For serum starvation experiments cells were cultured in media without glutamine, minimal 

non-essential amino acids, insulin and fetal bovine serum.  

Reagents 

Lapatinib (L-4899) was purchased from L.C. laboratories. EGF (E9644), TNFα  (T0157), 

Cycloheximide (C7698), MG-132 (M7449), Acetyl co-enzyme A sodium salt (A2056), garcinol 

(G5173), HA peptide (I2149) and FLAG peptide (F4799) were purchased from Sigma.  

Plasmids and Transient Transfection 

Generation of FLAG tagged ADA3 wild type or 5K/R mutant were described previously  (62) . 

HA-AKT1 wild type (plasmid# 9004-903) and K179M (plasmid# 9007-904) were purchased 

from Addgene. HA-p300 WT, S1834A and S1834E were generous gift from Dr. Denise 

Galloway’s laboratory. For transient transfection experiments the indicated plasmids were 

transfected using X-tremeGene HP transfection reagent (Roche # 06366236001) according to 

manufacturer’s protocol.  For ADA3 knockdown experiments, cells were transfected with 50 nM 

of control (sc-37007, Santa Cruz Biotechnology) or ADA3 siRNA (sc-78466, Santa Cruz 

Biotechnology), using the DharmaFECT Transfection Reagent (T-2001-03, Dharmacon).  
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Immunoprecipitation  

For immunoprecipitation, cells were harvested in lysis buffer (20 mM Tris-HCl (pH 7.5), 150 

mM NaCl, 0.5% Nonidet P-40, 0.1 mM Na4VO3, 1 mM NaF, and protease inhibitor mixture, 2 µM 

TSA and 10 mM NAM for acetylation experiments) and whole cell extract were subjected to 

immunoprecipitation using appropriate antibodies overnight at 4oC. Beads were then washed five 

times at 5000 rpm for 1 minute with lysis buffer.  For elution by FLAG and HA peptide, 

generally the immunoprecipitated FLAG/HA tag proteins were eluted with 0.25 µg/µl peptide 

(Sigma) into lysis buffer. The elutes were subjected to SDS PAGE and analyzed by 

immunoblotting as indicated.  

Antibodies 

Generation of anti-hADA3 mouse monoclonal antiserum has been described previously  (28) . 

Antibodies against HSC-70 (sc-7298), pHER2 (sc-12352), HER2 (sc-284), pAKT (sc-7985), 

AKT (sc-5298), p300 (sc-584 & sc-585) were purchased from Santa Cruz Biotechnology. 

Agarose conjugated anti-FLAG (A2220) and anti-HA (A2095); anti-ADA3 rabbit polyclonal 

(HPA042250), FLAG (A8592), β-actin (A5441) were purchased from Sigma. Histone H3 (06-

755) was purchased from EMD Millipore, p27 (610241) from BD Biosciences, pH3 (S10) (ab-

14955) was from Abcam, and pp300 (S1834) (PA5-12735) was purchased from Thermo 

Scientific. Anti-acetyl lysine (9681), anti-acetyl lysine-HRP (6952) and anti-HA (2999) were 

purchased from Cell Signaling Technologies.  

In vitro KAT Assay 

For in vitro acetylation reactions, HA-p300 WT, S1834A or S1834E were ectopically expressed 

and immunoprecipitated from HEK293T cells. The immunoprecipitates were eluted with HA 

peptide (I2149, Sigma) and a fraction of it was analyzed on SDS-PAGE by CBB staining along 
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with known amounts of BSA. 1 µg GST-ADA3 or purified histone H3 were incubated with 20 ng 

HA-p300 WT, S1834A or S1834E in KAT buffer (50 mM Tris HCl pH 8.0, 50 mM KCl, 5% 

glycerol, 0.1 mM EDTA, 1mM DTT, 2 µM TSA, 50 µM Acetyl co-enzyme A sodium salt and 1 

mM PMSF) at 30°C for 30 minutes. The reaction was stopped by adding 6x SDS sample buffer 

and products were subjected to SDS-PAGE analysis and immunoblotted with the indicated 

antibodies.  

ADA3 Half-Life Experiments 

HEK293T cells grown in p60 were transfected with wild type or acetylation deficient FLAG-

ADA3 constructs. 24 hours post transfection, cells were trypsinized and plated in 6 well plates. 

After overnight growth, cells were treated with 50 µg/ml cycloheximide ± 20 µM MG132 and 

harvested at indicated time points. Total cell extracts were prepared, and equivalent amounts were 

run on SDS-PAGE and analyzed by Western blotting. To examine effect of lapatinib on half-life 

of endogenous ADA3 in SkBr3 or UACC812 cells, the 8 µg/ml cycloheximide was used and rest 

of the protocol remained the same as described above.  Densitometry analysis was carried out on 

scanned images using ImageJ software.  

In vivo Ubiquitination Assays 

 For in vivo ubiquitination assays, HEK293T cells were transfected with 1 µg wild type or 

acetylation defective FLAG ADA3 construct with or without 2 µg pcDNA3.1-HA-Ubiquitin 

construct. 40 hours post transfection, cells were treated with 20 µM MG132 for 5 hours followed 

by lysate preparation and immunoprecipitation with anti-FLAG antibody. The 

immunoprecipitates were subjected to SDS-PAGE followed by immunoblotting with anti-HA-

HRP antibody. 
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RESULTS 

ADA3 knockdown recapitulates the cell cycle inhibitory effects of lapatinib HER2 positive 

cells 

We have previously demonstrated that conditional deletion of Ada3 in MEFs leads to 

accumulation of CDK inhibitor p27 and severe cell cycle arrest through G1 to S phase  (28) . In 

order to test the effect of ADA3 on cell cycle progression in HER2 cells, we specifically knocked 

down ADA3 in SkBr3 cells and examined the levels of p27. Consistent with the effect of Ada3 

deletion in MEFs, we observed marked increase in p27 levels in SkBr3 cells after ADA3 

knockdown (Figure 4.1A). In addition to p27, we also assessed the levels of phospho-H3(S10), a 

hallmark of mitosis and found that ADA3 knockdown in SkBr3 leads to dramatic reduction in 

phospho-H3(S10) clearly suggesting the importance of ADA3 for the cell cycle progression in 

HER2 positive cells (Figure 4.1A). It has been established that lapatinib also induces an increase 

in p27 levels and cell cycle arrest  (60, 63) , an effect similar to ADA3 knockdown and therefore 

hypothesize that lapatinib functions through ADA3 to manifest its cell cycle inhibitory role. In 

order to test this, we examined the effect lapatinib on ADA3 and interestingly found that lapatinib 

treatment leads to downregulation of ADA3 (Figure 4.1B). Furthermore, this decrease in ADA3 

levels was consistent with remarkable increase in p27 levels and reduction in mitotic index as 

shown by phospho-H3(S10) (Figure 4.1B). Next, we asked whether the observed downregulation 

in ADA3 protein levels is due to decrease in mRNA levels. We treated SkBr3 cells with lapatinib 

and analyzed ADA3 mRNA levels by Q-RTPCR. However, we did not observe any change in 

ADA3 mRNA levels (data not shown), Additionally previous microarray studies highlighting the 

effect of lapatinib on gene expression profile do not reveal ADA3  (64, 65)  clearly indicating the 

involvement of a posttranslational regulatory mechanism in lapatinib induced ADA3 

downregulation. 
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Figure 4.1: ADA3 knockdown recapitulates the cell cycle inhibitory effects of lapatinib 

HER2 positive cells 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: ADA3 knockdown recapitulates the cell cycle inhibitory effect of lapatinib. (A) 

SkBr3 transiently transfected with Ctrl or ADA3 siRNA for 48 h and whole cell extracts were 

immnublotted with indicated antibodies. (B) SkBr3 cells were treated with either DMSO or 1 µM 

lapatinib and whole cell extracts were immnublotted with indicated antibodies. 
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Acetylation of ADA3 plays an important role in maintaining its stability 

Since we demonstrate that lapatinib downregulates ADA3 protein levels, we set out to 

explore what regulates ADA3 protein stability. We have recently shown that KAT3B/p300 

acetylates ADA3  (62)  and acetylation of several proteins has been shown to regulate their 

stability. This is in part because both acetylation and ubiquitination covalently modify the same ε-

amino group of lysine residues. Thus, if both modifications occur on the same lysine residue, it 

would create a competition for the acetylation or ubiquitination of the lysine involved. As a 

consequence, acetylation of the protein would prevent its ubiquitination and subsequent 

proteasomal mediated degradation. This phenomenon has been demonstrated for several key 

cellular proteins, including, but not limited to SMAD7, p53, FOXP3, SREBPs, ER-α, RelA and 

ATP-citrate lyase  (66-72) . Given that ADA3 is acetylated by KAT3B/p300 (62) , we wished to 

examine if acetylation of ADA3 also plays a role in preventing its ubiquitination and thus, 

stabilizing the protein. To investigate this, we treated 76N-TERT hMEC cells with various doses 

of p300 inhibitor, garcinol for 18 hours and analyzed ADA3 protein levels by immunoblotting. 

We observed dramatic decrease of ADA3 protein levels upon garcinol treatment suggesting that 

p300 mediated acetylation of ADA3 may play an important role in conferring stability to ADA3 

protein (Figure 4.2A). To elucidate, if the degradation of ADA3 upon inhibition of p300 mediated 

acetylation, occurs through ubiquitin-proteasomal machinery, we also treated cells with 

proteasomal inhibitor MG132 along with garcinol. Interestingly, we observed inhibition of ADA3 

degradation when we administered garcinol treated cells with MG132 substantiating our 

hypothesis that inhibition of p300 mediated ADA3 acetylation leads to degradation of ADA3 

through ubiquitin-proteasomal pathway (Figure 4.2A). 

Based on the above findings, we hypothesized that if acetylation of ADA3 stabilizes the 

protein, then we would observe a decrease in half-life of acetylation defective mutants. Through 

mass spectrometry studies we recently have identified 5 potential lysine residues (K109, -122, -
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124, -194 and -222) in ADA3 that are acetylated by p300  (62) and generated an ADA3 mutant in 

which these 5 lysines are mutated to acetylation deficient arginine referred to as 5KR mutant.  We 

then analyzed the half-life of wild type and acetylation-deficient ADA3 5KR mutant by 

cycloheximide chase experiment in HEK293T cells. The half-life of exogenous wild type ADA3 

appeared to be about 4 hours from these experiments (Figure 4.2B). To our surprise, 5KR 

acetylation mutant was highly stable and exhibited virtually no degradation during the course of 

cycloheximide treatment (Figure 4.2C). This result could be explained based on the 

aforementioned phenomenon of competition between acetylation and ubiquitination for the same 

lysine residues. Thus, if both acetylation and ubiquitination modify the same lysine residues in 

ADA3, then mutation of these lysines to arginine residues will not only abrogate ADA3 

acetylation, but also prevent ubiquitination of ADA3 rendering the protein highly stable.  

To test the above-mentioned proposition, that the 5KR acetylation deficient mutant is also 

prevented from ubiquitination, we performed ubiquitination experiments in cultured cells. We co-

transfected HA-Ubiquitin together with wild type or 5KR FLAG-ADA3 constructs in HEK-293T 

cells. 40 hours after transfection, we treated cells with MG132 for 5 hours and harvested the cells. 

This was followed by immunoprecipitation with anti-FLAG and immunoblotting with anti-HA to 

detect ubiquitination of wild type and 5KR ADA3. Interestingly, we observed a remarkable 

decrease in the ubiquitination of ADA3-5KR mutant versus wild type ADA3 corroborating our 

earlier findings that ADA3-5KR mutant is extremely stable (Figure 4.2D). These findings provide 

conclusive evidence that acetylation and ubiquitination compete for the same lysine residues on 

ADA3. Thus, p300 mediated acetylation of ADA3 should prevent its ubiquitination leading to 

ADA3 protein stabilization. 
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Figure 4.2: Acetylation of ADA3 plays an important role in maintaining its stability 
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Figure 4.2: Acetylation of ADA3 plays an important role in maintaining its stability. (A) 

76NTERT hMECs were treated with various doses of HAT inhibitor Garcinol for 18 h and the 

lysates harvested were subjected to immunoblotting with inidicated antibodies.  (B) 76NTERT 

hMECs were treated with various doses of HAT inhibitor Garcinol ± MG132 for 12 h and the 

lysates harvested were subjected to immunoblotting with inidicated antibodies. (C & D) 36 hours 

after transfection of FLAG-ADA3 wild type (C) or 5KR mutant (D) in HEK-293T, cells were 

treated with 50 µg/ml cycloheximide ± 20 µM MG132 and harvested at the indicated time points, 

and blotted with indicated antibodies. 
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Lapatinib inhibits the AKT mediated phosphorylation of p300 and targets ADA3 for 

degradation 

As mentioned above, lapatinib treatment in SkBr3 and UACC-812 caused ADA3 protein 

downregulation but not mRNA, we examined the effect of lapatinib on ADA3 protein half-life in 

these cells. For the purpose, SkBr3 and UACC-812 cells were treated with protein synthesis 

blocker cycloheximide in presence or absence of lapatinib and analyzed ADA3 degradation over 

regular intervals for 12 hours (Figure 4.3A & B). To our surprise we found that ADA3 is a very 

stable protein and its levels remained almost the same even after 12 hours of cycloheximide 

treatment. However, in presence of lapatinib a gradual decrease in ADA3 levels were observed 

(Figure 4.3A & B) which indicates that HER2 signaling pathway plays a major role in 

maintaining ADA3 stability. 

So far we have established that both lapatinib and garcinol downregulates ADA3. This 

observed phenomenon generates two possibilities i.e. either lapatinib and garcinol might be 

regulating ADA3 protein levels through different pathways or there could be crosstalk involved 

that affects the ADA3 levels. In order to investigate these possibilities, we examined the effect of 

lapatinib on downstream signaling pathways and its potential connection with p300. Interestingly 

we found that p300 has been shown be phosphorylated by AKT at S-1834 residue  (73) and 

lapatinib is known to inhibit HER2 downstream PI3K/AKT pathway  (59) . Therefore, if lapatinib 

inhibits the phosphorylation of AKT, it must also bring about decrease in phosphorylation of 

p300 at S-1834 residue. We tested this phenomenon in two HER2 positive cell lines, namely 

SkBr3 and UACC-812 and we indeed observed the lapatinib reduced the phosphorylation p300 at 

S1834 which was correlated with inhibition of phospho-HER2 and phospho-AKT. Consistent 

with our previous experiments, in this case also we observed ADA3 downregulation upon 

lapatinib treatment (Figure 4.3C & D). 
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Figure 4.3: Lapatinib inhibits the AKT mediated phosphorylation of p300 and targets 

ADA3 for degradation. 
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Figure 4.3: Lapatinib inhibits the AKT mediated phosphorylation of p300 and targets ADA3 for 

degradation. (A & B) SkBr3 (A) and UACC-812 (B) cells were treated with 8 µg/ml 

cycloheximide in presence or absence of 1 µM lapatinib. Cells were harvested at indicated time 

points after the treatment and whole cell extracts were immunoblotted with indicated antibodies. 

The graph below the western blot shows the log band intensity of ADA3 normalized over β-actin 

as computed from imageJ software. (C & D) SkBr3 (C) and UACC-812 (D) cells were treated 

with increasing concentration of lapatinib for 4 hours and whole cell extracts were 

immunoblotted with indicated antibodies. 
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The phospho defective mutant p300 S1834A has reduced ability to acetylate ADA3 

 If phosphorylation of p300 at S-1834 regulates its KAT activity then prevention of p300 

phosphorylation must abrogate the acetylation of p300 targets including ADA3. In order to test 

whether p300 phosphorylation indeed regulates the acetylation status of ADA3, we tested the 

abilities of a phospho defective S1834A or mimic S1834E mutant of p300 to acetylate ADA3 by 

variety of assays. For our in vitro KAT assay, we first transfected HA-p300 wild type or 

S1834A/E mutants in HEK293T cells, and eluted HA-p300 wild type or mutant proteins using 

HA peptide (see materials and methods for detail) (Figure 4.4A). These eluted p300 proteins were 

used as lysine acetyltransferase and recombinant GST-ADA3 as substrate in our in vitro KAT 

assay. As expected p300 wild type was found to be efficient enough to acetylate ADA3 whereas 

acetylation of ADA3 was markedly reduced when the phospho defective mutant S1834A was 

used as acetyltransferase. More importantly, the phospho mimic mutant S1834E was as efficient 

as wild type in order to acetylate ADA3; supporting our hypothesis that phosphorylation of p300 

at S1834 regulates the acetylation of ADA3 (Figure 4.4B).  We also used recombinant histone H3 

as positive control and observed that both p300 and S1834E mutant was potent enough to 

acetylate histone H3 whereas the phospho defective mutant S1834A remains inefficient in this 

process that further substantiate our hypothesis (Figure 4.4C). Next, to examine the effect of p300 

phosphorylation in cellular system, we transfected HA-p300 wild type or S1834A mutant along 

with FLAG-ADA3, We then immunoprecipitated FLAG-ADA3 and by immunoblotting with pan 

acetylated lysine antibodies, we observed that while wild type p300 was able to acetylate ADA3, 

the phospho defective mutant was incompetent to acetylate ADA3 (Figure 4.4D). Taken together 

our in vitro and in cell assays demonstrates that phosphorylation of p300 at S1834 regulates 

acetylation of ADA3.  
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Figure 4.4: The phospho defective mutant p300 S1834A has reduced ability to acetylate 

ADA3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 136 

Figure 4.4: The phospho defective mutant p300 S1834A has reduced ability to acetylate 

ADA3. (A) HEK-293T cells were transfected with HA-p300 wild type, S1834A/E mutants. 48 h 

after transfection, whole cell extracts were subjected to immunoprecipitation by agarose 

conjugated anti-HA beads. Immunoprecipitates were then eluted with HA peptide and visualized 

on SDS gel by CBB staining. (B & C) In vitro KAT assay using 20 ng HA-p300 wild type or 

S1834A/E enzymes obtained from A, and 1 µg recombinant histone H3 (B) or GST-ADA3 (C) as 

substrates. The assay was then followed by immunoblotting with anti-acetyl lysine antibody. (D) 

HEK-293T cells were co-transfected with FLAG-ADA3 and HA-p300 wild type or S1834A 

mutant. 48 h after transfection whole cell extracts were immunoprecipitated with M2 agarose and 

immunoprecipitates were eluted by 3X FLAG peptide. Elutes were then immunoblotted with 

indicated antibodies. 
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AKT overexpression or activation induces ADA3 acetylation 

 If ADA3 acetylation is regulated by p300 phosphorylation status, the activation of 

upstream kinase AKT should also cause ADA3 acetylation. In order to test this, we first 

overexpressed FLAG-ADA3 along with HA-AKT wild type or a dominant negative AKT mutant 

(K179M). Our FLAG-ADA3 immunoprecipitation followed by immunoblotting with pan anti 

acetyl lysine antibody demonstrated an increase in ADA3 acetylation where AKT wild type was 

overexpressed. More importantly, in presence of AKT dominant negative mutant (K179M), 

ADA3 acetylation was markedly abrogated (Figure 4.5A). Here it should be noted that albeit in 

this experiment although p300 was not overexpressed, we noticed a slight increase in ADA3 

acetylation in presence of overexpressed AKT that indicates the involvement of AKT in ADA3 

acetylation.  

 Next, in order to delineate the whole signaling event that induces ADA3 acetylation in 

cells, we serum starved the SkBr3 and UACC812 cells for 48 hours followed by stimulation with 

EGF for 15 and 30 minutes to induce AKT phosphorylation. We subjected a small fraction of 

whole cell lysate to western blotting and as expected we noticed the induction of AKT 

phosphorylation at S473 as early as 15 minutes that persisted 30 minutes after EGF stimulation 

(Figure 4.5B & C, Input). We also examined the phosphorylation of p300 and consistent with 

AKT phosphorylation induction, p300 phosphorylation was also triggered (Figure 4.5B & C, 

Input). Now, in order to test whether activation of AKT followed by p300 phosphorylation 

induces ADA3 acetylation, we immunoprecipitated the endogenous ADA3 from rest of the lysate. 

Our immunoblotting analysis with pan anti-acetyl lysine antibody demonstrated no acetylation 

signal under serum-starved conditions however, after EGF stimulation there was an induction in 

ADA3 acetylation which was consistent with AKT and p300 phosphorylation (Figure 4.5B & C). 

Next, we hypothesized that if AKT phosphorylation induces ADA3 acetylation, any other factor 

other than EGF that causes AKT and p300 phosphorylation subsequently, must also have the 
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same effect on ADA3 acetylation. For the purpose, we took A459, a lung cancer cell line, and 

serum starved it similar to SkBr3. Instead of EGF, this time we stimulated the cells with TNFα 

for 30 and 60 minutes. Similar to our previous experiment, we first analyzed the induction of 

AKT and p300 phosphorylation in input fraction and not observed that indeed these 

phosphorylation events were induced after TNFα treatment. Now, in order to examine ADA3 

acetylation, we immunoprecipitated endogenous ADA3 for immunoblotting with pan anti-acetyl 

lysine antibody.  Consistent with our previous result, this time also we found that ADA3 

acetylation was induced after TNFα stimulation, which was concomitant with AKT and p300 

phosphorylation (Figure 4.5D).  Taken together, our results dissect a novel signaling event that 

involves pAKT-pp300-Ac-ADA3 (Figure 4.6) 
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Figure 4.5: AKT overexpression or activation induces ADA3 acetylation 
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Figure 4.5. AKT overexpression or activation induces ADA3 acetylation (A) HEK-293T cells 

were co-transfected with FLAG-ADA3 and HA-AKT wild type or dominant negative (K179M) 

mutants. 48 h after transfection whole cell extracts were immunoprecipitated with M2 agarose 

and immunoprecipitates were eluted by 3X FLAG peptide. Elutes were then immunoblotted with 

indicated antibodies. (B, C & D) SkBr3, UACC812 and A549 cells were serum starved for 48 h 

and stimulated with EGF (B & C) or TNFα (D) as indicated. Whole cell extracts from indicated 

time points were subjected to immunoprecipitation with normal IgG or anti-ADA3 antibodies. 

Immunoprecipitates and input fractions were then immunoblotted with indicated antibodies.  
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Figure 4.6: Model showing pHER2-pAKT-pp300-AcADA3 pathway  
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Discussion 

Cell cycle is a tightly regulated sequence of events that maintain the genomic stability 

and deviation from normal cell cycle control leads to detrimental diseases including cancer  (74) . 

The cell cycle is orchestrated by many proteins that play their roles at different stages and among 

these players ADA3 has emerged as a key cell cycle regulator. Previous studies from our 

laboratory and others’ have shown that ADA3 regulates G1 to S phase transition and mitosis by 

regulating chromosome segregation  (28, 48, 75) . Despite such an important role of ADA3 in 

maintaining the genomic stability its role had not been explored in cancer until we found its 

correlation with various clinicopathological parameters in breast cancer specimens. ADA3 was 

found to be mislocalized/overexpressed in aggressive subtypes i.e. HER2+ breast cancer 

specimens and correlated with poor patient outcomes  (50) . In this study we attempted to explore 

the role of ADA3 in HER2+ breast cancers with a focus on signaling pathways that ADA3 is 

involved in. We observed a decrease in ADA3 levels by inhibiting the phosphorylation of HER2 

and thus found ADA3 as a downstream target of HER2.  

We have recently reported that ADA3 is posttranslationally modified by acetylation by its 

associated KATs however under what physiological conditions its acetylation is induced 

remained largely unknown  (62) . One intriguing finding from current study is that EGF induces 

ADA3 acetylation. Typically, EGF is considered to be phosphorylation inducing agent and in our 

study we found it as an acetylation triggering stimuli albeit not directly. That EGF stimulates 

ADA3 acetylation through the phosphorylation of HER2-AKT-p300 pathway indicates the 

existence of potential crosstalk between various posttranslational modifications in response to an 

extracellular stimulus in cell. 

Another striking finding from our study is competition between acetylation and 

ubiquitination of ADA3. How ADA3 acetylation dominates over ubiquitination still remains to be 

explored. One possibility could be ADA3 is constantly deubiquitinated that renders lysine residue 

available for acetylation. In-fact ADA3 associated STAGA complex also harbors a deubiquitinase 
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USP22 that has also been identified as 11-gene signature of poor prognosis of many cancers  (76) 

. Whether USP22 deubiquitinates ADA3 that leads to it hyperacetylation is a subject of future 

studies. 

Given that AKT is frequently activated in HER2+ breast tumors  (77) and the presence of 

pAKT of in HER2+ cells, it is reasonable to speculate hyper-phospho-p300 and consequentially 

hyperacetylated ADA3 in these cells as compare to normal hMEC. Since acetylation of ADA3 

stabilizes the protein and regulates its function in cell proliferation, HER2+ mediated oncogenesis 

could be mediated by ADA3 acetylation. In fact such studies are currently underway in our 

laboratory using ADA3 acetylation specific antibodies to consolidate the correlation between 

pAKT, phospho-p300 and acetylated ADA3. While navigating the role of ADA3 in HER2+ 

downstream signaling pathways, in the present study we mainly focused on PI3K/AKT and other 

mediators such as ERK were untouched. Clearly, future studies are warranted in order to 

elucidate the role of ADA3 in HER2+ signaling cascades in more comprehensive manner  

 In current study we used lapatinib, a HER2/EGFR dual kinase inhibitor, to study the 

involvement of ADA3 in HER2 signaling pathways, which has been known to suppress cancer 

cell proliferation and to promote G1 arrest by increasing p27  (60) . Here we not only 

demonstrated that lapatinib indices cell cycle arrest at G1 but also dramatically lowers the mitotic 

index as manifested by pH3(S10). Interestingly, ADA3 knockdown in HER2+ cells mimicked the 

cell cycle inhibitory effects of lapatinib suggesting that lapatinib might act through ADA3. This 

finding together with downregulation of ADA3 by lapatinib certainly highlights the importance of 

ADA3 as a marker for treatment efficacy and a promising therapeutic target.  

 One potential missing part of this study is that we showed cell cycle inhibition upon 

ADA3 knockdown but not with the acetylation defective mutants. If we speculate that hyper 

proliferation in HER2+ cells is attributed to hyper acetylated ADA3, future studies must be 

directed to demonstrate that inhibition in HER2+ phosphorylation indeed leads to decrease in 
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ADA3 acetylation and ADA3 acetylation defective mutants have the same cell cycle inhibitory 

effect to that of gene knockdown.  

 The entire HER2 signaling pathway is extremely intricate that involves a great 

redundancy both at mediator and effector level. For example, here the observed increase in p27 

levels after ADA3 knockdown could most likely be due to the inhibition of its proteasomal by 

ubiquitin ligase SKP2, that is known to be regulated by ADA3  (28) . However, both p27 and 

SKP2 has been shown to be the direct substrates of AKT for phosphorylation that leads to their 

degradation and activation respectively  (78-81) . Moreover, through a positive feedback loop, 

SKP2 also activates AKT by mediating its non-proteolytic ubiquitination that further increases 

the complexity of the signaling events  (82) . Taken together, ADA3 certainly appears to be one 

of those numerous players that regulate HER2 mediated oncogenesis and certainly much is still to 

be learned about the interplay between these players and their regulation at transcriptional and 

post-translational levels. 

  Based on our results ADA3 can certainly be regarded as a downstream effector molecule 

of HER2 signaling. Although we used lapatinib as a tool to inhibit the HER2 activation in the 

present study, one could expect the similar downregulation of ADA3 by other HER2 targeting 

agents such as herceptin. A potential translation of our findings could be to increase the treatment 

efficacy or to control therapy resistance that remains a challenge in the treatment of cancer in 

question  (83) . Resistance to RTK inhibitors commonly arises due to direct activation of 

mediator signaling cascades such as MAP kinase or PI3K/AKT and efforts have already been 

made to test the inhibitors against these mediators to overcome the resistance  (84, 85) . However, 

due the occurrence of redundant signaling events inhibitor efficacy is one of the major problems 

and toxicity associated with combinatorial treatment that may have greater effects, further limits 

effective treatment option.  Therefore in such cases the use of inhibitors against effectors such as 

ADA3 might be a smart strategy  (83) . Nonetheless, as indicated above the ADA3 could just be 
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one of those numerous effectors and therefore redundancy at effector level must be taken into 

account while addressing therapy resistance.  
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ADA3 is a conserved component of many HAT complexes, which plays an important 

role in transcription regulation. When I started out my thesis work, the primary focus of the 

laboratory was to explore the role of ADA3 in cell cycle and cancer. Shortly afterwards, studies 

from our laboratory reported the critical role of ADA3 in cell cycle progression and in 

maintenance of genomic integrity. We demonstrated that the deletion of Ada3 from MEFs leads 

to severe cell proliferation block, delay in G1/S and G2/M phase transitions, formation of 

abnormal nuclei, mitotic defects and spontaneous chromosomal aberrations  (28, 86) .  

Whereas the delay in G1/S phase transition was attributed to increased levels of CDK 

inhibitor p27, the mechanism behind the delay in G2/M transition and mitotic defects remained 

understudied. In order to understand the role of ADA3 in mitosis at molecular level, Dr. June 

Wang of our laboratory performed a ChIP seq analysis and observed that ADA3 is recruited at 

centromere region of most of the chromosome. Given the vital role of centromeres in 

chromosome segregation, we speculated that ADA3 might regulate the mitosis through 

centromere, which indeed turned out to be the case later on, and the detailed study is the part of 

this thesis as Chapter 2. 

Another important and major portion of my thesis work focuses on posttranslational 

modification of ADA3 that basically stemmed from two serendipitous findings that ADA3 is 

subjected to acetylation by its associated HATs (p300 and GCN5) during the course of 

chromatin/histone acetylation  (24, 28) . Our finding that ADA3 remains in equilibrium of 

acetylation and deacetylation and that its acetylation is required for histone acetylation and cell 

proliferation uncovers a novel mode of regulation of ADA3 function. This particular study is 

detailed in Chapter 3 of the thesis.  

Being such an important cell cycle regulator a parallel focus of the laboratory was to 

investigate the role of ADA3 in cancer. To better understand the implication of ADA3 in 

oncogenesis our laboratory had examined the expression of ADA3 in 900 breast cancer tissue 

specimens with known clinicopathological parameters and found that ADA3 was 
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mislocalized/overexpressed in HER2+ or EGFR+ subtypes  (50) . The study suggested us that 

ADA3 could potentially be involved in HER2+/EGFR+ mediated oncogenesis and I became 

interested in exploring the role of ADA3 in HER2+ signaling cascade. Through my extensive 

experiments I discovered a novel-signaling pathway and found that EGF stimulation leads to 

ADA3 acetylation by activating (phospho-HER2)- (phospho-AKT)-(phospho-p300) cascade. 

More details of this study are illustrated in Chapter 4 of the thesis.  

Since in our studies we found that ADA3 is mislocalized/overexpressed in HER2+ breast 

cancer cell lines, it will be of paramount importance to study the ADA3 associated HAT 

complexes in these cells. It is likely that other components of complex are also 

mislocalized/overexpressed. In fact, the STAGA complex component USP22 has been identified 

as part of 11-gene signature causing death from cancer  (76) . As far as ADA3 associated HAT 

complex components are concerned, most of the studies were either performed in yeast or HeLa 

cells  (3, 24) and so far the complex has not been studied in detail in breast cancer cells, therefore 

it would be interesting to examine the subunits organization in these cells as compare to normal 

mammary epithelia and its relevance to cancer.  

Unstable genome and uncontrolled cell proliferation are the fundamental features of 

cancer (87) . My thesis work indicates ADA3 acetylation as a major determinant to regulate its 

function in cell proliferation. Our finding that p300 mediated ADA3 acetylation and 

ubiquitination competes with each other for the same lysine residues further substantiate that 

acetylation of ADA3 is required to maintain its stability and therefore may be critical for its 

function. If ADA3 acetylation is crucial for cell proliferation, what role does it play in the context 

of centromere function through CENP-B? The truncation mutation analysis of ADA3 revealed 

that first 110 amino acids are crucial for ADA3-CENP-B interaction and normal cell 

proliferation. In fact the first 110 amino acids harbor a Lys-109, which is a potential acetylation 

site and it will be interesting to examine whether or not ADA3-CENP-B interaction and as a 

consequence cell proliferation and chromosome segregation depends on acetylation at Lys-109.  
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From my studies knockdown of ADA3 in HER2+ cells led to decreased pH3(S10) and 

increased levels of CDK inhibitor p27, the two key cell cycle regulatory marks. Is it the total or 

acetylated ADA3 that regulates G1 to S phase transition and mitotic index should be investigated 

thoroughly. Indeed the future studies should be directed to examine the role of acetylated ADA3 

in HER2 mediated oncogenesis using better system such as cell lines in which ADA3 acetylation 

defective mutants are knocked in.  

One seminal finding that emerged from my thesis work is that c-Myc enhancer 

acetylation is contingent upon ADA3 acetylation status (Chapter 3). Whereas in previous 

studies, loss of ADA3 led to decreased c-Myc/MYC transcripts, in our study ADA3 

acetylation defective mutants resulted in decreased c-Myc enhancer acetylation  (28, 49, 62) . 

c-MYC is a key regulatory gene for cell proliferation and growth that has been reported to be 

amplified or overexpressed in breast cancers   (88) . c-MYC amplification has been  shown to 

be significantly associated with HER2 amplification and tumors with c-MYC/HER2 co-

amplification have worse prognosis than those having either one of the two amplified  (89, 

90) . Moreover, c-MYC mediated transcription has not only been shown to be regulated by 

PI3K/AKT  (91) , c-MYC also complements the PI3K/AKT mediated cellular transformation 

((92, 93)  and proliferation. Thus there appears to be a close nexus among HER2, AKT, c-

MYC and ADA3 and clearly the interplay between these players’ remains to be determined 

with regards to oncogenesis. Given the significant redundancy at molecular level among 

various types of cancers, the findings from my studies can serve as a foundation learn more 

about the role of ADA3 in other subtypes of breast cancer or cancer in general. In fact in this 

direction we recently discovered that ADA3 is required for normal and ER+ tumor cell 

proliferation through c-MYC (Griffin et al., manuscript under revision in BCR) and also in 

our previous study the expression/localization patterns of ADA3 was also found to be 

correlated with EGFR status  (50) , another subtype of breast cancer with poor clinical 

outcomes.  
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Although the results from my studies are described thoroughly in previous chapters of 

the thesis and two of the chapters are published, following are the important results from my 

thesis work: 

1. ADA3, through its N terminus directly interacts with centromeric protein CENP-B and  

2. ADA3 is recruited at HOR region of the centromere, which is also the occupancy site of 

CENP-B. 

3. Loss of ADA3 diminishes CENP-B recruitment at HOR region and leads to chromosome 

missegregation. 

4. ADA3 protein remains in the equilibrium of acetylation and deacetylation. GCN5, PCAF 

and p300 acetylate ADA3, whereas it is deacetylated SIRT1. 

5. ADA3 acetylation and its interaction with CENP-B appear to be important for normal 

cell proliferation. 

6.  ADA3 acetylation is dispensable for its interaction with HAT complex components 

however, the same is important for global and locus specific (c-Myc enhancer) histone 

acetylation. 

7. p300 mediated ADA3 acetylation competes with its ubiquitination and prevents its 

degradation. 

8. Inhibition of p-HER2 by lapatinib causes decrease in total ADA3 levels through the 

inhibition of p-AKT and p-p300. 

9. Activation of p-AKT and p-p300 by EGF induces ADA3 acetylation. 

10. ADA3 knockdown in HER2+ cells have the same cell cycle inhibitory effect as lapatinib 

as manifested by reduced mitotic index and increased levels of p27. 
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