
University of Nebraska Medical Center University of Nebraska Medical Center 

DigitalCommons@UNMC DigitalCommons@UNMC 

Theses & Dissertations Graduate Studies 

Fall 12-16-2016 

The Effect of Agricultural Exposures and Genetics on Respiratory The Effect of Agricultural Exposures and Genetics on Respiratory 

Phenotypes Phenotypes 

Lisa W. Boyd 
University of Nebraska Medical Center 

Tell us how you used this information in this short survey. 

Follow this and additional works at: https://digitalcommons.unmc.edu/etd 

 Part of the Clinical Epidemiology Commons, and the Epidemiology Commons 

Recommended Citation Recommended Citation 
Boyd, Lisa W., "The Effect of Agricultural Exposures and Genetics on Respiratory Phenotypes" (2016). 
Theses & Dissertations. 162. 
https://digitalcommons.unmc.edu/etd/162 

This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It 
has been accepted for inclusion in Theses & Dissertations by an authorized administrator of 
DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu. 

http://www.unmc.edu/
http://www.unmc.edu/
https://digitalcommons.unmc.edu/
https://digitalcommons.unmc.edu/etd
https://digitalcommons.unmc.edu/grad_studies
https://unmc.libwizard.com/f/DCFeedback/
https://digitalcommons.unmc.edu/etd?utm_source=digitalcommons.unmc.edu%2Fetd%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/815?utm_source=digitalcommons.unmc.edu%2Fetd%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/740?utm_source=digitalcommons.unmc.edu%2Fetd%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unmc.edu/etd/162?utm_source=digitalcommons.unmc.edu%2Fetd%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@unmc.edu


 
 

 
 

THE EFFECT OF AGRICULTURAL EXPOSURES 
AND GENETICS ON RESPIRATORY PHENOTYPES 

 
by 

 

Lisa Weissenburger-Moser Boyd 

 

A DISSERTATION 

 

 

Presented to the Faculty of 

the University of Nebraska Graduate College 

in Partial Fulfillment of the Requirements 

for the Degree of Doctor Philosophy 

 

Epidemiology Graduate Program 

 

Under the Supervision of Professor Tricia D. LeVan 

 
University of Nebraska Medical Center 

Omaha, Nebraska 
 
 

November, 2016 
 
 
 

Supervisory Committee: 
 

Debra Romberger, MD     Stephen Rennard, MD 
 
Ted Mikuls, MD MSPH     Fang Yu, PhD



i 
 

 
 

 

ACKNOWLEDGEMENTS 
 

I would like to acknowledge the many people who have made this dissertation possible. 

First, I would like to thank my committee for all their effort and constant support on these 

projects. A very special thanks goes to Dr. Tricia LeVan, without whom my work on 

these projects would not be possible.  

 

I would like to thank the patients at the VA Nebraska-Western Iowa Health Care System 

for continuing to be a part of these studies and their willingness to work with me.  

 

To Dr. Jane Meza and Dr. Lynette Smith for all they do.  

 

Thanks also to Dr. James Merchant and Dr. Kevin Kelly from the University of Iowa and 

their help in the Keokuk Country Rural Health Study database.  

 

Finally, I would like to thank my family and friends for their continuous understanding, 

sacrifice, and encouragement; specifically, my parents, brothers, and husband, and also 

my friend, who helped edit this dissertation, Rachel Bowles.  

  

http://www.nebraska.va.gov/


ii 
 

 
 

Table of Contents 
 
LIST OF TABLES ........................................................................................................... iv 
 
LIST OF FIGURES……………………………………………………………………………....v 
 
LIST OF ABBREVIATIONS……………………………………………………………………vii 
 
ABSTRACT……………………………………………………………………........................viii 
 
Chapter I: INTRODUCTION 

 Respiratory Disease in Agricultural workers………………………………………….1 

COPD .................................................................................................................. 1 

Chronic Bronchitis ................................................................................................ 2 

Emphysema and Asthma ..................................................................................... 3 

Exposures ............................................................................................................ 4 

Organic Dust ........................................................................................................ 4 

Conducting Exposure Analysis ............................................................................. 5 

Mechanisms of LPS induced inflammation ........................................................... 6 

TLR4 .................................................................................................................... 7 

COPD and the Lung Microbiome ......................................................................... 8 

 Specific Aims…………………………………………………...................................11 

CHAPTER II:  A PRINCIPAL FACTOR ANALYSIS TO CHARACTERIZE 
AGRICULTURAL EXPOSURES AMONG NEBRASKA VETERANS. 
 

Abstract ............................................................................................................. 13 

 Introduction…………………………………………………......................................14 

 Methods…………………………………………………...........................................16 

 Results………………………………………………….............................................20 

Discussion ......................................................................................................... 24 

 Tables and Figures…………………………………………………………………….30 

http://www.pubpdf.com/pub/27049536/A-principal-factor-analysis-to-characterize-agricultural-exposures-among-Nebraska-veterans
http://www.pubpdf.com/pub/27049536/A-principal-factor-analysis-to-characterize-agricultural-exposures-among-Nebraska-veterans


iii 
 

 
 

CHAPTER III: TLR4 ASP299GLY IS ASSOCIATED WITH CHRONIC BRONCHITIS 
AND DECREASED LPS-STIMULATED TNF- α PRODUCTION IN AGRICULTURAL 
WORKERS 
 

Abstract ............................................................................................................. 37 
 
 Introduction…………………………………………………......................................39 

 Methods…………………………………………………...........................................41 

 Results………………………………………………….............................................46 

 Discussion………………………………………………….......................................49 

 Tables and Figures…………………………………………………………………….54 

CHAPTER IV: STABILITY OF THE LUNG MICROBIOME IN COPD PATIENTS 

Abstract ............................................................................................................. 66 

Introduction ........................................................................................................ 67 

Methods ............................................................................................................. 69 

Results ............................................................................................................... 73 

Discussion ......................................................................................................... 76 

Tables and Figures ............................................................................................ 82 

CHAPTER V: DISCUSSION AND CONCLUSION  

Summary of Current Research ......................................................................... 100 

 Implications of Current Research…………………………………………………..102 

 Suggest Future Research…………………………………………………………...103 

 Limitations………………………………………………….....................................106 

 Conclusions…………………………………………………...................................107 

BIBILIOGRAPHY………………………………………………….......................................108 

  



iv 
 

 
 

LIST OF TABLES 

Chapter II 

Table 1: Study population characteristics……………………………………………………30 

Table 2: Principal factor analysis results for Questionnaire 1 (Model 1; n=263)………...31 

Table 3: Principal factor analysis results for Questionnaire 2 (Model 2; n=418)………...32 

Table 4: Principal factor analysis results using Questionnaire 2 (Model 3; n=418)……..33 

Table 5: Principal factor analysis results using Questionnaire 2 (Model 4; n=418)……..34 

Table 6: Principal factor analysis results using Questionnaire 2 (Model 4, stratified by 

COPD status), n =418*………………………………………………………………..............36 

 

Chapter III 

Table 7: Characteristics of the Keokuk and AgLung Study Populations Stratified by 
Chronic Bronchitis………………………………………………..………………..…………...55 

Table 8: Association of TLR4 Polymorphisms with Chronic Bronchitis in the Keokuk 
Population ………………………………………………………………………………………56 
 
Table 9: Association of TLR4 Polymorphisms with Chronic Bronchitis in the AgLung 
Population……………………………………………..………………………………………...57 

Table 10: Associations of rs4986790, rs4986791, and rs5030728 Polymorphisms with 
IL-6 and TNF-α levels in the AgLung Population……………………………………………58 

Table 11: Characteristics of Study Populations……………………………………………..62 

Table 12: Minor Allele Frequencies of TLR4 Polymorphisms in the Keokuk and  
AgLung Population……………………………………………………………………………..63 
 
Table 13: Associations of rs4986790 and rs4986791 Polymorphisms with IL-6 and TNF-
α levels in the AgLung Population Among those with Airflow Obstruction……………….64 
 
Table 14: Associations of rs4986790 and rs4986791 Polymorphisms with IL-6 and TNF-
α levels in the AgLung Population Among those with no Airflow Obstruction……………65 
 
 
Chapter IV 
Table 15: Patient Characteristics and Sequencing Results…………..............................83  



v 
 

 
 

LIST OF FIGURES 
 

Chapter III 

Figure 1. Linkage disequilibrium (LD) between 7 tagging SNPs in the TLR4 gene. Top: 
Keokuk population; Bottom: AgLung population.  LD values presented as r2*100……..59 
 
Figure 2. Adjusted-Association of TLR4 Polymorphisms with Chronic Bronchitis in the 
Keokuk Population. Forest plot of odds ratios (95% CI) of Chronic Bronchitis vs. No 
Chronic Bronchitis after adjustment for age, BMI, education, sex, smoke intensity, and 
years worked on a farm. A dominant model was assumed. The following SNPs: 
rs4986790, rs4986791, and rs5030728 passed a false discovery rate adjustment at the 
5% level………………………………………………………………………………………….60 
 
Chapter IV 
 
Figure 3A. Taxonomic Identification at the Phylum Level (Inter-Variability Samples). 
Taxonomic results at the phylum level are displayed for each sample at two different 
time points (T1 and T2)..………………………………………………………………………84 
Figure 3B. Differences in Percent of Taxonomic Identification at the Phylum Level (Inter-
Variability Samples) (T2-T1) For example, patient 2150 decreased in Proteobacteria by 
36.4%. All sequences were submitted to Qiime for taxonomic identification. Top 8 
taxonomic results at the phylum level are displayed. Figures were created in Excel…..85 
 
Figure 4A. Taxonomic Identification at the Genus Level…………………………………..86 
Figure 4B. Differences in percent of taxonomic Identification at the Genus Level (T2-T1). 
All sequences were submitted to Qiime for taxonomic identification. Top 10 taxonomic 
results at the genus level are displayed. Figures were created in Excel…………………87 
 
Figure 5. Principal Coordinate Analysis Demonstrates Clustering of Baseline Samples 
and Samples taken at a Later Time. Principal coordinate analysis was performed using 
Qiime and Weighted UniFrac, and the results for principal coordinates 1 and 2 and 3 are 
shown.  T1 samples (red) do not cluster separately from T2 samples (blue). However, 
there are 2 samples that did not cluster with the other samples. Three PCs explained 
approximately 84% of the total variance in the data………………………………………..88 
 
Figure 6A. Heat map of OTU Abundances between Baseline and Samples taken at a 
Later Time……………………………………………………………………………………….89 
Figure 6B. Heat map of differences of OTU abundances between T1 and T2 (T2-T1). 
Lighter blue shows greater abundance compared to dark blue/black. Figures were 
created in R (package phyloseq)……………………………………………………………..90  
 
Figure 7. Volcano plot indicating that no taxa are significantly increased or decreased in 

the pairwise comparisons, indicated, using t-tests models (R package calibrate). Results 

shown are from all 7 participants. Color differences show relative abundance of at least 

2-fold, or log2 equal to 1 (not statistically significant). Figure was created in R (package 

phyloseq)………………………………………………………………………………………..91 



vi 
 

 
 

Figure 8. Shannon Diversity Index for Inter-Subject Variability Samples. X-axis is 

Samples per Sequence. Y-axis is Shannon Rarefraction Measures. At 1500 

sequences/sample, all unique OTUs had been identified. Legend shows what each color 

represents. Figure was created in Qiime…………………………………………………….93 

Figure 9. Diversity Indexes for Inter-Subject Variability Samples. Boxplots for different 

alpha diversities, Observed, Chao1, Ace, Shannon, Simpson, InvSimpson (1/Simpson), 

and Fisher. Boxplots show no significant differences in alpha diversities between T1 and 

T2. Figure was created in R (package ggplot2)……………………………………………..94 

Figure 10. Principal Coordinate Analysis Demonstrates Clustering of Intra-Subject 

Variability Samples. Principal coordinate analysis was performed using Qiime and 

Weighted UniFrac, and the results for principal coordinates 1 and 2 and 3 are shown.  

For every patient, samples clustered together………………………………………………95 

Figure 11. Shannon Diversity Index for Intra-Subject Variability Samples. Samples. X-

axis is Samples per Sequence. Y-axis is Shannon Rarefraction Measures. At 1500 

sequences/sample, all unique OTUs had been identified.  Legend shows what each 

color represents. Figure was created in Qiime……………………………………………...96 

Figure 12A. Taxonomic Identification at the Phylum Level for Intra-Subject Variability 
Samples. Taxonomic results at the phylum level are displayed for each sample……….97 
Figure 12B. Taxonomic Identification for the top 8 Genus Level for intra-subject 
variability samples. Taxonomic results at the genus level are displayed for each  
sample…………………………………………………………………………………………...98 
 
Figure 13. Heat Map of OTU Abundances for Intra-Subject Variability Samples. Figure 

was created in R (package phyloseq). Lighter blue shows greater abundance compared 

to dark blue/black……………………………………………………………………………….99 

  



vii 
 

 
 

LIST OF ABBREVIATIONS 
 

COPD   Chronic Obstructive Pulmonary Disease 
 
TLR4   Toll-like receptor 4 
 
LPS   Lipopolysaccharide 
 
SNP   Single Nucleotide Polymorphism 
 
BMI   Body Mass Index 
 
LD   Linkage Disequilibrium 
 
CI   Confidence Interval 

PFA   Principal Factor Analysis 

FEV1   Forced Expiratory Volume in 1 second 

FVC   Force Vital Capacity 

  



viii 
 

 
 

ABSTRACT 
 

Lisa Weissenburger-Moser, PhD 
 

University of Nebraska Medical Center, December 2016 
 
Supervisor: Tricia D LeVan, PhD 
 
Agricultural workers are at risk for respiratory diseases, such as chronic obstructive 
pulmonary disease (COPD) and chronic bronchitis, due to exposures and inflammatory 
agents found in their work environment. While previous studies have been conducted to 
examine agricultural effects of chronic respiratory diseases more closely, there are still 
several significant gaps in the existing literature. 
 
This dissertation explores the relationship between agricultural exposures and 

respiratory diseases. Utilizing two populations, the Keokuk Country Rural Health Study 

and the AgLung Study, this research: 1) used principal factor analysis (PFA) to distill 

exposure data into essential variables characterizing long-term agricultural exposures in 

order to examine the relationship between agricultural exposures and chronic respiratory 

diseases, 2) examined the relationship between TLR4 299/399 polymorphisms with 

chronic bronchitis and pro-inflammatory cytokines in two agriculturally-exposed 

populations, and 3) examined the lung microbiome longitudinally in agriculturally-

exposed individuals with stable COPD. The results of the studies included in this 

dissertation may assist in continuing to fill the gaps in knowledge in this area of study in 

order to improve respiratory health in agricultural workers.
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CHAPTER I. 
 

INTRODUCTION 
 

Respiratory Disease in Agricultural workers. Respiratory disease associated with 

agriculture work was one of the first recognized occupational hazards (1). As far back as 

the 16th century, the potential complications of inhaling dry grain dust and being 

exposed to hays and animals were described in farmers (1). In the United States, there 

are 3.2 million farmers operating 2.1 million farms (2). Chronic upper and lower airway 

diseases found in farmers include rhinitis, mucus membrane inflammation syndrome, 

sinusitis, asthma, asthma-like syndrome, chronic bronchitis, and chronic obstructive 

pulmonary disease (COPD) among others (3-9).  

Agricultural respiratory symptoms have an overlapping spectrum (10), in that 

certain symptoms can be found in several diseases. The definition of COPD and its 

subtypes (chronic bronchitis, emphysema, and asthma) and the interrelationships 

between the closely related disorders that cause airflow limitation, provide a foundation 

for understanding the spectrum of patient presentations. In this dissertation, COPD and 

chronic bronchitis were examined, but it is important to define other subtypes of know 

COPD (i.e. emphysema) (11). Because patients present with a spectrum of 

manifestations of COPD, it is helpful to understand these subtypes.  

COPD 

COPD disease burden. COPD is a major global health problem. This debilitating 

condition is currently the third leading cause of death in the world and the United States 

(12,13), and is projected to be the fifth most common cause of disability in the world by 

2020. More than 15.7 million Americans have been diagnosed with the disease, making 
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it a disease of public health importance (14). The NHLBI/WHO Global Initiative for 

Chronic Obstructive Lung Disease (GOLD) has defined COPD as: “a common 

preventable and treatable disease that is characterized by persistent airflow limitation 

that is usually progressive and associated with an enhanced chronic inflammatory 

response in the airways and the lung to noxious particles or gases.” (11). Exposure to 

tobacco smoke is recognized as the number one risk factor for COPD. Another important 

risk factor for COPD is exposure to agricultural dust (15).  

There were several population studies and occupational cohort studies published 

during the 1970s and 1980s that determined occupational exposure to dust was 

associated with COPD (16-18). A review by the American Thoracic Society found that 

15% of COPD is due to occupational exposures, independent of smoking (15). Although, 

it has been difficult in determine the effects of agricultural dusts and COPD independent 

of smoking, there are some studies that have disentangled these two risk factors and 

have shown that occupational dusts and fumes have an effect on lung function, making 

those with exposure more likely to develop COPD. Among farmers, the prevalence of 

COPD was found to be 30.2% in 2007 (19). In the same study, the attributable risk for 

COPD due to farming exposures was 7.7%.  In other words, removing farming 

exposures could prevent 1 in 13 COPD cases (19). Not only is there a need to evaluate 

types of agricultural exposures and how they contribute to the disease, but there is also 

a need to better understand the biological processes that lead to inflammation and lung 

function decline in agricultural workers. 

 

Chronic bronchitis 

Chronic bronchitis disease burden. Chronic bronchitis, an inflammatory condition that 

affects the central bronchi, is one of two lung disease by which patients with COPD are 
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characterized. Excessive mucus secretion differentiates it from the emphysema (20). 

Other symptoms of chronic bronchitis related to lung inflammation and heavy mucus 

production include cough and production of sputum (20). In 2008, more than 9.8 million 

Americans reported having a chronic bronchitis diagnosis (21). Similar to COPD, 

tobacco smoke is recognized as the number one risk factor for chronic bronchitis; 

however, agricultural dust has proven to be a significant cause for the disease (22). 

Farmers perform a variety of activities that potentially put them at risk for chronic 

bronchitis (23). Studies of the respiratory health of farmers, that included specialized 

production (i.e. raising food crops) (25) and a few larger population studies of farmers 

(22), have indicated that organic dust exposure in agriculture may initiate chronic 

bronchitis and related symptoms (24). Approximately 25% of agricultural workers 

commonly complain of cough and sputum production, both characteristics of the disease 

(23,25).  

Emphysema and Asthma 

Emphysema is a pathological term that describes some of the structural changes (i.e. 

abnormal and permanent enlargement of the airspaces distal to the terminal bronchioles 

that is accompanied by destruction of the airspace walls, without obvious fibrosis) 

sometimes associated with COPD (26). Asthma, although not a subtype of COPD, is 

defined as "a chronic inflammatory disorder of the airways in which many cells and 

cellular elements play a role. This disease is associated with airway responsiveness that 

leads to recurrent episodes of a variety of symptoms including wheezing, 

breathlessness, chest tightness, and coughing, particularly, both at night or in the early 

morning. These symptoms have been found to be associated with widespread, but 

variable, airflow obstruction within the lung that is often reversible either spontaneously 

or with treatment (27).  Although not a subtype of COPD, asthma has an overlap of 
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syndromes (found in those with COPD) of people with asthma that develop non-

reversible obstruction compared to those with asthma that is reversible. 

 

Exposures. Working in agriculture is considered one of the most hazardous 

occupations. The industry is very diverse and includes multiple occupational and 

environmental exposures (10). Farmers, their families, and other agricultural workers 

can be exposed to a number of things: organic dusts (from moldy hay, grain, animals, 

and silage) that contain microorganisms and bacterial endotoxins, chemical toxicants, 

animal wastes, and other particular matter, all contributing to airway inflammation. These 

exposures and inflammatory agents are believed to contribute to respiratory diseases 

such as COPD. 

 

Organic dust. Organic dust is mixture of vegetable products, insect fragments, animal 

dander, bird and rodent feces, pesticides, microorganisms, endotoxins, and pollens. 

Animal feces, endotoxins, and pollens are the primary sources of toxic and allergenic 

contributors in animal confinement facilities. Respirable dusts penetrate to the level of 

the terminal bronchioles and alveoli, where the gas exchange occurs (28). Production, 

harvest, transfer, storage, and processing procedures produce grain dust and the 

highest levels are associated with grain cleaning (29). Silos, chopping straw, unloading 

grain silos, shoveling feed, opening bales of hay for feed, and cleaning old animal 

housing structures also generate grain dust (10).  

Organic dust can also contain biologically active proteins that may be allergenic 

and pro-inflammatory. It is the biologically active compounds, as well as toxicant gases 

(i.e. CO2, NO2), that contribute to respiratory conditions (23). As mentioned, agricultural 
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workers are exposed to high concentrations of airborne inhalable organic dust. And in 

this dust, there is high amounts of gram-positive and gram-negative bacteria 

components and fungi (30,31). Lipopolysaccharide (LPS) is a component of gram-

negative bacterial cell wall (31,32), and exposure to LPS among workers has been 

associated with increased respiratory disorders, including chronic bronchitis (33-35).  

How these exposures influence long-term respiratory health is an area of active 

research.  

 

Conducting Exposure Analysis. There is substantial published data on respiratory 

diseases, such as COPD, in the farming population. However, understanding COPD is 

challenging as causal inferences from epidemiological studies of chronic disease in 

agricultural populations is often limited due to a lack of long-term exposure 

measurements, limited sample sizes, phenotype outcomes, confounding, and 

heterogeneity (36).The types of methods used to assess agricultural exposures include 

direct measurement of personal exposure (37), biomarkers of exposure within a short 

period of time (38), or self-report questionnaire surveys (37). Although this direct 

exposure method is often an accurate approach, it may not be relevant for studies of 

disease with long latency periods such as cancer and COPD due to cost (39).  Accurate 

estimation of long-term agricultural exposures based on questionnaire data has been 

used to improve the validity of epidemiologic investigations and subsequent evaluation 

of the association between agricultural exposures and chronic diseases (40).  

Questionnaires are generally designed to ask a large set of questions on the subject’s 

attributes with the purpose of obtaining enough information for chronic exposure 

assessment. However, the designed questions in the questionnaire may not be direct 

indicators of the true exposure. Sorting out useful information from the large amount of 
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questionnaire data is challenging, and is essential in obtaining objective, unbiased, and 

interpretable exposure assessments in an epidemiological study.  

There are many diverse agricultural tasks that characterize a person’s 

exposures; therefore, it is difficult to have only one or two variables to explain the broad 

range of agricultural exposures. To date, several studies on chronic diseases such as 

cancer and COPD have utilized surveys and these surveys have assessed up to 50 

exposures (37,40-42). It is uncertain if numerous questions are necessary to obtain 

accurate exposure information. Detailed questionnaires have been used in several 

agricultural studies (37). For this thesis, I used principal factor analyses (PFA), to 

summarize a large amount of important agricultural exposure variables from 

questionnaires.  

I examined questionnaire data used to measure agricultural exposures in 

epidemiological studies where we identified the most important and biologically relevant 

exposures and distilled the number of variables that need to be collected moving 

forward.  As a first step in understanding whether these agricultural exposures could be 

influenced by genetic risk factors, we examined the association of tagging TLR4 

polymorphisms in the second aim of my dissertation, that have been previously 

implicated in respiratory diseases in other populations. I wanted to see if these risk 

factors are also associated with chronic respiratory disease such as chronic bronchitis 

among our agriculturally exposed populations. 

 

Mechanisms of LPS induced inflammation:  Studies have shown that there are high 

levels of inhalant LPS in grain threshing and sieving (43), flax threshing (44), herb 

processing (43,45), wood processing (46), waste collection and sorting (47), handling 

dry sludge (48), on pig farms (49,50), in cucumber and tomato nurseries (51), in plants 
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using straw and wood chips as biofuel (52), and in many other work environments (53). 

The biologically active lipid (Lipid A) moiety of LPS has been shown to be responsible for 

its adverse health effects (54,55).  

Among different species, the LPS activity of various gram-negative bacteria 

varies. The genera of gram-negative bacteria, Pseudomonas, Bacillus, 

Cornyebacterium, Pasteurella, Vibrio, and Enterobacter, have been shown to shed LPS 

in agricultural settings (10). Activities of animals and humans produce organic dust 

which contains endotoxin and is found in animal confinement structures (swine and 

poultry), livestock farming, grain elevators, cotton industry, potato processing, flax 

industry, and animal feed industry (10). 

 

TLR4. Once LPS is in the lungs, it induces an inflammatory process mediated through 

the CD14 receptor and Toll Like Receptor-4 (TLR-4). This leads to the impairment of 

lung function and respiratory diseases such as bronchitis, asthma, and toxic pneumonitis 

(organic dust toxic syndrome) (53,56). 

Toll-like receptor 4 (TLR4) has been studied among the TLRs that recognize 

gram-positive (57) and gram-negative bacteria (58). The TLR4 gene codes for the TLR4 

protein and these receptors recognize LPS, in combination with CD14 (59) and myeloid 

differentiation protein 2 (MD-2) (60), to induce a cascade leading to the activation of NF-

κB, AP-1, the innate immune system (61), and the production of pro-inflammatory 

cytokines (62,63). Both IL-6 and TNF-α, pro-inflammatory cytokines, are found in high 

levels in the lung among those with respiratory symptoms and disease (64-66). 

Functional polymorphisms in TLR4 have been studied and their role investigated 

in a number of inflammatory diseases (67). A large number of studies have focused on 

https://en.wikipedia.org/wiki/Protein
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the missense Asp299Gly polymorphism. Gly299 has been shown to cause reduced 

levels of pro-inflammatory cytokines and inflammatory hypo-responsiveness to inhaled 

LPS (63,68,69). Another study found that the frequency of this polymorphism was 

protective in patients with COPD (70), while other studies suggested that the presence 

of the TLR4 polymorphism did not have any significant impact on lung function (67,71). 

Budulac et al. also showed that none of the TLR4 single nucleotide polymorphisms 

(SNPs) were associated with FEV1 in COPD patients, but found that some SNPs were 

significantly associated with accelerated or reduced decline of FEV1 (72). However, the 

association of the Asp299Gly polymorphism and chronic bronchitis has not been studied 

in individuals who are chronically exposed to agricultural exosures.  

 

COPD and the Lung Microbiome 

Understanding the pathogenesis of COPD development and progression is challenging 

as it is a heterogeneous disease caused by a number of factors (i.e., environmental 

exposures and genetics).  To date, there has been controversy regarding the role of 

lower respiratory tract bacteria in its pathogenesis (73). It was believed that the lungs of 

healthy individuals were sterile, while the lungs of COPD individuals were colonized.  

Recently, with the help of new culture-independent methods, it has been discovered that 

healthy lungs are not sterile and that the lung microbiome is modified in those with lung 

diseases. The lung microbiome of healthy individuals has been shown to consist 

primarily of bacteria from the Bacteriodetes, Firmicutes, Proteobacteria, and 

Actinobacteria phyla (74).  Pathogens from the phylum Proteobacteria are also 

commonly colonized in COPD individuals, including genera Haemophilus and Moraxella. 

(74,75).  From bronchoalveolar lavage samples, a study showed that Haemophilus 

species were more frequent in COPD patients, while Bacteroidetes were more prevalent 
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in control patients. Studies have been conducted to understand the microbiome of the 

lungs among “healthy” (no signs for disease or decreased lung function) smokers, never-

smokers, and patients with COPD (73,75,76). These studies have consistently shown 

that smoking status and COPD severity play a role in bacterial colonization.   

Several studies have shown that the lung microbiome becomes less diverse with 

increasing COPD severity (73,75); however Sze et al. failed to show significant 

differences in bacterial diversity with worsening COPD severity in lung tissue (76). 

Smoking in and of itself has shown not to alter the lung microbiome (77), and many 

studies of the lung microbiome of COPD patients have included smokers (75).  

Few longitudinal studies examining the change of the lung microbiome over time 

have been conducted (78,79).  Sethi et al. examined the lung microbiome during acute 

exacerbations and found lower abundances of genera Moraxella and Streptococcus in 

sputum samples compared with samples taken at time of “clinical stability” (78). Millares 

et al., on the other hand, identified increases in Haemophilus, Pseudomonas, and 

Moraxella during exacerbations compared to paired sampling from periods of clinical 

stability in COPD patients (79). Respiratory viral infections, especially rhinoviruses, are a 

major cause of COPD exacerbations (80). Molyneaux et al. investigated the effect of 

rhinovirus infection on the airway bacterial microbiome and discovered that rhinovirus 

infection in COPD patients alters the respiratory microbiome (81) with a significant 

increase of Haemophilus influenzae in patients with COPD. This was not observed in 

healthy individuals. These studies have shown that exacerbations and respiratory 

infections can alter the lung microbiome in patients with COPD (82-84).  To date, there 

are no longitudinal studies comparing baseline sputum samples with samples taken 

several months later in COPD patients without any sort of intervention (i.e. antibiotic, 

transplantation, etc.). Understanding the stability of the lung microbiome in COPD is 
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critical for implementation of antimicrobial interventions that may reduce inflammation 

and slow disease progression.    
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Specific Aims 

COPD and chronic bronchitis are both debilitating respiratory conditions caused by 

smoking and exposures to agricultural dusts. While there is a significant amount of 

literature examining the relationship between agricultural diseases and respiratory 

health, this existing body of literature has not yet fully examined the assessment of 

agricultural exposures, such as animals, crops, and farm tasks based on factor analysis, 

the association of TLR4 polymorphisms with chronic bronchitis, and the stability of the 

lung microbiome in COPD patients. 

The purpose of this dissertation is to examine the effects of complex 

environmental exposures as they relate to chronic respiratory diseases in order to fill 

these gaps in the literature. The first study of this dissertation (Chapter II) aims to 

determine the necessary and useful information to describe long-term agricultural 

exposures by summarizing a large amount of agricultural exposure variables using 

principal factor analyses. The aims of the second study of this dissertation (Chapter III) 

are to: examine the association of TLR4 single nucleotide polymorphisms (SNPs) with 

chronic bronchitis in two novel agriculturally-exposed populations, and to determine the 

association of TLR4 Asp299Gly and pro-inflammatory cytokines (IL-6 and TNF-α). The 

third study (Chapter IV) aims to determine the short term stability of the lung microbiome 

in COPD patients with chronic exposure to agricultural dusts using Illumina platform of 

the 16S rRNA gene. 

Together, these studies will help to lead to advances in our overall understanding 

of COPD and other respiratory phenotypes in an agricultural exposed population. 

Although the proposed studies are primarily correlative in nature, these efforts are the 

pivotal steps in assessing 1) the relationship among a variety of agricultural exposures, 

2) TLR4 polymorphisms as it relates to chronic bronchitis, and 3) the stability of the 
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indigenous lung microbiome in COPD patients. We anticipate that this project, 

altogether, will impact agriculturally- exposed individuals with COPD and chronic 

bronchitis by contributing to the knowledge of the association between these exposures 

and respiratory diseases. 

  



13 
 

 
 

CHAPTER II. A PRINCIPAL FACTOR ANALYSIS 
TO CHARACTERIZE AGRICULTURAL 
EXPOSURES AMONG NEBRASKA VETERANS 

 
 

Abstract 

Agricultural workers are at increased risk of developing chronic respiratory disorders. 

Accurate estimation of long-term agricultural exposures based on questionnaires has 

been used to improve the validity of epidemiologic investigations and subsequent 

evaluation of the association between agricultural exposures and chronic diseases. Our 

aim was to use principal factor analysis (PFA) to distill exposure data into essential 

variables characterizing long-term agricultural exposures. This is a cross-sectional study 

of veterans between the ages of 40-80 years and worked on a farm for ≥2 years. 

Participant characteristics: 98.1% were white males with a mean age 65 ± 8 (SD) years 

and 39.8% had chronic obstructive pulmonary disease. The final model included four 

factors and explained 16.6% of the variance in the exposure data. Factor 1 was a 

heterogeneous factor; however, Factor 2 was exclusively composed of exposure to 

livestock such as hogs, dairy and poultry. Factor 3 included exposures from jobs on or 

off the farm such as wood dust, mineral dust, asbestos and spray paint.  Crop exposure 

loaded exclusively in Factor 4 and included lifetime hours of exposure and maximum 

number of acres farmed in the participants’ lifetime. The factors in the final model were 

interpretable and consistent with farming practices.  

 

http://www.pubpdf.com/pub/27049536/A-principal-factor-analysis-to-characterize-agricultural-exposures-among-Nebraska-veterans
http://www.pubpdf.com/pub/27049536/A-principal-factor-analysis-to-characterize-agricultural-exposures-among-Nebraska-veterans
http://www.pubpdf.com/pub/27049536/A-principal-factor-analysis-to-characterize-agricultural-exposures-among-Nebraska-veterans
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Introduction 

Agricultural workers are at increased risk of developing chronic respiratory disorders 

including chronic bronchitis, occupational asthma and obstructive lung disease, and 

these diseases are likely caused by multiple agricultural exposures (85).  

Epidemiological studies can provide evidence of an exposure-response relationship, an 

important factor for the suggestion of a causal association (37).  However, causal 

inference from epidemiological studies of chronic disease in agricultural populations is 

often limited due to a lack of long-term exposure measurements (36).  The types of 

methods used to assess agricultural exposures have included direct measurement of 

personal exposure (86,87), biomarkers of exposure (88,89), and self-report 

questionnaires (90,91).  Although the direct measurement method is often a precise 

approach, it may not be relevant for studies of disease with long latency periods such as 

obstructive lung diseases.  Accurate estimation of long-term agricultural exposures 

based on questionnaire data has been used to improve the validity of epidemiologic 

investigations and subsequent evaluation of the association between agricultural 

exposures and chronic lung diseases (90). The questionnaire is usually designed to ask 

a large set of questions about agricultural tasks and exposures with the purpose of 

obtaining enough information for chronic exposure assessment. However, oftentimes the 

designed questions are not direct indicators of the true exposure.  Sorting out useful 

information from the large amount of questionnaire data is challenging, yet essential in 

obtaining objective, unbiased, and interpretable exposure assessments in an 

epidemiological study.  

Here we use a statistical method, principal factor analysis (PFA), to summarize a 

large amount of important agricultural exposure variables from questionnaires designed 

to assess the relationship between agricultural exposures and respiratory disease.  PFA 

is a statistical method that has been proposed to characterize heterogeneous exposures 
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when exposure monitoring is unavailable and short-term exposure measurements are 

inadequate (92). To our knowledge there has been no assessment of agricultural 

exposures, such as animals, crops, and farm tasks based on factor analysis.  

Our overall objective was to identify a set of essential agriculturally-related 

exposures that should be considered when assessing respiratory outcomes. Using data 

from a cross sectional study of veterans that worked on a farm or in production 

agriculture as an adult for ≥ 2 years, we applied the method of factor analysis to two 

questionnaires. Questionnaire 1 assessed agricultural exposures in two-hundred and 

sixty-three individuals, while Questionnaire 2 (extended version) evaluated exposure in 

another four-hundred and eighteen individuals.  We first compared the pattern of 

clustered agricultural exposures of Questionnaire 1 to Questionnaire 2.  Second, we 

ascertained whether utilization of dichotomous (yes/no) versus intensity exposure 

variables (years) yielded similar factor loading models.  Finally, we evaluated whether 

there was greater variation explained using agricultural intensity exposure variables 

coded as total lifetime hours compared to exposure intensity variables coded as total 

lifetime years.  
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Methods 

Study Population 

We used agricultural exposure data from a cross-sectional study designed to assess the 

relationship between agricultural exposures and chronic respiratory disease in veterans 

utilizing the VA Nebraska Western Iowa Health Care System.  Potential study 

participants were approached in the primary care outpatient clinics if they had worked on 

a farm as an adult for ≥ two years. Eligibility criteria for the study included individuals 

between the ages of 40 and 80 years. Individuals who had been diagnosed by a 

physician with asthma, lung cancer or interstitial lung disease such as pulmonary 

fibrosis, sarcoidosis and hypersensitivity pneumonitis were excluded from the study. 

Recruitment into the study began March 2008 and continued through December 2013 

with a total of 681 participants. Demographic information, smoking status and 

agricultural-related exposures were obtained at the time of enrollment. COPD was 

defined as post-bronchodilator FEV1/FVC < 0.70 by the Global Initiative for Chronic 

Obstructive Lung Disease (GOLD) classification criteria (93). The study was approved 

by the VA Nebraska Western Iowa Healthcare Systems Institutional Review Board and 

all participants signed a written informed consent document. 

 

Exposure Questionnaires 

Agricultural exposures were assessed using Questionnaire 1 (Q1) from March 2008 to 

July 2010.  Questionnaire 2 (Q2) was developed to obtain more detailed agricultural 

exposure data and was utilized from August 2010 to December 2013. All participants 

answered either Q1 or Q2.   

 

Questionnaire 1 
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Q1 was a telephone questionnaire conducted by the Nebraska Department of Health 

and Human Services. Participants were contacted at their preferred phone number 

within 30 days of enrollment.  For Q1, participants were asked to provide total years of 

working or living on a farm, as well as intensity of farm work (weeks per year, hours per 

week) during their 20’s, 40’s and 60’s.  Twenty-four percent of the population was under 

the age of 60 and did not have agricultural exposure data during this time period (60’s), 

thus the PFA for Q1 only examined intensity of farm work in participant’s 20’s and 40’s.  

Information (yes/no) on their farm and off the farm exposures (farm tasks, livestock, 

crops, and ‘other exposures’, i.e. wood dust, grain dust, silica/mineral dust, asbestos, 

smoke other than cigarette, chemical solvents, spray paint, welding fumes) and whether 

they worked on a farm (yes/no) during their 20’s and 40’s were obtained.  Farm tasks 

were assessed by asking “What were the tasks you performed on the farm?” and 

included spread manure, grind animal feed, handle silage, grind hay, till soil, drive 

combines, drive diesel tractors, and repair engines. Total years worked or lived on the 

farm were calculated by taking the age last lived or worked on a farm minus the age first 

lived or worked on a farm and subtracting any time between these two points when the 

participant did not live or work on a farm. The variables for weeks per year (≤ 4, 5-20, 

21-40, > 41) and hours per week (< 20, 20-40, 41-60, >60) working on the farm during 

the participants’ 20’s and 40’s were collected as categorical variables.  

 

Questionnaire 2 

Q2 was administered in-person by the study coordinator at the time of enrollment.  In 

contrast to Q1, Q2 assessed lifetime exposures (birth to 80 years) and more detailed 

information about intensity of farm work (hours per week, weeks per year, total years), 

farm tasks (ever/never), livestock (total years, maximum # livestock), crops (total years, 

maximum # acres), and ‘other exposures’ on and off the farm (hours per week, weeks 
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per year, total years).  A composite intensity exposure variable, total lifetime hours, was 

calculated as [total years* total hours/week * total weeks/year].  Additional exposure 

variables were collected in Q2 such as worked with diesel powered farm equipment 

(maximum days per year, total years) and worked with gas powered farm equipment 

(maximum days per year, total years).  In order to compare Q1 and Q2, we recoded Q2 

to represent exposures during the participant’s 20’s and 40’s similar to Q1 (yes/no), 

except Q2 data for farm tasks were utilized as ever/never. The intensity of farm work 

variables were collected as continuous variables in Q2 then coded as categorical 

variables (≤ 4, 5-20, 21-40, > 41 weeks per year) and (< 20, 20-40, 41-60, >60 hours per 

week) during the participants’ 20’s and 40’s for Q1 and Q2 comparisons.  

 

Principal factor analysis  

Analyses were conducted using SAS/STAT® software for Windows version 9.2 (SAS 

Institute, Cary, NC, USA).   We first standardized all time-related exposure variables that 

were continuous and described as total years or total hours to zero mean and unit 

variance, so that all these variables would enter PFA under similar scales. PFA was 

conducted using SAS PROC FACTOR using a polychoric correlation covariance matrix; 

a method for estimating correlations among theorized normally distributed continuous 

latent variables from observed ordinal variables (94,95). With this method, factors, that 

are independent of each other, were extracted in descending order of importance with 

respect to the proportion of the variance accounted for by each factor (96).  For 

example, the first factor was derived from a weighted linear combination of agricultural 

variables that accounted for the largest total variation in the data. The second factor 

derived contained another linear combination of agricultural variables and accounted for 

variance not accounted for by the first factor.  
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The number of factors in the model was determined based on the following 

criteria: at least two variables with a loading score of ≥ 0.5 in a factor; factors must have 

an eigenvalue > 1.0; and each factor must account for at least 1 percent of the total 

variance.  For every variable in each factor, a factor loading score was calculated, which 

represents the correlations between each of the variables included in each factor, similar 

to Pearson correlation coefficients (97,98). Generally, a factor loading score of 0.30 to 

0.40 are considered meaningful (96-99); however we used a factor loading score of ≥ 

0.5 to identify the most highly correlated variables in each factor.  Also, the eigenvalue 

for each factor was calculated and an eigenvalue > 1 indicated that the factor explained 

more of the variance than could be accounted for by any one variable (96,99). We used 

a promax (oblique) rotated factor pattern because we assumed that the factors were 

correlated (92). We determined the number of factors using the scree test plot.  The 

scree test plots the factors on the X-axis and the corresponding eigenvalues on the Y-

axis (100). The test drops factors after the break of inflexion.  This test is reliable when 

the sample size is at least 200 (96).  The scree test plot was first viewed to determine 

the number of factors to include and PROC FACTOR was again conducted where the 

number of factors were specified.  

In total, four models were run.  Model 1 used data from Q1 and was compared to 

Q2.  Models 1 and 2 differed only by the way farm task questions were asked, i.e. For 

Q1 farm tasks were asked as “yes/no” during the participants 20’s and 40’s and for Q2  

farm tasks were asked as “ever/never” during their lifetime. Model 2 was then compared 

to Model 3 to ascertain whether utilization of dichotomous versus intensity exposure 

variables (years), respectively, yielded similar factor loading models. And finally, Model 3 

was compared to Model 4, to determine whether agricultural exposure variables coded 

as total lifetime years compared to total lifetime hours, respectively, generated a greater 

percentage of variation explained.  
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Results 

A total of 263 eligible subjects were enrolled using Q1 and 418 participants enrolled 

using Q2, all with the exposure questionnaire completed. The two populations were 

primarily white males with ~ 55% of the participants having greater than a high school 

education (Table 1). The prevalence of COPD in this population was 39.8%.  Of note, 

participants enrolled using the Q2 were older (p = 0.007, Q1 = 63.5 years ± 8.1 SD vs. 

Q2 = 65.3 years ± 8.7 SD), worked on a farm for longer (p = 0.001, Q1 = 24.6 years ± 

19.6 SD vs. Q2 = 29.6 years ± 18.5 SD) and were more likely to be exposed to hogs in 

open pen, beef cattle, dairy cattle, poultry and crops than those enrolled with Q1.  

 

Questionnaire 1 

For development of Model 1, agricultural exposure data were obtained from Q1.  Q1 

collected mostly dichotomous exposure data (yes/no) during the participants’ 20’s and 

40’s, except duration (years lived/worked) and intensity of farm work (weeks per year 

and hours per week) were obtained as continuous variables.  The factors for Model 1 

yielded eigenvalues greater than 1 and explained 24.4% of the variance in the exposure 

data (Table 2).  Factor 1 explained 7.3% of the variance in the observed data, Factor 2 

explained 7.0%, Factor 3 and Factor 4 explained 7.0% and 3.1%, respectively.  The 

proportion of variance explained by each of the remaining factors was 6.2% and these 

factors were not included in the final model due to our a priori inclusion criteria.  

Variables loading high on Factor 1 (i.e. factor loading scores equal to or greater than 

0.50) were exclusively ‘other exposures’ from a job on or off the farm during the 

participants 20’s or 40’s, including wood dust, grain dust, rock dust, asbestos, smoke 

other than cigarette, chemical solvents, spray paint, and welding fumes.  Loading high 

on Factor 2 were live/work on farm (weeks per year, hours per week) during their 20’s, 

farm tasks such as spread manure, handle silage, and grind hay during their 20’s or 
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40’s, and exposure to many types of livestock.  Variables substantial to Factor 3 were 

total lifetime years lived or worked on the farm as well as worked on the farm during their 

40’s (weeks/year and hours/week).  Farm tasks performed during their 20’s or 40’s, such 

as grinding animal feed, driving combines, driving diesel tractors, along with exposure to 

pesticides, loaded high in Factor 3.  Factor 4 included two variables, exposure to hogs in 

closed lots and crops. 

 

Questionnaire 2 

Because there were two questionnaires, two phases of population recruitment, and more 

detailed exposure information collected in Q2 compared to Q1, we wanted to determine 

if the factor models obtained by each questionnaire were qualitatively comparable when 

using similar exposure variables. Data for Q2 were recoded to represent exposures 

(lived/worked on a farm and variables for exposure to livestock, crops and ‘other 

exposures’) during the participants’ 20’s and 40’s. Data for farm tasks were utilized as 

lifetime exposure (ever, never).  In Model 2, four factors were retained in the model and 

explained 14.5% of the total variance in the observed data (Table 3). The remaining 

factors accounted for 5.3% of the variance.  Variables loading high on Factor 1 were 

heterogeneous and included worked on a farm during the participants’ 20’s (weeks per 

year and hours per week) and exposure to hogs in open lots, beef cattle, dairy cattle, 

poultry, crops, and grain dust in their 20’s or 40’s.  Factor 1 explained 4.3% of the 

variance in the observed data. Factor 2 explained 3.9% of the variance in the observed 

data and was a homogeneous factor comprised of many farming tasks performed in their 

lifetime such as spread manure, grind animal feed, handle silage, grind hay, till soil, and 

drive combines and diesel tractors. Variables included in Factor 3 were years lived and 

worked on the farm and worked on the farm (weeks per year and hours per week) in the 
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participants’ 40’s. Factor 3 explained 3.6% of the variance in the observed data. Factor 4 

explained 2.7% of the variance and included exposure to wood dust, rock dust, 

asbestos, chemical solvents, and spray paint during their 20’s or 40’s with asbestos, 

smoke, chemical solvents and welding fumes near the cutoff loading score of 0.5.   

Q2 collected detailed exposure data over the participant’s lifetime. We wanted to 

ascertain whether utilization of these intensity exposure variables (years) yielded more 

homogeneous factors compared to using dichotomous (yes/no) exposure variables.  In 

Model 3, we incorporated lifetime agricultural exposures (continuous variables) and 

compared the factors and factor loading scores to Model 2, where dichotomous 

exposure variables (20’s and 40’s) were utilized.  For Model 3, three factors explained 

10.5% of the total variance in the observed data (Table 4).  The proportion of variance 

explained by the remaining factors was 5.6%. Factor 1 was a heterogeneous factor 

explaining 4.7% of the variance and included years lived and worked on the farm, years 

worked with beef cattle, crops, grain dust, and pesticide.  Factor 2 in Model 3 loaded 

similar variables as Factor 2 in Model 2 and explained 3.5% of the variance, i.e. farming 

tasks such as spread manure, grind animal feed, handle silage, grind hay, till soil, and 

drive combines.  Factor 3 explained 2.3% of the variance and included the lifetime 

exposure (years) to wood dust, rock dust, asbestos, chemical solvents, and spray paint.  

We developed Model 4 to assess if more detailed lifetime intensity variables 

resulted in unique principal factors and exposure patterns that captured a greater 

variation than Model 3. Model 4 employed total lifetime hours for worked on farm, 

worked with livestock, exposure to crops and ‘other exposures’ (Table 5). Additional 

variables utilized in Model 4 were the summation of maximum number of livestock, 

maximum number of acres of crops and diesel/gas exposure. Model 4 included four 

factors and explained 16.6% of the variance. The remaining factors accounted for 11.5% 

of the variance.  Factor 1 explained 7.8% of the total variance and included years lived 
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on the farm, total hours worked on the farm, total years worked with diesel power, total 

days/year worked with gas powered equipment, and farm tasks performed over a 

lifetime, such as till soil, drive combines, and drive diesel tractors.  Total years worked 

with beef cattle, total years worked with crops, total number of acres of crops, and total 

hours exposed to grain dust, pesticides, and diesel fuel were also included in Factor 1.  

Factor 2 included total years exposed to hogs in open lots, total years of exposure and 

number of dairy cattle and poultry.  Factor 2 explained 3.6% and Factor 3 explained 

2.7% of the total variance.  Factor 3 included lifetime total hours exposed to rock dust 

and spray paint.  Factor 4 included total years and acres of other crops and explained 

2.5% of the total variance. 

In order to reduce bias, a sensitivity analysis was performed for Model 4 by 

stratifying by COPD status (Table E1). Similar clustering patterns were found for Factors 

1 and 2 in the total population and those with COPD and those without COPD, and were 

identical when the factor loading score was relaxed to 0.4. Factor 3 in Model 4 for the 

total population loaded similar variables to those with COPD, while Factor 4 contained 

variables from both COPD and no COPD. In addition, age and smoking status were 

tested in all models; however, these variables had a loading score <0.5 and thus, were 

not included in the final models. 
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Discussion  

The ultimate goal of the veteran cohort is to describe long-term agricultural exposures 

and their relation to respiratory outcomes. Existing studies have shown the harmful 

effects of the farming environment on COPD, asthma, and other airway diseases (85). 

Specifically, exposures such as animals, hay, and grains are known to have an adverse 

effect on respiratory health (101), as well as agricultural pesticides (102). Long-term 

work in large animal-feeding operations, particularly swine confinement facilities and 

cattle feedlots (103), also contribute to chronic respiratory disease with dairy farming 

associated specifically with COPD (104). 

In this exploratory statistical analysis, we utilized principal factor analysis to 

examine the correlation among a large number of exposure variables as well as to 

reduce the number of variables into domains of agricultural exposure patterns without 

loss of a significant amount information.  Model 1 utilized Q1 that collected dichotomous 

(yes/no) exposure data during the participants’ 20’s and 40’s.  Models 2, 3, and 4 utilized 

variables collected from Q2 which quantitated lifetime agricultural exposures as total 

years, weeks per year and hours per week. Overall, we found that duration and intensity 

of farm work, farm tasks, livestock exposure, crop exposure and ‘other exposures’ were 

independent entities and their clustering within a model was modified by the intensity 

units of exposure (dichotomous vs. continuous).   

There were four principal factors derived for Model 1 using Q1. Factor 1 had a 

homogeneous cluster composed of variables in the ‘other exposures’ category and 

represented job exposures on or off the farm such as wood dust, grain dust, rock dust, 

asbestos, smoke other than cigarette, chemical solvents, spray paint, and welding 

fumes.  These exposures are often categorized as vapor, dust and smoke, and have 

been associated with occupational respiratory disease such as asthma and COPD (105).  

Factor 2 was heterogeneous yet interpretable and included variables such as duration of 
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farm work during the participants’ 20’s, select farm tasks and livestock exposures. Of 

note, the farm tasks in this factor were related to animal husbandry such as spread 

manure and exposure to dairy cattle. Individuals who farmed during their 20’s were more 

likely to have exposure to animals than those that farmed during their 40’s. In contrast, 

individuals that farmed during their 40’s were more likely to perform less strenuous tasks 

such as drive combines and diesel tractors and this pattern was observed in Factor 3. 

There are many reasons why younger farmers have different exposures than older 

farmers.  Open cabbed tractors, while rare today, were the norm for older farmers and 

therefore, they were more exposed to pesticides and dust (106). We see this in Model 1 

where working on the farm in the participant’s 40’s clustered with driving of combines 

and diesel tractors as well as pesticides. There was a clear separation between all 

factors such that each variable loaded significantly on only one factor. The variables with 

loading scores of ± 0.50 or higher within a factor were correlated most likely due to the 

fact that many of the variables within a cluster, such as farm tasks, are done collectively 

when working in agriculture. 

Model 2 was derived using Q2 variables that were recoded to replicate exposure 

variables similar to Q1.  The variables were dichotomous for exposure during the 

participants’ 20’s and 40’s.  As in Model 1, there were four factors and each variable 

loaded significantly on only one factor.  The first factor included working on a farm during 

their 20’s and this was correlated to animal exposures such as beef and dairy cattle and 

hogs in open lots (marginal correlation).  This pattern was also observed in Model 1. In 

addition to animal exposures during the participants 20’s, crops and grain dust were 

included in Factor 1 and are consistent with livestock production practices.  Factor 2 

aligned with many of the farming tasks, while Factor 3 consisted of lifetime years lived 

and worked on a farm along with intensity of farm work during the participants 40’s. This 

clustering of lifetime years and intensity of farm work was similar to that observed in 
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Model 1. Factor 4 included variables from ‘other exposures’ and this same pattern was 

seen for Model 1. Overall the factors in Model 1 and 2 were similar with clustering of 

lifetime years worked/lived on a farm, intensity of farm work, livestock exposure, and 

‘other exposures’. The major difference between the two models was that farm tasks 

loaded heavily in Model 2 compared to Model 1.  In Q2, these farm task questions were 

asked as “ever/never” during their lifetime, whereas in Q1 these questions were asked 

with “yes/no” answers for their 20’s and 40’s. These observations suggest that collecting 

information on farm tasks is important in accounting for the variability in agricultural 

exposures due to their heavy loading in the model and that the “ever/never” during a 

person’s lifetime would be more all-inclusive.  Furthermore, the dissimilarities of factors 

in Models 1 and 2 may be due to the different age structure of these two populations.  

The population from Q2 had a greater proportion of people older than 70 than the 

population from Q1. Of note, the percentage of variation explained is a measurement of 

fit. Q2 had a lower percentage of variation explained compared to Q1, which may be due 

to greater variability as it was used on a larger population with more workers (86% vs 

59%) working on a farm for more than 10 years. 

For Model 3, we used lifetime exposures with intensity units as total years, 

except for farm tasks as ever/never. The principal factors for Model 3 had three distinct 

patterns.  The first factor contained heterogeneous exposure variables including 

live/work on the farm, livestock, crops, and ‘other exposures’.  Farming tasks clustered 

and loaded heavily in Factor 2 as with ‘other exposure’ variables in Factor 3. Also, these 

domains were predominant in Model 2. Even though the percentage of variance 

explained in Model 3 was less than that in Model 2, there was utilization of more 

complete exposure variables (lifetime) in Model 3 compared to Model 2 (20’s and 40’s).  

As a final Model, we included all of the collected exposure and intensity variables 

as total lifetime hours, maximum lifetime number of livestock or acres of crops or 
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ever/never farm tasks.  We observed four distinct factors in Model 4.  Factor 1 was a 

heterogeneous factor that included exposures related to crops and livestock, whereas 

the main Factor 2 domain was livestock. Factor 3 included variables from ‘other 

exposures’ and Factor 4 was solely ‘other crops’.  Model 4 captured a higher percentage 

of variance, which suggests that detailed intensity variables for agricultural exposure are 

advantageous in capturing a greater percentage of variance than dichotomous (yes/no) 

or even the variables coded as total years.  We observed that diesel/gas exposure 

variables were important to include in Model 4 as it loaded high in Factor 1. Model 4 

included additional crop variables that were asked in Q2 and resulted in a distinct factor 

pattern of crops (Factor 4).  This was not found in previous models.  

Many studies have found the utility of factor analysis. The Agricultural Health 

Study utilized factor analysis to identify clusters of pesticide exposures that relate to 

prostate cancer (107). Another study clustered respiratory phenotypes of COPD to 

explain the heterogeneity of COPD (108). PFA is not only used to assess the effect of 

occupational exposures on respiratory diseases, but is also used to evaluate the 

reproducibility and validity of questionnaires as Hammond et al. tested the validity and 

reliability of the English Evaluation of Daily Activity Questionnaire (109).  

In this study, factor analysis was used to extract the useful information from a 

complex dataset to interpret the agricultural exposure data.  Studies have found the 

importance in including the use of solvents, paint, exposure to welding fumes (110), and 

pesticide use (98) when investigating exposure-respiratory disease associations.  We 

found these exposure variables to also be important in our analysis in describing long-

term agricultural exposures. 

This study has some important strengths.  First, the exposure data were 

comprehensive, including hours per week, weeks per years, and total years, and were 
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collected by trained study personnel. Secondly, the agricultural population is large and 

all have worked in Nebraska or Iowa, thus have similar exposures. Finally, the statistical 

methods used allow unbiased analyses that are not based on any a priori assumptions. 

This study does have limitations.  Recall bias is probable since participants were asked 

to retrospectively recall their lifetime farming exposures. This could have resulted in 

overestimation or underestimation of the exposure, which could ultimately impact factor 

weighting and subsequent regression analysis.  There is a potential for interviewer bias 

as there were two methods to obtain exposure information, telephone interviews for Q1 

and in-person interviews for Q2.  It would be difficult to determine if this would be an 

over- or under-reporting of exposures. Additionally, there is the issue of generalizability 

of these results.  The population included veterans with agricultural exposure utilizing the 

VA Nebraska Western Iowa Health Care System. They were primarily white males with a 

mean age of 64 years; therefore, their agricultural exposures may be different from 

younger workers due to technological advances in farming. In addition, direct 

measurement of agricultural exposures was not performed. 

In summary, we found that PFA was an effective statistical method for 

characterizing exposure patterns in our population of agricultural workers.  We have 

identified clusters in a large dataset that describes the heterogeneity of exposures 

including duration and intensity of farm work, farm tasks, livestock exposure, crop 

exposure and ‘other exposures’. We examined four models and found that Model 4, with 

the most detailed exposure information, captured the highest percentage of variance 

compared to the other models.  The resulting factor patterns were clearly interpretable 

and logical in terms of farming practice.  From this study, we also determined that the 

most important exposure variables to be asked in questionnaires when evaluating 

agricultural exposures and respiratory diseases are years worked on a farm, farm tasks, 

and exposure to livestock, crops and ‘other exposures’ as these consistently loaded high 
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across the four models. The next step is to further explore these patterns in Model 4 to 

examine the relationship between agricultural exposures and respiratory diseases such 

as COPD in this population.   
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Table 1.  Study Population Characteristics 

Characteristic 
 

Questionnaire 1 
n=263 

Questionnaire 2 
n=418 

Sex*   
Male 261 (99) 406 (97) 
Female 2 (1) 12 (3) 

Age (yrs)*   
≤49 14 (5) 20 (5) 
50-59 59 (22) 71 (17) 
60-69 126 (48) 191 (46) 
70-80 64 (24) 136 (32) 

Race*^   
White 259 (98) 391 (95) 
Other 4 (2) 20 (5) 

Education**   
≤ High school 99 (39) 180 (44) 
> High school 131 (51) 230 (56) 
Refused 27 (10) 0 (0) 

Smoking Status^   
Current 53 (21) 86 (21) 
Former 147 (59) 240 (58) 
Never 49 (20) 87 (21) 
Refused 1 (<1) 0 (0) 

Worked on Farm (yrs)#** 
      

23.9 ± 19.7 29.4 ± 18.6 

Agricultural Exposures 
(Yes/No) 

Hogs, confinement  
Hogs, open pen** 
Beef cattle** 
Dairy cattle** 
Poultry** 
Crops** 

 
58 (26) 
115 (51) 
136 (60) 
67 (30) 
85 (38) 
155 (68) 

 
84 (20) 

296 (71) 
309 (74) 
243 (58) 
286 (69) 
399 (96) 

COPD^ 
Yes 
No 

 
102 (42) 
141 (58) 

 
151 (37) 
257 (63) 

Data are presented as n (%)  
*P value < 0.05 
**P value < 0.001  

                                       ^Numbers don’t add up due to missing values 
#Data presented as mean ± SD 
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Table 2. Principal factor analysis results for Questionnaire 1 (Model 1), (n= 263)* 

Exposures 
 

  
FACTOR 1 

 

 
FACTOR 2 

 
FACTOR 3 

 
FACTOR 4 

Live/Work on Farm 
(20’s, 40’s) 

 
Lived on farm, yrs (lifetime) 

 
-28 

 
1 

 
82 

 
6 

  Worked on farm, yrs (lifetime) 3 9 61 8 
 Worked on farm, wks/yr (20’s) -1 63 27 7 
 Worked on farm, wks/yr (40’s) 10 -8 109 -32 
 Worked on farm, hrs/wk (20’s) 5 55 19 12 
 Worked on farm, hrs/wk (40’s) 1 -14 110 -16 
Farm Tasks 
yes/no, (20’s, 40’s)^ 

 
Spread manure 

 
17 

 
59 

 
36 

 
-7 

  Grind animal feed 7 39 52 17 
  Handle silage 21 50 19 12 
  Grind hay 10 67 30 7 
  Till soil 20 34 48 19 
  Drive combines 9 33 67 0 
  Drive diesel tractors 34 7 50 23 
  Repair engines 38 28 25 -4 
Livestock 
yes/no, (20’s, 40’s)^ 

 
Hogs in closed lots 

 
14 

 
-8 

 
10 

 
85 

  Hogs in open lots -12 62 24 29 
  Beef cattle 20 55 27 12 
  Dairy cattle -18 120 -22 -9 
  Poultry 8 69 1 5 
  Other livestock 31 83 -16 33 
Crops 
yes/no, (20’s, 40’s)^ 

 
Corn, soybeans, hay, grain 

sorghum, wheat, oats 

 
-5 

 
0 

 
-25 

 
115 

 
Other Exposures 

 
Wood dust 

 
89 

 
7 

 
-4 

 
-25 

yes/no, (20’s, 40’s)^ Grain dust 53 32 22 6 
  Silica/sand/rock/mineral dust 84 22 -30 3 
  Asbestos 76 -20 10 9 
  Smoke other than cigarette 90 13 -18 3 
  Chemical solvents 82 2 10 17 
  Spray paint 80 -12 14 7 
  Welding fumes 74 2 23 2 
  Pesticide 28 11 56 4 
Eigenvalue  19.0 2.1 1.8 1.4 

*For ease of presentation, all values were multiplied by 100 and rounded to the nearest integer.  
^If they answered yes in either their 20’s and/or 40’s 
Bolded values represent factor loading score of +0.50 or higher 
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Table 3. Principal factor analysis results for Questionnaire 2 (Model 2), n = 
418* 

 

Exposures 
 

  
FACTOR 1 

 

 
FACTOR 2 

 
FACTOR 3 

 
FACTOR 4 

Live/Work on Farm 
(20’s, 40’s) 

 
Lived on farm, yrs 

(lifetime) 

 
8 

 
28 

 
52 

 
-23 

  
Worked on farm, yr 

(lifetime) 
9 18 65 -17 

 
Worked on farm wks/yr 

(20’s) 

66 0 -13 -13 

 
Worked on farm wks/yr 

(40’s) 
-11 -16 105 8 

 
Worked on farm 

hrs/wk(20’s) 

50 -7 -13 -8 

 
Worked on farm hrs/wk 

(40’s) 
9 -10 92 4 

Farm Tasks 
ever/never (lifetime) 

 
Spread manure 

 
1 

 
62 

 
-1 

 
7 

  Grind animal feed 3 77 6 -10 
  Handle silage 0 73 -12 25 
  Grind hay -3 52 -13 7 
  Till soil 3 70 17 -13 
  Drive combines 23 75 5 0 
  Drive diesel tractors 16 51 29 34 
  Repair engines -9 20 17 35 
Livestock 
yes/no (20’s, 40’s)^ 

 
Hogs, closed lots 

 
24 

 
7 

 
5 

 
4 

  Hogs, open lots 58 27 8 -18 
  Beef cattle 56 7 18 2 
  Dairy cattle 65 17 -15 2 
  Poultry 79 2 -3 10 
  Other livestock 12 5 7 33 
Crops 
yes, no (20’s, 40’s)^ 

 
Corn, soybeans, hay, 
grain sorghum, wheat, 

or oats 

 
76 

 
-5 

 
30 

 
4 

Other Exposures 
yes, no (20’s, 40’s)^ 

 
Wood dust 

 
10 

 
-1 

 
-6 

 
63 

  Grain dust 74 -8 21 17 

  
Silica/sand/rock/mineral 

dust 
16 -9 -15 62 

  Asbestos -20 14 0 51 

  Smoke, not cigarette -12 -6 17 45 
  Chemical solvents -12 -2 6 52 

  Spray paint -9 20 -17 59 

  Welding fumes 20 -3 -1 44 
  Pesticides 35 8 36 7 
Eigenvalue  7.3 2.9 2.3 2.0 

*For ease of presentation, all values were multiplied by 100 and rounded to the nearest 
integer.  
^If they answered yes in either their 20’s and/or 40’s 
Bolded values represent factor loading score of +0.50 or higher 
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Table 4. Principal factor analysis results using Questionnaire 2 

(Model 3), n = 418* 

Exposures 
 

  
FACTOR 1 

 

 
FACTOR 2 

 
FACTOR 3 

Live/Work on Farm 
(lifetime) 

 
Lived on farm, yrs  

 
68 

 
11 

 
10 

  Worked on farm, yrs  94 -9 0 
Farm Tasks 
ever/never (lifetime) 

 
Spread manure 

 
-3 

 
65 

 
5 

  Grind animal feed 15 72 -9 
  Handle silage -16 77 14 
  Grind hay -15 58 1 
  Till soil 17 70 -15 
  Drive combines 18 72 -7 
  Drive diesel tractors 23 46 24 
  Repair engines 20 13 40 
Livestock 
total yrs (lifetime) 

 
Hogs in closed lots 

 
5 

 
24 

 
2 

  Hogs in open lots 49 19 -13 
  Beef cattle 61 7 1 
  Dairy cattle 23 19 2 
  Poultry 17 0 6 
  Other livestock 10 5 17 
Crops 
total yrs (lifetime) 

 
Corn, soybeans, hay, 
grain sorghum, wheat, 

oats 

 
96 

 

 
-5 

 
0 

Other Exposures 
total yrs (lifetime) 

 
Wood dust 

 

-4 
 

-5 
 

56 

  Grain dust 84 -9 11 

  
Silica/sand/rock/mineral 

dust 
-15 0 62 

  Asbestos 6 -1 57 

  
Smoke other than 

cigarette 
8 -3 44 

  Chemical solvents 8 11 50 

  Spray paint -16 15 53 

  Welding fumes 22 8 44 
  Pesticide 68 8 7 
Eigenvalue  6.8 2.7 1.4 

*For ease of presentation, all values were multiplied by 100 and 
rounded to the nearest integer.  
Bolded values represent factor loading score of +0.50 or higher 

  



34 
 

 
 

Table 5. Principal factor analysis results using Questionnaire 2 (Model 4), n = 

418* 

Exposures 
 

  
FACTOR 1 

 

 
FACTOR 2 

 
FACTOR 3 

 
FACTOR 4 

Live/Work on Farm 
(lifetime) 

 
Lived on farm, yrs 

 
64 

 
15 

 
-25 

 
3 

  Worked on farm, total hrs^ 88 3 -21 10 
Farm Tasks 
never, ever (lifetime) 

 
Spread manure 

 
20 

 
48 

 
25 

 
-20 

  Grind animal feed 36 36 8 -42 
  Handle silage 15 33 42 -29 
  Grind hay 7 27 20 -26 
  Till soil 53 22 10 -7 
  Drive combines 50 14 11 -39 
  Drive diesel tractors 64 -21 37 -10 
  Repair engines 27 -12 38 -3 
Livestock 

total hrs^ & max no.+ 

(lifetime) 
 

Hogs in closed lots, total yrs 
 

12 
 

17 
 

5 
 

-8 
  Hogs in open lots, total yrs 36 51 -31 -15 
 Max # of hogs in open lots 30 38 -19 -34 
  Beef cattle, total yrs 58 23 -13 7 
 Max # beef cattle  43 7 6 5 
  Dairy cattle, total yrs 4 66 -2 6 
 Max # dairy cattle  -4 58 6 0 
  Poultry, total yrs -8 78 -5 20 
 Max # poultry  -26 72 -6 14 
  Other livestock, total yrs 17 30 31 40 
 Max # other livestock  10 29 36 35 
Crops 

total hrs^ & max no.+ 

(lifetime) 

 
Corn, soybeans, hay, grain 

sorghum, wheat, oats, total yrs 

 
85 

 
2 

 
-22 

 
6 

 

Max # of acres, corn, 
soybeans, hay, grain sorghum, 

wheat, oats 

71 -25 6 -4 

 Other crops, yrs 11 17 6 80 

 # acres, other crops  15 12 9 79 

Other Exposures 
total hrs^ (lifetime) 

 
Wood dust 

 
-14 

 
12 

 

49 
 

8 
  Grain dust 79 -1 -4 12 
  Silica/sand/rock/mineral dust -24 14 54 -7 
  Asbestos -3 -8 49 0 
  Smoke other than cigarette 8 11 37 31 
  Chemical solvents -2 -4 39 9 
  Spray paint -6 -10 57 1 
  Welding fumes 14 0 40 -6 
  Pesticide 70 3 1 12 
Diesel/Gas 
(lifetime) Worked diesel power, yrs 93 -23 10 13 

 
Worked gas powered  
equipment, days/yr 

72 0 -3 -4 

 Diesel fuel/fumes/exhaust 75 -7 16 6 
Eigenvalue  9.3 2.9 2.4 2.2 

*For ease of presentation, all values were multiplied by 100 and rounded to the 
nearest integer. Bolded values represent factor loading score of +0.50 or higher 
^Total hours in lifetime   = (total yrs)*(total hrs/wk)*(total wks/yr)  
+Maximum # = average number of livestock or average number acres of crops in 
lifetime 



35 
 

 
 

SUPPLEMENT 

 

 

 

A PRINCIPAL FACTOR ANALYSIS TO CHARACTERIZE AGRICULTURAL EXPOSURES  

AMONG NEBRASKA VETERANS 
  



36 
 

 
 

Table 6. Principal factor analysis results using Questionnaire 2 (Model 4, stratified by 

COPD status), n =418* 
  FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4 
Exposures 
 

 COPD No 
COPD 

COPD 
 

No 
COPD 

COPD 
 

No 
COPD 

COPD 
 

No 
COPD 

Live/Work on Farm 
(lifetime) 

 
Lived on farm, yrs 

 
46 

 
73 

 
38 

 
7 

 
5 

 
-21 

 
-20 

 
8 

  Worked on farm, total hrs^ 83 90 19 -7 8 -15 -20 14 
Farm Tasks 
never, ever (lifetime) 

 
Spread manure 

 
14 

 
18 

 
15 

 
62 

 
55 

 
12 

 
41 

 
8 

  Grind animal feed 35 32 24 54 49 7 3 -21 
  Handle silage 29 3 9 51 31 31 49 -19 
  Grind hay 38 -8 -12 45 66 19 0 -11 
  Till soil 49 51 -3 37 24 -1 15 7 
  Drive combines 49 43 22 25 39 11 9 -33 
  Drive diesel tractors 55 60 -13 -11 7 41 31 -14 
  Repair engines 10 35 0 -8 -9 47 29 2 
Livestock 

total hrs^ & max no.+ 

(lifetime) 
 

Hogs in closed lots, total yrs 12 

 
 

13 12 

 
 

14 16 

 
 

3 -1 

 
 

7 

  Hogs in open lots, total yrs 34 35 63 50 9 -33 -16 -12 
 Max # of hogs in open lots 21 27 50 48 22 -29 5 -35 
  Beef cattle, total yrs 46 62 40 16 -6 -11 1 6 
 Max # beef cattle  34 42 13 8 -2 0 20 5 
  Dairy cattle, total yrs 23 -4 65 69 -12 1 -1 15 
 Max # dairy cattle  9 -10 52 64 -8 4 8 13 
  Poultry, total yrs -13 4 74 60 -2 1 7 38 
 Max # poultry  -36 -14 80 60 -22 3 5 24 
  Other livestock, total yrs 11 25 6 16 3 21 50 61 

 Max # other livestock  4 16 1 18 8 23 59 56 

Crops 

total hrs^ & max no.+ 

(lifetime) 

 
Corn, soybeans, hay, grain 

sorghum, wheat, oats, total yrs 

 
81 

 
86 

 
17 

 
-4 

 
2 

 
-16 

 
-25 

 
4 

 

Max # of acres, corn, 
soybeans, hay, grain sorghum, 

wheat, oats 

69 68 -22 -20 11 6 0 -6 

 Other crops, yrs 37 -6 8 5 -75 -17 23 84 

 # acres, other crops  42 -2 6 2 -81 -10 21 81 

Other Exposures 
total hrs^ (lifetime) 

 
Wood dust 

 
-15 

 
-16 

 
4 

 
17 

 
-7 

 
48 

 
53 

 
10 

  Grain dust 78 81 -5 -2 -1 -2 -4 13 
  Silica/sand/rock/mineral dust -49 -12 12 12 6 54 71 1 
  Asbestos -9 1 -10 -3 0 60 33 9 
  Smoke other than cigarette 16 6 -8 12 -22 38 39 37 
  Chemical solvents 1 0 -13 -2 -13 47 27 10 
  Spray paint 24 -20 -50 13 -4 64 32 -9 
  Welding fumes 14 15 1 3 -8 43 40 -11 
  Pesticide 69 67 10 10 -28 9 8 -2 
Diesel/Gas 
(lifetime) Worked diesel power, yrs 85 

 
94 -14 

 
-20 -14 

 
14 6 

 
6 

 
Worked gas powered  
equipment, days/yr 

72 69 -3 7 10 -2 -6 -3 

 Diesel fuel/fumes/exhaust 69 78 -6 -2 -16 18 14 -1 
Eigenvalue  9.6 9.3 3.1 3.3 2.8 2.9 2.2 2.1 

*For ease of presentation, all values were multiplied by 100 and rounded to the nearest integer. 
Bolded values represent factor loading score of +0.50 or higher 
^Total hours in lifetime   = (total yrs)*(total hrs/wk)*(total wks/yr)  
+Maximum # = average number of livestock or average number acres of crops in lifetime 
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CHAPTER III.  TLR4 ASP299GLY IS ASSOCIATED 
WITH CHRONIC BRONCHITIS AND DECREASED 
LPS-STIMULATED TNF- α PRODUCTION IN 
AGRICULTURAL WORKERS 

 

Abstract 

Introduction: Exposure to lipopolysaccharide (LPS) in the agricultural environment has 

been associated with increased respiratory symptoms among workers. The toll-like 

receptor 4 (TLR4) gene encodes the receptor for LPS. A mutation at amino acid position 

299 (Asp299Gly; rs4986790) of the TLR4 gene has been associated with acute airway 

and inflammatory hypo-responsiveness to inhaled LPS.  We hypothesized that 

agricultural workers chronically exposed to LPS and carry the Asp299Gly polymorphism 

would be protected from respiratory symptoms. 

 

Methods: We examined the association of TLR4 tagging single nucleotide 

polymorphisms (SNPs) with chronic bronchitis in the Keokuk County Rural Health Cohort 

and the veterans AgLung population. Participants were between the ages of 40-90 years 

and worked on a farm for at least two years. Chronic bronchitis was defined as having 

chronic cough and chronic phlegm for three consecutive months for at least two years. 

Whole blood was stimulated with LPS and assayed for TNF-α by ELISA.  

 

Results: The Keokuk population was primarily non-smoking white males (60.6%) with a 

mean age of 68.8 ± 11.0 (SD) years.  Participants reported working on a farm for 33.3 ± 

20.7 (mean ± SD) years.  Of the 279 individuals, 14.7% had chronic bronchitis.  Farmers 

with the TLR4 rs4986790 AG or GG genotypes had a significantly greater odds of 

chronic bronchitis compared with farmers with the AA genotype (ORadj = 3.27; 95% CI: 

http://www.pubpdf.com/pub/27049536/A-principal-factor-analysis-to-characterize-agricultural-exposures-among-Nebraska-veterans
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1.33, 8.06), even after adjustment for age, body mass index, education, sex, years 

worked on farm and smoking status. These results were confirmed in the AgLung 

population (n = 588) (ORadj = 1.88; 95% CI: 0.99, 3.55). The AgLung population 

consisted of 94.2% white males with a mean age of 64.6 ± 8.5 (SD).  Individuals in the 

AgLung cohort reported working on a farm for 27.7 ± 19.0 (mean ± SD) years. The 

prevalence of chronic bronchitis in the AgLung population was 32.1%. Individuals with 

the minor allele at rs4986790 had decreased responsiveness to LPS as measured by 

TNF- α (padj=0.029) compared to those with the AA genotype. 

 

Conclusion: We provide evidence that a missense polymorphism in the TLR4 gene 

(Asp299Gly) is associated with increased odds of chronic bronchitis in two agriculturally-

exposed populations. We also show that the minor allele at Asp299Gly was associated 

with decreased LPS-stimulated production of TNF- α in a whole blood assay.  
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Introduction  

Chronic bronchitis is a common complaint in farmers, with a prevalence of approximately 

25% (23,25). The disease is characterized by airway inflammation and mucus 

hypersecretion (111,112), and is defined as having chronic cough and chronic phlegm 

for greater than two years (111,113). Though tobacco smoke is recognized as the 

number one risk factor for chronic bronchitis, agricultural dust has proven to be a 

significant cause for the disease (22). Agricultural workers are exposed to high 

concentrations of airborne inhalable organic dust (114,115), which contains high 

amounts of lipopolysaccharide (LPS), a component of the gram-negative bacterial cell 

wall (31,32). LPS exposure has been linked to inflammatory outcomes and several 

studies have shown a dose-response relationship between LPS and respiratory disease, 

including chronic bronchitis (33-35,116). 

The innate immune response in the airways involves recognizing conserved 

pathogen-associated molecular patterns (PAMPs) by Toll-like receptors (TLRs) (72,117), 

ten of which have been identified to date. The TLR4 receptor recognizes LPS, in 

combination with CD14 (59) and myeloid differentiation protein 2 (MD-2) (60), and 

activates NF-κB and AP-1 (61) resulting in production of pro-inflammatory cytokines 

(62,63) such as IL-6 and TNF-α. These inflammatory cytokines are found in high levels 

among those with respiratory symptoms (64-66); thus, TLR4 may have a role in the 

development and/or progression of chronic respiratory diseases, such as chronic 

bronchitis (72). 

Functional polymorphisms in TLR4 have been studied and their role investigated 

in a number of inflammatory diseases (67), such as disseminated candidiasis (118), 

sepsis (119), and inflammatory bowel disease (120). These studies have focused on the 

missense Asp299Gly polymorphism, with the rare allele Gly299 associated with reduced 

levels of pro-inflammatory cytokines. In the study by Arbour et al, Gly299 was associated 
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with hypo-responsiveness to inhaled LPS as measured by FEV1 and displayed 

increased inflammation in response to LPS inhalation (63,68,69). In another study, 

investigators found that the Gly299 allele was protective in patients with chronic 

obstructive pulmonary disease (COPD) (70), while other studies suggested that the 

presence of the TLR4 polymorphism, including Gly299 did not have any significant 

impact on lung function (67,71). These contrasting results were also found by Budulac et 

al. that showed that none of the TLR4 single nucleotide polymorphisms (SNPs) were 

associated with FEV1 in COPD patients, but found that some were significantly 

associated with accelerated or reduced decline of FEV1 (72). However, none of these 

studies were performed using populations exposed to high levels of LPS.  

As part of the present study, we utilized cross-sectional data from two well-

characterized populations of agricultural workers to determine if TLR4 SNPs were 

associated with decreased production of inflammatory cytokines and a lower risk of 

developing chronic bronchitis. We hypothesized that agricultural workers chronically 

exposed to LPS and carrying the minor allele at Asp299Gly would have a decreased 

prevalence of chronic bronchitis and decreased LPS-stimulated production of IL-6 and 

TNF-α.  
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Methods 

Study Population and Clinical Assessments. The Keokuk County Rural Health Study 

(KCRHS) is a population-based, prospective study of health status and environmental 

exposures of a large, stratified, random sample of residents in one rural Iowa county 

(121). A cohort of 1004 households (461 lived in town, 341 on farms, 202 in non-farm 

households) was recruited in Round 1 (1994 to 1998), and of these households, 1002 

were followed up in Round 2 (1999-2004), and 662 in Round 3 (2006-2011). In-person 

interviews were performed at each round to collect information on demographics, 

smoking habits, general health, and respiratory symptoms. For this study, individuals 

that had blood collected for genotyping assays (Round 3), had worked on a farm for ≥ 2 

years, and were ≥ 40 years of age at baseline were included in the analysis (n=279). All 

participants provided written consent and the research protocol was approved by the 

IRB at the University of Iowa and the University of Nebraska Medical Center.  The 

University of Iowa approved transfer of de-identified DNA samples and the Keokuk 

database to the University of Nebraska Medical Center for genotyping and data analysis, 

respectively. 

The AgLung population is a cross-sectional study designed to assess the 

relationship between agricultural exposures and chronic respiratory diseases in veterans 

utilizing the VA Nebraska Western Iowa Health Care System (122).   Eligibility criteria for 

the study included individuals between the ages of 40 and 80 years that had worked on 

a farm as an adult for ≥ 2 years. Individuals who had been diagnosed by a physician with 

asthma, lung cancer or interstitial lung disease such as pulmonary fibrosis, sarcoidosis 

or hypersensitivity pneumonitis were excluded from the study. Recruitment into the study 

began March 2008 and continued through December 2013 with a total of 681 

participants. Demographic information, smoking habits and respiratory symptoms were 

obtained at the time of enrollment by in-person and telephone interview. The study was 
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approved by the VA Nebraska Western Iowa Healthcare Systems Institutional Review 

Board and all participants signed a written informed consent document.  

For both populations, chronic bronchitis was defined by the American Thoracic 

Society guidelines as having chronic cough and chronic phlegm for three consecutive 

months for at least two years (123). In the Keokuk population, if participants answered 

yes to both chronic cough and chronic phlegm in either of the three rounds, they were 

considered to have chronic bronchitis.  

In the Keokuk population, airway obstruction was defined as having a pre-

bronchodilator FEV1/FVC < 0.7. Whereas, in the AgLung population, airway obstruction 

was diagnosed based on post-bronchodilator spirometry as FEV1/FVC < 0.7. 

 

Whole Blood Assay. The whole blood assay was performed for the AgLung study and 

not the Keokuk study. Heparinized blood was diluted in a ratio of 1:1 with antibiotic-free 

L-glutamine-RPMI 1640 (Life Technologies, Grand Island, NY). Cells (1 mL/tube) were 

stimulated with either phosphate buffered saline (unstimulated control) or LPS (1 ng/ml). 

After 24 hours of incubation at 37 °C with 5% CO2, blood cultures were centrifuged (500 

x g, 5 min) and cell-free supernates were collected and stored at −80°C for later cytokine 

analysis. All samples for the whole blood assay were processed within 2 hours of 

collection as this has been shown to be important for optimal cytokine measurement 

(124,125). 

 

TNF-a and IL-6 ELISAs.   A lab-developed sandwich ELISA was utilized (126). Flat-

bottomed polystyrene microtiter plates were coated with 200 µl/well of purified (goat) 

anti-human IL-6 or (mouse) anti-human TNF- antibody (2 µg/mL) (both from R & D 

Systems) in carbonate buffer (pH 9.6) overnight at 4°C.  After three washings in 

phosphate buffered saline/Tween 20 (PBS-T), the supernates from cell-free whole blood 
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assay were dispensed in duplicate wells and incubated at room temperature for 2 hours.  

Plates were again washed three times with PBS-T and incubated with (rabbit) anti-

human IL-6 antibody (Sigma-Aldrich, St. Louis, MO) diluted 1:1000 or biotinylated (goat) 

anti-human TNF- (1:250) (R & D Systems) in PBS-T/BLOTTO (0.2% instant nonfat 

milk, PBS-T/B) for 1 hour.  After three more washes, human serum-absorbed peroxidase 

conjugated (goat) anti-rabbit IgG (Rockland Immunochemicals, Limerick, PA) was added 

at 1:2000 (IL-6) or streptavidin-HRP (1:200, for TNF-) (R & D Systems) in PBS-T/B for 

1 hour.  After the plates were washed three times, 200 µl/well of peroxidase substrate 

(10 ng/ml orthophenylenediamine) containing 0.003% H2O2 (Sigma-Aldrich) was added 

to IL-6 plates, and 100 µL/well TMB substrate (R & D Systems) for the TNF- plates. 

The reaction ended with 27.5 µl/well of 8M sulfuric acid, and plates were read using the 

VERSAmax microplate reader at 490nm or 450nm. An integrated 8-point curve using 

purified recombinant human proteins was used to determine cytokine concentrations. 

The limits of detectability for human cytokine assays were: IL-6, 60 pg/mL and TNF-α, 15 

pg/mL. 

 

Genetic analysis. Genomic DNA was isolated from whole blood. The complete coding 

region of TLR4, intronic sequence, 5 kb in the promoter region and 2 kb on the 3’ prime 

end was analyzed for adequate coverage. Tagging single nucleotide polymorphisms 

(SNPs) were chosen based on a minor allele frequency > 10% and linkage 

disequilibrium (LD) < 0.7 (127). Additional SNPs were included based on their functional 

significance and relevant citations in the literature. The following SNPs were analyzed 

for this study: rs11536878, rs11536898, rs4986790 (Asp299Gly), rs4986791 (Thr399Ile), 

rs5030717, rs5030728, and rs1927911.  
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Samples were genotyped using matrix-assisted laser desorption/ionization time-

of-flight mass spectrometry (Sequenom Inc., San Diego, CA). Using the 

SpectroDESIGNER software (Sequenom Inc.), multiplex PCR assays and associated 

extension reactions were designed. Primer extension products were loaded onto a 384-

element chip with a nanoliter pipetting system (Sequenom Inc.) and analyzed by a 

MassARRAY mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany). 

SpectroTYPER RT 4.0 software (Sequenom Inc.) was used to analyze the resulting 

mass spectra for peak identification. For genotyping quality control, Hardy-Weinberg 

calculations were performed to ensure that each marker was within the expected allelic 

population equilibrium.  

 

Statistical Analyses. Chronic bronchitis was compared by patient characteristics using 

chi-square tests. Because there were a small number of individuals homogenous for the 

minor allele in many SNPs, we combined with those carrying the heterozygous 

genotype. A combination variable (smoke intensity) was created and contained 5 

categories: 1) current and heavy smokers, 2) current and light smokers, 3) former and 

heavy smokers, 4) former and light smokers, and 5) never smokers.  Heavy and light 

smokers were defined as having more than (>) and less than or equal to (≤) the median 

pack-years, respectively.  

Multivariable logistic regression models were examined looking at the association 

between chronic bronchitis and TLR4 polymorphisms, while adjusting for age, body 

mass index (BMI), smoke intensity, education, sex, race, and years worked on a farm. 

We controlled for BMI because it has been shown that TLR4 Asp299Gly is a potential 

risk factor for reduced FEV1/FVC among obese patients (BMI ≥ 30 kg/m2) (71).  Quantile 

regression, to specify changes in the median response, was used to determine the 

association between lymphocyte-adjusted LPS-stimulated IL-6 and TNF-α levels with 
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TLR4 polymorphisms. The Benjamini Hochberg false discovery rate (FDR) method was 

used to adjust for multiple comparisons due to examining associations with multiple 

SNPs.  

  



46 
 

 
 

Results 

Subject characteristics. 

Study population characteristics stratified by chronic bronchitis status for both 

populations are summarized in Table 7. There were 279 participants from the Keokuk 

population and 588 participants from the AgLung population, all with complete data on 

TLR4 SNPs and covariates included in the analysis. The majority of the participants from 

the Keokuk population were male (60%) with a mean age of 68.8 ± 11.0 (SD) (range 

from 40-90). The prevalence of chronic bronchitis was 15%. In this population, 

participants with chronic bronchitis were more likely to be older (≥ 81), have less 

education, a greater history of smoking, and worked on the farm for a greater number of 

years compared to individuals without chronic bronchitis. The overall prevalence of 

airway obstruction in this population was very low (2.5%). Reflecting demographic trends 

in the VA population nationally (128), the AgLung participants were predominately white 

males (98%) with a mean age of 64.6 ± 8.5 (SD) years (range 40-80). This population 

included 143 (24%) patients with chronic bronchitis. Participants who had chronic 

bronchitis were more likely to be current smokers and have airway obstruction.  The 

characteristics of both study populations are compared and presented in Table 11.    

 

Association of TLR4 polymorphisms with chronic bronchitis in the Keokuk and AgLung 
Population. 
 
The Keokuk and AgLung populations were genotyped for seven polymorphisms at 

locations rs11536878, rs11536898, rs4986790, rs4986791, rs5030717, rs5030728, and 

rs1927911 (Table 12). The observed minor allele frequencies are presented in Table E2 

and showed no deviation from a population in Hardy-Weinberg equilibrium (p > 0.05). 

The allele frequencies were consistent with those reported from the HapMap Project 

(http:/www.ncbi.nlm.nih.gov/SNP/index.html) (129) in individuals with Western European 
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ancestry (Table 12). Linkage disequilibrium among these polymorphisms was modest, 

except for rs4986790 and rs4986791 that had r2 > 0.80 in both populations (Figure 1).  

Because exposure to LPS from the agricultural environment has been associated 

with increased respiratory symptoms among workers, and that TLR4 is the receptor for 

LPS, we investigated the association between TLR4 polymorphisms and chronic 

bronchitis. Results from univariate and multivariable analyses for the Keokuk population 

are summarized in Table 8 and Figure 2. In the univariate analysis, we found individuals 

carrying the minor allele in two polymorphisms (rs4986790 and rs4986791) had a 

greater prevalence of chronic bronchitis than those homozygous for the major allele 

(Table 8).  Farmers with the TLR4 rs4986790 genotypes AG or GG had a significantly 

greater odds of chronic bronchitis compared with farmers with the AA genotype (OR = 

3.20; 95% CI: 1.40, 7.30, p-value=0.002).  After adjustment for age, body mass index, 

education, sex, years worked on farm and smoke intensity, the association remained 

significant (ORadj = 3.27; 95% CI: 1.33, 8.06, padj-value=0.010) (Figure 2). As expected, 

TLR4 rs4986791 was in strong LD with rs4986790 and thus followed a similar trend for 

association (p=0.001, padj=0.06; ORadj = 4.53; 95% CI: 1.674, 12.234). In contrast, those 

with the AG or GG genotype for rs5030728 polymorphism were less likely to have 

chronic bronchitis (p = 0.001) in the univariate analysis and had a decreased odds of 

having chronic bronchitis than those with the AA genotype (ORadj = 0.30; 95% CI: 0.14, 

0.63, padj =0.002). After correcting for multiple comparisons using the FDR of 5%, we 

found rs4986790, rs4986791, rs5030728 were still significantly associated with chronic 

bronchitis.  

The association of rs4986790 and rs4986791 with chronic bronchitis was 

confirmed in the AgLung population (ORadj = 1.88; 95% CI: 0.99, 3.55 and ORadj = 1.83; 

95% CI: 1.00, 3.35, respectively) (Table 9), though did not pass a 5% FDR. To 

determine whether our results were being driven by the high prevalence of airway 
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obstruction in the AgLung population, we performed a sensitivity analysis by stratifying 

by airflow obstruction (yes/no; FEV1/FVC < 0.7). We found that the association between 

rs4986790, rs4986791 and chronic bronchitis was primarily among those without airway 

obstruction, yet our statistical power was limited in this analysis (p-value=0.026 for 

rs4986790) (data not shown).  Rs5030728 was not associated with a lower risk of 

chronic bronchitis in the AgLung population (Table 9). 

 

Association of IL-6 and TNF-α levels with TLR4 polymorphisms in the AgLung 
population. 
 
We examined the association between inflammatory cytokine levels (IL-6 and TNF- α) 

and TLR4 polymorphisms. In the unadjusted analysis, rs4986790 AG/GG genotype had 

decreased levels of stimulated IL-6 and TNF-α production (p = 0.027 and 0.012, 

respectively) compared to those with the AA genotype (Table 10).  The associations did 

not remain significant in the adjusted analysis (padj=0.065 and 0.005 respectively). The 

association did remain significant in the adjusted analysis for rs4986791 with IL-6 and 

TNF-α production (p = 0.036 and <0.001, respectively) (Table 10).  However, when 

stratifying by airway obstruction, we found significant associations of rs4986790 and 

rs4986791 with IL-6 among those without obstruction (padj = 0.032 and padj = 0.029) 

(Tables 13 and 14). 
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Discussion 

This study explored whether TLR4 polymorphisms are associated with chronic bronchitis 

among agricultural workers.  We hypothesized that workers who are exposed to 

agricultural dust containing LPS and who are carriers of the minor allele at TLR4 

Asp299Gly would be protected against chronic bronchitis.  Our study, however, found 

the converse and presents new evidence for the positive relationship between 

Asp299Gly polymorphism and chronic bronchitis. Agricultural workers with the minor 

allele at TLR4 Asp299Gly or Thr399Ile, had a 2-4 greater odds of chronic bronchitis than 

those homozygous for the major allele. Our results also indicate that individuals with the 

TLR4 Asp299Gly or Thr399Ile polymorphism had lower levels of LPS-stimulated IL-6 

and TNF-α from a whole blood assay.  

In the Keokuk population, the prevalence of the Gly299 allele was 4.2% in those 

without chronic bronchitis and 12.2% in participants with chronic bronchitis.  In the 

AgLung population, the prevalence was 4.3% in those without chronic bronchitis and 

7.0% in participants with chronic bronchitis. The overall prevalence of the minor 

homozygous variants and heterozygous variants was low in both populations, therefore 

we used a dominant model. We looked at the association of TLR4 polymorphisms and 

chronic bronchitis in two agriculturally-exposed populations.  In the Keokuk population, 

we found that three out of the seven SNPs in the TLR4 were of significance: two with a 

greater odds of chronic bronchitis (rs4986790 and rs4986791) and one with a lower 

odds of chronic bronchitis (rs5030728). In the AgLung population, TLR4 299/399 had 

borderline significance with an increased odds of chronic bronchitis most likely due to 

the population’s level of smoking compared to the Keokuk population. These SNPs were 

also associated with lower levels of LPS-stimulated IL-6 and TNF- α. 

TLRs are a part of the innate immune system which is the first line of defense 

against infectious and non-infectious microorganisms. They have been largely studied in 
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microbial and viral infections, inflammation and immune cells (130), but not extensively 

in respiratory diseases such as COPD and chronic bronchitis. Many studies found no 

significant associations between lung function and TLR4 SNPs (71,131).  Rohdea et al., 

however, found that the frequency of the Asp299Gly polymorphism was decreased in 

patients with COPD (70). 

It is difficult to reconcile the inconsistencies of previous studies and this present 

study since chronic bronchitis is a form of COPD. In this study, we examined the 

relationship between TLR4 299/399 and chronic bronchitis in one fairly healthy 

population (Keokuk) and one unhealthy population (AgLung). The Keokuk population 

comprised former or never smokers, with only a few demonstrating evidence of airway 

obstruction. The AgLung population better represented previous studies, including 

smokers and patients with airway obstruction. The borderline relationship found in the 

AgLung population could be masked by smoking. The association between TLR4 

299/399 and increased odds of chronic bronchitis could also be due to other 

mechanisms being driven by 1) chronic exposure to agricultural dust since both 

populations have a long history of working on a farm, 2) polymorphisms affecting mucus 

production, and/or 3) different TLR pathways.  

Agricultural dust may be contributing to an increased risk of chronic bronchitis. 

Workers, especially those in swine confinements, have been found to be at a greater risk 

of chronic respiratory symptoms (32,132). In addition, high LPS levels in this 

environment were associated with the presence of respiratory complaints in workers. In 

our study, we only adjusted for years worked on the farm; we did not adjust for different 

exposures nor for current farming practices. In order to unravel the contribution of the 

agricultural environment to chronic bronchitis in workers, future studies should look at 

other specific agricultural exposures and include a control population that is not 

exposed.  

http://www.sciencedirect.com.library1.unmc.edu:2048/science/article/pii/S0954611105003495
http://www.sciencedirect.com.library1.unmc.edu:2048/science/article/pii/S0954611105003495
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It is known that airway mucus hypersecretion is a common pathological feature of 

chronic obstructive airway diseases including chronic bronchitis (133). The major protein 

components of mucus, mucins, are directly induced by TLR signaling (134). TLR2 and 

co-receptor asialoganglioside gangliotetraosylceramide (asialoGM1) have been found to 

stimulate IL-8 production and MUC2 expression through NF-κB activation (135-137). 

This shows the possibility that other genes may be contributing to the increased odds of 

chronic bronchitis in these two populations. We did not assay polymorphisms in the 

TLR2, MUC2 or MUC5AC gene, work that may be conducted in the future.  

Also of note, not all bacterial products signal through the TLR4 pathway. LPS 

from gram-negative bacteria signal through other TLRs as well (138). Furthermore, other 

ligands in organic dust, such as gram-positive bacteria, could be triggering through TLR 

pathways in these two highly exposed populations. 

Many studies have found a relationship between TLR4 SNPs and reduced levels 

of pro-inflammatory cytokines and hypo-responsiveness to inhaled LPS (63,68,69). 

Similar to these studies, our study showed a significant association between TLR4 

299/399 polymorphisms and decreased levels of LPS-stimulated production of IL-6 and 

TNF-α (63,68,69) in individuals carrying the risk allele at TLR4 299/399. However, in a 

study conducted by Long et al., it was Asp299Gly, not the Thr399Ile, that was found to 

be the functional polymorphism as it blunted TLR4 function, through decreased NF-kβ 

activity and consequent decreased IL-8 production in response to LPS (139). Therefore, 

it’s the Asp299Gly variant that is likely responsible for impaired responsiveness of TLR4 

to LPS and corresponding activation of NF-κB. It seems that those with the TLR4 

polymorphism are more likely to have less airway or alveolar space forms of endotoxin-

induced inflammation; however, these individuals may be more susceptible to a systemic 

inflammatory response initiated or exacerbated by endotoxin (63,140) which could lead 

to respiratory disease. 
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Smoking is the primary environmental risk factor for chronic bronchitis, but not all 

smokers develop the disease. We found the association between TLR4 299/399 and 

chronic bronchitis in two populations with different smoking patterns. The AgLung 

population consisted of heavy smokers and of those who were current smokers, 

approximately 13.0% had the rs4986790 polymorphism. The more significant finding 

came among never smokers in the Keokuk population.  A previous study did not find 

299Gly in COPD patients who had never smoked (70). However, we found the presence 

of TLR4 299/399 polymorphisms in never smokers. Among those with chronic bronchitis, 

22.2% had the Asp299Gly polymorphisms. This suggests that agricultural exposures, 

independent of smoking, and the Asp299Gly variant may contribute to the development 

of chronic bronchitis.  

One strength of this study is that it is a population-based study in the relatively 

healthy Keokuk population, compared to previous studies that included patients with 

COPD and smokers. Another strength is that both populations have worked in Nebraska 

or Iowa, thus presumably have similar farming practices. A limitation of this study is that 

a “healthy worker effect” might have occurred, since a large number of people leave the 

industry because they have developed respiratory issues, and therefore, are unable to 

remain employed in this industry. This may have caused an underestimation of the 

results as individuals with respiratory problems might not work in environments with high 

exposures. We were unable to investigate this further due to the cross-sectional nature 

of this study. Whole blood assays were used to assess responsiveness to LPS and 

stimulated cytokine levels were measured in whole blood assays, only in the AgLung 

population; however, that may not reflect the airway. Additionally, generalizability of 

these results is limited as both populations included mainly Caucasian farmers from 

Iowa and Nebraska. 
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In summary, our study is the first to investigate the association between TLR4 

tagging SNPs and chronic bronchitis in two agriculturally exposed populations.  We 

found Asp299Gly and Thr399Ile are risk factors for chronic bronchitis in agriculturally-

exposed populations. These associations provide insights for future investigations to 

look at the associations between specific agricultural exposures with TLR4 SNPs and 

chronic bronchitis in different populations. In addition, future studies should look at the 

association between TLR4 299/399 and chronic bronchitis in people without agricultural 

exposures. 
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Figure Legends 

 
Figure 1. Linkage disequilibrium (LD) between 7 tagging SNPs in the TLR4 gene. Top: 
Keokuk population; Bottom: AgLung population.  LD values presented as r2*100. 
 
Figure 2. Adjusted-Association of TLR4 Polymorphisms with Chronic Bronchitis in the 
Keokuk Population. 
Forest plot of odds ratios (95% CI) of Chronic Bronchitis vs. No Chronic Bronchitis after 
adjustment for age, BMI, education, sex, smoke intensity, and years worked on a farm. A 
dominant model was assumed. The following SNPs: rs4986790, rs4986791, and 
rs5030728 passed a false discovery rate adjustment at the 5% level. 
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Table 7.  Characteristics of the Keokuk and AgLung Study Populations Stratified 
by Chronic Bronchitis* 

 Keokuk AgLung 

Characteristic 
 

 
Chronic 

Bronchitis 
n=41 

No Chronic 
Bronchitis 

n=238 

 
Chronic 

Bronchitis 
n=143 

No Chronic 
Bronchitis 

n=445 

Sex     
Male 
Female 

28 (68.3) 
13 (31.7) 

141 (59.2) 
97 (40.8) 

140 (97.9) 
3 (2.1) 

435 (97.8) 
10 (2.2) 

Age (yrs)     
≤50 3 (7.3) 19 (8.0) 8 (5.6) 31 (7.0) 
51-60 7 (17.1) 31 (13.0) 36 (25.2) 86 (19.3) 
61-70 6 (14.6) 80 (33.6) 63 (44.0) 214 (48.1) 
71-80 
≥81 

13 (31.7) 
12 (29.3) 

83 (34.9) 
25 (10.5) 

36 (25.2) 
0 (0.0) 

114 (35.6) 
0 (0.0) 

Race     
White 37 (100.0)§ 222 (100.00)§ 137 (95.8) 428 (96.2) 
Other 0 (0.0) 0 (0.0) 6 (4.2) 17 (3.8) 

BMI     
     <25 5 (12.2) 33 (13.9) 19 (13.3)§ 62 (13.9) 
     25-29.9 14 (34.1) 92 (38.7) 47 (32.9) 130 (29.2) 
     ≥ 30 22 (53.7) 113 (47.5) 77 (53.8) 253 (56.9) 
Education     

≤ High school 26 (63.4) 131 (55.0) 61 (43.9)§ 187 (43.3) § 
> High school 15 (36.6) 107 (45.0) 78 (56.1) 245 (56.7) 

Smoking Status     
Current 0 (0.0) 0 (0.0) 55 (38.5) 69 (15.5) 
Former 14 (34.2) 68 (28.6) 77 (53.9) 266 (59.8) 
Never 27 (65.8) 170 (71.4) 11 (7.7) 110 (24.7) 

Pack-years (median, 
range) 

23.0 (9.0, 43.5)  12.5 (2.7, 30.0) 34.3 (11.0, 54.23) 14.3 (0, 43.0) 

Airflow obstruction     
     Yes 3 (7.3) 4 (1.7) 77 (54.2) § 150 (34.1) § 
     No 
Worked on Farm (yrs) 

38 (92.7) 
40.8 (21.6) 

234 (98.3) 
32.1 (20.3) 

65 (45.8) 
25.1 (18.6) 

290 (65.9) 
28.5 (19.1) 

Abbreviations and Definitions:  Airflow obstruction, FEV1/FVC < 0.70; BMI, body mass 
index (kg/m2); chronic bronchitis, chronic cough + chronic phlegm for 3 consecutive 
months for ≥ 2 years. 
*Data are presented as n (%) except for: pack-years, median (interquartile range); years 
worked on a farm, mean ± SD.  
§Category totals do not add up to column totals due to missing values. 
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Table 8. Association of TLR4 Polymorphisms with Chronic Bronchitis in 
the Keokuk Population*  

 
Polymorphisms 

Chronic 
Bronchitis 
MAF (n, %) 

No Chronic 
Bronchitis 
MAF (n, %) 

 
p-
value 

rs11536878 28 (9.8) 34 (12.2) 0.673 
rs11536898 36 (13.9) 32 (12.2) 0.811 
rs4986790 34 (12.2) 12 (4.2) 0.002^ 
rs4986791 32 (12.5) 9 (3.4) 0.001^ 
rs5030717 42 (15) 26 (9.1) 0.105 
rs5030728 62 (19.5) 98 (30.7) 0.001^ 
rs1927911 87 (31.1) 69 (24.6) 0.179 

*Assuming a dominant model. 
^Passed a false discovery rate adjustment at the 1% level. 

 
 

 
  



57 
 

 
 

Table 9. Association of TLR4 Polymorphisms with Chronic Bronchitis in the AgLung Population^ 

Polymorphisms Chronic 
Bronchitis 
MAF (n, %) 

No Chronic 
Bronchitis 
MAF (n, %) 

p-value padj-value* Odds Ratio (95% CI)* 

rs11536878 72 (12.2) 71 (12.0) 0.702 0.403 1.226 (0.761, 1.9750 
rs11536898 84 (14.6)  78 (13.7) 0.613 0.589 1.133 (0.720, 1.785) 
rs4986790 41 (7.0) 25 (4.3) 0.037 0.053 1.876 (0.991, 3.552) 
rs4986791 43 (7.5) 28 (4.9) 0.083 0.050 1.829 (0.999, 3.348) 
rs5030717 60 (10.1) 69 (11.8) 0.733 0.895 0.967 (0.590, 1.585) 
rs5030728 189 (32.4) 194 (33.1) 0.765 0.262 0.790 (0.523, 1.193)  
rs1927911 156 (26.6) 142 (24.2) 0.984 0.779 1.060 (0.704, 1.597) 

Abbreviations and Definitions: MAF, Minor Allele Frequency; OR, Odds Ratio; CI, Confidence Interval. 
^Assuming a dominant model. 
*Multivariable results are adjusted for age, BMI, education, sex, smoke intensity, race, and years worked on 
a farm. 
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Table 10. Association of rs4986790, rs4986791, and rs5030728 Polymorphisms with IL-6 and TNF-α 
levels in the AgLung Population^ 
Polymorphism LPS-Stimulated 

Cytokine§ 
β SE 95% CI p-value β adj* SEadj* 95% CIadj* p-valueadj* 

rs11536878          
 IL-6 -0.039 0.064 -0.164, 0.086 0.542 -0.063 0.057 -0.176, 0.049 0.271 
 TNF-α -0.150 0.111 -0.369, 0.068 0.178 -0.310 0.113 -0.532, -0.088 0.006 

rs11536898          
 IL-6 -0.020 0.071 -0.159, 0.120 0.784 -0.035 0.060 -0.153, 0.083 0.560 
 TNF-α -0.060 0.103 -0.262, 0.142 0.558 -0.119 0.098 -0.310, 0.073 0.225 

rs4986790          
 IL-6 -0.225 0.096 -0.414, -0.036 0.027 -0.231 0.125 -0.476, 0.015 0.065 
 TNF-α -0.414 0.159 -0.726, -0.101 0.012 -0.359 0.129 -0.613, 0.106 0.005 

rs4986791          
 IL-6 -0.231 0.087 -0.403, -0.060 0.012 -0.198 0.094 -0.383, -0.013 0.036 
 TNF-α -0.421 0.155 0.119, 0.722 0.008 -0.459 0.114 -0.683, -0.234 <0.001 

rs5030717          
 IL-6 -0.050 0.059 -0.121, 0.111 0.930 -0.035 0.053 -0.138, 0.068 0.505 
 TNF-α 0.005 0.128 -0.246, 0.256 0.967 -0.012 0.107 -0.222, 0.198 0.909 

rs5030728          
 IL-6 0.034 0.053 -0.069, 0.138 0.516 0.057 0.054 -0.049, 0.163 0.293 
 TNF-α 0.143 0.096 -0.046, 0.332 0.138 0.148 0.103 -0.055, 0.351 0.152 

rs1927911  
IL-6 

 
-0.009 

 
0.053 

 
-0.114, 0.096 

 
0.868 

 
-0.032 

 
0.055 

 
-0.141, 0.077 

 
0.564 

 TNF-α -0.106 0.104 -0.311, 0.100 0.310 -0.082 0.095 -0.268, 0.105 0.392 

Abbreviations and Definitions: SE, Standard Error; CI, Confidence Interval; BMI, body mass index (kg/m2). 
^Assuming a dominant model. 
*Multivariable results are adjusted for age, BMI, education, sex, smoke intensity, race, and years worked on a 
farm. 
§Whole blood stimulated ± lipopolysaccharide (1 ng/ml) for 24hrs. Cytokines measured by ELISA. 
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Figure 1.  
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Figure 2  
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Supplementary Data 

TLR4 Asp2999Gly is Associated with Chronic Bronchitis and Decreased LPS-Stimulated 

TNF- α Production in Agricultural Workers 
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Table 11.  Characteristics of Study Populations* 

Characteristic 
 

Keokuk 
n=279 

AgLung 
n=588 

p-
value§ 

Sex   <0.001 
Male 169 (60.6) 575 (97.8)  
Female 110 (39.4) 13 (2.2)  

Age (yrs)   <0.001 
≤50 22 (7.9) 39 (6.6)  
51-60 38 (13.6) 122 (20.8)  
61-70 86 (30.8) 277 (47.1)  
71-80 
≥81 

96 (34.4) 
37 (13.3) 

150 (25.5) 
0 (0.0) 

 

Race   <0.001 
White 259 (100.0)^ 565 (96.1)  
Other 0 (0.0) 23 (3.9)  

BMI   0.075 
<25 38 (13.6) 81 (13.8)  
25-29.9 106 (38.0) 177 (30.1)  

      ≥ 30 135 (48.4) 330 (56.1)  
Education   <0.001 

≤ High school 157 (56.3) 248 (43.4)^  
> High school 122 (43.7) 323 (56.6)  

Smoking Status   <0.001 
Current 0 (0.0) 124 (21.1)  
Former 82 (29.4) 343 (58.3)  
Never 197 (70.6) 121 (20.6)  

Pack-years (median, range) 15.0 (3.2, 
31.0) 

20.0 (2.2, 
46.5) 

0.361 

Airflow obstruction 
     Yes 
     No 

 
7 (2.5) 

272 (97.5) 

 
227 (39.0)^ 
355 (61.0) 

<0.001 
 
 

Worked on Farm (yrs), mean  
± SD 

33.3 (20.7) 27.7 (19.0) <0.001 

Abbreviations and Definitions:  Airflow obstruction, FEV1/FVC < 0.70; 
BMI, body mass index (kg/m2). 
*Data are presented as n (%) except for: pack-years, median 
(interquartile range); years worked on a farm, mean ± SD.        
^Category totals do not add up to column totals due to missing values. 
§Comparison between the Keokuk and AgLung population.  
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Table 12.  Minor Allele Frequencies of TLR4 Polymorphisms in the 
Keokuk and AgLung Population 
   Minor Allele Frequency 
SNP Location Minor/Maj

or Allele 
Keokuk 

n(%) 
AgLung 

n(%) 
HapMap-CEU  

n(%) 

rs11536878 Intron  A/C 33 (11.8) 65 (12.2) 27 (11.9) 
rs11536898 3' UTR A/C 32 (12.2) 72.5 (13.9) 13 (11.4) 
rs4986790 Asp299Gly G/A 15 (5.4) 27 (5.1) 24 (3.5) 
rs4986791 Thr399Ile T/C 12.5 (4.8) 29 (5.6) 10 (4.5) 
rs5030717 Intron  G/A 27.5 (9.8) 61.5 (11.5) 25 (11.1) 
rs5030728 Intron  A/G 87 (30.9) 176.5 (33.2) 69 (30.5) 
rs1927911 Intron  T/C 70.5 (25.2) 146 (27.4) 60 (26.5) 

Abbreviations and Definitions: MAF, Minor Allele Frequency; UTR, 
untranslated region; CEU, Utah Residents with Northern and Western 
European Ancestry. 
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Table 13.  Associations of rs4986790 and rs4986791 Polymorphisms with IL-6 and TNF-α levels in 
the AgLung Population Among those with Airflow Obstruction^ 

Cytokine§ Polymorphism β SE 95% CI p-
value 

β adj* SEadj* 95% CIadj* p-
valueadj* 

 rs4986790         
IL-6, 1 ng/mL  -0.0073 0.2144 -0.4299, 0.4154 0.9730 -0.0542 0.1667 -0.3830, 0.3200 0.7456 

TNF-α, 1 ng/mL  -0.0337 0.2432 -0.5131, 0.4458 0.8899 -0.4016 0.2090 -0.8139, 0.0107 0.0562 
 rs4986791         

IL-6, 1 ng/mL  -0.0590 0.1524 -0.3595, 0.2416 0.6992 -0.0390 0.1406 -0.3164, 0.2385 0.7821 
TNF-α, 1 ng/mL  -0.0695 0.2243 -0.5118, 0.3728 0.7570 -0.3524 0.1928 -0.7327, 0.0278 0.0691 

Abbreviations and Definitions: SNP, Single Nucleotide Polymorphism; SE, Standard Error; CI, Confidence 
Interval. 
*Multivariable results are adjusted for age, BMI, education, sex, smoke intensity, race, and years worked on a 
farm. 
^Assuming a dominant model. 
§Whole blood stimulated ± lipopolysaccharide (1 ng/ml) for 24hrs. Cytokines measured by ELISA. 
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Table 14. Associations of rs4986790 and rs4986791 Polymorphisms with IL-6 and TNF-α levels in 
the AgLung Population Among those with no Airflow Obstruction^ 

Cytokine Polymorphism β SE 95% CI p-
value 

β adj* SEadj* 95% CIadj* p-
valueadj* 

 rs4986790         
IL-6, 1 ng/mL  -0.3893 0.1615 -0.7070, -0.0715 0.0165 -0.2918 0.1351 -0.5576, -0.0260 0.0315 

TNF-α, 1 ng/mL  -0.5756 0.1532 -0.8770, -0.2743 0.0002 -0.3835 0.2090 -0.7948, 0.0278 0.0675 
 rs4986791         

IL-6, 1 ng/mL  -0.3794 0.1365 -0.6479, -0.1108 0.0058 -0.2586 0.1179 -0.4907, -0.0266 0.0290 
TNF-α, 1 ng/mL  -0.5531 0.1725 -0.8925, -0.2137 0.0015 -0.3983 0.1897 -0.7716, 0.0250 0.0366 

Abbreviations and Definitions: SNP, Single Nucleotide Polymorphism; SE, Standard Error; CI, Confidence 
Interval. 
*Multivariable results are adjusted for age, BMI, education, sex, smoke intensity, race, and years worked on a 
farm. 
^Assuming a dominant model. 
§Whole blood stimulated ± lipopolysaccharide (1 ng/ml) for 24hrs. Cytokines measured by ELISA. 
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CHAPTER IV. STABILITY OF THE LUNG 
MICROBIOME OF COPD PATIENTS 
 
Abstract 

Chronic obstructive pulmonary disease (COPD) is an inflammatory disorder 

characterized by incompletely reversible airflow obstruction. The complexity of the lung 

microbial community in COPD patients has been highlighted in recent years. Evidence 

suggests that transplantation, medications, age, and disease severity influence microbial 

community membership.  However, the dynamics of the lung microbiome in stable 

COPD remain poorly understood. 

In this study, we completed a longitudinal 16S ribosomal RNA survey of the lung 

microbiome on sputum samples collected from 7 COPD subjects at baseline and follow-

up (≤9 months). Our analysis revealed no significant shifts in the abundance (>2-fold) of 

taxa between the two time points. Bacterial composition and the number of operational 

taxonomic units (OTUs) remained the same over time (p-value = 0.75). Also, we 

collected replicate samples from four patients over a two-day period and found strong 

clustering of samples for each individual. Results from this study suggest that the lung 

microbiome is relatively resilient compared to other human microbiomes which have 

been shown to change over a similar period of time. This study furthers our 

understanding of the dynamics of the lung microbiome in COPD patients.  

 

 

 

 

 

  

http://www.pubpdf.com/pub/27049536/A-principal-factor-analysis-to-characterize-agricultural-exposures-among-Nebraska-veterans
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Introduction 

Chronic obstructive pulmonary disease (COPD), a disease characterized by persistent 

airflow limitation and chronic inflammation (12), is the third-leading cause of death in the 

United States. Although tobacco smoke is the leading risk factor for COPD, it is 

estimated that 15% of COPD cases are caused by occupational exposures, independent 

of smoking (15). Understanding COPD can be very challenging as it is a heterogeneous 

disease caused by a number of factors (i.e., environmental exposures and genetics).  

To date, there has been controversy regarding the role of lower respiratory tract 

bacteria in COPD pathogenesis (73). It was previously believed that the lungs of healthy 

individuals were sterile, while the lungs of COPD individuals were colonized.  Recently, 

with the help of new culture-independent methods, it has been discovered that healthy 

lungs are not sterile but are colonized by commensal bacteria.  This microbial 

community is modified in individuals with lung disease. Pathogenic bacteria of the 

phylum Proteobacteria are more commonly colonized in COPD individuals including 

Haemophilus spp. and Moraxella spp. (74,75).  From bronchoalveolar lavage samples, a 

study showed that Haemophilus species were more frequent in COPD patients, while 

Bacteroidetes were more prevalent in control patients (75).  

Few longitudinal studies examining the change of the lung microbiome over time 

have been conducted (78,79).  One study examined the lung microbiome during acute 

exacerbations and found lower abundances of genera Moraxella and Streptococcus in 

sputum samples compared with samples taken from the same COPD patients 

characterized as being clinically stabile (78). Another study identified increases in 

Haemophilus, Pseudomonas, and Moraxella during exacerbations compared to paired 

sampling from periods of clinical stability in the same severe COPD patients (79). 

Respiratory viral infections, especially rhinoviruses, are a major cause of COPD 

exacerbations (80). Molyneaux et al. investigated the effect of rhinovirus infection on the 
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airway bacterial microbiome and discovered that rhinovirus infection in COPD alters the 

respiratory microbiome (81). An increase in Proteobacteria, most notably in Haemophilis, 

was observed in patients with the infection compared to healthy individuals. All of these 

studies have shown that changes in the lung microbiome in patients with COPD occur 

when there are exacerbations and respiratory infections (82-84).  As yet, there are no 

longitudinal studies comparing baseline sputum samples with samples collected over 

time in stable COPD patients without any sort of intervention.  

The aim of this study was to examine the lung microbiome longitudinally in 

individuals with stable COPD using 16s rRNA sequencing. We hypothesized that the 

lung microbiome of COPD patients is relatively stable within a 9 month time period. To 

assess the inter-variability of the lung microbiome, we collected induced sputum at 

baseline and at follow-up (≤ 9 months) from 7 patients with stable COPD (stage 2) and 

determined whether the microbial community changed over this time period. To assess 

intra-variability of the lung microbial community, we collected replicate samples from four 

patients over a two-day period and examined the community variability within each 

patient.  
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Methods 

Patient recruitment 

The AgLung cohort is a cross-sectional study of agricultural exposures and respiratory 

disease among veterans visiting the General Medicine clinics at the VA Nebraska-

Western Iowa Health Care System in Omaha, NE (122). Other than working on a farm 

for more than two years, eligibility criteria included being between 40 and 80 years of 

age and no history of lung cancer, metastatic cancer to the lungs or interstitial lung 

disease such pulmonary fibrosis, asthma, sarcoidosis, hypersensitivity pneumonitis. 

Seven COPD patients from the AgLung cohort were included in the present analysis.  

Patients were eligible for this study if they were former smokers and their post-

bronchodilator forced expiratory volume in one second (FEV1)/forced vital capacity 

(FVC) ratio was ≤ 0.7 and their FEV1 was 50-79% predicted (moderate COPD, stage 2) 

(11). COPD was defined as FEV1/FVC ≤ 0.7 or a diagnosis of COPD from a 

pulmonologist.  Eligible individuals had stable respiratory symptoms, were afebrile, and 

had not taken any antibiotics or corticosteroids for two months prior to sputum induction.  

 

Sputum collection  

For the longitudinal phase of this study (inter-subject variability), two induced sputum 

samples were obtained, one at baseline and another within nine months of follow-up, 

using an established induced sputum protocol developed by the NIH-sponsored 

SPIROMICS study for COPD (141). Briefly, three 7-minute inhalations of nebulized 

hypertonic saline (3%) was followed by expectoration of the sputum. To minimize oral 

contamination, all subjects performed an oral rinse with mouthwash (Cepacol, Reckitt 

Benckiser, Parsippany, NJ, USA), sterile water, and molecular grade water in triplicate, 

respectively, prior to obtaining an induced sputum sample.  
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For the intra-subject variability experiments, replicate samples from four patients 

over a two-day period were collected. Participants went through the same three 7-minute 

inhalation protocol as described above.  A baseline sample was collected in the morning 

on day one, another 4-5 hours later, and then again the next morning. One patient gave 

a fourth sample in the afternoon on the second day. 

 

Sputum processing, DNA extraction, PCR amplification, and pyrosequencing 

Sputum was processed in a modification of the method developed by Neil Alexis (142).  

Briefly, freshly-collected sputum was weighed and 0.9 mL of the sample including all 

mucous plugs was solubilized in 0.1% dithiothreitol, diluted 4-fold with EDTA, and filtered 

through a 0.48 mm mesh strainer.  Cells isolated from this fraction were assessed for 

squamous cell contamination (>40% squamous contamination excluded the sample).  

DNA was isolated from the remaining solubilized sputum using a bead beating, solvent 

extraction method (PowerSoil DNA isolation Kit, Mo Bio) according to the manufacturer’s 

instructions. An approximately 460 bp sized fragment of the V3 / V4 region of the 16S 

rRNA gene was amplified (25 cycles of PCR) for each of the DNA samples beginning 

with 12.5 ng of DNA per Illumina’s recommended protocol outlined in the 16s 

Metagenomic Sequencing Library Preparation protocol (Illumina, San Diego, CA). 16S 

Amplicon PCR Forward Primer = 

5'TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG 16S 

Amplicon PCR Reverse Primer = 

5'GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC

. Following generation of the amplicons, dual indices and Illumina sequencing adapters 

were added (8 cycles of PCR) using the Nextera XT Index kit (Illumina catalog # FC‐

131‐1001). Resultant libraries were multiplexed and 300 bp paired end sequencing was 

performed on an Illumina MiSeq instrument using V3 chemistry per Illumina’s 
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recommendations. An ample yield of approximately 10,000 reads/sample was used to 

characterize the bacterial community from each sample.  

 

Data Processing and Bioinformatics Analysis 

Samples with paired-end Illumina reads were filtered to trim the low quality bases from 3' 

as well as 5' ends using Cutadapt package (DOI: http://dx.doi.org/10.14806/ej.17.1.200). 

Given a significantly lower quality of the bases at 3' end of the reads, the quality-value 

(Phred Score) cutoffs for 3' and 5' bases were 35 and 30, respectively. Quality-trimmed 

read pairs with the minimum length of 150bp were retained, and used in the subsequent 

analysis performed using Illumina Base-Space cloud platform for processing the 16s rRNA 

data. The total read number in each of our samples ranged between 10,056—40,133. 

In the downstream analysis, Qiime Preprocessing and Visualization apps were 

used (143). Post-QC reads were aligned against the Greengene database (144). 

Following the taxonomy assignment, the number of sequences assigned to a particular 

phylotype and the percentage of these sequences in the microbial community were 

calculated for each sample. Samples with less than 5,000 total reads were excluded. 

Reads with more than 97% identity were tallied to make the counts and percentages 

tables, with each row representing a different phylotype. Alpha (Shannon Index) and Beta 

(Unifrac weighted) diversity scores were calculated. Unifrac distance metric was used for 

calculating the Principal Component Analysis (PCoA) plots. Community membership and 

structure were examined using the PCoA plots to determine relatedness among 

samples.  Heat maps showing similarity or dissimilarity among samples were generated. 

 

Statistical Analysis 
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For inter-subject variability experiment, samples from patients were grouped according 

to the time when the sputum sample was taken, baseline (T1) versus months later (T2). 

The taxon-based method was used to analyze the 16S rRNA sequence of each sample. 

The diversity, richness, and composition of the microbial communities were compared 

among samples, as was the association of the relative abundance of bacteria, using 

paired t-tests. For Figure 3B showing the differences in prevalence (%) of taxonomy, T2 

minus T1 was calculated. 

A Wald test was used to compare the prevalence of the taxa between the two 

sample groups (T1 vs. T2) as follows. At different taxonomic levels, the relative 

abundance was compared by the DESeq2 method to identify the taxa among the 

groups, while accounting for the paired nature of the data (143). The Benjamini and 

Hochberg false discovery rate (FDR) approach was used to adjust the raw p-values to 

account for multiple comparisons (145).  Taxa yielding an FDR adjusted p-value < 0.05 

were considered statistically significant. The diversity and richness indices and their 95% 

CIs were calculated using the Shannon Index, which is a measure of both richness and 

evenness.
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Results 

Lung microbiome profiles 

Sputum samples from seven subjects were obtained at baseline and at follow-up (≤ 10 

months). Patient demographics are summarized in Table 15, sorted by sample collection 

date within patient.  The majority of the participants (87.5%) was over the age of 60 and 

worked on the farm for greater than 20 years (62.5%). The mean FEV1/FVC ratio and % 

predicted FEV1 was 63.77 and 67, respectively.  DNA sequencing reads (337,474) were 

selected after demultiplexing and quality control filtering, with each sample averaging 

24,105 sequences. Unique OTUs (1,632) were identified across 14 samples and the 

number of OTUs observed at 97% identity ranged from 10,056-40,133 (Table 15). There 

were no significant differences in the numbers of sequences obtained from baseline and 

at the later time point (p-value = 0.86) (Table 15). Additionally, no differences were found 

in the richness between the two groups [Time 1 (T1) vs Time 2 (T2)] (p-value = 0.75) 

(Figure 8). A heat map of OTU abundances, created using R, visually confirmed this 

result (Figure 6A and 6B). Rarefraction curves were calculated for all samples and 

maximum OTUs were detected at 1500 sequences and leveled off, showing that 

additional sampling would not have detected additional OTUs (Figure 8). There was no 

difference in the Shannon diversity (alpha-diversity) between the two time points (p-

value = 0.32) (Figure 8). 

 

Bacterial community composition between Time =1 and Time =2 (inter-subject 

variability). 

Based on overall phyla composition, the samples were composed of four major groups: 

Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria (Figure 3A). 

Approximately 90.5% of sequences belonged to one of four phyla: Firmicutes (44.1%), 

Bacteroidetes (23.3%), Proteobacteria (12.3%), or Actinobacteria (10.8%). Of the 183 
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genera identified, the most abundant were Veillonella (17.2%), Prevotella (11.8%), 

Streptococcus (11.1%), Rothia (7.6%), and Haemophilus (3.9%), all of which are typical 

members of the lung microbiota (146) (Figure 4A). These top ten genera were 100% 

prevalent across all samples from both visits (T1 and T2), suggesting that for our cohort 

the lung microbiome was relatively stable over this time period (147). 

The phylum level abundance variations between the two time points are 

presented in Figure 3B. The largest change was found in patient ID 2150. Actinobacteria 

changed from 8.2% to 28.9%, Firmicutes increased from 38.2% to 64.8%, and 

Proteobacteria dropped from 37.9% to 1.5%. The sample taken six months later 

(Shannon Index of 2.52) was less diverse than this patient’s baseline sample (Shannon 

Index of 2.91). For example, Fusobacteria decreased to 0% from 6.6%.  

The genus level abundance variations between two time points are presented in 

Figure 4B. Again, patient ID 2150 had the largest variations. Rothia increased to 25.8% 

from 8.0%, Streptococcus increased to 28.7% from 3.7%, and Haemophilis decreased to 

0.6% from 13.4%. Of note, ID 2150 at time = 1 had the largest percentage of 

Haemophilus (13.4%) compared to the rest of the samples. 

In order to evaluate the inter-subject variability over time, principal coordinate 

analysis (PCoA) was performed using weighted UniFrac (Figure 5).  This analysis did 

not reveal any major clustering between the two groups (T1 and T2) suggesting small 

variations between the two groups. All but two samples clustered around PC1. Patient ID 

2150 did not cluster with the other samples or with his other time point. This patient had 

complex medical issues and was the only patient who worked on the farm for fewer than 

20 years. 

To further determine if there were any differences between T1 and T2 taxa, we 

used the Wald test to detect whether there was evidence of differential relative 

abundance in taxa between samples. However, zero OTUs were significantly different 
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among the two groups (T1 and T2). To examine the clinically stability at two time points, 

we used a volcano plot (Figure 7) and, again, determined there were no taxa that 

exhibited differential relative abundance, based both on visual inspection and statistical 

thresholds. However, there were many OTUs that had log2-fold change greater than 1 

(indicated in gold). 

 

Bacterial community composition within patients (intra-subject variability). 

We also examined the intra-subject variability of the lung microbiome of four patients 

over a two-day period.  All patients were seen at least three times: Day 1, morning 

(D1_1); Day 1, afternoon (D1_2); Day 2, morning (D2_1); and one patient was seen Day 

2, afternoon (D2_2). Sample D2_1 for patient ID 1204 had very low reads (<5,000), and 

therefore was excluded from the analysis. Because our sample size was very small, we 

could not effectively use the Wald test to detect differentially abundance features 

between samples. Instead, we evaluated the Shannon Index for all samples (Figure 11). 

Similar to the inter-subject variability, the rarefraction curves showed that additional 

sampling would not have provided detection of additional OTUs. In addition, the 

Shannon Index was visibly similar among samples (Figure 11).  PCoA plots showed 

samples taken from the same patient clustered with each other (Figure 10). Similar OTU 

abundance banding at each time point for each patient were observed (Figure 13), 

suggesting there is little intra-subject variability of the lung microbiome in these patients. 

Similar to the inter-subject variability part of this study, 88.9% of sequences 

belonged to one of four phyla: Firmicutes (38.9%), Bacteroidetes (25.1%), 

Proteobacteria (17.9%), and Actinobacteria (7.0%) (Figure 12A). Again, the genus 

Veillonella (14.8%) was the most abundant in these 12 samples, followed by Prevotella 

(8.8%), Streptococcus (8.8%), and Rothia (5.7%).  Haemophilus was the 10th top genera 

among these samples (4.3%) (Figure 12B). 
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Discussion 

This study uses induced sputum samples to explore the short-term stability of the lung 

microbiome in clinically stable COPD patients. We hypothesized that the lung 

microbiome of individuals with COPD would have similar bacterial compositions and 

diversities during a short time period (≤ 2 days) or longitudinally (≤ 9 months). Our data 

shows some variation in the microbial profile of some COPD patients over 2-9 months. 

Furthermore, our results suggest a high degree of similarity of the lung microbiome when 

sampled over 2 consecutive days.  

In this study, we investigated the sputum bacterial microbiome of seven COPD 

patients using 16S rRNA gene sequencing. The identified dominant phyla in these 14 

samples represent common bacterial compositions found in the lung (74,148). The most 

abundant genera were Veillonella, Prevotella, Streptococcus, Rothia, and Haemophilus. 

Another genus that was represented in these samples was [Prevotella] (7.1%). The 

square brackets indicate taxonomic changes that were recommended, mainly based on 

genome trees. This means that this is a suggested, but not a verified taxonomy. We 

identified similar diversities and OTU abundances when comparing T1 and T2 for each 

patient. We did not observe any statistically significant differences in the diversity, nor 

did we observe differences in OTU abundances among the two groups (T1 vs T2). 

These results suggest a stability of the lung microbiome within a 9 month period.  

There were no differences in the Shannon Diversity Index between T1 and T2 

samples for each patient. Figure S-2 confirmed this using other alpha-diversities (i.e. 

Chaos Index, Simpson Index).  Most T1 and T2 samples clustered around PC1 in the 

PCoA plot, except for patient ID 2150.  

The intra-subject variability of 2-4 sputum samples from 4 patients was examined 

over a two-day period. Similar bacterial compositions were identified in these 

observations. The dominant phyla included Proteobacteria, Firmicutes, Bacterioidetes, 
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and Actinobacteria. The abundant genera included Veillonella, Prevotella, 

Streptococcus, and Rothia, all of which are typical members of the lung microbiota 

(healthy and COPD) (146). Haemophilus represented the 10th top genus in these 

samples. 

The lung microbiome of healthy individuals has been shown to consist of bacteria 

from the Bacteriodetes, Firmicutes, Proteobacteria, and Actinobaterica phyla (74,148), 

which are all phyla found in our samples. In this study, Firmicutes was the most 

prevalent phylum, a phylum primarily composed of gram-positive microorganisms, 

followed by Bacteriodetes. A study conducted by Hilty et al. showed Bacteroidetes, 

particularly Prevotella spp., was more prevalent in controls than in COPD patients (75), 

while Proteobacteria, a gram-negative phylum, was more prevalent in COPD patients 

compared to controls (75).  

We demonstrated similar genera in COPD patients compared to prior studies 

including Streptococcus, Prevotella, Moraxella, and Haemophilus (73,149). Different 

techniques such as expectorated sputum, bronchial aspirate, bronchoalveolar lavage 

(BAL), and bronchial mucosal biopsies, have all found these genera in COPD patients 

(149).  In this study, only Streptococcus and Haemophilus (not Pseudomonas or 

Moraxella) were represented in the top ten genera of the 14 samples. Of note, 

Haemophilus was most prevalent in 2150-T1, possibly due to complex medical issues of 

this patient as described below.  

The lung microbiome can be difficult to study, particularly using longitudinal and 

cross-sectional study designs.  In previous studies, factors including interventions 

(transplantation and medications), age, exacerbations, and disease severity have been 

shown to influence microbial community membership (75,78,84,147,150).  We attempted 

to control for these covariates during the patient selection phase as described below. 

Patient ID 2150 showed the greatest differences in the bacterial composition between 
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the two time points. This patient’s medical chart indicated multiple health issues 

including heart failure, chest pain, and arrhythmia. Although patient ID 2150 was not 

taking antibiotics two months prior to collection of induced sputum samples, he had 

taken clindamycin after the first sample and prior to the second sample.  Antibiotics have 

shown to increase microbial diversity, though this did not occur in our observations of 

this patient (83,147). Our observations did show a large decrease in Proteobacteria and 

an increase in Firmicutes in this patient, which is in agreement with previous studies 

regarding antibiotic use among COPD patients (83,147). Age has been shown to be 

associated with microbial diversity (150). Pragman et al. showed younger age is 

associated with less microbial diversity in COPD patients (150). Although patient ID 

2150 was the youngest compared to others in this study, only his second sample 

showed the lowest diversity among all samples. 

COPD is characterized by natural histories that are punctuated by periods of 

acute exacerbations. A study conducted by Sethi et al. identified lower densities of 

Moraxella catarrhalis and Streptococcus pneumonia in sputum samples collected during 

acute exacerbations compared with samples during clinical stability (78). Another study 

examined sputum from COPD patients and identified increases in Haemophilus, 

Pseudomonas, and Moraxella during exacerbations compared to paired sampling from 

periods of clinical stability (79). Both, Huang et al. and Molyneaux et al., found an 

increase in the phylum Proteobacteria during COPD exacerbation (84,147). What’s 

interesting to note is that Moraxella was found in only one sample of this study, ID 2396 

(time = 2) at 0.7%. 

The relationship between bacterial diversity and COPD severity remains 

disputed. Studies have reported that bacterial diversity decreases with increased COPD 

severity (73,75); however, other studies using lung tissue samples have failed to show 

significant differences in bacterial diversity with increasing COPD severity (76). All of the 
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patients in our study had stage 2 COPD at the time of enrollment into the AgLung study; 

therefore, we were unable to investigate the relationship between COPD stage and 

bacterial diversity. Although patient ID 2326 had a borderline diagnosis of COPD, the 

bacterial composition and diversity of his samples were similar to those with COPD 

stage two in this study. Notably, both of patient ID 2326’s samples clustered with all 

other samples (except ID 2150) on the PCoA plot. 

This study only included former smokers as current smoking has been shown to 

have an impact on the lung microbiome in COPD patients (151). Smoking in and of itself 

does not alter the lung microbial community (77); however, current smokers were found 

to have lower 16S rRNA copy numbers. And while 16S rRNA copy number cannot be 

directly compared with measures of bacterial community diversity, as some bacteria can 

possess multiple copies of the 16S rRNA gene, some studies have shown smokers 

exhibit greater variation in the relative abundance and composition of bacteria inhabiting 

the nasal or oropharynx (152). Hilty et al. examined the lung microbiome using airway 

brushings and included COPD patients that were current smokers (80%) (75). They 

found Proteobacteria to be the most abundant phylum in COPD patients. Although 

Proteobacteria was one of the top four phyla in our study, Firmicutes was the most 

abundant. A handful of studies have evaluated the lung microbiome of COPD patients 

who smoke; however, additional studies with larger sample sizes are required to 

definitively determine if the lung microbiome is altered by smoking in those with COPD. 

The assessment of the lung microbiome in agricultural workers has not been 

studied. However, shotgun pyrosequencing metagenomic analyses of DNA from dusts 

from swine confinement facilities and grain elevators have been performed (153). Boissy 

et al. identified Firmicutes as the predominate phylum in dust from a swine confinement 

facility. In contrast, Proteobacteria was the most abundant phylum in grain elevator dust 

(153). Approximately 71.5 % of individuals in this study worked with hogs, either in 
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confinement or open lots, in their lifetime, while 100% were exposed to grain dust. All 

patients were former farmers in this study; and therefore, most likely the influence of the 

agricultural environment did not play a role in influencing the lung microbiome unless 

there were long term effects. Further studies are needed to evaluate the effect of 

agricultural exposure on the lung microbiome in those with and without COPD. 

To our knowledge, this study is the first to present a longitudinal analysis of the 

lung microbiome in patients with COPD during clinical stability. One of the admitted 

limitations of this study is the sample size. In fact, relatively small sample sizes have 

plagued many lung microbiome studies and most likely limited our ability to observe 

significant differences between our groups. Inducing sputum from patients is difficult and 

time-consuming and for safety reasons, we only induced sputum in those with COPD 

stage two. Additionally, sputum samples have been shown to have significantly lower 

diversity than other sample types such as BAL, cell-free BAL supernatants, and biopsies 

(149).  

The time between samples taken varied among our patients. Patient ID 1053 had 

the largest elapsed time period between induced sputum samples (9 months). In this 

patient, the phylum Firmicutes in T2 decreased from 54.50% to 27.5% and the genus 

Prevotella increased by approximately 27% from the baseline sample (T1=10.1%). 

Patient ID 2150 had approximately six months between the two time points and we saw 

a decrease in his microbial diversity. However, in this patient we saw an increase in 

Firmicutes and a decrease in Prevotella. Additional longitudinal analyses with greater 

patient numbers are needed to help better understand the dynamics of the lung 

microbiome in relation to COPD.  We were unable to control for the time intervals in this 

study. Coordinating with these patients was difficult as patients were busy, some 

became sick, and one patient had to cancel due to a sick family member. 
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In summary, we have presented the induced sputum bacterial profiles of 

agriculturally-exposed, male patients with moderate COPD based on 16S rRNA gene 

sequencing. We showed some variation in the lung microbiome of COPD patients over a 

two to nine month time period, but the lung microbiome remains relatively stable over 2 

consecutive days. This study adds further insights into the lung microbiome of COPD 

patients, with the inclusion of repeated and longitudinal sampling.  
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Figure Legends  

 
Figure 3. A. Taxonomic Identification at the Phylum Level (Inter-Variability Samples). 
Taxonomic results at the phylum level are displayed for each sample at two different 
time points (T1 and T2). B. Differences in Percent of Taxonomic Identification at the 
Phylum Level (Inter-Variability Samples) (T2-T1) For example, patient 2150 decreased 
in Proteobacteria by 36.4%. All sequences were submitted to Qiime for taxonomic 
identification. Top 8 taxonomic results at the phylum level are displayed. Figures were 
created in Excel. 
 
Figure 4. A. Taxonomic Identification at the Genus Level. B. Differences in percent of 
taxonomic Identification at the Genus Level (T2-T1). All sequences were submitted to 
Qiime for taxonomic identification. Top 10 taxonomic results at the genus level are 
displayed. Figures were created in Excel. 
 
Figure 5. Principal Coordinate Analysis Demonstrates Clustering of Baseline Samples 
and Samples taken at a Later Time. Principal coordinate analysis was performed using 
Qiime and Weighted UniFrac, and the results for principal coordinates 1 and 2 and 3 are 
shown.  T1 samples (red) do not cluster separately from T2 samples (blue). However, 
there are 2 samples that did not cluster with the other samples. Three PCs explained 
approximately 84% of the total variance in the data. 
 
Figure 6. A. Heat map of OTU Abundances between Baseline and Samples taken at a 
Later Time. B. Heat map of differences of OTU abundances between T1 and T2 (T2-T1). 
Lighter blue shows greater abundance compared to dark blue/black. Figures were 
created in R (package phyloseq)(154).  
 
Figure 7. Volcano plot indicating that no taxa are significantly increased or decreased in 

the pairwise comparisons indicated, using t-tests (R package calibrate). Results shown 

are from all 7 participants. Color differences show relative abundance of at least 2-fold, 

or log2 equal to or less than 1 (black) versus greater than 1 (gold). Figure was created in 

R (package phyloseq). 
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Table 15. Patient Characteristics and Sequencing Results. 

 

Abbreviations and Definitions:  FEV1, % predicted forced expiration volume in 1 second; FEV1/FVC, ratio of 
forced expiratory volume in 1 second/forced vital capacity (L); BMI, body mass index (kg/m2), OTU, 
Operational Taxonomic Units. 
^Number of sequences that classified to OTUs. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Sample 
ID 

Sputum 
Induction 

Age FEV1 FEV1/FVC BMI Worked 
on farm 

(yrs) 

Trimmed 
Sequences 

OTUs^  Shannon 
Index 

2195-T1 Baseline 62 69 60 ≥30 21 41796 40133 3.13 

2195-T2 2 months 
     

35728 32448 2.98 

2150-T1 Baseline 53 59 67 ≥30 14 27460 25185 2.91 

2150-T2 6 months 
     

10527 10056 2.52 

2326-T1 Baseline 70 69 70 ≥30 43 16822 16114 3.00 

2326-T2 2 months 
     

27872 26533 3.29 

1053-T1 Baseline 59 52.5 71 ≥30 49 24588 22705 3.23 

1053-T2 9 months 
     

38683 35736 3.41 

1204-T1 Baseline 67 63.9 62 ≥30 48 25139 24421 2.76 

1204-T2 3 months 
     

11574 11117 2.72 

2397-T1 Baseline 61 74 68 <25 20 16313 15470 3.40 

2397-T2 4 months 
     

16548 15674 3.20 

2285-T1 Baseline 66 59 71 ≥30 48 19517 18763 3.17 

2285-T2 4 months 
     

24907 21459 2.65 
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Figure 3A.  
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Figure 3B. 
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Figure 4A.  
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Figure 4B.  
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Figure 5. 
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Figure 6A.  
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Figure 6B. 
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Figure 7. 
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Stability of the Lung Microbiome in COPD Patients 

 

 

 

Supplementary Data 

Figure 8. Shannon Diversity Index for Inter-Subject Variability Samples. X-axis is 

Samples per Sequence. Y-axis is Shannon Rarefraction Measures. At 1500 

sequences/sample, all unique OTUs had been identified. Legend shows what each color 

represents. Figure was created in Qiime. 

Figure 9. Diversity Indexes for Inter-Subject Variability Samples. Boxplots for different 

alpha diversities, Observed, Chao1, Ace, Shannon, Simpson, InvSimpson (1/Simpson), 

and Fisher. Boxplots show no significant differences in alpha diversities between T1 and 

T2. Figure was created in R (package ggplot2). 

Figure 10. Principal Coordinate Analysis Demonstrates Clustering of Intra-Subject 

Variability Samples. Principal coordinate analysis was performed using Qiime and 

Weighted UniFrac, and the results for principal coordinates 1 and 2 and 3 are shown.  

For every patient, samples clustered together. 

Figure 11. Shannon Diversity Index for Intra-Subject Variability Samples. Samples. X-

axis is Samples per Sequence. Y-axis is Shannon Rarefraction Measures. At 1500 

sequences/sample, all unique OTUs had been identified.  Legend shows what each 

color represents. Figure was created in Qiime. 

Figure 12. A. Taxonomic Identification at the Phylum Level for Intra-Subject Variability 

Samples. Taxonomic results at the phylum level are displayed for each sample. B. 

Taxonomic Identification for the top 8 Genus Level for intra-subject variability samples. 

Taxonomic results at the genus level are displayed for each sample. 

Figure 13. Heat Map of OTU Abundances for Intra-Subject Variability Samples. Figure 

was created in R (package phyloseq). Lighter blue shows greater abundance compared 

to dark blue/black. 
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Figure 8. 
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Figure 9. 
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Figure 10.  
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Figure 11. 
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Figure 12A. 
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Figure 12B. 
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CHAPTER V. DISCUSSION 
 
Summary of Current Research 

Agricultural workers are at risk for respiratory diseases, such as chronic 

obstructive pulmonary disease (COPD) and chronic bronchitis, due to exposures and 

inflammatory agents found in their work environment.  These exposures include: organic 

dusts, microorganisms, bacterial endotoxins, chemical toxicants, and bacterial 

degradation of grain and animal wastes. In addition, farmers can be exposed to many 

potential respiratory irritants including diesel exhaust, pesticides, hays, and grains.  

While previous studies have been conducted to examine agricultural effects of 

chronic respiratory diseases more closely, there are still significant gaps in the literature 

regarding the understanding of how agricultural workers are afflicted with chronic 

respiratory diseases. This dissertation sought to help narrow some of the existing gaps 

in the literature and study the relationship of agricultural exposures and respiratory 

diseases.  

The AgLung database and the Keokuk database have both provided an 

opportunity to explore the relationship between agricultural exposures and chronic 

respiratory diseases. The AgLung database allowed us to utilize multiple questionnaires 

to identify what questions were necessary to gain an accurate exposure assessment. 

Further, we recruited COPD patients from this database so that we could examine the 

stability of lung microbiome longitudinally over a limited period of time. Because blood 

was taken for genotyping from both the AgLung and Keokuk populations, we were also 

able to examine the relationship between TLR4 polymorphisms with chronic respiratory 

disease outcomes and the expression of pro-inflammatory cytokines.  
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Chapter 2 of this dissertation used principal factor analysis (PFA) to summarize a 

large amount of important agricultural exposure variables collected from questionnaires. 

The two questionnaires from the AgLung cohort were designed to assess the 

relationship between agricultural exposures and respiratory diseases. Previous studies 

on chronic diseases have utilized questionnaires that have assessed up to 50 

exposures. However, it was uncertain if numerous questions were necessary to obtain 

accurate exposure information. The results of Chapter 2 give a sufficient model that is 

interpretable and consistent with farming practice. Four models were examined to 

characterize agricultural exposures. Model 1 used data from a different questionnaire 

than the other three models, asking “yes/no” for farm tasks during the participants’ 20s 

and 40s. The other questionnaires, used in Models 2, 3, and 4, asked about farm tasks 

as “ever/never” during their lifetime and included lifetime total years and total hours for 

many of the exposures. We determined the pattern of clustered agricultural exposures 

differed between Questionnaire 1 (Model 1) and Questionnaire 2 (Model 2). We also 

showed that the utilization of intensity exposure variables (total years found in Model 3) 

yielded different factors than dichotomous (yes/no found in Model 2) variables.  In 

addition, we showed greater variation explained using total lifetime hours, found in 

Model 4, compared to total lifetime years (Model 3). 

Utilizing both the AgLung and Keokuk populations, Chapter 3 focused on TLR4 

polymorphisms. Functional polymorphisms in TLR4 have been studied and their role 

investigated in a number of inflammatory diseases. Most studies, including ours, have 

focused on the missense Asp299Gly polymorphism, as the rare allele Gly299 has been 

shown to cause reduced levels of pro-inflammatory cytokines and inflammatory hypo-

responsiveness to inhaled LPS. The association of the Asp299Gly polymorphism and 

chronic bronchitis had not been studied in individuals who are chronically exposed to 
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high levels of LPS. The results of Chapter 3 showed that the Asp299Gly is associated 

with chronic bronchitis in two agriculturally-exposed populations. We also showed that 

this polymorphism was associated with decreased LPS-stimulated production of IL-6 and 

TNF-α in a whole blood assay. 

The final study of this dissertation (Chapter 4) examined the stability of the lung 

microbiome. Changes in the lung microbiome in patients with COPD have been found to 

occur when there are respiratory infections, airway inflammation as a result of an 

exacerbation, and the use of antibiotics. There were no longitudinal studies comparing 

baseline sputum samples with samples taken several months later in COPD patients 

during clinical stability. The results of Chapter 4 showed little variability of the lung 

microbiome in COPD patients over a period of time (≤ 10 months). 

Together, the studies from these chapters offer new insight and address some of 

the gaps in knowledge regarding the assessment of agricultural exposures based on 

factor analysis, the association of TLR4 polymorphisms with chronic bronchitis, and the 

stability of the lung microbiome in COPD patients.  

 

Implications of Current Research 

 While cigarette smoking is the leading contributor to COPD and chronic 

bronchitis, a summary by the American Thoracic Society found that 15% of the 

occurrence of COPD is due to occupational exposures, independent of smoking. 

Farming is among the top occupations associated with COPD. Many studies have 

shown that there is an important role of agricultural exposures in the pathophysiology of 

COPD. In this dissertation, we studied agricultural exposures somewhat independent of 

smoking. 
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 The first study of this dissertation examined the relationship between a variety of 

agricultural exposures. This study compared four different PFA models to identify the 

essential questions to ask in order to characterize long-term agricultural exposures. The 

questions that were identified as pertinent included duration and intensity (i.e. total 

lifetime hours) of farm work, farm tasks, livestock exposure, crop exposure and “other 

exposures”.  

Chapter 3 of this dissertation found that the Asp299Gly variant is associated with 

chronic bronchitis in two agricultural-exposed populations. This association was 

observed in two somewhat different populations. The Keokuk population was a fairly 

healthy population (without airflow obstruction and smoking exposure).  The AgLung 

population, on the other hand, had a large percentage of individuals with airflow 

obstruction and who were current smokers. The association was strongest in the Keokuk 

population possibly suggesting that agricultural exposures, independent of smoking, 

contributes to the development of chronic bronchitis among those with the TLR4 

Asp299Gly polymorphism. Similar to previous studies, this study also found the 

association between Gly299 and reduced levels of LPS-stimulated TNF-α. 

           Chapter 4 presented the bacterial profiles of agriculturally-exposed, male patients 

with moderate COPD based on 16S rRNA gene sequencing.  All patients were former 

smokers who worked on the farm for a large number of years. This chapter has the most 

clinical implications as it has given us a better understanding of the stability of the lung 

microbiome of COPD patients over a short period of time. Our results indicated that the 

lung microbiome remains relatively stable over a short period of time. 

 

Suggested Future Research 
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 The work in this dissertation adds to the existing literature on the relationship 

between agricultural exposures and chronic respiratory diseases. However, there are 

still many gaps in the literature in which future research in this area should focus.  Based 

on the results of this dissertation, several future directions are suggested. 

 The second chapter of this dissertation focused on the development of a model 

for understanding the relationships between a variety of agricultural exposures. The 

results from this study could help us refine future measurement efforts by developing a 

questionnaire that encompasses the most important exposure variables found here in 

this study which could also greatly reduce the burden both to the researcher and the 

participant in that we would measure a smaller number of variables rather than 36 plus 

variables that were found in our questionnaires.  It also may help us hone in on the most 

biologically relevant exposures.  Next steps include conducting field tests and formal 

tests of validation. Then we could explore who will this questionnaire predict respiratory 

outcomes in an agriculturally-exposed population, particularly compared to more 

standard questionnaires.  

This model may be helpful in guiding future research, but first should be used in 

its current population (AgLung) and then, in populations similar to this population (i.e. 

Keokuk, Midwest, Great Plains). In addition, the model should include genetic variants to 

see how agricultural exposures and genetic susceptibility factors underlie the 

pathogenesis of chronic respiratory diseases. I encourage those working on databases 

similar to ours to use this model to examine their respiratory disease outcomes. 

 The results from the second study found the opposite to what was hypothesized. 

Because the TLR4 polymorphism (Asp299Gly) has been associated with acute airway 

and inflammatory hypo-responsiveness to inhaled LPS, we hypothesized that 

agricultural workers chronically exposed to LPS and carrying the Asp299Gly 
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polymorphism would be protected from respiratory symptoms, i.e. chronic bronchitis. We 

observed the opposite and were left with one main question: why are TLR4 299/399 

polymorphisms associated with an increased odds of chronic bronchitis in these 

agricultural-exposed populations?  To further examine these results, other areas need to 

be studied, in addition to the TLR4 pathway. These areas include polymorphisms 

affecting mucus production and different pathways including the TLR2 pathway. 

Airway mucus hypersecretion is a common pathological feature of chronic 

obstructive airway diseases including chronic bronchitis. Mucins, the major protein 

components of mucus, are directly induced by TLR signaling. Other genes (i.e. 

MUC5AC, MUC2) may be contributing to the increased odds of chronic bronchitis in 

these two agriculturally-exposed populations.  

In addition, not all bacterial products signal through the TLR4 pathway. LPS also 

signals through TLR2. Unlike TLR4, TLR2 polymorphisms responded the same as the 

wild-type to LPS. Therefore, the production of pro-inflammatory cytokines that contribute 

to chronic bronchitis might be due to LPS being signaled through the TLR2 pathway. 

Furthermore, other ligands in organic dust, such as gram-positive bacteria, could be 

triggering signaling through the TLR2 pathway. Although endotoxin is found in organic 

dust, many studies have failed to link endotoxin exposure to the development of disease 

(155-160).  Studies have found that gram-positive bacteria are more prevalent in organic 

dust than gram-negative bacteria (159-161). Peptidoglycan (PGN), a non-endotoxin 

component, has been found to initiate the innate immune inflammatory response to 

swine facility animal farming dusts in vitro (159,162,163). TLR2 is an important receptor 

of gram-positive bacteria as it recognizes PGNs that are part of the cell wall of gram-

positive bacteria (138,164). Therefore, in these two highly exposed populations, the 

presence of gram-positive bacteria in organic dust may be contributing to the increased 
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risk of chronic bronchitis through the TLR2 pathway (155). Future studies need to assay 

polymorphisms in the TLR2, MUC2, and/or MUC5AC gene in individuals with and 

without exposure to agriculture. 

Additionally, in future analysis, the PFA model from Chapter 2 should be applied 

to the findings from Chapter 3. This model should model chronic bronchitis as the 

outcome and include the four factors (from Chapter 2) and the Asp299Gly variant.  In 

addition, this model can include demographic variables such as smoking variables, age, 

and education. 

The results of the fourth chapter of this dissertation showed that the lung 

microbiome of agriculturally-exposed COPD patients remains relatively stable over a two 

day time period and shows variations among some COPD patients. Future longitudinal 

studies should include a larger sample size. Additionally, different time periods between 

the two samples should be examined. Bronchoalveolar lavage (BAL), cell-free BAL 

supernatants, and biopsies, should be studied as well since these samples provide 

different insights into the processes of the lung microbiology. For further comparison, 

longitudinal studies should be conducted in agricultural-exposed patients (current 

farmers) without COPD to determine how these exposures affect the lung microbiome 

over time. 

 

Limitations 

 There are limitations in each of the studies in this dissertation.  In the first study, 

recall bias is probable as participants were asked to retrospectively recall their lifetime 

farming exposures. In addition, there is a potential for interviewer bias as there were two 

methods to obtain exposure information (telephone interviews vs in-person interviews). 

Furthermore, the mean age of this population was 64 years, therefore, their agricultural 
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exposures may be different from younger workers because of technological advances in 

farming. Direct measurement of agricultural exposures was not performed. 

  In the second study, a “healthy worker effect” might have occurred as a large 

number of people leave the industry after developing respiratory issues. They are, 

therefore, unable to remain employed in this industry. This factor may have caused an 

underestimation of the results as individuals with respiratory problems might not work in 

environments with high exposures. Whole blood assays were used to access 

responsiveness to LPS and stimulated cytokine levels were measured in a whole blood 

assays; however, that may not reflect the airway.  

In the final study, the sample size was quite small making it difficult to observe 

more significant differences between the groups (T1 and T2). In addition, sputum 

samples have been shown to have significantly lower diversity than the other sample 

types such as total BAL, cell-free BAL supernatants, and biopsies. In all studies, there is 

the issue of generalizability of these results.  Both populations included mainly 

Caucasian farmers from Iowa and Nebraska. 

 

Conclusions 

This dissertation contributed to the many gaps in knowledge in the relationship 

between agricultural exposures and respiratory diseases. This dissertation utilized PFA 

to determine interpretable and logical factors to examine the relationship between 

agricultural exposures and respiratory diseases. It showed TLR4 299/399 

polymorphisms are associated with chronic bronchitis in two agriculturally-exposed 

populations, and suggested that the lung microbiome of agriculturally-exposed 

individuals is relatively stable. Continuing to fill the gaps in knowledge in this area of 

study is crucial to improving the respiratory health in agricultural workers (141). 
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