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 Adaptive T cell immunity is essential for defense against foreign antigens and 

immune surveillance against cancer. Tight regulation of T cell activation is required to 

avoid autoimmunity to self-antigens or protracted inflammation after foreign antigens are 

cleared. Incomplete or inappropriate stimulation leads to an active shutdown of T cell 

activation called anergy. The Casitas B-lineage Lymphoma (CBL)-family of ubiquitin 

ligases (E3s) are essential negative regulators of T cell activation that impinge on thymic 

selection as well as anergy induction programs. Single gene studies show that CBL is 

critical during T cell development while CBL-B plays an essential role in peripheral T 

cells; however, a more severe inflammatory-autoimmune disease is observed upon T 

cell-specific deletion of CBL in CBL-B null mice indicating redundant roles of CBL 

proteins. Mutations in CBL-B have been linked with increased susceptibility in a number 

of autoimmune diseases, and CBL-B null mice exhibit constitutive tumor rejection. The 

mechanisms by which CBL proteins regulate T cells in autoimmunity and antitumor 

immunity are not fully understood. It was previously not feasible to test the functional 

redundancy of CBL proteins in specific populations of T cells using existing models 

because their generalized CBL-B deficiency leads to altered and/or enhanced function of 

all T cell subsets and other immune cells, including B cells, macrophages, mast cells, 

neutrophils, and NKT cells. Here, we generated the first CBL-Bflox/flox mouse which allows 

conditional CBL and CBL-B deletion in a cell type-specific manner.  By crossing this new 



mouse strain with the previously generated CBLflox/flox mouse and to a CD4-Cre 

transgene, we obtained concurrent CBL and CBL-B double knockout (DKO) in all T cell 

subsets, with altered T cell development, widespread organ infiltration by immune cells 

and rapid lethality, consistent with a redundant functional role of CBL and CBL-B. 

Unexpectedly, CD4-Cre-induced deletion in a small fraction of hematopoietic stem cells 

led to expansion of certain non-T-cell lineages, suggesting caution in the use of CD4-Cre 

for T-cell-restricted gene deletion. 
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CHAPTER 1: INTRODUCTION 

 

Parts of this chapter are derived from the following manuscript: 

Benjamin Goetz*, Wei An*, Bhopal Mohapatra*, Neha Zutshi, Fany Iseka, Matthew D. 
Storck, Jane Meza, Yuri Sheinin, Vimla Band, Hamid Band. A novel CBL-Bflox/flox mouse 
model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre 
mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem 
cells. Oncotarget, 7(32), 51107-51123. 
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CBL family of E3 ubiquitin ligases 

Review of the ubiquitination machinery 

 The ubiquitin system is a protein modification pathway in which ubiquitin, a 76-

amino acid protein, is covalently attached to cellular proteins through an enzymatic 

cascade (Deshaies, Joazeiro 2009, Schulman, Harper 2009, MacGurn, Hsu et al. 2012). 

Ubiquitin can be attached in monoubiquitin and/or polyubiquitin chains to regulate target 

proteins through proteasomal degradation, lysosomal degradation, regulation of protein 

interactions, regulation of protein activity, or regulation of protein localization (Komander, 

Rape 2012). Ubiquitin modification affects many different cellular processes including 

cell growth and proliferation, signal transduction systems, endocytosis and 

downregulation of membrane proteins, degradation of abnormal proteins, development, 

apoptosis, and antigen processing (Komander, Rape 2012). Alterations in the ubiquitin 

system leads to a variety of human diseases including the onset and progression of 

cancer, autoimmunity and inflammatory disorders, neurodegenerative disorders 

(Parkinson’s, Alzheimer’s, and Huntington’s diseases), and muscle wasting disorders 

(Popovic, Vucic et al. 2014). Moreover, further understanding of the ubiquitin system is 

needed for the development of new clinical therapies. 

 Ubiquitination involves the formation of an isopeptide bond between the C 

terminus of ubiquitin and a lysine in the target protein. This occurs through a 

multienzyme cascade involving ubiquitin-activating (E1), ubiquitin-conjugating (E2), and 

ubiquitin ligating (E3) enzymes (Figure 1.1). An E1 enzyme catalyzes the binding of the 

C-terminal glycine of ubiquitin to a cysteine residue of the E1 through a thiolester linkage 

in an ATP-dependent step. The activated E1-ubiquitin complex then binds to an E2 

enzyme and transfers the activated ubiquitin to a cysteine residue on the E2. In the final 

step, the E2 enzyme binds to an E3 from one of two main classes: the catalytic  
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Figure 1.1. The ubiquitin pathway. A) Schematic representation of the ubiquitination 
process. A hierarchical set of three types of enzyme is required for substrate 
ubiquitination: ubiquitin-activating (E1), ubiquitin-conjugating (E2) and ubiquitin-protein 
ligase (E3) enzymes. The two major classes of E3 ligases are depicted. B) Schematic 
representation of the different Ub modifications with their functional roles. The question 
mark indicates that the functions of branched chains are largely unknown. 
1 

 
From [Woelk T., Sigismund S., Penengo L., Polo S. The ubiquitination code: a signaling 
problem. Cell Div. 2007 Mar 13;2:11]. Reprinted with permission from BioMed Central. 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0/)  

http://creativecommons.org/licenses/by/2.0/
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HECT-domain containing E3s or the non-catalytic RING finger domain (and related 

domains)-containing E3s. E2 enzymes bound to HECT domain-containing E3s transfer 

the activated ubiquitin to a cysteine on the E3 which then transfers the ubiquitin moiety 

to a lysine of the target protein through a isopeptide linkage; whereas, E2 enzymes 

bound to RING finger domain-containing E3s transfer the ubiquitin directly to the target 

protein with the E3 functioning as a scaffold. There are few known E1 enzymes, a larger 

family of E2s, and an even larger variety of E3 enzymes with the large number of E3s 

functioning to broaden the range and selectivity of target proteins regulated by 

ubiquitination modification (Komander, Rape 2012, Hershko, Ciechanover 1998, 

Deshaies, Joazeiro 2009, Schulman, Harper 2009). 

Overview of the CBL family proteins 

The CBL-family proteins (CBL, CBL-B, and CBL-C) (Figure 1.2) function as RING 

domain E3 ubiquitin ligases directed at protein tyrosine kinase (PTK) signaling pathways 

activated by stimulation through a number of cell surface receptors (Mohapatra, Ahmad 

et al. 2013). This function involves a highly conserved mechanism in which the N-

terminal tyrosine kinase-binding (TKB) domain of CBL proteins binds to specific 

phosphotyrosine-containing motifs on receptor or non-receptor PTKs or adaptor proteins 

phosphorylated upon receptor-induced PTK activation (Thien, Blystad et al. 2005). Once 

recruited, CBL proteins are phosphorylated on an invariant tyrosine residue located 

within the linker region between the TKB domain and the RING finger domain; this 

phosphorylation event triggers intramolecular rearrangements that re-position the linker 

and RING finger domain for optimal binding of a ubiquitin conjugating enzyme (E2) and 

juxtapose the E2 closer to the TKB domain-bound PTKs for transfer of ubiquitin (Figure 

1.3) (Dou, Buetow et al. 2012, Mohapatra, Ahmad et al. 2013). These mechanisms 

position CBL-family E3s as unique feedback negative regulators of activated PTKs. CBL 



6 
 

and CBL-B, but not the epithelial-restricted CBL-C, also contain homologous C-terminal 

extensions that include an extensive proline-rich region for association with signaling 

proteins with SH3 domains such as SRC-family kinases, and specific tyrosine 

phosphorylation sites that help recruit SH2 domain-containing signaling intermediates, 

including PI3-kinase, RHO-family GTPase guanine nucleotide exchange factors (GEFs) 

of the VAV family and RAP1-GEF C3G (Figure 1.4) (Fang, Liu 2001, Tang, Subudhi et 

al. 2002, Zhang, Shao et al. 2003, Mohapatra, Ahmad et al. 2013). These mechanisms 

contribute to a coordinated program of negative regulation of PTK-coupled surface 

receptor signals that involve ubiquitination-dependent lysosomal targeting of receptors 

and their associated signaling proteins, proteasomal degradation of certain signaling 

intermediates, and degradation-independent negative regulation of certain signaling 

pathways (Rao, Ghosh et al. 2002, Rao, Miyake et al. 2002, Thien, Langdon 2001). 

CBL/CBL-B double null mice are embryonic lethal, indicating the redundant but 

essential roles of CBL proteins during embryonic development. Aside from embryonic 

development, redundant functional roles of CBL and CBL-B have also emerged from a 

number of in vitro and genetic studies in other systems. Analyses of CBL null, CBL-B 

null and CBL/CBL-B double-null mouse embryonic fibroblasts (Duan, Miura et al. 2003, 

Ahmad, Mohapatra et al. 2014) and CBL and/or CBL-B knockdown in human mammary 

epithelial cells (Duan, Raja et al. 2011) and neural stem cells (Ferron, Pozo et al. 2010) 

in vitro showed that CBL and CBL-B function redundantly in negatively regulating EGF 

receptor traffic and signaling. Deletion of floxed CBL with murine mammary tumor virus 

(MMTV)-Cre on a CBL-B null background led to a myeloproliferative disease due to CBL 

deletion in hematopoietic stem cells (HSCs) and subsequent expansion of progenitors 

and myeloid progeny, but such a phenotype was not observed when CBL alone or CBL-

B alone were deleted (Naramura, Nandwani et al. 2010, An, Nadeau et al. 2015). Using 

the same model, we have recently observed a redundant requirement of CBL and  
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Figure 1.2. Evolutionary conservation of the primary structure and domain 
organization of Cbl proteins. The comparison includes: the three human (Homo 
sapiens) Cbl proteins (Cbl or c-Cbl; Cbl-b; and Cbl-c, Cbl-3 or Cbl- SL) as representative 
mammalian Cbl proteins; Chicken (Gallus gallus) Cbl; Zebra fish (Danio rerio) Cbl; Frog 
(Xenopus tropicalis) Cbl; Fly (Drosophila melanogaster) long and short Cbl; Worm 
(Caenorhabditis elegans) Cbl (SLI-1); and Dicty (Dictyostelium discoideum) Cbl (Cbl-A). 
* Xenopus tropicalis was used for comparison rather than Xenopus laevis, as Cbl 
sequences in the databases for the latter species were partial. Domain designations: 
TKB, Tyrosine Kinase-Binding; 4H, four-helical bundle; SH2, Src-Homology 2; RF, RING 
Finger; L, Linker helical region; P, Proline-rich region; U, Ubiquitin-associated (UBA) 
domain; The amino acid sequences were compared to human Cbl and Cbl-b and are 
shown as two values separated by “/” under % identity and similarity for whole protein (or 
available partial sequence; shown with // across C-terminal end) and for the N-terminal 
domains (TKB, Linker and RF). The latter emphasizes the higher evolutionary 
conservation of the N-terminal domains that constitute the core PTK-directed E3 activity 
of Cbl proteins. V-Cbl corresponds to amino acids 1-357 of mouse Cbl that are present 
in viral Cbl oncogene. Dicty Cbl 4H region (inferred in UniProt) was confirmed using the 
YASARA structure program (www.yasara.org); however, a linker helical region has not 
been identified in Dicty Cbl, making it an exception in the entire Cbl protein family. N and 
C refer to amino and carboxyl termini. 
2 

 
Reprinted from Biochimica et Biophysica Acta, Vol. 1833, Bhopal Mohapatra, Gulzar 
Ahmad, Scott Nadeau, Neha Zutshi, Wei An, Sarah Scheffe, Lin Dong, Dan Feng, 
Benjamin Goetz, Priyanka Arya, Tameka A. Bailey, Nicholas Palermog, Gloria E.O. 
Borgstahl, Amarnath Natarajan, Srikumar M. Raja, Mayumi Naramura, Vimla Band and 
Hamid Band. Protein tyrosine kinase regulation by ubiquitination: Critical roles of Cbl-
family ubiquitin ligases. 122-139, (2013), with permission from Elsevier. 
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Figure 1.3. Domain architecture of Cbl proteins and major protein-protein 
interactions involving various domains/motifs. The N-terminal Tyrosine Kinase-
Binding (TKB) domain binds to phosphotyrosine (pY)-containing sequence motifs in 
target proteins, that typically include activated receptor and non-receptor tyrosine 
kinases. The Linker region and the RING finger (RF) domain bind to ubiquitin 
conjugating enzymes (E2). The proline-rich motifs (Pro-rich) bind to SH3 domain 
containing signaling and endocytic proteins. Induced tyrosine phosphorylation sites 
(major sites at Y700, Y731 and Y774 are shown) recruit SH2 domain-containing 
signaling proteins. The Ubiquitin-associated (UBA) domain/leucine zipper near the C-
terminus is involved in ubiquitin binding and dimerization. N and C refer to amino and 
carboxyl termini. 

3 

Reprinted from Biochimica et Biophysica Acta, Vol. 1833, Bhopal Mohapatra, Gulzar 
Ahmad, Scott Nadeau, Neha Zutshi, Wei An, Sarah Scheffe, Lin Dong, Dan Feng, 
Benjamin Goetz, Priyanka Arya, Tameka A. Bailey, Nicholas Palermog, Gloria E.O. 
Borgstahl, Amarnath Natarajan, Srikumar M. Raja, Mayumi Naramura, Vimla Band and 
Hamid Band. Protein tyrosine kinase regulation by ubiquitination: Critical roles of Cbl-
family ubiquitin ligases. 122-139, (2013), with permission from Elsevier.  
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Figure1.4. Schematic representation of the basic role of Cbl-family proteins as 
ubiquitin ligases (E3s) towards components of tyrosine kinase signaling 
pathways. Human Cbl is shown as a prototype of the family. The TKB domain, the 
proline-rich motifs and the induced tyrosine phosphorylation sites recruit targets for 
ubiquitin modification. The linker/RF-associated ubiquitin conjugating enzyme (E2) 
serves as an acceptor of activated ubiquitin from a ubiquitin-activating enzyme (E1) and 
transfers it to targets bound to various domain/motifs of Cbl to promote mono-
ubiquitination (shown as a single UB subunit) or poly-ubiquitination (shown as four UB 
subunits). 

4 

Reprinted from Biochimica et Biophysica Acta, Vol. 1833, Bhopal Mohapatra, Gulzar 
Ahmad, Scott Nadeau, Neha Zutshi, Wei An, Sarah Scheffe, Lin Dong, Dan Feng, 
Benjamin Goetz, Priyanka Arya, Tameka A. Bailey, Nicholas Palermog, Gloria E.O. 
Borgstahl, Amarnath Natarajan, Srikumar M. Raja, Mayumi Naramura, Vimla Band and 
Hamid Band. Protein tyrosine kinase regulation by ubiquitination: Critical roles of Cbl-
family ubiquitin ligases. 122-139, (2013), with permission from Elsevier.  
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CBL-B in mammary gland development (Mohapatra B, Zutshi N, An W et al. An essential 

role of CBL and CBL-B ubiquitin ligases in mammary stem cell maintenance. submitted). 

T lymphocytes 

Role in cell-mediated immunity 

 In the adaptive immune system, T cells play a central role in cell-mediated 

immunity against viral, bacterial, and parasitic infections and malignant cells in an 

antigen specific manner. T cell immunity can also lead to autoinflammation/autoimmunity 

through aberrant recognition of self-antigen. T cells originate in the bone marrow, where 

hematopoietic stem cell-derived progenitor cells migrate to the thymus and undergo 

further development into mature naïve T cells that express either co-receptor CD4 or 

CD8 followed by entry into the periphery (Germain 2002, Luckheeram, Zhou et al. 2012). 

Co-receptor CD4 interacts with major histocompatibility complex (MHC) class II and CD8 

with MHC class I present on antigen-presenting cells (APCs) (Germain 2002). Naïve T 

cells migrate through the blood and secondary lymphoid tissues (lymph nodes and 

spleen) until activated by an APC (Pennock, White et al. 2013). 

 Activation of naïve T cells occurs though the T cell receptor (TCR) recognizing 

antigenic-peptide presented by APCs in the context of MHC and concurrent engagement 

of co-receptors (Smith-Garvin, Koretzky et al. 2009, Luckheeram, Zhou et al. 2012, 

Pennock, White et al. 2013). Following activation, T cells rapidly proliferate and migrate 

to sites where antigen is present. CD4+ T cells (T helper cells), once activated, are 

capable of differentiating into multiple different subtypes, each of which can elicit 

different immune responses through the secretion of specific repertoires of cytokines 

(Zhu, Yamane et al. 2010, Luckheeram, Zhou et al. 2012, Pennock, White et al. 2013). 

CD8+ T cells (cytotoxic T cells) destroy virus infected and malignant cells by delivery of 

cytotoxic granules to target antigen-expressing cells (Andersen, Schrama et al. 2006). 
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After antigen elimination, the majority of effector T cells die with the exception of a small 

population of memory T cells specific to the antigen (Pennock, White et al. 2013, Farber, 

Yudanin et al. 2014). Compared to naïve T cells, memory cells are more easily activated 

if challenged with the same antigen in the future and produce a more rapid immune 

response (Farber, Yudanin et al. 2014). 

T cell development 

 Thymic seeding progenitors (TSPs) generated from hematopoietic stem cells in 

the bone marrow migrate to the thymus where they undergo multiple stages of T cell 

maturation (Germain 2002). After encountering the thymic epithelium, cells progress to 

early thymic progenitors (ETPs) and enter the double negative (DN) stages of 

development which lack expression of CD4 and CD8 (Koch, Radtke 2011). DN1 

thymocytes reside in the corticomedullary junction where they undergo proliferation 

before migrating deeper into the cortex for further differentiation into DN2 thymocytes 

(Porritt, Gordon et al. 2003, Petrie, Zuniga-Pflucker 2007). DN2 thymocytes upregulate 

genes involved in DNA rearrangement, such as recombination-activation genes (RAGs), 

before differentiating into DN3 thymocytes in the subcapsular zone where they undergo 

β-selection through rearrangement of the β loci to express a functional TCR- β chain 

(Taghon, Yui et al. 2006, Burtrum, Kim et al. 1996). A successfully rearranged TCRβ 

chain combines with CD3 chains and an invariant α chain to generate a functional pre-

TCR. Cells that fail to undergo successful β chain rearrangement die (von Boehmer 

2005). Developing thymocytes then mature to the DN4 stage and begin migrating back 

to the medulla. These cells undergo TCRα chain rearrangement and successful 

recombination leads to the expression of a mature αβ TCR, and thymocytes begin to 

express CD4 and CD8 leading to their progression to the double positive (DP) stage 

(Robey, Fowlkes 1994). Thymocytes with TCRs that interact with intermediate affinity to 
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self-peptide-MHC complexes undergo positive selection; but, cells with poor affinity to 

self-peptide-MHC complexes die by neglect (Klein, Hinterberger et al. 2009). 

Thymocytes with a TCR that reacts with MHC class I commit to the CD8 single positive 

(SP) lineage, and those that interact with MHC class II commit to the CD4 SP lineage 

(Klein, Hinterberger et al. 2009). Single positive cells then migrate to the medulla where 

they undergo negative selection by apoptosis which eliminates SP thymocytes that 

possess a TCR with high affinity for self-antigens to prevent auto-reactive T cells from 

entering the periphery (Klein, Hinterberger et al. 2009). The resulting mature SP T cells 

then leave the thymus and enter the circulation (Figure 1.5). 

T cell activation 

Tight regulation of T cell activation and immunological tolerance are essential to 

allow the body to mount effective defense against foreign antigens and to provide 

immune surveillance against cancer without autoimmunity to self-antigens or protracted 

inflammatory sequels following infections. Most autoreactive T cells are eliminated by 

negative selection during thymocyte development; however, this process is not absolute, 

and some autoreactive T cells escape into the periphery (Baldwin, Trenchak et al. 1999). 

Such T cells are eliminated or kept in check through peripheral tolerance mechanisms 

(Redmond, Marincek et al. 2005). A key mechanism to prevent autoimmune 

consequences of peripheral T cell activation during immune responses is the imposition 

of a requirement for concurrent signals emanating from the TCR recognition of an 

antigen, presented by an antigen-presenting cell in the context of MHC, and those 

generated by the engagement of co-stimulatory molecules (Chen, Flies 2013). 

Engagement of the T cell receptor in the absence of co-stimulatory molecules results in 

cell intrinsic functional inactivation known as anergy (LaSalle, Hafler 1994). Co-

stimulatory molecules on T cells, such as CD28, interact with their ligands expressed on  
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Figure1.5. Overall scheme of T-cell development in the thymus. Committed 
lymphoid progenitors arise in the bone marrow and migrate to the thymus. Early 
committed T cells lack expression of T-cell receptor (TCR), CD4 and CD8, and are 
termed double-negative (DN; no CD4 or CD8) thymocytes. DN thymocytes can be 
further subdivided into four stages of differentiation (DN1, CD44+CD25-; DN2, 
CD44+CD25+; DN3, CD44-CD25+; and DN4, CD44-CD25-). As cells progress through the 
DN2 to DN4 stages, they express the pre-TCR, which is composed of the non-
rearranging pre-T chain and a rearranged TCR -chain. Successful pre-TCR expression 
leads to substantial cell proliferation during the DN4 to double positive (DP) transition 
and replacement of the pre-TCR -chain with a newly rearranged TCR -chain, which 
yields a complete  TCR. The -TCR+CD4+CD8+ (DP) thymocytes then interact with 
cortical epithelial cells that express a high density of MHC class I and class II molecules 
associated with self-peptides. The fate of the DP thymocytes depends on signalling that 
is mediated by interaction of the TCR with these self-peptide–MHC ligands. Too little 
signalling results in delayed apoptosis (death by neglect). Too much signaling can 
promote acute apoptosis (negative selection); this is most common in the medulla on 
encounter with strongly activating self-ligands on hematopoietic cells, particularly 
dendritic cells. The appropriate, intermediate level of TCR signaling initiates effective 
maturation (positive selection). Thymocytes that express TCRs that bind self-peptide–
MHC-class-I complexes become CD8+ T cells, whereas those that express TCRs that 
bind self-peptide–MHC-class-II ligands become CD4+ T cells; these cells are then ready 
for export from the medulla to peripheral lymphoid sites. SP, single positive. 

5 

Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Immunology. 
Ronald N. Germain. T-cell development and the CD4-CD8 lineage decision. (2002). 
(http://www.nature.com/nri/index.html)   

http://www.nature.com/nri/index.html
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the surface of APCs or target cells (Chen, Flies 2013). During physiological immune 

responses, the function of costimulatory receptors and ligands is counter-balanced by 

negative co-stimulatory molecules on T cells, such as CTLA4, and inhibitory ligands on 

APCs/target cells (Chen, Flies 2013). 

CBL proteins in T cells 

Role in regulating activation and functions 

The CBL-family ubiquitin ligases (E3s) have been established as essential 

negative regulators of T cell activation and mediate induction of immune 

anergy/tolerance programs (Loeser, Penninger 2007). Genetic studies using a whole-

body CBL-B knockout mouse model demonstrate that CBL-B plays an essential role in 

coupling T cell activation to the requirement for CD28-mediated co-stimulation through 

negative regulation of downstream effectors PI3K and Vav1 (Fang, Liu 2001, Chiang, 

Kole et al. 2000, Krawczyk, Bachmaier et al. 2000). In addition, CBL-B promotes 

destabilization of the immunological synapse and inhibits T cell activation by negatively 

regulating integrin activation via its negative regulation of CrkL-C3G interactions (Zhang, 

Shao et al. 2003). Along with setting the threshold for T cell activation, CBL-B is also a 

critical regulator of the anergy induction program and becomes transcriptionally up-

regulated under T cell anergy-inducing conditions (Jeon, Atfield et al. 2004, Heissmeyer, 

Macian et al. 2004). This negative regulation of CBL-B on T cell activation is overcome 

upon co-stimulation through CD28 which leads to the reduction of CBL-B levels (Figure 

1.6) (Zhang, Bardos et al. 2002, Schmitz 2009). CBL-B deficiency uncouples T cell 

activation from the requirement for co-stimulation, leading to hyperactive T cells that 

display increased proliferation and IL-2 production in response to TCR stimulation alone 

(Chiang, Kole et al. 2000, Venuprasad 2010). Although CBL-B is expressed in immature  
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Figure1.6. Regulation of T cell anergy. (Left panel) Stimulation of the TCR in the 
absence of CD28-mediated costimulation triggers Ca2+-dependent signaling and leads to 
expression of the Cblb, Itch, and Grail genes. Inhibitory ubiquitination mediated by Cbl-b 
is shown in red. Ub, ubiquitin. (Right panel) Costimulation of T cells allows for full 
activation of signaling pathways, including the induction of mitogen-activated protein 
kinases (MAPKs) and the transcription factors AP1 (activator protein 1) and NF-κB. The 
discussed mechanisms of PKC-θ–dependent down-regulation of Cbl-b are displayed. 

6 

From [Schmitz ML. Activation of T cells: releasing the brakes by proteolytic elimination of 
Cbl-b. Sci Signal. 2009 Jun 23;2(76)]. Reprinted with permission from AAAS 
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thymocytes, CBL-B null mice show no detectable alterations in thymic development 

(Chiang, Kole et al. 2000, Bachmaier, Krawczyk et al. 2000). 

Whole-body CBL-null mice exhibit altered thymocyte development with increased 

thymocyte numbers and enhanced positive selection of mature CD4+ T cells (Naramura, 

Kole et al. 1998). While CBL-/- thymocytes exhibited hyper-activated Zap70 and MAPK, 

they also showed reduced activity of PI3K and PLCγ1, and impaired activation-induced 

TCR down-modulation (Naramura, Kole et al. 1998, Murphy, Schnall et al. 1998). Even 

though CBL can interact with many of the same substrates as CBL-B, such as PI3K, 

Vav1 and CrkL, CBL-deficient mice display relatively normal peripheral T cell function to 

the extent studied (Balagopalan, Barr et al. 2007). Thus, the in vivo function of CBL in 

peripheral T cells remains incompletely characterized. 

Double deficient T cells exhibit even higher proliferation compared to CBL-B-/- T 

cells when stimulated with anti-CD3 antibody (Naramura, Jang et al. 2002). Double 

deficient cells also display impaired activation-induced TCR down-modulation, 

hyperphosphorylated Zap70, and reduced activity of PLCγ and Vav1 similar to CBL 

deficient thymocytes(Naramura, Jang et al. 2002). Combined deletion of CBL and CBL-B 

also leads to altered thymic development causing a decrease in the number of total and 

double positive thymocytes, contraction of the peripheral T cell compartments, and 

altered ratios of mature CD4+ and CD8+ T cells (Huang, Kitaura et al. 2006). 

Role in autoimmunity 

 CBL-B null mice exhibit increased susceptibility to spontaneous and peptide 

induced autoimmunity (Bachmaier, Krawczyk et al. 2000). While CBL-B-/- mice display 

increased sensitivity to the development of spontaneous autoimmunity and CBL-/- mice 

show normal peripheral T cell function, conditional T cell specific CBL deletion in CBL-B 

null mice leads to a more severe autoimmune disease. Induction of Cre-mediated 
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deletion of a floxed CBL allele by LckCre (deletion at the double negative (DN) stage of 

thymocyte development) on a CBL-B null background led to severe spontaneous 

autoimmune organ infiltration, splenomegaly, and auto-antibodies leading to death 

between 12 and 16 weeks of age (Naramura, Jang et al. 2002). Also, mutations in CBL-

B have been linked with increased susceptibility in a number of autoimmune diseases, 

including type 1 diabetes mellitus (Yokoi, Komeda et al. 2002, Bergholdt, Taxvig et al. 

2005), systemic lupus erythematosus (Gomez-Martin, Ibarra-Sanchez et al. 2013), and 

multiple sclerosis (Sanna, Pitzalis et al. 2010, Corrado, Bergamaschi et al. 2011, Zhou, 

Wang et al. 2008, Sturner, Borgmeyer et al. 2014). 

Role in anti-tumor immunity 

CBL-B-null mice exhibit enhanced anti-tumor immunity to spontaneous and 

transplanted tumor models (Loeser, Penninger 2007, Chiang, Jang et al. 2007). 

However, the elucidation of mechanisms of enhanced anti-tumor ability in the currently-

available CBL-B null mouse models has been challenging since all immune and non-

immune cells lack CBL-B expression. Adoptively transferred CBL-B null CD8 T cells or 

NK cells have been shown to exhibit anti-tumor effects in mouse studies (Lutz-

Nicoladoni, Wallner et al. 2012, Hinterleitner, Gruber et al. 2012a, Stromnes, Blattman et 

al. 2010, Paolino, Choidas et al. 2014). Based on these studies, downregulation of CBL-

B in human T cells has been shown to enhance their tumor-killing abilities (Hinterleitner, 

Gruber et al. 2012a). Recent studies suggest an increased expression of CBL-B within 

the tumor-associated immune component, consistent with a role in mediating immune 

tolerance to tumors (Oguro, Ino et al. 2015). 

CBL proteins as tumor suppressors 

In contrast to a potentially pro-oncogenic role of CBL proteins by promoting 

immune tolerance associated with tumorigenesis, a potentially opposite role of CBL 
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proteins as tumor suppressors has emerged in the context of leukemogenesis. 

Mutations clustered in the linker region or RING finger domain of CBL, and rarely CBL-B, 

which abrogate E3 activity, have been identified in a subset of patients with 

myelodysplastic syndrome/myeloproliferative neoplasms (MDS/MPN), chronic 

myelomonocytic leukemia or juvenile myelomonocytic leukemia (Caligiuri, Briesewitz et 

al. 2007, Grand, Hidalgo-Curtis et al. 2009, Makishima, Cazzolli et al. 2009, Shiba, Kato 

et al. 2010, Nadeau, An et al. 2012). A majority of these patients exhibit duplication of 

mutant CBL genes, seen as acquired uniparental disomy (Grand, Hidalgo-Curtis et al. 

2009, Niemeyer, Kang et al. 2010, Dunbar, Gondek et al. 2008). In juvenile 

myelomonyctic leukemia patients, the mutation typically involves the regulatory tyrosine 

residue in the linker region and many of such patients inherit the mutation from a non-

leukemic parent with Noonan Syndrome, followed by somatic duplication of the mutation 

in hematopoietic stem cells (Niemeyer, Kang et al. 2010). Loss of CBL expression was 

shown to accelerate BCR-abl induced myeloid leukemogenesis in a mouse model 

(Sanada, Suzuki et al. 2009). Mice with an inactivating RING finger domain mutation in 

CBL also exhibited a leukemic disease when the wild type (WT) CBL gene was deleted 

(Rathinam, Thien et al. 2010). A more rapid leukemic disease was observed upon 

conditional CBL deletion, using MMTV-Cre, on a CBL-B null background, thus 

supporting a redundant but essential role of CBL and CBL-B as tumor suppressors in the 

context of myeloid leukemogenesis (Naramura, Nandwani et al. 2010, An, Nadeau et al. 

2015).  

In contrast to mutational inactivation of CBL (or CBL-B) as an oncogenic 

mechanism in leukemia, clustered CBL or CBL-B mutations are not found in other 

hematological malignancies and the COSMIC database reveals the extreme rarity of 

such mutations (http://cancer.sanger.ac.uk/cosmic). Whether or not CBL proteins have a 

role during tumorigenesis of non-myeloid lineages remains unknown; however, recent 
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studies suggest a potentially pro-oncogenic role of CBL as its expression was found to 

be higher in breast cancer and depletion of CBL/CBL-B reduced tumorigenicity or 

metastasis of breast cancer cells in the nude mouse model (Zhang, Teng et al. 2015, 

Kang, Park et al. 2012). These suggestive findings make it vital to design models where 

tissue-specific and tumor-intrinsic deletion of CBL and/or CBL-B can be induced to 

assess non-myeloid cell and tumor cell-intrinsic roles of CBL proteins.  

Hypothesis 

 CBL family proteins are critical negative regulators of T cell activation and 

functions. Previous studies into the role that CBL proteins play in regulating T cells in 

autoimmunity and antitumor immunity have been inconclusive due to the models utilizing 

a CBL-B null mouse. CBL-B deficiency leads to altered functions of many different 

immune cell types. To circumvent this, we have engineered the first CBL-B-flox mouse 

to allow tissue specific CBL/CBL-B DKO after breeding with the previously available 

CBL-flox mouse. I hypothesize that DKO in the T cell population will result in an 

exacerbated autoimmune phenotype and enhanced antitumor immunity. 
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CHAPTER 2: MATERIALS AND METHODS 

 

Parts of this chapter are derived from the following manuscript: 

Benjamin Goetz*, Wei An*, Bhopal Mohapatra*, Neha Zutshi, Fany Iseka, Matthew D. 
Storck, Jane Meza, Yuri Sheinin, Vimla Band, Hamid Band. A novel CBL-Bflox/flox mouse 
model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre 
mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem 
cells. Oncotarget, 7(32), 51107-51123. 
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Mice 

In order to generate CBL-B conditional knockout mice, a CBL-B conditional 

knockout construct was engineered using the “recombineering” technique (Liu, Jenkins 

et al. 2003). The Clone Finder software (NCBI database) was used to search the NIH’s 

C57BL/6J (B6) mouse BAC library (at the Children’s Hospital Oakland Research 

Institute). We identified clones [RP23-456D16, RP23-122H13, RP24-361F9, RP24-

98B21] that contain the mouse CBL-B gene. A series of “recombineering” reactions (Liu, 

Jenkins et al. 2003) were used to retrieve a 10.5 kb fragment of the BAC DNA containing 

the first and second exons of CBL-B into a plasmid (with negative selection marker), 

allowing us to introduce two loxP (Cre recombinase recognition) sites flanking this 

region. Immediately preceding the second loxP site, an engineered FRT-Neo-FRT 

selection cassette was inserted which confers G418 resistance to transfected ES cells. 

FRT sites allow removal of the Neo gene using FLP recombinase thus keeping 

alterations of the gene locus to a minimum. The correct arrangement and sequence of 

targeted gene segments at each step have been verified by PCR analysis and 

sequencing. A NotI linearized targeting vector was submitted to the Mouse Genome 

Engineering Core Facility at UNMC for electroporation into a C57BL/6-derived ES cell 

line. Southern blot hybridization with probes located outside the 5’ and 3’ boundaries of 

the targeted region was used for screening of 5’ and 3’ boundaries of the targeted region 

to identify targeted ES clones after G418 and ganciclovir selection. 

C57BL/6 ES clones in which the CBL-B gene was correctly targeted were used 

to produce chimeric mice using blastocyst injection. Chimeras were mated to B6 mice to 

test the germline transmission of the targeted CBL-B allele and verified using Southern 

blot hybridization and PCR analysis of tail-derived genomic DNA.           

Next, heterozygous CBL-B targeted mice (CBL-Bf-Neo/+) were intercrossed to 

generate homozygous CBL-B targeted mice (CBL-Bf-Neo/f-Neo). The homozygous CBL-B 
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targeted mice were mated to B6; SJLTg(ACTFLPe)9205Dym/J mice which express the 

enhanced FLP1 recombinase (FLPe) from the ubiquitously expressed human ACTB 

(beta actin) promoter to remove the FRT-flanked Neo gene. Heterozygous CBL-B 

targeted, FLPe transgene-positive mice were crossed to C57BL/6J (wild-type mice) in 

order to generate heterozygous CBL-B-floxed, FLPe transgene-negative (CBL-Bfl/+) 

mice. These heterozygous mice were mated to produce homozygous CBL-B floxed mice 

(CBL-Bf/f). To examine the functionality of the loxP site in the engineered mice and 

generate CBL-B null mice, we crossed the CBL-B floxed mice to B6.FVB-TgN (EIIa-Cre) 

C5379Lmgd, which expresses Cre ubiquitously from the EIIa promoter. 

Heterozygous CBL-B-targeted, EIIa-Cre transgene-positive mice were crossed to 

C57BL/6J (wild-type) mice to generate heterozygous CBL-B-deleted, Cre transgene-

negative (CBL-B+/−) mice, which were used to produce CBL-B−/− mice. 

CBLflox/flox (Naramura, Jang et al. 2002), CBL-Bflox/flox, CD4-Cre [Tg(Cd4-

cre)1Cwi/BfluJ] (The Jackson Laboratory), CreERT [B6.129-

Gt(ROSA)26Sortm1(cre/ERT2)Tyj/J] (The Jackson Laboratory), Cre mT/mGFP reporter 

[Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J] (The Jackson Laboratory), 2D2 

TCR Tg [C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/J] (The Jackson Laboratory), and 

pmel-1 TCR Tg [B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J] (The Jackson 

Laboratory) strains were maintained on a C57BL/6 background under specific 

pathogen-free conditions (Table 2.1) and genotyped using tail DNA PCR with the 

primers specified in (Table 2.2). All mouse experiments were approved by the UNMC 

IACUC. 

Tissue Preparation and FACS Analysis 

Single cell suspensions were made from spleen, thymus, and lymph node by 

mashing tissue through a 40 µm cell strainer and RBCs were lysed using ACK Lysing  
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Table 2.1. Genotypes of mice 

Strain designation Genotype 

WT C57/B6 

Control Cblflox/flox; Cbl-bflox/flox 

Cbl/Cbl-b DKO Cblflox/flox; Cbl-bflox/flox; CD4-CreTg/0 

Cbl/Cbl-b DKO mT/mGFP Cblflox/flox; Cbl-bflox/flox; CD4-CreTg/0; mT/mG 

1 
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Table 2.2. Genotyping primers  

Target 
Allele 

Forward 5’-3’ Reverse 5’-3’ 

Cbl 
floxed 

GTGGTGGCTTGCAATTATAAT
CCTACCACTTAGG 

GTTTGAGATGTCTGGCTGTGTA
CACGCG 

Cbl-b 
floxed 

GGCAGAACCACTGAGACACA
TTTA 

GGCTGCCAAACTGCTACCCAG
GAG 

CD4-Cre GCGGTCTGGCAGTAAAAACT
ATC 

GTGAAACAGCATTGCTGTCACT
T 

Rosa 26 – 
mT/mGFP 

CTCTGCTGCCTCCTGGCTTCT TCAATGGGCGGGGGTCGTT 

CreERT GCGGTCTGGCAGTAAAAACT
ATC 

GTGAAACAGCATTGCTGTCACT
T 

Pmel-1 Tg 
TCR 

GGT CCT GTG GCT CCA GTT 
TAA T 

CTG CTT AAC CTG TCC CTC 
ATG T 

 CTG GGC AGT GTT CTG TCT 
CC 

ACC ATG GTC ATC CAA CAC 
AG 

2D2 Tg 
TCR 

CCC GGG CAA GGC TCA GCC 
ATG CTC CTG 

GCG GCC GCA ATT CCC AGA 
GAC ATC CCT CC 

2 
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Buffer for 10 min at RT. For cell analysis and sorting, cells were immuno-stained for 20 

min at 4oC in FACS buffer (PBS-1% BSA). The following antibodies were procured from 

eBioscience: CD4 (RM4-5); CD62L (MEL-14); CD45RB (C363.16A); CD69 (H1.2F3); 

B220 (RA3-6B2); F4/80 (BM8). The following antibodies were procured from BD 

Biosciences: CD8 (53-6.7); CD117 (2B8); CD11b (M1/70); anti-CD11c (HL3); Gr-1 (RB6-

8C5). CD25 (PC61) and CD44 (IM7) were from Biolegend. 

Whole bone marrow cell suspensions were prepared from femurs and tibiae. For 

stem and progenitor cell analysis and sorting, mature hematopoietic cells (lineage-

positive cells) were labeled with antibodies against CD5, B220, CD11b, Gr-1, and 7-4 

(mouse lineage depletion kit; Miltenyi Biotechnology) and magnetically depleted using 

the autoMACS (Miltenyi Biotechnology). Lineage-negative cells were then stained with 

antibodies followed by cell analysis or sorting. Flow cytometry was performed on a BD 

LSRII or Aria II at the UNMC Flow Cytometry Research Facility. Data were analyzed 

using FlowJo software (Tree Star). Cell populations were defined as follows (Seita, 

Weissman 2010): long-term HSC (LT-HSC): CD34 -FLT3 -Lin- Sca-1+ c-Kit+ ; short-term 

HSC (ST-HSC): CD34+ FLT3- Lin- Sca-1+ c-Kit+ ; MPP: CD34+ FLT3+ Lin- Sca-1+ c-Kit+ ; 

LSK: Lin- Sca-1+ c-Kit+ ; CMP: CD16- CD34+ Lin- Sca-1- c-Kit+ ; GMP: CD16+ CD34+ Lin-

 Sca-1- c-Kit+ ; MEP: CD16- CD34- Lin- Sca-1- c-Kit+ ; CLP: IL-7R+ FLT3+ Lin- Sca-1low c-

Kitlow. 

Western Blotting 

For CBL-B protein expression analysis, splenocytes were lysed using lysis buffer 

(1 M Tris pH 7.5, 5 M NaCl, 10% Triton, 100 mM VO4, 1 M NaF, 50 mM PMSF). The 

following antibody for western blotting was procured from a commercial source: rabbit 

monoclonal antibody (mAb) anti-CBL-B (Clone D3C12, Cell Signaling Technology). 
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ELISA 

Splenocytes were cultured in RPMI supplemented with 10% FBS in triplicates in 

96 U-bottom wells (2x106 cells/well) precoated with 10 µg/ml plate-bound anti-CD3ε 

(145-2C11) in the presence or absence of 1µg/ml soluble anti-CD28 (37.51) for 48 h at 

37oC.  Culture supernatants were collected and the IL-2 concentration was measured by 

Quantikine ELISA kit (R&D systems), according to the manufacturer’s instructions. 

RNA Isolation and Quantitative Real-Time PCR 

RNA extracted from FACS-sorted cells (RNAqueous-Micro kit, Life Technologies) 

was reverse-transcribed (QuantiTect kit, Qiagen) and subjected to quantitative real-time 

PCR (QuantiTect SYBR Green Kit, Qiagen) on a BioRad CFX96 thermocycler, following 

the manufacturer’s instructions. Primers are listed in Table 2.3. 

Histopathology 

Organs were formalin-fixed, dehydrated in 70% EtOH, paraffin-embedded and 

Hematoxylin and Eosin ( H&E) stained. Whole blood Complete Blood Counts (CBCs) 

were performed on a Scil Vet abc Animal Blood Counter (Scil Animal Care).  

Statistics 

Quantified results of qPCR and flow cytometry were compared between groups 

using Student’s t test, and are presented as mean +/- SD, with p ≤0.05 deemed 

significant. Statistical analysis and graphical representation of data were performed 

using GraphPad Prism version 4.0c (GraphPad Software, San Diego, CA). Data shown 

are mean +/- SD. ns, p≥0.05; *, p≤0.05; **, p≤0.01; ***, p≤ 0.001; ****, p≤0.0001 
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Table 2.3. Primers used for quantitative real-time PCR 

Target Forward 5’-3’ Reverse 5’-3’ 

Cbl AGCTGATGCTGCCGAATTT TTGCAGGTCAGATCAATAGTGG 

Cbl-b GGAGCTTTTTGCACGGACTA TGCATCCTGAATAGCATCAA 

CD4 GAGAGTCAGCGGAGTTCTC CTCACAGGTCAAAGTATTGTTG 

LCK CGCATGGTGAGACCTGACAA TCCGAAGGTAGTCAAACGTGG 

CD3 TGCCTCAGAAGCATGATAAGC GCCCAGAGTGATACAGATGTCA
A 

GAPDH CCTGGAGAAACCTGCCAAGT
ATG 

AGAGTGGGAGTTGCTGTTGAAG
T 

3 
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CHAPTER 3: RESULTS 

 

The material covered in the following chapter is the topic of the following manuscript: 

Benjamin Goetz*, Wei An*, Bhopal Mohapatra*, Neha Zutshi, Fany Iseka, Matthew D. 
Storck, Jane Meza, Yuri Sheinin, Vimla Band, Hamid Band. A novel CBL-Bflox/flox mouse 
model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre 
mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem 
cells. Oncotarget, 7(32), 51107-51123. 
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Generation of CBL-B floxed mice 

 Since a regular knockout strategy targeting exons 1 and 2 of CBL-B gene is 

known to yield mice that completely lack CBL-B protein expression (Chiang, Kole et al. 

2000), we chose to target the same exons to generate CBL-Bflox/flox mice as described in 

the Materials and Methods section, using the CBL-B conditional knockout construct 

shown in Figure 3.1 A. Successfully targeted embryonic stem cell clones and chimeric 

mice were identified based on the generation of a 10 kb fragment in Southern blots of 

Xma1 digested genomic DNA (Figure 3.1B). Successfully-targeted founder mice were 

crossed with a Flp recombinase strain to excise the Neomycin-resistance cassette. The 

heterozygous floxed mice were used to generate the CBL-Bflox/flox mice whose genotype 

was confirmed by PCR, with the floxed allele generating a 750 bp fragment while the WT 

allele generates a 850 bp fragment (Figure 3.1C).  

To confirm that the inserted floxed sites were susceptible to Cre cleavage in vivo, 

we crossed the CBL-Bflox/flox mice with an EIIA-Cre transgenic line and assessed the 

deletion of the floxed CBL-B allele by western blotting of splenocytes, demonstrating a 

complete loss of CBL-B protein expression similar to that seen with positive control CBL-

B (-/-) splenocytes, while CBL-B protein expression in CBL-Bflox/flox and WT mouse 

splenocytes was comparable (Figure 3.2A), excluding any negative impact of the 

introduced flox sites themselves on CBL-B expression. 

To further verify the functional impact of CBL-B deletion in the new conditional 

CBL-B deletion model, splenocytes isolated from CBL-Bflox/flox; EIIA-Cre mice were 

subjected to stimulation using an anti-CD3 antibody with or without an anti-CD28 

antibody. It has been established that CBL-B-deficient T cells secrete higher levels of IL-

2 upon stimulation with an anti-CD3 antibody alone, or with an anti-CD3 plus anti-CD28 

stimulation (Chiang, Kole et al. 2000).  Indeed, anti-CD3 or anti-CD3 plus anti-CD28 

stimulation induced higher levels of IL-2 production in CBL-B (-/-) T cells from  
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Figure 3.1. Generation of the CBL-B floxed allele. (A) Strategy for generating the 
CBL-B floxed targeting vector and CBL-B floxed (targeted) allele. Blue boxes represent 
exons. The 5′ external probe for Southern Blotting is indicated by the thick black line and 
3′ external probe is displayed by thick red lines. The predicted length of Southern 
fragments is indicated with double arrow lines. (B) Targeted events were identified by 
Southern analysis of Xma1- digested genomic ES cell DNAs with a 3′ flanking probe. 
There is a 1.9 KB insertion of the loxP-Frt cassette after proper targeting. B6 ES clones 
identified after southern blot. (C) Confirmation of the genotype of CBL-B floxed animals 
generated in our lab using allele-specific PCR primers detecting the floxed CBL-B allele 
correspond to the insert region containing the loxP site. 
 
7 
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Figure 3.2. Characterization of CBL-B floxed mice. (A) Western Blot validating the 
deletion of CBL-B in EIIA-Cre CBL-B floxed mice. Splenocytes were collected from mice 
with indicated genotype and total protein lysate were blotted for CBL-B and HSC70. (B–
C) IL-2 ELISA. Splenocytes were collected from mice with indicated genotype and plated 
for 48 hours before medium were collected for IL-2 quantification. (B) is one 
representative experiment and (C) are pooled data from three experiments and shown 
as relative level normalized to WT control. Data shown are mean +/− SD. ns, p ≥ 0.05; 
*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001. 
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CBL-Bflox/flox; EIIA-Cre mice similar to the increase in IL2 production seen using T cells 

from conventional CBL-B (-/-) mice (Figure 3.2B and C). Collectively, these results 

establish that we have engineered a CBL-Bflox/flox model that does not affect CBL-B 

expression in the absence of Cre-mediated gene deletion and is fully amenable to Cre-

mediated gene deletion in vivo, recapitulating the functional impact of whole-body CBL-B 

deletion on T cells previously reported (Chiang, Kole et al. 2000).   

CD4-Cre induced CBL/CBL-B deletion leads to strong hematological phenotype 

 Previously, CBL/CBL-B double-KO in T cells using Lck-Cre mediated deletion of 

CBL on a whole-body CBL-B KO was found to produce a spontaneous inflammatory 

disease that was eventually lethal (within 25 weeks of age), compared to a lack of 

inflammatory phenotype in the parental CBL-B-null mouse strain (Chiang, Kole et al. 

2000). In our effort to examine the impact of T cell specific, concurrent deletion of CBL 

and CBL-B, we generated CBLflox/flox; CBL-Bflox/flox mice using the previously generated 

CBLflox/flox mice (Naramura, Jang et al. 2002) and further crossed these to CD4-Cre 

transgenic mice to generate CBLflox/flox; CBL-Bflox/flox; CD4-Cre mice for conditional 

deletion of CBL and CBL-B specifically in T cells (referred to as DKO mice hereafter). 

We also introduced a dual-reporter of Cre-mediated gene deletion in which ROSA-26 

locus-encoded membrane-localized td-Tomato (red) and GFP that are expressed prior to 

and after successful Cre-mediated deletion of floxed sequence cassettes respectively 

(Muzumdar, Tasic et al. 2007). This reporter system provided a handy tool to identify 

cells that have undergone Cre-mediated deletion (GFP+). FACS analysis identified a 

substantial increase in GFP expression in CD4+ cells of the spleen, and real-time PCR 

analysis verified the deletion of CBL and CBL-B in these cells (Figure 3.3A, B). 

 The CBLflox/flox; CBL-Bflox/flox; CD4-Cre+ (DKO) pups were born at expected 

Mendelian ratios (around 50% when we crossed CBLflox/flox; CBL-Bflox/flox mice with 
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CBLflox/flox; CBL-Bflox/flox; CD4-Cre+ mice). These mice, however, became moribund 

starting as early as 10 weeks of age and all became moribund and required euthanasia 

by 25 weeks (Figure 3.4A). Examination of 10-week old female DKO mice revealed the 

development of lymphomegaly and hepatosplenomegaly in all animals (n=11) (Figure 

3.4B). H& E staining of formalin-fixed and paraffin-embedded sections showed a high 

degree of immune cell infiltration in multiple organs examined (Figure 3.4C). Histological 

analysis revealed intense immune cell aggregates and features of extramedullary 

hematopoiesis in the liver, perivascular immune clusters in the kidney, perivascular 

immune aggregates and signs of acute and chronic inflammation in the lung, as well as 

perivascular immune clusters in the brain. Pathological changes observed in lymphoid 

tissues includes enlargement of follicle size and less defined white pulp in the spleen, 

and increased medullary areas in lymph nodes. The histopathology of the heart and 

intestine were normal. These data show that CD4-Cre-directed CBL/CBL-B DKO leads 

to a severe and lethal spontaneous autoimmune/inflammatory phenotype. 

CD4-Cre-induced CBL/CBL-B DKO alters T cell development and peripheral T cell 

activation 

 Since CBL family proteins are known to function as critical negative regulators of 

signaling in T cells (Thien, Langdon 2001), we examined the effect of CD4-Cre-induced 

DKO on T cells within lymphoid tissues. Ten-week old female DKO mice exhibited 

shrunken thymuses coinciding with a marked reduction in the overall thymocyte numbers 

compared to control (CBLflox/flox; CBL-Bflox/flox mice without CD4-Cre) mice (Figure 3.5A). 

Examination of different thymocyte subpopulations in DKO mice revealed a diminished 

CD4 and CD8 double-positive (DP) thymocyte population; however, there was an 

increase in the percentage of CD4/CD8 double-negative (DN) thymocytes and a  
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Figure 3.3. Confirmation of CBL-B deletion in CD4+ cells. (A) FACS analysis of 
splenocytes from DKO mice for the expression of GFP in CD4+ or CD4− cells. (B) 
mRNA expression levels of CBL (left) and CBL-B (right) were analyzed in FACS-sorted 
CD4+ cells of Control or DKO mice by quantitative real-time PCR. 
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Figure 3.4. CD4-Cre induced CBL/CBL-B deletion leads to strong hematological 
phenotype. (A) Kaplan-Meyer survival curve of Control and DKO mice; n = 16. (B) 
Representative photos demonstrating lymph node hyperproliferation and 
hepatosplenomegaly. Red rectangle indicates lymph nodes (C) Representative H & E 
stained liver, spleen, lymph node (LN), brain, lung and kidney sections. Bar for 20× and 
40× images represent 200 μm and 100 μm respectively. 
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substantial, albeit not statistically significant (with the exception of CD4), skewing of the 

relative percentages and absolute numbers of single-positive populations compared to 

control (Figure 3.5B, C). Compared to controls, the percentage of CD4+ thymocytes was 

modestly higher, however, this was not reflected in the overall CD4+ thymocyte numbers 

(Figure 3.5B, C). Further dissection of the DN population into DN1-4 subpopulations 

(based on the markers CD25, CD44, and CD117) revealed an increase in DN4 

population in DKO thymuses compared to control (Figure 3.5D). Altogether these data 

show that concurrent conditional deletion of CBL and CBL-B in T cells using CD4-Cre 

leads to marked alterations in thymocyte development with a decrease in total double-

positive thymocytes, an increase in double-negative thymocytes, and a skewing to CD4+ 

thymocyte proportions. 

 CBL/CBL-B deficiency in T cells was previously shown to result in a constitutively 

activated T cell phenotype (Chiang, Kole et al. 2000, Naramura, Kole et al. 1998, 

Naramura, Jang et al. 2002), as opposed to hyperactivity only upon extrinsic stimulation 

of T cells in CBL-B-null mice (Fang, Liu 2001, Chiang, Kole et al. 2000, Krawczyk, 

Bachmaier et al. 2000). To assess the impact of concurrent deletion of CBL/CBL-B in T 

cells in CD4-Cre-bearing conditional DKO mice, we evaluated the activation status of 

peripheral T cells in secondary lymphoid tissues. Compared to control mice, CD4+ and 

CD8+ T cell populations contributed to a smaller percentage of the total splenic cells in 

DKO mice despite having overall greater numbers (Figure 3.6A, B). However, both 

CD4+ and CD8+ splenic T cell populations in DKO mice exhibited lower levels of 

CD45RB and CD62L, as well as an increase in the ratios of cells positive for activation 

markers CD25, CD44 and CD69 as compared to control mice (Figure 3.6C, D). 

Examination of lymph node T cell populations revealed a decrease in the percentage of 

CD4+ T cells in DKO mice compared to control mice, similar to that seen in the spleen; 

however, the percentage of the CD8+ T cell population appeared to be  
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Figure 3.5. CD4-Cre induced CBL/CBL-B deletion leads to altered thymocyte 
development. (A) Mean values of cell numbers from thymuses of 10-week old Control 
and DKO mice; n = 3. (B) Representative dot plot FACS analysis of anti-CD4 and anti-
CD8 stained thymocytes. (C) Flow cytometric analysis of CD4CD8 DP, single-positive, 
and DN thymocyte populations for percentage of total thymocytes (left) and cell number 
(right); n = 3. (D) Flow analysis of DN thymocyte populations for percentage of total 
thymocytes (left) and cell number (right); n = 3. DN cells are gated (DN1: CD117+ 
CD44+ CD25−, DN2: CD117+ CD44+ CD25+, DN3: CD117− CD44− CD25+, DN4: 
CD117− CD44− CD25−). Data shown are mean +/− SD. ns, p ≥ 0.05; *p ≤ 0.05; **p ≤ 
0.01; ***p ≤ 0.001; ****p ≤ 0.0001. 
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Figure 3.6. CD4-Cre induced CBL/CBL-B deletion leads to altered splenic T cell 
activation status. (A–B) Representative flow cytometric dot plots (A) and mean values 
of percentage of total splenic populations stained with anti-CD4 and anti-CD8 (B) in 
Control and DKO mice; n = 3. (C) Representative histograms for flow cytometric analysis 
of marker expression for CD4+ gated splenic population. (D) Quantification of the 
percentage of cells positive for markers CD25, CD44, and CD69 in splenic CD4+ (left) 
and CD8+ (right) gated populations; n = 3. Data shown are mean +/− SD. ns, p ≥ 0.05; 
*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001. 
12 
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unchanged between control and DKO mice (Figure 3.7A, B). Also, similar to spleen, 

CD4+ and CD8+ T cell populations in DKO lymph nodes showed a higher percentage of 

cells positive for activation markers compared to control mice (Figure 3.7C). Collectively, 

these findings point to a clear conclusion that CD4-Cre-induced concurrent CBL/CBL-B 

DKO leads to alleviation of negative regulatory mechanisms of T cell activation resulting 

in constitutively-activated T cells. 

CD4-Cre-directed CBL/CBL-B deletion in Non-T cell lineages 

A dramatically activated phenotype of T cells in peripheral lymphoid tissues, 

coupled with the result that CD4+ T cells represented a smaller percentage of total cells 

in these tissues, suggested the possibility that CD4-Cre-induced DKO was associated 

with direct or indirect alterations in non-T cell lineages. To investigate this possibility, we 

assessed the changes in the percentages and numbers of non-T hematopoietic lineage 

cells by flow cytometry (Figure 3.8A). Spleen and lymph nodes were collected from 

control and DKO mice, and B cells and myeloid cells were evaluated. Compared to 

control mice, DKO spleens showed an expansion of B cells and myeloid cells, evidenced 

by an increase in the absolute numbers of cells carrying CD11b, CD11c, B220, F4/80 or 

Gr-1 markers (Figure 3.8B). Similarly, the Gr-1+ population was also substantially, albeit 

not statistically significantly, expanded in DKO lymph nodes (Figure 3.8B). Peripheral 

blood differential cell counts further demonstrated a dramatic increase in myeloid cell 

populations in DKO mice compared to Control mice (Figure 3.9A). 

To determine whether the alterations of non-T hematopoietic lineage cells was 

due to cell intrinsic loss of CBL/CBL-B or indirectly due to an effect of extrinsic signals 

from activated T cells, we carried out flow cytometry-based analysis of GFP reporter 

gene expression to assess if CD4-Cre-induced gene deletion was confined to T cells as 

expected, or if non-T cell lineages also showed evidence of gene deletion. As shown in  
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Figure 3.7. CD4-Cre induced CBL/CBL-B deletion leads to altered T cell phenotype 
in lymph nodes. (A–B) Representative flow cytometric dot plots (A) and mean values of 
percentage of total lymph node cells stained with anti-CD4 and anti-CD8 (B) in Control 
and DKO mice; n = 3. (C) Quantification of the percentage of cells positive for markers 
CD25, CD44, and CD69 in lymph node CD4+ (left) and CD8+ (right) gated populations; 
n = 3. Data shown are mean +/− SD. ns, p ≥ 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; 
****p ≤ 0.0001. 
13 
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Figure 3.8. Non-T cell lineages were impacted by CD4-Cre. (A) Representative 
histograms for flow cytometric analysis of non-T cell marker expression in the spleen of 
Control and DKO mice. (B) Flow cytometric analysis of spleen (left and center) and 
lymph node (right) from Control and DKO mice for non-T-cell markers; n = 3. Data 
shown are mean +/− SD of at least 3 mice replicates. ns, p ≥ 0.05; *p ≤ 0.05; **p ≤ 0.01; 
***p ≤ 0.001; ****p ≤ 0.0001. 
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Figure 3.9. Blood cell counts were affected by CD4-Cre. (A–B) Peripheral blood cell 
counts (A) and flow cytometric analysis for the expression of GFP (B) of Control and 
DKO mice; n = 3. WBC, white blood cell; LYM, lymphocyte; MON, monocyte; GRA, 
granulocyte; RBC, red blood cell. Data shown are mean +/− SD of at least 3 mice 
replicates. ns, p ≥ 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001. 
15 



60 
 

 
 
 

 

 

 

 

A 

B 



61 
 

Figure 3.9B, GFP was expressed in a majority of T cells as anticipated; however, a 

subset of both B cells and myeloid populations were GFP+, indicative of unexpected 

deletion of CBL and CBL-B in non-T lineages.  

Our results that CD4-Cre-mediated reporter gene deletion occurred in multiple 

non-T cell lineages and the myeloid cell proportion was increased in the peripheral blood 

of mice rendered DKO using CD4-Cre suggests the possibility that CD4-Cre may 

concurrently direct CBL/CBL-B deletion either in these lineages or in HSCs, since 

CBL/CBL-B deletion in HSCs using MMTV-Cre leads to a myeloid-skewed expansion 

(Naramura, Nandwani et al. 2010, An, Nadeau et al. 2015). We therefore assessed 

whether CD4-Cre-directed GFP reporter gene expression is observed in HSCs from 

which all hematopoietic lineage cells are derived (Seita, Weissman 2010). To address 

this, we assessed the GFP expression of lineage marker-negative (Lin- cells; 

hematopoietic stem and progenitor cells) and Lin- sca-1+ and c-Kit+ (LSK cells; HSC-

enriched population) cells isolated from the bone marrow of DKO mice using flow 

cytometry. Notably, both Lin- and LSK populations in DKO mice contained a substantial 

subset of GFP+ cells (Figure 3.10A) and real-time PCR analysis demonstrated an over 

90% reduction in CBL and CBL-B expression in flow cytometry-sorted GFP+ Lin- cells 

(Figure 3.10B). In addition, CD4-Cre-induced CBL/CBL-B deletion leads to a significant 

expansion of long-term HSC (LT-HSC), short-term HSC (ST-HSC) and multipotent 

progenitors (MPP) cell populations compared to those in control mice (Figure 3.10C). 

This recapitulates the phenotype of mice with MMTV-Cre-induced deletion of CBL and 

CBL-B in HSCs (Naramura, Nandwani et al. 2010, An, Nadeau et al. 2015). These data 

lead us to conclude that CD4-Cre can direct gene deletion in a proportion of non-T 

hematopoietic lineages starting with the HSC stage. 
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Figure 3.10. Bone marrow populations were impacted by CD4-Cre. (A) Flow 
cytometric analysis of bone marrow Lin- and LSK cells from DKO mice for GFP 
expression. (B) mRNA expression levels of CBL (left) and CBL-B (right) were analyzed 
in FACS-sorted Lin- cells of Control or DKO mice by quantitative real-time PCR. (C) 
Flow cytometric analysis of bone marrow cells from Control and DKO mice HSCs (LT-
HSC, ST-HSC and MPP). Data shown are mean +/− SD of at least 3 mice replicates. ns, 
p ≥ 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001. 
16 
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Expression of CD4 in HSC 

CD4 is considered a T cell marker and CD4 promoter elements have been used 

extensively in genetic studies to direct T cell specific gene expression or deletion (Yi, 

Stunz et al. 2013, Hsu, Pajerowski et al. 2011, Johnson, Pao et al. 2013, Buckley, 

Trampont et al. 2015, Hsu, Shapiro et al. 2014, Jost, Abel et al. 2014, Uddin, Zhang et 

al. 2014, Maraver, Tadokoro et al. 2007, Zhang, Rosenberg et al. 2005, Mycko, Ferrero 

et al. 2009). Given our results that CD4-Cre can direct gene deletion in HSCs, and old 

reports that a small proportion of HSCs express low levels of CD4 that is detectable with 

antibodies (Wineman, Gilmore et al. 1992, Ishida, Zeng et al. 2002), we next addressed 

if CD4 was indeed expressed in HSCs using a more sensitive quantitative real-time PCR 

(qPCR) assay (Figure 3.11A). HSCs (LSK cells) were sorted from WT bone marrow 

(BM) cells and mRNA was analyzed for CD4 expression by qPCR, with T cell specific 

CD3ε (Kovacic, Gupta et al. 2010) as a positive control for any T cell contamination. 

Compared to the undetectable expression of CD3, a low but detectable level of CD4 

mRNA expression was observed in HSCs, together with a detectable expression of Lck, 

a key signal transducer downstream of CD4 (Zhang, Salojin et al. 1998). Furthermore, 

using WT BM cells from 3-week and 8-week old mice, we performed flow cytometry 

analysis to evaluate the expression of CD4 on HSCs and hematopoietic progenitors 

(Figure 3.11B). Notably, compared to splenocytes (used as a positive control), LSK cells 

express an easily detectable level of CD4 on the cell surface, consistent with previous 

reports (Wineman, Gilmore et al. 1992, Ishida, Zeng et al. 2002). Collectively, these data 

suggest that CD4-Cre, by virtue of an authentic expression of CD4 in a subset of HSCs 

and hematopoietic progenitors, can direct gene deletion in early hematopoietic lineages 

including HSCs, which can thereby add complexities to phenotypes assigned to T cell-

specific gene deletion directed by CD4-Cre.  
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Figure 3.11. Expression of CD4 in HSCs. (A) BM cells were collected from 3 weeks 
old WT mice and Lin- cells were flow cytometry sorted followed by mRNA purification. 
Expression levels of CD3 (left), CD4 (center) and Lck (right) were analyzed by 
quantitative real-time PCR. Expression of target gene in Lin- cells is normalized to 
thymus control. Data show mean+/− SD of 3 replicates. (B) BM cells were collected from 
3 weeks (left) or 8 weeks (right) mice and labeled with stem cell markers and CD4. 
Splenocytes were used as positive control for the expression of CD4. The set of data 
shown is one representative set of three. 
17 
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CHAPTER 4: DISCUSSION 

 

Parts of this chapter are derived from the following manuscript: 

Benjamin Goetz*, Wei An*, Bhopal Mohapatra*, Neha Zutshi, Fany Iseka, Matthew D. 
Storck, Jane Meza, Yuri Sheinin, Vimla Band, Hamid Band. A novel CBL-Bflox/flox mouse 
model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre 
mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem 
cells. Oncotarget, 7(32), 51107-51123. 
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Discussion 

CBL-family ubiquitin ligases are essential negative regulators of T cell activation 

that impinge on an anergy induction program. Tight regulation of T cell activation and 

immunological tolerance are essential for effective defense against foreign antigens and 

immune surveillance against cancer without mounting autoimmunity to self-antigens or 

producing protracted inflammatory diseases following infections. Previous models have 

failed to accurately elucidate the role that CBL proteins play in a T cell-specific manner 

as these models utilized a CBL-B null background (Loeser, Penninger 2007, Bachmaier, 

Krawczyk et al. 2000), which leads to the altered and/or enhanced function of B cells 

(Sohn, Gu et al. 2003), macrophages (Hirasaka, Kohno et al. 2007, Abe, Hirasaka et al. 

2013), mast cells (Gustin, Thien et al. 2006), neutrophils (Choi, Orlova et al. 2008, 

Bachmaier, Toya et al. 2007), and NKT cells (Kojo, Elly et al. 2009). Particularly in the 

context of tumorigenesis, the available CBL-B-null model has not been suitable for in 

vivo studies to assess the tumor cell-intrinsic roles of CBL proteins since CBL-B-null 

mice reject tumors due to their activated CD8+ T cells (Loeser, Penninger 2007, Chiang, 

Jang et al. 2007, Stromnes, Blattman et al. 2010) and NK cells (Paolino, Choidas et al. 

2014).  Studies described here describe the establishment and characterization of the 

first inducible model of CBL-B deletion.   By crossing this new model to a previously 

established and sparingly used CBL-flox/flox mouse, we have now established the first 

fully conditional model of tissue-specific CBL/CBL-B DKO mouse model that will help 

overcome the current barrier in understanding the redundant roles of these two CBL-

family proteins in physiological systems as well as in oncogenesis. 

We established the functionality of the new floxed CBL-B alleles engineered in 

the mouse genome by demonstrating the generation of a whole-body CBL-B null mouse 

by crossing the CBL-B floxed mice with the EIIA-Cre transgene, which is known to drive 

Cre expression very early during development, including in germ cells (Lakso, Pichel et 
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al. 1996). Analyses of T cells of these mice recapitulated the hyper-responsiveness to 

TCR engagement comparable to that seen using T cells of previously generated whole-

body KO mice (Chiang, Kole et al. 2000) (Figure 3.6 and 3.7). As a proof of principle of 

tissue-specific concurrent deletion of CBL and CBL-B in the CBL-flox/flox/CBL-B-flox/flox 

mice that we generated, we chose to induce a DKO in T cells since prior studies using 

Lck-Cre-driven deletion of CBL-flox/flox gene on a CBL-null background demonstrated 

that CBL and CBL-B function redundantly in T cells and the DKO mice exhibit a profound 

and lethal inflammatory disease (Naramura, Jang et al. 2002). We used a CD4-Cre 

driver for these studies as this Cre has been extensively used for T cell-specific deletion 

of conditionally targeted genes (Yi, Stunz et al. 2013, Hsu, Pajerowski et al. 2011, 

Johnson, Pao et al. 2013, Buckley, Trampont et al. 2015, Hsu, Shapiro et al. 2014, Jost, 

Abel et al. 2014, Uddin, Zhang et al. 2014, Maraver, Tadokoro et al. 2007, Zhang, 

Rosenberg et al. 2005, Mycko, Ferrero et al. 2009). CD4-Cre mediated DKO led to 

severe systemic, autoimmune/inflammatory disease with mice becoming moribund as 

early as 10 weeks of age accompanied by immune cell infiltration in multiple organs 

including liver, brain, kidney, and lung (Figure 3.4A, C). Notably, our findings differ from 

those of the previous T cell DKO studies (Naramura, Jang et al. 2002) in that we also 

observed immune cell infiltration in brain, kidney, and lung. 

CD4-Cre expression is expected to begin at the DP stage during thymic T cell 

development (Yui, Rothenberg 2014). While this is considerably later than that of Lck-

Cre used in the previous studies, which is active as early as DN3 stage of double-

negative thymocytes (Huang, Kitaura et al. 2006), T cell development was altered in the 

CD4-Cre driven DKO mice with a reduction in total thymocyte numbers and skewing of 

thymocyte populations (Fig 3A-D). These features and the increase in the DN4 

thymocyte populations are similar to those seen in mice with Lck-Cre induced CBL 

deletion on a CBL-B-null background (Huang, Kitaura et al. 2006). An impact on the DN4 



70 
 

populations is somewhat unexpected but consistent with the known role of CBL in 

negatively regulating the pre-TCR signaling (Panigada, Sturniolo et al. 2002). This 

feature may be a reflection of CD4-Cre-mediated CBL/CBL-B deletion at earlier stages 

of hematopoiesis as discussed below. As demonstrated in previous work (Huang, 

Kitaura et al. 2006), the decrease in the DP thymocyte population can be attributed to 

alleviation of the negative regulation of TCR signaling, resulting in accentuation of TCR 

signal strength, which converts a positive into a negative T cell selection. 

We also show that CD4-Cre mediated deletion of CBL and CBL-B genes leads to 

constitutive activation of peripheral T cell populations in the spleen and lymph node, as 

demonstrated by the changes in the expression levels of activation-related markers 

(Figure 3.6C, D and Figure 3.7C). These data show that concurrent CBL and CBL-B 

deletion during T cell development using CD4-Cre largely recapitulates the T cell 

activation and systemic immune cell infiltration phenotype previously described, 

providing direct support that the new CBL-B-flox model and its combination with the 

existing CBL-flox model will allow controlled, tissue-specific deletion of CBL and/or CBL-

B in specific cell types. Importantly, the newly validated floxed models will allow, for the 

first time, a dissection of the specific as well as redundant roles of CBL and CBL-B to 

fully explore their roles in adult mammalian tissue function and pathology without the 

inherent developmental issues associated with the whole body CBL KO mice (El Chami, 

Ikhlef et al. 2005, Molero, Jensen et al. 2004, Rafiq, Kolpakov et al. 2014), immune 

hyperactivity of CBL-B-null mice (Bachmaier, Krawczyk et al. 2000), and importantly 

eliminate the issue of embryonic lethality of germline double KO mice. Notably, this 

model will allow concurrent CBL and CBL-B deletion in non-hematopoietic tissues to 

understand the role of these proteins in physiology and tumorigenesis, without 

spontaneous tumor rejection.  
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While deletion of CBL and CBL-B in T cells (Figure 3.3 A, B) was expected, the 

alteration of DN thymocyte populations, a more aggressive phenotype of CD4-Cre-

mediated DKO mice compared to that of previously described Lck-Cre driven DKO 

(Naramura, Jang et al. 2002), and a marked decrease in the relative proportions of 

peripheral CD4+ T cells suggested that CD4-Cre driven CBL/CBL-B DKO may also 

occur in other hematopoietic lineages, a possibility not considered in previous studies. 

Indeed, we demonstrated that CBL and CBL-B deletion was present in other 

hematopoietic lineages (Figure 3.8B). Given our previous studies in which MMTV-driven 

deletion of CBL in a small percentage of HSCs led to a myeloid-skewed expansion of 

peripheral blood cell lineages and HSC expansion (Naramura, Nandwani et al. 2010, An, 

Nadeau et al. 2015), one possible explanation for these discrepancies was that CBL and 

CBL-B are deleted in a certain proportion of HSCs, which consequently manifests as 

CBL/CBL-B deletion in other non-intended lineages within the hematopoietic system. 

This notion is consistent with previous reports, (which have received little attention in the 

context of the use of CD4-Cre for gene deletion) in which CD4 expression was shown on 

a small subset of HSCs using antibody-based staining (Wineman, Gilmore et al. 1992, 

Ishida, Zeng et al. 2002). We provide further support for this idea using real-time PCR 

and FACS analysis demonstrating the expression of the Cre reporter (GFP) in HSCs as 

well as differentiated hematopoietic cell populations (Figure 3.9B and 3.10A, B). CD3ε, a 

marker of T-lineage cells was not detectable in HSCs, reducing the likelihood of the CD4 

signals arising from any lingering T cell contamination in our LSK population.  Moreover, 

the Lin- Sca-1- c-Kit+ (LK) population, which represents the more committed myeloid 

progenitor population (Seita, Weissman 2010), exhibited a lower level of CD4 expression 

level (Figure 3.11B) compared to LSK cells, suggesting that CD4 expression in immature 

hematopoietic stem/progenitors is a transient event.  
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The role of CD4 expression in HSCs is unclear. The likely explanation for why a 

potentially transient CD4-Cre-directed deletion of CBL and CBL-B in a small percentage 

of HSCs would manifest more strongly in our studies is that HSCs with loss of CBL and 

CBL-B acquire a robust proliferative advantage, as has been demonstrated in previous 

studies (Naramura, Nandwani et al. 2010, An, Nadeau et al. 2015, Rathinam, Thien et 

al. 2008). The apparent lack of any robust HSC-based phenotype in previous studies (Yi, 

Stunz et al. 2013, Hsu, Pajerowski et al. 2011, Johnson, Pao et al. 2013, Buckley, 

Trampont et al. 2015, Hsu, Shapiro et al. 2014, Jost, Abel et al. 2014, Uddin, Zhang et 

al. 2014, Maraver, Tadokoro et al. 2007, Zhang, Rosenberg et al. 2005, Mycko, Ferrero 

et al. 2009) could reflect a lack of consideration of such a phenotype due to lack of a 

proliferative advantage of the targeted gene deletion or a negative impact on 

proliferation. Regardless of the role of CD4 in HSCs, our results suggest caution in 

designing CD4-Cre-based deletion strategies and assigning the phenotypes solely to 

gene deletion in T cells.  

Overall, our studies establish a new model of inducible CBL/CBL-B deletion that 

should allow the immune vs. non-immune cell-intrinsic roles of these key but functionally 

redundant negative regulators of tyrosine kinase signaling to be determined. Further, for 

the first time, the new model will allow the role of CBL and CBL-B to be determined in 

tumorigenesis without the current lack of feasibility of such studies due to tumor rejection 

from germline deletion of CBL-B using existing models.  
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CHAPTER 5: FUTURE DIRECTIONS 
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Determine the role CBL/CBL-B deficiency in CD4+ T cells plays towards 

inflammatory/autoimmune pathogenesis of multiple sclerosis 

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system 

(CNS) mediated by pathogenic T cells leading to chronic inflammation and 

demyelination (Calabresi 2004). This study will elucidate the importance of the negative 

regulatory roles of CBL and CBL-B in controlling the magnitude and nature of antigen-

specific T cell immune responses in autoimmunity. More importantly, we hope to identify 

a specific signature associated with loss of CBL proteins in effector T cells which will 

help identify future therapies to treat MS patients that have mutations in CBL genes. 

Previous studies on CBL-B in MS patients 

 Mutations in Cbl-b have been linked with increased susceptibility to MS. 

Genome-wide association studies (GWAS) have linked several CBL-B gene 

polymorphisms with MS (Sanna, Pitzalis et al. 2010, Corrado, Bergamaschi et al. 2011). 

Previous studies have shown decreased CBL-B mRNA and protein expression in whole 

peripheral blood mononuclear cells (PBMCs) of relapsing-remitting MS (RR-MS) patients 

(Figure 4.1), as well as reduced CBL-B expression and lowered activation threshold of 

CD4+ T cells from these patients (Zhou, Wang et al. 2008, Sturner, Borgmeyer et al. 

2014). One of the risk alleles identified in GWAS was shown to reduce the expression of 

CBL-B in CD4+ T cells of RR-MS patients. It was further identified that decrease in CBL-

B in RR-MS patients with this risk allele occurred in an IFN-β dependent manner 

(Sturner, Borgmeyer et al. 2014). The mechanisms by which decreased CBL-B 

expression contributes to MS pathogenesis remain unknown and will be examined in this 

study. 

2D2 mouse model and experimental approach 
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 To address the role that CBL proteins play as barriers to autoimmunity in T cells 

in MS, we have chosen the 2D2 transgenic mouse model which utilizes a T cell receptor 

transgene specific for myelin oligodendrocyte glycoprotein (MOG), a protein in the outer 

surface of the (CNS) myelin sheath. This is a model for experimental autoimmune 

encephalomyelitis (EAE), which is an experimental model that recapitulates pathological 

features of human MS (Constantinescu, Farooqi et al. 2011). Four percent of 2D2 mice 

develop spontaneous EAE within 2.5 to 5 months of age, and EAE can be induced by 

immunization with MOG protein or peptide using standard protocols (Bettelli, Pagany et 

al. 2003).  

 Serial genetic crosses have generated mice homozygous for floxed CBL, CBL-B, 

or both together with a tamoxifen-inducible CreERT and the 2D2 Tg TCR. I also 

introduced a dual-reporter (mT/mGFP) of Cre-mediated gene deletion in which the 

Rosa-26 locus-encoded membrane-localized td-Tomato (red) and GFP are expressed 

prior to and after successful Cre-mediated deletion of floxed sequence cassettes 

respectively to allow identification of donor T cells in transplantation experiments. (Figure 

4.2) 

 Adoptive transfer of CD4+ T cells isolated from 2D2 mice into WT C57/Bl6 mice 

will allow the deletion of CBL and CBL-B specifically in donor cells upon the 

administration of tamoxifen. Immunization with MOG35-55 peptide could be used to induce 

EAE if deletion of CBL proteins is not sufficient to elicit disease (Bettelli, Pagany et al. 

2003). Clinical EAE scoring will be used to assess disease severity along with percent 

incidence, mortality, mean day of disease onset, and mean maximum score per 

experimental group. Histopathological analysis of brains, spinal cords, and optic nerves 

can be done to look for and quantify inflammatory/demyelinating lesions. I hypothesize 

that deletion of CBL proteins will lead to earlier disease onset and exacerbated 

inflammatory/demyelinating disease severity in in vivo studies. Ex vivo analyses of T 
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cells for proliferation, cytokine release, migration, and gene expression profiles using 

microarray/RNA sequencing  analyses will help to establish the cell-autonomous role of 

CBL and CBL-B as enforcers of T cell anergy in CD4+ T cells, the impact of the loss of 

CBL and CBL-B in promoting T cell-dependent autoimmunity, and its cellular and 

molecular mechanisms. 
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Figure 4.1. Cbl-b protein levels in peripheral blood lymphocytes isolated 
from MS patients and control individuals. The bands of Cbl-b protein are located at 
the molecular weight 109 kDa, while β-actin at 42 kDa. 

18 

Reprinted from Neuroscience Letters, Vol. 440, Wen-bin Zhou, Rui Wang, Yong-ning 
Deng, Xiao-bei Ji, Guo-xiang Huang, Yuan-zhong Xu. Study of Cbl-b dynamics in 
peripheral blood lymphocytes isolated from patients with multiple sclerosis. 336-339, 
(2008), with permission from Elsevier 
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Figure 4.2. Breeding scheme used to generate CBL/CBL-B DKO EAE mouse 
model. Mice carrying either the CBL-flox or CBL-B-flox alleles were crossed to generate 
double floxed mice. These mice were then incorporated with a CreERT Tg. Mice 
carrying the 2D2 TCR Tg were crossed with mice carrying the Cre mT/mGFP reporter 
gene, and the resulting mice were crossed with the double floxed CreERT mice. 

19 
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Determine the role CBL/CBL-B deficient CD8+ cytotoxic T cells play in anti-tumor 

immune responses to melanoma 

 Melanoma is the most serious form of skin cancer which arises from pigment-

producing melanocytes, and the incidence of disease has been increasing over the past 

few years (Bastian 2014, DeSantis, Lin et al. 2014). New immunotherapeutic strategies 

have been promising in improving the poor prognosis of patients with melanoma 

(Niezgoda, Niezgoda et al. 2015). Ultimately, this study will allow the dissection of the 

role CBL proteins play in T cell mediated anti-tumor immune response pathology and 

provide possible immunotherapeutic strategies for the treatment of patients with 

melanoma. 

Previous studies on CBL-B and anti-tumor immunity 

To date, the clinical use of T cell adoptive immunotherapy to treat cancer has 

been limited due to poor survival and function of transplanted T cells, and many 

approaches require concurrent administration of cytokines, such as IL-2, which adds 

complications associated with toxicity. There have been a limited number of studies 

examining the enhanced anti-tumor ability of CBL protein-deficient T cells. It has been 

showed previously that adoptive transfer of CBL-B-/- T cells into mice bearing EG7 

tumors leads to tumor eradication (Chiang, Jang et al. 2007); however, other studies 

have shown that transplant alone is not sufficient to eliminate B16-ova or EG7 tumors 

without the addition of a dendritic cell vaccine (Lutz-Nicoladoni, Wallner et al. 2012). 

Adoptive CBL-B-null T cell approaches have also shown efficacy in treating leukemia 

and melanoma in mice (Stromnes, Blattman et al. 2010, Hinterleitner, Gruber et al. 

2012b). While these studies raise the prospect of inactivating CBL-B for immunotherapy 

of tumors clinically, this has not received much consideration. 

Pmel-1 model and experimental approach 
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 To study the role that CBL proteins play in self/tumor antigen-specific T cell 

responses in melanoma, we have chosen the pmel-1 transgenic mouse model which 

utilizes a T cell receptor transgene specific for the mouse homologue (pmel-17) of 

human SILV (gp100), an enzyme involved in pigment synthesis that is expressed by the 

majority of malignant melanoma cells including B16 melanoma, as well as by normal 

melanocytes. Without immunization and concurrent IL-2 therapy, subcutaneously 

injected B16 tumor cells grow normally in pmel-1 mice and adoptive transfer of pmel-1 

splenocytes into tumor-bearing mice alone has no effect on tumor growth (Overwijk, 

Theoret et al. 2003).  

 Serial genetic crosses have generated mice homozygous for floxed CBL, CBL-B, 

or both together with a tamoxifen-inducible CreERT and the pmel-1 Tg TCR. I also 

introduced a dual-reporter (mT/mGFP) of Cre-mediated gene deletion in which the 

Rosa-26 locus encoded membrane-localized td-Tomato (red) and GFP are expressed 

prior to and after successful Cre-mediated deletion of floxed sequence cassettes 

respectively to allow identification of donor T cells in transplantation experiments (Figure 

4.3).  

 For future adoptive transfer experiments, B16 melanoma cells will be 

subcutaneously injected into the flank of WT C57BL/6 mice to generate tumors. For mice 

receiving T cell treatment, CD8+ T cells will be isolated from pmel-1 mice and injected 

intravenously into the tail vein either 7 or 14 days after tumor cell injection. In addition, 

some mice will receive peptide vaccination and/or IL-2 therapy. Tamoxifen treatment will 

allow the deletion of CBL and CBL-B in donor CD8+ pmel-1 T cells. Tumor size will be 

monitored and analyzed for immune cell infiltrates. We hypothesize that deletion of CBL 

proteins in CD8+ T cells will lead to a more robust anti-tumor immune response, 

decreased tumor size, and increased immune cell tumor infiltration. Moreover, we hope 

to identify a signature associated with loss of CBL proteins in cytotoxic T cells which will 
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help identify future immunotherapeutic approaches for the treatment of patients with 

melanoma by screening small molecule libraries for compounds that elicit identical gene 

expression changes. 



84 
 

Figure 4.3. Breeding scheme used to generate CBL/CBL-B DKO B16 melanoma 
mouse model. Mice carrying either the CBL-flox or CBL-B-flox alleles were crossed to 
generate double floxed mice. These mice were then incorporated with a CreERT Tg. 
Mice carrying the pmel-1 TCR Tg were crossed with mice carrying the Cre mT/mGFP 
reporter gene, and the resulting mice were crossed with the double floxed CreERT mice.  

20 
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Conclusions  

 The information generated by these studies will provide insight into how targeting 

of CBL proteins may be translated clinically for the treatment of patients with 

proinflammatory disease or cancer. Targeting of CBL proteins by knocking out protein 

expression or functionally inactivating the ubiquitin ligase activity will provide therapies in 

which enhanced T cell activity is desired, such as in the treatment of patients with cancer  

or infectious diseases. This may be accomplished by ex vivo deletion of CBL genes in T 

cells through targeted genome editing using the technique CRISPR. However, 

permanent deletion of CBL proteins and constitutively hyperactive T cells may cause 

additional complications in patients. To avoid complications associated with permanent 

deletion, an ex vivo siRNA approach to temporarily lower CBL protein expression levels 

will prevent continuous T cell hyperactivity, although limiting the duration of the 

therapeutic response.  Design of small molecules to inactivate CBL protein function may 

provide a therapeutic strategy that eliminates the need for genetic modification. A caveat 

to this approach is inactivation of CBL proteins in other cell types in a patient may lead to 

additional complications such as hyperactivation of other immune cells. Alternatively, 

enhancement of CBL protein expression in pathogenic T cells of patients with 

autoimmune/proinflammatory disease may be beneficial in alleviating disease 

symptoms. Identifying a gene signature associated with loss of CBL proteins will help 

identify immunotherapeutic approaches for the treatment of patients with 

proinflammatory disease or cancer by screening small molecule libraries for compounds 

that can recapitulate or revert the gene expression changes in CBL-deficient 

hyperactivated T cells. 
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