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Expression map of healthy adult human brain and 

 its application to study neurological disorders 

Simarjeet K. Negi, Ph.D. 

University of Nebraska Medical Center, 2016 

 

Advisor: Chittibabu Guda, Ph.D. 

The human brain is the most complex structure known to mankind and one of the 

greatest challenges in modern biology is to understand how it is built and organized. The 

power of the brain arises from its variety of cells and structures, and ultimately where 

and when different genes are switched on and off throughout the brain tissue. In other 

words, brain function depends on the precise regulation of gene expression in its sub-

anatomical structures. But, our understanding of the complexity and dynamics of the 

transcriptome of the human brain is still incomplete. To fill in the need, we designed a 

gene expression model that accurately defines the consistent blueprint of the brain 

transcriptome; thereby, identifying the core brain specific transcriptional processes 

conserved across individuals. Functionally characterizing this model would provide 

profound insights into the transcriptional landscape, biological pathways and the 

expression distribution of neurotransmitter systems.  

Here, in this dissertation we developed an expression model by capturing the 

similarly expressed gene patterns across congruently annotated brain structures in six 

individual brains by using data from the Allen Brain Atlas (ABA). We found that 84% 

of genes are expressed in at least one of the 190 brain structures. By employing 
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hierarchical clustering we were able to show that distinct structures of a bigger brain 

region can cluster together while still retaining their expression identity. Further, 

weighted correlation network analysis identified 19 robust modules of coexpressing 

genes in the brain that demonstrated a wide range of functional associations. Since 

signatures of local phenomena can be masked by larger signatures, we performed local 

analysis on each distinct brain structure. Pathway and gene ontology enrichment analysis 

on these structures showed, striking enrichment for brain region specific processes. 

Besides, we also mapped the structural distribution of the gene expression profiles of 

genes associated with major neurotransmission systems in the human. We also 

postulated the utility of healthy brain tissue gene expression to predict potential genes 

involved in a neurological disorder, in the absence of data from diseased tissues. To this 

end, we developed a supervised classification model, which achieved an accuracy of 

84% and an AUC (Area Under the Curve) of 0.81 from ROC plots, for predicting 

autism-implicated genes using the healthy expression model as the baseline. This study 

represents the first use of healthy brain gene expression to predict the scope of genes in 

autism implication and this generic methodology can be applied to predict genes 

involved in other neurological disorders. 
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CHAPTER 1 

INTRODUCTION 

Introduction of Research Area 

Human brain gene expression  

Human brain is one of the most perplexing organs known to mankind with over 

86 billion neurons distinctly classified over 100 different types (1). At any given time, 

more than 80% of the genes are expressed in the brain, which is far more than any other 

body tissue (2). Also, compared to other species, human brains express mRNA transcripts 

at much higher levels and with much greater complexity (3, 4 and 5). It has been 

hypothesized that this increased level of gene expression in the human brain is in part 

responsible for the higher level of neuronal activity and higher order reasoning and 

function in humans (6). Brain’s complexity arises due to its multilayered complex 

anatomy and computational capabilities, owing to different cell types and the connections 

between them. The incredible gene expression complexity of a given brain region along 

with the importance of relationships amongst these distinct brain regions cannot be 

undermined. Various neurological disorders; especially neuropsychiatric and 

neurodevelopmental disorders, occur due to the disengagement in communication 

between two or more brain regions (7, 8). Underscoring the importance of region-specific 

expression have revealed that gene expression differences between any two brain areas 

within one individual are more pronounced than the gene expression differences between 

two different individuals within the same brain region (5, 9 and 10). Also, the number of 

highly expressed genes in brain surpasses any other tissue type by far (11) and it is one 

such organ which consumes more than 20% of the inhaled oxygen (12) due to its 
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exceedingly active state because of gene transcription, translation and metabolic process 

accompanied by specific brain functions. 

Post genomic era 

We live in a new era of biological research – the post-genomic era. The genome, 

defined as the complete genetic material (DNA and RNA) of a species, has been 

sequenced for numerous species. Genomics has brought forth a variety of methods for 

generating and analyzing these data that have revolutionized biomedical research. 

However, genomic methods are not without limitation, sometimes resulting in noisy data, 

inconclusive results, and often are expense on the order of thousands of dollars (13). To 

study the biological system quantitatively, several techniques have been developed to 

measure the expression levels of mRNAs and proteins. These techniques include Western 

Blot, ELISA, Mass Spectrometry (MS), quantitative RT-PCR, and DNA Microarrays for 

mRNA expression measurement.  

The microarray approach has made it feasible to carry out genome-wide 

expression studies (14). Transcriptomic studies utilizing microarray techniques have 

established themselves to be invariably beneficial tools in the understanding of gene 

expression in healthy states as well as uncovering the basis of CNS malfunction (15). We 

can gain insights into the functionality of human brain by combining high throughput 

expression data sets with computational analyses. Microarray analyses of gene-

expression in humans have allowed researchers to uncover the characteristics that define 

human brain at the molecular level (16). Connecting such data to phenotypes of interest, 

particularly human brains susceptibility to neurological disorders can now be carefully 

conducted studied via genomics approaches (16). In addition, the advent of genome wide 
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studies in the human brain at finest possible anatomical resolutions bearing an ‘all- gene, 

all- structure’ approach (17) has led to the rise of a new wave of transcriptional data 

accompanied by in-depth pathway and functional analysis.  

Microarrays as a data resource have helped progress important discoveries in 

many biological studies, especially providing insights about evolution, development and 

functioning of human brain (18). Many studies have surveyed the global expression 

patterns for anatomically distinct sites of the human nervous system and showed that the 

expression patterns of CNS were significantly different from non-CNS tissues (8, 19). 

Other interesting studies have analyzed gene expression data from various tissues of both 

humans and chimpanzees, and humans and mice to get a deeper understanding of 

differences and similarities in the transcriptional regulation between species (19, 20). 

Such publicly available datasets have been used to elaborate on already existing 

knowledge of brain disorders (21, 22, and 23). Thus, these publicly accessible 

repositories provide highly valuable data and have vast potential to make note-worthy 

contributions to brain science (23, 24). 

Genetics in neurological disorders  

Diseases of the central nervous system remain among the most gripping illnesses known 

to humankind. This is because neurological disorders are typically overwhelming to the 

patients and their families, often depriving individuals of the quality of life and because 

the vast majority of neurological disorders lack effective therapies (25). Recent estimates 

suggest that approximately 25% of adults in the U.S. are diagnosable in a given year for 

one or more mental disorders (26). Knowledge of genetics in neurological disorders has 

emerged from the advances made in molecular biology, genetics and a constant quest to 
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understand the relationships among genes, brain, behavior and neurological disorders 

(27). The advent of advanced technologies in the 2000s have made genetic analyses 

readily available. Thus, the last two decades have seen a noticeable increase in 

recognizing the precise role genes played in relation to neurological disorders. 

Advancements were made in but not limited to: Fragile X syndrome, Alzheimer’s, 

Parkinson’s, epilepsy and ALS. While the genetic basis of simple diseases and disorders 

has been accurately pinpointed, the genetics behind more complex neurological 

disorders; like autism is still a source of ongoing research (28). With the expansion of 

neurogenetics a better understanding of specific neurological disorders and their 

respective phenotypes has soared. For severe disorders such as epilepsy, brain 

malformations, or mental retardation a single gene has been identified 60% of the time; 

however, the milder the intellectual handicap the lower chance a specific genetic cause 

has been pinpointed (29). As an example, autism is linked to a specific mutated gene only 

in 15-20% of the cases, and the mildest forms of mental handicaps are linked to genetics 

only in less than 5% of the cases (30). Moreover, such implications are usually not 

restricted to a single brain region. For example, multiple studies have shown that the 

cerebellum contains the most unique gene expression pattern compared to other brain 

structures (3, 8, 9), which is of consequence to autism in particular, as this region has 

been consistently implicated in the pathogenesis of this disorder (31). 

In 1944, Dr. Leo Kanner, defined the childhood neuro-psychiatric disorder called 

autism, a phenotype which is now known to affect ~1/100 individuals (32). However, it 

was not until the 1970s that there was even one scientific publication mentioning both the 

words gene and autism. By 1989, a twin study provided the first evidence for a genetic 
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predisposition to autism (33). With the completion of The Human Genome Project in 

2003, the discovery of autism genes has increased exponentially and has helped to 

elucidate a number of key genes and pathways involved in this complex disorder (34) 

(Figure 1). My dissertation work started in 2012 and is now culminating in 2016, a time 

in which the discovery of autism genes has been occurring at a very rapid rate.  
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Figure 1- Investigation of the autism genetic literature. The growth curve depicts an 

exponential increase in the number of articles containing the words autism and gene 

starting at the time point of the human genome project's completion. A few key points in 

autism genetic history are highlighted: (1) FMR1 in Fragile X Syndrome (2) MECP2 in 

Rett Syndrome (3) 16p11.2 deletion and (4) de novo single nucleotide variants 

discovered in exome sequencing studies 
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With all the complexities in the nature of neurological diseases, there is an immense 

scope for incorporating more technology solutions in the transcriptomics. One such 

important resolution can be leveraging the big data and machine learning technologies to 

predict disease implicated genes and aid in the complex and time consuming processes of 

finding genes using the traditional molecular biology techniques. Development of 

methodologies which utilizes immense volume of gene expression data available towards 

predictive modeling will be greatly valuable to the scientific community. 

Major unanswered questions 

Human brain is an extremely dexterous organ and to comprehend its multi-

layered functioning is one of the greatest challenges (34). Owing to the complex nature of 

the human brain, one of the major but urgent needs is to understand the gene expression 

patterns in the brain. The recent availability of comprehensive and detailed gene 

expression data from healthy brain tissues has now made it possible to discover global 

patterns (17). The possible generation of a map of the transcriptional landscape of the 

human brain will possibly help achieve closer look at the expression signature of unique 

brain structures and lend an insight into the molecular functions and the cross-talk 

between the distinct brain regions. Our method provides a novel way to systematically 

integrate high throughput transcriptome profiling data from different human brains and 

functional analysis results. Also, our method is of high utility to make advances in the 

current understanding about neurological disorders.  

Studying the transcriptional communication between the local structures of a 

higher order brain region as well as global transcriptional organization is vital to 

understanding the underlying mechanisms of the human brain. It is known that the 
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expression profiles of genes is reasonably stereotyped between individuals and the 

humungous amount of publicly available data can be put to good use by generating a 

duplicable framework of the healthy human brain transcriptome consistent across 

individuals and then using it as the baseline to predict the possible association of genes 

with neurological disorders. 

Although there are several published studies in which transcriptional profiling has 

been used to examine gene expression in neurological diseases (23, 35, 36), there has not 

been considerable reports (37) that focuses exclusively on utilizing healthy tissue 

expression data from sources like the Allen Brain Atlas (ABA). The ABA provides 

comprehensive gene expression data at high neuroanatomical resolution of brain 

structures using microarray technology. In this study, we have used data from the ABA 

(23) to develop a framework for the transcriptional machinery of the healthy adult human 

brain followed by its application to studying disorders like autism. The basic premise of 

the study is that gene expression data from multiple healthy individuals can be used to 

design an expression based model that precisely describes the expression relationships of 

various brain regions. This model can serve as an expression map template for 

understanding the genetic underpinnings of highly conserved features of brain 

organization. Finally, we can exercise the utility of this model as a baseline to develop a 

prediction model for identifying potentially new candidate genes implicated in 

neurological diseases using machine learning.  Our methodology has a generic approach 

that can be applied to any other brain disorders like Schizophrenia, Alzheimer’s etc. Also, 

the inherent application of the model to diseased brain states would help improve the 
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quality of life of people suffering from neuropsychiatric disorders as well as help control 

the escalating economic cost associated with these disorders. 

Challenges 

A human brain is composed of roughly 86 billion neurons, which form a very 

intricate but also incredibly dynamic network. Most brain studies are done in model 

organisms like mice where over 90% similarity (39) is reported in the genes (90% of the 

mouse genome could be lined up with a region on the human genome, 99% of mouse 

genes turn out to have analogues in humans). Extrapolation from animal models to 

human patients is always uncertain, but this is especially true for brain disorders given 

the profound anatomical differences between the brains of humans and rodents (40). The 

use of non-human models i.e., mouse or primates for finding, corroborating and 

replicating human brain transcriptome has inherent shortcomings [41, 42]. In contrast to 

human brain, distinct brain structures of experimental animals especially mice, can be 

dissected relatively easily to perform a neuroanatomical profiling, without a considerable 

postmortem delay. But, a 1000-fold increase in brain size when compared to mouse 

brings along with it a number of anatomical and structural variations which in turn 

account for the differences in neural circuits, gene expression intensities and regional 

dissimilarities in case of mouse modeling. It is nearly impossible to model the affected 

brain circuits and regions in the model organisms including primate species.  This is 

because, the rate of gene expression changes in the brain is accelerated during human 

evolution [43, 44], and gene-expression changes in the evolution of the human brain 

primarily involved increased expression (upregulation).  
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On the other hand, the human brain samples can only be collected from deceased 

people as no regular biopsies can be performed in the brain tissue. While cerebrospinal 

fluid (CSF) and small central nervous system (CNS) tissue samples can be obtained from 

a living patient, the procurement of whole brains is only possible from deceased 

individuals. Even if the tissue is available, the degradation of mRNA imposes a huge 

problem because the use of low quality RNA samples for gene expression profiling is not 

reliable (45). Degradation of RNA transcripts by the cellular machinery is a complex and 

highly regulated process. In live cells and tissues, the abundance of mRNA is tightly 

regulated, and transcripts are degraded at different rates by various mechanisms, partially 

in relation to their biological functions. In contrast, the fates of RNA transcripts in dying 

tissue, and the decay of isolated RNA are not part of normal cellular physiology and, 

therefore, are less likely to be tightly regulated. However, recent advances in the post-

mortem tissue acquisition and development of new methods that could be applied in 

studies of postmortem brain tissue, created opportunities for novel and powerful 

investigations into the human brain (46). At present, the study of cellular and molecular 

processes can only be detected through the direct use of postmortem brain tissue. Thus, 

studies of the postmortem human brain represent a critical and complementary approach 

to in vivo studies, as well as an essential interface between clinical investigations and 

studies in animal models (46). 

In addition to understanding the healthy brain transcriptome, the investigation of 

neurological disorders presents more unique challenges (47, 48). Availability of diseased 

human brain tissue with neuro-anatomically high resolution samples continues to be a 

major issue. Due to this limited availability of brain tissue often studies focus on using 
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blood samples from the patients (35, 49, 50, 51, 52 and 53). Even though, the blood 

samples are easily accessible and can support large population- based collections, they do 

not accurately represent the expression profile of a patient’s brain (53). To overcome this 

issue, in the recent years’ researchers have attempted to induce pluripotent stem (iPS) 

cells from individuals with particular disorders and prompt the generation of specific 

neuronal cell types in order to study these in-vitro (54). However, the iPS technology is 

still in its infancy with challenges associated to low efficiency and high technical 

expertise. Taken together, many studies have explored gene expression profiles in 

neurological disorders (52, 53 and 55), but none of them focuses exclusively on utilizing 

healthy tissue expression data from sources like ABA and exploring it in a framework of 

known disease implicated genes. 

Most of the large- and wide-scale studies are the amalgamation of several 

individual smaller studies performed on different microarray technological platforms. 

The challenge in such studies is maintaining the quality control standards for RNA 

integrity, array processing, adjusting batch effects, normalization, etc (56, 57). When 

using data from multiple studies, integration of heterogeneous types of data generated 

from diverse technology platforms poses the first challenge (58, 59). Although meta-

analysis studies have shown lists of differently expressed genes (DEGs), there tends to be 

inconsistencies among studies due to varying results obtained by different groups, 

accomplished by different laboratory protocols, microarray platforms and analysis 

techniques (60, 61). Computational expense of running analysis on these large datasets 

can also create an impediment, but with appropriate utilization of computational 

resources the data can be stored and processed using much less storage and running time. 
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Recruitment challenges for brain tissue donation accompanied by the lack of 

appropriate bio-banking facilities of the donated tissue also represent a major hurdle to 

brain research. Besides, human neuroscience has also been engulfed by ethical issues (62) 

associated with direct manipulation and neuronal recording of the human brain and has in 

part contributed to the lag in brain research.  

 

Motivation 

Knowledge of the transcriptome organization of the healthy brain offers 

contextual information on the key cellular processes and biological pathways involved in 

brain's functioning that maintains the equilibrium state of the brain (63). Moreover, 

characterizing the gene expression in the brain is of utmost importance as brain shows 

more intricate pattern of gene expression than other body organ (64, 65) and the gene 

expression patterns of the diseased human brain are expected to contrast those of the 

healthy brain. Most complex brain disorders involve interaction of multiple genes and the 

brain cells respond to the diseased state by altering their transcriptional program (65). It 

has been over a decade since the publication of the first high-throughput gene expression 

profiling study of the brain (66). Since then, several important studies have come along; 

however, none provides an integrated view of the brains transcriptome. Most studies have 

focused on a few brain regions rather than whole brain expression profiling (67, 68 and 

69) or used model organisms (70, 71, 72 and 73) to make inferences about the global 

gene expression profiles in the human central nervous system. While such efforts have 

generated valuable information, precise catalogue of healthy gene expression is far from 
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complete owing to the difficulty in getting good quality neurotypical human brains as 

well as the resources to dissect the brain tissue to highest level of precision so as to 

capture all the know brain structures (representing different functionality). Also, no study 

is yet known that provides a consistent expression profile of the genes with respect to 

their differential activity across multiple individuals at a high anatomical brain structure 

resolution. Therefore, the development of neuroanatomically comprehensive, genome-

wide models of gene distributions using the postmortem human tissue are critical to 

understand the brains functionality.  

Taking into account all the shortcomings from the already published studies, the 

development of a statistically significant expression model followed by its analysis will 

reveal important features of the human brain transcriptional events in a healthy brain. 

Using the rich microarray profiling dataset in the Allen human brain atlas, we can capture 

the highly consistent patterns of transcriptional regulation across brain structures. Also, 

the genes with consistent anatomical patterning across individuals will very likely be 

significant for brain function and disease. Moreover, the consistent gene expression 

patterns (17, 74) found across multiple individuals will provide a means to compare and 

contrast the similarities and differences between healthy and abnormal neurological 

states. Besides, our study holds promise to demonstrate that the healthy adult human 

brain gene expression profile can be effectively used along with machine-learning 

methods to identify potentially new genes implicated in a neurological disorder like 

autism. Also, generation of a model that captures the transcriptome organization and 

represents the consistent expression profile of genes across multiple samples processed 
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on the same platform with same QC measures is of high significance to further the brain 

transcriptome studies.  

 

Structure of Thesis 

This thesis will focus on the development of a unified gene expression model 

from clinically unremarkable human brains accompanied by its functional 

characterization and followed by the development of a supervised classification model 

for predicting disease implicated genes in neurological disorders. First, the challenges 

and motivation for the research topic would be presented with a brief overview of the 

research gap. This will be followed by the essential background required for the field of 

work. A thorough exposition of the methodology will be reported covering the detailed 

strategy used to create the model, the functional characterization both on the global and 

local structural landscape of the brains transcriptome and, the supervised machine 

learning prediction model will be reported. Results will be presented and discussed, 

ending with a conclusion, as well as future opportunities where this work can be extended 

and applied. 
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CHAPTER 2 

ESSENTIAL BACKGROUND 

Microarrays 

In the world of bio-molecules, proteins play the key roles as structural 

components, enzymes, antibodies, and so on. Genes in DNA molecules carry the 

encoding information for proteins. The flow of this encoding information from genes to 

proteins involves two stages: transcription and translation. In transcription, a gene is 

transcribed into a single stranded sequence of RNA, called messenger RNA (mRNA). 

Then in translation, the mRNA is translated into a sequence of amino acids, which folds 

into a functional protein after some modifications. To study the biological system 

quantitatively, several techniques have been developed to measure the expression levels 

of mRNAs and proteins. In this dissertation, we would be using microarrays for 

quantifying (recording) gene expression because the datasets on the whole healthy brain 

samples are available only from microarray experiments. These data would help 

understand the molecular mechanisms, gene networks, and signaling pathways that are 

recurrently observed in healthy human brains. 

To measure the expression levels of genes using the DNA Microarray techniques, 

hundreds of thousands of DNA probes are immobilized on a small glass, plastic, or nylon 

membrane, which is called an array or a microarray chip. Each probe contains a known 

quantity of DNA and represents a specific gene or an alternative form or a gene. mRNAs 

from the sample cells are hybridized with the probes on the array. So by measuring the 
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intensity of the mRNAs hybridized with the probes, we can have the expression levels of 

the genes that we’re interested in. This technique enables us to measure the expression 

values for hundreds of thousands of genes simultaneously so that we can observe the 

changes in genes’ expression systematically. Also, with the aid of custom microarray 

chips, more intricate experiments can be designed to predict gene function, infer gene 

regulatory networks, understand disease mechanisms etc.  

Application of Microarray Technology in the Study of Neurobiology 

Brain represents the most complex organ in the human body and not surprisingly, 

the most number of genes are expressed in the brain tissue than any other human tissue, 

indicating the intense and dynamic role of transcriptome in the brain function. New NGS 

technologies can add more knowledge to our current understanding of the brain 

transcriptomics. However, due to the unavailability of RNA-seq data at a high structural 

resolution of brain anatomy, we used the microarray datasets. Microarray technology has 

been used widely in many studies of the CNS including brain development (83), behavior 

(84) and neurological diseases (85). Those diseases include Alzheimer’s disease (86), 

Schizophrenia (87), Parkinson’s disease (88), Huntington’s disease (89), bipolar disorder 

(90), multiple sclerosis (91) and autism (92). 

Array types  

There are a number of microarray technologies for large-scale gene expression 

measurements. Among them, cDNA arrays and oligonucleotide arrays are the most 

popular approaches. Although they use the same principle, they differ in many aspects. 

In a typical cDNA array experiment, mRNAs from two different samples are 

extracted and reverse-transcribed into cDNAs, which are labeled with dyes of different 
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colors if they’re in different samples. Then equal amount of labeled cDNA samples are 

mixed together and hybridized with the probes on the array. The probes are spotted 

cDNA of hundreds of nucleotides in length. After the hybridization, a laser scanner 

measures dye fluorescence of each color at a fine grid of pixels. Higher fluorescence 

indicates higher amount of hybridized cDNA and hence higher gene expression in the 

corresponding sample. After the scanning, typically two intensities for spotted cDNA of 

two colors and two intensities for the background of two colors are obtained. So there’re 

at least four quantities for each probe on the cDNA array. Sometimes, these are 

accompanied with quantities that measure the quality of the spot, e.g. the variability of 

the pixel intensity. Since samples are labeled with different colors and hybridized 

competitively to the same set of probes, the cDNA array is also called two-channel array. 

The two channel array allows measurement of the relative gene expression in the two 

samples, i.e. the ratios of the two colors for each spot. The cDNA arrays are available 

from Agilent etc. The array used to generate gene expression data in this dissertation is 

cDNA array from the Agilent technologies. 

The oligonucleotide arrays are available commercially from several companies, 

such as Affymetrix, Illumina, NimbleGen, Agilent, etc. Although each vendor uses 

different techniques, they have one thing in common: the short oligonucleotide sequences 

are used as probes. For example, in Affymetrix array, each gene is represented by one or 

more probe sets, each composed of 11-20 pairs of 25bps long oligonucleotide. Each pair 

consists of a perfect match and a mismatch. The mismatch is created by changing the 

middle (13th) base of the perfect match sequence to reduce the specificity of binding of 

mRNA for that gene. The goal of the mismatch is to control experimental variation and 
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nonspecific binding of other mRNAs with the probe [Aff01]. Unlike the two-channel 

cDNA array, oligonucleotide array is often one-channel: mRNA from only one sample is 

prepared, labeled with a fluorescent dye, and hybridized to the probes on an array. After 

the hybridization, arrays are scanned, and images are produced and analyzed to obtain a 

fluorescence intensity value for each probe. In the probe set level, the typical output for a 

probe set includes two vectors of intensity readings, one for perfect matches and the other 

for mismatches.  

Normalization techniques 

Experimental variations, such as RNA quality, probe labeling, hybridization 

condition, washing, signal and background detection in the scanning process, slide and 

block effects, pose significant challenges in the analysis of microarray data. The first step 

in microarray analysis is to remove the systematic biases due to the variations in 

experimental conditions so as to make multiple array analyses comparable and 

meaningful. These efforts are collectively referred to as the normalization of microarray 

data in the literature. Normalization means to adjust microarray data for effects which 

arise from variation in the technology rather than from biological differences between the 

RNA samples or between the printed probes. 

A number of useful normalization protocols for cDNA arrays have been proposed 

based on different assumptions. These include the global normalization (93), rank 

invariant normalization (94), LOWESS normalization (95), Semi-Linear In-slide Model 

(96), Two-way Semi-Linear Models, robust TW-SLM (96), non-parametric regression, 

RMA normalization, seminal normalization methods and normalization of small 
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diagnostic microarrays (97). All of the aforementioned methods are based on some 

statistical and biological assumptions. 

Several normalization approaches that are most frequently used for 

oligonucleotide arrays include Loess normalization (95). It is based on the M vs A 

methodology where M is the difference in log expression values and A is the average of 

the log expression values. The underlying rationale is that very few genes will have 

different expressions in two arrays. So an M vs A plot for the normalized data should 

have a point cloud centered on the M = 0 axis. Next is the contrast normalization. It is 

also based on the M vs A methodology, but this method transforms the data into a set of 

contrasts before the normalization. In the Quantiles normalization, the goal is to achieve 

the same distribution of probe intensities for each array in the dataset. If two data vectors 

have the same distribution, the Q-Q plots of them are a straight diagonal line. The other 

two less popular approaches are the Qspline normalization (98) and Invariant set 

normalization (99) 

Microarray data analysis 

Despite the high throughput and high efficiency of microarray technologies, high 

level of noises and complex experimental artifacts are associated with microarray data, 

which emphasizes the requirement for statistical and data analytic techniques for all 

stages of experimentation. Microarray data analysis can roughly be classified into three 

levels: low, middle, and high level, according to the stage of experimentation and 

involvement of other data sources. 
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Low level of data analysis, also termed as signal extraction, includes image 

analysis, gene filtering, background correction, probe level analysis and gene 

summarization for oligonucleotide arrays, as well as between-array normalization and 

removal of artifacts for comparisons across arrays. Middle level of data analysis includes 

selection of differentially expressed genes between experimental conditions, 

clustering/classification of biological samples or genes, construction of gene co-

expression network, etc. High level analysis includes those approaches that integrate 

microarray data sets from different platforms or combine microarray data with other data 

sources, such as Gene Ontology information, pathway information, and so on. Great 

success has been achieved in the past few years by performing high level microarray data 

analysis and, this dissertation primarily focuses on middle & high level analysis and 

beyond as the scope goes much further than merely tagging the analysis with these two 

levels. 

Functional genomics of human brain 

The field of neuroscience has been slow to adopt functional genomic and genetic 

methods and the large-scale databases and resources that ideally result from their use. For 

example, neuroscience has consistently lagged behind cancer biology in the adoption of 

new molecular and genetic methods, starting with molecular cloning and continuing to 

functional genomics and genetics today. There are legitimate reasons for this, including 

the extreme cellular heterogeneity and complexity of neural circuits relative to most non-

neural tissues, and the reliance on post-mortem materials for most human studies. 

Another obstacle is the generation of enormous amounts of data. The integration of 

computational biology or bioinformatics in modern neuroscience laboratories or 
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groupings have become even more critical as more powerful technologies now generate 

many orders of magnitude more data, than the traditional molecular biology approaches.  

Transcription of the inherited DNA sequence into copies of messenger RNA 

(mRNA) is the most fundamental process by which the genome functions to guide 

development and maintain functions. Furthermore, encoded sequence information, 

inherited epigenetic marks, and environmental influences all converge at the level of 

mRNA gene expression to allow for cell type-specific, tissue-specific, spatial, and 

temporal patterns of expression. Thus, the transcriptome represents a complex interplay 

between inherited genomic structure, dynamic experiential demands, and external signals. 

This property makes transcriptome studies uniquely positioned to provide insights into 

complex genetic-epigenetic-environmental processes such as non-mendelian genetic 

etiologies such as autism spectrum disorders. 

Human brain gene expression has been demonstrated to be particularly unique 

compared to other human tissues, and in its complex regulatory processes, underscoring 

the need to understanding its functional genomics is crucial. In the brain, an individual 

gene can be expressed in multiple ways depending on the particular tissue (cell-type) of 

habitation, state of brain, and local or long distance signaling mechanisms being received. 

Therefore, in order to understand how a gene or large groups of genes may contribute 

towards the overall functioning of human brain, it is critical to assess the expression and 

function in the appropriate brain structures and find the uniformity in expression patterns 

across individuals. 

Gene expression in adult human brain 
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Compared to other species, human brains express mRNA transcripts at much 

higher levels and with much greater complexity. For instance, comparisons of human 

brain gene expression with both mouse (100, 3) and primates (4, 5) have demonstrated 

that most of the differentially expressed genes between the species are up-regulated in 

humans, but this phenomenon is not apparent in other tissues. Additionally, the human 

brain expresses ~80% of all genes encoded in the human genome at some point during 

it’s development (68), which is greater than any other individual tissue type. It is 

hypothesized that this increased level of gene expression in the human brain is at least 

partially responsible for the higher level of neuronal activity and overall cognitive 

function in humans.  

Within humans specifically, the brain also displays a distinct gene expression 

profile from other tissues. Using both the array and sequencing-based techniques (101), 

the brain has been shown to have higher expression levels and greater transcriptome 

complexity than other human tissue and cell types. In particular, human brain gene 

expression displays a high level of alternative splicing and a unique diversity of 

noncoding RNA types expressed. For example, studies have demonstrated that the human 

brain transcriptome has an unusually high level of alternatively spliced transcripts 

compared to other tissues (102, 103, 104), and the set of isoforms produced in brain 

differs considerably from other tissue types (101, 102). In addition to increased numbers 

and types of spliced mRNAs, the human brain transcriptome also displays a uniquely 

high abundance of transcribed noncoding RNAs (ncRNAs). In fact, the brain displays the 

greatest abundance of transcribed ncRNAs among all tissues studied thus far (105). Both 

short ncRNAs, such as microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) 
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are highly enriched in the brain (106, 107, 108). As ncRNAs are becoming increasingly 

recognized as important regulatory elements in genome processing during 

neurodevelopment and in the pathogenesis of neurodevelopmental disorders (109), their 

abundance in the brain further highlights the uniqueness of neurodevelopmental 

functional genomics (discussed further below).  

While within a given brain region the human transcriptome has been shown to be 

incredibly complex, perhaps unsurprisingly, there is strong evidence that distinct regions 

of the human brain have distinct gene expression profiles. Animal studies have suggested 

that this variation is related to both structural and functional differences (110). For 

instance, a microarray study of twenty distinct brain and spinal cord sites showed that 

expression profiles can cluster samples from different donors by anatomical origin, and 

that some anatomical regions have up to 2,000 region-specific genes (8). Multiple studies 

have shown that the cerebellum contains the most unique gene expression pattern 

compared to other brain structures (3, 8, 9), which is of consequence to autism in 

particular, as this region has been consistently implicated in the pathogenesis of the 

disorder (111). Even just within the neocortex, different cortical layers each express a 

detectably distinct profile of mRNA transcripts. Underscoring the importance of region-

specific expression are results that have shown gene expression differences between any 

two brain areas within one individual are more pronounced than are gene expression 

differences between two different individuals within the same brain region (5, 9, 10).  

In summary, the human brain has been demonstrated to have a unique pattern and 

complexity of gene expression compared to other species as well as compared to other 

human tissues, including region-specific gene expression patterns. This highlights the 
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importance of understanding human neuropsychiatric disorders, such as ASD, in the 

context of human brain gene expression specifically, as it is likely that animal, cellular, 

and other models do not recapitulate the uniqueness of human brain functional genomics 

with the appropriate level of fidelity.  

Gene expression during human neurodevelopment 

The developing human brain grows remarkably fast—the weight of a newborn’s 

brain is approximately 25% of its adult weight, but within two years, it nearly reaches its 

adult size (112). During this time, the brain grows mainly through glial multiplication, 

myelination, formation of new synaptic connections, and pruning of unused synaptic 

connections. While the human brain continues to mature up to the age of 25 years (113), 

the greatest changes occur only during the periods of infancy and early childhood. 

Coincidentally, most neurodevelopmental disorders, including autism spectrum disorders, 

become clinically recognizable around this age. 

Underlying these dramatic early changes in brain development are complex and 

dynamic broad patterns of gene expression, which have only recently begun to be 

understood. The most comprehensive study to date of the developing human brain 

transcriptome (68) documented that genome-wide patterns of gene expression correspond 

closely to the major stages of clinical development (namely prenatal, early infancy, 

childhood, adolescence, and adulthood), and that the molecular profile of these stages are 

distinct from each other. The most striking observation was that the greatest shifts in gene 

expression occur around the period of birth, where the authors found almost 60% of 

genes change their expression patterns in the neocortex (68). Other studies have 

demonstrated similar changes, and have showed that many of the genes identified during 
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this shift are known to be involved in cortical development and higher order cognitive 

functioning (69). 

Changes in gene expression in early post-natal life have also been shown to have 

greater amplitude of change (114, 115, and 116). In fact, it was shown that many genes 

actually reverse their expression trajectory in early life (114), mostly shifting from a 

pattern of increasing expression in fetal life and infancy to a decrease in expression 

beginning in childhood. Moreover, as the brain begins to mature, the gene expression 

profile within each anatomical region becomes more similar to other regions, with the 

exception of the cerebellum, suggesting that most of the region specific development is 

completed early in life. Interestingly, these broad gene expression patterns appear to 

reverse themselves in older age, at least in the prefrontal cortex (116). 

Gene expression dynamics in human brain development are clearly both spatially 

and temporally specific. This suggests not only that they are highly regulated, but that 

different genes and gene networks will have dynamic expression throughout space and 

time. 

Gene expression based networks in the human brain 

While assessing the genome is an important approach to comprehensively 

understand the complex functional genomics of human brain, it is equally important to 

consider how disparate genomic elements may work in concert with each other to 

produce biological effects that are emergent only after their interaction. The study of 

genetic interactions can be done by modeling large gene sets as networks of interacting 

nodes and edges, allowing for a statistical assessment of relationships among and 
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between genes, as opposed to the study of individual genes themselves. Such approaches 

are particularly important in complex genetic syndromes like autism spectrum disorder, 

as genome wide association studies have consistently demonstrated that most individual 

variants in ASD have only very small effects by themselves. 

One validated approach to integrate heterogeneous gene sets, in order to uncover 

shared molecular mechanisms, is through the analysis of gene co-expression patterns, 

which invokes the guilt-by-association heuristic that is pervasive in genomics research 

(117, 118). Several studies have demonstrated that genes with similar brain co-expression 

patterns are likely to function together in common cellular pathways (119, 120). These 

transcriptional co-expression relationships are particularly relevant to the functional 

genomics of the human brain, as the precise regulation of gene expression across brain 

regions instructs the exquisite specialization and connectivity within the brain. For 

instance, if two genes are expressed with similar patterns (i.e. they have a similar 

magnitude and direction of expression change across developmental time), they would 

have a higher correlation than two genes whose expression appears to be randomly 

related to one another. In this network, edges would link genes with similar expression 

profiles, whereas unrelated genes would not share an edge (120) (Figure 2). Defining 

edges between genes in this way allows the conclusion that the two nodes share related 

biological function, and can be used to derive and study large-scale genetic interaction 

networks.  
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Figure 2- Examples of gene interaction networks. Properties of networks as a whole can 

become apparent that would not be appreciated by studying individual genes. For 

example, the network on the left represents known 2nd degree protein-protein 

interactions with the gene Mecp2 in humans, whereas the network on the right represents 

the known Mecp2 interactions in mice. As can be seen, the human network is much more 

densely connected, suggesting Mecp2 has more known interactions in humans.  
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Another widely used approach to infer interaction networks is to draw upon 

experimentally determined protein-protein interactions. Studies have demonstrated that 

protein interaction networks are conserved evolutionarily (121), and that proteins in the 

network with high degrees of connectedness are more important for organismal survival 

and fitness than those with lesser connectivity (122). This suggests that information on 

the importance of individual genes/proteins in a network can be inferred by studying the 

overall structure of the network as a whole. 

Recent largescale proteomics efforts have shown that protein co-expression 

patterns are slightly better predictors of protein interactions than are mRNA co-

expression patterns. However, obtaining comprehensive and unbiased datasets of protein 

co-expression is much more technically challenging than obtaining genome-wide RNA 

expression levels. Consequently, understanding gene co-expression patterns in brain is an 

important first step that could provide insights into the complex functional genomics of 

the human brain. 

Autism and classification/prediction algorithms  

The autism spectrum disorders are a heterogeneous set of syndromes defined by 

impairments in verbal and non-verbal communication, restricted social interaction, and 

the presence of stereotyped patterns of behavior. Autism spectrum disorders are one of 

the most common problems affecting children in the Western world. The most recent 

estimates have shown that ASD affects between 1 in 88 children (Centers for Disease 

Control and Prevention (CDC) 2012). Boys are at least four times more likely to receive a 

diagnosis of ASD as compared to girls (CDC 2012), and this ratio increases significantly 

when only mildly affected children are considered (123). The costs associated with 
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autism are similarly great. Perhaps more importantly, the emotional toll placed on parents 

and caregivers of children with autism is immense, unrelenting (124).  

Evidence for a strong heritable risk of ASD was initially described in twin and 

sibling epidemiological studies of autism (125), and has since been firmly established 

through multiple genetic approaches (126).  The first twin studies in ASD demonstrated a 

concordance rate approaching 90% in monozygotic twins and 10% in dizygotic twins 

(127, 33, 128). Subsequently, larger studies have shown the dizygotic concordance rate to 

be greater than 20% (129). 

The development of microarray technology such as comparative genomic 

hybridization (CGH) allowed the unbiased assessment of the genomic architecture of 

ASD. The first of these analysis indicated that individuals with ASD had 10-20 times the 

number of CNVs as controls (130, 131). Different brain regions have been implicated in 

both post-mortem and neuroimaging studies, notably the prefrontal and temporal cortices, 

and the cerebellum (132). Intriguingly, many of the genes known to be integral to these 

processes have been independently linked to autism in genetics studies. For instance, the 

Shank family of proteins, notably Shank 1 and Shank 3, has been repeatedly implicated in 

ASD (133). 

In most studies, classification or prediction-based analysis in autism has been 

performed to distinguish the autistic patients from the normal controls. In some more 

recent studies, this is usually achieved by training a classifier on the gene expression 

signatures (usually from the peripheral blood) of the cases compared to controls. 

Integrating multi-parametric functional and structural measure from MRI/fMRI based on 
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the patients versus the controls is another widely implemented methodology using the 

principles of machine learning and graph theory (134, 135). Other methods include text 

classification where the data sets are related to patient’s details in the form of text 

containing the detailed explanation of the symptoms from which they suffer (136, 137). 

Further, complementary machine-learning approach based on human brain-specific gene 

network have also been developed which present a genome-wide prediction of autism 

risk genes (138). However, none of the prediction methods described above make use of 

only healthy brain gene expression to predict genes involved in autism implication using 

supervised classification machine learning models. Evaluating the utility of healthy brain 

gene expression as a tool to predict the association of new genes for a neurological 

disorder offers tremendous opportunities to enhance our current knowledge. In the 

present study, we used the discriminatory power of the expression patterns of known 

autism genes in healthy individuals to develop a model that could be used to identify new 

genes with potential association to autism. 

Machine learning and data mining 

The field of classification is domain-independent, and has many names (e.g., 

statistical inference, pattern recognition, subtyping, soting, etc.) Regardless of the name, 

the goal is to develop a model that can be used to assign objects to a category, with the 

highest accuracy possible. Computational methods for classification draw from research 

in machine learning and data mining, which themselves are largely based on theory from 

probability and mathematical statistics. Given a dataset of labeled genes, the numeric 

expression values representing distinct brain structures act as the features and the labels 

are the different classes (autism genes versus non-autism genes), then the class-specific 
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features can be extracted to build models that can predict potentially new genes for the 

neurological disorder. 

Classification in machine learning is often broken up into three distinct areas: (i) 

supervised learning, (ii) unsupervised learning, and (iii) semi-supervised learning. In 

supervised learning, a set of data that is labeled with the concept being learned is used, 

with the aim of inducing a model that can label new data with a high level of accuracy. 

In most cases, the algorithm outputs a discriminative function that maps data to a 

concept. Decision trees, artificial neural networks, and support vector machines are all 

examples of supervised learning algorithms. In unsupervised learning, a model of the 

input is induced, but no mapping to any output is created, as the input data is not 

labeled. This is appropriate in cases where a model is desired that learns natural groups 

or arrangements of the data. Clustering is a common form of unsupervised learning. In 

semi-supervised learning, a model is induced from both labeled and unlabeled data, 

again with the intent of labeling new data. These methods are useful for datasets with a 

limited labeled data and a large size unlabeled data of the same kind. Expectation 

maximization methods used in conjunction with supervised learning methods are often 

used in semi-supervised learning. 

In the context of learning, statistical inference deals with problems where a set of 

data is given, and the method learns about the underlying probability distribution that 

generated the data. There may be one, several, or an infinite number of possible 

distributions that may have generated the data. Some methods may simply choose the 

most likely distribution to model the data, while other methods may consider all possible 

distributions in the hope of obtaining a better overall model.  Irrespective of the method, 
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the resulting model can be used to make inferences about tested and untested data.  

The rest of this chapter is focused on establishing the essential framework for 

classification. 

Steps for classification 

In general, there are five important steps that must be considered for successful 

classification: 

Data Collection – Let D denote the domain of interest. (In this research, D represents the 

set of all possible genes, and will be referred to as the gene space). A sufficient number 

of instances from D must be collected for learning, or training a model of the data. The 

dataset of examples which will be used for training is called training data, and will be 

denoted as D. Thus, D ⊆ D. Let di represent the ith instance in D. Each instance will 

belong to a class (or category), denoted as yj, from a set of possible classes, denoted as C. 

Input Representation – A set of features must be selected to represent instances that are to 

be classified. The feature set must be easy to extract from the data, and highly 

discriminatory among the different classes, yet general enough to allow representation of 

data in the domain that is yet to be seen. Let X represents the feature space – the space of 

all possible features that could be used to represent any instance in D. The function that 

maps instances in D to features over X is assumed to be neither injective nor surjective; 

that is, there may be distinct instances in D that map to the same feature vector, and there 

may be feature vectors over X for which no instance in D could possibly exist in nature.  

The only assumption is that each unique instance in D maps to at least one feature 

vector over X. Let xi represent the vector of values of features representing instance di in 

D. Then, D is a set of ordered pairs (xi, yj). However, the notation di ∈D and xi ∈D are 
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both used in this research to refer to the same ith instance in the training data D; the 

representation is implied in the notation. 

Classification Algorithm/Model – Machine learning and data mining offer many choices 

of classification algorithm. It is not always clear which algorithm is the best for which 

problem. The efficiency of an algorithm depends on the nature and distribution of the 

training dataset. Regardless of the choice, the classification algorithm will provide the 

framework for learning. 

Learning – Once the algorithm is established and the form of the model is known, the 

learning takes place. In this step, the training data is analyzed to establish patterns 

between the data and the classes the data is assigned to. Successful learning results in the 

induction of a hypothesis that best models (or explains) the data being analyzed. The 

hypothesis is output as a target function, denoted as h, which maps instances represented 

by their features to a class, denoted as: 

h: X → C 

One can think of the feature vector as a uniform description of the object to be 

classified. The classifier evaluates the description (features) of the new object, and 

assigns the category that belongs to the best matching descriptions of known objects. The 

classifier is a hypothesis that best explains the differences in the descriptions between 

objects belonging to each class. Learning involves determining what descriptors make the 

objects unique to the class, and adjusting the model to best exploit those descriptors. 

Evaluation – In reality, the hypothesis will not perfectly explain everything. The 

classifier will likely make mistakes. We want to select the model that makes the fewest 
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mistakes which is generally measured by the number of correctly predicted known 

positives (sensitivity) and the number of correctly predicted known negatives 

(specificity). One interpretation of machine learning is focused on the development of 

computational methods that optimize a performance measure using example data or past 

experience (139). The performance measure for a hypothesis is usually a quantitative 

measure of the error between the hypothesis and the true concept being learned on some 

data being tested (Machine learning algorithms "learn" in a sense that the performance of 

the method is designed to improve as more data become available). 
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CHAPTER 3 

MATERIALS AND METHODS 

Data sets and data representation 

The data used to generate healthy human brain gene expression model in this 

dissertation originates from ‘Allen Brain Atlas (ABA)’ (17), which comprises of a global 

‘all-genes, all-structures’ survey of gene expression using microarrays. ABA contains 

data from six neurotypical adult individual brains, where each brain was dissected into 

hundreds of precise anatomic structures. Throughout the process, anatomic data (MRI, 

blockface images, histology) were annotated to enable the collection of anatomically 

defined samples for microarray. After successful screening and QC of the tissue, a 

multipart dissection protocol was utilized to process the fresh frozen human brain tissue. 

Large format histology data was collected from each tissue slab with 4.65 µm/pixel 

digital image resolution. Each tissue slab was then subdivided into smaller tissue blocks 

categorized according to whether they contained primarily cortical or subcortical brain 

structures. These tissue blocks were sectioned for histology data with a final digital image 

resolution of 1 µm/pixel. If the blocks contained subcortical structures, additional 

sections were collected onto membrane slides that would allow laser microdissection 

(LMD) of these structures. Anatomically defined samples were collected for microarray 

analysis by either manual macrodissection of the remaining tissue from each block 

(cortical and some subcortical structures) or by laser-based microdissection (subcortical 

and brainstem areas). A schematic of the above mentioned process is shown in Figure 3 

(17), summarizing the experimental strategy to subdivide intact brains and isolate precise 
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anatomical samples. The microarray datasets contain approximately 400–500 tissue 

samples per hemisphere, often with multiple samples per structure for each individual 

brain. Also, due to normal variation in brain size and morphology, the number of samples 

per structure varies across the individual brains.  
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Figure 3 - Process schematic of primary steps in the creation of the whole brain 

microarray survey of the Allen Human Brain Atlas 
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The profiles of individual donors and the statistics on the brain structures are shown in 

Table 1. Note, only for two brains (H0351.2001 and H0351.2002) the samples were 

collected from both hemispheres. Otherwise, samples for microarray were collected from 

the left brain hemisphere alone. Therefore, to eliminate bias arising due to hemispheric 

specificity of gene expression, only left hemisphere of the donor brains was used for our 

analysis. Agilent cDNA array technology was used to generate the microarray data. 

 

 

Table 1 - Donor profile representing their age, gender, ethnicity and handedness 
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Generation of gene expression based model 

Since multiple samples per brain structure can be present, we merged the samples 

(brain structures) that are identically annotated according to the anatomical information 

and averaged the expression values of all genes (Table 2). This reduced the number of 

samples and made the structure annotations unique (Table 1). To estimate the expression 

profile of each gene in every distinct brain structure (sample) w.r.t other structures, we 

calculated the z-scores. Statistically, the standard score or z-score is the signed number of 

standard deviations by which an observation deviates from the mean. A z-score is used 

for making norm-referenced interpretations, for which the mean and standard deviation 

are selected to simplify interpretations. On similar lines, p-values are probabilities and 

both these statistics are associated with the standard normal distribution. This distribution 

relates standard deviations with probabilities and allows significance and confidence to 

be attached to z-scores and p-values. Very high or a very low (negative) z-scores, 

associated with very small p-values, are found in the tails of the normal distribution 

(Figure 4). We compute the z-score for each probe independently over all samples and 

independently for all donors and to identify the brain structures whose expression levels 

fall into the tails of the normal distribution. Thereby, each gene has a unique z-score for 

each individual brain structure in each donor. We used a cut-off of ‘-2.0 ≥ z-score ≥ 2.0’ 

to retain only the significantly differentially expressed genes in the matrix for each of the 

six brains independently. Cells in the matrix with missing values (that do not meet the z-

score cutoff) were populated with ‘zeroes’. Subsequently, we designed four different 

pattern selection criteria (summarized in Figure 5) to select reproducible gene expression 

patterns across six whole brain gene expression matrices. Once, we had identified the 
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reproducible genes across six individuals based on their expression profile in discrete 

anatomical structures we averaged the z-scores. Now, we had a blueprint expression for 

each gene for every brain structure. However, in the microarray data, each gene is 

assayed with multiple probes (58,692 probes covering 29,165 genes). To select the best 

representative probe for each gene, the probe that showed maximum variance across 

brain regions was selected (140). The general schematic of the expression model is 

summarized in the flowchart in Figure 6. 

 

Table 2 - Structural annotation based amalgamation of brain regions 
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Figure 4 - z-score statistical representation and its relation to p-value 
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MD1 MD2 

MD3 MD4 

 

 

 

Figure 5 - Pattern selection criteria to discover reproducible gene patterns in identically 

annotated brain    structures across individuals to generate four distinctive models 
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Figure 6 - Schematic of the gene expression model generated for the healthy adult human 

brain 



 

 44 

Hierarchical clustering 

The hierarchical clustering algorithm used is based closely on the average-linkage 

method of Sokal and Michener (141), which was developed for clustering matrices such 

as those used here. The object of this algorithm is to compute a dendrogram that 

assembles all elements into a single tree. For any set of n genes, an upper-diagonal 

similarity matrix is computed by using the metric described above, which contains 

similarity scores for all pairs of genes. The matrix is scanned to identify the highest value 

(representing the most similar pair of genes). A node is created joining these two genes, 

and a gene expression profile is computed for the node by averaging observation for the 

joined elements (missing values are omitted and the two joined elements are weighted by 

the number of genes they contain). The similarity matrix is updated with this new node 

replacing the two joined elements, and the process is repeated n-1 times until only a 

single element remains. Software implementation of this algorithm can be obtained from 

the authors at ‘http://bonsai.hgc.jp/~mdehoon/software/cluster/’ and the clustered files 

were visualized using ‘TreeView’ software (142). 

Hierarchical clustering of all the 191 samples (brain structures) was performed 

using uncentered correlation as the similarity measure and average linkage as the 

clustering method. Two-way clustering was used, where both the genes and the samples 

were clustered. Since, clustering the full complement of genes diminishes the 

significance of brain specific gene expression; we applied a cut-off to our gene set to 

focus on genes that are highly biologically relevant with enrichment for brain-related 

annotations and disease associations. A gene had to be significantly differentially 

expressed in at least five brain structures to be included in the gene set. This set of genes 

http://bonsai.hgc.jp/~mdehoon/software/cluster/
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was also typically associated with high expression variance. This reduced the number of 

genes to 6,984 and also the sample size of distinct brain structures was reduced to 166. 

Same clustering algorithm with identical parameters was applied to this reduced but 

theoretically brain specific genes. 

Clusters of genes coordinately expressed were achieved and we used ‘DAVID’ 

(143) software for the characterization of the clusters. The functional characterization 

was also validated using a second tool named WebGestalt (144). 

Weighted gene coexpression network analysis (WGCNA) 

WGCNA (145) was performed in the R and a coexpression network was 

constructed on the basis of 6,984 genes. For all possible pairs of the variable genes, 

Pearson correlation coefficients were calculated across all samples. The correlations 

matrix was raised to the power 9, thus producing a weighted network. The weighted 

network was transformed into a network of topological overlap (TO)—an advanced 

coexpression measure that considers not only the correlation of 2 genes with each other, 

but also the extent of their shared correlations across the weighted network. Genes were 

hierarchically clustered on the basis of their TO. Modules were identified on the 

dendrogram using the Dynamic Tree Cut algorithm. For each gene, we determined its 

connectivity within its module of residence by summing up the TOs of the gene with all 

the other genes in the module. By definition, highly connected (hub) genes display 

expression profiles highly characteristic for their module of residence (146). To obtain a 

condensed representative expression profile of each module (module eigengene, ME), we 

summarized expression levels of the top hub genes in the module.  
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Functional annotation of the modules was performed on the basis of analysis of 

their gene composition. We used DAVID (http://david.abcc.ncifcrf.gov/) to test each 

module for enrichment in genes with particular GO terms and biological pathways 

compared with the background list of all genes on the array. The functional 

characterization of the modules was also authenticated using another tool named 

‘WebGestalt’. 

Neurotransmitter maps 

We used Kyoto Encyclopedia of Genes and Genomes (KEGG) (147), the most 

comprehensive database source that integrates genomic, proteomic and systemic 

functional information for investigating the distribution of neurotransmitter receptors and 

generate their pathway maps. The KEGG Pathway suite is a collection of manually drawn 

maps demonstrating the existing knowledge on the molecular interaction and reaction 

networks. KEGG pathways were used as reference pathways to map human 

neurotransmitter systems  

AutDB 

AutDB (38) is a publicly available web-portal for on-going collection, manual 

annotation and visualization of genes linked to autism. We downloaded all the 845 genes 

associated with ASD, including both rare mutations and common variants from the 

AutDB database. Genes having a predisposition to autism in the context of a syndromic 

disorder and genes demonstrating strong evidence for replication in an independent 

experiment after a rigorous statistical comparison between cases and controls were 

retained. All the other genes with minimal evidence and hypothesized but untested 



 

 47 

evaluations were filtered out. Finally, we had a list of 219 autism implicated genes with 

high confidence as summarized in Table 3 
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C15orf43 ABCA10 ERBB2IP MBD3 RBFOX1 TBC1D5 HTR1B 

CA6 ADORA2A FBN1 MDGA2 REEP3 TBL1X IL1R2 

CTNND2 AGBL4 FBXO40 MED13L RELN TCF7L2 INTS6 

CYP11B1 AHI1 FHIT MFRP RNF135 TERF2 KATNAL2 

DDX53 ANK2 GLIS1 MIB1 ROBO2 TRIO LRRC1 

ELAVL3 APH1A GLO1 MNT RPS6KA2 TRIP12 MBD5 

FABP5 ASMT GNB1L MSR1 RPS6KA3 TRPC6 MET 

FAM92B ASTN2 GPR37 MYO16 SBF1 TSC2 MYO9B 

GAS2 ASXL3 GPX1 NAALADL2 SCFD2 TSPAN7 NCKAP1 

GRID2 BRCA2 GRIP1 NBEA SCN4A UBE2H NF1 

HSD11B1 CACNA1F GUCY1A2 NDUFA5 SDC2 UBR5 NLGN1 

IL1RAPL1 CACNB2 HDAC4 NINL SEMA5A UPF3B NUAK1 

KCNQ3 CCDC91 HEPACAM NLGN4Y SETD5 USP45 PACS1 

KIRREL3 CDH9 HLA-B NSD1 SETDB1 VASH1 PRODH 

MYT1L CHKB HRAS NTNG1 SGSH VPS13B PTK7 

NLGN3 CLTCL1 HS3ST5 NTRK3 SGSM3 VSIG4 RAPGEF4 

NRXN1 CNR1 HTR3A ODF3L2 SLC1A1 WAC RPL10 

NRXN2 CTCF HYDIN OR2M4 SLC22A15 ZBTB20 SCN1A 

RIMS3 CTNNA3 ICA1 P2RX5 SLC27A4 ZMYND11 SETBP1 

SLC12A5 CTTNBP2 ILF2 P4HA2 SLC38A10 ZNF559 SHANK3 

SLC1A2 CUL3 ITGB3 PARK2 SLC7A3 ADK SNX14 

SLC4A10 CUL7 JMJD1C PAX5 SLC9A6 ATP10A ST7 

STXBP1 DAPP1 KAT2B PAX6 SMARCA2 CACNA1D SUV420H1 

SYN1 DDX3X KAT6A PCDH15 SMARCC2 CACNA2D3 TAF1 

TTN DIP2A KCNQ2 PER1 SND1 CHD2 TBX1 

ARX DLX2 LAMA1 PIK3R2 SNTG2 DEAF1 TMLHE 
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CNTNAP2 DMD LAMB1 PLCB1 SOX5 DNMT3A TSC1 

LEP DMPK LRBA PPP1R1B SPARCL1 EIF4E UBE3A 

DMXL2 
LRP2 PRICKLE2 SPAST USP7 DRD3 SYT17 

DNER 
LZTS2 PRKCB SSPO WDFY3 DVL3 MACROD2 

DPP10 
EP400 PRKD1 STXBP5 FBXO33 DYRK1A PTEN 

DPP4 
MBD1 PTCHD1 STYK1 FOXP1 EHMT1 PTPN11 

GIGYF2 
EN2 GRIK2 HECW2 RAB39B   

 

Table 3 - List of 229 autism implicated genes curated from AutDB database 
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The Human Protein Atlas 

The Human protein atlas (148) provides expression for all protein-coding genes in 

all major tissues and organs in the human body including the brain. A total of 1223 genes 

were shown to demonstrate elevated expression in brain compared to other tissue types in 

the Human Protein Atlas. Of these 1223 genes we filtered out any overlapping genes in 

the autism dataset derived from AutDB. Also, the ‘group enriched’ genes (genes which 

shown at least five-fold higher mRNA levels in a group of 2-7 tissues) as defined by the 

protein Atlas were filtered out, leaving us with a set of 830 genes with elevated 

expression in the human brain. 

Development of Supervised Classification Model 

To carryout feature selection, classification model generation using ML algorithms 

and performance measurements, we used the Waikato Environment for Knowledge 

Analysis (WEKA) (149) framework, which is an open-source, Java-based framework. 

We used three diverse and most popular ML algorithms; namely RF (150), BayesNet 

(151), J48 (152) and SVM, to build classification models.  

To evaluate the performance of the method, we apply a standard validation technique 

called ten-fold cross validation, where sequences from each class are divided into ten 

parts – the model is built using nine parts, and predictions are generated and evaluated on 

the data contained in the remaining part. This process is repeated for all ten possible 

combinations. After cross-validation, we assessed the performance of the fully trained 

classifier models using the test set (20% of original data) that were hidden from the 

classifiers. We report standard performance measures over each enzyme class including 

the following: 
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 True positives (TP) - the number of sequences that are correctly identified in a 

class that belongs to them; 

 False negatives (FN) - the number of sequences that are not identified in a class 

that belongs to them; 

 True negatives (TN) - the number of sequences that are not found in a class that 

does not belong to them; 

 False positives (FP) - the number of sequences that are identified in a class that 

does not belong to them; 

Using these four quantitative measures, we report a number of standard measurements in 

judging classifier performance: 

 Overall Accuracy – a measure of the overall classifier performance. It is defined 

as the fraction of the data tested that is classified correctly. Though it is a poor 

measure to consider on highly unbalanced datasets, it is still reported it as a 

general overall comparative measure 

 Sensitivity (a.k.a Recall, TP-rate) - the proportion of true positives that are 

predicted as positives. This gives a measure of individual class accuracy. Poor 

sensitivity indicates that the classifier is under-predicting class 

 Specificity - the proportion of true negatives that are predicted as negatives.  

 False Positive Rate – the fraction of data not in a class that was incorrectly 

predicted to be in that class. The sensitivity and specificity are given by, 

Sensitivity = TP/ (TP + FN); 

Specificity = TN/ (TN + FP). 



 

 52 

False Positive Rate = 1-Specificity 

We optimize and validate the accuracy of our prediction model by selecting the 

optimal model that has maximum true positive rate (sensitivity) and minimum false 

positive rate (1- specificity). A receiver operating characteristic (ROC) curve depicts the 

relationship between specificity and sensitivity for a single class. The ROC curve for the 

perfect classifier would result in a straight line up to the top left corner, and then straight 

to the top right corner, indicating that a single score threshold can be chosen to separate 

all of the positive examples of a class from all of the negative examples. Each point in the 

curve is plotted based on different confidence score thresholds. The area under the curve 

(AUC) is a numeric measure of performance depicted by ROC curves. 
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CHAPTER 4 

RESULTS 

 

Model generation 

Generation of gene expression model  

To identify genes with expression pattern sustenance across healthy adult human 

brains, we developed four versions of the gene expression models using microarray data from 

the ABA (26). The profiles of six donors from ABA representing their age, gender, ethnicity, 

handedness and the number of samples obtained per left hemisphere has been summarized in 

Table 2. Briefly, five males and one female brain of age range 24 years to 57 years who died a 

natural death constitute the donors in the ABA. About 400- 500 tissue samples per hemisphere 

were dissected for microarray data generation from each of the donors. Due to the normal 

variation in the brain size and morphology, some of the brain structures were sampled multiple 

times. Since these brain samples map back to the same neuroanatomical structural annotation, 

we averaged their expression values to achieve a unique anatomical annotation. 

For the purposes of data consistency, left hemisphere of the brain were used for 

current study as the right hemispheric microarray data were available for only two donors. 

Also, the brain structures that were sampled in any one individual brain only were not 

considered to be part of the model. Finally, comparison was made across a total of 212 brain 

structures expanding over 6 individuals. The fundamental principles to quantify each of the 

58,692 probes with their differential expression in every brain structure with reference to all the 

remaining brain structures are steadfast for each donor. However, four distinctive criteria 
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implemented to find globally conserved transcriptional profiles for precise anatomical locations 

across the six donors as summarized in the flowchart Figure 6. These criteria (Figure 5) differ 

in capturing the gene patterns in identically annotated brain substructures across individuals 

(increasing pattern selection stringency from MD1 to MD4). Recapitulation of expression in 

identically labeled brain structures for every gene across individuals was crucial in establishing 

reliable expression profiles. 

For our first model (MD1), we observed that about 85% (24,863) of the genes 

demonstrate synonymous expression profile in at least one brain structure for our first model (MD1). 

These results corroborate with the results from previous studies which have shown 84% of 

genes to be expressed in the adult human brain (17) and 80% in the mouse brain (70). 

Comparison of expression patterns resulted in 190 brain structures carrying similarly pattered 

gene expression for at least one gene. The frequency distribution of genes with reproducible 

expression patterns across distinct brain structures for MD1 is shown in Figure 7. Our results 

demonstrate the consistency of expression patterns across six individuals in all four models of 

healthy individuals. However, due to the stringency of filtering criteria, the frequency 

distribution of similarly expressed genes across distinct brain structures were reduced from 

MD1 in all the other models. About 54% of the genes are expressed in at least one brain 

structure in MD2, 69% in MD3 and for our last model MD4, only 59% of the genes were 

expressed in at least one brain structure (Figure 7).  All the following results in the current 

study are based on MD1. It is the optimal selection since MD1 ensures minimum loss of gene 

expression information and retains the most number of brain structures with differentially 

expressed genes when compared to the other three models. Number of unique brain structures 

passing the gene expression pattern selection criteria implemented by each of the four different 

models has been shown in Figure 8. 
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Figure 7 - Frequency distribution of reproducible genes across distinct brain structures (BS) for 

MD1, MD2, MD3 and MD4 
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Figure 8 - Number of unique brain structures passing the gene expression pattern selection 

criteria implemented by each of the four different models 
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Brain structure based exhibit of gene expression established the blood brain barrier (CPLV) 

(153, 154) as the most transcriptionally active brain structure followed closely by 

paraventricular nuclei and corpus callosum. The bar graph in Figure 9 reports the top 10 brain 

structures that have the most number of differentially expressed genes among all the models. 

Across the four models, very often, the same brain structures retain the most number of 

differentially expressed genes, however, with observable differences in the gene numbers. 

Upon inspecting, most of the genes conserved across different models for precise brain 

structures were mostly related to the fundamental functioning of the human brain; with 

functions highly specific to the brain and generic cell process. 
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Figure 9 - Brain structure based gene enrichment. Structures with significant differential 

expression for maximum number of genes across four models 
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Functional genomics of the healthy adult human brain 

Spatial organization of transcriptome 

Hierarchical clustering (79) of gene expression data provides a holistic view of the 

transcriptome organization in a full set of brain samples. To gain better insights into the 

structural and functional similarities between distinct anatomical locations, we checked for 

spatial grouping of 190 brain structures based on the expression of 6,984 genes showing 

significant differential expression in at least five brain structures Figure 10a. Clustering using 

the full complement of expressed genes has been reported in the Figure 10b.  

As shown in Figure 10a, using hierarchical clustering we were able to show that 

distinct sub-structures of a bigger brain region can cluster together while still retaining their 

expression identity. Sets of genes expressed largely across the brain were identified, suggesting 

housekeeping functions. Cliques of genes in functionally related brain structures were also 

identified. Besides, we also observed sets of genes that express only in a singular brain 

location, signifying their functional significance in discreet brain locations. By performing 

enrichment analyses on these gene groups, we identified biological processes and molecular 

functions which are either specific to the brains functional and anatomical groups or represent 

generic cellular processes. 
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Figure 10a - Dendrogram and heat-map overview of the two-way unsupervised hierarchical 

cluster analysis of gene expression data from 160 samples using 6,984 genes. Columns 

represent individual brain structures and rows represent each gene and the z-scores were 

calculated across rows. The expression level of each feature (gene) in every brain structures is 

represented as a cell in a two dimensional matrix. Red and green reflects high and low 

expression levels, respectively, in a given brain structure with respect to all the other brain 

structures. 
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Figure 10b- Dendrogram and heat-map overview of the two-way unsupervised hierarchical 

cluster analysis of gene expression data from 190 samples using full complement of genes 
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Most genes across brain regions are not selective for a single major brain region; rather, they 

are expressed in multiple regions in a non-uniform fashion. This suggests that a number of 

genes are pleiotropic to brain functionality (17). Our data suggests that the cerebellum has the 

most distinguishable gene expression patterns of all the brain regions and displays the least 

internal heterogeneity (8, 3, and 155). The total number of genes clustered in cerebellum is 

about 1,600. Most of these genes when studied with enrichment analysis showed the 

enrichment for ion channels as the dominant GO classes for the upregulated gene cluster “I” 

(Figure 10a), which consists of 865 genes. It has been previously reported that the ion channels 

are enriched in cerebellum (156, 157). Also, enrichment of genes associated with vesicular 

trafficking as well as E3-ubiquitin-protein ligases that play a role in DNA damage signaling 

was found in our results for cluster “I” and is corroborated with existing knowledge (158). 

Critical role of transmembrane ion flux via transporters and channels in various functions of 

cerebellum is well established, including neuronal signal transmission and electrolyte 

homeostasis (159), and we found our results are in support of this concept. Some of the major 

gene players in the upregulated cerebellum cluster were GNG13, CERKL, GRIN2C, and 

GRID2. For example, the upregulation of GRIN2C in the adult cerebellum has been previously 

reported during the innervation of mosey fibers into granule cells (160, 161). 

About 740 genes were downregulated in cerebellum in the cluster labelled “II”. We 

determined that the transcriptome of cerebellum possess a rich homogenous gene expression 

structure which might reflect the underlying cellular composition of the brain tissue. Other 

brain structures that show conserved patterns include hippocampus, amygdala, hypothalamus, 

dorsal thalamus, striatum and cerebellar nuclei. With the exception of the above mentioned 

brain structures, not many genes showed differential expression amongst the cortical regions 
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such as occipital, parietal, frontal and temporal lobes and these results are agreeable with 

existing literature (8). The hippocampal cluster labeled “III” (Figure 10a) showed significant 

over-representation of terms like neuron differentiation, neuron development, cell 

morphogenesis involved in neuron differentiation, regulation of neurogenesis etc.  This is 

expected because hippocampus is the site for adult neurogenesis (162). Genes such as 

NEUROG2, a transcriptional regulator involved in neuronal differentiation (162, 163); 

SHANK3, a gene known to be implicated in schizophrenia and autism (164); and GRIA1 and 

KCNN2 were all part of the cluster “III”. Dorsal thalamus showed association with nicotine 

related GO categories such as nicotine acetylcholine gated receptor-channel complex and 

behavioral response to nicotine. Local clusters for striatum and its sub-divisions show high 

expression for dopamine receptors DRD1, DRD2, DRD3. Striatum is a brain structure where 

dopamine exerts its maximum effect as the dopamine producing neurons have their cell bodies 

in substantia nigra, which projects into the striatum (165). High expression of HTR isoforms 

were also found in striatum. HTR and its isoforms are known to regulate the release of 

dopamine and regulation of extracellular dopamine, thereby affecting the neural activity (166). 

Significant enrichment of PDE10A was found in the striatum sub-structures. An association has 

been established between the striatal expression of PDE10A gene and bipolar disorder patients 

(167). The highly upregulated cluster in hypothalamus was enriched in molecular functions 

such as hormone activity and response to endogenous stimulus. Most prominent genes in this 

category were TRH, CRHBP, and GHRH. Other GO categories showing over-representation in 

hypothalamus included steroid hormone stimulus, neuropeptide hormone activity, response to 

corticosteroid stimulus, estrogen stimulus and response to glucocorticoid stimulus. 
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Taken together, the transcriptional profiles of the sub-divisions of bigger structural 

units are well conserved across six individuals; thus demonstrating transcriptional similarity 

amongst functionally related sub-structures. Also, for both the full complement of expressed 

genes as well as the smaller set of 6,984 genes, the supervised hierarchical clustering is 

satisfactorily robust owing to the distinctive expression patterns. 

Co-expression network construction 

There are numerous ways to analyze multi-dimensional gene expression data; 

however, correlation networks provide a comprehensive outlook on the intrinsic organization of 

a transcriptome. Gene co-expression networks investigate gene-to-gene relationships in an 

unsupervised way and cluster coordinately expressed genes into modules. This provides a 

framework to better understand gene expression patterns in distinct brain structures, which may 

be driven by distinct cellular and biological processes (Figure 11). WGCNA is a package in R 

that helps construct such networks. 
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Figure 11 - Overview of weighted gene co-expression network analysis methodology 
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Same set of 6,984 genes as previously discussed was used to construct the weighted gene 

coexpression network. Based on the TO (topological overlap), WGCNA evaluated the 

coexpression for every pair of genes, while simultaneously considering the degree of shared 

neighbors for every gene pair across the whole network. This results in the discovery of 

consistent gene coexpression patterns in the transcriptome. Our analysis resulted in 19 groups 

(modules) of highly co-expressed genes (Figure 12). Modules are groups of genes exhibiting 

high intra-module topological overlap. Each module was assigned a unique color and the 

number of genes assigned to a module varies, ranging from 67 to 1469. Each module is 

prefixed with a module eigengene (ME). To further explore the co-expression relationships 

amongst the distinct modules, the first principal component of all the modules was 

summarized. To identify genes with the highest connectivity inside a module, the eigengene 

based connectivity measure (kME) was used. kME measures the strength (0 to 1) of connection 

based on gene co-expression in a given module. Genes participating towards high module 

membership or highly connected genes are referred to as hub genes. Hub genes are 

representative of their resident module and point towards key, biological processes for the 

module. 
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Figure 12 - Brain transcription coexpression network and gene modules. The genes were 

clustered by expression patterns as represented by the dendrogram and correlation heat map 



 

 68 

Biological relevance of network modules 

The functional relevance of the gene module was assessed to make sure that the 

modules designed by co-expressed genes convey biologically relevant information. Gene 

ontology enrichment analysis was performed to examine the ontology terms over-represented 

in the modules. Also, KEGG orthology based enrichment analysis was performed using 

hypergeometric tests for each module. A wide range of functional association was configured 

with the statistical analyses of gene composition, which can be grouped into several categories 

as summarized in Table 4. 
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Table 4 - Functional annotation of the modules where the genes that are typically 

representative of their module of residence have been carefully noted in the table along with the 

top overrepresented functional terms 
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Notably, a significant over-representation of the dopamine receptor signaling pathway, G-

protein coupled receptor signaling pathway and catecholamine binding was observed for the 

pink module consisting of 225 genes. Structurally, Amygdala and striatum sub-structures are 

the predominant regions accommodating the pink module genes. Role of dopamine in 

amygdala has been well studied specially with regards to D1 and D2 receptors (165, 168). 

Yellow module was enriched for biological processes like cell death, regulation of apoptosis 

and regulation of programmed cell death. Top genes for the yellow module included TRAF1, 

PHLPP1, PACS2, LITAF, PREX1 and SOS2. Also, the yellow module was enriched for 

chemokine signaling pathway and neurotrophin signaling pathway, suggesting reduced 

neuronal support to maintain homeostasis in the adult human body (169). The role of primary 

cilia in neuronal functions has been well recognized (170, 171). The top 200 genes from the 

brown module with the highest K-within (intramodular connectivity) showed significant 

enrichment of cilium organization and morphogenesis, and cilium assembly. The major gene 

players in the brown module included DNAH11, BBS5, BBS1, TTC8 and IFT88. Biological 

processes like neuron development & morphogenesis and regulation of neurogenesis were 

significantly enriched in the turquoise module, which also happens to be the largest with 1,469 

genes. Genes like NEUROG1, NTF3, NEUROD1, and NLGN1 were the highly connected 

nodes in this module. Turquoise module genes could be mapped back predominantly to 

cerebellum and hippocampus. Blue module was most strongly enriched for GO terms such as 

immune response, microglia and MCH class II. 

Neuroanatomically indigenous functional annotation 

Since signatures of local phenomena can be masked by larger global signatures, we 

performed local analysis on smaller brain sub-structures of a bigger brain region. Here, we 
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show in-depth biologically enriched similarities/differences between the sub-structures of 

hippocampus. For similar analyses on other brain structures please refer to supplementary data. 

Gene ontology and pathway (Figure 13) enrichment was performed on each 

hippocampus sub-structure using the significantly differentially expressed genes, respective of 

each structure. One of the interesting findings was Neurogenesis as the top biological process 

for dentate gyrus (DG) and cornus ammonis (CA4) subfields. It has been previously established 

that adult hippocampus is the sight of neurogenesis (172); essentially DG and CA4. 

Furthermore, long-term potentiation (LTP) enhances the neurogenesis process in DG (173), and 

interestingly LTP was the leading pathway in our results. Upon inspecting the list of genes 

enriched in DG and correspondingly in LTP, we found AMPAR, Plcb1, Mapk1/3, Ascl1, 

Adcy1 and IP3 to be well represented in our data. We mapped these genes on the long-term 

potentiation pathway as shown in Figure 14. AMPAR is known for its role in postnatal 

hippocampal neurogenesis (174). During LTP, dendritic NMDA and AMPAR receptors are 

involved in the development of new synapses. Similarly, MAPK1/3 and Plcb1 have been 

documented (175) as genes regulating adult hippocampal neurogenesis and neuronal 

differentiation. Also, Ascl1 has been widely recognized to regulate gene expression during 

neurogenesis and neuronal differentiation (176) and Adcy sub-types have been connected with 

memory processes. Similarly, robust regional patterns of biological importance were observed 

in basal ganglia, striatum, amygdala and dorsal thalamus. 
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Figure 13 - Bar graphs summarizing the pathway and GO enrichment analysis for 

the different substructures of hippocampus 
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Figure 14 - Long term potentiation pathway mapped with the genes enriched in DG and known 

for their role in neurogenesis and other hippocampus specific functions. The genes of interest 

have been highlighted in red color 
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Neurotransmitter system maps 

Neurotransmitters play a very important role in the overall machinery of brain 

function. Mapping the structural distribution of the major neurotransmitter receptors can 

provide novel and functionally more relevant insights into the spatial organization of the human 

brain. We mapped the pathway distribution of five major neurotransmitter systems- serotonin, 

dopamine, choline, GABA and glutamate. 

In serotonergic synapse the major molecule serotonin (5-Hydroxytryptamine, 5-HT) 

is a monoamine neurotransmitter playing an important role in physiological functions such as 

learning and memory, pain, endocrine secretion, as well as states of abnormal mood and bad 

cognition (177). The serotonin 5-HT6 receptors are located primarily in the striatum (178), and 

receptor mapping in our study shows enrichment patterns consistent with the literature. We also 

found other HTR receptors like HTR7, HTR4, HTR1D and HTR1A to be significantly present 

in striatum. Another interesting finding was the enrichment of HTR1A and HTR1B in 

substantia nigra, hippocampus and hypothalamus. The detailed map of serotonin synapse 

participating molecules can be seen in Figure 15a.  

For the dopaminergic synapse, a noticeable enrichment of tyrosine hydroxylase in 

substantia nigra pars compacta was observed as shown in Figure 15b. Dopamine serves as a 

precursor for noradrenaline for the neurons in these locations (17). Also, high expression of 

DRD1, DRD2 and DRD3 was seen in striatum. DRD2 was also enriched in substia nigra 

(SNC), ventral tegmental area (VTA) and hypothalamus. Since, VTA is the origin of the 

dopaminergic cell bodies of the dopamine system significant expression of DRD receptors is 

expected to be high. (179). 
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Figure 15 - Structural distribution of gene expression in neurotransmitter systems. The 

distribution patterns of receptors shed light on the relation between anatomical units and their 

functions 
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 Spatial distribution of neurotransmitter systems reflects role of multiple receptors in their 

respective regions of high expression. Additionally, collective mapping of multiple receptors 

provides a multifaceted view of the anatomical, functional and biology driven organizational 

principles of the human brain. These maps also serve as basis for pharmacological studies to 

better understand brain diseases. 

Prediction model based on healthy brain gene expression 

Evaluating the utility of healthy brain gene expression as a tool to predict potentially 

new genes for a neurological disorder offers a massive scope in incrementing our current 

knowledge. In the present study, we used the discriminatory power of the expression patterns of 

known autism genes in a healthy individual and developed a prediction model to identify new 

genes that may be potentially associated to autism. Based on random forest and three other 

classification algorithms an overall class prediction accuracy of 84% was achieved. The 

sensitivity and specificity was 0.84 and 0.60 respectively. 

For the prediction model building, 219 autism implicated genes from the AutDB (38) 

database constituted the positive dataset. Their expression profiles across the 190 brain 

structures were extracted from our healthy brain expression model and served as the feature 

vectors. For the negative dataset, 830 brain enriched genes were selected from the Protein Atlas 

(148). Similarly, their expression profiles were extracted from the healthy brain expression 

model. Note that both the positive and the negative training datasets come from the gene 

expression profiles of the brain. Using these datasets, we labeled each gene with its assigned 

class (autism-associated and non-autism associated) and developed a classification model to 

predict the classes of unseen or novel autism associated genes. Three popular machine learning 
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(ML) algorithms were tested; Random Forest (RF) (150), BayesNet (151) and J48 (152), to find 

the most appropriate algorithm for our dataset. Random division of all the feature vectors was 

conducted to generate 80 and 20 percent subsets for training and testing, respectively. Since the 

datasets are unbalanced across classes, using stratified partitioning we preserved the 

approximate class distributions for training and testing sets. A two-step validation technique 

was used. In step one; we determined 10-fold cross-validation accuracy on the training set. For 

step two; using the testing dataset that is not a part of the training data we determined the 

testing accuracy of the model. We also report standard performance measures of each class, 

including true positive rate (TPR), false positive rate (FPR), and receiver operating 

characteristic (ROC) curves and the area under the curve (AUC). 

Table 5 shows the performance measures of each ML algorithm. Out of the 

aforementioned ML algorithms, we selected RF method for further use in this study owing to 

its superior performance. Also, J48 algorithm achieved a close accuracy with a slight loss in 

TPR and FPR measure. Figure 16 illustrates the ROC curves showing the relationship between 

TPR (sensitivity) and FPR (1-specificity). In an ideal scenario, ROC curve goes straight up on 

the Y-axis and then to the right parallel to the X-axis; thereby maximizing the area under the 

curve (AUC).  An AUC close to 1 indicates that the classifier is predicting with maximum TP 

and minimum FP. We calculated an AUC of 0.81, indicating that the classification model can 

markedly differentiate between the autism versus non-autism associated genes. 
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Table 5 - Performance measures of each ML algorithm 

 

Figure 16 - ROC curves showing the relationship between TPR (sensitivity) and FPR (1-

specificity) for the three ML algorithms 
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Discussion 

Structured organization of hundreds of neuroanatomic regions, each with its specific 

molecular underpinnings gives rise to the complexity of whole brain function. We have 

developed a new framework to systematically integrate high throughput transcriptome profiling 

data from healthy human brains, complemented with various functional analysis techniques to 

develop a gene functional map on the spatial dimension of human brain. The brain structure 

specific gene expression profile generated from this framework served as a baseline reference 

for the development of a generic prediction model to find new disease implicated genes for any 

given neurological disorder.  

This study was motivated by three objectives. First, we wanted to reduce the 

complex brain gene expression into recurring patterns where the spatial information is 

conserved. Since reproducible expression patterns across neuroanatomical structures in 

different individuals tend to have properties fundamental to brains functioning (17, 180), 

defining these brain specific and general transcriptional patterns is essential. In our second 

objective, we wanted to functionally characterize the transcriptional landscape of the human 

brain as captured in our gene expression model. Execution of clustering, network analysis and 

receptor mapping suggested striking features of the global transcription patterns as well as local 

patterns. The third impetus for this study comes from the paucity of brain expression data to 

study neurological conditions. So, in this study we were also able to move towards developing 

a prediction model, which would be effective to identify new genes for their potential 

association or non-association to any given neurological disorder using the reproducible gene 

set of healthy brain gene expression. As an example, we have demonstrated the utility of this 
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method to predict potentially new genes involved in autism and evaluated the performance 

measures of the classifier. This to the best of our knowledge has never been presented before. 

While building the expression model we noticed recurrence of similar expression 

profiles across the similarly annotated sample from six individuals suggesting high 

recapitulation of the brain’s transcriptome (16, 69, 70). Genes in the adult human brain show 

significant spatial heterogeneity, however with distinct patterns in higher level anatomic 

structures (Figure 10). By performing hierarchical clustering, the bunching of relatively 

unknown/ill characterized genes with genes of known function helps provide a meaningful 

context to the functionality of these genes (79). Also, groups of genes based on similarity in 

gene expression profile were described that would ‘occur naturally’ and can point towards 

putative co-regulated genes. We found that there are some such coherent gene groups 

(cerebellum, hippocampus, striatum, dorsal thalamus, amygdala), but many, of the genes 

exhibit high variation over different brain structures and do not lie in any of these groups. We 

noticed that the sensory and motor regions have the most distinct whole-transcriptome 

signatures, probably related to their specialized cellular and functional architecture. 

Additionally, mapping of the structural distribution of neurotransmitter systems revealed 

interesting patterns of enrichment in localized regions for various receptors. We found a high 

expression of HTR2B in in cerebellum in the serotonergic neurotransmitter system which is in 

contrast to its detection at lower expression levels in cerebellum along with occipital and 

frontal cortex as previously reported (178). Neurotransmitters not only are associated with the 

communication between differentiated neurons but rather offer a crosstalk between various 

other functions like neurogenesis, regeneration and neuroplasticity. The structural distribution 
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maps provide an overview of anatomical, functional and molecular organization of the 

receptors. 

Here, we also performed an exhaustive assessment of co-expression patterns in the 

human brain expression map. We found that coexpression of genes is usually associated with a 

discrete spatial location, probably specific to cell type functions. For example, the pink module, 

which showed properties related to dopaminergic synaptic function (Table 4) was identified in 

striatum and amygdala. This finding is consistent with the predominant neuronal phenotype 

made of medium spiny neurons that have been associated with high expression of DRD 

receptors (179). To summarize, each module appeared to display a particular biological 

function: the magenta module reflects the translational machinery with resident genes such as 

RPL19, RPS26, EEF1B2f, and the cyan module reflects glial cell 

differentiation/oligodendrocyte differentiation and astrocytes enriched with genes like NKX2-

2, NKX6-2, OLIG2, APOE, PEA15 and PAX6. Functional enrichment of genes in each of the 

coexpression modules thus reflects the molecular events in the human brain. 

There is sufficient evidence which points to a strong genetic basis of autism and the 

number of associated genes has been estimated to be close to a thousand.  However, only a few 

hundred genes are currently known to be certainly implicated in autism, mostly being targets of 

rare mutations. Most studies focus on characterizing the molecular interactions of known 

autism spectrum disorder genes (181, 182, and 183) and no study, as of now, has put in effort 

into predicting entirely novel autism genes. In the current study, we used machine learning 

classifier that learns the expression patterns of known ASD genes in the distinct brain structures 

in a healthy state and then uses the expression driven indicators specific to ASD genes to 

predict novel genes from the full complement of the genome. By this approach, we can predict 
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new genes which have not been implicated in autism before. We explored the predictive 

capabilities of 219 autism genes in the framework of healthy brain expression data. The 

classification performance based on our model is encouraging, especially given the use of 

healthy brain data to make predictions. To the best of our knowledge, prediction of potentially 

new disease implicated genes using healthy brain tissue gene expression has never been shown 

before. 
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CHAPTER 5 

CONCLUSIONS 

Brain function is governed by precise regulation of gene expression across its 

anatomically distinct sub structures. However, the expression patterns of genes across 

hundreds of brain sub structures is not clearly understood. Here, we describe an expression 

model, which is representative of the healthy adult human brain transcriptome by using data 

from the Allen Brain Atlas. This gene expression model captures the canonical signatures 

that are reproducible across individuals. Our in-depth analysis revealed that 84% of genes 

are expressed in at least one of the 190 brain structures studied. Hierarchical clustering 

based on gene expression delineated the brain regions into structurally tiered spatial groups. 

Gene enrichment and pathway analysis of differentially expressed genes in the higher-order 

brain regions showed striking enrichment for region-specific processes. Further, weighted 

correlation network analysis of this model identified robust modules of coexpressing genes 

in the brain that demonstrated wide range of functional associations. Also, the structural 

distribution of major neurotransmission systems was plotted. Finally, we developed a 

supervised classification model, which achieved an accuracy of 84% with an ROC of 0.81 

for predicting autism-implicated genes using our expression model as a baseline. This study 

represents the first use of only healthy brain gene expression data to predict potentially new 

disease implicated genes and this generic methodology can be applied to other neurological 

diseases.   

A major strength of our study is the utilization of the Allen Human Brain Atlas to 

build the blueprint of a gene expression model representing a healthy state of human brain. 

Conceptualized on the ‘all gene- all structure’ approach, ABA allows to explore the 
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transcriptome properties at a high anatomical resolution of the human brain. Also, this study is 

focused on only those genes that exhibit compelling experimental evidence to autism 

susceptibility rather than the complete gene set catalogued in AutDB. There are also some 

pitfalls in our study. First, the sample size is relatively moderate constituting only five males 

and one female donor. Also, sex biased transcriptional variation may be detrimental to our 

method. However, since we are trying to capture the common core components of gene 

expression in human brains, sex as a confounding factor can be disregarded. Second, we 

implemented stringent expression pattern selection parameters with an aim to capture brain 

specific transcription patterns, rather than capture all the changes that may occur. In course, we 

anticipate losing some expression information. Finally, the brain structure specific profiles have 

been established at RNA level and these may not translate at protein levels. Also, the influence 

of positive training instances cannot be discounted. For a ML algorithm to perform efficiently, 

the ratio of positive to negative training instances is crucial. Since, the number of genes that 

have been experimentally validated in disease etiology are limited, a thorough review of 

literature and databases is essential to make a comprehensive list of disease implicated genes to 

ensure the balance between the positive and negative datasets in the training classes. For this 

reason, we chose BayesNet (a modified Naïve Bayes) and Random Forest MLs since they are 

the least sensitive to changes in the number of instances in the training set. Nevertheless, the 

accuracy we have obtained in the current study is an important step towards predicting 

potentially disease implicated genes using expression data from healthy brain tissues. In 

conclusion, this study describes gene expression patterns conserved across distinct brain 

structures among healthy population. The strategy employed in this study constitutes a generic 

approach involving a pipeline of functional analysis tools and algorithms. Finally, to the best of 
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our knowledge, this study demonstrates the first comprehensive utilization of healthy brain 

tissue gene expression models that could predict disease implicated genes for a given 

neurological disorder. 
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APPENDIX 

A.1 Mathematical Notation 

A list of all mathematical and symbolic notation used is indicated below 

Table 17 - Mathematical Notation 

di  The ith protein sequence in the dataset 

yj The jth category that a protein may be assigned to 

X Feature space used for representing objects being classified 

C Set of categories that each data instance may be assigned to objects 

xi The ith instance, represented by features 

xj The jth feature 

yj The jth category 

D The space of all possible proteins 

D Set of training data used to train the classifier 

h:X → Y The classification model, mapping objects to their classification 
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