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Abstract 

Understanding the Chondrogenic Potential of 
Articular Chondrocytes  

 
Krishna Sarma, Ph.D. 

 
University of Nebraska, 2017 

 
Supervisor: Andrew T. Dudley, Ph.D. 
 
Articular cartilage is a smooth, visco-elastic, aneural, avascular tissue made of water, an 

exquisitely organized framework of proteoglycans, glycosaminoglycans, and collagen 

fibrils and articular chondrocytes. It’s beautiful organization and composition provide it 

with the flexibility and strength to cover, protect and lubricate the ends of long bones in a 

diarthrodial joint. Cartilage homeostasis relies on articular chondrocytes to translate the 

mechanical forces of daily activity into efficient remodeling of the extracellular matrix. 

Age, joint injury, or other insulting factors can progressively incapacitate articular 

chondrocytes, resulting in cartilage lesions that devolve to degenerative joint disease. 

Therefore, the central idea explored in this dissertation is the changing chondrogenic 

potential of articular chondrocytes. In the first study, we asked if chondrogenic potential 

affects how primary articular chondrocytes respond to dynamic Ca2+ signaling, the 

primary signaling mediator of mechanotransduction during extracellular matrix 

remodeling. In the second study, we explored how age and culture conditions that alter 

chondrogenic potential influence the transcriptional profile of primary articular 

chondrocytes using in-depth RNA-sequencing technology. These studies highlight that 

the chondrogenic potential of articular chondrocytes, which is affected by age and the 

gradual changes in matrix composition, can be understood through dynamic signaling 

and transcriptional networks and enhanced through tissue engineering principles to 

improve upon the long-term efficacies of cartilage resurfacing procedures. 
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Introduction 

 One of the most beautiful and exquisite materials in nature is articular cartilage, 

which protects the end of long bones. It’s smooth texture and pearly white gloss is 

reminiscent of porcelain, but unlike porcelain its coefficient of friction is nearly ten times 

lower than other naturally-occurring material and is among the lowest observed in the 

natural world1. Surprisingly, this smooth substance has the capacity to bear forces on the 

scale of MPa and up to ten times an individual’s body weight1. The marvel of articular 

cartilage has captivated the attention of biologists, chemists, biophysicists, engineers, and 

surgeons alike. 

 The old anatomists’ adage that “form fits function” holds very true in the case of 

articular cartilage. The stepwise development of synovial joints and subsequently the 

unique architecture of articular cartilage continues from utero into early adulthood. 

However, just as it begins to reach full maturity it must grapple with the decade-long 

demands of human activities such as walking, running, and recreational sports. As 

articular cartilage tries to maintain its structural framework, the continual “wear and tear,” 

the onslaught of inflammatory and metabolic components, and age hinder the minimal 

reparative potential that the tissue has. Eventually, articular cartilage succumbs and 

gradually degenerates from small cartilage lesions to full thickness defects. The end stage 

of this process is a part of the condition we know as osteoarthritis. 

 Osteoarthritis is clinically defined as a deterioration of the entire synovial joint. The 

denuding of the articular cartilage is accompanied by the formation of osteophytes, 

subchondral bone remodeling, and synovial capsular inflammation; however, at the heart 

of the matter is the excruciating pain and immobility of individuals due to a gradually 

deteriorating articular surface. This degradation of articular cartilage is largely dependent 
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on the biology of the articular chondrocyte, as it is the sole cell found in the tissue and 

bears the burden of maintaining the structural framework of articular cartilage throughout 

an organism’s lifetime. To understand the nature of articular cartilage degradation and the 

contributions of articular chondrocyte to this process it is important to consider the nature 

of articular cartilage and chondrocyte development. 

Synovial joint development  

The origins of articular cartilage are mesenchymal in nature, as one of the critical 

events of skeletogenesis, the process whereby the limbs of an organism arise, is the 

condensation of mesenchymal stem cells2,3. This step developmentally precedes the 

commitment towards the various lineages, such as the chondrogenic or osteogenic 

lineage. There are three critical components of mesenchymal cell condensations that 

affect downstream developmental events: (1) cell-cell contacts, (2) cell proliferation, and 

(3) transcriptional profile of the participating cells (Figure 1A). Cell-cell contacts are 

mediated by N-CAM, N-Cadherin, and other ECM molecules and is critical for the proper 

aggregation of all the cells that will eventually give rise to the prechondrogenic cells2,3,4. 

For proper aggregation of cells and for the condensate to achieve a critical mass there 

must be enough cells, making cell proliferation a crucial event4. It is thought that this is 

mediated by elevated levels of cAMP and subsequent nuclear localization of protein 

kinase A (PKA)5. The final critical component of condensation is that there must be 

significant shifts in the transcriptional profile of the cells, such as upregulation of Pax1, 

Pax9, and Sox9 and downregulation of BMP signaling, prior to termination of condensation 

and initiation of overt differentiation2,5. 

While the condensation of mesenchymal stem cells dictates the timing and position 

of the future limb, it is a minority of mesenchymal cells, more commonly known as the 
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interzone, that ultimately give rise to the future synovial joint and its cartilage components 

(Figure 1A). Classical studies in the chick have illustrated the importance of the interzone 

by microsurgically dissecting away the small group of mesenchymal cells in the elbow 

joint, resulting in a fusion of the humerus, ulna, and radius6. This illustrates the early 

progenitor cells that eventually give rise to articular cartilage must come from the 

interzone; however, there are many other components of the synovial joint, such as the 

supporting ligaments and menisci that are also affected by the ablation of the interzone2,3,4. 

Recent studies have shown that a critical component to the downstream commitment of 

cells within the interzone is their transcriptional profile and spatial distribution throughout 

the interzone7. Two genes that play critical roles in the developing cartilage anlagen during 

early joint formation are Matn-1 (matrillin-1), which is expressed by various cartilage 

anlagen except for articular cartilage, and Dcx (doublecortin), which is a microtubule-

binding protein found in the articular chondrocytes of all synovial joints8–10. Lineage tracing 

studies using a Matn-1 knock-in mouse to identify the subpopulation that gives rise to 

articular chondrocytes found that it was a group of cells at about E13.5 adjacent to the 

interzone that are both Col II positive and Matn-1 negative, thereby distinguishing the 

origins of transient (growth plate) and permanent (articular) cartilage7,8. In contrast, a study 

looking at a Dcx knock-in mouse, which is a microtubule-binding protein, found that Dcx 

is expressed at E9.5 in osteochondral precursors and is maintained solely in interzone 

cells through E13.5, which is when the interzone appears, leading the authors to conclude 

that articular chondrocyte precursors can be traced to cells within the interzone7,9,10. 

Therefore, there remains some ambiguity as to the timing, location, and divergence of the 

precursors of articular chondrocytes from other members of the cartilage anlagen. More 

recently, there has been some clarification as to the specific fate of the cells within the 

interzone by performing gene expression analysis through isolation of RNA using laser-
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capture microdissection7,11. Utilizing in vitro, in vivo, and ex vivo methodologies on 

Tgfbr2Prx1KO mice, which have impaired synovial joint development, the authors found that 

expression of MCP-5, which is downregulated by TGF-betaRII, leads to improper 

delineation of the articular cartilage from the growth plate cartilage11. Furthermore, the 

study found that the distribution of cells within the interzone plays an important role in their 

downstream fate, as cells in the core of the zone differentially expressed genes important 

to articular cartilage formation, while cells in the periphery of the zone differentially 

expressed genes that mediate hypertrophy and growth plate cartilage formation7-11. There 

is now some clarity regarding the timing, location, and origin of the cells that will eventually 

give rise to articular chondrocytes during early joint formation; however, there remains 

pressing questions as to the molecular mechanisms driving the commitment of specific 

interzone cells towards a permanent cartilage lineage and repressing the commitment to 

an epiphyseal cartilage lineage.  

 The final stage of synovial joint formation that gives rise to its well-known 

morphology of two articulating long bones is joint cavitation12. Developmentally, cavitation 

is thought of as a solely apoptotic process; however, recent evidence suggests that local, 

macromolecular changes in matrix remodeling lead to a sequestration of cells within the 

interzone and formation of a joint cavity13,14. An elegant study using pharmacological and 

mutational analysis and an in ovo immobilization chick model that results in fusion of the 

developing cartilage anlagen illustrated that the mechano-dependent activation of the 

MEK-ERK 1/2 pathway is critical for interzone cells to remodel the hyaluronan-rich matrix 

for proper joint cavitation15. This study provided a beautiful mechanistic explanation for the 

importance of mechanical stimulation and matrix remodeling in joint cavitation, one of the 

final stages of synovial joint development. The coupling of mechanical stimulation and 
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matrix remodeling is a central principle that helps explain development and postnatal 

growth of articular cartilage as well16–21. 
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Figure 1: Developmental program of synovial joints and differential growth 
models of post-natal articular cartilage. 

A)   There are three critical phases of synovial joint development: (1) Mesenchymal 
stem cell condensation (2) Interzone formation, and (3) Joint space cavitation. 
The initial event, cellular condensation, involves (1) tight cell-cell contacts, which 
is mediated by adhesion proteins N-CAM and N-Cadherin, (2) proliferation, 
mediated by signaling dynamics such as an increase in cAMP and nuclear 
localization of PKA, and (3) distinct transcriptional profiles, such as the 
expression of Pax1, Pax9, and Sox9. The interzone cells are considered the 
developmental progenitors of the cartilage anlagen. The specific cell population 
that gives rise to either the permanent (articular) and temporary (growth plate) 
cartilage elements is dictated by expression profile (presence or absence of 
Matn-1 and Dcx) and spatial distribution (central or peripheral interzone cells). 
Lastly, cavitation is classically thought of as a solely apoptotic program; however, 
recent studies have shown that synovial joint cavitation involves 
mechanotransduction-mediated extracellular matrix remodeling and subsequent 
sequestration of distinct cell population. 
 

B)   There are two prevailing postnatal articular cartilage growth models: (1) 
Appositional growth and (2) interstitial growth. The appositional growth model 
posits that there is a chondrocyte progenitor cell population in the superficial 
zone, which expresses Prg4 and secretes the lubricating protein lubricin, that 
differentiates and proliferates to give rise to the cells of the remaining zones. This 
growth at the articular surface is thought to be concurrent with the advancing 
tidemark that separates the calcified articular cartilage from the subchondral 
bone. In contrast, the interstitial growth model claims that postnatally the 
chondrocytes are embedded within a random, disorganized extracellular matrix 
that is progressively remodeled through increased cell volume, increased matrix 
production, and reorientation of the collagen fibrils, with minimal cell proliferation. 
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Articular Cartilage Development 

 Transient, or growth plate, cartilage consists of chondrocytes that undergo a 

developmental progression towards endochondral ossification22. This developmental 

progression is driven by a gradual differentiation of resting cells, which are thought of as 

the reservoir of growth plate progenitor cell population, to proliferative cells to pre-

hypertrophic cells, and eventually hypertrophic cells that undergo apoptosis and 

endochondral ossification21,23–25. At skeletal maturity, the reservoir of resting cells is 

depleted and the growth plate closes and ends the growth of the skeletal anlagen24. This 

is in stark contrast to the permanent, or articular cartilage, which to date has not been 

shown to contain a progenitor cell population that would be able to differentiate and 

replenish the articular surface. This conventional view of articular cartilage being bereft of 

a progenitor cell population is being staunchly challenged by a plethora of studies. 

 The non-regenerative capacity of articular cartilage following an injury, as well as 

it’s avascular and aneural nature, is one of the main rationales for the claim that articular 

cartilage does not contain a progenitor stem cell population26. Furthermore, there is 

widespread dedifferentiation of articular chondrocytes isolated from adult articular 

cartilage, as evidenced by the downregulation of chondrogenic genes, onset of a 

hypertrophic phenotype, and altered morphology with minimal capacity to redifferentiate 

(personal observation). In stark contrast to these observations, however, is the 

identification of a group of totipotent articular chondrocytes among dedifferentiated human 

articular chondrocytes in monolayer culture27–29 This led to the search for a population of 

cells within the whole of adult articular cartilage that could serve as the source for articular 

cartilage growth. To test the hypothesis that articular cartilage growth occurs through an 

appositional mechanism from the articular surface, a group sought to turn their attention 
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to the superficial zone of articular cartilage. Indeed, they found a population of cells within 

the superficial zone that differentially adhered to fibronectin, had colony-forming potential, 

and responded to modulation of Notch signaling through alteration in differentiation 

potential25,27. Further support for the appositional growth model of articular cartilage has 

come recently from a group that has performed lineage tracing studies by generating a 

Prg4 knock-in mouse model30. Prg4 encodes for the articular surface lubrication protein, 

lubricin, which plays a critical role in generating the low coefficient of friction observed at 

the articulating surface of long bones31. By following the expression of Prg4 over the 

course of a year the authors found that its expression propagated from the superficial layer 

at the first month to the full thickness of the articular cartilage at the end of the year28. The 

authors concluded that the cells present throughout the depth of the cartilage must be the 

progeny of the cells contained in the initial superficial layer. This model relies on the 

proliferation and subsequent differentiation of this chondrocyte progenitor cell population 

resulting in a greater cell density with development and growth; however, a closer 

examination of the data, especially at E17.5, would suggest that there is not an increase 

in cell density, but rather an increase in distance between the cells of the superficial layers 

and the deeper layers, possibly suggesting an increase in matrix biosynthesis. 

Nonetheless, there is growing evidence to suggest that there exists a population of 

progenitor cells within the superficial zone of articular cartilage that has the potential to 

expand and differentiate to allow for appositional growth (Figure 1B). 

 In contrast to the appositional growth model, other groups have posited that the 

postnatal growth of articular cartilage is due to extracellular matrix remodeling and 

changes in cell volume. Early studies looking at rabbit tibial plateaus ranging from 

newborns up to 6 weeks of age revealed that along with the development of the four major 
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zones of the mature articular cartilage collagen fibrils coordinately undergo development 

from randomly arranged fibrils to the more distinct orientations characteristic of the mature 

cartilage32. In similar opposition to the appositional growth model, a group recently used 

multiphoton microscopy on mice during a similar timeframe to ask if the postnatal growth 

of articular cartilage is attributed to chondrocyte volume, rather than proliferation33. The 

authors observed an increase in chondrocyte volume coupled with a decrease in cell 

density, due to increased matrix production, and concluded that articular cartilage may 

rely on morphological and architectural alterations, rather than biological changes, for 

postnatal growth (Figure 1B). The interstitial growth model, however, does not account for 

the presence of clonal columns of cells and the replenishment of lost cells through 

proliferation, which is thought to occur following mechanical compression to the articular 

surface34.  

A combination of the two models may best explain the postnatal growth of 

articular cartilage. One of the possibilities is that embryonically you may get appositional 

growth through elevated proliferation of the chondrocyte progenitor population, however 

as the biochemical and mechanical microenvironment of the developing cartilage 

changes there will be a gradual shift in the developmental program from one of 

proliferation to one of extracellular matrix remodeling. This gradual shift, when combined 

with the development of the subchondral bone and advancing tidemark, may account for 

the thicker cartilage that is observed during skeletal immaturity (personal observations). 

It follows then that subchondral bone remodeling may outlast interstitial growth of 

articular cartilage which could account for the thinning of articular cartilage between 

postnatal growth and skeletal maturity35. Therefore, the rate of this shift in growth and 
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developmental program dictates the subsequent thickness and functional properties of 

the fully mature articular cartilage. 

Form and Function of Articular Cartilage 

Up until this point our discussion has focused on the development of synovial joints 

and the cartilage that covers the articulating bones. In this section, we examine how the 

components and organization of articular cartilage are uniquely designed for it to bear up 

to ten times the body weight of the individual with smooth, frictionless motion1.  

Articular cartilage is a heavily-hydrated tissue composed of variably distributed 

cells known as chondrocytes and a highly organized extra-cellular matrix that consists of 

collagens, proteoglycans, and non-collagenous proteins and glycoproteins36,37. The tissue 

is hierarchically organized with chondrocytes residing in single lacunae or clustering to 

form chondrons. These cellular units are embedded within matrices that vary in 

composition with distance from the cells. Taken further, the chondron units and associated 

matrices are organized into four distinct zones spanning from the articular surface to the 

subchondral bone.  The four zones are superficial, transitional, radial, and deep (calcified) 

zone. These zones are distinguished by the composition and orientation of chondrocytes 

and extracellular matrices. The superficial zone consists of a thin layer of tightly-packed 

collagen that house flattened chondrocytes whose long axes lie parallel to the articular 

surface. The densely-packed collagen fibrils, with minimal intervening proteoglycans and 

glycosaminoglycans, serves as the primary physical barrier for the rest of the cartilage 

tissue. The elongated chondrocytes function to secrete the primary boundary lubricant, 

lubricin, and may serve as the progenitor cell population required for the appositional 

growth of articular cartilage31. The transitional zone contains spheroidal-shaped 

chondrocytes at a lower density than the superficial zone. While there may appear to be 
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fewer cells in the transitional zone its volume is greater than that of the superficial zone 

because of the presence of more proteoglycans. Relative to the superficial zone, the 

extracellular matrix of the transitional zone has a higher concentration of proteoglycans 

and glycosaminoglycans and a lower concentration of water and collagen fibrils, which are 

oriented obliquely to the articular surface36,37. This unique orientation of the collagen 

framework serves as a transition to the more radially orientated (perpendicular to the 

articular surface), cable-like, and sturdy collagen framework found in the aptly-named 

radial zone. The extracellular matrix of the radial zone contains the highest concentration 

of proteoglycans and the lowest concentrations of water, making it the most 

electrodynamic zone of articular cartilage. Firmly encased in the dynamic matrix of the 

radial zone are chondrocytes that are often organized into multi-chondron columns 

oriented perpendicular to the articular surface. The density of these chondral columns is 

the highest in the deep zone abutting the tidemark and subchondral bone. The tight 

interdigitation of articular cartilage and the subchondral bone is due to the passing of the 

radially-oriented collagen meshwork through the deep zone and into the tidemark, acting 

as a sort of anchor36,37. The organization of mature articular cartilage into four distinct 

zones is a gradual, developmental process that continues into early adulthood. 

 The extracellular matrix undergoes significant changes from birth to maturity due 

to the differing mechanical and biochemical environment from in utero to the postnatal 

synovial joint16–21. The functional component of the extracellular matrix consists of the 

interactions between collagen fibrils and the core of proteoglycans, the electrostatic 

interactions between the side chains of these proteoglycans with water and the 

counterbalancing ions, and the interactions between the matrix component and articular 

chondrocytes36,37. While at birth the distribution of the fibrillar and non-fibrillar collagens 
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are unorganized, with maturation, there is greater crosslinking and a distinct orientation to 

the fibrils32,33. It is still unknown whether these changes in collagen fibrils then initiate the 

changes in proteoglycan organization or vice-versa; however, like the collagen fibrils, 

there is significant modification to the number and nature of the sulfate chains attached to 

the proteoglycans during the weeks following birth, which alters the electrostatic 

interactions and ionic environment of the tissue38, 39–41. In addition to matrix remodeling, 

differential gene expression between the four zones also gives rise to zonal variations in 

architecture42,43. Microarray analysis of each zone indicates that the superficial contains 

the highest number of differentially-expressed genes and the middle zone contains the 

lowest number of differentially-expressed genes39. This finding is corroborated by the 

unique morphology of superficial zone chondrocytes, which helps to explain the decreased 

expression of type II collagen relative to the other zones, and the paucity of proteoglycans 

in this zone. These zonal variations in matrix architecture, matrix composition, and gene 

expression lead to differing mechanical and functional properties throughout the full-

thickness of articular cartilage; however, there is an additional layer of anisotropy 

influencing articular chondrocyte biology. 

The extracellular matrix surrounding the chondral columns of the radial zone, as 

outlined above, are further hierarchically-organized. An individual chondrocyte within the 

chondral column is surrounding by matrices that differ in their composition of collagen and 

proteoglycans, and thereby serve unique functions as signaling conduits44. The 

pericellular matrix, which envelopes the chondrocytes, is visualized as a thin film covering 

the plasma membrane. The chondrocyte and its surrounding pericellular matrix make up 

a single chondron unit45. It is through changes in the pericellular matrix that the 

chondrocyte detects and responds to mechanical, electrical, and osmotic stimuli46. The 
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predominant collagen of the pericellular matrix is collagen VI and it contains minimal 

number of proteoglycans and glycosaminoglycans relative to the other matrices. In 

between the pericellular matrices of two neighboring chondrons is the territorial matrix. 

The territorial matrix contains a higher concentration of fibrillar collagens, such as collagen 

II and IX, and serves as a common extracellular space between chondrons of a column, 

allowing for a common signaling conduit47. Separating the columns of the radial zone and 

making up the largest volume is the interterritorial matrix. This region contains the highest 

number of proteoglycans and collagens, and as such undergoes the biggest changes 

during physicochemical stimuli47. The organization and composition of the matrices in this 

manner serve two functions: (1) Protect chondrocytes from excessive forces and (2) act 

as a template for future remodeling purposes. With each loading event, there is exudation 

of water from the interterritorial matrix leading to activation of mechano-osmosensitive 

receptors; however, there is a certain threshold that must be reached for the signal to pass 

through all the matrices down to the encased chondrocyte. Upon removal of the load, the 

water is imbibed back into the matrix and once again triggers the activation of mechano-

osmosensitive receptors36,37.  Therefore, this organization allows for protection by allowing 

the chondrocytes to remain metabolically inert, which is critical due to the paucity of 

nutrients available to chondrocytes, and respond to stimuli only upon adequate 

deformation of all matrix regions36,37. As a result, not every loading event is perceived by 

the chondrocyte, however, the gradual deformation of the surrounding matrices allows the 

chondrocyte to gradually remodel the matrix over a long period. It is unknown as to the 

mechanisms by which the cells can efficiently detect small changes in the extracellular 

matrix of the different regions and adequately remodel them from one loading event to the 

next. It is likely that uncovering this fundamental mechanism will help explain the origins 

of articular cartilage degeneration. Taken together, the beautiful architecture of articular 
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cartilage from the four zones to the rings of matrices provide an extraordinarily unique 

environment for the articular chondrocyte.  

Cartilage homeostasis through chondrocyte-mediated matrix remodeling 

Articular chondrocytes develop coordinately with the surrounding extracellular 

matrix through the establishment of a feedback loop between the remodeling 

extracellular matrix of articular cartilage and the differentiating chondrocyte progenitor 

cell population. The introduction of novel mechanical cues, the remodeling of the 

extracellular matrix, and the availability of ligands are interdependent factors that shape 

the signals presented to the developing articular chondrocytes, which then secrete 

factors to remodel its environment. The two major signaling cues to articular 

chondrocytes are mechanical stimuli and osmotic stimuli, specifically ion flux48, 49,50. In 

this section, we examine how mechanical forces set the feedback loop in motion and 

then examine the role of osmotic stimuli, specifically calcium signaling, in maintaining 

this regulatory mechanism for cartilage homeostasis.  

 The mechanical forces that initiate matrix remodeling during development also 

initiate novel signaling mechanisms by which chondrocytes can sense the 

microenvironment15. Mechanical forces signal to chondrocytes by releasing various 

cytokines and soluble factors that are trapped in the ECM, by activating cell surface 

receptors, or by initiating stretch-activated channels51. It is known that FGF2 bound to 

perlecan of the PCM is released upon mechanotransduction to signal into 

chondrocytes52. The subsequent cellular response is to remodel the ECM, which 

progressively alters the bioavailability of the signaling molecules during future stimuli. 

The integrin signaling pathway is well characterized as the pathway through which 

chondrocytes detect alterations in the PCM53,54,55. Specifically, cells respond to 
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mechanical cyclic pressurization through integrin αVβ1 receptor for downstream 

effects56. In addition to matrix deformation, fibronectin fragments, which are deleterious 

byproducts of cartilage breakdown, have been shown to signal through integrin 

receptors to elicit downstream MAPK signaling in chondrocytes57. Activation of these 

signaling pathways leads to progressive breakdown of the matrix further releasing a 

bevy of pro-inflammatory cytokines54. The chondrocytes, however, respond to alternative 

cytokines to counteract these catabolic and pro-inflammatory effects, such as IL-6-

mediated upregulation of TGF- β1 and integrin-mediated autocrine signaling of IL-4, both 

of which are chondroprotective factors for human articular chondrocytes58–60. 

Receptors/channels that have garnered considerable attention for their role in conveying 

changes in cartilage ECM are Piezo receptors, which are thought to play pivotal roles in 

conferring mechanosensitivity to articular chondrocytes61. It follows then that these 

studies support the idea that the mechanical forces driving development of the 

extracellular matrix influences the signaling dynamics of articular chondrocytes as well; 

but an important component of establishing the feedback loop is articular chondrocyte-

mediated remodeling of the extracellular matrix.  

Remodeling the ECM is a dynamic process that entails breaking down the 

compromised matrix and replacing it with newly synthesized matrix components62. 

Cartilage homeostasis is dependent on the balance between matrix degrading and 

matrix rebuilding processes63. This balance is achieved through the concerted efforts of 

both anabolic and catabolic processes of articular chondrocytes64. Following exposure to 

stimuli, chondrocytes employ a variety of matrix metalloproteinases (MMPs), also known 

as collagenases, to break down the damaged ECM. Appropriate breakdown of the ECM 

requires precise spatial and temporal expression of specific MMPs to maintain cartilage 
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homeostasis as evidenced by the attenuation of PTOA in an MMP-13 KO mouse 

model65.  Following appropriate clearance of the damaged ECM, the chondrocytes 

secrete critical components of the matrices, such as proteoglycans, aggrecan, and the 

various fibrillar collagens66. The chondrocytes maintain themselves in the chondron units 

surrounded by territorial and interterritorial matrices for many years by secreting these 

critical components in immature forms62. This serves two purposes: (1) It stratifies the 

components among the different matrices and (2) distinguishes the physical properties 

of the different matrices surrounding the chondrocytes. These two properties of matrix 

production are dependent on the appropriate maturation of the components as they 

diffuse away from the chondrocytes, as well as the interaction between all components 

of the matrix. The physical property of the tissue is dependent on chondrocytes being 

able to synthesize aggrecan that will bind to link protein and hyaluronan and interdigitate 

within the collagen meshwork67,68. These interactions then create a negatively-charged 

environment that attracts both water and counterions that give the tissue its 

physicochemical properties.  

Once chondrocytes are stimulated by changes in the ECM this iterative process 

of catabolic and anabolic processes is set in motion to continually maintain the integrity 

of the tissue. It follows then that for this to be a highly efficacious process the cells must 

perfectly orchestrate the interpretation of the changes in ECM with the appropriate 

breakdown and rebuilding of the ECM, thereby giving rise to a highly interdependent 

process. What remains unknown is if the development of mechanosensitivity is 

temporally linked to the maturation of the extracellular matrix? Also, if there is a delay in 

development of mechanosensitivity or a complete absence of mechanical 

stimulation/forces how does it affect the transcriptional dynamics of articular 
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chondrocytes? Additionally, does the absence of appropriate mechanical cues in utero 

and during the critical weeks postnatally compromise articular cartilage growth, thereby 

setting up an environment that is more susceptible to degeneration? The answers to 

these questions would provide mechanistic details as to how mechanical forces 

influence matrix remodeling, chondrocyte biology, and articular cartilage development, 

growth, and homeostasis. 

Calcium signaling drives cartilage homeostasis  

The tight interaction between proteoglycans, water, and counterions creates an 

environment in which changes in matrix composition and organization drastically alter 

the water content and ionic milieu of the tissue, which in turn lead to alterations in 

osmotic forces49,62,69. These osmotic forces result from local changes in fluid flow and ion 

flux as water exudes from the tissue during joint loading and imbibes the tissue upon 

relaxation36,37 (Figure 2). This dynamic fluid flow in the presence of negatively-charged 

proteoglycans and counterions results in streaming potentials that have been shown to 

increase the biosynthetic activity of chondrocytes70,71. Recently, attention has shifted to 

the effect of ion channels on chondrocyte biology and cartilage homeostasis72. The 

electrical milieu of articular cartilage provides credence to the importance of ion 

channels in the biosynthetic activity, with further support coming from groups that have 

established the differential regulation of chondrocyte membrane potential in normal and 

diseased cartilage73 One cation that plays a critical role in cartilage development and 

homeostasis is Ca2+ signaling.  

Calcium signaling plays a critical role in many facets of skeletal development, 

especially chondrocytes23,74–77. A tissue-specific deletion of the extracellular calcium 

sensing receptor in chondrocytes resulted in embryonic-lethality by E13, while 
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conditional deletion later in development resulted in widespread skeletal defects, 

implicating improper development of the cartilage anlagen78. In studying 

chondrogenesis, studies show that the expression of specific ion channels in progenitor 

cell populations is critical for regulating calcium signaling. For example, tracheal 

cartilage relies on the expression of Cav3.2 T-type calcium channels for NFAT-mediated 

upregulation of the chondrogenic factor, Sox 9; however, it is not only calcium channels 

that drive chondrogenesis, as studies in primary micro-mass cell cultures from 

embryonic chick limb buds demonstrate that the expression of potassium channels also 

regulate calcium transients that are important for committing progenitor cells down the 

chondrocyte lineage79, 80. Similarly, inhibitor studies of calcium channels have abrogated 

the chondrogenic effects of hydrostatic pressure on mesenchymal stem cells76,81,82. 

Therefore, it is evident that in concert with mechanical forces calcium signaling plays an 

important role in the development of articular cartilage83,84. However, an area that 

remains unexplored is how the reorientation of collagen fibrils and the modifications to 

proteoglycans affect calcium signaling. It is possible that with the dynamic maturation of 

the collagen and proteoglycan network during the first weeks following birth there is a 

commensurate change in capacity for calcium transients and calcium signaling40,41. It 

begs the question then if these initial transients could be responsible for the potential 

transcriptional shift from a proliferative developmental program to a matrix-synthesizing 

program, thereby supporting the combination of the appositional and interstitial growth 

model to explain postnatal articular cartilage changes. The answers to these questions 

would have far-reaching implications because it would provide a mechanistic explanation 

for the interdependence of extracellular matrix remodeling and the changing 

transcriptional profile of articular chondrocytes in development, growth, homeostasis, 

and disease. 
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Just as in growth and development, mechanical and osmotic forces stimulate 

articular chondrocytes to drive cartilage homeostasis50,72,85. It is well known that both 

mechanical and osmotic forces, in the form of fluid flow, result in Ca2+ transients and 

waves that are propagated to multiple articular chondrocytes86–88. Several groups have 

suggested that these Ca2+ waves are transduced through an ATP-dependent purinergic 

pathway in cilia dependent and independent manner86,89. Taken further, it has been 

shown that changes in intracellular Ca2+ dynamics, instead of merely fluid flow, leads to 

the biosynthetic activity of chondrocytes88. Additionally, mechanical cues activate Ca2+ 

signaling by releasing cytokines, such as IL-1, and soluble factors, such as IGF, trapped 

in the extracellular matrix90,91. Similarly, many groups have established that osmotic 

stress/loading activates Ca2+ signaling to not only induce gene expression changes, but 

also remodel the cytoskeleton, which affects chondrocytes by modifying its subsequent 

response to stimuli84,92,93. Conversely, other studies have illustrated that Ca2+ signaling 

plays a key role in mediating mechanically induced chondrocyte death94,95. These 

studies demonstrate that articular chondrocytes mediate cartilage development, growth, 

and homeostasis through dynamic Ca2+ signaling. What is unknown, however, is if the 

channels identified in mature articular chondrocytes are also present in the developing 

cartilage. Differential expression of these channels and receptors across different age 

groups would point to two states that differ in mechanosensitivity and ability to respond 

to calcium signaling, which has been shown to drive cartilage homeostasis and 

degeneration. 
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Figure 2: Articular chondrocyte biology and changes in extracellular milieu 
during joint motion. 
 
 Articular cartilage is an aqueous tissue with a dense matrix composed of tightly-
packed collagen fibrils and proteoglycans, such as aggrecan, studded with sulfate 
groups that confer a negative charge to the tissue. This negative charge attracts 
counterions such as Ca2+ and Na+ giving rise to an electric field within the tissue. In 
addition to attracting counterions, the proteoglycans trap soluble factors and serve as a 
signaling reservoir. When combined with Collagens II, IX, and XI, the soup of ions, 
soluble, factors, and proteoglycans make up the territorial matrix surrounding the 
pericellular matrices of articular chondrocytes. The primary constituent of pericellular 
matrices is collagen VI, a non-fibrillar collagen, and the primary function of this matrix is 
to serve as signaling conduit for mechanical and chemical stimuli to the articular 
chondrocyte it encases. Upon mechanical stimulation, water exudation results in a sharp 
increase in the osmolarity, influx of ions, and a release of soluble factors and ligands to 
the receptors on the cells. Concurrently, there is an increase in the tautness of the 
college fibrils which is the primary mechanism by which the tissue can efficiently resist 
compression. Taken together, the articular chondrocyte dynamically perceives these 
changes in the tissue through cell surface receptors and mechano- and osmosensitive 
ion channels and responds by secreting proteases to degrade the damaged matrix and 
matrix molecules to remodel the damaged tissue. Upon release of the mechanical 
stimulation, the water imbibes the tissue once again to rapidly change the osmolarity, 
flux of ions, and tension on the collagen framework. Articular chondrocytes respond to 
the cyclical nature of mechanical loading and unloading through remodeling of the 
extracellular matrix, which progressively decreases in efficiency; thereby affecting the 
signaling conveyed to the chondrocytes. Over time, chondrocytes respond to this altered 
stimulus through ineffective remodeling, resulting in cartilage lesions. 
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Orthopedic surgical approach to articular cartilage restoration  

In the previous section, we discussed the importance of the articular chondrocyte 

in extracellular matrix remodeling to maintain cartilage homeostasis96. This process 

gradually deteriorates with age and trauma, resulting in cartilage lesions. These defects 

in the articular surface are part of a constellation of symptoms that when combined with 

other joint pathologies give rise to osteoarthritis. The biology of cartilage degeneration and 

the inflammatory component that eventually gives rise to osteoarthritis is extensively 

reviewed in the literature58,85,97–105. Therefore, we continue our discussion by examining 

how biologists, engineers, and surgeons collaborate to rectify the problem of full-thickness 

cartilage defects in the young patient. 

There is a high incidence of traumatic cartilage lesions due to sports injuries and 

other recreational activities in the active, younger patient population106. At the time of 

surgery to repair the primary defect, such as a ligament or meniscal tear, there is a small 

cartilage lesion as small as 1cm2; however, the altered joint biology changes the 

mechanical loading of the articular surface, which can incite the lesion to grow up to 12cm2 

in size107–112. These cartilage lesions, if left untreated, will give rise to unbearable joint pain 

and fulminant osteoarthritis, necessitating total joint replacement. Therefore, the critical 

unmet need at the junction of articular cartilage biology and orthopedic surgery is the 

progressive decline in regenerative capacity of articular cartilage and the poor long-term 

efficacy of surgical procedure to resurface diarthrodial joints.  

The regenerative capacity of articular cartilage is minimal due to its complex 

organization that requires highly specialized cells such as articular chondrocytes and its 

avascular and aneural nature. The limited regeneration that occurs is a result of infiltration 

of bone marrow elements upon penetration of the subchondral bone and often results in 
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a marrow clot. This biological phenomenon forms the basis of microfracture surgery, 

wherein the surgeon debrides the cartilage lesion and creates clean margins for the bone 

marrow elements that seep through the fractures introduced to the underlying subchondral 

bone (Figure 3). Microfracture surgery is often recommended for joints undergoing heavy 

load due to the individual’s lifestyle and smaller lesions (≤ 2cm2)113,114. Over the last twenty 

years, attention has turned to using biologics and tissue engineered biomaterials to fill 

larger cartilage lesions (≥ 10cm2). The most common surgical procedures employed to 

resurface the joint in the case of larger lesions are autologous chondrocyte implantation 

(ACI) and matrix-assisted autologous chondrocyte implantation (MACI) (Figure 3). ACI is 

a two-part procedure, first cartilage is harvested from a non-weight bearing surface and 

digested with bacterial endopeptidases releasing chondrocytes that are expanded in vitro. 

Second, upon sufficient expansion the cells are re-implanted into the debrided defect site 

and covered with a periosteal flap107,109,115. MACI is like ACI, however, prior to implantation 

the chondrocytes are embedded in a 3D scaffold, which is then implanted into the defect 

site and covered with a periosteal flap115. There are two major issues with these 

procedures: (1) during in vitro expansion the chondrocytes dedifferentiate and eventually 

produce fibrocartilage, which is biochemically and biomechanically inferior to the native 

hyaline cartilage, and (2) there is a high rate of hypertrophy in the implantations. These 

drawbacks are addressed by examining the cellular and scaffold component of the 

procedures. 

Adequate restoration of full-thickness cartilage lesions requires healthy 

chondrocytes to fill the defect site with a hyaline-like matrix that can withstand the forces 

that come with daily activity. It follows then that the critical element for long-term efficacy 

of these surgical procedures is the cellular potency of the chondrocytes injected into the 
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defect site. Recently, a group observed that patients undergoing ACI had higher knee 

function scores when treated with cells that have higher viability and a higher expression 

of CD44, type II collagen, and aggrecan; further extending the argument that cell quality 

plays a critical role in long-term outcomes for ACI116. Considering this, how do we increase 

the cellular potency of the injected chondrocytes? A recent study explored the idea of 

using cadaveric juvenile human articular chondrocytes instead of a patient’s own cells117. 

The authors found that chondrocytes from a younger patient had up to a 700-fold higher 

expression of type II and IX collagen and almost a 100-fold higher production of 

proteoglycans than chondrocytes from older patients117. This raises a fundamental 

question about the role of aging in articular chondrocytes: How do chondrocytes from a 

younger patient differ from those of an older patient whose cells may have endured various 

surgical procedures and other joint pathologies? Another means to enhance the cellular 

potency of the implanted chondrocytes is the supplementation of a scaffold during the 

resurfacing procedure. Variants on the collagen-based scaffold for the autologous cells, 

MACI, are chitosan-based and hyaluronic acid-based scaffolds that have given mixed 

results as to their long-term efficacy118. In contrast to implanting a scaffold studded with 

cells, another approach has been to implant a scaffold into the defect site concurrent with 

microfracture surgery. This procedure is known as autologous matrix induced 

chondrogenesis (AMIC) and has the advantage of being a one-step procedure and allows 

for bone marrow elements to infiltrate and secrete a matrix on to the collagen scaffold, 

thereby minimizing the potential for the formation of a pure fibrocartilage clot119 (Figure 3). 

Once again, these studies raise interesting questions about interaction between the 

implanted chondrocytes and the scaffold/environment of the joint in question. Lastly, a 

novel approach to addressing these issues is to utilize synthetic biology to engineer cells 

that respond dynamically to a changing environment. Recently, a group has been able to 
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engineer the genome of stem cells to modulate the response to pro-inflammatory 

cytokines, such as IL-1 and TNF-a, which are found in synovial joints and traumatic 

cartilage lesions120. The question remains, however, if the cells being implanted have the 

potential to produce a long-lasting biomechanically stable matrix.  
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Figure 3: Orthopedic surgery and tissue engineering strategies to resurface 
the ends of the long bones. 
 

There are four major cartilage resurfacing surgical procedures: Microfracture 
surgery, Autologous Matrix-induced Chondrogenesis (AMIC), and Matrix-
assisted/Autologous Chondrocyte Implantation (MACI/ACI). The first step in the cartilage 
resurfacing procedures is to debride the lesion site and create clean margins for the 
clot/implantation. In microfracture surgery, the principle is to create small lesions 
penetrating the subchondral bone plate with a microfracture awl to allow bone marrow 
elements to infiltrate the lesion site and form a fibrin clot to fill the defect site. ACI/MACI 
is a two-phase surgical procedure, the first step is to harvest and expand autologous 
chondrocytes from a non-weight-bearing surface for in vitro expansion. Following 
sufficient expansion, the cells are either injected underneath a periosteal flap that 
overlies the defect site in the case of ACI, or injected into a three-dimensional scaffold, 
which is modifiable in its composition, in the case of MACI. AMIC is a hybrid of 
microfracture surgery and MACI because the goal of the procedure is to allow the 
microfracture-induced bone marrow elements to infiltrate a tissue-engineered scaffold 
that is placed into the defect site. In all of these procedures the composition of the 
scaffold, the origin of cells that are injected into the defect site, and the composition of 
the flap that covers the defect site are modifiable elements that are under investigation 
for improvements in long-term efficacy. 
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The chondrogenic potential of articular chondrocytes  

The articular chondrocyte plays a crucial role in the development, growth, 

maintenance, and destruction of articular cartilage. In this chapter, I introduced the 

interdependence of articular cartilage development and growth and the proliferation, 

differentiation, and homeostasis of articular chondrocytes. Additionally, the importance of 

articular chondrocyte biology is exemplified by efforts to utilize them in cartilage 

resurfacing procedures. The rising incidence of osteoarthritis and the poor long term 

efficacy of these procedures illustrate our shortcomings in understanding the spectrum 

of articular chondrocyte biology ranging from health to disease. 

In this dissertation, I explore the chondrogenic potential of articular chondrocytes 

in the context of Ca2+ signaling. During development, it is understood that there is a 

drastic change in matrix composition and organization driven by mechanical cues, which 

also activate Ca2+ signaling that is important for enhancing chondrogenesis of 

mesenchymal stem cells50,75–77,83,121. Therefore, the chondrogenic potential of articular 

chondrocytes in the developing cartilage may be dependent on the active remodeling of 

collagen fibrils and proteoglycans, which control the electrochemical properties of the 

tissue. While many studies have explored different factors that can enhance 

chondrogenic potential, the reciprocal relationship of the chondrogenic potential of 

articular chondrocytes affecting the response to stimuli remains unexplored. We find that 

the chondrogenic potential of articular chondrocytes dictates how the cells respond to 

Ca2+ signaling. These results provide support for asking how the reciprocal relationship 

between calcium signaling and chondrogenic potential drives development of articular 

cartilage, maintains cartilage homeostasis, and alters the regenerative capacity of 

articular chondrocytes. 
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Introduction  

Articular cartilage, the smooth, visco-elastic substance that covers the ends of long 

bones, protects and lubricates diarthrodial joints by evenly distributing forces across joint 

surfaces36. The denuding of articular cartilage gives way to degenerative arthritis, which 

affects nearly 40 million Americans114. The most common surgical procedure employed to 

resurface the joint is autologous chondrocyte implantation (ACI)109,122,123. During ACI, 

cartilage is harvested from a non-weight bearing surface and enzymatically digested to 

release articular chondrocytes109,122,123. The isolated cells are expanded in vitro, implanted 

into the defect site, and covered with a periosteal flap109,122,123. A major drawback to this 

procedure, however, is that chondrocyte dedifferentiation during in vitro expansion leads 

to the formation of a fibrocartilage upon reimplantation, which is biomechanically inferior 

to the native hyaline cartilage. 

The current culture conditions lead to a concomitant change in both morphology 

and gene expression profile of articular chondrocytes124,125. Specifically, as the cells start 

to dedifferentiate they flatten to assume a more fibroblast-like phenotype; correspondingly, 

as the cells flatten their gene expression shifts from a hyaline cartilage phenotype, which 

is dominated by Col2 expression to a more fibrocartilage phenotype, which is dominated 

by Col1 expression124,125. Therefore, there is a pressing need to improve culture conditions 

during in vitro expansion whereby the cells maintain their morphology and gene 

expression profile. To address these needs, one strategy involves re-differentiation of the 

expanded cells through high-density cultures126. Although this strategy can restore the 

morphology of articular chondrocytes there is a paucity of data illustrating that these cells 

have regained a chondrogenic expression profile. Another common strategy involves 

supplementation of growth media with growth factors that are important during cartilage 



	
   33	
  

development, such as IGF-1, FGF-2, or TGFβ2127. Although this strategy leads to 

moderate restoration of the hyaline-cartilage gene expression profile it is yet to be 

determined if these factors lead to the synthesis of an ordered ECM around the cells127. 

Therefore, there remains a critical need to develop dynamic culture conditions that 

expand, enhance their chondrogenic properties, and stimulate the chondrocytes to 

synthesize and deposit an ordered, hyaline-like matrix. 

In healthy articular cartilage, ECM remodeling is initiated by mechanical stimuli that 

signal to articular chondrocytes through intracellular Ca2+ waves48,84,87,128,129. Studies 

investigating TRPV4 in articular chondrocytes provide additional support for the 

importance of Ca2+ signaling in articular cartilage physiology130,131. Specific deletion of 

TRPV4, an osmo-sensitive Ca2+ channel, leads to impaired metabolic activity and 

accelerated onset of degenerative joint disease (OA), highlighting the importance of both 

TRPV4 and normal Ca2+ flux in diarthrodial joints130,131. 

In this study, we explore how the chondrogenic potential of primary bovine articular 

chondrocytes alters their response to Ca2+ signaling. To identify the optimal culture 

conditions for maintaining the chondrogenic properties of articular chondrocytes we 

cultured the cells in four different media conditions that differ in [Ca2+] (1.8mM or .1mM) 

and the presence/absence of serum. Given the optimal conditions to maintain the 

differentiation potential we developed a Ca2+ pulsing protocol to mimic the dynamic 

mechanical loading experienced in an articulating joint. Taken together, we assessed if 

the downstream signaling effects of mechanical loading, such as Ca2+ signaling, are 

dependent on the differentiation status of articular chondrocytes. Ultimately, the Ca2+ 

pulsing protocol we develop in this study can serve as a tool to assess the signaling 

dynamics of mechanotransduction-relevant pathways of articular chondrocytes; more 
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importantly, it can also be used to improve upon cartilage reparative techniques, such as 

ACI. 

Materials/Methods 

Cell culture/isolation 

Articular cartilage was harvested from bovine knee joints obtained from a local 

abattoir (JBS USA). Shavings of the articular cartilage were sequentially digested in .2% 

Pronase (Roche) for 2 hours followed by overnight digestion in .2% collagenase (Gibco), 

all while shaking at 37°C. Cell suspensions were passed through 70μM cell strainers (BD 

Falcon) and centrifuged at 500xG for 10 minutes to recover chondrocytes. Chondrocytes 

were plated at a density of 1 x 106 cells/well in 12 well plates and cultured in one of four 

different media: (1) Dulbecco’s minimum essential media (DMEM; Gibco) (1.8mM Ca2+ + 

10%FBS) (2) Low Ca2+ DMEM (0.1mM Ca2++ 10% FBS) (3) Serum-free DMEM (1.8mM 

Ca2+ - FBS) (4) Serum-free, Low Ca2+ DMEM (0.1mM Ca2+- FBS) in 6% CO2 at 37°C. All 

media were supplemented with penicillin and streptomycin (Gibco). Serum-free media 

were supplemented with insulin-transferrin-selenium (Sigma).  

Ca2+-pulsing regimen 

Starting 24 hours post-plating, bovine articular chondrocytes were stimulated with 

varying concentrations of Ca2+ (0, 2, 4, 8, 12, or 16 mM total) in the pulsing media (DMEM 

+ ITS) for one treatment period each day.  For dynamic Ca2+ pulsing, cells were treated 

for 1 hour, recovered in 0.1mM Ca2+ for 1 hour, and stimulated for 1 hr. with the same 

[Ca2+] before replacing the original culture media. By contrast, static Ca2+ stimulation 

entailed incubation in elevated [Ca2+] for 3 continuous hours before replacing the original 

culture media. 
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RNA isolation/qRT-PCR 

RNA was isolated and purified using the Trizol® reagent (Life Technologies) 

according to the manufacturer’s protocol. 1μg of RNA was converted to cDNA using the 

SuperScript® III First-Strand Synthesis system (Invitrogen). The cDNA (40ng/reaction) 

served as the template in the quantitative real-time PCR reaction using ABI-Prism 7300 

instrument (Applied Biosystems) using SYBR Green PCR mix (Invitrogen) and specific 

primers at a final concentration of 70nM. Results were normalized to mRNA levels of 

18srRNA and GAPDH. The primer sequences are as follows: (Collagen 1 forward: 

AATTCCAAGGCCAAGAAGCATG, Collagen 1 reverse: GGTAGCCATTTCCTTGGTGGTT) (Collagen 2 forward: 

CATCTGCTCAGCTGACCTCC, Collagen 2 reverse: GGGTCCTACGATGTCCTTGAT) (Collagen 6 forward: 

CTGGAGAGCCTGGACAGAAG, Collagen 6  reverse: GCCTTTGAAACCAGGAACAC) (Collagen 10 forward: 

CCATGCTTGGGTAGGTCTGTATAAG, Collagen 10 reverse: CAGGTAGCCCTTGATGTACTCAT) (Sox9 forward: 

CCGGTGCGCGTCAAC, Sox9 reverse: GCGCCCACACCATGAAG) (GAPDH  forward: AATTCTGGCAAAGTGGACATC, 

GAPDH reverse: GACCATGTAGTGAAGGTCAATGAA) (18srRNA forward: TCGAGGCCCTGTAATTGGAA, 18srRNA 

reverse: GCTATTGGAGCTGGAATTACCG). 

Western Blotting/ Dot Blot analysis 

Cell lysates were prepared in RIPA buffer with cOmplete™ protease inhibitor 

tablets and phosSTOP™ phosphatase inhibitor tablets (Roche Diagnostics). Protein 

components were resolved by SDS-PAGE gel electrophoresis, transferred to 

nitrocellulose membrane, which was then blocked in Tris-buffered saline (LiCor®), 

sequentially probed with primary and secondary antibodies, and imaged using the LiCor® 

Odyssey® CLx imaging system. Validated primary antibodies (used at a dilution of 

1:1,000) were specific for total CamKII (Abcam, ab134041), T286 phospho-CamKII (Cell 

signaling technologies, 12716S), β-actin (loading control, LiCor® 926-42212), Col 2 

(Abcam, ab21291) and Col 6 (Abcam, ab6588). Fluorescent-labeled anti-rabbit (LiCor®, 

925-32211) and anti-mouse secondary antibodies (LiCor®, 925-68070) were used at a 



	
   36	
  

dilution of 1: 5,000. Dot blot analysis was performed as described for Western blotting, 

except that conditioned media was collected from cell cultures on day 7 was directly 

spotted on nitrocellulose membrane. Specificity controls for dot blot analysis were rat tail 

collagen solution (negative control) (Sigma, C3867) and hyaline articular cartilage 

(positive control) from bovine knee joints. Dot blot signal was quantified using the LiCor® 

Odyssey® CLx imaging system. 

Cell viability assay/image acquisition 

Chondrocyte viability was assessed using the Live/Dead® viability/cytotoxicity kit 

(Life Technologies, L3224) immediately following the end of experiments. Images were 

acquired using a Leica DMI6000B microscope (Leica Microsystems) and analyzed using 

the Volocity® 3D Image Analysis Software (Perkin-Elmer). 

Statistical analysis 

The error bars in each of the graphs represent the standard error of the means of 

at least 3 independent experiments, where n= the number of bovine joints. Statistical 

significance was determined using the Student’s t-test with p-values less than .05 

considered significant. 

Results 

Ca2+ and serum influence differentiation potential of primary bovine articular 

chondrocytes 

A major focus in chondrocyte biology is the changes in ion flux found in extra-

cellular matrix during mechanotransduction, most notably changes in Ca2+ 

signaling84,86,132,133. To understand the importance of Ca2+ signaling in the differentiation 
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potential of primary articular chondrocytes we cultured cells in conditions that differ in 

[Ca2+], as well as the presence or absence of serum, which contains Ca2+ buffering 

agents134. We find that cells retain the rounded morphology found in vivo in the absence 

of serum, regardless of [Ca2+] (Figure 4a). Conversely, cells assume a fibroblast-like 

phenotype shortly after plating down in serum-containing media, illustrating the high rate 

of dedifferentiation, and less chondrogenic-promoting properties of this media (Figure 4a). 

To ensure that the rounded morphology is not indicative of an apoptotic program, we 

performed a viability assay on these cells and find that there are slightly more cells that 

show red fluorescence (dead) than green fluorescence (live) in the serum-free cultures 

relative to the standard DMEM media. Therefore, cells that are rounded have not 

undergone apoptosis. (Live/dead data Figure 4b) To adequately assess the effects of Ca2+ 

and serum on the differentiation potential of primary articular chondrocytes we sought to 

establish the gene expression profile of major chondrogenic genes in the different cultures. 

We find that there is an increase in Col VI (predominant collagen found in pericellular 

matrix of articular cartilage), and Sox9 (a major chondrogenic marker) expression in the 

serum-free cultures relative to the standard DMEM media (RT-PCR in Figure 4c and 4d, 

respectively); however, Col X (a well-established hypertrophic marker) is also elevated in 

the serum free cultures, potentially indicative of the onset of a hypertrophic program 

(Figure 4e). Despite this increase in Col X expression, we find that that there is an increase 

in the Col2:Col1 ratio in the serum- free cells (Figure 4f), which is a well-established 

differentiation index of hyaline cartilage. 
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Figure 4 Primary articular chondrocytes maintain their differentiation status 
in serum-free media. 

(A) Bovine articular chondrocytes were cultured in monolayer for 7 days in 4 different 
media conditions: DMEM (1.8mM [Ca2+], 10%FBS), Serum-free DMEM (1.8mM [Ca2+], 
no FBS), low calcium DMEM (.1mM [Ca2+], 10% FBS), Serum-free low calcium DMEM 
(.1mM [Ca2+], no FBS). Scale bar = 22µm. (B) Cell viability analysis of bovine articular 
chondrocytes following 7 days in monolayer culture in the 4 different media conditions. 
Live cells are represented through green fluorescence and dead cells are represented 
through red fluorescence. Scale bar = 21µm. n=3. Gene expression analysis of bovine 
articular chondrocytes following 7 days in monolayer culture in the 4 different media 
conditions through qRT-PCR. (C) Col 6 expression. (D) Sox 9 expression (E) Col 10 
expression. (F) Ratio of the fold change in expression of Col 2 to the fold change in 
expression of Col 1. n≤4. Error bars represent standard error of the mean. Asterisks and 
p-values above columns indicate statistically significant differences between the media 
and basic DMEM media (1.8mM [Ca2+], 10%FBS). 
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Primary articular chondrocytes respond robustly to dynamic changes in 

extracellular [Ca2+] 

Ca2+ signaling is well established as a primary mediator of mechanotransduction 

in articular chondrocytes84,87,130. Moreover, it is known that dynamic mechanical loading 

leads to a higher chondrogenic potential in articular chondrocytes relative to static 

mechanical loading48,132,133. To directly assess the downstream effects of dynamic 

mechanical stimuli we stimulated primary bovine articular chondrocytes in a pulsatile 

manner by alternating between media with high and low Ca2+ concentrations in 1-hour 

intervals (Pulsing schematic in Figure 5a). A well-established downstream mediator of 

Ca2+ signaling is CamKII, which becomes phosphorylated once the intracellular Ca2+ rises 

above a threshold, and therefore utilized the phosphorylation of CamKII as a marker of 

activation of Ca2+ signaling in articular chondrocytes23,135,136. We find that in primary 

articular chondrocytes CamKII is reversibly phosphorylated in a dose-dependent manner; 

specifically, 8mM of Ca2+ is the minimal concentration that can maximally activate the 

signaling pathway in a reversible manner (Figure 5b). Coordinately, stimulating articular 

chondrocytes with 4mM and 8mM leads to an increase in Sox9 expression, paralleling the 

activation profile of CamKII; however, unlike the dephosphorylation of CamKII, Sox9 

expression continues to increase when the cells are cultured in low [Ca2+] for one hour 

(Figure 5c). 
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Figure 5: Primary articular chondrocytes respond to dynamic changes in 
extracellular Ca2+ through upregulation of Sox9 and activation of Ca2+ 
signaling. 

(A) Schematic of the Ca2+ pulsing regimen, as described in the Methods section, is used 
throughout the study and was performed daily or following 7 days in culture. Western blot 
expression analysis (B) of phospho-CamKII (Thr 286), total CamKII, and b-actin (loading 
control) and gene expression analysis (C) of Sox9 through qRT-PCR in bovine articular 
chondrocytes cultured in DMEM for 7 days and following the 7-day culture, stimulated with 
the indicated [Ca2+] for 1 hour with, or without, another hour in low [Ca2+] (.1mM). Error 
bars represent standard error of the mean. Asterisks and p-values above columns indicate 
statistically significant differences between the media and untreated DMEM media. n=3. 
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Differentiation potential of articular chondrocytes determines the response to 

dynamic Ca2+ signaling. 

To determine the functional effect of maintaining differentiation potential of articular 

chondrocytes in serum-free media we examined the response of articular chondrocytes to 

daily, dynamic Ca2+ signaling (two hours of 8mM Ca2+ stimulation with an hour of recovery 

in .1mM of Ca2+ between the stimulations) or static Ca2+ signaling (three hours of 8mM 

Ca2+ stimulation) for 7 days. Ca2+ pulsing maintained the rounded morphology of cells 

grown in serum-free cultures, regardless of [Ca2+], and did not drastically affect the 

morphology of cells in serum-containing media (Figure 6a). The cell death profile is 

unaffected by Ca2+ pulsing during long-term culture as serum containing cultures continue 

to have low cell death and serum-free cultures have relatively mildly elevated number of 

dead cells (Figure 6b). When compared to static Ca2+ signaling and unstimulated controls 

we find that dynamic Ca2+ signaling leads to an enhancement of the chondrogenic 

expression profile through increases in Col VI and Sox9 expression levels (Figure 6c and 

6d). While there is an increase in the Col X expression levels in the serum-free media, we 

find that Ca2+ stimulation in both types of media leads to a decrease in Col X expression 

levels (Figure 6e). The chondrogenic enhancement of Ca2+ pulsing is further illustrated in 

the increase in Col2:Col1 ratio; interestingly however, we find that the response to Ca2+ 

stimulation is dependent on the culturing media. In serum-free media, the more 

chondrogenic media, we find that cells have a higher Col2:Col1 ratio in response to 

dynamic Ca2+ signaling, whereas cells cultured in the presence of serum have a higher 

Col2:Col1 ratio in response to static Ca2+ simulation (Figure 6f). 
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Figure 6: Cells cultured in serum-free media respond to dynamic 
stimulation with Ca2+ through upregulation of chondrogenic genes. 

(A) Bovine articular chondrocytes cultured in the 4 different media conditions and Ca2+-
pulsed daily for 7 days according to the schematic presented in figure 2. Scale bar = 
22µm. (B) Cell viability analysis of bovine articular chondrocytes cultured in the 4 
different media conditions and Ca2+-pulsed daily for 7 days. Scale bar = 21µm. n=3. 
Gene expression analysis of bovine articular chondrocytes cultured in DMEM and 
serum-free DMEM and Ca2+-pulsed daily for 7 days either statically (3 consecutive hours 
of 8mM Ca2+) or dynamically (according to the pulsing schematic in figure 2) through 
qRT-PCR for (C) Col 6 expression, (D) Sox 9 expression, (E) Col 10 expression, (F) 
Ratio of the fold change in expression of Col 2 to the fold change in expression of Col 1. 
n=5. Error bars represent standard error of the mean. Asterisks and p-values above 
columns indicate statistically significant differences between the treatment and basic 
DMEM media (1.8mM [Ca2+], 10%FBS). 
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Dynamic Ca2+ stimulation of differentiated primary articular chondrocytes leads to 

the secretion of hyaline cartilage constituents. 

 To assess if dynamic Ca2+ signaling can enhance the production of hyaline 

cartilage constituents, such as collagen 2 and collagen 6, we performed a dot blot analysis 

of the culturing media following 7 days of daily Ca2+ pulsing. Similar to our gene expression 

data, we find that the production of Col 2 and Col 6 are enhanced by dynamic Ca2+ 

signaling in the more chondrogenic serum-free media; interestingly however, we find that 

cells cultured in the presence of serum respond to dynamic Ca2+ signaling by decreasing 

the production of Collagen 6 (Figure 7a and 7b). 
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Figure 7: Dynamic stimulation of primary articular chondrocytes with Ca2+ 
leads to the secretion of hyaline cartilage constituents. 

Dot blot analysis of (A) Col 2 and (B) Col 6 in bovine articular chondrocytes cultured in 
DMEM and serum-free DMEM and dynamically Ca2+-pulsed for 7 days. The images 
above columns are representative of the signals visualized on the dot blot membrane for 
each of the media and treatment groups. Rat collagen tail, which predominantly contains 
col 1, serves a negative control and bovine hyaline cartilage, which predominantly 
contains col 2 and col 6, serves as a positive control. n=3. Error bars represent standard 
error of the mean. Asterisks and p-values above columns indicate statistically significant 
differences. 
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Discussion 

Cartilage homeostasis is maintained through extracellular matrix remodeling by 

articular chondrocytes, which are stimulated through dynamic mechanical 

loading36,115,137,133. It is well established from previous studies that mechanical forces result 

in intracellular Ca2+ waves in articular chondrocytes and the induction of ECM components 

occurs through dynamic signaling processes, rather than a static stimulation87,132,138. Many 

studies have used varying modes of mechanical stimulation to enhance the chondrogenic 

properties of cartilage constructs; however, these studies overlook the differentiation 

potential of the chondrocytes seeded in the constructs48,84,114,132,137. If Ca2+ signaling is 

critical for cartilage homeostasis, we hypothesized that the maintenance of chondrogenic 

properties in isolated articular chondrocytes is dependent on [Ca2+] during in vitro culture. 

In this study, we have established that the response to dynamic Ca2+ signaling by articular 

chondrocytes serves as a novel differentiation index, while enhancing the chondrogenic 

properties of articular chondrocytes. Taken together, this study addresses a critical unmet 

need to improve upon the quality of cells used for ACI procedures; additionally, it advances 

and continues the discussion on the importance of Ca2+ signaling in chondrocyte biology 

for cartilage homeostasis and osteoarthritis progression. 

We first sought to establish the culture conditions that would maintain the 

differentiation status and morphology of chondrocytes found in vivo. We cultured the cells 

in different media varying in [Ca2+] and in the presence or absence of serum. In serum-

free conditions the cells retain a more rounded morphology reminiscent of cells found in 

vivo; on the other hand, cells cultured in the presence of serum assume a flattened 

fibroblast-like morphology, indicative of dedifferentiation (Figure 4a). It is important to note 

that the rounded morphology in the serum-free conditions does not automatically indicate 
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the initiation of an apoptotic program; while there are more dead cells in serum-free 

conditions, they do not represent the majority of the cell population (Figure 4b). 

Importantly, the cells cultured in serum-free conditions, relative to those cultured in 

standard DMEM media, exhibit a gene expression profile that reflects that of hyaline 

cartilage. Specifically, they have low expression of Col I and increased expression of Col 

II, Col VI, and Sox9. This profile leads to a remarkably high Col II: Col I ratio, a defining 

feature of hyaline cartilage. In addition, the serum-free conditions lead to a high expression 

of Col X, a marker of hypertrophic chondrocytes, which we have been able to suppress 

with the addition of soluble factors without losing the hyaline cartilage phenotype (data not 

shown). These data led us to conclude that the optimal media to retain the differentiation 

status of articular chondrocytes is that which does not contain any serum. Surprisingly, we 

did not see any significant differences in morphology or gene expression between the two 

serum-free media conditions that differ in [Ca2+] (1.8mM and .1mM of Ca2+). Similarly, 

there is a mild effect of solely lowering the [Ca2+] in the presence of serum, indicating that 

the critical dedifferentiation factor, which remains to be determined, is contained in the 

serum. Therefore, our results corroborate the notion that articular chondrocytes retain their 

differentiation status in serum-free conditions as they are housed in a metabolically inert 

microenvironment in vivo. 

The dedifferentiation of cells during ACI leads to the production of fibrocartilage 

upon reimplantation to repair chondral lesions; however, fibrocartilage is biomechanically 

inferior to the native hyaline cartilage109,122,123. Therefore, in addition to maintaining the 

differentiation status of chondrocytes, it is important to have culture conditions that 

stimulate cells to secrete matrix components reminiscent of hyaline cartilage. Several 

groups have illustrated that stimulating Ca2+ signaling pathways through the TRPV4 
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channels has resulted in the upregulation of hyaline cartilage components130,131. However, 

a major caveat to these methods of analyzing Ca2+ signaling is the static nature of the 

stimulation, as numerous studies have illustrated the upregulation of matrix components 

in articular chondrocytes occurs through dynamic stimuli86,132. As a result, we sought to 

assay the response of articular chondrocytes to dynamic Ca2+ signaling through the 

development of a novel protocol whereby we expose the cells to high and low 

concentrations of Ca2+ in a pulsatile manner (Figure 5a). A critical mediator of Ca2+ 

signaling in neurons and cardiomyocytes, both physiologically and pathologically, is 

CamKII, which is expressed in both growth plate chondrocytes and articular 

chondrocytes23,135,139. As in other systems, we find that there is a critical threshold of Ca2+ 

concentration that leads to a reversible phosphorylation of the critical Thr286 residue of 

CamKII (Figure 5b). This data indicates that the articular chondrocytes are viable and 

responsive to Ca2+ concentrations as high as 16mM. We find that the response to an 

increase in Ca2+ is not dose-dependent as increasing the extracellular concentration of 

Ca2+ does not enhance the expression of Sox9; nor is it dependent on the phosphorylation 

status of CamKII, as one hour in low extracellular concentration of Ca2+ dephosphorylates 

CamKII but further increases the expression of Sox9 levels (Figure 5c). This could be 

explained by the residual activation of downstream transcription factors controlling the 

expression of chondrogenic genes despite the removal of a stimulus140,141. These results 

provide rationale for further studies on the temporal and spatial dynamics of Ca2+ signaling 

in articular chondrocytes. 

The utility of dynamic Ca2+ signaling lies in its ability to enhance the chondrogenic 

potential of articular chondrocytes130,132,138. In this study, we have shown that compared to 

static Ca2+ signaling and unstimulated controls dynamic Ca2+ signaling leads to an 
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enhancement of the chondrogenic properties of articular chondrocytes through the 

chondrogenic gene expression profile (Figure 6c and 6d). Furthermore, the cells cultured 

in the absence of serum respond to dynamic Ca2+ signaling by releasing hyaline cartilage 

constituents, further supporting the chondrogenic-enhancing properties of dynamic Ca2+ 

signaling (Figure 7). This differential response to Ca2+ stimulation of cells based on the 

culturing media led us to conclude that the differentiation status of articular chondrocytes 

plays a critical role in how cells respond to stimuli. We show in this study that cells cultured 

in serum-free media, the more chondrogenic media, have a higher Col2:Col1 ratio in 

response to dynamic Ca2+ signaling, whereas cells cultured in the presence of serum have 

a higher Col2:Col1 ratio in response to static Ca2+ stimulation (Figure 6f). In other words, 

cells that have maintained their differentiation potential respond to mechanical stimulation 

with different signaling dynamics than cells that have dedifferentiated. This finding is 

critical for the field of chondrocyte biology and tissue engineering, because it informs us 

that the downstream effect of mechanical stimulation is highly dependent on the 

underlying biology of the cell. Therefore, future studies will aim to further delineate if the 

differential responses to Ca2+ signaling correlate to the progression of normal cartilage to 

diseased cartilage. 

In conclusion, our study addresses an unmet need to enhance the chondrogenic 

potential of articular chondrocytes for ACI. We have developed a novel assay that 

determines the differentiation potential of chondrocytes, which may in turn be used in 

tissue engineering applications to seed scaffolds with highly chondrogenic cells. In line 

with our work, others assert that Ca2+ signaling is vital in mediating mechanotransduction 

signals to articular chondrocyte, however, there are other groups that maintain that Ca2+ 

signaling negatively regulates chondrogenesis131. Our study firmly establishes that Ca2+ 
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stimulation regulates expression of important components of matrix remodeling. More 

importantly, however, in contrast to previous studies that have statically stimulated cells, 

we illustrate the benefit of dynamic Ca2+ signaling in improving the chondrogenic nature 

of articular chondrocytes130.  

Therefore, this study further highlights the importance of Ca2+ signaling in 

chondrocyte biology for homeostasis, cartilage tissue engineering, and OA disease 

progression. Future work will explore the mechanism by which dynamic Ca2+ signaling 

mediates matrix remodeling, and in turn how matrix remodeling affects the ability of cells 

to respond to dynamic Ca2+ signaling. It would be prudent then to investigate if steady 

dynamic Ca2+ signaling or aberrant Ca2+ signaling underlie the difference between 

chondrocytes found in normal articular cartilage and those found in arthritic cartilage. In 

summary, this provides a novel means to address important questions in chondrocyte 

biology that will lead to a better understanding of OA onset.  
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Chapter 3: RNA-sequencing analysis of bovine articular chondrocytes.  
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Introduction 

The articular chondrocyte is a highly-specialized cell that resides in an extremely 

dynamic environment. Its developmental history can be traced from the interzone of the 

developing synovial joint and the margins of the cartilage anlagen during joint cavitation 

to the mechanosensitive surfaces of a growing postnatal articular cartilage7,12. As the 

long bone grows and the growth plate closes, the articular cartilage thickness gradually 

decreases from its postnatal girth encasing the articular chondrocyte in an aneural, 

avascular, hypoxic environment27. This environment renders the articular chondrocyte 

quiescent for most of its lifecycle so that it does not expend the metabolic resources that 

are in scarcity142. The only exception occurs upon joint loading, which stimulates the 

cells through mechanotransduction pathways, such as Ca2+ signaling, to remodel the 

extracellular matrix to maintain cartilage homeostasis143,144. Any aberration to the 

structure of articular cartilage, therefore, directly influences stimulation of articular 

chondrocytes and their subsequent response. 

The response of articular chondrocytes to stimuli is critical because it underlies 

the principles of using autologous cells to repair cartilage lesions in younger 

patients107,123. The ability of autologous cells to fill the defect with hyaline cartilage 

components has improved functionality of knee joints in many patients that have 

incurred traumatic joint injury. To improve upon these outcomes, a modification to this 

procedure entails implanting a collagen-based scaffold embedded with the cells into the 

defect site114,115. This modification was introduced because various studies have 

implicated embedding chondrocytes into a three-dimensional matrix to mimic the in vivo 

environment to maintain and enhance the chondrogenic potential of articular 

chondrocytes145–148. The chondrogenic potential of articular chondrocytes can be defined 
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as the gene expression signature defining articular chondrocytes and the capacity to 

synthesize hyaline cartilage components. A major unmet need in the field of articular 

chondrocyte biology is defining the culture systems and the expression signatures that 

can identify and maintain a stable articular chondrocyte phenotype for downstream 

tissue engineering and orthopedic surgery applications. 

In the previous chapter, we observed that culture condition-altered differentiation 

potential of articular chondrocytes influenced response to Ca2+ signaling. We observed 

that cells in serum-free cultures display significantly higher Col2:Col1 ratio (Figure 4f), a 

well-established differentiation index, than serum-containing cultures. In this study, we 

set out to further test the effects of culture conditions on the transcriptional profile of 

articular chondrocytes by taking cells from a single joint and growing them under three 

conditions: (1) a dedifferentiated two-dimensional monolayer culture, (2) a three-

dimensional alginate hydrogel culture to maintain chondrogenic phenotype, and (3) a 

culture condition to test redifferentiation potential by embedding seven-day monolayer-

cultured cells into three-dimensional hydrogels for seven days126,148,149. We hypothesized 

that the cells in each of the different culture conditions would exhibit vastly different gene 

expression profiles. Additionally, we found that chondrocytes maintained in serum-free 

medium, but not in serum containing medium, upregulated chondrogenic genes, such as 

Sox9 (Figure 6D) and secreted hyaline cartilage constituents, such as Col2 and Col6 

(Figure 7) in response to dynamic (pulsatile) Ca2+ stimulation. However, there is a 

discordance between traditional expression signatures in growth media (DMEM). As the 

synthesis of hyaline cartilage components and the ratio of Col2:Col1 decreases upon 

stimulation, Sox9 continues to increase (Figure 6D, 6F). This could potentially be 

explained by the uncoupling of Sox9 regulation of Collagen 2 upon dedifferentiation; 
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however, it does not explain the decrease in synthesis of Col6 as well150(Figure 7b). To 

understand the full breadth of differentiation potential requires examination of the genetic 

expression profile, rather than just the transcriptional profile of a few genes. We 

hypothesized that an expansion of genes we are looking at could explain the 

discordance found in the previous study. To attain a thorough gene expression signature 

of the different culture conditions we decided to perform an in-depth transcriptional 

analysis through RNA-sequencing, which utilizes deep-sequencing technologies to 

provide a panorama of the transcriptional landscape151–154. 

In combination with culture conditions, we tested the effects of age on the gene 

expression signature of articular chondrocytes. It is well known that age is a risk factor 

for the development of osteoarthritis105,155–157158. Structurally, with age there is 

degradation of collagen fibrils and changes in composition of the side chain sulfate 

groups of proteoglycans, which give rise to coordinate changes in water 

composition41159,160. In addition to these structural changes, aging cartilage has been 

shown to contain higher concentrations of inflammatory cytokines, reactive oxygen 

species, and mediators of autophagy; furthermore, human articular chondrocytes exhibit 

a decline in response to growth factor signaling with age161–166,167. This disparity in 

chondrocyte biology with age convinced a group to test the use of juvenile cadaveric 

allogeneic chondrocytes for ACI and found that cells from younger patients exhibited a 

higher chondrogenic profile117. Similarly, RNA-sequencing analysis of two different age 

groups of equine articular chondrocytes showed almost 400 transcribed elements were 

differentially expressed between the two age groups168. 

In this study, we explore the effects of interdependency of age and culture 

condition on the gene expression signature of articular chondrocytes. The central 
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hypothesis of this study is that younger chondrocytes would be able to redifferentiate 

and have a tighter expression profile. Whereas older chondrocytes would be unable to 

redifferentiate and exhibit properties similar across all culture conditions with greater 

genetic diversity. To test this hypothesis, we cultured articular chondrocytes from young 

(< 30 months of age) and old bovine joints (>40 months of age) in culture conditions 

representing three differentiation states: (1) a dedifferentiated two-dimensional 

monolayer culture, (2) chondrogenic three-dimensional alginate hydrogel culture, and (3) 

a redifferentiated state in which monolayer-cultured cells were subsequently embedded 

in alginate hydrogels following seven days. Through RNA-sequencing analysis, we find 

that culture conditions have a significantly greater influence on the gene expression 

profile of articular chondrocytes than age; however, we find that older cells have a tighter 

expression profile than younger cells, especially in the redifferentiated cultures. 

Additionally, we find that there is a discordance between overall gene expression profile 

and the major chondrogenic genes, which are not significantly differentially expressed 

between culture conditions or age groups; thereby casting doubt on their sensitivity as 

markers of articular chondrocyte differentiation. The drastic influence of culture 

conditions, as revealed by the deep sequencing analysis in this study, will put the 

spotlight back on identifying the facets of culture conditions that are critical for 

maintaining the chondrogenic phenotype; however, the analysis also reveals that it may 

be time to reexamine what genes and properties we use to define a chondrogenic 

phenotype for articular chondrocytes. 
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Materials/Methods 

Sample collection/Histology 

A local abattoir (JBS, USA) supplies bovine knee joints from two age groups that 

are classified as young and old: (1) < 30 months of age, but no less than 20 months of 

age and (2) > 40 months of age. Articular cartilage is shaved and sequentially digested, 

while shaking, in .2% Pronase (Roche) for 2 hours at 37° followed by overnight digestion 

in .2% collagenase (Gibco) at 37°. The cells are separated from the matrix by gravity 

filtration through 70μM cell strainers (BD Falcon). From the same joint, full thickness 

cartilage biopsies are harvested using a 6mm punch biopsy (Integra™ Miltex™, 3336) 

and immediately fixed in 4% paraformaldehyde (© 2017 Alfa Aesar, Thermo Fisher 

Scientific, 30525-89-4) in PBS overnight for downstream histological analysis of 

proteoglycans and collagens through safranin-O and alcian blue staining, respectively. 

The cells were isolated from 4 different young joints (n=4) and 3 different old joints (n=3). 

Cell culture 

Following separation, the cells are washed and then pelleted by centrifugation at 

500xG for 10 minutes. To establish isogenic controls, cells from the same joint are 

cultured in either a two-dimensional monolayer culture for fourteen days or embedded 

within a three-dimensional sodium alginate bead for fourteen days. The cells in two-

dimensional monolayer culture are maintained in Dulbecco’s minimum essential media 

(Invitrogen, 11965-092) supplemented with 10% fetal bovine serum, 1% penicillin-

streptomycin-glutamine (Invitrogen, 10378-016), and Amphotericin B (Gibco, 15290026). 

The cells in three-dimensional alginate bead cultures are maintained in DMEM/F12 (1:1) 

media supplemented with 1% penicillin-streptomycin-glutamine (Invitrogen, 10378-016), 
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Amphotericin B (Gibco, 15290026), insulin-transferrin-sodium selenite (Sigma, I2771), 

50µg/mL Vitamin C, 10ng/mL FGF2, and 10ng/mL TGF-b3 (PeproTech®, 100-36E). 

Redifferentiated cells were those that were cultured in two-dimensional monolayer 

culture for 7 days and then embedded in three-dimensional alginate bead cultures for 7 

days, with each phase the cells are cultured in the respective media. 

Alginate encapsulation and RNA isolation 

A 1.5% weight/volume alginate solution was made by dissolving PRONOVA™ 

Ultra-pure medium viscosity sodium alginate, with guluronate constituting 60% of the 

monomer units (Novamatrix®, ©2016 FMC 4200106), in 1x PBS and sterile-filtered. A 

final concentration of about 75 million cells per mL was determined to be optimal in the 

fourteen-day alginate cultures and about 20 million cells per mL in the redifferentiated 

cultures. Individually, each aliquot of cells was pelleted, the media was aspirated, and 

the cell pellet was resuspended in 1.5% alginate solution made with PBS (sterile-

filtered). The alginate-cell suspension was mixed carefully with a combination of 

pipetting and stirring to avoid accidental lysis of cells due to shear forces from the 

viscous alginate solution. The cell-alginate suspension was loaded into a 3mL syringe 

with a 22G needle and extruded dropwise into 50mM CaCl2/140mM NaCl for 

polymerization of the beads. The beads were incubated for about 2 minutes in the 

polymerization solution before being transferred to a separate well and washed twice in 

DMEM/F12 media prior to placement in culture media (DMEM/F12 +ITS +Vitamin C + 

10ng/mL FGF2 +10ng/mL TGFb3). RNA was isolated and purified using the Trizol® 

reagent (Life Technologies) according to the manufacturer’s protocol. RNA 

concentrations were determined using Thermo Scientific™ NanoDrop™ and RNA quality 

was determined on the Agilent Bioanalyzer 2100 (© Agilent technologies). 
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RNA-sequencing analysis: cDNA library preparation, sequencing, and alignment 

of reads  

cDNA libraries were prepared from 250ng of RNA using the reagents of the 

TruSeq RNA kit from Illumina® on the SciClone® workstation from PerkinElmer, Inc. 

Quality check of libraries was performed using DNA-1000 kit on the Agilent Bioanalyzer 

2100 ((© Agilent technologies). The concentration of each of the final libraries was 

determined using ThermoScientificTM QubitTM. We multiplexed 24 libraries, which were 

diluted, pooled together, and denatured with .2N sodium hydroxide. The final 

concentration of the libraries that were carefully loaded onto the sequencer was 1.3nM. 

We performed a 150 single-base pair read MidOutput run on the NextSeq 500 machine. 

The data is presented as Fastq files that are demultiplexed to create .bam files which are 

run through the standard pipelines utilizing STAR as the aligner and RSEM as the tool 

for annotation and quantification at both gene and isoform levels. 

Statistical analysis and Ingenuity pathway analysis 

RNA-seq data were quantified and normalized in Transcripts Per Kilobase Million 

(TPM) values, and available for 24596 genes. Multidimensional scaling plot of distances 

between gene expressions profiles were used to examine the relationship of samples. 

Differential expression analysis was conducted using the limma package in R169–171. A 

multi-level linear model was fitted to the expression data accounting for correlation 

between measurements made on the same cattle171. The false discovery rate (FDR) was 

controlled globally using the Benjamini and Hochberg algorithm172. Genes with FDR < 

0.05 and fold-change > 2 were judged to be differentially expressed. The datasets were 

uploaded into Ingenuity® Pathway Analysis (IPA®) tool (© Qiagen Bioinformatics) and 
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core and comparison analysis were performed on all datasets to identify canonical 

pathways and molecules that are differentially regulated. 

Results 

Younger and older bovine articular cartilage exhibit histological differences in 

proteoglycan content and collagen organization. 

 One of the hallmarks of aging articular cartilage is the gradual loss of 

proteoglycans and collagens and the infiltration of water; additionally, in older joints you 

can visualize macroscopic changes such as fibrillation and increased adiposity66,104,159. 

The joints that we harvested cells and cartilage biopsies from exhibited most, if not all, of 

these differences. The joint on the left is from a young cow, as evidenced by the pearly-

white covering of articular cartilage and the low level of fat that is deposited in the peri-

articular area (Figure 8A). Conversely, the joint on the right is from an older cow, as 

evidenced by the fibrillations on the articular surface, the loss of the shiny white gloss, 

and the increase in adiposity in the peri-articular area. The changes in proteoglycan and 

collagen content are commensurate with the macroscopic changes, as there is greater 

safranin-o and alcian blue staining, respectively, in the younger joint relative to the older 

joint (Figure 8B). Similarly, there is a graded decrease in proteoglycan content as the 

distance from the lesion site decreases in the older joint (Figure 8C). These results 

illustrate that there are significant macroscopic and ultrastructural changes that are 

occurring with age and at cartilage lesion sites.  
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Figure 8: Younger and older bovine articular cartilage exhibit histological 
differences in proteoglycan content and collagen organization. 

(A)  Photograph of the young (< 30 month of age, but no less than 20 month of age) 
bovine knee joint is shown on the left, while the old (> 40 months of age) bovine 
knee joint is shown on the right. 

(B)  Safranin-O staining was performed to assess proteoglycan content and alcian 
blue staining was performed to assess collagen content of articular cartilage from 
young and old bovine knee joints.  

(C)  Safranin-O staining was performed to assess proteoglycan content of articular 
cartilage at various distances from the site of a lesion. 
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Culture conditions influence the gene expression profile of articular chondrocytes 

more than age. 

 Given that expansion of articular chondrocytes in vitro leads to dedifferentiation, 

groups have sought to embed cells in a three-dimensional scaffold to maintain their 

phenotype126,149,173,174. To this end, orthopedic surgeons have combined collagen-based 

scaffolds with autologous chondrocytes in a procedure known as matrix-assisted 

autologous chondrocyte implantation (Figure 3). When examining the long-term efficacy 

of these procedures it was determined that juvenile cadaveric allogeneic cells 

maintained a hyaline phenotype far greater than those from autologous cells, indicating 

that age is a critical factor in cell quality116,117. In this study, we tested the 

interdependency of age and culture condition on the gene expression profile by culturing 

young and old bovine articular chondrocytes in two-dimensional monolayer culture, 

three-dimensional alginate culture, and tested the redifferentiation capacity of the cells 

by culturing in monolayer for seven days and embedding in alginate culture for seven 

days (Figure 9a). When examining the relationship of gene expression between samples 

using the multidimensional scaling plot, we find that samples clustered together based 

on culture condition (Figure 9b). For instance, regardless of age all the monolayer-

cultured samples cluster in the lower left quadrant; whereas, all the alginate-cultured 

samples cluster in the lower right quadrant (Figure 9b). Intriguingly, all the cells that 

underwent redifferentiation clustered in between the monolayer and alginate-cultured 

samples; however, there was greater scattering of the redifferentiated samples than the 

other two culture conditions. These results indicate that culture conditions have a greater 

influence on gene expression profile than age; additionally, the variability in the 
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redifferentiation process is illustrated by the increased scattering of gene expression 

profiles of cells that were embedded in alginate culture following dedifferentiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   67	
  

Figure 9: Culture conditions influence the gene expression profile of 
articular chondrocytes more than age. 

(A)  Schematic of experimental design defining the different culture conditions for 
RNA-sequencing  

(B)  Multidimensional scaling plot of distances between gene expression profiles to 
examine the relationship between samples. List of the 24 RNA samples 
submitted for RNA sequencing analysis. The number in the plot corresponds to 
the number of the sample. n=4 in the young population and n=3 in the older 
population.  
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There is greater genetic diversity among younger chondrocytes than older 

chondrocytes. 

While clustering was based on culture conditions, a closer examination of the 

samples illustrates that within a given culture condition there are subtle differences 

between the two age groups. When comparing the age groups in monolayer, alginate, 

and redifferentiated cultures there are 51, 48, and 15 differentially expressed genes 

between the two age groups (Figure 10a). The major chondrogenic genes however are 

not significantly differentially expressed between the age groups in any of the three 

culture conditions (Figure 10b). Upon reexamination of the multidimensional scaling plot 

it is appreciated that the expression profiles of younger samples cluster together within 

the monolayer and alginate culture conditions (Figure 9b). In contrast, the expression 

profiles of older cells cluster together upon redifferentiation more than the younger cells, 

potentially indicating greater transcriptional lability in the younger cells. These results 

illustrate that within culture conditions there are differences in expression profile between 

the two age groups as evidenced by the differentially expressed genes as well as the 

differential clustering, although the gene expressions that are significantly different do 

not include major chondrogenic genes. 
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Figure 10: Differential expression analysis of age in the various culture 
conditions. 

(A)  Venn diagram detailing the number of differentially expressed genes in an older 
joint relative to a younger joint in the three different culture conditions. 

(B)  Fold change of the major chondrogenic genes in an older joint relative to a 
younger joint in the three different culture conditions. 
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Traditional expression signatures of articular chondrocytes do not corroborate the 

culture condition-induced diversity of expression profiles. 

The distinct expression profiles between the samples based on culture conditions 

is reflected in the number of differentially expressed genes between culture conditions 

within an age group. Within the young chondrocytes there are 2824 genes differentially 

expressed between the Monolayer and Alginate groups, 1065 genes differentially 

expressed between the Monolayer and Redifferentiated groups, and 2771 genes were 

differentially expressed between the Alginate and Redifferentiated groups (Figure 11a). 

Similarly, within the older chondrocytes there are 2313 genes differentially expressed 

between the Monolayer and Alginate groups, 1399 genes differentially expressed 

between the Monolayer and Redifferentiated groups, and 2563 genes differentially 

expressed between the Alginate and Redifferentiated groups (Figure 11a). The higher 

number of differentially expressed genes between culture conditions within age groups, 

relative to the number of differentially expressed genes between age groups within 

culture conditions, agrees with the clustering of the gene expression profiles according 

to culture conditions. Once again, however, we do not find that the major chondrogenic 

genes are significantly differentially expressed between the culture conditions, with the 

exception being that Col1 is downregulated consistently in alginate cultures relative to 

monolayer cultures, regardless of age (Figure 11b). These results demonstrate that 

gene expression profiles are highly-dependent on the culture conditions; however, the 

major chondrogenic genes are not contributing to these vast differences in expression 

profile, which is in stark contrast to the studies in cartilage and chondrocyte biology that 

use these genes as sensitive markers of differentiation.  
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Figure 11: Differential expression analysis of the various culture conditions 
between the two age groups. 

(A)  Venn diagram detailing the number of differentially expressed genes between the 
three different culture conditions within the two age groups. 

(B)  Fold change of the major chondrogenic genes between the three different culture 
conditions within the two age groups. Asterisks denote significant upregulation 
and pounds denote significant downregulation. Genes with a False Discovery 
Rate (FDR) <.05 and fold change >2 were labeled as significant. 
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Discussion  

Orthopedic surgeons employ autologous chondrocyte implantation for repair of 

focal cartilage lesions109. A critical factor in the long-term efficacy of these procedure is 

the cell quality of the reimplanted cells116. Cell quality remains a key challenge for ACI 

because in vitro expansion of autologous chondrocytes leads to dedifferentiation, which 

promotes formation of biochemically and biomechanically inferior fibrocartilage upon 

reimplantation. Thus, there is an unmet need to define the culture systems and 

expression signatures that can identify and maintain a stable articular chondrocyte 

phenotype. Studies have shown that embedding chondrocytes in a three-dimensional 

scaffold maintains a stable phenotype, and subsequently has been adopted as a 

modification to ACI, whereby cells are implanted with a collagen scaffold118,119. 

Additionally, when juvenile cadaveric chondrocytes are used as a source of cells there 

was an improvement in the measures of chondrogenic potential for ACI, thereby 

establishing that age is a critical factor in chondrocyte quality117. 

In the previous chapter, we established that that culture condition-induced 

alterations in differentiation potential influence the response of articular chondrocytes to 

Ca2+ signaling, a primary mediator of mechanotransduction; intriguingly, however, we 

find that not all the major chondrogenic genes respond coordinately to dynamic Ca2+ 

signaling raising questions about the specificity and sensitivity of the markers that we 

use to classify chondrogenic articular chondrocytes83. To address these questions, in 

this chapter we utilized the deep sequencing technology of RNA sequencing to explore 

how the gene expression signature of articular chondrocytes changes across different 

culture conditions and across two age groups (Figure 8a, 9a); additionally, it allows us to 

address the efficacy of using conventional chondrogenic markers to define articular 
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chondrocytes152,175,176. Taking the results of the RNA sequencing and incorporating it into 

a multidimensional scaling plot allowed us to examine the relationship of the gene 

expression profile of the twenty-four samples to each other (Figure 9b). We found that 

samples from the same culture conditions clustered closer together than samples from 

the same age. Two-dimensional monolayer-cultured samples clustered far away from 

three-dimensional alginate cultured samples with the redifferentiated samples clustering 

in between the two. These results support the commonly-held hypothesis that two-

dimensional cultures of articular chondrocytes have a distinct genetic profile from three-

dimensional cultures of articular chondrocytes. This is the first study to perform an in-

depth expression profile of cells that have undergone redifferentiation, and while our 

hypothesis was supported by the intermediary relationship of the redifferentiated 

samples with the other two culture conditions, it was intriguing to find that the 

redifferentiated samples exhibited greater scattering in expression profiles relative to the 

other two culture conditions. This result reveals that there is a great deal of genetic 

diversity in the fate of cells that have dedifferentiated and undergone redifferentiation, 

calling into question the exact nature of the identity of these cells. Upon closer 

examination of the redifferentiated samples, we find that samples from older joints 

clustered tighter together, indicating a more similar expression profile, than samples 

from younger joints, which contrasts with what we anticipated. This suggests that there 

is greater transcriptional lability in the younger samples than in the older samples 

allowing for a more diverse genetic expression profile upon redifferentiation. A possible 

mechanistic explanation for this differential response to redifferentiation based on age 

may lie in the accrual of epigenetic events that lead to tighter epigenetic regulation in the 

older samples, thereby resulting in a constraint on the diversity of genetic fates upon 

redifferentiation. To test this hypothesis would require the removal of epigenetic marks 
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from older samples and examine if the expression profiles parallel the younger samples 

upon redifferentiation. Nonetheless, these results illustrate that the cells undergoing 

redifferentiation have great genetic heterogeneity than we first anticipated, explaining the 

variability in long-term efficacy of autologous chondrocyte implantation.   

To identify the efficacy of exclusively using chondrogenic markers to define 

articular chondrocytes we examined if they were included in the differentially expressed 

genes among all the samples. We find that when comparing the age groups in 

monolayer, alginate, and redifferentiated cultures there are 51, 48, and 15 differentially 

expressed genes between the two age groups (Figure 10a). The number of differentially 

expressed genes warrants the conclusion that the two age groups have different 

expression profiles; however, the chondrogenic genes would refute this conclusion 

because they are not significantly differentially expressed between the two age groups in 

any of the three culture conditions (Figure 10b). On the other hand, the number of 

differentially expressed genes between culture conditions within an age group is forty 

times more than the number of differentially expressed genes when comparing age 

groups within a culture condition (Figure 11a). This result corroborates the distribution of 

the samples on the multidimensional scaling plot, once again illustrating that the 

influence of culture conditions on the gene expression profile vastly outweighs the 

influence of age. Once again, however, we do not find that the major chondrogenic 

genes are significantly differentially expressed between the culture conditions, with the 

exception being that Col1 is downregulated consistently in alginate cultures relative to 

monolayer cultures, regardless of age (Figure 11b). These results cast further doubt 

regarding the reliability of using the major cartilage genes to understand the 

chondrogenic potential of articular chondrocytes. One possible explanation for these 
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results is that the normalization of the raw read counts of transcripts for the generation of 

the TPM values may mask the changes in expression that would otherwise be identified; 

as a result, the statistically significant changes in the chondrogenic genes observed in 

chapter 2 provide important biological information because expression was assessed 

using qRT-PCR151,175,177–179. Despite the modest changes in the chondrogenic genes the 

high number of differentially expressed genes across the culture conditions regardless of 

age illustrate the prodigious influence culture conditions have on the differentiation 

potential of articular chondrocytes. 

 This is the first study to examine the effects of interdependency of age and 

culture conditions on the gene expression profile of articular chondrocytes. The isogenic 

controls in the study ensure that the differences in expression profiles observed between 

culture conditions are not due to whole genome variations. Similarly, histological data 

from the same joints as the cells from which RNA was harvested for RNA-sequencing 

analysis helps correlate expression changes to macroscopic changes. Therefore, the 

experimental design provides confidence in the conclusion that regardless of age, 

culture conditions have a far greater influence on the expression profile of articular 

chondrocytes. The organization of the expression profiles with the redifferentiated cells 

falling in between the two-dimensional and three-dimensional cultures indicates that the 

genetic identity of the cells used for cartilage resurfacing procedure is unknown, as the 

cells are often dedifferentiated in vitro for expansion. An important question that stems 

from these studies is how can we modify the redifferentiation process to push the gene 

expression profile closer to the three-dimensional cultures, or even better towards the 

expression profile of native articular cartilage, which will be determined in future studies. 

This question can be addressed by modulating the temporal profile of the culture 
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conditions, as well as by modulating the soluble factors that are supplemented. These 

answers will allow us to modify the process by which we culture autologous 

chondrocytes prior to reimplantation to ensure the highest cell quality to improve upon 

the long-term efficacy of cartilage resurfacing procedures. However, the utility of the 

chondrogenic genes in ensuring the highest cell quality remains in doubt. One means to 

address this issue would be to identify the differentially expressed genes within the 

samples by utilizing the raw transcript counts. If this method of analysis revealed that the 

major chondrogenic genes were included in the significantly differentially expressed 

genes then it would reveal that there is a distinct layer of transcriptional regulation for the 

chondrogenic genes that is being normalized during standard RNA-sequencing analysis. 

If, however, the chondrogenic genes are shown to not be significantly differentially 

expressed, despite altering the method of analysis, then it would open a plethora of 

questions regarding why these markers of chondrogenic differentiation remain 

unchanged across culture conditions that have clearly distinct expression profiles. 

Furthermore, it would beg the question as to what expression signature would define an 

articular chondrocyte? Thus, the conclusions of this study are important for cell 

biologists, tissue engineers, and orthopedic surgeons alike because it would lead to a 

shift in how we define, modulate, and apply articular chondrocytes for enhancing the 

cartilage restorative process. 
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Developmental history highlights intersection of articular cartilage 

homeostasis and degeneration 

Articular cartilage, a metabolically and macroscopically inert tissue, works with 

ligaments, muscles, and synovial fluid to stabilize, strengthen, and lubricate diarthrodial 

joints, respectively1,36. This coordinated activity of all tissue types allows for painless, 

smooth locomotion and activity. There is a steady decline in the patency and function of 

articular cartilage with age, trauma to the joint, or other inciting metabolic and 

inflammatory agents128. The terminal condition of articular cartilage is its degeneration 

down to the subchondral bone plate of the long bone which it covers36. This full-

thickness degeneration is a hallmark of the classical condition osteoarthritis, which is 

also characterized by excessive inflammation and a disruption in synovial joint 

homeostasis180,181.  

End-stage osteoarthritis necessitates total joint replacement due to the 

excruciating pain that accompanies daily activity182,183. Prior to joint replacement, 

orthopedic surgeons have sought to resurface smaller cartilage lesions utilizing 

biological and tissue engineering principles115. These procedures, which will be 

discussed later in this chapter, aim to replace or regenerate cartilage lesions that often 

arise in the younger patient population following a traumatic joint injury, such as 

meniscal or ligament tears184,185. Traumatic injuries to the supporting structures of the 

joint destabilize the joint and result in an uneven distribution of forces on the articular 

surface106,186,187. The altered joint mechanics gradually give rise to the small cartilage 

lesions that further exacerbate joint homeostasis with the terminal condition being 

osteoarthritis and a need to replace the entire articular surface.  
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Joint mechanics are important because mechanotransduction pathways are the 

primary means by which cartilage homeostasis is maintained. In a healthy joint, articular 

cartilage can convert mechanical signals into efficient extracellular matrix 

remodeling62,96. In the immediate aftermath of a joint injury there is a sharp change in 

activity of articular cartilage due to an increase in extracellular matrix remodeling, but 

this burst of activity gradually normalizes within weeks143. It’s known, however, that 

individuals that have injuries that destabilize joints, such as meniscal or ligament tears, 

have a 10% increased risk of developing post-traumatic osteoarthritis and eventually 

necessitating joint replacement106,188–191. The central question that follows then is 

what gives rise to the progressive decline in articular cartilage homeostasis? The 

answer to this question will explain the biological mechanisms that lie at the intersection 

of cartilage homeostasis and degeneration. Additionally, addressing this question will aid 

in developing strategies to delay or prevent the development of full-thickness cartilage 

lesions, a potentially multi-billion-dollar relief for healthcare expenditure. 

Understanding the development of synovial joints has shed light on the 

fundamental mechanisms that direct embryonic and postnatal articular cartilage growth 

and maturation. There are three critical phases of synovial joint development: (1) 

Mesenchymal stem cell condensation, (2) interzone cell formation, and (3) joint 

cavitation2,3,4. While the cellular condensation dictates the temporal and spatial origins of 

the synovial joint, the origin of cartilage anlagens can be traced back to the interzone 

cells6,7. The expression profile and location within the layer of interzone cells 

distinguishes the progenitors of permanent from the progenitors of temporary cartilage. 

Following commitment to a specific lineage, mechanotransduction-mediated extracellular 

matrix remodeling is the primary driving force behind joint cavitation16–21. Like growth 
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plate cartilage, the differentiation and maturation of articular cartilage continues 

postnatally, however, there are multiple models to explain articular cartilage 

maturation23–25. The differential growth models discussed in Chapter 1 illustrate that 

there is still debate regarding the metabolic profile of the tissue. If the postnatal growth is 

mediated by proliferation there must be initiating and terminating signals for due to the 

paucity of metabolic resources to support a constantly proliferating tissue26. Conversely, 

the interstitial growth model hinges on efficacious extracellular matrix remodeling as a 

means of increasing tissue growth33. This model has yet to resolve, however, the 

temporal and spatial details of the signals that direct the breakdown and synthesis of the 

extracellular matrix. It follows then that articular cartilage developmental dynamics may 

parallel the mechanisms of cartilage homeostasis in mature tissue. 

In the fully mature articular cartilage, cartilage homeostasis relies on the 

interdependence of extracellular matrix composition and articular chondrocyte matrix 

remodeling. As highlighted in Chapter 1 articular chondrocytes respond to mechanical 

and chemical changes in the pericellular matrix as an initial step in the remodeling of the 

extracellular matrix45,192. Additionally, the gradual change in relative proportions of 

articular cartilage composition with mechanical, chemical, and biological insults play a 

critical role in how chondrocytes receive and respond to stimuli. It follows then, would 

modification of the extracellular matrix be sufficient to restore cartilage homeostasis 

following traumatic joint injury? Or would injection of mesenchymal stem cells into 

relatively healthy extracellular matrix be sufficient for the cells to efficiently differentiate 

into adult chondrocytes for subsequent repair of cartilage lesions? Furthermore, recent 

studies have evidence that following injury, cells migrate towards the defect site to 

initiate a repair response, which begs the questions is it sufficient to introduce 
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chemotactic agents into an injured joint to potentiate a repair response through this 

mechanism193? 

Surgical procedures to resurface joints in the young, active patient were also 

highlighted in chapter 1. The four main procedures reviewed were microfracture surgery, 

ACI/MACI, and AMIC115,119. All procedures aim to replace a degenerating site of cartilage 

with an autologous, marrow, or stem cell population complemented with or without a 

three-dimensional scaffold to maintain the cellular differentiation potential115,194. The 

successes and shortcomings of these procedures highlight the ingenuity of 

collaborations between biologists, tissue engineers, and orthopedic surgeons, while 

drawing attention to problems whose solutions will improve long-term efficacy. There are 

two critical unmet needs with all procedures highlighted by recent studies: (1) improving 

quality of implanted cells and (2) properties of implanted scaffolds. A recent study 

illustrated that cell quality affects the long-term efficacy of ACI’s, which was addressed 

by using allogeneic juvenile articular chondrocytes by another group, which raises the 

question how do articular chondrocytes change with age116,117? Another strategy to 

address hypertrophy and dedifferentiation of implanted cells is the engineering of 

cartilage constructs with scaffolds from varying biological sources, such as chitosan118. 

The development of cartilage constructs in the field of tissue engineering raises the 

question, how do articular chondrocytes modulate their transcriptional profile when 

forced to be in environments that alter their differentiation potential? The studies detailed 

in chapters 2 and 3 address these questions by illustrating the coordinated relationship 

between transcriptional profile and differentiation potential with varying extracellular 

matrix composition and age groups.  
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Differentiation potential of chondrocytes dictates response to loading 

events 

My studies began with exploring how the chondrogenic potential of primary 

bovine articular chondrocytes alters their response to Ca2+ signaling. Given that articular 

chondrocytes reside in an avascular, aneural, and nutrient-deficient environment in vivo 

we can modulate the differentiation potential of cells by culturing them in either serum-

containing (dedifferentiating) or serum-free (chondrogenic) media (Figure 4). Serum-free 

cultures display significantly higher Col2:Col1 ratio, a well-established differentiation 

index, than serum-containing cultures. To simulate a joint loading event the cells were 

treated with elevated [Ca2+] for up to three hours that elicited activation of downstream 

mechanosensitive pathways. We find that chondrocytes maintained in serum-free 

medium, but not in serum containing medium, upregulated chondrogenic genes (e.g. 

Sox9) and secreted hyaline cartilage constituents (e.g. Col6 and Col2) in response to 

dynamic (pulsatile) Ca2+ stimulation (Figure 6). As a result, chondrocytes that have 

maintained their differentiation potential respond to stimuli with different signaling 

dynamics than cells that have dedifferentiated. This finding is critical for the field of 

chondrocyte biology and tissue engineering, because it informs us that the downstream 

effect of mechanical stimulation is highly dependent on the differentiation status of cells, 

which is known to be variable in the various resurfacing procedures. These results begin 

to address the central question by positing that the differentiation status of articular 

chondrocytes is critical for maintaining cartilage homeostasis; additionally, this study 

introduces that calcium signaling dynamics must be tightly regulated for maintenance 

and enhancement of chondrogenesis. To this end, we can improve upon the study by 

utilizing tools, such as optogenetics, to spatially and temporally activate calcium 
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signaling to attain greater control of the system195–198. Precise control of the system 

would allow us to ask questions about how calcium signaling affects the transcriptional 

dynamics, thereby providing a mechanistic link between changes in calcium signaling 

and differentiation status of articular chondrocytes. Therefore, while this study illustrates 

that calcium signaling helps us determine the chondrogenic potential of articular 

chondrocytes, it also opens the possibility of asking what are other means of assessing 

the differentiation potential of articular chondrocytes?  

Redifferentiation of articular chondrocytes sheds light on transcriptional 

lability 

The studies in Chapter 2 illustrated that we can modulate the differentiation 

potential of the cells by altering the culture media. Embedding the cells in a hydrogel 

scaffold, such as alginate, is another means to modulate the differentiation 

potential145,148,149. Additionally, recent clinical studies have illustrated that the age of the 

cells used for resurfacing procedures affects the long-term outcomes117. Given the 

importance of culture conditions and age of the cells on the differentiation potential of 

articular chondrocytes, we asked what effect the interdependency of age and culture 

conditions have on the expression profiles of articular chondrocytes in chapter 3. We find 

that culture condition-dependent alterations in transcriptional profile of bovine articular 

chondrocytes are independent of age (Figure 9). However, there is greater genetic 

diversity among younger chondrocytes than among older chondrocytes upon 

redifferentiation. Additionally, we find that traditional expression signatures of articular 

chondrocytes do not corroborate the culture condition-induced diversity of expression 

profiles (Figure 10, Figure 11). The prodigious influence of culture conditions illustrates 

that the continually remodeled extracellular matrix with age and joint injury in vivo, which 
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macroscopically produce gradual changes that can be repaired, there is a fundamental 

alteration in the gene expression profile of the resident articular chondrocytes. 

Furthermore, the tight expression profile of older chondrocytes, relative to younger 

chondrocytes, upon redifferentiation indicates that aging factors are preventing articular 

chondrocytes from transcriptionally adapting to a changing extracellular environment. 

While it is uncertain what the genetic profile of the redifferentiated cells are, this genetic 

diversity illustrates the potential for this cell type to be used in synthetic biology. 

Modulation of temporal profiles of culture conditions, modulation of the stiffness or 

composition of the hydrogels, and modulation of the soluble factors utilized would 

provide identify the factors contributing to the change in gene expression profile of 

articular cartilage from a healthy joint all the way to the articular cartilage that lines a 

degenerating joint.  

Probing the transcriptional networks of articular chondrocytes through 

synthetic biology 

The studies presented in this dissertation show that the changing extracellular 

matrix in an aging joint alters the transcriptional profile of articular chondrocytes through 

changes in signaling dynamics, such as Ca2+ signaling. However, there is a lot that 

needs to be parsed in terms of articular chondrocyte biology from healthy, post-

traumatic, and arthritic cartilage. Across these stages, we anticipate that changes in lipid 

metabolism, autophagy, senescence-associated pathways, and metabolic 

reprogramming directly shift the transcriptional profile of articular chondrocytes100,199–

201,202. I believe that we can understand these transcriptional states using synthetic 

biology to engineer transcriptional networks and asking how specific modulation of 

signaling pathways affect chondrocyte biology203–206. Ultimately, I believe that we must 



	
   88	
  

ask ourselves the question, how does the state of the articular chondrocyte affect the 

ability of articular cartilage to function? The end goal would be to have the capability to 

reprogram or enhance articular chondrocytes in coordination with the changing joint 

biology.  
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