Document Type

Article

Journal Title

The Journal of neuroscience

Publication Date

8-12-2015

Volume

35

Abstract

UNLABELLED: In addition to vesicle release at synaptic ribbons, rod photoreceptors are capable of substantial slow release at non-ribbon release sites triggered by Ca(2+)-induced Ca(2+) release (CICR) from intracellular stores. To maintain CICR as rods remain depolarized in darkness, we hypothesized that Ca(2+) released into the cytoplasm from terminal endoplasmic reticulum (ER) can be replenished continuously by ions diffusing within the ER from the soma. We measured [Ca(2+)] changes in cytoplasm and ER of rods from Ambystoma tigrinum retina using various dyes. ER [Ca(2+)] changes were measured by loading ER with fluo-5N and then washing dye from the cytoplasm with a dye-free patch pipette solution. Small dye molecules diffused within ER between soma and terminal showing a single continuous ER compartment. Depolarization of rods to -40 mV depleted Ca(2+) from terminal ER, followed by a decline in somatic ER [Ca(2+)]. Local activation of ryanodine receptors in terminals with a spatially confined puff of ryanodine caused a decline in terminal ER [Ca(2+)], followed by a secondary decrease in somatic ER. Localized photolytic uncaging of Ca(2+) from o-nitrophenyl-EGTA in somatic ER caused an abrupt Ca(2+) increase in somatic ER, followed by a slower Ca(2+) increase in terminal ER. These data suggest that, during maintained depolarization, a soma-to-terminal [Ca(2+)] gradient develops within the ER that promotes diffusion of Ca(2+) ions to resupply intraterminal ER Ca(2+) stores and thus sustain CICR-mediated synaptic release. The ability of Ca(2+) to move freely through the ER may also promote bidirectional communication of Ca(2+) changes between soma and terminal.

SIGNIFICANCE STATEMENT: Vertebrate rod and cone photoreceptors both release vesicles at synaptic ribbons, but rods also exhibit substantial slow release at non-ribbon sites triggered by Ca(2+)-induced Ca(2+) release (CICR). Blocking CICR inhibits >50% of release from rods in darkness. How do rods maintain sufficiently high [Ca(2+)] in terminal endoplasmic reticulum (ER) to support sustained CICR-driven synaptic transmission? We show that maintained depolarization creates a [Ca(2+)] gradient within the rod ER lumen that promotes soma-to-terminal diffusion of Ca(2+) to replenish intraterminal ER stores. This mechanism allows CICR-triggered synaptic release to be sustained indefinitely while rods remain depolarized in darkness. Free diffusion of Ca(2+) within the ER may also communicate synaptic Ca(2+) changes back to the soma to influence other critical cell processes.

MeSH Headings

Ambystoma, Animals, Calcium, Calcium Signaling, Darkness, Endoplasmic Reticulum, Female, Male, Retinal Rod Photoreceptor Cells, Ryanodine, Ryanodine Receptor Calcium Release Channel, Synapses, Synaptic Transmission

ISSN

1529-2401

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Included in

Ophthalmology Commons

Share

COinS