USP6 Translocation in Giant Cell Granulomas of the Jaws

Nagamani Narayana

Follow this and additional works at: https://digitalcommons.unmc.edu/cod_pres
INTRODUCTION

- Central giant cell granulomas (CGCG) account for 7% of all benign tumors of the jaw while peripheral giant cell granulomas (PGCG) occur on the gingiva (Table 1).
- The underlying pathophysiology of CGCG and PGCG is not known. Therefore there are studies attempting to identify biomarkers to increase understanding the pathogenesis of CGCG and PGCG.
- Some authors consider CGCG in jaw bones similar to giant cell tumors of long bones while others believe them to be reactive or non-neoplastic lesions.
- Recurrence of these lesions following conservative treatment is attributed to matrix metalloproteinases, namely MMP9. Recent studies have shown an increase in levels of MMP 9 in central and peripheral giant cell granulomas as in aneurysmal bone cysts (ABC).
- De-ubiquitinating enzymes play an important role in cellular processes, though their precise role in normal physiology is not fully understood. USP6 is the first de-ubiquitinating enzyme recognized as an oncogene.
- Recently studies have described the USP6 translocation in CGCG as transforming this lesion to a neoplasm. This retrospective study analyzed two cases of CGCG and one PGCG for the USP6 translocation.

MATERIALS & METHODS

- Studied representative samples from two cases of recurrent CGCG and one case of recurrent PGCG, respectively, each case exhibited typical microscopic and radiographic features of CGCG and PGCG.
- The clinical data for three patients are summarized in Table 2. Fluorescence in situ hybridization (FISH) study:
- Deparaffinized paraffin-embedded 4 µm tissue sections in xylene, dehydrated in 100% ethanol, and treated with 100mmol/L Tris and 50mmol/L EDTA (pH7.0) for 15 minutes at 93°C.
- Rinsed tissue sections once in PBS and protein digested with Digest All 3.
- Sequentially dehydrated these slides in alcohol (70%, 85%, 95% and 100%) and air dried for an hour at room temperature.
- Denatured tissue sections at 75°C for 2 minutes and carried out BAC probe hybridization overnight in a humidified chamber at 37°C.
- Washed tissue sections in 0.5 x SSC for 5 minutes at 73°C and treated with CAS block for 10 minutes.
- Performed USP6 probe detection using FITC-anti-diposiganin (1:500) and Alexa Fluor 594-streptavidin (1:500) (molecular probe, Eugene, OR) for 30 minutes.
- Mounted slides in Vectashield mounting medium.
- CGCG and PGCG scored positive for gene rearrangement if more than 5% of cells showed splitting apart of the FISH probes.

RESULTS

DISCUSSION

- WHD has defined CGCG as an intraosseous lesion consisting of cellular fibrous tissue containing multiple foci of hemorrhage, aggregations of multinucleated giant cells and occasional trabeculae of woven bone.
- CGCG can present as unicellular or multinuclear, radiolucent bone lesions while PGCG occurs as a gingival lesion.
- In this pilot study, recurrent CGCG and PGCG failed to demonstrate a rearrangement of USP6 genes. This lack of USP6 rearrangement suggests a reactive rather than a neoplastic pathogenesis.
- Future studies to understand the pathogenesis of these poorly understood lesions is suggested to confirm this hypothesis.

CONCLUSION

The results of this pilot study imply that CGCG and PGCG are reactive lesions with little or no neoplastic potential and may be managed conservatively.