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a b s t r a c t

Angiotensin II (AngII) is the main effector peptide of the renin–angiotensin system (RAS), and contributes
to the pathogenesis of cardiovascular disease by exerting its effects on an array of different cell types,
including central neurons. AngII intra-neuronal signaling is mediated, at least in part, by reactive oxygen
species, particularly superoxide (O2

d�). Recently, it has been discovered that mitochondria are a major
subcellular source of AngII-induced O2

d� . We have previously reported that over-expression of
manganese superoxide dismutase (MnSOD), a mitochondrial matrix-localized O2

d� scavenging enzyme,
inhibits AngII intra-neuronal signaling. Interestingly, over-expression of copper/zinc superoxide dis-
mutase (CuZnSOD), which is believed to be primarily localized to the cytoplasm, similarly inhibits AngII
intra-neuronal signaling and provides protection against AngII-mediated neurogenic hypertension.
Herein, we tested the hypothesis that CuZnSOD over-expression in central neurons localizes to
mitochondria and inhibits AngII intra-neuronal signaling by scavenging mitochondrial O2

d� . Using a
neuronal cell culture model (CATH.a neurons), we demonstrate that both endogenous and adenovirus-
mediated over-expressed CuZnSOD (AdCuZnSOD) are present in mitochondria. Furthermore, we show
that over-expression of CuZnSOD attenuates the AngII-mediated increase in mitochondrial O2

d� levels
and the AngII-induced inhibition of neuronal potassium current. Taken together, these data clearly show
that over-expressed CuZnSOD in neurons localizes in mitochondria, scavenges AngII-induced mitochon-
drial O2

d� , and inhibits AngII intra-neuronal signaling.
& 2013 The Authors. Published by Elsevier B.V. All rights reserved.

Introduction

The brain renin–angiotensin system (RAS) plays an essential
role in the pathogenesis of hypertension [1]. Angiotensin II (AngII)
is the main effector peptide of the RAS, and elicits its pressor

response primarily through angiotensin type 1 receptors (AT1R) [2].
AT1R stimulation initiates a signaling cascade that activates NADPH
oxidases (NOX) and increases intra-cellular levels of superoxide (O2

d�)
[3–5]. While the importance of O2

d� in AngII intra-neuronal
signaling has been repeatedly and convincingly shown, the exact
mechanism of how O2

d� acts as an effector molecule and the
subcellular localization of its production in AngII signaling is not
fully understood.

Superoxide is formed in numerous subcellular compartments,
but recent evidence indicates a major location of AngII-induced
O2

d� production is the mitochondria. For example, mitochondrial
O2

d� has been shown to mediate both the pressor response and
sympathoexcitation induced by AngII in the rostral ventrolateral
medulla of the brain [6,7]. Additionally, we have demonstrated
that AngII-mediated mitochondrial O2

d� leads to the inhibition of
neuronal potassium (Kþ) current [8]. Recently, we reported that
one of the NOX isoforms (i.e. NOX4) is located in neuron mito-
chondria, and contributes to the increase in mitochondrial O2

d�

flux after AngII stimulation [9]. Due to the significant role
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mitochondrial O2
d� plays in AngII-mediated signaling, increased

scavenging of this reactive oxygen species (ROS) could prove
beneficial in the treatment of AngII-mediated hypertension.

The superoxide dismutase (SOD) family of enzymes possesses
the unique ability to convert O2

d� to hydrogen peroxide (H2O2)
and oxygen [10]. In mammalian systems, two intra-cellular iso-
forms of SOD exist: copper/zinc (CuZnSOD) and manganese
(MnSOD). MnSOD is exclusively located within the mitochondrial
matrix, while CuZnSOD is thought to be primarily located in the
cytoplasm of cells [10]. Previous studies have demonstrated that
adenovirus-mediated over-expression of either CuZnSOD or
MnSOD in the brain decreases blood pressure in hypertensive
animal models [5,8,11,12], but how these differentially-located
enzymes elicit the same effect is unknown.

Previous studies have shown CuZnSOD to be expressed not
only in the cytoplasm, but also in the mitochondrial inter-
membrane space (MIMS) of certain cell types including neurons
[13–17]. However, the function of mitochondrial-localized CuZn-
SOD as it relates to AngII intra-neuronal signaling has not been
fully elucidated. In addition, it remains unclear if adenoviral-
mediated over-expression of CuZnSOD results in increased expres-
sion of active CuZnSOD in mitochondria. Here, we present data
demonstrating that both endogenously and adenovirus-mediated
over-expressed CuZnSOD are associated with the mitochondria of
central neurons. Furthermore, we reveal that over-expression of
CuZnSOD in neurons attenuates mitochondrial-derived O2

d� and
inhibition of neuronal potassium current (Ikv) in response to AngII.
Overall, this study shows the presence of active CuZnSOD in
neuron mitochondria following adenovirus-mediated gene trans-
fer, and furthers the importance of mitochondrial O2

d� in AngII
intra-neuronal signaling.

Methods and materials

Cell culture

Mouse catecholaminergic neurons (CATH.a cell line, ATCC
#11179), were cultured in the RPMI 1640 medium (supplemented
with 8% normal horse serum, 4% fetal bovine serum, and 1%
penicillin–streptomycin) and maintained in 5% CO2 at 37 1C. Prior
to experimentation, neurons were differentiated utilizing N6,2′-O-
dibutyryladenosine 3′,5′-cyclic monophosphate sodium salt
(1 mM, Sigma, St. Louis, MO, USA) for 6–8 days [8,18].

Adenovirus transduction

For over-expression studies, replication-deficient recombinant
adenovirus (Ad5-CMV) encoding human CuZnSOD (AdCuZnSOD)
or control vector (AdEmpty) was obtained from ViraQuest Inc.
(North Liberty, IA). On day 3 of differentiation, CATH.a neurons
were transduced with 50 multiplicity of infection (MOI) of
respective virus for 24 h in serum-free media. Complete media
was replaced for an additional 4 days post-infection prior to
experimentation [19].

Immunofluorescence and confocal microscopy

Differentiated and transduced CATH.a neurons were incubated
with 250 nM MitoTracker Red (Invitrogen, Molecular Probes, Carls-
bad, CA) for 20 min, as previously described [8], to localize mito-
chondria. Following this, cells were fixed in 4% paraformaldehyde
and subjected to CuZnSOD immunofluorescence staining. Neurons
were incubated with blocking buffer (phosphate buffer supplemen-
ted with 10% normal horse serum and 0.3% Triton X-100) for 1 h at
room temperature, then incubated with primary CuZnSOD antibody

(1:500 dilution, The Binding Site Limited, Birmingham, UK) overnight
at 4 1C. Following washout of the primary antibody, neurons were
incubated with FITC-conjugated secondary antibody (1:500 dilution,
The Binding Site Limited, Birmingham, UK) for 2 h at room tempera-
ture. Fluorescent images were acquired with a Zeiss 510 Meta
Confocal Laser Scanning Microscope.

Mitochondrial isolation

Mitochondria were isolated as previously described [8,20].
Briefly, CATH.a neurons were homogenized in ice-cold buffer A
(225 mM mannitol, 65 mM sucrose, 10 mM HEPES, and 1 mM
EGTA) using a glass Dounce homogenizer. The homogenates were
centrifuged at 500g for 6 min at 4 1C to eliminate cellular debris.
The supernatant was collected and centrifuged at 10,000g for
10 min at 4 1C to obtain mitochondria-enriched pellet. This
mitochondria-enriched pellet was resuspended with ice-cold
buffer B (225 mM mannitol, 65 mM sucrose, and 10 mM HEPES),
and washed twice by centrifugation. The final mitochondrial
fraction was subjected to standard Western blot analysis.

Western blot analysis

Immunoblotting was performed onwhole cell lysates and isolated
mitochondrial fractions. Briefly, samples were separated on 4–20%
gradient pre-casted denaturing gels, followed by a transfer to
nitrocellulose membranes. After blocking, membranes were incu-
bated with primary antibody (CuZnSOD – 1:1000 dilution, Santa Cruz
Biotechnology, CA; MnSOD – 1:2000 dilution, Upstate Biotech/Milli-
pore, Billerica, MA; cytochrome c oxidase subunit IV, COXIV – 1:1000
dilution, Abcam, Cambridge, MA; lactate dehydrogenase, LDH –

1:1000 dilution, Abcam, Cambridge, MA; calnexin – 1:1000 dilution,
Abcam, Cambridge, MA) overnight at 4 1C. Following washout of
primary antibody, membranes were incubated with secondary anti-
body (1:10,000, Thermo Scientific, Rockford, IL) for 1 h at room
temperature. After addition of chemiluminescence substrate (Pierce
Enhanced Detection System, Thermo Scientific, Rockford, IL), images
were acquired by a UVP Bioimaging System.

SOD activity assay

CuZnSOD and MnSOD activity in whole cell lysates and mito-
chondrial fractions from CATH.a neurons was determined by a semi-
quantitative in-gel activity assay as previously reported [21]. Briefly,
60 mg of protein was separated by electrophoresis on a 12.5% native
gel, which was then stained with 2.4 mM nitroblue tetrazolium,
28 mM riboflavin, and 28 mM N,N,N,N-tetramethylethylenediamine
for 20 min in dark. Following washout of the staining solution with
distilled water, the gel was illuminated under a fluorescent light until
achromatic bands appeared. SOD enzymatic activity is indicated by
the intensity of achromatic bands.

Mitochondrial superoxide analysis

CATH.a neurons were incubated with MitoSOX Red (Invitrogen,
Molecular Probes, Carlsbad, CA), a O2

d� sensitive fluorogenic
probe, and MitoTracker Green (Invitrogen, Molecular Probes,
Carlsbad, CA), a mitochondrial marker, as previously described
[8,22]. Briefly, non-transduced control, AdEmpty, and AdCuZnSOD-
transduced CATH.a neurons were loaded with 1 mM of MitoSOX
Red (excitation: 405 nm and emission: 505–550 nm) for 20 min
and 50 nM of MitoTracker Green (excitation: 488 nm and emis-
sion: 575–615 nm) for 30 min. Fluorescence images were acquired
with a Zeiss 510 Meta Confocal Laser Scanning Microscope before
and after addition of 100 nM AngII for 30 min. Individual neurons
within an image were identified as a region of interest (ROI) and
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fluorescence intensity from each ROI was quantified using the
Zeiss LSM 510 analysis software. AngII-induced changes in Mito-
SOX Red fluorescence are reported as fold-change from baseline
(pre-AngII) fluorescence.

Electrophysiological recordings

Neuronal Kþ currents (Ikv) were recorded from CATH.a neurons
using an Axopatch 200B amplifier (Axon Instruments) in the
standard whole cell configuration of the patch-clamp technique,
as we previously described [19,23]. Current traces were sampled at
10 kHz and filtered at 5 kHz. Holding potential was �80 mV.
Current–voltage (I–V) relations were elicited by test potential over
the range of �80 to þ80 mV with 200-ms duration in 20-mV
increments. Using this protocol, we were able to measure peak Kþ

current (Ipeak), which includes the transient outward Kþ current,
and the steady-state current (Isteady-state) at the end of the 200-ms
pulse. Resulting data were acquired and analyzed with Clampfit
9.2 software (Axon Instruments). The effect of AngII on Ipeak and
Isteady-state was tested by superfusing CATH.a neurons with AngII
(100 nM) for 5 min and repeating the voltage pulse regimen.
Recordings were performed at 22–24 1C.

Statistical analysis

Data are presented as mean7standard error of the mean (SEM)
and were analyzed by Student's t-test for two-group comparisons or
by ANOVA followed by the Newman–Keuls correction for multiple
comparisons. GraphPad Prism 5.0 statistical and graphing software
was used. Differences were considered significant at po0.05.

Results

Endogenously and exogenously expressed CuZnSOD are found in
neuron mitochondria

Previous reports have shown CuZnSOD expression in the inter-
membrane space of mitochondria in various cell types including

neurons [13–17]. To validate that CuZnSOD is present in the mito-
chondria of AngII-sensitive neurons, mouse catecholaminergic neuro-
nal cells (CATH.a neurons), which have been used extensively to
investigate AngII intra-neuronal signaling mechanisms, were studied.
Representative confocal microscopy images reveal co-localization of
endogenous mouse CuZnSOD with the mitochondrial-targeted fluor-
escent probe MitoTracker Red (Fig. 1, top row). Furthermore, over-
expression of human CuZnSOD via adenoviral-mediated gene transfer
drastically enhances this co-localization (Fig. 1, bottom row). Taken
together, these data infer the association of CuZnSOD with mitochon-
dria in AngII-sensitive CATH.a neurons.

CuZnSOD protein and activity are found in enriched neuron
mitochondrial fractions

To further authenticate the localization and function of CuZn-
SOD in mitochondria of neurons, mitochondrial-enriched sub-
cellular fractions were isolated from CATH.a neurons. Western
blot analysis confirms the purity of the mitochondrial preparation
as only MnSOD and cytochrome C oxidase subunit IV (COXIV), two
well-characterized mitochondrial-localized proteins, were
enriched in the mitochondrial fraction (Fig. 2A). In contrast,
cytosolic (i.e. lactate dehydrogenase [LDH]) and endoplasmic
reticulum (i.e. calnexin) proteins demonstrated negligible immu-
noreactivity in the mitochondrial fraction, implying a highly pure
representation of only mitochondria in the preparation (Fig. 2A).
Endogenous mouse CuZnSOD (mCuZnSOD) was shown to be
located in both the whole cell lysate and mitochondrial fraction
as determined by Western blot analysis. This distribution was
carried through to adenovirus-mediated over-expressed human
CuZnSOD (hCuZnSOD) as well (Fig. 2A). Moreover, endogenous
and exogenous (i.e. human) CuZnSOD enzymes demonstrated
activity in both the whole cell lysate and mitochondrial fraction
as indicated by the in-gel SOD activity assay (Fig. 2B). Overall,
these data strongly indicate the localization of catalytically active
CuZnSOD in mitochondria of neurons and that over-expressed
CuZnSOD protein via adenovirus transduction is robustly
expressed and active in neuron mitochondria.

Fig. 1. CuZnSOD protein expression in neuron mitochondria. Representative confocal microscopy images showing MitoTracker Red (red fluorescence; left), CuZnSOD (green
fluorescence; middle), and merged images (yellow with DIC; right) in control non-transduced CATH.a neurons (top row) or neurons transduced with AdCuZnSOD (50 MOI).
Arrows in merged image indicate co-localization of MitoTracker Red and CuZnSOD.
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Over-expression of CuZnSOD attenuates AngII-induced increase in
mitochondrial O2

d�

We previously reported that AngII significantly increases mito-
chondrial O2

d� in CATH.a neurons, and this escalation is attenuated
by over-expressing the mitochondrial-localized MnSOD [8]. Consid-
ering our new data (Figs. 1 and 2) showing that CuZnSOD is localized
in part to the mitochondria, we aimed to investigate if over-
expression of CuZnSOD could also diminish AngII-mediated mito-
chondrial O2

d�
flux. To query this, live CATH.a neurons transduced

with either AdCuZnSOD or control adenovirus (AdEmpty) were
stained with both the mitochondrially-targeted O2

d�-sensitive dye,
MitoSOX Red, and a fluorescent mitochondrial marker, MitoTracker
Green. As expected, in AdEmpty-transduced neurons AngII stimu-
lated an increase (approximately 5.5-fold) in MitoSOX Red fluores-
cence that co-localized with the MitoTracker Green fluorescence,
suggesting an increase in mitochondrial O2

d� production (Fig. 3). In
contrast, AngII-stimulated neurons transduced with AdCuZnSOD
displayed significantly less MitoSOX Red fluorescence (Fig. 3). These
data indicate that increased activity of CuZnSOD in neuron mito-
chondria following adenoviral transduction can attenuate the AngII-
mediated increase in mitochondrial O2

d� levels.

CuZnSOD over-expression attenuates AngII-induced inhibition of
neuronal potassium current (Ikv)

To investigate the functional significance of over-expressing
CuZnSOD in neuron mitochondria, whole-cell patch-clamping to
elucidate AngII-induced changes in Ikv was performed on AdCuZnSOD-
transduced CATH.a neurons. As previously reported [8], AngII

significantly decreased outward Ipeak and Isteady-state in non-
transduced control neurons and neurons transduced with
AdEmpty (Fig. 4). In contrast, this attenuation in Ikv was signifi-
cantly inhibited in CATH.a neurons over-expressing CuZnSOD
(Fig. 4). Taken together, these data indicate that increased expres-
sion of active CuZnSOD in neuron mitochondria via adenovirus-
mediated gene transfer is sufficient to offset AngII-mediated intra-
neuronal signaling and downstream physiological endpoints.

Discussion

In the present study, we confirm the observation of endogen-
ous CuZnSOD localization to the mitochondria of neurons. Further-
more, we found that over-expression of CuZnSOD via adenoviral
transduction significantly increases the levels of active CuZnSOD in
neuron mitochondria. This increased expression of CuZnSOD in
mitochondria attenuated AngII-mediated increases in mitochon-
drial O2

d� and the AngII-induced inhibition of Ikv. We have
previously reported similar findings by over-expressing MnSOD
[8], which extends the importance of mitochondrial O2

d� in AngII-
mediated signaling. While CuZnSOD activity is canonically thought
to be cytoplasmic in origin, our data presented here suggest a
functional role for the antioxidant enzyme at a specific subcellular
organelle. Most importantly, our findings challenge previous
interpretations of AdCuZnSOD inhibiting AngII intra-cellular sig-
naling because of its ability to scavenge only cytoplasmic O2

d� ,
and suggest that CuZnSOD over-expression may inhibit AngII
signaling because of its ability to scavenge mitochondrial-
localized O2

d� .
Reactive oxygen species (ROS) are critical mediators of cellular

signaling, and one specific ROS, O2
d� , has been demonstrated as a

main effector molecule in AngII intra-neuronal signaling
[4,5,24,25]. One established mechanism of increased O2

d� in
neurons in response to AngII is NADPH oxidase activation
[26,27]. We have recently shown that NADPH oxidase 4 (NOX4)
is located in neuron mitochondria, and is a source of O2

d� in
response to AngII [9]. While NOX4 may be a source of AngII-
mediated O2

d� in neuron mitochondria, other sources of mito-
chondrial O2

d� have also been proposed. A secondary source of
mitochondrial O2

d� may derive from the opening of mitochondrial
KATP channels (mitoKATP). mitoKATP have shown to be activated in
the presence of O2

d� , which would occur during time of increased
NOX activation and could lead to aberrant mitochondrial function
due to electron leakage from complexes I and III [28]. Another
source of mitochondrial O2

d� can be from the mitochondrial
permeability transition (MPT). Similar to the mitoKATP channels,
the MPT has been shown to be sensitive to ROS as well as calcium
[29]. The opening of the MPT pore alters mitochondrial metabo-
lism and function, and thus creates a viscous cycle of ROS
generation following a preliminary ROS stimulus, which may be
initiated by AngII and the NOX family of enzymes. Interestingly,
while numerous sources of mitochondrial O2

d� have been identi-
fied as potential manufacturers of the AngII-mediated ROS, very
little is known about the O2

d� spatial location within the mito-
chondria. O2

d� produced on the matrix side of the mitochondria
may exert very different effects from O2

d� produced in the inter-
membrane space. Understanding of the spatial O2

d� production in
mitochondria may be critical in AngII-mediated intra-neuronal
signaling, and thus further studies are warranted to fully elucidate
the specific origins of the O2

d� in response to AngII.
CuZnSOD was first identified in the MIMS by Irwin Fridovich in

1973 [17], but how CuZnSOD is transported into the MIMS has
remained elusive. CuZnSOD requires disulfide formation as well as
copper insertion that are performed by the copper chaperone for
SOD1 (CCS) [30,31]. Interestingly, CuZnSOD has been shown to

Fig. 2. Adenovirus-mediated over-expression of CuZnSOD in CATH.a neurons results
in expression of active CuZnSOD in mitochondria. (A) Representative Western blot
analysis showing CuZnSOD protein expression in whole cell lysates and mitochondrial
fractions collected from control non-transduced, AdEmpty-transduced, or AdCuZnSOD-
transduced CATH.a neurons. Adenovirus-expressed human CuZnSOD (hCuZnSOD) is
distinguishable from endogenous mouse CuZnSOD (mCuZnSOD). Robust immunor-
eactivity of mitochondrial markers (MnSOD, COXIV) and lack of immunoreactivity
of cytoplasmic (lactate dehydrogenase, LDH) and endoplasmic reticulum (calnexin)
markers in the mitochondrial fraction indicate purity of mitochondrial preparation.
(B) Representative in-gel SOD activity assay showing activity of MnSOD, endogen-
ous mouse CuZnSOD, and adenovirus-mediated expressed human CuZnSOD in
whole cell lysates and mitochondrial fractions collected from non-transduced,
AdEmpty-transduced, or AdCuZnSOD-transduced CATH.a neurons.
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only be able to cross the outer membrane of the mitochondria in
its non-metallated and reduced state [32], which means that
maturation of CuZnSOD must occur within the mitochondria.
The most current proposed mechanism of CuZnSOD translocation
is dependent upon the Erv1/Mia40 disulfide relay system, where
CCS facilitates the folding, copper insertion, and trapping of
CuZnSOD in the MIMS [33]. Recently, Kawamata and Manfredi
identified that oxygen tension also affects the import of CuZnSOD
to the mitochondria. They demonstrated that 20% oxygen inhib-
ited while 6% oxygen augmented the import of CuZnSOD to the
mitochondria [34]. One explanation for this phenomenon could be
that in low oxygen tensions, electrons may leak from the electron
transport chain at a higher rate due to a lack of molecular oxygen
as a final acceptor, which causes increases in mitochondrial O2

d�

production. The increase in CuZnSOD in the MIMS may be a
preventative measure in the counteracting of any potential
damage or signaling that could arise from this change in oxygen

tension. Overall, while the mechanisms for CuZnSOD translocation
to the mitochondria are not fully understood, the amount of
energy and cellular machinery involved in transporting CuZnSOD
into the mitochondria suggests this is an important and vital
cellular process. In the current study, we demonstrate that over-
expression of CuZnSOD has the ability to attenuate AngII-mediated
increases in mitochondrial O2

d� levels. We did not examine
if endogenous CuZnSOD mitochondrial import was increased
during AngII stimulation, as a potential regulatory mechanism
for the increased mitochondrial O2

d� production. Additionally, our
experiments were performed at 21% oxygen, which may limit the
amount of CuZnSOD (both exogenous and endogenous) imported
to the mitochondria. In summary, the data presented here demon-
strate a novel function for over-expressed CuZnSOD in the
attenuation of AngII-mediated mitochondrial O2

d�
flux in neu-

rons, but more work is necessary to fully elucidate the mechanism
of this process.

Fig. 3. Over-expressed CuZnSOD attenuates AngII-induced increases in mitochondrial O2
d� levels. (A) High magnification confocal microscopy images showing baseline

MitoSOX Red oxidation (red fluorescence; far left), MitoSOX Red oxidation after 20 min of 100 nM AngII stimulation (red fluorescence; middle left), MitoTracker Green (green
fluorescence; middle right), and merged images (yellow with DIC; far right) in CATH.a neurons following adenoviral transduction (50 MOI) of either CuZnSOD (AdCuZnSOD)
or vector control (AdEmpty). (B) Quantification of MitoSOX Red fluorescence intensity from confocal images using Zeiss Confocal LSM analysis software. Fluorescence
intensity was normalized to baseline MitoSOX red fluorescence in each neuron (n¼32 neurons for AdEmpty; n¼46 neurons for AdCuZnSOD). *po0.05 versus baseline
fluorescence; #po0.05 versus AdEmpty.
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In conclusion, our present study has demonstrated that over-
expression of CuZnSOD via adenovirus-mediated gene transfer in
neurons significantly increases both mitochondrial CuZnSOD pro-
tein level and enzyme activity. Additionally, the over-expressed
CuZnSOD is able to attenuate the increased mitochondrial O2

d�

levels observed after AngII stimulation, which prevents AngII-
induced inhibition of Ikv. These data suggest that mitochondrial-
produced O2

d� plays a significant role in AngII-mediated neuronal
signaling, and that over-expression of CuZnSOD has the ability to
diminish these effects. Furthermore, these data challenge the
interpretation of previous studies that CuZnSOD over-expression
via adenoviral transduction inhibits AngII intra-cellular signaling
because it scavenges only cytoplasmic O2

d� . Our findings suggest
that inhibition of AngII signaling via CuZnSOD over-expression
may be due to its mitochondrial localization and ability to
scavenge mitochondrial O2

d� .
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