Effect of Nitrosamine (NNAT) on Embryogenesis: Evidence from a Study Using Avian Embryos Exposed to NNAT

Moses New-Aaron
University of Nebraska Medical Center, moses.newaaron@unmc.edu

Martha Rhoades
University of Nebraska - Lincoln

Jane L. Meza
University of Nebraska Medical Center, jmeza@unmc.edu

Jeffrey Wallman
University of Nebraska - Lincoln

Follow this and additional works at: http://digitalcommons.unmc.edu/coph_pres

Part of the [Public Health Commons](http://digitalcommons.unmc.edu/coph_pres)

Recommended Citation

http://digitalcommons.unmc.edu/coph_pres/9

This Poster is brought to you for free and open access by the College of Public Health at DigitalCommons@UNMC. It has been accepted for inclusion in Posters and Presentations: College of Public Health by an authorized administrator of DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu.
EFFECT OF NITROSAMINE (NNAT) ON EMBRYOGENESIS: EVIDENCE FROM A STUDY USING NNAT EXPOSED AVIAN EMBRYOS

Moses New-Aaron MPH,BMLS1, Martha Rhoades PhD2, Jeffrey Wallman BS2, Chris Wichman PhD1, Jane Meza PhD1

1. Department of Biostatistics, University of Nebraska Medical Center, Omaha,
2. School of Natural Resources, University of Nebraska-Lincoln

Research was conducted at School of Natural Resources, UNL and the Department of Biostatistics, UNMC

Background

- N-nitrosoatrazine (NNAT) forms in the acidic environment of the human stomach when nitrate (from nitrate) and atrazine are present together.
- NNAT is a nitrosamine, many of which are known carcinogens, but little is known about NNAT toxicity. The effects of NNAT on embryo development are virtually unknown.
- Chromosomal aberrations and an increase in mitotic index were observed in human lymphocytes exposed to NNAT at 1,000 to 10,000-fold lower concentrations than nitrate, nitrite, or atrazine alone and NNAT has been shown to be mutagenic.
- We were among the first to account for the correlation of exposure to agrichemical mixtures from drinking water to birth defect rates in the 93 counties of Nebraska.

Hypothesis

We hypothesize that the embryos exposed to NNAT would have delayed development and increased mortality compared to unexposed embryos.

Method

Treatment, Incubation, and Analysis of Chicken Embryos

- For dosing, the eggshell was punctured on the broad, flat side of the egg. Eggs were administered 50 µL doses of NNAT in Dimethyl Sulfoxide (DMSO). Untreated eggs served as negative controls and eggs injected with DMSO served as vehicle controls. DMSO was controlled for by eggs injected with distilled water.
- The different doses of NNAT administered were 0.245, 1.11, 2.22 and 3.33 µL.
- 330 eggs were incubated for 5 days in a forced air incubator at 38 ºC and 65% relative humidity.

Data collection and analysis

- After 5 days of incubating the treated eggs the weight, morphology, and vital status of the embryos were obtained.

- All data analysis was done using SAS 9.4.

- It was observed that the position of the eggs in the incubator affected their weight from a linear regression analysis.

- It was also observed from a Chi square analysis that the column arrangement of the eggs was associated with the vital status of the eggs.

- The effects of NNAT treatment on the weight of the embryos was obtained after controlling the effect of position in a centered ANCOVA.

- The likelihood of death after treatment with NNAT was obtained after adjusting for the embryos treated with water and the untreated embryos.

Findings

Table 1: Effect of treatment on the weight of embryo

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>9</td>
<td>13474489</td>
<td>1521</td>
<td>3721</td>
<td>0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>241</td>
<td>84016511</td>
<td>35.21</td>
<td>35.21</td>
<td>0.0001</td>
</tr>
<tr>
<td>Unexpected Total</td>
<td>250</td>
<td>23415088</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Mean weight of the treated embryos

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>t Value</th>
<th>df</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>0.130940</td>
<td>0.002976</td>
<td>43.52</td>
<td>250</td>
<td>0.0001</td>
</tr>
<tr>
<td>Water</td>
<td>0.164957</td>
<td>0.002976</td>
<td>55.20</td>
<td>250</td>
<td>0.0001</td>
</tr>
<tr>
<td>NNAT vs. DMSO</td>
<td>0.023652</td>
<td>0.002976</td>
<td>7.97</td>
<td>250</td>
<td>0.0001</td>
</tr>
<tr>
<td>NNAT vs. Black</td>
<td>-0.001396</td>
<td>0.002976</td>
<td>-0.47</td>
<td>250</td>
<td>0.6384</td>
</tr>
</tbody>
</table>

Table 3: Comparisons of the weight of the embryos among the treatment groups

<table>
<thead>
<tr>
<th>Comparison of the mean weight of embryos</th>
<th>NNAT vs. DMSO</th>
<th>NNAT vs. Water</th>
<th>NNAT vs. Black</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black vs. Water</td>
<td>0.005480</td>
<td>0.002976</td>
<td>0.002976</td>
<td>0.5400</td>
</tr>
<tr>
<td>Black vs. NNAT vs. DMSO</td>
<td>0.003900</td>
<td>0.002976</td>
<td>0.002976</td>
<td>0.6260</td>
</tr>
<tr>
<td>Water vs. NNAT vs. DMSO</td>
<td>0.005480</td>
<td>0.002976</td>
<td>0.002976</td>
<td>0.5400</td>
</tr>
<tr>
<td>Water vs. NNAT vs. Black</td>
<td>0.003900</td>
<td>0.002976</td>
<td>0.002976</td>
<td>0.6260</td>
</tr>
<tr>
<td>NNAT vs. Black vs. DMSO</td>
<td>0.008700</td>
<td>0.002976</td>
<td>0.002976</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Table 4: Likelihood of embryo death after treatment with NNAT

<table>
<thead>
<tr>
<th>Treatment</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>1.00 (1.00-1.00)</td>
</tr>
<tr>
<td>NNAT vs. DMSO</td>
<td>1.65 (1.00-2.76)</td>
</tr>
<tr>
<td>NNAT vs. Black</td>
<td>2.35 (1.00-5.56)</td>
</tr>
</tbody>
</table>

Discussion

- It was found that the weight of the embryos differ significantly in at least 2 of the treatment groups (p<0.0001) (Table 1).
- NNAT decreased the weight of the embryos (0.245NNAT Wgt=0.16g, p=0.014, 1.11NNAT Wgt=0.13g, p=0.0058, 2.22NNAT Wgt=0.11g, p=0.019) (Fig 1, Table 2).
- Embryos treated with DMSO had lower weight compared to the embryos treated with water and the untreated embryos (Fig 1).
- The mean weight of embryos treated with NNAT differ significantly when compared to the untreated embryo (P<0.05) (Table 3).
- Higher mortality for embryos exposed to NNAT compared to unexposed embryos. (Fig 2).
- NNAT-exposed embryos were more likely to die compared to unexposed embryo (2.22NNAT vs. DMSO(OR: 2.91, 95% CI. 1.17,7.23) and 3.33NNAT vs. DMSO (OR=3.34, 95% CI. 1.32,8.47) (Table 4).
- The dose of NNAT required to kill 50% of the embryo is 3.07µmol/l (95 CI. 2.16, 7.14) (Fig 3).

Conclusion and Future Directions

- Developing chicken embryos were used in the present study to evaluate the teratogenic potential of N-nitrosoatrazine, a nitrosated form of the agrichemical atrazine.
- NNAT has some teratogenic properties based on the weight and survival of chicken embryos.
- A limitation to achieving these objectives is the low solubility of NNAT in water. Further studies should be considered in future studies.
- A more suitable solvent for demonstrating the teratogenic properties of NNAT should be considered in future studies.

Acknowledgement

We want to thank Dr. Tom Rosenquist for assessing morphology of the harvested embryos. This work was funded by an NU Foundation Research Council grant.

References

Acknowledgements

We want to thank Dr. Tom Rosenquist for assessing morphology of the harvested embryos. This work was funded by an NU Foundation Research Council grant.