7-23-2017

Use of a Team Building Activity to Teach Clinical Decision-Making Concepts to Physical Therapy Students

Robert Fuchs
University of Nebraska Medical Center, rfuchs@unmc.edu

Betsy J. Becker
University of Nebraska Medical Center, betsj.becker@unmc.edu

Follow this and additional works at: https://digitalcommons.unmc.edu/cahp_pt_pres

Recommended Citation
https://digitalcommons.unmc.edu/cahp_pt_pres/17

This Conference Proceeding is brought to you for free and open access by the Physical Therapy at DigitalCommons@UNMC. It has been accepted for inclusion in Posters and Presentations: Physical Therapy by an authorized administrator of DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu.
Use of a Team Building Activity to Teach Clinical Decision-Making Concepts to Physical Therapy Students

Robert Fuchs and Betsy J. Becker. Division of Physical Therapy Education, University of Nebraska Medical Center, Omaha, NE 68194-4420. rfuchs@unmc.edu

Background & Purpose

Case-based or problem-based learning methods have been used at health care academic institutions to attempt to create a more "real-world" context to student learning. Team building exercises have been popular in the business world for decades. Case-based learning has also been used to help develop clinical reasoning skills in health profession students. The ICF has also been used as a guide for students to assess the needs of patients. Scant literature exists regarding the concept of integrating student and expert team case-based learning with the ICF to develop clinical decision-making skills.

The purpose of this research was to find out if a team building exercise carried out by student groups would facilitate learning how to make clinical decisions involving concepts from the International Classification of Function (ICF).

Methods

SUBJECTS: 213 first-year students at the University of Nebraska Medical Center (UNMC) in the first semester of the curriculum of years 2013-2016.

This study was inspired by a UNMC inter-professional educational activity using the Subarctic Survival Situation (Human Synergistics International), a team building exercise. No actual materials from this exercise were used to develop the Subarctic Survival Situation (Human Synergistics International), a team building exercise. No actual materials from this exercise were used to develop this study.

The objective is to learn how a group can solve problems through the process of sharing knowledge of individuals. The case described here is based on a real patient situation for which real decisions had to be made and for which there were real consequences of those decisions.

The panel completed electronic surveys which required them to rank the decision-making steps in order of priority and identify which aspect of the ICF each step would represent. The rankings were performed again after a week and feedback was provided to the groups. The average post-test scores were compared to pre-test scores.

Conclusions

Team decision-making almost always results in better outcomes, as compared to an expert panel, than individual decision-making, especially for novice therapists. Learning about how to use the ICF for decision-making appeared to be enhanced. Overall, the students believed that the activity was useful to their learning.

Results

There was a significant difference between average post-test (5.678) compared to pre-test scores (5.358) on knowledge of ICF Concepts (n = 213, p<0.05). Important differences also noted comparing individual and group decision for ICF rankings.

Figure 1: Comparing Individual and Group Decision Item Rankings and ICF Matches (n = 200 students)

Figure 2: Student Perceptions of the Learning Activity (n=129)

Figure 3: Comparison of Individual and Group Scores on Knowledge of ICF (n=213, p<0.05)

Figure 4: Comparison of Individual and Group Scores on Knowledge of ICF Concepts (n=213, p<0.05)

Figure 5: Comparison of Individual and Group Scores on Knowledge of ICF Concepts (n=213, p<0.05)

Figure 6: Comparison of Individual and Group Scores on Knowledge of ICF Concepts (n=213, p<0.05)

Figure 7: Comparison of Individual and Group Scores on Knowledge of ICF Concepts (n=213, p<0.05)

Figure 8: Comparison of Individual and Group Scores on Knowledge of ICF Concepts (n=213, p<0.05)