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Abstract: The field of free radical biology originated with the discovery of superoxide dismutase
(SOD) in 1969. Over the last 5 decades, a plethora of research has been performed in species ranging
from bacteria to mammals that has elucidated the molecular reaction, subcellular location, and specific
isoforms of SOD. However, while humans have only begun to study this class of enzymes over the
past 50 years, it has been estimated that these enzymes have existed for billions of years, and may
be some of the original enzymes found in primitive life. As life evolved over this expanse of time,
these enzymes have taken on new and different functional roles potentially in contrast to how they
were originally derived. Herein, examination of the evolutionary history of these enzymes provides
both an explanation and further inquiries into the modern-day role of SOD in physiology and disease.

Keywords: redox biology; redox signaling; oxidative stress; reactive oxygen species; hydrogen
peroxide; oxygen; nitric oxide; evolution; great oxidation event; adaptation; metabolism; iron; copper;
zinc; manganese; nickel

1. Introduction

Life is derived by the movement of electrons [1]. Our existence revolves around the constant
acquisition of electrons from the environment, which are then exploited to drive energy production
by their passage down reduction potentials. Molecular oxygen (O2) has demonstrated itself to
be an ideal electron sink, and thus, is represented across biology as a final electron acceptor in
oxidative metabolism. However, the use of O2 in biological systems with high electron fluxes comes
at the potential threat of generating reactive oxygen species (ROS), which may damage vital cellular
components. Ground state O2 possesses two unpaired electrons with parallel spins in opposing
orbitals, which under standard biological conditions energetically favors the reduction of O2 by
one-electron transfers [2]. This one-electron reduction of O2 initially leads to the formation of
superoxide (O2•−), which has been estimated to exist in biological systems at concentrations ranging
from 10 to 200 pM [2,3]. Due to this, the development of ROS-detoxifying enzymes proved necessary
for primitive life to exist in an oxidative world, and one of the first of these antioxidant enzymes was
known as superoxide dismutase (SOD). In this review, I present a unique evolutionary perspective
into this class of enzymes in homage to the late Charles Darwin, who so eloquently examined species
in a similar light [4]. In doing so, I present a comprehensive look into the origins of SOD, and how
billions of years of evolution has altered its role in cellular signaling and function.

2. The Major Oxidation Events

The conditions of primitive earth existed in stark contrast to the environment of today. Over the
approximate 4.5 billion year (Gyr) history of the planet, the compositions of both the atmosphere
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and oceans have significantly evolved from reducing to oxidizing. Ancient atmospheric components
(which are major contributors of oceanic constituents) were determined largely by volcanic gasses
that produced an abundance of hydrogen (H2), carbon dioxide and monoxide (CO2 and CO),
hydrogen sulfide (H2S), methane (CH4), and many other reducing, inorganic compounds [5].
The switch to an oxidizing environment was driven primarily by the appreciable accumulation
of O2, however, the specific timeline of this event is still debated.

A relative consensus exists among paleontology researchers that places the first major
accumulation of O2 approximately 2.4–2.1 Gyr ago [6]. The primary piece of evidence supporting this
timeline is derived from examination into different isotopes of sulfur [7]. In our current oxidative
atmosphere, sulfur isotopes (i.e., 33S, 34S, and 36S) exist in tightly controlled ratios dependent upon
their specific mass. However, Archean sediment deposits were shown to have a predominance of
non-oxidized sulfur deposits (like pyrite) which contained differential ratios of sulfur that were
independent of their mass [7]. These mass independent fractionations (MIF) of sulfur are not well
understood, but thought only to occur through extrinsic forces such high energy ultraviolet and
photochemical dissociation, which could occur in an atmosphere lacking significant quantities of
oxygen and a protective ozone layer [8]. Sediments older than 2.4 Gyr possessed high MIF values
while those younger than 2.1 Gyr were low [7]. Taken together with the increased abundance of
oxidized species of sulfur after 2.1 Gyr, the data are highly suggestive of an increase in atmospheric O2

greater than 10–5 of present atmospheric levels (PAL; which has been estimated to be the minimum
amount of O2 to significantly impact MIF values [9]) that occurred during this ancient time frame
known as the Great Oxidation Event (GOE) [5].

While MIF sulfur isotope evidence strongly argues for a major oxidation event between 2.4
and 2.1 Gyr ago, other dating methodology suggests slightly variable timeframes for this first major
accumulation of O2. For example, Anbar et al. identified the presence of highly redox sensitive
transition metals in 2.5 Gyr ancient sediments [10]. The observation of these metals in ancient ocean
sediment are highly suggestive of their transition from crustal rocks into the oceans, which would
only occur during oxidative weathering in the presence of appreciable O2 levels. If this is indeed true,
then oxidation of the atmosphere could have occurred earlier than sulfur MIF data would suggest.
In another example, Frei et al., propose significant O2 accumulation even earlier than 2.5 Gyr by the
use of chromium isotopes and oxidation states [11]. In current atmospheric conditions (i.e., elevated
O2), chromium is rapidly oxidized from a +3 state to a +6 state by the presence of manganese oxides.
Conversely, when O2 is low manganese oxides are scarce, and thus chromium predominantly resides
in the +3 state. Moreover, in low O2 conditions reduced iron is readily available which is able to
convert any +6 chromium back to the +3 state. When ocean sediments were examined for chromium,
an abundance of +6 chromium was discovered dating between 2.8 and 2.6 Gyr ago, which suggests
O2 accumulation even earlier than current theories [11]. Taken together, while the exact dates of O2

appearance are debated, the observation of O2 accretion ranging somewhere between 3.0 and 2.0 Gyr
is not disputed.

The GOE was the first major event to increase atmospheric and oceanic O2 levels. However, the
majority of researchers only believe this event to have increased O2 levels to 0.1–15% PAL [12]. A second
oxygenation event known as the Neoproterozoic Oxidation Event (NOE), which occurred between 0.8
and 0.5 Gyr ago, is suggested to have been the second major oxidation incident that elevated O2 levels to
PAL [13]. Comparable to the methods discussed in identification of the GOE, similar atomic findings are
highly suggestive of even greater O2 levels during the NOE. These methods include decreasing cerium
values [14], enriched molybdenum in black oceanic shales [15], changes in sulfur isotope and oxidation
ratios [16], and differential chromium oxidation states [11]. Interestingly, many researchers have
reported that the time frame between the GOE and NOE (approximately 1.9–0.9 Gyr ago) demonstrated
a constant and unchanging pattern of atomic isotopes and redox states [12]. As such, this period has
been referred to as the “boring billion” due to its apparent unremarkably stable atmospheric and
oceanic O2 content [13], though this view has been contested [6,11]. Together, the GOE, boring billion,
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and NOE present a well-accepted two-step transition from a virtually anoxic environment to present
day conditions. This view has been challenged recently by Lyons et al., who presents a more gradual
increase in O2, which he terms the “Great Oxidation Transition (GOT)” [6]. This hypothesis of steady
increases in O2 combined with chaotic fluctuations of O2 sources and sinks is gaining significant
traction in the field as it accounts for data that currently does not fit within the standard two step
model [6,17]. While models and specifics are still debated, one aspect of the atmosphere progression
from reducing to oxidizing is consistently acknowledged: the primary source of molecular O2 that
engulfed the earth derived from enzymatic processes involved with oxidative photosynthesis [18].

3. The First Enzymatic Processes

It is highly likely that simple proteins and enzymes evolved prior to nucleic acids, and as such
were critical in establishing vital cellular processes like photosynthesis, metabolism, and replication.
Hallmarks of most enzymatic systems are metals used for either protein stability or catalysis. The exact
metal utilized by an enzyme system is constrained by two primary factors: the bioavailability of the
metal and the utility of the metal for its designated purpose. In some instances, utility of metals may
supersede limited bioavailability, however, readiness of specific metals appears to be the driving force
behind most of enzyme evolution [19].

As previously discussed, primitive earth existed in a strong reductive environment with minimal
molecular O2, which made the ancient oceans either anoxic or euxinic (anoxic and sulfidic) [20].
High sulfur (S) content significantly affects metal solubility with iron (Fe), nickel (Ni), and manganese
(Mn) dissolving predominantly under these conditions, while metals such as zinc (Zn) and copper (Cu)
precipitate and are biologically inert [19]. In contrast, under present day O2 conditions bioavailability
of these metals is completely reversed, known as the Irving-Williams series of metal stability [21,22].
Thus, it is hypothesized that the environmental conditions of primitive earth provided the key elements
to create the first enzymes, which by no coincidence contain a preponderance of the most abundant
elements at that time: Fe and S. In the absence of O2, Fe and S have been shown to self-assemble into
clusters that form the catalytic basis of the oldest known enzymes [23,24]. Fe in particular may be
the most important element in the origin of life due to its ability to act as both an electron donor and
acceptor as it cycles between its oxidized (+3) and reduced (+2) states. The utility of Fe is irrefutable,
as even in present day O2 levels where Fe solubility and bioavailability are low, countless enzymatic
processes rely on this heavy metal for critical life processes.

One major physiological pathway that has relied on Fe since its origin is photosynthesis.
Photosynthesis evolved as a method of long-term energy storage in the form of electron rich organic
compounds, which would be essential for sustained life. This process is achieved by the systematic
passage of electrons up their electrochemical gradients by the use of redox couples and energy
from sunlight. Fe’s bioavailability on ancient earth combined with its versatility as a redox couple
proved essential in the evolution of this process. While modern-day oxidative photosynthesis
utilizes water (H2O) as an electron donor, it is believed primitive photosynthesis evolved from
green/purple sulfur bacteria that could have utilized S, H2, and/or H2S as the original electron
donors [25]. Interestingly, while variations in photosynthesis still occur today, the enzymes involved
in all forms of this metabolic process are virtually identical and include Fe-containing proteins
such ferredoxin, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), and Fe-S containing
photosystems [26]. This suggests these Fe-containing enzymes evolved long before the transition to
oxygenic photosynthesis, and their widespread existence in the oxidative and limited free-Fe world of
today implies the importance of this metal in their functionality.

The timeline for the appearance of oxidative photosynthesis is highly debated in similar fashion
to the GOE. Estimates range from 3.7 to 2.3 Gyr ago depending upon the methodology utilized and
inferences made from oxidative and isotopic evidence [27,28]. The most widely accepted evidence
of oxidative photosynthesis appears around 2.7 Gyr ago in the form of fossilized sterane in ancient
sediments [29]. Sterane is a form of sterol, an organic molecule that is derived from cholesterol and
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found in cell membranes, and requires molecular O2 for its production. The presence of sterols in
ancient fossilized cyanobacteria, which are modern-day oxidative photosynthesizers, suggests the
presence of appreciable O2 inside these cells at least 300 million years prior to the accepted start of
the GOE. These observations have led to the conventional hypothesis that oxidative photosynthesis
predated the GOE, and is the single greatest contributor to the development of an O2-rich atmosphere
and oceans. However, this premise is highly counterintuitive when taking into account that O2 is
a highly reactive and oxidizing molecule that would have been toxic to primitive life evolving in
a reducing environment. It would be supposed that an over-production of O2 waste would have
eventually caused widespread extinction of ancient life, but this is clearly not the case. Through what
could be considered one of the most extreme evolutionary pressures ever to exist on earth, life evolved
ways of counteracting O2 toxicity, which have proven quintessential for existence in an oxidative world.

4. The First Antioxidants

Molecular O2 possesses two p-orbital unpaired electrons that exist in the same spin state,
which makes ground-state O2 both paramagnetic and highly susceptible to univalent reduction [30].
Due to this oxidizing capacity (the term “oxidizing” originated from reactions with O2), O2 serves as an
excellent terminal electron acceptor for many biological processes such as oxidative phosphorylation
in the mitochondria to generate water. While beneficial for many molecular pathways, the oxidizing
nature of O2 may also contribute to the uncontrolled pathological removal of electrons. This not only
damages vital cellular components (i.e., nucleic acids, proteins, lipids, and sugars), but the addition
of these electrons to O2 creates reactive species far more damaging than ground-state O2 (i.e., ROS).
These ROS exist in many varieties, however, the primary species derived from univalent reduction
of O2 is superoxide (O2•−). O2•− is a reactive free radical capable of directly or indirectly deriving
most major ROS and free radical species that exist in biological systems. Thus, early life existing in the
presence of appreciable O2 would have a strong evolutionary advantage if they were able to eliminate
this linchpin ROS.

While the number and diversity of species exponentially expanded around the major oxidation
events (i.e., GOE and NOE), fossil records suggest that the earliest forms of life arose over 4.0 Gyr ago,
which is greater than 1.5 billion years before the accepted beginning of the GOE [31]. Modern day
sequencing and phylogenetic analyses have allowed for a deeper understanding into the evolution and
diversification of species and enzymes from these primitive life forms. Although it may be intuitive to
assume that antioxidants (i.e., ROS detoxifying molecules and enzymes) evolved during the GOE to
counteract the oxidative pressure of accumulating O2, sequencing analyses of ancient species suggest
antioxidants originated long before O2 was abundant in the atmospheres and oceans. This is most
likely due to the localized formation of O2 due to either abiotic sources (e.g., photolysis of H2O by
ultraviolet light) or cohabitation in close proximity to an oxidative photosynthesizing organism.

Exhaustive sequencing, alignment, and phylogenetic analyses have been performed examining
primitive antioxidant systems [32–42]. It is clear from these studies that three primary ROS removal
enzymes existed prior to the GOE: SOD, catalase (CAT), and peroxiredoxins (PRDX; previously
known as thioredoxin peroxidases). SOD is aptly named as its only known function to date is the
dismutation of O2•− to hydrogen peroxide (H2O2). Similarly, CAT’s and PRDX’s singular roles are
the decomposition of H2O2, though different mechanisms are used to achieve the same endpoint.
Together, these enzymes act to remove O2•− derived ROS from the biological system, which in
primitive, simple lifeforms was essential to counteract the toxicity of O2 derived reactive species.
As previously discussed, at the time life arose the oceans were highly euxinic, which made Fe and S
highly bioavailable. Due to this, the most primitive form of SOD used Fe at its catalytic center, CAT also
utilized Fe for its activity, and PRDX exploited the use of S-rich thiols to detoxify H2O2. Interestingly,
while CAT and PRDX have not changed significantly since ancient times and still rely on Fe and S
for their activities, SOD has evolved various heavy metal isoforms and subcellular compartments
dependent upon the complexity of the organism.
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5. Superoxide Dismutase Evolution

Currently, there are three discrete families of SOD that all perform the same reaction: 2O2•− +
2H+ → H2O2 + O2. The SOD families are defined by the metals utilized for stability and catalysis
as well as the overall structure of the enzymes. Each of the families contains various isoforms of the
enzyme, and possesses the following heavy metals: Fe or Mn, Cu and Zn, or Ni. The most primitive
of the families is the Fe- or Mn-containing SODs. Fe-containing SOD (FeSOD) is believed to be the
most ancient form of SOD, and is still one of the most common forms of SOD in various modern-day
strains of both aerobic and anaerobic bacteria to date [43,44]. Interestingly, FeSOD has also been
identified in Archaea [45], Protists [46], and even eukaryotic plants [47,48] providing evidence not
only to the prolonged existence of this SOD isoform, but also the versatility. The other isoform of
SOD in this family contains Mn (MnSOD), and is also found in all species ranging from Archaea to
Eukarya. FeSOD and MnSOD possess close to 50% sequence homology with virtually identical active
sites [49,50], suggesting the two enzymes are closely related and evolved from a close common ancestor.
This relation is further supported by the identification of specific forms of SOD termed cambialistic
(meaning “exchange” in Latin) that are able to utilize either Fe or Mn in their active site dependent
upon metal availability [51–53]. These cambialistic SODs may either be the “missing link” between the
evolution of FeSOD and MnSOD, or may simply serve as a new evolutionary branch generated due
to the need for versatility of metal availability. In either event, FeSOD and MnSOD appear to have
originated in very early in primitive lifeforms, and the metals utilized were both highly bioavailable
(due to low atmospheric and oceanic O2 levels) and efficient catalytic centers for the dismutation of
O2•−. The two enzymes, however, do possess significant differences in their oxidation and reduction
potentials [54]. Over time, this could have provided significant advantages to organisms in variable
O2 and heavy metal niches, and may explain the persistence of both isoforms in various species today.

The second family of SODs possesses both Cu and Zn (CuZnSOD), and is believed to be
the most modern family of the SOD lineages. The CuZnSOD’s are ubiquitous among plant and
animal species, and are localized to the nucleus, cytoplasm, mitochondrial intermembrane space,
chloroplast, and even the extracellular matrix [37,55–57]. This class of SOD is also found in bacteria,
however, it is expressed in much lower levels and confined to the periplasmic space in only select
gram-negative bacteria [58]. CuZnSOD is not found in archaeal or protist genomes [59,60], suggesting
this isoform developed at a much later time point in evolution than FeSOD or MnSOD. An additional
clue as to its late evolutionary origins is that CuZnSOD likely evolved during or after the GOE
as both Cu and Zn bioavailability increases significantly with enhanced atmospheric and oceanic
O2 levels [19]. Interestingly, the CuZnSOD family shares minimal structural homology with the
Fe/MnSOD family signifying these enzymes were derived independent of one another and underwent
convergent evolution to perform identical reactions in removing O2•− from a biological system [37].
Even more striking is that even within the CuZnSOD family, the extracellular form found in
higher-level eukaryotes more closely resembles that of fungi than the intracellular eukaryotic form [37].
This suggests either the extracellular form of CuZnSOD may represent a more primitive version from
which the intracellular version divergently evolved, or possibly both enzymes converged on enzymatic
reactions as well as metals utilized for stabilization and catalysis.

The last family is the Ni-containing SODs (NiSOD). These isoforms are primarily contained to
marine bacteria and algae [42,61]. Compared to the exhaustive studies performed on the other families
of SOD, much less is known about NiSOD due to its comparatively recent discovery in 1996 [62].
Unlike the dimeric and tetrameric forms of the other SODs, NiSOD functions as a homohexamer
that is structure is not dependent upon Ni coordination [63]. From an evolutionary standpoint,
NiSOD does not appear structurally related to the other families of SOD, and may again represent
another example of convergent evolution for O2•− removal. Additionally, due to its predominant
presence in marine species, it is theorized that NiSOD evolved around the time of GOE in response to
the decreasing bioavailability of Fe in the oceans due to increased free O2 produced from oxidative
photosynthesis [42].
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To date, the SODs are the only known class of enzyme able to autonomously eliminate O2•− in
a biological system. Another class of O2•− removal enzymes, known as the O2•− reductases (SOR),
has been identified in Archaea, Bacteria, and unicellular eukaryotes [64]. Similar to NiSOD, far less is
known about these enzymes due to their relatively recent discovery [65]. The mechanism, however,
of SORs is well established: O2•− + 2H+ + e− → H2O2. In contrast to the SODs, SORs are only able
to reduce 1 molecule of O2•− per reaction, do not produce molecular O2, and require the addition
of an electron provided from a reducing equivalent (i.e., reduced forms of nicotinamide adenine
dinucleotide or nicotinamide adenine dinucleotide phosphate). All SORs contain Fe at their active
site, are present in Archaea species, and possess minimal homology to modern-day SODs, which may
suggest SORs are primitive forms of O2•− removal in ancient species. Conversely, the presence of
SORs in modern-day species (alone or in combination with SOD) suggests these enzymes may provide
an evolutionary advantage. While requiring reducing equivalents to eliminate O2•− would limit the
availability of these electrons to be used for energy production, the fact that SORs do not produce
molecular O2 during the removal of O2•− may be vitally important to certain anaerobic organisms.
Speculations such as this would infer that SORs may have evolved independently of SODs as an
alternative O2-deplete mechanism of O2•− disposal. The history of the SORs is still very unclear,
and warrants further investigations into the origins of these alternative O2•− elimination enzymes.

While the evolutionary histories of all of these enzymes both diverge and converge, all organisms
to date have been shown to possess some form of O2•− removal system. This observation was
at one time not fully accepted, as it was believed that certain species such as Neisseria gonorrhea,
Mycoplasma, Lactobacillus plantarum, and even mammalian adipocytes did not possess any form of
SOD or SOR [66]. All of these, with the exception of Lactobacillus plantarum, have now been shown to
possess some form of SOD [67–69]. The absence of SOD from Lactobacillus plantarum does not invalidate
the O2•− theory of O2 toxicity, as these organisms (as well as Neisseria gonorrhea) have evolved
the ability to concentrate high levels of free Mn in their cytoplasm, which acts as a O2•− scavenging
system independent of enzymatic activity [67,70]. Intriguingly, certain viruses have also demonstrated
genetic encoding of various SOD isoforms [71–73]. It is unclear if the expression of SOD in a host
organism provides the virus with an evolutionary advantage, or if the presence of SOD genes in the
viral genome is simply an example of lateral gene transfer from a previous host. This concept of lateral
gene transfer extends beyond viruses into all known SOD-possessing organisms when examining
the evolution of these O2•− removal enzymes. While comprehensive sequencing of modern-day
organisms has greatly expanded our understanding of how genes have evolved from ancient species,
it is virtually impossible to know by sequencing alone if genes were simply transferred from one
organism to another as opposed to the true evolution of a new protein derived from a previously
existing one.

Regardless of the exact evolutionary lineages of SOD, the necessity of O2•− scavenging in an
O2-rich environment to prevent oxidative damage is undeniable. However, when examining the
function of SOD during evolution one question remains: Why is one of the major products of SOD
a potentially harmful ROS (i.e., H2O2)? While multiple H2O2 detoxifying systems exist in most
organisms (i.e., glutathione peroxidases, thioredoxins, catalase, etc.), it remains unclear why after
billions of years of evolution that no single enzyme exists that is able to convert O2•− directly to less
reactive molecules like water and/or O2. Logic would dictate that this hypothetical enzyme would
negate the need for multiple redundant H2O2 removal systems, which would relinquish a significant
amount of biological resources and energy that could be utilized elsewhere in the organism. While a
single enzyme ROS removal system could potentially be a weakness to an organism by “putting all the
eggs in one basket,” this vulnerability could easily be counteracted by the implementation of various
redundant isoforms, splice variants, and subcellular locations. Understanding that evolution is purely
driven by selectively advantageous variations, it puts forth the argument that generating H2O2 from
O2•− may be beneficial from an evolutionary standpoint, but the question still remains: Why?
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6. Early Utilization of ROS

The passage of electrons for the purpose of energy generation lies at the epicenter of life.
Organisms have evolved various methods of extracting and utilizing electrons from their surroundings
to fulfil this energy demand. In a perfectly efficient system, electrons are eventually deposited on a
terminal acceptor that generates an inert chemical species to be utilized elsewhere in the organism.
However, biology is far from perfectly efficient, and a large flux of electrons creates the potential
for non-directed escape of these charged particles onto undesired target molecules. Interestingly,
O2 may act in both capacities as a 4 electron terminal acceptor to form inert water, or the unsought 1
electron target to form O2•−. Early in evolution, O2 was most likely not the preferred terminal acceptor
for general metabolism as it was only created from localized abiotic sources in very low quantities.
As oxidative photosynthesis became the preferred method of long term electron storage for energy
production, the amount O2 gradually increased. O2, being a di-radical species, makes it the perfect
electron acceptor to form inert water, and as such it is no surprise that O2 was eventually assimilated
into metabolism as a critical component to electron movement. However, O2’s potential for reactivity
and ROS generation created a Janus-faced situation in which cells had to rapidly adapt.

Early ROS scavenging was essential to life. As such, organisms that possessed mechanisms to
eliminate radical and reactive species proved evolutionarily advantageous, and thus ROS elimination
methods were propagated in future generations. With ROS being an assured outcome in an O2-rich
environment, it is also logical that organisms that adapted to harness these reactive molecules may
be at an even further advantage on the evolutionary scale. Mittler and colleagues have put forth a
hypothetical model describing the utilization of ROS for signaling and protection as it pertains to
the advancement of a species [74]. First, ROS scavenging is serendipitously developed as a means
of survival in primitive species. This is soon followed by adaptive processes in the cell allowing
response and fine tuning of ROS scavenging. As an organism evolves, ROS produced from other
organisms begins to allow cell-to-cell communication and sensing of the environment. Last, ROS is
purposefully generated within the organism by dedicated machinery for the purposes of protection,
communication, and signal transduction. Each one of these steps would have provided primitive
organisms’ advantages over their competition by exploiting the oxidative environment for their added
survival. With O2•− being the foundation of all O2-based ROS, it follows logically that cells adapted
to the utilization of this specific reactive species to coordinate cellular activities.

7. O2•−-Mediated Redox Signaling

A grey area exists between the terms “oxidative stress” and “redox signaling”. The former
is often used to describe any process involving ROS, however, it is now well accepted that ROS
regulate essential physiological processes that would not be considered stressful to the cell or organism.
More refined definitions of these terms suggest that redox signaling encompasses the cellular use
of ROS in a reversible manner to purposefully direct normal biological processes, while oxidative
stress is the irreversible damage of cellular components due to an uncontrolled production of ROS.
For example, an example of prototypical redox signaling would be H2O2-mediated oxidation of
cysteine residues. Under certain concentrations of H2O2 (often sub-micromolar range, but this is
dependent upon many factors such as cell type, age, species, etc. [75]) is able to oxidize the free thiol
group of cysteine to various reversible oxidation states (similar to that of phosphorylation), which may
then go on to form other modifications such as disulfide bridges, cross-links with glutathione, and other
variations of covalent sulfur bonds that can affect protein function [76]. In the event H2O2 becomes
too high in concentration (often high micromolar or millimolar range, but again is dependent on many
variables [77]), the cysteine residues may become oxidized beyond a reversible state, and thus the
protein becomes permanently damaged and possibly non-functional (i.e., oxidative stress). While these
definitions appear clear from the outset, biology is highly dynamic and constantly adapting to all
environmental changes, big or small. Thus, both low levels of ROS leading to “redox signaling” events
as well as high levels of ROS causing “oxidative stress” will both trigger signaling cascades and
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adaptive processes within a cell. This begs the question, does oxidative stress even exist or is redox
signaling simply the response to the entire spectrum of high and low levels of ROS?

An illustrative example would be O2•−-mediated oxidation of Fe-S cluster enzymes. O2•− has
been long established to readily oxidize Fe-S cluster enzymes at an incredibly fast rate [78]. Classic,
4Fe-4S clusters are the most sensitive to O2•−, and oxidation by O2•− leads to an unstable 3Fe-4S
form that is catalytically inactive [79]. Persistent levels of elevated O2•− can further oxidize the cluster
causing additional removal of Fe molecules leading to added destabilization of the complex. By many
definitions, this would be considered oxidative stress due to the damaging inactivation of an enzyme.
However, inactivation of these enzymes by O2•− often triggers major cellular changes in response to
their dysfunction caused by ROS. For example, mitochondrial aconitase and succinate dehydrogenase
are two Fe-S cluster enzymes that participate in the citric acid cycle in the matrix of the mitochondria,
and both have been shown to be highly susceptible to inactivation by O2•− [80,81]. Aconitase
inactivation by O2•− leads to a build-up of citrate, which is then often diverted into fats for long-term
energy storage [82]. Succinate dehydrogenase inactivation by O2•− leads to the build-up of succinate,
which is a product inhibitor of the prolyl-hydroxylase family of enzymes that negatively regulate the
hypoxia inducible factor 1 alpha (HIF1α) [83]. Thus, inactivation of succinate dehydrogenase stabilizes
HIF1α, which promotes more glycolytic activity. In both of these situations (i.e., aconitase and succinate
dehydrogenase inactivation), the cell has diverted its activities away from the mitochondrial oxidative
metabolism in response to elevated levels of mitochondrial O2•−, which often increases during times of
mitochondrial dysfunction or excess electron buildup. This example depicts the cell’s ability to exploit
specific subcellular levels of ROS as a readout of cellular function and adapt accordingly to benefit the
cell. This advantageous usage of ROS could be considered a form of oxidative hormesis [84], and in
fact has recently been described more accurately as oxidative eustress [85]. This furthers the concept
that oxidative stress (or oxidative distress) is a term that should be reserved only to the rare situation
in which ROS exceed the physiological capacity of a cell to respond leading to pathophysiological
effects. Regardless of semantics, the ability of O2•− to affect cellular processes in irrefutable. However,
O2•− is a highly reactive molecule with a short half-life, which makes its versatility as a signaling
molecule limited. The conversion of O2•− to H2O2 creates a non-radical and stable ROS capable of
delivering the oxidative message over a longer cellular distance, and as such the rapid conversion
of O2•− to H2O2 most likely proved to be a selective benefit during evolution as species evolved to
utilize ROS to their advantage.

8. SOD-Mediated Redox Signaling

After billions of years of evolution, modern-day organisms have developed machinery capable of
utilizing O2•− as a signal transducer. However, to primitive life O2•− was likely nothing more than an
O2-derived toxin capable of causing extensive redox damage to vital cellular components. The ability
to detoxify O2•− rapidly would serve as a robust selective advantage during the course of evolution,
and the occurrence of SOD early in the history of life strongly supports this sentiment.

Aforementioned, both ancient and modern forms of SOD all possess the same mechanism of
converting 2O2•− and 2H+ into O2 and H2O2. The perplexing generation of two oxidizing species
from O2•− suggests one (or a combination) of three possibilities: (1) these oxidants were somehow
beneficial to primitive life in a highly reductive environment; (2) primitive life already possessed
additional detoxification methods for these oxidants; or (3) O2 and H2O2 still were highly toxic to
primitive life, but less reactive than O2•− (i.e., lesser of two evils). The latter is the most likely
possibility, but the H2O2-removal enzymes catalase and PRDX have been dated to exist in primitive
life inferring the possibility of additional antioxidant systems co-evolving in a similar timeframe [41].
Moreover, the utilization of H2O2 by primitive peroxidase systems to generate reactive intermediates
(i.e., hypochlorous acid, hypothiocyanous acid, etc.) may have served as a primitive defense system,
however, this is purely speculative. In any event, the production of H2O2 is a hallmark of all O2•−
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removal systems throughout evolutionary history, which suggests enzymes like SOD play a key
regulatory role in the production of this non-radical ROS.

A longstanding theory states that the amount of SOD within a system is directly correlated to the
quantity of H2O2 produced [86], but this paradigm significantly minimizes the complexity of O2•−
derived cellular reactions. Liochev and Fridovich propose a more dynamic theory of H2O2 production
from SOD that is situation-dependent [87]. The authors describe three situations in which the addition
of SOD could affect steady-state cellular H2O2 levels. The first is the simplest situation where 100% of
O2•− spontaneously dismutates to H2O2 at the estimated rate of 105 M−1 s−1. In this case, the addition
of SOD would only expedite the conversion of O2•− to H2O2, which would only appreciably decrease
the steady state of O2•− in the process. If H2O2 could not be effectively removed and O2•− continually
added to the system then over time H2O2 would appreciably accumulate faster in the presence of
SOD. However, in a biological system H2O2 is constantly being removed by various H2O2 detoxifying
enzymes systems, and as such no appreciable increase in H2O2 would be noted under these conditions.
The second situation to consider would be if O2•− was readily reacting with other cellular components
to generate other non-H2O2 oxidation products prior to spontaneously dismutating to H2O2. If SOD
was added to this system, the SOD would outcompete the other cellular components for O2•− thus
leading to an increased flux of H2O2 into the system. This is the only situation in which an increase
in SOD could increase steady-state H2O2, but again, it would be staunchly dictated by the presence
and kinetics of H2O2 removal enzymes as well. The last situation would be if O2•− was readily being
reduced to H2O2 by an external reductant (i.e., SOR). If SOD was added to this system, the production
of H2O2 would be reduced by half since SOR generates one H2O2 for every O2•−, while SOD requires
two O2•− for each H2O2 produced. Taken together, SOD does not appear to have evolved to affect the
quantity of H2O2 produced from O2•−, but moreover, the removal of O2•− and/or the fine tuning of
other oxidants.

Under the vast majority of circumstances, SOD effectively lowers the steady-state levels of
O2•− at an incredibly fast rate (109 M−1 s−1) [87]. This diffusion-limited rate posits the possibility
that removal of O2•− is more important to vital cellular processes than is the production of H2O2.
A classic theoretical example of this phenomenon in the preservation of nitric oxide (•NO) by SOD [88].
O2•− and •NO non-catalytically combine to form peroxynitrite (ONOO−). Unlike •NO, ONOO−

is highly reactive and damaging, and is not believed to act in a coordinated manner as a signaling
molecule. In theory, the addition of SOD would outcompete •NO for O2•−, thus preserving the
bioavailability of •NO as a signaling molecule. While this theory makes intuitive sense, the situation
is more complex than this (similar to that of the production of H2O2 by SOD) [89] and may only
occur under certain biological conditions. Another example of SOD protecting another biological
process from the effects of O2•− would be in maintaining the reduced state of Fe. Heme formation
occurs in the mitochondria, and the last step in this process requires reduced Fe to be inserted into the
porphyrin ring. Our group has shown that the loss of MnSOD leads to an increased pool of oxidized
iron, which ultimately causes dysfunctional heme synthesis and a porphyria-like phenotype [81].
While SOD may have eventually evolved to affect numerous signaling pathways, the preservation of
reduced Fe in primitive life may have been one of its most important evolutionary functions that has
persisted even in modern species today.

The question still remains that if SOD’s primary function is to reduce steady-state O2•− levels,
then why is an oxidizing and reactive molecule (i.e., H2O2) formed in the process? If this damaging
molecule was truly detrimental to the cell, it would be speculated that the mechanism of SOD would
have rapidly evolved away from the formation of H2O2 into something more inert. The persistence of
the H2O2-forming mechanism among all convergent forms of SOD suggests that both the lessening of
O2•− as well as production of H2O2 are beneficial for normal physiological processes. Aforementioned,
under most biological situations SOD does not appear to affect steady-state levels of H2O2, so it could
be postulated that SOD may affect the spatial orientation of this ROS. For example, CuZnSOD has
been shown to be able to physically bind to Rac1, which is a subunit regulating specific isoforms of
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NADPH oxidases (NOX) [90]. NOX enzymes are professional O2•− generating enzymes, suggesting
the localization of CuZnSOD in close proximity to these proteins creates the opportunity to limit
the diffusion distance of O2•− to be converted to H2O2 in a tightly regulated and spatially oriented
manner. Moreover, H2O2 derived from this NOX-CuZnSOD interaction has been directly implicated
in the physiological activation of redox-sensitive transcription factors such as the nuclear factor kappa
light chain enhancer of activated B-cells (NFκB) [91]. CuZnSOD has also been shown to be recruited
to T-lymphocyte receptors during times of activation [92]. Understanding that NOX-derived O2•−
is critical in the activation of these immune cells [93], it once again infers that rapid and localized
conversion to H2O2 is critical in propagating this ROS signal for normal physiological T-lymphocyte
activation. Other forms of SOD have also been demonstrated to play a role in localizing H2O2-mediated
signaling cascades in other physiological processes [94–100]. In summary, it appears that the ability
of lowering O2•− while concurrently producing H2O2 has proven to be advantageous in regards to
both cellular viability and signaling in an oxidative environment. While in primitive lifeforms the role
of SOD may have been relatively straight-forward, the complexity derived from billions of years of
evolution has given SOD multifaceted roles in normal mammalian physiology as well as disease that
are still be elucidated today.

9. SOD and Disease

Within mammals, SOD has been exhaustively studied for its potential role in disease. Interestingly,
the majority of mutations in SOD that are associated with disease retain catalytic activity. Due to the
essential protective role SOD plays in an oxidative atmosphere, this suggests complete catalytic loss
of SOD may be incompatible with life in an O2-rich environment, thus, inactive forms of SOD are
very rarely represented in any known disease state. However, active forms of the three SOD isoforms
have been associated with mammalian diseases of varying cellular diversity, which further adds to the
complexity of this ancient class of antioxidant enzymes.

The most studied disease possessing a SOD mutation is amyotrophic lateral sclerosis (ALS),
where CuZnSOD is the specific isoform associated with this malady. CuZnSOD mutations account
for approximately 20% of familial forms of ALS (most forms of ALS are sporadic, with approximately
10% being familial in nature), and over 150 mutations of CuZnSOD have been identified in this
disease [101]. Intriguingly, with the exception of rare mutant forms of CuZnSOD that render the
enzyme inactive [102], the majority of CuZnSOD mutants in ALS possess equal or higher amounts of
intrinsic activity [101]. This argues one of two things: (1) that CuZnSOD mutations leading to ALS are
not dependent upon SOD activity and based more on specific properties of the protein (i.e., ability to
for inclusion bodies or protein aggregates [103–105]) or (2) the mutations cause differential localization
of CuZnSOD leading to aberrant or deficient ROS signaling cascades. Aforementioned, the addition
of SOD to a system only increases H2O2 under specific conditions, which suggests ALS caused by
CuZnSOD mutants possessing more catalytic activity are likely due to one of the previous hypotheses
as opposed to toxicity due to an over-production of H2O2.

Another disease often associated with an imbalance in CuZnSOD is trisomy 21, or Down
syndrome. As the name implies, individuals with trisomy 21 possess an extra copy of chromosome
21 in which CuZnSOD is encoded in humans. Paradoxically, patients with trisomy 21 demonstrate
significant oxidative imbalances in their redox state [106], which would not be predicted with elevated
levels of CuZnSOD. It is believed that the overt oxidative environment observed in trisomy 21 comes
from a myriad of players such as over-expression of pro-oxidant genes, down-regulation of anti-oxidant
genes, and mitochondrial dysfunction [107–109]. Intriguingly, the corneal disease keratoconus has also
been linked to mutations in CuZnSOD and is highly prevalent in patients with trisomy 21 suggesting
another possible link to dysregulated CuZnSOD activity and disease [110,111]. Last, several diseases
have been linked to aberrant CuZnSOD expression levels as opposed to mutation. These include
various forms of malignancies and cardiovascular diseases [88,112].
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Mouse models of CuZnSOD loss have provided unexpected results in regards to the function
of this antioxidant enzyme. Five variants of CuZnSOD knockout mice have been generated on
various backgrounds to date, and all appear to have very similar phenotypes [113–117]. Surprisingly,
CuZnSOD deficient mice are viable and indistinguishable from wild-type mice at young ages [113].
However, as CuZnSOD knock-out mice age they begin to succumb prematurely to various pathologies
such as behavioral changes, progressive denervation of motor neurons, muscle wasting, decreased
fertility, macular degeneration, and an increased incidence of various malignancies [113–119].
The protection of young animals to the loss of CuZnSOD is suggestive of compensatory mechanisms
of O2•− removal, however, these have not been reported [113]. An alternative explanation is that
CuZnSOD is simply dispensable for normal development. Given that CuZnSOD evolved much later
than other SOD isoforms (possibly after the GOE when Cu and Zn became bioavailable with elevated
O2), it is possible that this isoform of the enzyme was assimilated less as a protective enzyme and more
to fine tune intracellular ROS levels for signaling purposes. Thus, its loss in modern-day species does
not insinuate imminent death, but instead, dysfunction later in life.

EcSOD loss is also not embryonically lethal and does not shorten the lifespan of mice, but loss
of this isoform does increase the sensitivity to other pathologies later in life similar to loss of
CuZnSOD [120]. EcSOD knockout mice are more sensitive to hypoxia and hyperoxia, which under
these conditions manifests as ventricular hypertrophy, hypertension, renal injury, emphysema,
as well as corneal dysfunction [121–126]. EcSOD null mice have also been shown to have increased
sensitization to adriamycin-induced nephropathy, bleomycin-induced bronchopulmonary dysplasia
and pulmonary hypertension, as well as neurocognitive deficits after radiation [127–129]. Interestingly,
conditional knockout of EcSOD in the lung of adult animals leads to imminent death due to severe
pulmonary fibrosis and dysfunction without any additional challenges [130]. This suggests the
possibility of compensatory mechanisms during embryonic loss of EcSOD that are not present in a
fully developed adult. However, expression and catalytic levels of the other isoforms of SOD are not
altered in any tissue with loss of EcSOD, which further convolutes these data and warrants further
investigation into this phenomenon [120].

In humans, both mutation and expression levels of EcSOD are associated with disease, however,
no complete loss of function mutants have been reported to date. One of the most prevalent mutations
of EcSOD is known as R213G. This alteration causes a positively charged arginine located in the
heparin-binding domain of the enzyme to be converted to a glycine, which leads to increased
circulating levels and redistribution of EcSOD. The R213G mutation has differential effects as it has been
demonstrated to exacerbate cardiovascular disease in humans and mice exposed to hypoxia, but may
also protect humans from chronic obstructive pulmonary disease and mice from lipopolysaccharide
and bleomycin-induced injury as well as asthma [131–136]. This observation suggests that the selection
pressure to preserve this mutation may have an advantage in certain settings but may increase disease
risk in others. Other polymorphisms in EcSOD have been shown to decrease lung function and
increasing risk for emphysema, but it remains unknown how these non-coding region mutations
affect EcSOD expression [137,138]. Our group has shown in both mice and humans that epigenetic
repression and downregulation of EcSOD significantly affects various forms of cancer growth and
metastasis [139–142]. EcSOD has been shown to play a role cardiovascular diseases as well [88].
Because EcSOD is also a Cu and Zn containing enzyme, is located extracellularly, is the youngest
evolutionary form of SOD in mammals, and mice devoid of EcSOD are viable and healthy under
normal conditions, it could be speculated that EcSOD evolved to regulate extracellular ROS signaling
pathways as opposed to protect vital cellular functions.

The final and most ancient form of mammalian SOD, MnSOD, has proven to be the most critical
to survival in an oxidative environment. Mice lacking MnSOD die shortly after birth (once exposed
to atmospheric levels of O2) from overt O2 toxicity that presents as dilated cardiomyopathy and
neurodegeneration [143,144]. Additionally, we and others have shown that conditional loss of MnSOD
demonstrates inappropriate organ system development (albeit certain cell types are affected more than
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others) [80,81,145–152]. It has been proposed that MnSOD may act as a tumor suppressor gene [153],
and mice heterozygous for MnSOD indeed demonstrate an increased incidence of certain types of
cancers [154]. Conversely, we have demonstrated that complete loss of MnSOD may be protective
against the development of certain cancers [155]. These conflicting results suggest that the tumor
suppressing effect of MnSOD may be dosage dependent, and the complete loss of MnSOD leads to
cell death opposed to cancer formation. Additionally, these findings may also infer that the loss of
MnSOD does not play a role in the initiation of cancer, but may play a stronger role in the promotion
or progression of an already formed malignancy.

Similar to the other isoforms of SOD, no mutation leading to the complete catalytic inactivation of
MnSOD has been observed in any human disease to date. Active mutant forms of MnSOD have been
associated with increased risk for certain chronic conditions such as diabetes, breast cancer, and prostate
cancer [156–159]. Interestingly, reduced expression of MnSOD by altering transcription, abnormal
epigenetic regulation, or loss of heterozygosity has also been shown to be associated to human
cancers [160–164], which again supports the concept that MnSOD acts as a tumor suppressor gene.
In contrast, certain types of cancers as well as advanced metastatic tumors display over-expressed
levels of MnSOD [165–167], which supports the hypothesis that the expression level of MnSOD
differentially regulates various stages of cancer progression [168].

Together, the SODs regulate various aspects of normal physiology (see SOD-Mediated Redox
Signaling section), and altering their functional capacity may lead to significant pathology dependent
upon the specific temporal and spatial factors involved. As discussed, a strong body of literature
exists suggesting the SODs play a distinct role in cancer development and progression. This is highly
counterintuitive when evaluating the evolutionary role for SOD in cellular survival. We and others
have hypothesized that SOD evolved essentially to protect primitive life from the damaging effects
of O2•−, which would in turn allow these original cells the ability to grow and divide. However,
cancer appears to develop or progress (in part) due to the functional loss of SOD activity, and these
malignant cells appear to exist in a perpetual state of increased levels of ROS. These two observations
further the model by Mittler that over billions of years of evolution life has changed from simply
eliminating ROS to utilizing it as a selective advantage [74]. By this logic, cancer may be thought
of as simply an over-adaptation to ROS by causing cellular proliferation to remain dysregulated.
Work by Goswami and colleagues supports this theory as they have shown that normal cellular
proliferation is tightly regulated by a redox cycle that occurs within the cell cycle [169]. Moreover,
they demonstrate that SODs are directly involved in the control of cellular proliferation, and that
dysregulation of these enzymes leads to disruption of normal cell cycle progression potentially leading
to cancer [170]. Overall, the study of how SODs regulate the redox environment and cellular signaling
is still in its infancy, and future research is warranted to begin to decipher the complex nature of these
primitive enzymes.

10. Conclusions

The increase in atmospheric and oceanic O2 billions of years ago was a critical step in the
progression of cellular life, and the accumulation of this vital gas accelerated the size, complexity,
and development of intricate features in primitive species. It is undeniable that O2 is a Janus-faced
molecule with the ability to be both useful and harmful in its reactions. The SOD family of enzymes
is one of the most primitive class of functional proteins that have been described, and its convergent
mechanism across its various isoforms depicts its importance over the evolutionary history of modern
life. While exhaustive studies have been performed in the examination of these enzymes, many
questions still exist. Why is there only one isoform of SOD found in specific subcellular compartments
if it is so important? Why is there no compensation of the other isoforms of SOD when one is lost?
How are modern-day species able to survive without a specific isoform of SOD? How does SOD
specifically contribute to redox signaling? These and many other enigmas still remain, which truly
illuminates the ever-expanding complexity of redox biology that is more than simply oxidative stress.
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