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This dissertation is a compilation of studies related to the halogenated anesthetic 

gas isoflurane. Historically, halogenated anesthetic gases have been used in the health 

care industry. In 1977 the National Institute for Occupational Safety and Health (NIOSH) 

issued a recommended exposure limit (REL) of two parts per million (ppm) averaged 

over one hour of exposure for halogenated anesthetic gases (NIOSH 1977). The 

purpose of the standard was to protect healthcare workers from exposure to halothane, 

methoxyflurane, and chloroform. However, isoflurane only became available after the 

NIOSH REL was adopted. Therefore, the NIOSH REL is not directly applicable to 

isoflurane. Moreover, use of isoflurane in healthcare has diminished over the years, and 

it is now more widely used in medical research laboratories and veterinary clinics. The 

purpose of this dissertation is to demonstrate the need for an updated occupational 

exposure limit for isoflurane. Four studies were conducted toward the completion of this 

goal; a systematic review of the literature to investigate human health effects associated 

with occupational exposure to isoflurane, a case study of a high exposure to isoflurane 

and its control, an assessment of occupational exposure of isoflurane to researchers, 

and a comparison of the effectiveness of control methods in reducing isoflurane waste 

anesthetic gas (WAG). 

In the first study, we searched the PubMed and Embase databases were 

searched for articles with data on health effects associated with occupational isoflurane 

exposure. Thirteen studies were found during the search that fit the review criteria. Five 

of the studies reported no adverse human health effects. Eight of the studies reported 
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human health effects ranging from genetic mutations, changes in cellular function, 

symptoms of acute exposure, and congenital anomalies in the offspring of exposed 

women. 

 In the second study, we found that researchers working with isoflurane in a small 

unventilated space had exposures close to 30 ppm over a short-time period (0.48 and 

1.15 hours) for the main researcher. Other members of the group had exposures above 

2 parts per million (ppm). An active scavenging ventilation control which reduced 

isoflurane exposure by an average of 86%. 

 In the third study, we showed that isoflurane exposure to researchers at a 

medical research institution was significantly associated with scavenging technique and 

role of the investigator (p = 0.02 and 0.04, respectively). Researchers using passive 

scavenging canisters were exposed to a mean concentration of 3.18 ppm (%CV = 123) 

and researchers using active scavenging were exposed to a mean isoflurane 

concentration of 0.83 ppm (% CV = 89). Researchers who performed the greater part of 

the procedures were exposed to a mean of 2.71 ppm (%CV = 108) and researchers who 

assisted were exposed to a mean of 1.18 ppm (%CV = 97).  

In the final study, we evaluated isoflurane exposures when using active 

scavengers, passive canister scavengers, and combinations of both scavenging 

techniques. We also evaluated isoflurane exposures with no scavenging control. 

Isoflurane concentration was significantly associated with control method (p < 0.0001). 

Post hoc Tukey’s comparison showed the significant difference (p = 0.05) in isoflurane 

concentration between no scavenging and active scavenging conditions, no scavenging 

and combination active and passive scavenging conditions, and passive and active 

scavenging conditions. There was no difference between no scavenging and passive 

scavenging conditions or active scavenging and combination scavenging conditions. The 

mean isoflurane concentration while using no scavenging controls was 10.23 ppm (%CV 
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= 12), and was 10.35 ppm (%CV = 58) while using passive scavenging. Isoflurane 

concentration using active scavenging was 1.43 ppm (%CV = 15) and 0.59 ppm (%CV = 

46) while using the combination scavenging method. 

 Researchers who use passive scavenging methods are more likely to be at risk 

for isoflurane exposure above 2 ppm. Researchers should use active scavenging to 

control isoflurane WAG. 
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CHAPTER 1 

 ISOFLURANE EXPOSURE IN THE RESEARCH SETTING: OVERVIEW OF THE 

PROBLEM 

Anesthetic gases are used to induce a state of unconsciousness in humans and 

animals during healthcare procedures. Anesthetic gases are also used to conduct 

research procedures. There are approximately 100,000 medical scientists in the U.S. 

(U.S. Department of Labor, 2015) who are potentially exposed to anesthetic gas in the 

workplace. There are also approximately 143,000 individuals in the veterinary field who 

are also likely to be exposed (U.S. Department of Labor, 2015). Cubizolles et al. (1992) 

reported that workers exposed to anesthetic gases report symptoms of nausea, 

headache, slower reaction time, neuropsychological syndrome, difficulties with memory, 

peripheral neurological disorders and fatigue. The National Institute for Occupational 

Safety and Health (NIOSH), an institute within the U.S. Centers for Disease Control 

(CDC) also cites irritability, difficulties with judgement and coordination as well as liver 

and kidney disease (NIOSH, 2007). 

Occupational exposure to nitrous oxide and other anesthetic gases have been 

associated with adverse birth outcomes such as spontaneous abortion, low birth weight, 

premature birth, and infertility (Cohen et al., 1971, Knill-Jones et al., 1972, Rosenberg et 

al., 1973). Occupational exposure to anesthetic gas is mainly due to leakage from the 

induction, maintenance, or recovery process. Anesthetic gas that is leaked to the 

surrounding environment is referred to as waste anesthetic gas (WAG). Best practice 

guidelines state that WAGs should be controlled using scavenging techniques to protect 

employees (NIOSH, 2007). Scavenging is the collection and subsequent containment or 

evacuation of WAGs. Two commons methods of scavenging WAGs are active 

scavenging using vacuum exhaust lines and passive scavenging with canisters. 
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Isoflurane is a halogenated anesthetic gas that was introduced in the 1980s, after 

NIOSH had published a recommended exposure limit (REL) for halogenated anesthetic 

gases. At the time of the REL publication there was limited health data available for 

these gases. However, with the data available for halothane, a two parts per million 

(ppm) limit was recommended for all halogenated ethers (NIOSH, 1977). The rationale 

behind this limit was to recommend the lowest possible exposure, which was determined 

by the lowest level that the analytical method was able to detect at the time. However, in 

the absence of a standard that specifically took into account isoflurane, the NIOSH REL 

for halogenated gases has been applied to isoflurane and the newer halogenated ethers 

by researchers (Barberio et al., 2006, Barker et al., 1997, Franco et al., 1992, 

Friembichler et al., 2011, Gardner, 1989, Hobbhahan et al., 1998, Hoerauf et al., 1996, 

Säre et al., 2011, Smith et al., 2002, Taylor et al., 2009) 

Acute exposure to isoflurane has been associated with central nervous system 

toxicity. Symptoms include headache, nausea, dizziness, loss of consciousness, 

asphyxia. Severe occupational overexposures to isoflurane may result in death (OSHA, 

2006). Newer publications have documented possible pathways of central nervous 

system (CNS) toxicity (Acharya et al., 2015, Dittmar et al., 2015, Joksovic et al., 2015, 

Kim et al., 2014, Sun et al., 2014, Uchimoto et al., 2014, Xie et al., 2007).  

Isoflurane exposure in humans has been linked to an increase of chromosomal 

abnormalities and DNA mutations (Bilban et al., 2005, Costa Paes et al., 2014, Hoerauf 

et al., 1999, Hoerauf et al., 1999). These changes could result in negative health 

outcomes including cancer and adverse birth outcomes. The International Agency for 

Research on Cancer (IARC) has not designated isoflurane as carcinogenic because of. 

Inadequate evidence of carcinogenicity to humans and animals (IARC, 1998).  
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Recent studies in animal and in vitro models have described biological 

mechanisms that could potentially cause negative health effects in humans. Isoflurane is 

metabolized in the liver by cytochrome P450 2E1 into trifluoroacetic acid and inorganic 

fluoride (Kharash et al., 1999). Several studies have described neurological effects of 

isoflurane in animals (Archaraya et al., 2015, Dittmar et al., 2015, Joksovic et al., 2015). 

In a recent study, isoflurane exposure has been shown to cause reactive oxygen species 

accumulation in cells that results in apoptosis (Sun et al., 2014). 

There has been limited epidemiological data concerning the health effects of 

isoflurane exposure to humans. Most of these studies have been concerned with 

exposure to anesthetic gases as a class of chemicals (Bilban et al., 2005, Costa Paes et 

al., 2014, Hoerauf et al., 1999, Hoerauf et al., 1999). As a result, there are only a few 

studies that focus on isoflurane exposure. Furthermore, anesthetic gases do not have 

the same mechanisms, so it is not appropriate to generalize. As an example, nitrous 

oxide exposure has been better studied than the other anesthetic gases. Health effects 

associated with nitrous oxide do not necessarily reflect those of isoflurane. Nitrous oxide 

is structurally different from isoflurane and has different pathways in the body. Therefore, 

studies with a mixed exposure of isoflurane and nitrous oxide may not give an accurate 

picture of the health effects of isoflurane. Isoflurane is similar in structure to the other 

halogenated anesthetic gases desflurane, enflurane, halothane, and sevoflurane 

(Corbett, 1976, Baden et al., 1990, Barker et al., 1997). 

As isoflurane is now primarily used by researchers and veterinarians working 

with animals, occupational exposures may be higher among these workers than among 

health care workers. Operating theatres are designed with ventilation controls 

specifically to reduce WAGs and other possible air pollutants. Research and veterinary 

setting may have less rigorous institutional policies to govern how isoflurane is used and 
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controls in place to reduce WAGs. Researchers may have to work in rooms that have 

not been designed for the use of anesthetic gases. This may result in high exposures to 

isoflurane that could be potentially hazardous to the health of the researchers. 

The purpose of this dissertation is to demonstrate the need for an updated 

occupational exposure limit for isoflurane. This study has been designed to achieve this 

objective and focusses primarily workers in the scientific research and development 

services North American Industry Classification System (NAICS), 541700 (US 

Department of Labor, 2014). This research may also benefit individuals working in the 

veterinary services field, NAICS 541940 (Veterinary Services) (US Department of Labor, 

2014). Four studies were conducted to achieve this objective. These studies are 

presented in the following order: A systematic review of available literature was 

conducted to determine what health effects are associated with occupational isoflurane 

exposure (Chapter 2). The objective of the systematic review was to find health effects 

and exposure data that could be used to suggest a safe exposure limit for isoflurane. It 

was hypothesized that occupational isoflurane exposure is associated with adverse 

human health outcomes. 

We conducted an intervention study in research dentists using isoflurane for a 

research protocol. We evaluated exposures before and after the installation of a 

ventilation control. (Chapter 3). The purpose of the study was to reduce isoflurane 

exposures through a ventilation control. Researchers were relying on passive 

scavenging canisters, as opposed to active methods such as ventilation, to evacuate air, 

vacuum scavenging lines or working in a biosafety cabinet. It was hypothesized that 

employees were exposed to high concentrations of isoflurane and that an active 

scavenging vacuum line could be used to reduce isoflurane exposure to the researchers. 
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Due to the high exposure of isoflurane found in the study of dental researchers 

(Chapter 3), we determined that more information was needed about how isoflurane was 

used in the institution. An exposure assessment study of several researchers, 

conducting a variety of procedures, in different locations in the institution was conducted 

to determine how isoflurane is used at the medical research institution (Chapter 4). The 

purpose of this study was to identify working conditions and work practices that were 

associated with high levels of isoflurane exposure. It was hypothesized that scavenging 

controls, role of the researcher during the procedures, species of animals used for the 

procedure, and number of animals would be associated with isoflurane exposure to 

researchers. 

More data was needed to be able to justify isoflurane WAG controls methods to 

researchers. A comparison of current, commonly used isoflurane controls were 

compared to determine which controls most effectively reduce isoflurane WAG exposure 

to workers. Isoflurane concentration in an experimental setting was measured using 

three common isoflurane control techniques (Chapter 5). The purpose of the study was 

to determine how well each technique controlled isoflurane WAG. These techniques 

were activated charcoal canisters for the passive scavenging of isoflurane, a vacuum 

exhaust line for active scavenging, and a combination of passive and active scavenging. 

It was hypothesized that isoflurane concentration would be different while using different 

WAG control methods. The secondary hypothesis was that isoflurane concentration 

would be different while using different brands of the passive scavenging canisters. 
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The combined studies present a full picture of isoflurane use from known health 

effects to current occupational exposures and exposure control methods. The systematic 

review revealed that occupational exposure to isoflurane may be associated with 

changes in cell function and genetic damage. The exposure assessments of researchers 

showed that researchers are at risk for high exposures to isoflurane WAG when 

performing research procedures. Active scavenging methods were shown to more 

effectively control WAG than passive scavenging methods in three of the studies 

(Chapters 3—5).  
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CHAPTER 2  

HEALTH EFFECTS RELATED TO OCCUPATIONAL ISOFLURANE EXPOSURE: 

A SYSTEMATIC REVIEW 

ABSTRACT 

Isoflurane is the most commonly used anesthetic gas in the veterinary and 

research fields. Few studies concerning health outcomes associated with isoflurane 

have been published, since its introduction in the 1980s. The objective of this review is 

to determine what health outcomes are associated with occupational exposure to 

isoflurane. PubMed and Embase databases were searched for all studies concerning 

occupational exposure to isoflurane anesthetic gas. There were thirteen studies that met 

all of the eligibility criteria. Eligibility requirements were studies conducted on human 

subjects, in which the population had documented occupational exposure to isoflurane, 

health effects information related to the exposure, and published in English.  

Eight of the studies reported some kind of adverse health outcome associated 

with occupational exposure to isoflurane. Five of the studies reported that isoflurane 

exposure was not associated with the adverse health outcomes of interest. Health 

outcomes varied from the cellular level to the individual level. Four of the studies found 

differences in rates of genetic mutations. One study found an increase in congenital 

abnormalities and one found an association with symptoms such as headache, nausea, 

and dizziness. Isoflurane is associated with some adverse health outcomes, although 

more data is needed to determine the mechanism behind these outcomes.  
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INTRODUCTION 

 Isoflurane is the most commonly used anesthetic gas in the veterinary and 

animal research fields. There have been no regulations or exposure recommendations 

published by either the Occupational Safety and Health Administration (OSHA) or the 

National Institute for Occupational Safety and Health (NIOSH) specifically for isoflurane. 

This may in part be due to the lack of health effects data available for isoflurane 

exposure. Acute exposure effects of isoflurane exposure are known to be headache, 

nausea, loss of consciousness, and other symptoms of central nervous system (CNS) 

effects (Occupational Safety and Health Administration, 2006). However, health effects 

associated with chronic exposures likely to be observed in occupational studies have not 

been well documented. These data are necessary to develop occupational exposure 

limits for isoflurane. 

Most studies completed on isoflurane focus on exposures and control methods. 

These studies have not included health symptom data of any kind. The studies with 

isoflurane exposure data often use healthcare workers as the sole study population. 

Isoflurane is commonly used in the veterinary and research fields, so the healthcare 

population does not truly represent the current exposed population. Isoflurane exposure 

due to use in humans is also likely to be considerably different from exposures due to 

use in animals. This is attributable to many factors, including induction and maintenance 

techniques, and equipment as well has differences in ventilation between hospital 

operating theaters and veterinary and research procedure rooms.  

NIOSH published a recommended exposure limit (REL) of two parts per million 

(ppm) for a one hour time period for halogenated anesthetic gases in 1977 (NIOSH, 

1977). The standard was developed with data from the anesthetic gases chloroform, 

trichloroethylene, halothane, methoxyflurane, enflurane, and fluroxene. Most of these 
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anesthetics are no longer in use today. Notably, the newer generation halogenated 

anesthetic gases sevoflurane, desflurane, and isoflurane are not mentioned in the 

standard. At the time the standard was written these drugs were not in use. 

The NIOSH standard of two ppm should not be interpreted as a safe exposure 

level. At the time the standard was developed, little health data was available for these 

anesthetic agents. Therefore, NIOSH set the REL as low as possible, which was defined 

by the reliability of the sampling methods available. Two ppm was the lowest reliable 

concentration of the anesthetic gases that could be sampled using charcoal adsorption 

and analyzed using gas chromatography. There have been many improvements in both 

sampling and analysis techniques. The limit of detection (LOD) of the MIRAN sapphire 

direct reading instrument is 0.03 ppm and the LOD of passive monitoring badges is 0.04 

ppm. Therefore, if the spirit of the NIOSH REL were to be applied to isoflurane today the 

standard would be 0.04 ppm or lower. 

The NIOSH standard was also specifically determined with healthcare workers in 

mind. It was not anticipated that halogenated gases would be used outside of the strictly 

controlled healthcare environment. Today, halogenated gases are more likely to be used 

in veterinary practices and research environments than in the healthcare setting. 

Veterinarians and researchers may not have the same training for safe anesthetic gas 

use that healthcare workers are provided. 

The NIOSH standard is not only outdated because it lacks the inclusion of newer 

halogenated anesthetic gases; it is also outdated in respect to the population using and 

exposed to the gases and the exposure assessment tools to evaluate exposure. The 

NIOSH REL needs to be updated. Health effects data concerning isoflurane and the 

newer halogenated anesthetic gases are needed to develop a reasonable and justifiable 

exposure limit. 
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A systematic review of the literature was conducted to determine what health 

effects are associated with occupational exposure to isoflurane. The search was limited 

to studies with an occupationally exposed study population and a non-exposed control 

group. All health effects and occupational settings were included. 

METHODS 

We conducted a computerized search of PubMed and Embase for all studies on 

occupational environmental exposure to isoflurane or other anesthetic gases. A 

combination of the following MeSH heading and keywords were used: “occupational 

exposure” or “environmental exposure” and “isoflurane” or “anesthetic gases”. The 

search was conducted in December of 2014 and again in June of 2015. A limit of human 

studies was applied to the search. No language filters were used. The search strategy 

was translated for the Embase search interface. The full PubMed search strategy can be 

found in Appendix A and the Embase strategy in Appendix B. 

Studies without a comparison to a control group, without isoflurane exposure 

data or did not include isoflurane exposure data during data analysis were excluded. 

Papers that were non-English publications were excluded. The remaining studies were 

thoroughly reviewed and assigned a grade of low, medium, or high quality using the 

Newcastle-Ottawa Scale for Observational studies. A point-scale was used to determine 

quality. Categories were based on traditional grading scales. Studies that received less 

than one half of the available points were graded as poor. Studies that received 50—

70% of the points were graded as medium quality, and studies that received 80—100% 

of the points were graded as high quality. All studies were graded by two reviewers 

(A.M., C.A.). Studies were reviewed and graded separately by each reviewer. 

Differences in grades were discussed until the reviewers reached a consensus. 
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RESULTS 

A total of 453 unique records were found in PubMed and Embase. Of these, 361 

were studies on anesthetic gases other than isoflurane and were excluded from the 

study. Non-English publications concerning isoflurane exposure were also excluded 

(n=24). Studies with isoflurane exposure data, but no health outcomes data were also 

excluded from the study (n=52). This left 16 studies that had both isoflurane exposure 

data and health effects data. Two of these studies had no comparison group and were 

excluded. One study had exposure information on isoflurane but did not include these 

data in the analysis of health effects. This study was excluded (Figure 2.1). 

Of the remaining 13 studies, five reported no adverse health effects associated 

with occupational exposure to isoflurane. These five studies included one cohort study 

design (Shuhaiber et al., 2002) and four studies of cross-sectional design (Franco et al., 

1993, Krenzischek et al., 2002, Lucchini et al., 1997, Scapellato et al., 2011). The cohort 

study was rated of low quality and one cross-sectional study was rated high quality and 

three were rated as medium (Table 2.1).  

Four studies reported a significant difference in genetic damage associated with 

exposure to isoflurane. These studies reported changes in chromosomes and DNA 

damage. All studies reporting genetic differences were cross-sectional. Two of the 

studies were rated as medium (Bilban et al., 2005, Costa Paes et al., 2014) and two 

were rated as high (Hoerauf et al., 1999, Hoerauf et al., 1999) (Table 2.1). 
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Figure 2.1: Study selection process for systematic review of health effects associated with 
occupational exposure to isoflurane. Number of studies is indicated in parentheses. 
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Four studies reported other adverse health effects. These included a range of 

health outcomes from symptoms associated with acute isoflurane exposure (Hill et al., 

1998) to changes in biomarkers (Franco et al., 1992) and cell functions (Goto et al., 

2000). One study found that isoflurane exposure was associated with an increase in 

congenital anomalies in offspring of female veterinarians who were occupationally 

exposed to isoflurane (Teschke et al., 2011). One of these studies was a cohort study 

rated as medium in quality; the other three studies were cross-sectional and ranged in 

quality from low to high (Table 2.1). 

 



14 
 

Table 2.1: Summary of Studies Included in Review 

Author Year Title Study Design Findings 
Grade 

(points) 
Bilban, M., et 
al., 2005 

Cytogenetic tests 
performed on operating 
room personnel (the use of 
anesthetic gases) 

Cross-sectional 
Study population: Health care workers, 
women (Subjects 153 Controls 197 
and 153) 
Statistical analysis: Pearson 
correlation coefficient 

Occupational exposure to a mixture of nitrous oxide, 
isoflurane, and halothane anesthetic gases was 
associated with and increased frequency of structural 
chromosomal aberrations (p<0.001), sister chromatid 
exchanges ( p<0.001), and increased number of 
micronuclei (p<0.001). 
 

Medium 
(7) 

Costa Paes, 
R., et al., 2014 

DNA damage and 
antioxidant status in 
medical residents 
occupationally exposed to 
waste anesthetic gases 
 

Cross-sectional 
Study population: Health care workers 
(Subjects 15, Controls 15) 
Statistical analysis: Student’s t test 

Occupational exposure to isoflurane and other anesthetic 
gases was associated with an increase in lymphocyte 
DNA damage (p=0.001), and altered antioxidant 
protection (p>0.001). 

Medium 
(7) 

Franco G., et 
al., 1992 

Occupational exposure of 
operating-theater personnel 
to isoflurane and nitrous 
oxide 
 

Cross-sectional 
Study population: Health care workers 
(Subjects 24, Controls 24) 
Statistical analysis: Student’s t test, 
Chi square 

Occupational exposure to isoflurane and nitrous oxide 
was associated with an increase of urinary D-glucaric acid 
(p<0.001). 

High (8) 

Franco, G., et 
al., 1993 

Drinking habits and 
occupational exposure to 
inhalation anesthetics at 
low doses 
 

Cross-sectional 
Study population: Health care workers 
(Subjects 80, Controls 92) 
Statistical analysis: ANOVA 

Occupational exposure to isoflurane and nitrous oxide 
does not cause changes in serum aminotransferases ALT 
and AST or mean corpuscular volume (MCV) of red blood 
cells (p>0.05).  
 

Medium 
(7) 

Goto, Y., et al., 
2000 

Does chronic occupational 
exposure to volatile 
anesthetic agents influence 
the rate of neutrophil 
apoptosis? 
 

Cross-sectional 
Study population: Health care workers 
(Subjects 20, Controls 10) 
Statistical analysis: Student’s t test 

Neutrophil apoptosis was inhibited by occupational 
exposure to nitrous oxide, sevoflurane, and isoflurane 
(p=0.008). 

Low (4) 

Hill, D., et al., 
1998 

Occupational injuries and 
illnesses reported by zoo 
veterinarians in the United 
States 
 

Cross-sectional 
Study population: Zoo veterinarians 
(Subjects 277) 
Statistical analysis: Chi square 

Ten percent US zoo veterinarians reported adverse health 
effects related to anesthetic gas exposure; isoflurane was 
the anesthetic gas for 78.6% of the adverse reactions). 
Female veterinarians were more likely to report an 
adverse exposure to anesthetic gas (p=0.04). 
 

Medium 
(5) 
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Table 2.1: An overview of articles included in the systematic review. Studies were assigned points based on the Newcastle-Ottawa 
Scale for observational studies. The listed scores reflect quality of the study and were based on the following point system: Low (1—
4 points), Medium (5—7 points), and High (8—10 points). 

Hoerauf, K., et 
al., 1999 

Genetic damage in 
operating room personnel 
exposed to isoflurane and 
nitrous oxide 
 

Cross-sectional 
Study population: Health care workers 
(Subjects 10, Controls 10) 
Statistical analysis: Paired Student’s t 
test 

Exposure to nitrous oxide and isoflurane leads to an 
increased frequency of sister chromatid exchanges 
(p=0.036). 

High (8) 

Hoerauf, K., et 
al., 1999 

Waste anaesthetic gases 
induce sister chromatid 
exchanges in lymphocytes 
of operating room 
personnel 
 

Cross-sectional 
Study population: Health care workers 
(Subjects 27, Controls 27) 
Statistical analysis: Student’s t test 

Simultaneous exposure to isoflurane and nitrous oxide is 
associated with increased frequency of sister chromatid 
exchanges (p<0.05). 

High (8) 

Krenzischek, 
D., et al., 2002 

Phase I collaborative pilot 
study: Waste anesthetic 
gas levels in the PACU 
 

Cross-sectional 
Study population: Health care workers 
(Subjects 6, Controls 3) 
Statistical analysis: Student’s t test 

Halogenated anesthetic gases are not associated with 
adverse health symptoms (p=0.48). 

Medium 
(7) 

Lucchini, R., et 
al., 1997 

Neurobehavioral functions 
in operating theatre 
personnel: a multicenter 
study 
 

Cross-sectional 
Study population: Health care workers 
(Subjects 112, Controls 135) 
Statistical analysis: Student’s t test 

Trace levels of nitrous oxide and isoflurane exposures are 
not associated with neurobehavioral functions such as 
stress and arousal. Exposure to anesthetic gases was not 
associated with decrease or self-reported quality of life. 

High (8) 

Scapellato, M., 
et al., 2001 

Occupational exposure to 
anaesthetic gases and 
urinary excretion of D-
glucaric acid 
 

Cross-sectional 
Study population: Health care workers 
(Subjects 229, Controls 229) 
Statistical analysis: stepwise multiple 
regression 

Exposure to the anesthetic gases isoflurane and nitrous 
oxide is not associated with urinary D-glucaric acid (OR 
0.68). 

Medium 
(7) 

Shuhaiber, S., 
et al., 2002 

A prospective-controlled 
study of pregnant 
veterinary staff exposed to 
inhaled anesthetics and x-
rays 
 

Cohort 
Study population: Veterinary staff, 
women (Subjects 95, Controls 95) 
Statistical analysis: Fisher’s exact or 
Chi square 

Occupational exposure to isoflurane and halothane 
anesthetic gases is not associated with low birth weight 
(p=0.06) or major malformations (p=0.96). 

Low (4) 

Teschke, K., et 
al., 2011 

Exposure to anesthetic 
gases and congenital 
anomalies in offspring of 
female registered nurses 

Cohort 
Study population: Registered nurses, 
women (Subjects 56,213) 
Statistical analysis: binary 
unconditional logistic regression model 

Congenital anomalies are associated with “ever” and 
“probable” exposure to halogenated anesthetic gases (OR 
1.49, OR=2.61) and nitrous oxide (OR=1.42, OR=1.82). 

Medium 
(6) 
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DISCUSSION 
 
 Most of the studies included in this review were cross-sectional studies, which 

would have allowed easy comparison between studies if the outcomes of the studies 

had been similar. However, a variety of health outcomes were reported. The most 

frequently studied health outcomes of isoflurane exposure in humans were related to 

genetic damage. This includes studies focusing on singular aspects of genetic damage 

including chromosome abnormalities, DNA damage, and sister chromatid exchanges. 

Changes in cell function and other biomarkers were also studied. Most of these studies 

were not associated with symptoms that employees could report as the outcomes are on 

the cellular or sub-cellular level. These outcomes were also associated with low levels of 

isoflurane exposure as demonstrated by the exposure assessment data in many of the 

studies. 

 Four of the included studies contained self-reported health outcomes by 

employees and with occupational exposure to isoflurane. Of these, only one study 

focused on symptoms known to be associated with isoflurane anesthetic gas use such 

as headache, nausea, and dizziness. This study relied on the participants to disclose 

workplace exposures and did not estimate the exposures (Hill et al., 1998). As such, we 

cannot determine if isoflurane is associated with these symptoms in a dose-dependent 

manner. This information would be most helpful in establishing exposure limit 

recommendations for isoflurane. 

 A limitation of this review is that most of the studies included had a mixed 

exposure of isoflurane with other anesthetic gases. The most common mixture of gases 

was nitrous oxide with isoflurane. A few studies also reported exposures to other 

halogenated anesthetic gases. Health outcomes reported in these studies may result 

from exposure from the other anesthetic gases, isoflurane, or the combination of 
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exposure to isoflurane with other anesthetic gases. These studies were mostly 

conducted with healthcare workers as the participants. Isoflurane is no longer commonly 

used in this setting. However, veterinarians and researchers almost exclusively use 

isoflurane for anesthesia. More epidemiological studies focused on veterinarians and 

researchers could be beneficial in determining what health effects are associated with 

isoflurane and at what concentrations. A strength of this review is that only observational 

studies with control comparison groups were included.  

 A case study of three healthcare workers showed that in these cases exposure to 

isoflurane and sevoflurane was associated with asthmatic symptoms and itchy rash 

(Vellore et al., 2006). Symptoms in the three healthcare workers abated once they were 

transferred to duties not associated with isoflurane and sevoflurane exposure. Cope 

reported that exposure to isoflurane depressed central neurorespiratory activity in 

healthcare workers (Cope et al., 2002). Long term effects of chronic exposure to 

isoflurane have not been well documented or investigated. Studies in animal and cell 

models have reported a number of health effects. Corbett noted that isoflurane and other 

halogenated anesthetic ethers are similar in structure to human carcinogens bis 

(chloromethyl) ether and chloromethyl methyl ether (Corbett, 1976). He went on to 

investigate the possible mutagenic properties in mice and found that male offspring of 

pregnant mice exposed to isoflurane at certain times during pregnancy went on to 

develop hepatic neoplasms. The offspring were exposed to isoflurane during gestation 

and after birth (Corbett, 1976). Four studies in this review reported genetic and DNA 

damage was associated with isoflurane exposure. It is not outside the realm of possibility 

that isoflurane could be a potential carcinogen. 

A study in rats found that isoflurane negatively impacts short term cognitive 

function. Uchimoto et al. found that isoflurane exposure impaired hippocampal learning 
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in the exposed rats (Uchimoto et al., 2014). Cellular studies have found that isoflurane 

exposure can induce apoptosis in cells (Xie et al., 2007) and accumulation of reactive 

oxygen species (ROS) in cells (Sun et al., 2014). These studies indicate that isoflurane 

is toxic at the cellular level which may translate to human toxicity. 

 Nitrous oxide and other anesthetic gases have been associated with adverse 

birth outcomes such as spontaneous abortion, low birth weight, premature birth, and 

infertility (Cohen et al., 1971, Knill-Jones et al., 1972, Rosenberg et al., 1973). One study 

included in this review found an association between halogenated anesthetic gases and 

nitrous oxide and congenital abnormalities in the offspring of exposed female 

veterinarians (Tescheke et al., 2011). Again, the genetic and DNA damage reported in 

other studies could be linked to this outcome. More studies with isoflurane as the only 

exposure are needed to determine if isoflurane is associated with adverse birth 

outcomes in humans. 

 This systematic review was unable to find the necessary health effects data to 

recommend a safe exposure limit for isoflurane. Many of the studies were conducted 

with study populations with a mixed exposure of anesthetic gases and populations in the 

healthcare field. If researchers turned to study populations working in the veterinary and 

research fields, a more homogenous picture of health effects associated with isoflurane 

may be obtained. However, until those studies become available, no exposure limits can 

be determined based on health effects. In the meantime, following the NIOSH REL of a 

cumulative maximum of two ppm for one hour is the best plan of action. 
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CONCLUSION 

 Isoflurane in combination with other anesthetic gases is associated with a variety 

of potential health outcomes. These are related to more obvious symptoms such as 

headache, nausea, and dizziness as well as to less noticeable outcomes such as 

increased rates of DNA and genetic damage. No dose-dependent data was available for 

these outcomes. We can only recommend that isoflurane exposure is kept to a 

minimum. The NIOSH REL of two ppm cannot be determined as protective or non-

protective at this time. 

  



20 
 

CHAPTER 3 

EVALUATION AND CONTROL OF ISOFLURANE DURING EXPERIMENTAL DENTAL 

PROCEDURES ON RODENTS 

 
ABSTRACT 
 
 The purpose of this study was to assess exposures to isoflurane to employees 

performing an experimental dental procedure on rodents. Isoflurane was used as an 

anesthetic for rodents during injections and placement of dental apparatus into the 

mouth. We collected eight full-shift samples using passive badges over a 3-week period. 

Results showed that employees were being exposed to isoflurane above the National 

Institute for Occupational Safety and Health recommended exposure level for 

halogenated anesthetic gases of two parts per million. The procedure was performed 

once a week for approximately 45 minutes each day. The employer installed a 

ventilation system in the procedure room after the initial sampling and results. We 

collected twelve full-shift samples after the ventilation system was in place. Results 

showed an approximate 86% decrease in isoflurane concentration. 
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INTRODUCTION 

 Exposure to waste anesthetic gas (WAG) in occupational settings has been 

found to significantly increase the risk of miscarriage and infertility (Cohen et al., 1971, 

Cohen et al., 1974, Knill-Jones et al., 1972, Rosenberg et al., 1973). The approximate 

increased relative risk of miscarriage is 1.3—1.9 (Sessler et al., 1998). Several 

epidemiological studies have found an increased risk of spontaneous abortion in 

occupationally exposed women and the female partners of occupationally exposed men 

(Knill-Jones et al., 1975, Tomlin, 1979, Cohen et al., 1980, Guirguis et al., 1990). 

Chronic exposure to halogenated gases is also significantly correlated with an increased 

risk of infertility in both men and women. Metabolites of halogenated gases accumulate 

in the body and can then be exhaled in substantial amounts resulting in a secondary 

exposure of others (Smith et al., 2005). Aside from reproductive toxicity, volatile 

anesthetic gases are also associated with increased risks of hepatic and renal diseases 

as well as psychological impairments among workers (NIOSH, 1977). The National 

Institute for Occupational Safety and Health (NIOSH) recommended exposure level 

(REL) for halogenated anesthetics states that exposure levels should not exceed two 

parts per million (ppm) for any given task or time (NIOSH, 1977). 

 Isoflurane is a halogenated anesthetic gas and today it is one of the most 

commonly used inhalation anesthetics for experimental and veterinary animal 

procedures (Säre et al., 2011). Isoflurane has not been consistently linked with 

reproductive toxicity in human studies. However, cellular studies have found that 

isoflurane exposure inhibits mitochondrial function that may lead to increased reactive 

oxygen species (ROS) levels. ROS have been found to be toxic to many cellular 

functions. Uchimoto et al. showed that isoflurane induced anesthesia was associated 

with learning deficits and young adult rats (Uchimoto et al., 2014). There is no 
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Occupational Safety and Health Administration (OSHA) permissible exposure level 

(PEL) for isoflurane; in addition, the NIOSH REL does not directly apply to isoflurane as 

it was developed before isoflurane became available. Use of inhalation anesthetics can 

result in the pollution of anesthetic gas in the workplace and resulting exposure to 

employees. In animal procedures, an anesthetic state is often induced and maintained 

using a face mask or nose cone. Several studies have already documented that using 

face masks to induce anesthesia in humans results in a significant increase of WAG 

concentrations that may exceed occupational exposure limits (Weber, 1994, Schuyt et 

al., 1996, Hoerauf et al., 1997, Hoerauf et al., 1999). Using a scavenging mask or double 

masking have been shown to reduce occupational exposure during human procedures. 

Scavenging masks for rodents are also commercially available, but the efficacy of these 

masks has not been sufficiently proven. 

 Appropriate engineering controls such as ventilation can be used to effectively 

control WAGs. Surgical procedure rooms used for human procedures are often designed 

and regulated to protect employees from high concentrations of WAGs. In contrast, 

animal researchers must often utilize spaces for surgical procedures that have not been 

designed for anesthetic gas use. The use of these spaces may lead to high exposures of 

WAG to researchers. The purpose of this study was to investigate an isoflurane 

exposure to animal researchers and the effectiveness of an engineered ventilation 

control. 

METHODS 

 In this intervention study, we measured study participants’ exposure to isoflurane 

before and after the installation of an engineering control. Samples were collected using 

passive badges (Advanced Chemical Sensors Inc., Boca Raton, FL). The badges were 

placed in the breathing zone of the study participants. We collected three full-shift 
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samples from a single researcher over a three-week period. We then collected eight full-

shift personal samples from five dental researchers (the entire research group) over a 

two-week period. Samples were collected once a week identical to how often the 

researchers performed the procedure. This study was conducted as part of institutional 

safety requirements and with approval of the University of Nebraska Medical Center 

institutional review board. 

 Room ventilation conditions were 12.21 air changes per hour. Intake air was 

filtered with a high-efficiency particulate absorption (HEPA) filter, and the room was kept 

under positive pressure. The procedure room was small (area =106 ft2 or 32.31 m2, 

volume = 848 ft3 or 24.0 m3). 

 An engineering control was designed and installed in the procedure room after 

the initial sampling periods. After the installation, eleven full-shift personal samples for 

isoflurane were collected from four employees over a three-week period. Samples were 

collected once a week while researchers performed the research procedure. Job titles 

and duties of the employees are listed in Table 3.1. 

TABLE 3.1: Description of Study Participants and Duties 
Study Participant Job Title Gender Duties 
Employee 1 Technician Female Anesthetize and monitor animals 
Employee 2 Dental Resident Female Conduct procedure 
Employee 3 Visiting Surgeon Female Observe 
Employee 4 Advising Professor Male Assist 
Employee 5 Dental Surgeon Male Assist 

 
Process Description 
 The technician placed the animal in an induction chamber to induce anesthesia. 

Isoflurane was introduced into the chamber at a concentration of 3% isoflurane and flow 

rate of 1 liter per minutes (L/min) using an isoflurane vaporizer. The technician then 

placed the animal on the surgical field so that the animal's nose was inside of a nose-

cone. The technician then manipulated the vaporizer, so that 1.5% isoflurane flowed to 
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the nose cone at a rate of 1 L/min. The technician held the animal in place for the 

duration of the procedure. F/Air activated charcoal canisters were used to scavenge 

waste isoflurane gas. One canister was connected to each anesthesia station, the 

induction chamber and the nose-cone. 

 Employee two, the lead researcher, injected the animal's gums on each side of 

the mouth. Employees four and five assisted with the correct placement of the injections 

by manipulating the animal's head, mouth, and tongue. Employee three observed the 

procedure. After the injections had been completed, the researchers placed an 

experimental dental apparatus in the mouths of the animals in the treatment group. The 

animals recovered in a separate room. Control animals did not receive the dental 

apparatus and recovered immediately after the injections. 

Installation of Engineering Control  

 The institution had an engineering control designed and installed to remove 

isoflurane WAG from the procedure room. This engineering control consisted of two 

vacuum scavenging lines attached from the building exhaust to the procedure room. The 

exhaust vented outside of the building away from any windows and air intake units. The 

engineered control included a flow meter/ ball valve and 1 ½ inch modular hose for both 

the induction chamber and the procedure table. The modular hose for the induction 

chamber was fitted with a tapered oval anti-static nozzle. The modular hose for the 

procedure table could me maneuvered into position by the researchers for optimal 

scavenging and ease of use (Figure 3.3). Modular hoses were designed to be stored 

attached to exhaust line and on the wall for easy access. The total cost of the system 

was approximately $2,000. 
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RESULTS AND DISCUSSION 

Isoflurane Exposure Levels Pre-Installation of Engineering Control  

 We hypothesized that the technician would be at the highest risk for isoflurane 

exposure due to the responsibility of handling the rodents and the isoflurane. The 

technician's exposure to isoflurane was monitored during three sampling periods prior to 

monitoring the entire research team. Isoflurane concentration was at or above the two 

ppm REL for each of these three sampling periods. Exposure time ranged from 0.75 to 

3.27 hours (Table 3.2). 

TABLE 3.2: Isoflurane Exposure to Employee 1 (Technician). 
Day Isoflurane Concentration (ppm) Time (hrs.) 

1 11.00 3.27 
2 11.30 1.50 
3 2.00 0.75 

 

The entire research team was monitored for isoflurane exposure during two 

subsequent experimental procedures. Interestingly, the exposure levels of the other 

researchers exceeded that of the technician. Employee two, the dental resident and lead 

researcher, had the highest isoflurane exposure at 28.40 ppm over 0.48 hours and 29.30 

ppm over 1.15 hours. The exposure most likely resulted from isoflurane leaking from the 

nose-cone while the researcher leaned over the rodent while conducting the procedure 

(Figure 3.1). The technician wore a powered air purifying respirator (PAPR) due to 

previously identified allergy to animal dander. It is possible that the measurement of the 

technician’s isoflurane exposure was impacted by air turbulence caused by air flow from 

the bottom of the PAPR mask (Figure 3.1). 

Employees three, four, and five were each monitored for one sampling period. 

During the experimental procedures employees four and five assisted and also leaned 
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over the animal. The source of the isoflurane exposure was likely the nose-cone. 

Isoflurane exposure for employee four was 17.20 ppm over a 0.47 hours sampling 

period and exposure for employee five was 13.20 ppm over 1.03 hours, both were well 

above the NIOSH REL. Employee three observed the procedure, standing further from 

the surgical field than the other employees. Isoflurane exposure was 7.90 ppm over 0.47 

hours (Figure 3.2). The isoflurane concentration was below the limit of detection for all 

field blank, and laboratory blank samples indicating the isoflurane exposures found for 

the study participants resulted from the use of isoflurane as an anesthetic during their 

investigations. The dental surgeons wore gloves and surgical masks. However, surgical 

masks do not protect workers from isoflurane and other WAGs. It should also be noted 

that the procedure did not take place in a fume hood or under any form of visible 

ventilation.  
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Figure 3.1: A) Researchers conducting procedure. Note that the researchers lean in over the 
animal. B) Procedure was conducting on the mouth. 
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FIGURE 3.2: Isoflurane exposure for study participants before installation of ventilation 
control. Note that isoflurane concentration for employee two is well over ten times the 
NIOSH REL of 2 ppm. 
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Isoflurane Exposures Post-Installation of Engineering Control  

 After installation of the engineering control, the average isoflurane exposure 

decreased approximately 86% from 10.96 ppm in 1.17 hours to 1.57 ppm in 1.43 hours. 

The first sampling period after the scavenging unit was installed, the mean isoflurane 

exposure for employees one, two four, and five was 2.52 ppm in 2.04 hours. While the 

mean isoflurane exposure is above the two ppm NIOSH REL, employees one and five, 

are below the REL while employees two and four are at four ppm. It should be noted that 

during this sampling period, adjustments to the isoflurane apparatus had to be made 

which could have led to an increase in the exposure levels. These adjustments were due 

to the process of exchanging the oxygen tank, which was used to supply the carrier gas. 

These adjustments are common, but not part of a daily use routine. The adjustments 

increased the amount of time the researchers spent performing the procedure. The 

second sampling period after the installation of the engineering control, the mean 

isoflurane exposure was 0.46 ppm, which was a decrease of approximately 97% (Figure 

3.4). 

 During the third sampling period after the installation of the engineering control, 

the researchers made minor adjustments to the procedure table scavenging unit and the 

nose-cone. A thinner hose was coupled to the larger hose of the scavenging unit to allow 

the hose to be nearer the procedure without being in the way of the researchers. During 

the prior experimental procedures, it was observed that the large hose of the scavenging 

unit was bulky and at times hard for the researchers to work around. The opening of the 

nose-cone was wrapped in clear tape, and then a smaller hole was cut to allow for the 

rodents nose to enter the cone. This adjustment was meant to decrease the amount of 

isoflurane gas that escaped from the nose cone by making a more snug fit around the 

animal’s nose.  



30 
 

The researchers placed the thinner hose, used to modify the engineering control, 

directly next to the nose -cone. The researchers were able to work efficiently around the 

thinner hose while still remaining close to the nose-cone. The average isoflurane 

exposure during the procedure using these modifications was 2.13 ppm, slightly above 

the NIOSH REL. This was an approximate 81% decrease compared to the sampling 

periods before the engineering control was installed. Employees four and two had the 

highest isoflurane concentration at 2.70 ppm and 2.40 ppm, respectively (Table 3.3). 

 

TABLE 3.3: Comparison of Isoflurane Exposure Before and After Installation of 
Ventilation Control 

Date Description Mean (%CV), ppm Range 
10/5/2011 Pre-Engineering Control 15.3 (64.0) 7.7—28.4 
10/12/2011 Pre-Engineering Control 15.2 (86.9) 3.1—29.3 
1/25/2012 Implementation of Ventilation Control 
1/25/2012 Post-Engineering Control 2.1 (81.5) 0.6—4.0 
2/1/2012 Post-Engineering Control 0.5 (57.6) 0.3—0.8 
2/8/2012 Post-Engineering Control 2.1 (34.6) 1.3—2.7 
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Figure 3.3: Researchers using ventilation control during procedure. A) Vacuum 
scavenging line placed on the procedure table to scavenging from the nose-cone. B) 
Vacuum scavenging line placed near the induction chamber. 
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FIGURE 3.4: Isoflurane exposure to employees after installation of active ventilation 
controls. The ventilation controls dramatically reduced isoflurane exposure. Note that all 
employee exposures are under or near the NIOSH REL of 2 ppm. 
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Installation of the engineering control reduced isoflurane concentration a 

maximum of 97% (29.3 ppm to 0.84 ppm) close to the NIOSH REL of two ppm. The 

mean reduction in isoflurane exposure was approximately 85%. The engineering control 

removed isoflurane vapors from the procedure room most efficiently without the 

attachment of the smaller hose. Researchers continued to use F/Air canisters during 

procedures in conjunction with the engineering control.  

A strength of this study was that the same procedure was conducted in the same 

room by the same researchers both before and after the use of a ventilation control. 

Researchers also had clear roles that did not change through the different sampling 

periods. A limitation of the study was that not all researchers participated in each of the 

procedures periods that were sampled. 

CONCLUSIONS 

 In conclusion, employees were exposed to isoflurane concentrations well above 

the NIOSH REL for halogenated anesthetic gases while using passive scavenging 

techniques to control isoflurane vapors. Our initial hypothesis that the employee 

responsible for anesthetizing and handling the animals would have the highest isoflurane 

exposure was incorrect. The highest concentrations of isoflurane were experienced by 

researchers bending over the anesthetized animal to perform the research procedure. 

The lowest isoflurane exposure was experienced by the technician anesthetizing the 

animals. WAG leaking from the nose-cone was likely to have contributed the most to the 

exposure. Our results demonstrate the importance of considering all sources of 

isoflurane waste anesthetic gas. An engineering control of additional ventilation 

effectively reduced isoflurane concentration in the room. The isoflurane exposure was 

reduced a maximum of 97% and a mean of 86%.  
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CHAPTER 4 

ASSESSMENT OF ISOFLURANE EXPOSURE 

TO RESEARCHERS DURING ANIMAL PROCEDURES 

 
ABSTRACT 

 Isoflurane is a commonly used anesthetic gas in veterinary and animal research 

procedures. Symptoms of acute exposure to isoflurane include headache, nausea, 

dizziness, unconsciousness, and asphyxia. However, isoflurane exposure to medical 

researchers has not been well documented. We conducted a study of research 

procedures using isoflurane at a medical research institution. Full-shift isoflurane 

exposures to researchers were monitored using passive badges for halogenated 

anesthetic vapors. Exposures ranged from 0.04 parts per million (ppm) to 9.6 ppm for a 

15-minute time period. Species of animal used during the procedure, number of animals, 

and procedure time were not found to be significant factors associated with isoflurane 

exposure. Waste anesthetic gas (WAG) control method was found to be a significant 

factor. Active scavenging methods such as biosafety cabinets and exhaust vacuum lines 

were significantly more effective in controlling isoflurane WAG than passive scavenging 

canisters. The role of the researcher was also a significant factor. Researchers who 

were involved in anesthesia induction and performed the majority of the animal 

procedure had higher isoflurane exposures than researchers who assisted during the 

procedure. 
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INTRODUCTION 

Isoflurane is a core anesthetic on the World Health Organization’s (WHO) list of 

essential medicines published in April 2013 (WHO, 2013). It is the preferred anesthetic 

technique for most animal research and veterinary procedures today (Säre et al., 2011). 

In the 1980s several studies showed that individuals using isoflurane on animals were at 

risk for high exposures. Studies also indicated associations between waste anesthetic 

gas exposure (WAG) and several adverse health effects including reproductive toxicity, 

organ toxicity, and central nervous system toxicity (Cohen et al., 1980, Guirguis et al., 

1990, Spence et al., 1978). The lack of epidemiological data focused on isoflurane WAG 

exposure has led to confusion concerning the potential long-term health risks caused by 

occupational isoflurane exposure. The limited knowledge of health outcomes associated 

with chronic isoflurane exposure is particularly troubling due to the ubiquitous use of 

isoflurane in research and veterinary practice. 

Although isoflurane is widely used, there has been little progress towards any 

occupational exposure guidelines in the United States. In 1977, the National Institute of 

Occupational Safety and Health (NIOSH) published a recommended exposure limit 

(REL) of two parts per million (ppm) for halogenated anesthetic gases (NIOSH, 1977). 

This standard was actually developed with the anesthetic gas halothane involved. 

Isoflurane was not included in the REL as it had not been developed for use at that time. 

NIOSH has not updated the halogenated gas REL or published an REL for isoflurane. 

Exposure to isoflurane in animal research settings has not been well 

characterized. Possible reasons may be the large-scale use of isoflurane use and the 

unsupported belief that isoflurane is harmless. Inconsistency in research surgical 

spaces, procedures performed, and species involved in procedures may also contribute 

to the difficulty of characterizing isoflurane exposure to animal researchers. Many 

species of animals are utilized in research, and there are different anesthesia techniques 
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for induction and maintenance based on species of animal. Anesthesia methods may 

also differ between research protocols. However, isoflurane is widely used to maintain 

anesthesia during most animal surgical procedures including those performed in 

veterinary settings. 

Use of inhalation anesthetics can result in the pollution of anesthetic gas in the 

workplace resulting in exposure to employees. In large animal procedures, an anesthetic 

state is often induced by using a face mask and maintained by intubation. Induction 

chambers and nose cones are used in small animal procedures. Several studies have 

already documented that using face masks to induce anesthesia in humans results in a 

significant increase of WAG concentrations that may exceed limit values (Hoerauf et al., 

1997, Hoerauf et al., 1999, Schuyt et al., 1996, Weber, 1994). 

The goal of this study was to measure researchers’ isoflurane exposure during 

animal procedures and to observe and document work practices of researchers during 

isoflurane use. WAG control methods, species of animals used during the procedure, 

and roles of the investigators were compared to determine which variables were more 

likely to contribute to isoflurane exposure.  

METHODS 

Study Population 

Participants were identified by the institution’s Comparative Medicine 

department. All researchers at the institution using isoflurane during the time of the study 

were eligible to participate. A total of 33 laboratories were identified as owning isoflurane 

vaporizers, which are devices used to deliver isoflurane for anesthesia. An additional 

seven laboratories were identified as scheduling procedures using an isoflurane 

vaporizer with the Comparative Medicine department. Forty letters were sent to the 

principle investigator (PI) or contact person on record for the laboratories requesting 

researchers to participate in isoflurane monitoring by contacting the study investigators. 
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A total of thirty-six (90%) replies were received. Of these, twenty of the researchers 

replied that they were not using isoflurane at this time, the remaining respondents 

agreed to participate in the study and scheduled a time to be monitored for isoflurane 

exposure. Four researchers who did not reply were contacted a second time.  

A total of 23 different research procedures and thirty-nine individual researchers 

from 16 different laboratories were included in the study. The study participants included 

five PIs, twenty-one research technicians, and thirteen junior researchers including 

graduate students and post-docs. All participants were sampled while using isoflurane to 

anesthetize animals during research procedures. No interventions were used during this 

study. Employees were asked to perform work tasks as usual, including all safety and 

controls methods normally used. The study was conducted between November 2014 

and June 2015. This study was conducted as part of institutional safety requirements 

and with the approval of the University of Nebraska Medical Center institutional review 

board. 

Isoflurane Sampling 

Full-shift personal air samples were collected using halogenated anesthetic 

vapor passive badges purchased from Advanced Chemical Sensors (Boca Raton, FL). 

Sampling medium in the badges was activated carbon molecular sieve adsorbent. The 

limit of quantification for the badges was 0.04 ppm for an 8-hour period. The limit of 

detection for isoflurane was 0.01 ppm for 15 minutes (Advanced Chemical Sensors). 

One field blank was collected per procedure for quality control and comparison 

purposes. 

The badges were clipped to the collars of lab coats of personnel to represent 

exposures in their personal breathing zone. Work practices of study participants, 

procedure descriptions, and scavenging techniques for waste anesthetic gas were 
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recorded during isoflurane use. The passive badges were analyzed per OSHA method 

103 (OSHA, 1994) by Advanced Chemical Sensors.  

Statistical Analysis 

Differences in isoflurane exposure between researchers working on large or 

small animal species and scavenging type were analyzed using Mann-Whitney analysis 

for nonparametric analysis. Large animals were defined as animals that were intubated 

to maintain anesthesia (pig and rabbit). Small animals species were defined as animals 

that anesthesia was induced inside an induction chamber and maintained using a nose-

cone. Scavenging techniques were categorized as active or passive. Active scavenging 

was defined as the use of a biological safety cabinet (BSC) or fume hood, and the use of 

an exhaust line to evacuate isoflurane WAG. Passive scavenging was defined as the 

use of an activated charcoal canister specifically marketed to control WAG. Only one 

researcher per procedure was included in the study. Procedures that were repeated by 

the same researchers were only included once in the study analysis. Samples were 

chosen based on representativeness of the personal exposure to the individual. A two-

sided p-value ˂ 0.05 was considered significant. 

Isoflurane exposure was compared between primary and secondary researchers 

using the Wilcoxon signed rank test. Researchers were divided into two groups: primary 

or secondary. The primary researcher was defined as the individual who performed the 

bulk of the procedure including the induction and maintenance of anesthesia. Secondary 

researchers were defined as individuals who assisted in the procedure and were not 

responsible for the greater amount of work involved with the animal procedure. Only 

procedures in which at least two or more researchers were involved were included in the 

analysis. Two researchers per group were used in the analysis. Procedures performed 

by the same research group were only included once. A p-value ˂ 0.05 was considered 

significant. 
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Differences in isoflurane concentration and the length of time of procedures and 

the number of animals used in the procedures were analyzed using Spearman 

correlation statistics. Only researchers who worked with mice were included in this 

analysis as this was the only species with enough data to conduct the analysis. One 

researcher per procedure was included in the analysis. There were no repeated 

procedures included in the analysis. A p-value ˂ 0.05 was considered significant. Full 

data set is presented in Appendix C. 

RESULTS 

Procedure Descriptions 

Researchers used isoflurane for several procedures. Table 4.1 summarizes the 

procedures observed for the study. Detailed descriptions of these procedures are 

provided in Appendix D. Studies included non-survival and survival procedures in pigs, 

rats, and mice. A single survival study was conducted using rabbits. Non-survival studies 

included studies that used isoflurane for anesthesia maintenance during a procedure 

followed by dissection and protocols that used isoflurane as a euthanasia technique. 

Survival studies included surgical implantation of monitoring devices, imaging, injection 

delivery, and outcomes of new treatments.  

Anesthesia induction and maintenance varied by species of animals used in the 

procedure. Large animals such as pigs and rabbits were intubated to maintain 

anesthesia. Anesthesia was induced in pigs using a face-mask. Anesthesia was induced 

in the rabbit using an injectable anesthetic. Anesthesia was induced in small animals, 

such as rats and mice, using an induction chamber. Both the open-drop method of using 

an isoflurane soaked material in an air tight container and isoflurane vaporizer 

connected to an induction chamber were observed. Protocols that required anesthesia to 

be maintained for the entire procedure used a nose-cone to keep the animal under 

sedation. 
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Several locations were used to conduct the research procedures. The controls 

available varied by room. Most procedure rooms in the Comparative Medicine facility 

housed either a biosafety cabinet (BSC) or vacuum exhaust line or both. Researchers 

working outside of this facility did not always have access to these WAG scavenging 

controls. If no BSC or vacuum exhaust line was available the researchers relied on 

passive scavenging canisters to control isoflurane vapors. 
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Table 4.1: Overview of Monitored Procedures 

Procedure Description 

Number of 
Researchers 

Monitored 
Scavenging 

Method 
Animal 
Species 

Number 
of 

Animals 
Cardiac Arrest 
Treatment 2 Passive Pig 1 
Cardiac Arrest 
Treatment 2 Passive Pig 1 
Cardiac Arrest 
Treatment 2 Passive Pig 1 
Cardiac Arrest 
Treatment 3 Passive Pig 2 
Surgical Robot Test 5 Active Pig 1 
Acute Cardiac Disease 
Model 1 Passive Rabbit 1 
Cardiac Arrest 
Treatment 4 Active Rat 1 
Intraperitoneal 
Injections 2 Passive Rat 12 
*Liver Cancer Model 3 Passive Rat 4 
Telemeter Implantation 1 Passive Rat 3 
#Body Composition 1 Active Mouse 23 
#Body Composition 1 Active Mouse 15 
Dissection 1 Active Mouse 10 
Dissection 1 Active Mouse 3 
Dissection 4 Passive Mouse 4 
Drug Pump 
Implantation 1 Passive Mouse 3 
Embryo Transfer 
Surgery 2 Active Mouse 6 
Heart Ultrasound 2 Passive Mouse 6 
#Humanized Liver 
Model 2 Active Mouse 4 
Kidney Ultrasound 1 Passive Mouse 8 
MRI 2 Active Mouse 1 

Skin Disease Model 1 Active Mouse 20 
Time Course Model 2 Active Mouse 5 
*Researchers used active scavenging during anesthesia induction and 
passive scavenging during procedure. 
#Researchers used passive scavenging during induction and active 
scavenging during procedure. 
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Active vs. Passive Scavenging Techniques 
 

Four active scavenging techniques were observed during the study. They 

included active vacuum lines, vacuum lines used with passive scavenging canisters, 

BSC, and BSC used with canisters (Figure 4.1). Researchers who used BSCs with 

passive canisters were classified as using active scavenging (Table 4.2). Differences in 

mean isoflurane concentrations between the active scavenging techniques were not 

calculated due to the small sample size. 

 

Table 4.2 : Active Scavenging Technique Used During Procedures 
Scavenging Technique n Isoflurane Exposure (ppm) Mean (% CV), ppm 
BSC 2 0.28, 0.64 0.46 (55) 
BSC + Canister 5 0.12, 0.25, 0.42, 0.53, 0.56 0.38 (50) 
Vacuum Line 2 0.61, 3.6 2.1 (100) 
Vacuum Line + Canister 1 1.3  

Total 10 
0.12, 0.25, 0.28, 0.42, 0.53, 0.56, 
0.61 0.64, 3.6, 1.3 0.83 (123) 

 
 

Isoflurane exposure for researchers using active scavenging was statistically 

lower than for researchers who relied on passive scavenging canisters as the only way 

to control isoflurane WAG (p = 0.02) (Table 4.3). A typical surgical procedure area setup 

using passive scavenging and active scavenging are shown in Figure 4.2 A-B. 

 

Table 4.3: Isoflurane Exposure by Scavenging Technique 
Scavenging Technique n Mean (%CV), ppm Range, ppm 
Active 10 0.83 (123) 0.12—3.60 
Passive 10 3.18 (89) 0.09—9.50 
Isoflurane exposure was lower for researchers using active 
scavenging compared to researchers using passive scavenging, 
Mann-Whitney, p = 0.02. 
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Figure 4.1: Combination of passive and active scavenging controls. Researcher used 
passive scavenging for induction and BSC for active scavenging during the procedure. 
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Figure 4.2: Typical setup for small animal surgery. A) Passive scavenging canister is 
used to control WAG. B) Vacuum lime is used to control WAG. 
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Large vs. Small Animals Species 

Large animals such as the pigs and rabbits were intubated to maintain 

anesthesia while rats and mice were placed on nose cones to maintain anesthesia. 

Isoflurane exposure to researchers was not statistically different between researchers 

working with large animals or small animals (p = 0.08) (Table 4.4). 

 

Table 4.4: Isoflurane Exposure by Species 
Species n Mean (%CV), ppm Range, ppm 
Small 17 2.07 (122) 0.12—9.5 
Large 3 1.66 (107) 0.09—3.6 
Isoflurane exposure did not differ by animal species, p = 0.08. 

 

Isoflurane Concentration by Researcher Role 

 The overall mean isoflurane exposure to researchers was 1.95 ppm. 

Researchers who had the largest roles during the procedures had higher mean 

exposure to isoflurane (2.71 ppm) compared to researchers who had secondary or 

assisting roles (1.18 ppm). This was a statistically significant difference in isoflurane 

exposure (p = 0.04). A total of 22 researchers (11 pairs) were included in the analysis 

(Table 4.5). 

 

Table 4.5: Isoflurane Exposure by Role 
Role n Mean (%CV), ppm Range, ppm 
Primary 11 2.71 (108) 0.25—9.50 
Secondary 11 1.18 (97) 0.15—3.70 

Isoflurane exposure was higher for researchers who had the 
primary role in the procedure versus researchers who were 
assisting, p = 0.04. 
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Isoflurane Concentration by Procedure Time and Number of Animals 

 Isoflurane concentration for researchers working with mice was not correlated 

with the length of the procedure (p = 0.26). The number of animals used during the 

procedure was also not correlated with isoflurane exposure to researchers (p = 0.20). A 

total of 13 samples were included in the analysis. 

DISCUSSION 

Approximately 31% (12/39) of the researchers included in the study had 

isoflurane exposures above the NIOSH REL of two ppm for halogenated anesthetic 

gases; so by current practice standards we can state that 31% of the participants were 

over-exposed to isoflurane vapors.  

We used passive sampling badges that adsorb isoflurane to monitor for 

isoflurane exposure. Some research groups have monitored isoflurane exposure by 

using biomarkers to determine actual isoflurane concentration in the body (Accorsi et al., 

2001, Al-Chanem et al., 2008, Imbriani et al., 1988). These studies found that ambient 

air levels of isoflurane were correlated to urinary isoflurane concentration. Periago et al., 

(1993), reported that isoflurane concentration in the exhaled breath of exposed 

individuals was also correlated to ambient isoflurane concentration. 

While these sampling methods have the benefit of quantifying isoflurane load in 

the body, they require biological samples. Biological samples are generally more difficult 

to obtain and have higher costs associated with storage, shipping, and analysis. Due to 

these constraints, biological monitoring of isoflurane has not been used to monitor 

isoflurane exposure in the field. 

Other sampling methods for isoflurane include active sampling methods. 

Personal pumps which draw air into a charcoal tube can be used to more accurately 

quantify exposure. However, the pumps are more susceptible to human error, as they 

can be accidently turned off during the monitoring period or develop mechanical 
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difficulties. Real-time exposure monitoring instruments have been developed that can be 

used to measure isoflurane concentration in the air. These units are associated with a 

high initial cost and are usually not justifiable in most occupational settings. We chose to 

use passive monitoring badges as they are the most cost efficient, easy to use, and the 

most used method to monitor for isoflurane concentration.  

Procedures being conducted at a single research institution can vary widely. We 

sampled nineteen different procedures using four different species of animals. Research 

was conducted in several different rooms and four different building on the same 

campus. Air exchanges in the different rooms and buildings may impact isoflurane 

concentration. Older buildings may have less efficient exhaust which would increase 

isoflurane concentration in the room. However, due to the equipment required for the 

procedure and familiarity of laboratory spaces, researchers may be disinclined to work in 

newer rooms specifically designed with a high number of air exchanges. Scavenging 

capabilities may also be impacted by the procedure room. Some of the procedures took 

place in rooms that had a BSC or vacuum exhaust line available, while other rooms had 

no means of active scavenging. 

 As many research procedures as possible were included in the study. However, 

the sample size was too small to fully investigate all of the different variables. Isoflurane 

concentration and flow rate were too variable to be compared in the small sample size. 

However, these factors have the potential to influence individual isoflurane exposure. 

This study was also not able to evaluate the effectiveness of different active scavenging 

methods. It would be interesting to compare BSCs and vented fume hoods to vacuum 

exhaust lines to determine if they are equally efficient in removing isoflurane vapors. We 

were not able to compare researchers’ work practices, such as latching an induction 

chamber closed vs. keeping the latch open, or concentration and flow rate of isoflurane 

used during the procedures. We would also be interested in conducting a study to 
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examine different nose-cones in rodents to determine how nose-cones may impact 

isoflurane exposure. Future studies with a larger number of participants could compare 

some of these factors. 

There are several individual work practices that can be implemented to reduce 

exposure to isoflurane. An example of simple behavior is ensuring that induction 

chambers are closed and air-tight during use. Personnel can also decrease their 

exposure by performing tasks that do not require isoflurane before the procedure, thus 

reducing exposure time. These work practices can be taught but are difficult to enforce 

at an institutional level. 

Environmental controls, however, are controls that institutions can regulate to 

reduce isoflurane exposure to many users. Rooms in which isoflurane are used should 

have an appropriate number of air changes and ventilation. NIOSH recommends 15 air 

changes per hour for clinical operating theatres (NIOSH, 2007). Recommended 

ventilation for laboratories is 4 to 12 air changes per hour (OSHA, 1990). Active 

scavenging methods should be used whenever possible. Active scavenging methods 

can be as simple as using a ventilated hood or biosafety cabinet. OSHA recommends 

that researchers use ventilated fume hoods whenever possible when working with 

hazardous or potentially hazardous chemicals (OSHA, 2011). Institutions may also 

provide vacuum lines attached to the building exhaust to remove isoflurane efficiently 

from procedure areas. Passive scavenging techniques using activated charcoal 

canisters are not enough to keep exposures below the two ppm NIOSH REL for 

halogenated anesthetic vapors.  
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CONCLUSION 

Active scavenging techniques significantly reduce isoflurane exposure to animal 

researchers. Researchers who used only passive scavenging canisters had a mean 

isoflurane exposure twice as high as researchers who used active scavenging or active 

scavenging with passive scavenging canisters. Isoflurane exposure was also lower for 

researchers working with large animals compared to small animals. This difference is 

due to the difference in anesthesia induction and maintenance techniques. Researchers 

can induce anesthesia using injectable anesthetics and then intubate large animals, but 

must use nose-cones for small animals. Both induction chamber and nose cones can 

result in waste anesthetic gas due to leaks and opening of the induction chamber. The 

species of animal used during procedures did not have an effect on isoflurane exposure. 

Procedure time and number of animals did not have an effect of isoflurane exposure on 

researcher working with mice. Researchers who were designated as the primary 

individual conducting procedures had a higher exposure to isoflurane than researchers 

who assisted in procedures. 
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CHAPTER 5 

COMPARISON OF PASSIVE AND ACTIVE SCAVENGING METHODS TO REDUCE 

EXPOSURE TO ISOFLURANE IN RESEARCH LABORATORIES 

 
ABSTRACT 

The two most common scavenging methods for isoflurane gas are passive 

scavenging canisters with activated charcoal and active scavenging. Passive 

scavenging is the use of a material to adsorb the air pollutant. Passive scavenging 

requires the pollutant to diffuse from the source into the scavenging material. In active 

scavenging, the polluted air is pulled out of the room by building exhaust through a 

vacuum line or ventilated hood. Refresh™, VaporGuard™, and F/Air™ are three brands 

of passive scavenging canisters that were included in the study. Isoflurane concentration 

was compared between four scavenging conditions (no scavenging, passive 

scavenging, active scavenging, and combined active and passive scavenging). The 

mean isoflurane concentration found without any controls was significantly higher 

compared to active scavenging (10.23 ppm, %CV = 11.53 and 1.43 ppm, %CV = 15.38, 

respectively). The mean isoflurane measured during the passive scavenging condition 

was 10.35 ppm (%CV = 57.97). Overall, there was a significant difference in isoflurane 

concentration between the conditions (p > 0.001). There was a slight difference in 

isoflurane concentration between canister brands; ReFresh canisters had a lower mean 

isoflurane concentration than the F/Air brand of canisters (6.48 ppm, %CV = 30 and 

15.76 ppm, %CV = 50) (p = 0.04). However, mean isoflurane concentration while using 

all three brands of canisters exceeded the NIOSH REL of 2 ppm for halogenated 

anesthestic gases. Passive scavenging canisters are not equal to vacuum exhaust lines 

in scavenging capabilities. Researchers should use active scavenging methods to 

control isoflurane WAG exposures. 
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INTRODUCTION 
Gas leakage from face masks or nose cones, anesthetic machinery, and 

malfunction of scavenging equipment are the primary sources of occupational exposure 

to isoflurane waste anesthetic gas (WAG) (Hoerauf et al., 1996, Kelly et al., 2011, Todd 

et al., 2013). As isoflurane is the primary anesthetic in the research setting, scientists 

and laboratory personnel are at risk for occupational exposures to isoflurane. Available 

literature has not provided an overall picture of health consequences associated with 

occupational exposure to isoflurane. A few studies have demonstrated adverse health 

effects, but the literature is not consistent. Low dose exposures typical of occupational 

exposures have been found to cause damage to sister chromatids similar to damage 

caused by cigarette smoking (Hoerauf et al., 1999). To reduce risk of health damage to 

workers, best practice guidelines state that all WAGs should be kept to the smallest 

amount possible (Barker et al., 1997). 

Ways to control WAG include passive scavenging canisters, active vacuum 

scavenging devices, ventilation through a heating, ventilating and air conditioning 

(HVAC) system, as well as scavenging face masks and rebreathing circuits for larger 

animals. The use of passive scavenging canisters may not result in the intended result of 

lower isoflurane exposure. A study of three different brands of passive scavenging 

canisters found that there was large variability in scavenging capability both between 

brands and between canisters of the same brand (Smith et al., 2003). The study also 

found that several canisters actually emitted isoflurane vapor after use. Studies of 

isoflurane WAG in clinical settings found that passive scavenging canisters could 

effectively control isoflurane concentration (Coleman et al., 1994, Imberti et al., 1995). 

However, these studies overlook the effect of other WAG controls such as air exchanges 

in the spaces and the use of intubation to maintain anesthesia, which could actually be 

responsible for the low isoflurane concentration. 
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Studies of active scavenging techniques have found that these techniques 

efficiently control WAGs. Smith et al. (2002), found that fume hoods are able to 

efficiently reduce WAG exposure to personnel. Another study found that an exhaust 

vacuum line reduced isoflurane concentration during anesthesia induction and nose-

cone maintenance for small animals (Nesbitt et al., 2013). A study on dogs found that 

active scavenging from the face-mask reduced isoflurane WAG (Friembichler et al., 

2011). Appropriate use of vacuum scavenging lines has also been shown to reduce 

isoflurane concentration to close to the lower detection limit (Todd et al., 2013). 

The literature on WAG exposure has reported several sources of isoflurane and 

other WAG exposure. Kelly et al. (2011), reported in a study of ten different isoflurane 

vaporizers that the vaporizers were highly inaccurate in delivering the isoflurane at the 

concentration and flow rate set by the users. Inaccurate vaporizers may not only result in 

an overexposure of isoflurane to users, it may also be dangerous for any patients or 

animals, as they are not receiving the intended level of medication. 

Leakage from anesthesia maintenance devices has been found to significantly 

influence isoflurane exposure. Hoerauf et al. reported that use of laryngeal masks 

resulted in higher exposure than intubation (Hoerauf et al., 1996). A study of rodents 

found that isoflurane leakage from rodent nose-cones substantially contributed to 

isoflurane exposure to workers (Smith et al., 2006). Modified nose-cones for rodents 

were reported to help reduce this exposure. Nose-cones can be modified to be used with 

an active scavenging line (Nesbitt et al., 2013) or with a simple diaphragm (Smith et al., 

2006, Todd et al., 2013). 

Current guidelines published by professional veterinary societies to reduce WAG 

concentration, state that the use of scavenging devices is the most effective way to 

decrease waste anesthetic gases. The guideline goes on to say that both passive and 
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active scavenging systems are effective if used properly (American College of Veterinary 

Anesthesia and Analgesia, 2013). This statement seems to imply that passive and active 

scavenging devices are equally effective, which early studies negate (Gardner, 1989, 

Ward et al., 1982). We tested these recommendations by comparing isoflurane 

concentration in a procedure room when using passive scavenging canisters, active 

scavenging, and a combination of passive and active scavenging. We used these 

comparisons to test the hypothesis that passive scavenging canisters will reduce 

isoflurane WAG to two parts per million (ppm) or below during 30 minutes of exposure. 

METHODS 

Isoflurane concentration was measured during four environmental conditions in 

the same room. The room was part of the Comparative Medicine facility, where many 

animal procedures take place. Room dimensions were 10 feet 9 inches by 11 feet 5 

inches with a ceiling height of 9 feet for a volume of 1026.54 feet3 (312.89 meters3). 

Ventilation for the Comparative Medicine facility was 27.96 air exchanges per hour as 

reported by the Comparative Medicine facility.  

The four environmental conditions were “no scavenging” in which no effort was 

made to reduce isoflurane vapor in the room, “passive scavenging” in which we used 

activated charcoal canisters to control isoflurane vapor. The other two conditions 

involved the use of an exhaust vacuum line. The “active scavenging” condition was 

defined as the use of the vacuum line alone and the “combined scavenging” condition 

was the use of the vacuum line in tandem with passive scavenging canisters.  

Isoflurane was introduced into the environment and controlled using a model 

vapor 19.1 isoflurane vaporizer (Drägerwerk, Lübeck, Germany) that had been serviced 

and calibrated within the past year. All hoses and anesthesia equipment were checked 

for leaks each day prior to use. Passive scavenging canisters were weighed daily for 
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four days prior to and after exposure to isoflurane gas to determine weight variability. 

The performance of the balance (Sartorius, Model L 2200 P, Gottingen, Germany), used 

to weigh the canisters was evaluated daily with a set of eight standard weights ranging in 

weight from 50 grams (g) to 500 g. 

No Scavenging 

Baseline isoflurane concentration was measured in the procedure room using a 

MIRAN Sapphire model 205 BXL (Thermo Fisher Scientific, Franklin, MA) infrared 

ambient air analyzer. An isoflurane vaporizer was connected to a rodent nose cone 

using flexible hosing. Isoflurane was introduced into the procedure room for thirty 

minutes at a concentration of 1.5% and flow rate of 1 liter per minute (L/min). Isoflurane 

concentration in the room was measured and logged at 90-second intervals until 

ambient isoflurane concentration returned to baseline. The 90-second interval was the 

shortest possible interval allowed by the instrument. The procedure was conducted a 

total of three times, consecutively, on one day.  

Absorption of Isoflurane by Passive Scavenging Canisters 

Three brands of passive scavenging canisters (F/Air™, VaporGuard™, 

ReFresh™) were weighed once daily for four days. A passive scavenging canister was 

connected to the exhaust line of a rodent nose cone with cotton plug representing a 

mouse, attached to the isoflurane vaporizer. Isoflurane was released for 30 minutes at a 

concentration of 1.5% and flow rate of 1 L/min. Isoflurane concentration in the room was 

logged at 90-second intervals until isoflurane concentration returned to baseline. 

Canisters were weighed immediately after exposure to isoflurane. Canisters were 

weighed once daily for three days after isoflurane exposure. The procedure was 

conducted with a total of five canisters per brand and each canister was tested once 

(n=15). This experiment was carried out in one day in triplicate.  (Figure 5.1). 
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Figure 5.1: Control comparison setup. A) Isoflurane was measured using a MIRAN 
Saphhire direct reading instrument. B) Isoflurane was introduced into the room via a 
nose-cone with cotton plug representing a mouse. Isoflurane vaporizer line, passive 
canister, and vacuum line can be seen in the picture. 
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Effectiveness of Active Scavenging to Control Isoflurane Concentration 

Flexible tubing was connected to the building exhaust and placed near the nose 

cone. Isoflurane was released for thirty minutes at a concentration 1.5% and flow rate of 

1 L/min. Isoflurane concentration was recorded and logged at 90-second intervals until 

the isoflurane concentration returned to baseline. The active scavenging was 

discontinued after isoflurane was turned off. The procedure was conducted three times. 

The room was allowed to return to baseline isoflurane concentration between trials. 

Effectiveness of a Combined Passive and Active Scavenging Technique 

A passive scavenging canister was attached to the exhaust port of the nose 

cone. An active vacuum line as described above was placed near the nose cone. 

Isoflurane was released into the room for thirty minutes at a concentration of 1.5% and 

flow rate of 1 L/min. Isoflurane concentrations were recorded and logged at 90-second 

intervals until the room returned to baseline. Active scavenging was discontinued 

immediately after isoflurane was turned off. The passive canister was weighed 

immediately after isoflurane exposure. The procedure was conducted three times for 

each brand of canister (n=9). 

Statistical Analysis 

All statistical analysis was performed using SAS 9.3 software (Cary, NC). Linear 

regression and correlation statistics were used to determine whether daily 

measurements of known weight varied significantly over time. Linear regression analysis 

and correlation statistics were used to determine whether canister weight varied over 

time. 

Repeated measures analysis of variance (ANOVA) for one factor was used to 

determine whether the isoflurane concentration was significantly different using 

scavenging methods compared to the no scavenging condition. Post hoc Tukey’s 
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adjustment was used to compare differences between groups. A p < 0.05 was 

considered significant. Repeated measures (ANOVA) for one factor was used to 

determine whether individual trials of the same condition varied significantly. A p < 0.05 

was considered significant. Repeated measures (ANOVA) for one factor was used to 

determine whether isoflurane concentration differed between each passive canister 

brand. Post hoc Tukey’s adjustment was used to compare differences between groups. 

Only measurements from the passive scavenging condition were used in the analysis. A 

p < 0.05 was considered significant.  

RESULTS 

Canister Weight 

 The performance of the balance was evaluated with eight known weights over 

eighteen days. There was no change in the balance accuracy over time for any of the 

standard weights (p > 0.05). Linear regression analysis also showed no change in 

weight over time for the standard weights (p > 0.05) (Table 5.1). 

Table 5.1: Balance Calibration  
Known 
Weight n Mean (SD), g Range, g   P - value 
50 18 50.17 (0.01) 50.14—50.19 0.18 
100 18 99.95 (0.01) 99.93—99.96 0.43 
200 18 200.14 (0.05) 200.07—200.22 0.93 
300 18 300.10 (0.05) 300.03—300.18 0.79 
350 18 350.28 (0.05) 350.20—350.36 0.33 
400 18 400.32 (0.02) 400.28—400.34 0.22 
450 18 450.49 (0.03) 450.42—450.52 0.61 
500 18 500.25 (0.12) 499.78—500.30 0.13 

 

 Canister weight for the ReFresh™ brand of canister was not correlated with time. 

Canisters did gain weight after exposure to isoflurane. However, the weight gain was 

small and the canisters did not lose weight after exposure. One of the VaporGuard™ 
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and two of the F/Air™ canisters were marginally correlated with time (p = 0.04). All 

canisters gained a small amount of weight after exposure to isoflurane. Significant 

correlation over time may be related to weight gained due to isoflurane exposure. The 

weights of the other VaporGuard™ and F/Air™ canisters were not correlated with time 

(Table 5.2). Overall the weight of all of the canisters was stable over time. 
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Table 5.2: Canister Weight Before and After Isoflurane Exposure 
    Before After   
Canister N Mean (%CV), ppm Range, ppm Mean (%CV), ppm Range, ppm p-value 
ReFresh 1 4 396.32 (0.01) 396.26—396.35 397.12 (0.07) 396.83—397.48 0.06 
ReFresh 2 4 381.17 (0.01) 381.13—381.21 381.35 (0.09) 381.00—381.80 0.9 
ReFresh 3 4 386.29 (0.01) 386.23—386.33 386.61 (0.08) 386.28—387.02 0.43 
ReFresh 4 4 390.77 (0.01) 390.73—390.82 391.41 (0.07) 391.12—391.78 0.1 
ReFresh 5 4 403.02 (0.01) 402.94—403.06 403.53 (0.06) 403.26—403.86 0.12 
VaporGuard 1 4 369.11 (0.03) 368.93—369.23 370.14 (0.25) 369.14—371.31 0.45 
VaporGuard 2* 4 364.35 (0.04) 364.13—364.48 363.50 (0.26) 362.45—364.74 0.01* 
VaporGuard 3 4 367.71 (0.05) 367.46—367.85 367.30 (0.27) 366.21—368.58 0.08 
VaporGuard 4 4 370.22 (0.05) 369.99—370.35 369.89 (0.24) 368.88—371.00 0.09 
VaporGuard 5 4 369.08 (0.04) 368.87—369.19 369.00 (0.25) 367.95—370.13 0.26 
F/Air 1 4 293.67 (0.03) 293.58—293.80 295.22 (0.07) 294.99—295.50 0.02* 
F/Air 2 4 292.50 (0.03) 292.43—292.58 293.02 (0.06) 292.82—293.21 0.12 
F/Air 3 4 311.18 (0.03) 311.10—311.27 311.21 (0.06) 311.00—311.45 0.41 
F/Air 4 4 292.98 (0.04) 292.89—293.11 293.31 (0.09) 293.11—293.69 0.45 
F/Air 5 4 294.38 (0.03) 294.30—294.47 295.41 (0.07) 295.18—295.68 0.04* 
*Indicates significance at 0.05 level 
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Canister Comparison 
 

The mean isoflurane concentration while using passive scavenging canisters was 

above 2 ppm for all brands of canisters. The highest isoflurane concentrations were 

recorded while using the F/Air™ canisters alone (Table 5.3). Comparison between the 

no scavenging condition and each of the passive scavenging canisters brands alone 

showed a slight difference in isoflurane concentration (p = 0.03). Post hoc Tukey’s 

analysis showed a significant difference between ReFresh and F/Air canisters. No other 

comparisons were significant. Isoflurane concentration while using active scavenging 

and passive scavenging canisters was not included in the canister comparison. 

Table 5.3: Isoflurane Exposure while using Passive Scavenging Canisters 
Canister n Mean (%CV), ppm Range, ppm 
No Scavenging 3 10.23 (11.53) 9.11—11.47 
*ReFresh 5 6.48 (29.94) 4.22—8.79 
VaporGuard 5 8.80 (17.50) 6.92—10.56 
*F/Air 5 15.76 (49.87) 5.58—23.88 
*Indicates significance at the 0.05 level 

 

Comparison of Scavenging Techniques  

Repeated measures ANOVA model showed that type of scavenging was a 

significant factor in isoflurane concentration (p < 0.0001). Post hoc analysis of 

comparisons showed isoflurane concentration differed between no scavenging and 

combined scavenging, passive scavenging and active scavenging, and passive 

scavenging and combined scavenging at the 0.05 significance level. Comparisons of no 

scavenging and active scavenging alone showed that isoflurane concentration was also 

different between active scavenging and no scavenging (p < 0.0001) (Figure 5.2).  
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Figure 5.2: Isoflurane exposure without scavenging and while using an exhaust 
vacuum line. Isoflurane exposure was significantly lower while using active 
scavenging. 
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The mean isoflurane concentrations for the no scavenging and passive 

scavenging conditions were very similar (10.23 and 10.35, respectively) and higher than 

for the active and combined scavenging conditions (1.43 and 0.59, respectively) (Table 

5.4). Both the “no scavenging” and passive scavenging conditions resulted in a mean 

isoflurane concentration well above the NIOSH REL of two ppm. Isoflurane 

concentration measured over time was similar between the “no scavenging” condition 

and while using ReFresh and VaporGuard canisters. Isoflurane concentration was 

higher while using F/Air canisters compared to the other passive canisters (Figure 5.3). 

Table 5.4: Isoflurane Exposure during Experimental Scavenging Conditions 
Condition n Mean (%CV), ppm Range, ppm 
No Scavenging 3 10.23 (11.53) 9.11—1.47 
Passive Scavenging 15 10.35 (57.97) 4.22—23.88 
Vacuum Line 3 1.43 (15.38) 1.28—1.68 
Combined Scavenging 9 0.59 (45.76) 0.07—0.28 
P-value < 0.0001   

  

Active scavenging and combination scavenging resulted in a mean isoflurane 

concentration below two ppm. The maximum isoflurane concentration was also below 

two ppm while using these scavenging techniques.  
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Figure 5.3: Isoflurane exposure during without scavenging and while using 
passive scavenging canisters. Isoflurane exposure was similar without 
scavenging and while using canisters. 
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Comparison of Active and Combined Scavenging Techniques 

 Combination scavenging technique combined a passive scavenging canister with 

an active vacuum scavenging line. Isoflurane concentration was reduced approximately 

50% compared to active scavenging alone. Repeated measures ANOVA with post hoc 

Tukey’s comparison analysis showed that the difference in isoflurane concentration was 

not significant. Repeated measures ANOVA also showed that there was no difference in 

isoflurane concentration between canister brands when used in combination with active 

scavenging (Figure 5.4).  
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Figure 5.4: Isoflurane exposure was not statistically different between the 
vacuum line and the vacuum line combined with a passive scavenging canister. 
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DISCUSSION 

Mean isoflurane exposure was below the NIOSH REL of two ppm for 

halogenated anesthetic gases when using an active scavenging source. The NIOSH 

REL is a 1-hour limit, meaning that exposure to halogenated gases should not be above 

two ppm, when used for 1-hour or greater. Although this standard was developed before 

the introduction of isoflurane as a halogenated anesthetic gas, it is the only guidance 

currently available that has been developed in the U.S. The American Conference of 

Governmental Industrial Hygienists (ACGIH) has listed isoflurane among chemical 

substances that are under study for the year 2015. This is the only U.S. body likely to 

publish an updated standard for isoflurane in the near future. A workplace exposure limit 

(WEL) of 50 ppm over an 8-hour work day has been adopted by member states of the 

European Union (United Kingdom Health and Safety Executive, 2013). However, we 

have shown that the NIOSH two ppm standard is achievable if active scavenging 

methods are employed. Examples of active scavenging methods are the use of a 

vacuum exhaust line similar to what was used in this study and exhausted chemical 

safety hoods such as class II BSCs.  

Passive scavenging canisters, when used alone, did not reduce isoflurane 

concentration to an acceptable level. The passive scavenging canisters as a whole were 

not different from the no scavenging condition. Little manufacturer information is 

available concerning the charcoal used in the canisters and the construction of the 

canisters themselves, as this is proprietary information. It is difficult to determine what 

differences between canisters brands may be related to scavenging capability. All of the 

passive scavenging canisters contained activated charcoal, which is supposed to control 

isoflurane WAG by adsorbing the isoflurane to the charcoal. The problem with this 

strategy is that there is no air flow being directed into the canisters. We also observed 
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that isoflurane concentration was actually higher when using the F/Air canisters than 

when not using any scavenging. It is possible that any isoflurane-contaminated air that 

entered the canister actually exited the canister before the charcoal could adsorb any 

isoflurane. This is an effect known as channeling (Smith et al., 2003). 

Flow rate may impact how well a passive canister adsorbs isoflurane because of 

this channeling effect. Higher flow rates are more likely to overload the canisters, thus 

reducing their ability to retain air long enough for the isoflurane to be exposed to the 

activated charcoal long enough to adsorb to it. We used a lower flow rate of 1.5%, to 

recreate what was used by a majority of the researchers to maintain anesthesia in 

rodents. We used a concentration of 1% isoflurane as this was the concentration most 

often used to maintain anesthesia. 

 Surgical wrap was used to mimic the effect that an animal would have in blocking 

some air flow from the nose-cone. The middle of the surgical wrap was shaped to be 

similar to the nose of a mouse and secured in the nose-cone using surgical tape. We did 

not use live animals because this could have resulted in random error due to the 

variability in the shapes of the animals’ noses and respiration. The main objective of the 

study was to determine the effectiveness of WAG controls. As such, we kept to a 

minimum variables that could influence isoflurane exposure. This is also why only one 

procedure room was used during the course of the study. The procedure room was 

located in a secure, environmentally controlled underground facility. This allowed for the 

equipment to be housed in the room to reduce any variability that could be caused by 

exposure to the outside air or transport. The environmental controls ensured that 

temperature and relative humidity were stable throughout the study. Air exchanges were 

controlled by the facility. 
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Passive scavenging canisters are not a cost effective way to control isoflurane 

WAG. The purchasing cost of the canisters is between $8 and $10 each. The cost 

increases when disposal of the used canisters is considered. Disposal of the canisters is 

regulated by the Environmental Protection Agency (EPA) and the Department of 

Transportation (DOT). Canisters must be handled as EPA regulated D001 ignitable 

waste and shipped outside of facilities for disposal following DOT NA1361 regulations 

(Department of Transportation, 2010). The cost for canister disposal at our institution is 

$180 for approximately 60 canisters. If one canister is used per day the total cost of 

passive scavenging is approximately $4,750 per year. The active scavenging vacuum 

line greatly reduced isoflurane concentration. Costs associated with vacuum line 

scavenging will be based on individual exhaust systems and are difficult to quantify. 

However, active scavenging with a fume hood is likely to be as or more efficient than a 

vacuum line. Costs associated with a fume hood are initial purchase and installation and 

energy consumption. Conventional bypass fume hoods use approximately 35,000 

kilowatt-hours (kWh) of electricity per unit and costs approximately $6,000 in energy use 

each year (U.S. Department of Energy, 2015). This cost is based on 24-hour per day 

use with a fully open sash (29 inches). Energy costs dramatically decline as the sash 

opening is reduced; energy associated with a sash opening of 5 inches is approximately 

5.500 kWh and $1000 (U.S. Department of Energy, 2015). Energy costs will differ by city 

and state; however energy use will remain approximately the same.  

It is possible that researchers may have a false sense of security when using 

passive scavenging canisters to control WAG. As we have shown, passive canisters do 

little to reduce isoflurane exposure to researchers. However, several researchers at the 

institution relied solely upon passive canisters to control WAG. Researchers may 

overestimate the protection offered by passive canisters. Researchers, who have access 
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to BSCs, fume hoods, or vacuum exhaust lines should be encouraged to utilize these 

tools responsibly by keeping the sash as low and possible, especially when not in use. If 

used responsibly, the energy costs associated with a fume hood will be considerably 

less than the cost associated with passive scavenging.  

We have observed several researchers at our institution using active scavenging 

in combination with passive scavenging canisters. The results of this study show that 

there is no real benefit to using passive scavenging canisters with an active scavenging 

vacuum line. For the purpose of this study, it was assumed that ventilated hoods would 

reduce isoflurane exposure either as much as or greater than an active scavenging 

vacuum line. Therefore, the ability of ventilated hoods to reduce isoflurane exposure has 

been inferred based on the active scavenging vacuum lines.  

A strength of this study is that we measured isoflurane concentration using a 

direct reading instrument. The instrument was set to measure isoflurane in an operator’s 

breathing space. This allowed us to determine the effectiveness of different controls in 

protecting an employee from isoflurane vapors. Smith and Bolon (2003) compared the 

scavenging capabilities of passive scavenging canisters by measuring isoflurane 

concentration at the canister. This approach is sufficient in determining how well the 

passive canisters retain isoflurane vapor, but is not sufficient to determine if they are 

protective of the operator. 

Several portable active vacuum scavenging instruments are now available to 

control WAGs. These devices use a pump to draw air into a reservoir of activated 

charcoal. These devices could be useful in rooms that do not have a source of active 

scavenging available. The use of these devices has not been reviewed in the scientific 

literature. A logical next step for this study would be to evaluate several of these devices 

to determine how effectively they control isoflurane WAG. 
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CONCLUSION 

Isoflurane concentration was lower when using an active scavenging source 

compared to using no scavenging or passive scavenging canisters. Isoflurane 

concentration was only slightly lower when using passive scavenging canisters. 

However, using passive scavenging canisters resulted in a mean isoflurane 

concentration above the NIOSH REL of two ppm. The use of active scavenging and 

passive scavenging canisters, reduced isoflurane concentration by approximately 50% 

compared to active scavenging alone. However, there was no statistical difference in 

active scavenging and combined scavenging when compared to all experimental 

conditions.  

The most cost effective control method to reduce isoflurane exposures in 

laboratory researchers is active scavenging. Active scavenging includes fume hoods 

(including biosafety cabinets) and vacuum lines. Active scavenging techniques reduced 

isoflurane exposures to laboratory researchers below the NIOSH REL for anesthetic 

gases of 2 ppm. Passive canisters are not effective in reducing exposures below the 

NIOSH REL. Combining the active and passive scavenging techniques further reduced 

exposures, though this reduction was not statistically significant from the active 

scavenging data alone. Given the cost of purchasing new canisters and discarding used 

ones, this approach may not be cost effective.   
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CHAPTER 6 
CONCLUSION 

 
This dissertation identified possible overexposures to medical researchers who 

use isoflurane. However, because an isoflurane-specific standard is not currently 

available, we are not able to conclude if these researchers are at a risk of developing 

health hazards associated with isoflurane. Nevertheless, the data underscores the need 

for an occupational exposure limit that includes isoflurane. The NIOSH REL for 

halogenated anesthetic gases is the closest standard applicable to isoflurane. The 

NIOSH REL needs to be revised to include isoflurane. At the time the standard was 

developed isoflurane and other newer generation halogenated anesthetic gases were 

not available.  

In addition, this standard was written to protect health care professionals. The 

use of isoflurane has shifted to the veterinary and research fields. These populations 

need to be considered when revising the standard. When the NIOSH standard was 

developed there was insufficient health data available to determine what exposure 

concentrations of halogenated gases could be determined as reasonable safe. The 

result was a standard which was based mostly upon the sampling and detection 

techniques at the time. Isoflurane has been in use for decades.  

Unfortunately, while research and technology have moved forward in sampling 

and analysis, epidemiological research on human health effects has remained stagnant. 

The systematic review of the literature in chapter two revealed that most studies with 

health effects data were focused on the healthcare population and a mixed anesthetic 

gas exposure. Future studies need to be conducted with study populations in the 

veterinary or research fields. These are the fields in which isoflurane is used the most 
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often. Studies looking for long-term health outcomes also need to be conducted. There 

is evidence that isoflurane may cause genetic mutations.  

Employees in the research field are at risk for over exposure to isoflurane. In the 

study of dental researchers in chapter three, the most important source of isoflurane was 

the nose-cone. This was an unanticipated result, as we assumed that the induction 

chamber would be the greatest source. It is important to consider all possible sources of 

isoflurane WAG to accurately assess exposure and when designing controls. A 

ventilation control that could be manipulated for use with the induction chamber and the 

nose cone greatly reduced isoflurane exposure to the researchers. The isoflurane 

exposure was reduced a maximum of 97% and a mean of 86% after the installation and 

use of this control. 

A study of several researchers and procedures in chapter four revealed 

scavenging technique and researcher roles during a procedure greatly affect isoflurane 

exposure. Researchers who used an active scavenging technique such as a BSC or 

exhaust vacuum line had significantly lower isoflurane exposures than researchers who 

relied solely on passive scavenging canisters. This indicates that passive scavenging in 

conjunction with normal room ventilation is not sufficient to protect researchers from over 

exposure. Almost one third of the researchers monitored for the study had an isoflurane 

exposure above the NIOSH REL of two ppm for halogenated anesthetic gases.  

Species of animals on which the procedures were being performed was not 

associated with isoflurane exposure. This was a surprise because we would expect 

larger amounts of isoflurane to be used on larger animals, thus increasing the possibility 

of overexposure. However, large animals such as pigs are intubated to maintain 

anesthesia. This should have reduced the most likely source of the isoflurane, which is 
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the nose-cone or face-mask. This result may have been impacted by the small sample 

size available for large animal procedures.  

In the control comparison study in chapter five, passive scavenging canisters did 

not reduce isoflurane exposure. Passive scavenging canisters also had a high variance 

between brands and between canisters of the same brand. Canister weight was stable 

before isoflurane exposure, which indicated that environmental conditions should not 

have had an impact on canister performance. Canister weight after exposure was also 

fairly stable which indicated that canisters were not likely to off-gas isoflurane. The lack 

of off-gassing, combined, with the high isoflurane concentrations measures in the room 

indicated that the canisters were not able to adsorb isoflurane efficiently. Active 

scavenging using an exhaust vacuum line greatly reduced isoflurane concentration. 

There was no significant difference in isoflurane concentration between the vacuum lines 

alone compared to using passive canisters with the vacuum line. It is recommended that 

researchers use of active scavenging methods to control isoflurane WAG.  
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Isoflurane in combination with other anesthetic gases, is likely to be associated 

with adverse human health effects such as genetic damage and changes in cellular 

functions. These changes could be related to other negative health outcomes such as 

CNS toxicity, reproductive toxicity, and organ toxicity. Researchers using isoflurane to 

anesthetize animals are at risk for high exposures to isoflurane. Researchers should use 

active scavenging methods to control isoflurane WAG. Active scavenging may not be 

reasonable in all research situations due to cost or limited space. Portable active 

scavenging systems are now available, which may be beneficial in these instances. 

These systems combine the portability of passive scavenging canisters with pump to pull 

polluted air into the activated charcoal. The portable active scavenging systems have yet 

to be evaluated in the literature. These devices should be investigated to determine if 

they are an efficient control for isoflurane 
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APPENDIX A: FULL PUBMED SEARCH STRATEGY FOR SYSTEMATIC REVIEW 

 
((((((((occupation[tiab] OR occupational[tiab]))) AND ((expose[tiab] OR 

exposed[tiab] OR exposure[tiab])))) OR "occupational exposure") OR ((("Occupational 

Exposure"[Mesh]) OR "Occupational Diseases"[Mesh]) OR "Environmental 

Exposure"[Mesh:NoExp]))) AND ((((("Isoflurane"[Mesh]) OR isoflurane[tiab])) OR 

("anaesthetic gas" OR "anaesthetic gases")) OR ("anesthetic gas" OR "anesthetic 

gases")) Filters: Humans. 
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APPENDIX B: FULL Embase SEARCH STRATEGY FOR SYSTEMATIC REVIEW 

 

 
 

  
  

Search Queries 

No. Query Results Date 

#15 ((('occupational exposure'/exp OR 'occupational 

disease'/exp) AND ('isoflurane'/exp OR (isoflurane:ti OR 

isoflurane:ab) OR ('anesthetic gas':ti OR 'anaesthetic 

gas':ti) OR ('anesthetic gases':ti OR 'anaesthetic 

gases':ti) OR ('anesthetic gases':ab OR 'anaesthetic 

gases':ab) OR ('anesthetic gas':ab OR 'anaesthetic 

gas':ab) OR ('anesthetic gas':ab OR 'anaesthetic 

gas':ab))) AND 'human'/de) AND ([embase]/lim NOT 

[medline]/lim) 

70 19 Dec 2014 

#14 [embase]/lim NOT [medline]/lim 6564799 19 Dec 2014 

#13 (('occupational exposure'/exp OR 'occupational 

disease'/exp) AND ('isoflurane'/exp OR (isoflurane:ti OR 

isoflurane:ab) OR ('anesthetic gas':ti OR 'anaesthetic 

gas':ti) OR ('anesthetic gases':ti OR 'anaesthetic 

gases':ti) OR ('anesthetic gases':ab OR 'anaesthetic 

gases':ab) OR ('anesthetic gas':ab OR 'anaesthetic 

gas':ab) OR ('anesthetic gas':ab OR 'anaesthetic 

gas':ab))) AND 'human'/de 

378 19 Dec 2014 

#12 ('occupational exposure'/exp OR 'occupational 

disease'/exp) AND ('isoflurane'/exp OR (isoflurane:ti OR 

isoflurane:ab) OR ('anesthetic gas':ti OR 'anaesthetic 

gas':ti) OR ('anesthetic gases':ti OR 'anaesthetic 

gases':ti) OR ('anesthetic gases':ab OR 'anaesthetic 

gases':ab) OR ('anesthetic gas':ab OR 'anaesthetic 

gas':ab) OR ('anesthetic gas':ab OR 'anaesthetic 

gas':ab)) 

483 19 Dec 2014 

#11 'isoflurane'/exp OR (isoflurane:ti OR isoflurane:ab) OR 

('anesthetic gas':ti OR 'anaesthetic gas':ti) OR 
23477 19 Dec 2014 
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('anesthetic gases':ti OR 'anaesthetic gases':ti) OR 

('anesthetic gases':ab OR 'anaesthetic gases':ab) OR 

('anesthetic gas':ab OR 'anaesthetic gas':ab) OR 

('anesthetic gas':ab OR 'anaesthetic gas':ab) 

#10 'occupational exposure'/exp OR 'occupational 

disease'/exp 
183140 19 Dec 2014 

#9 'anesthetic gas':ab OR 'anaesthetic gas':ab 458 19 Dec 2014 

#8 'anesthetic gas':ab OR 'anaesthetic gas':ab 458 19 Dec 2014 

#7 'anesthetic gases':ab OR 'anaesthetic gases':ab 667 19 Dec 2014 

#6 'anesthetic gases':ti OR 'anaesthetic gases':ti 409 19 Dec 2014 

#5 'anesthetic gas':ti OR 'anaesthetic gas':ti 164 19 Dec 2014 

#4 'occupational disease'/exp 132114 19 Dec 2014 

#3 'occupational exposure'/exp 65409 19 Dec 2014 

#2 isoflurane:ti OR isoflurane:ab 13200 19 Dec 2014 

#1 'isoflurane'/exp 20403 19 Dec 2014 
 

 

  

 
 

  



83 
 

APPENDIX C: ASSESSMENT OF ISOFLURANE EXPOSURE TO RESEARCHERS 
DURING ANIMAL PROCEDURES (CHAPTER 4) 

Procedure Description ID 

Isoflurane 
Exposure 
(ppm) Role Scavenging Species 

Acute Cardiac Disease 
Model 5679 0.09 Secondary Passive Large 
Cardiac Arrest Treatment 1 2402 1.90 Secondary Passive Large 
Cardiac Arrest Treatment 1 7894 0.69 Secondary Passive Large 
Cardiac Arrest Treatment 2 2402 1.70 Secondary Passive Large 
Cardiac Arrest Treatment 2 7894 0.24 Secondary Passive Large 
Cardiac Arrest Treatment 3 2402 2.50 Secondary Passive Large 
Cardiac Arrest Treatment 3 4608 0.22 Secondary Passive Large 
Cardiac Arrest Treatment 4 2402 1.30 Secondary Passive Large 
Cardiac Arrest Treatment 4 4608 0.16 Secondary Passive Large 
Cardiac Arrest Treatment 4 4979 0.72 Primary Passive Large 
Surgical Robot Test 5162 2.50 Primary Active Large 
Surgical Robot Test 3443 3.60 Secondary Active Large 
Surgical Robot Test 6295 0.63 Primary Active Large 
Surgical Robot Test 5729 0.42 Secondary Active Large 
Surgical Robot Test 6017 0.68 Secondary Active Large 
Body Composition 1517 0.56 Primary Active Small 
Body Composition 1235 0.53 Primary Active Small 
Cardiac Arrest Treatment 7304 1.30 Primary Active Small 
Cardiac Arrest Treatment 4608 0.77 Primary Active Small 
Cardiac Arrest Treatment 2402 0.63 Secondary Active Small 
Cardiac Arrest Treatment 4399 0.53 Secondary Active Small 
Dissection (1) 5015 0.28 Primary Active Small 
Dissection (2) 7776 0.64 Primary Active Small 
Dissection (3) 1809 1.6 Secondary Passive Small 
Dissection (3) 9131 1.5 Secondary Passive Small 
Dissection (3) 4904 2.5 Primary Passive Small 
Dissection (3) 2102 6.6 Primary Passive Small 
Drug Pump Implantation 7584 3.6 Primary Passive Small 
Embryonic Transfer 
Surgery 2437 1.6 Primary Passive Small 
Embryonic Transfer 
Surgery 8747 0.26 Secondary Passive Small 
Heart Ultrasound 2074 2.9 Primary Passive Small 
Heart Ultrasound 3916 0.41 Secondary Passive Small 
Humanized Liver Model 6279 0.25 Primary Active Small 
Humanized Liver Model 4014 0.42 Secondary Active Small 
Intraperitoneal Injections 4257 9.5 Primary Passive Small 
Intraperitoneal Injections 1784 3.7 Secondary Passive Small 
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Kidney Ultrasound 2495 1.5 Primary Passive Small 
Liver Cancer Model 2636 2.10 Secondary Passive Small 
Liver Cancer Model 2512 2.50 Primary Passive Small 
Liver Cancer Model 4637 1.80 Secondary Passive Small 
MRI 4805 0.61 Primary Active Small 
MRI 6138 0.15 Secondary Active Small 
Skin Disease Model 9683 0.12 Primary Active Small 
Telemeter Implantation 5201 2.20 Primary Passive Small 
Time Course Model 4020 0.25 Primary Active Small 
Time Course Model 1925 0.25 Secondary Active Small 
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APPENDIX D: ASSESSMENT OF ISOFLURANE EXPOSURE TO RESEARCHERS 

DURING ANIMAL PROCEDURES (CHAPTER 4) 

Cardiac Arrest Treatment in Pig 

The research protocol involved one research animal per procedure. A total of 5 to 

6 research personnel, two cardiovascular surgeons and four technicians, participated in 

each procedure. The technicians induced anesthesia in the pigs using injection or cone 

mask with 5% isoflurane at a flow rate of 1 liter per minute (L/min) for 4 to 5 minutes. 

Pigs were intubated to maintain anesthesia with isoflurane at 1.5 to 2 % isoflurane at a 

flow rate of 1 L/min until the completion of the research protocol. Pigs were kept under 

anesthesia for 6 to 8 hours per procedure. A total of 5 procedures were observed for this 

study. In four of the studies the animals were recovered, in the final procedure the 

animal was euthanized with potassium chloride (KCl) and 5% isoflurane for 5 minutes.  

The purpose of the research procedures were to injure and occlude either the left 

or right carotid artery or the left or right descending aortic vessel to create a heart attack 

in the animal. The research team would treat the animal with standard heart attack 

treatments and the research treatment. The research treatment was micro-bubbles 

activated with ultrasound. One technician was in charge of prepping animals for surgery 

by placing IVs and intubating the animal. After the initial prep time the technician would 

be in and out of the procedure room. Two other technicians assisted in the preparation. 

During the procedure one technician recorded notes and another manipulated the 

camera arm of the fluoroscope. A third technician assisted the main cardiovascular 

surgeon to occlude the artery or blood vessel and then treat the occlusion. A second 

cardiovascular surgeon operated the ultrasound during the treatment period. 

After treatment the animals were either recovered or moved to an MRI for 

imaging. Animals that underwent MRI imaging were placed on a cart with a portable 

isoflurane vaporizer to maintain anesthesia during transport to the MRI facility. At the 
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facility, the animals were transferred to the MRI chamber and isoflurane vaporizer. 

During the MRI, scanning research personnel were in a separate room from the MRI, 

away from isoflurane sources. After the MRI the animals were transported back to the 

procedure room with the same equipment and recovered or euthanized. During recovery 

vitals were monitored. After recovery, animals were transported back to their housing 

area. The concentration for the field blanks were below the limit of detection of 0.04 

ppm. 

Surgical Robot Test in Pig 

One Yorkshire pig was used during the testing of a surgical robotics instrument. 

Anesthesia was induced using 5% isoflurane at flow rate of 1.5 L/min delivered by cone 

mask. After induction the pig was intubated to maintain anesthesia. An active vacuum 

line was run from the building exhaust to the animal during induction and intubation. The 

pig was then transferred to the procedure room and placed on isoflurane at 2% at flow 

rate of 1.5 L/min. Two technicians were involved in the preparation and intubation of the 

pig. Each of the technicians was monitored for isoflurane exposure during the entire time 

that they were present for the procedure. 

A total of 15 individuals observed or participated in the robotics test. The 

procedure began approximately 1.5 hours after the pig had been prepped for the 

surgery. The abdominal cavity of the pig was opened and a minor gastrointestinal 

surgery was performed. The researchers then attempted to perform the same procedure 

using the robot. The purpose of the study was to further the use of non-invasive surgery 

techniques using surgical robots. The procedure took approximately 45 minutes to 

perform. Two researchers were monitored for isoflurane exposure during the procedure. 

One researcher operated the surgical robot, the other researcher observed the 

procedure. 
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Two technicians then began cleaning up the procedure room and euthanizing the 

pig. The pig was euthanized using KCl and 5% isoflurane. Isoflurane was turned off after 

approximately 5 minutes. Vacuum scavenging was used during the surgical procedure 

and turned off with the isoflurane. The technicians finished cleaning the room and 

disposing of the pig within 1 hour. Both of the technicians were monitored during the 

cleanup. The concentration for the field blank was below the limit of detection of 0.04 

ppm. 

Acute Cardiac Disease Model in Rabbit 

Anesthesia was induced in the rabbit by injection. The rabbit was intubated with a 

fully inflated cuff and anesthesia was maintained at 1.5—2% isoflurane at flow rate of 1 

L/min. An F/Air™ canister was used to scavenge waste anesthetic gas. A non-sterile 

technician assisted in taking notes and moving non-sterile instruments. The technician 

was monitored during the procedure. A surgeon opened the abdominal cavity of the 

rabbit and placed a blood flow monitor on the renal vein. The surgeon was not monitored 

due to concerns of maintaining a sterile surgical area. Active vacuum lines were 

available in the procedure room, but were not used. The procedure took approximately 1 

hour to complete. The rabbit was recovered by the technician for 3 hours and then taken 

back to its housing area. The technician was monitored for the entire procedure and 

recovery time. The isoflurane concentration for the field blank was below the limit of 

detection of 0.04 ppm. 

Cardiac Arrest Treatment in Rat 

Anesthesia was induced using a 1 gallon ice cream container as induction 

chamber. The anesthesia induction was not monitored. After induction the rat was 

placed on a nose cone and shaved for procedure. Anesthesia was maintained at 1.5—

1.75% isoflurane at a flow rate of 1 L/min for approximately 1.5 hours. During the 

procedure, a technician tied off left ascending cardiac vessel and prepared rat for 
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cardiovascular injury. The technician used an active vacuum line and F/Air™ canister to 

scavenge isoflurane vapors. The technician was monitored for the entire duration of 

exposure. 

A second technician performed the injury to the vessel to induce a heart attack. 

The technician then treated the rat using ultrasound activated micro-bubbles. A 

cardiovascular surgeon operated the ultrasound during the treatment. A third technician 

assisted with the ultrasound and surgery. All participants were monitored for isoflurane 

during the procedure. The animal was recovered after 1.5 hours and returned to its 

housing. The concentration for the field blank was below the limit of detection of 0.04 

ppm. 

Telemeter Placement in Rats 

 A researcher induced anesthesia in rats using induction chamber with isoflurane 

at 3% at flow rate 1 L/min for 5—15 minutes. Animals were moved to surgical area on 

bench and placed on nose-cone to maintain anesthesia. Anesthesia was maintained at 

2% isoflurane at a flow rate of 1 L/min.  

 Animals were secured to the surgical area, shaved, and swabbed with 

iodine solution. A sterile cover was placed over the animal with a cut-out to expose 

surgical area. Researcher opened the animal’s abdomen and chest, making two 

separate cuts. Telemeter device was placed in abdomen with leads in the chest. The 

researcher sutured abdomen and chest openings. Procedure time was approximately 1 

hour per animal. The researcher placed one telemeter device in a total of three rats 

during the monitoring period. A class 2 BSC and active vacuum ports were available, but 

not used. The researcher used ReFresh canisters to scavenge WAG from the induction 

chamber and nose-cone. The isoflurane concentration for the field blank was below the 

limit of detection of 0.04 ppm. 

Intraperitoneal Injections in Rat 
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Twelve rats were injected once daily for seven days. Two researchers were 

monitored for isoflurane exposure during one of the injection periods. One researcher 

weighed the rats. The second researcher prepared the injections based on the rat’s 

weight. The first researcher placed the animals in the induction chamber and performed 

the injections. The researcher did intraperitoneal injections into the peritoneal cavity of 

the rat. 

Anesthesia was induced using 4% isoflurane at a flow rate of 2 L/min for 5 

minutes; the flow rate was then reduced to a flow rate of 1.5 L/min. The induction 

chamber was placed on a bench top and attached to an F/Air™ canister. A class 2 BSC 

and active vacuum ports were available, but not used. The injections took approximately 

15 minutes to perform. The researchers returned the animals to the housing area and 

cleaned up. The concentration for the field blank was below the limit of detection of 0.04 

ppm. 

Liver Cancer Model in Rat 

A total of four rats and three researchers participated in the protocol. Anesthesia 

was induced in the rats using an induction chamber placed inside a class II BSC. An 

F/Air™ canister was attached to the induction chamber. Anesthesia was induced at 4—

5% isoflurane at a flow rate of 2 L/min for approximately 5 minutes. Rats were then 

removed from the induction chamber and placed on the procedure table. Isoflurane was 

delivered at 1% at a flow rate of 1 L/min using a nose cone on the procedure table. The 

nose-cone was fitted with a rubber septum and the rat’s entire head was placed in the 

nose cone. An F/Air™ canister was used for scavenging isoflurane from the nose cone. 

The rat was shaved and secured to the surgical procedure area. 

The abdominal cavity was opened and intestines were gently placed to the side 

of the animal. The researchers clamped the bile duct and then injected cancer cells into 

the liver. The purpose of this procedure is to induce liver tumors in the rats. The 
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researchers then suture the inner abdominal wall followed by the outer skin of the 

abdomen. The researchers held the rats for approximately 3—5 minutes to warm the 

animals. The rats were placed in the BSC on a heating pad to recover. The procedure 

was performed on three rats in succession. The researchers then took a 30 minute 

break and performed the procedure on a fourth animal. 

The researchers took turns inducing anesthesia, prepping the animal, performing 

the procedure, suturing the surgery site, and recovering the animals. One researcher 

was in and out of the room preparing the cancer cells for injection. This researcher 

performed the fourth procedure. The other two researchers were in the room for the 

duration of the research. An active vacuum line for the procedure table was available, 

but not used. The concentration for the field blank was below the limit of detection of 

0.04 ppm. 

Body Composition of Mice 

Body composition procedures were monitored for isoflurane two separate times 

with two different technicians. A technician performed body composition measurements 

on 23 mice using a dual X-ray absorptiometry (DEXA) machine. The technician induced 

anesthesia in the mice using 2.5—3% isoflurane at a flow rate of 1 L/min in a slide top 

induction chamber. The induction chamber was placed on a table outside of a nearby 

class 2 BSC. After anesthesia was induced, the technician transferred the animal to the 

DEXA machine in the BSC. Anesthesia was maintained using the nose cone of the 

DEXA machine at 2% isoflurane at a flow rate of 1 L/min. Mice remained on the DEXA 

machine for approximately 4 minutes for the scan to complete. Mice were then removed 

and recovered in cages.  The technician placed a lead screen in front of the BSC during 

the scan. Two VaporGuard™ canisters were used to scavenge waste gas. One canister 

was attached to the induction chamber and one was attached to the DEXA machine and 

placed in the hood. Both canisters were laid on their sides. The procedure and cleanup 
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lasted for approximately 1.5 hours total. The technician refilled the isoflurane vaporizer 

outside of the hood after the procedure. The technician placed the mice in the housing 

facility after the procedure. The technician was monitored for isoflurane exposure during 

the entire procedure. 

A second body composition procedure was conducted with 15 mice and a 

separate technician. The technicians each used the same protocols for the body 

composition measurements. The total procedure time for this procedure was 

approximately 1 hour and 15 minutes. The technician used 1.5% isoflurane at a flow rate 

of 1 L/min to induce and maintain anesthesia in the mice. One F/Air™ canister was 

attached to the induction chamber outside of the BSC and one VaporGuard™ canister 

was attached to the DEXA machine inside the BSC. 

The isoflurane concentration for the field blank was below the limit of detection of 

0.04 ppm for this first procedure and less than 0.26 ppm for the second. 

Embryo Transfer in Mice 

 Researchers prepared embryos for transfer. Five female mice were implanted 

with the embryos. One researcher used the isoflurane in the open-drop method to 

anesthetize the mice individually. The second researcher performed the transfer surgery 

in a laminar flow hood. A Pure-Guard™ with an Enviro-Pure™ passive scavenging 

canister was used to scavenge waste isoflurane gas. Each surgery lasted approximately 

five minutes. The isoflurane concentration for the field blank was below the limit of 

detection of 0.04 ppm. 

Dissection 1: Mice Pups 

Three mice pups were euthanized in a class II BSC with isoflurane using the 

open-drop method. The mice pups were placed in a plastic canister with 0.1 milliliters 

(mL) of isoflurane placed on a paper towel. The pups were removed one at a time and 

dissected. Organs were collected for further analysis. The canister was open for 
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approximately 30 seconds at a time. The procedure took approximately 15 minutes and 

was completed in the BSC. The researcher performing the procedure was monitored for 

isoflurane exposure during the procedure and the cleanup. The isoflurane treated paper 

towels were left in the canister in the hood. After approximately two hours the paper 

towels were disposed of in the biohazard waste. 

The isoflurane concentration for field blank was below the detection limit of 0.04 

ppm. 

Dissection 2: Mice 

A technician euthanized and dissected a total of ten adult mice. The mice were 

euthanized using isoflurane and the open-drop method. Five mice were placed in a 

desiccator jar in a class 2 BSC with paper towels treated with approximately 25 mL of 

isoflurane. After the mice are euthanized they were removed from the jar as a group and 

transferred to the bench for dissection. The leg tissue and knee joints were collected 

from each mouse. Two groups of five mice were euthanized and dissected. The 

technician was monitored for isoflurane exposure during the entire procedure. The 

procedure and cleanup time was approximately 45 minutes. The paper towel was 

removed from the desiccator jar and left in the hood for approximately 1 hour then 

disposed of in the biohazard waste. 

The isoflurane concentration for the field blank was below the detection limit of 

0.04 ppm. 

Dissection 3:  Mice 

Four researchers euthanized and dissected a total of four mice. The mice were 

anesthetized individually using 2.5% isoflurane at a flow rate of 1 L/min in a clip top 

induction chamber. The induction chamber clip was not secured between animals. A 

technician and three students sat in a circle around a table to conduct the procedure. 

The technician sat closest to the induction chamber and placed and removed the mice 
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from the chamber. A student sat across from the technician. This student weighed the 

animals and the organs collected from the dissected animals. A second student sat next 

to the technician and assisted by dissecting the mice with the technician. The final 

student kept notes for the procedure and placed the collected organs in collection vials. 

The group worked together in an assembly line like manner. The procedure and cleanup 

was completed in approximately 40—45 minutes. Isoflurane was actively used for 

approximately 20 minutes. 

A ReFresh passive canister was attached to the induction chamber to scavenge 

WAGs. There was no access to active vacuum lines or a ventilated hood in the room. 

The technician and the three students were monitored for isoflurane exposure during the 

entire procedure. The concentration for the field blank was below the limit of detection of 

0.04 ppm. 

Drug Pump Implantation in Mice 

A technician implanted drug release mini-pumps into three mice. Anesthesia was 

induced using 2% isoflurane at a flow rate of 1 L/min a clip top induction chamber. The 

mouse was removed from the chamber, shaved, and placed on a nose cone to maintain 

anesthesia at 2% isoflurane at 1 a flow rate of L/min. 

The technician implanted the mini-pump device in the abdomen of the animal. 

The technician repeated the procedure for two more mice. Animals were covered the 

cages and returned to housing. Mice were housed in the procedure room. Two vapor 

guard passive canisters were used to scavenge waste gas. One canister was attached 

to the induction chamber and one was attached to the nose cone. A BSC was available 

in the room but not used during the procedure. No vacuum scavenging lines were 

available for the room. The technician was monitored for the entire procedure time of 34 

minutes. 
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The isoflurane concentration for the field blank was below the limit of detection of 

0.04 ppm. 

Heart Ultrasound in Mice 

Six mice were used in this study. Two researchers participated in the study, a 

technician who ran the ultrasound machine, and a second researcher who assisted the 

technician. Both researchers were monitored for isoflurane exposure during the entire 

procedure.  

The mice were anesthetized using 3% isoflurane at a flow rate of 1 L/min in a clip 

top induction chamber on the bench top. Anesthesia was maintained with the nose cone 

attached to the ultrasound machine at 1% at a flow rate of 1 L/min. Each animal was 

anesthetized individually. Once under anesthesia, the animal was moved to the 

ultrasound stage and secured using tape. A large dollop of ultrasound gel was placed on 

the mouse’s abdomen. The transducer was lowered and positioned manually by the 

technician. The heart was imaged and recorded by the technician. The entire procedure 

for all six animals took 70 minutes to complete. After the procedure, the researchers 

cleaned the room and returned the mice to the housing facility. 

Two F/Air canisters were used to scavenge waste anesthetic gas. One F/Air 

canister was attached to the induction chamber; the second was attached to the 

ultrasound nose cone. No active vacuum ports were observed in the room. The 

researchers worked with the door to the room open to the hallway. The isoflurane 

concentration for the field blank was below the limit of detection of 0.04 ppm. 

Humanization Liver Model in Mice 

Two researchers completed a procedure to create humanized mouse liver 

models in four mice. Anesthesia was induced using a slide top induction box outside of a 

BSC. A technician shaved mice and placed them in the induction chamber. Mice were 
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individually induced at 4% isoflurane at a flow rate of 1 L/min by the technician. The mice 

were transferred to a class 2 BSC for the procedure. 

Anesthesia was maintained at 2% isoflurane at a flow rate of 1 L/min on nose 

cones. The researcher transferred human hepatocyte cells into the mouse spleen. 

Hepatocyte cells were aspirated into a specialized needle/loop apparatus and 

transferred to the mouse. While conducting the procedure the sash of the BSC was 

raised above the maximum height. The researcher ignored the alarm and turned the 

alarm off several times. The researcher also leaned into the BSC so that the researchers 

head and shoulders were inside of the BSC while working. 

Two F/Air canisters were used to scavenge waste anesthetic gas. One was 

attached to the induction chamber outside of the BSC and one was attached to the nose 

cone inside of the BSC. The technician and researcher were monitored for isoflurane 

during the entire procedure. The total procedure time took approximately 1 hour, 

including cleanup. The isoflurane exposure for the field blank was less than 0.17.  

Kidney Ultrasound in Mice 

One researcher performed the ultrasound on the kidneys of 8 mice.  Mice were 

anesthetized individually in a clip top induction chamber using 2.5—5% isoflurane at a 

flow rate of 1 L/min for approximately 1 minute. The mice were removed from the 

chamber and placed on the ultrasound stage and secured using tape. Anesthesia was 

maintained by delivering 2% isoflurane at a flow rate of 1 L/min to the nose cone of the 

ultrasound machine. 

The researcher removed the hair from the abdomen of the mouse and applied 

ultrasound gel to the abdomen. The researcher then manipulated the ultrasound 

transducer to image the kidney and related blood vessels. After imaging the animal was 

placed back in the cage to recover. The procedure was repeated for 8 mice and took 

place for approximately 2 hours. After the procedure the researcher cleaned up and took 
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the mice back to the housing area. The isoflurane concentration for the field blank was 

below the limit of detection of 0.04 ppm. 

MRI Imaging in Mouse 

Two researchers imaged a mouse using a small animal MRI. The mouse was 

anesthetized using 1.5% isoflurane at a flow rate of 1 L/min in a slide top induction 

chamber. The induction chamber was attached to an active vacuum line to scavenge 

waste anesthetic gas from the top of the chamber. The mouse was in the induction 

chamber for 20 minutes. 

After the mouse was anesthetized, the student researcher placed the mouse in 

an MRI chamber of the bench top. The chamber with the mouse was then placed in the 

MRI. The student researcher and technician adjusted the MRI for the procedure. The 

MRI procedure and animal’s vitals were monitored using a computer approximately 4 

feet from the MRI. Anesthesia was maintained at 1.5% at a flow rate of 1 L/min using a 

nose cone within the MRI. The animal was imaged for approximately 2 hours, recovered, 

and taken back to its housing area. The technician and student researcher were 

monitored for isoflurane exposure during the entire procedure except when placing the 

animal in the MRI and adjusting the MRI. The researchers could not be monitored during 

this time due to the metal clips on the passive monitoring badges. This time was 

approximately 10 minutes of the entire procedure. The isoflurane concentration for the 

field blank was below the limit of detection of 0.04 ppm. 

Skin Disease Model in Mice 

A research student performed skin test procedures on 20 mice. Anesthesia was 

induced at 3% isoflurane at a flow rate of 1 L/min in a slide top induction chamber placed 

within a class 2 BSC. After 5 minutes the isoflurane concentration was reduced to 1.5%. 

Mice were anesthetized 5 at a time.  
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After induction, mice were removed from the induction chamber and anesthesia 

was maintained on nose cone inside of BSC. A total of 5 nose cones were setup for the 

procedure. The researcher applied cream to the ears of the mice using a small spatula. 

The mice were kept under anesthesia for 30 minutes. Mice were rotated on the nose 

cones. A maximum of 10 mice were under anesthesia at a time; five mice in the 

induction chamber and five mice on nose cones. Mice were recovered in cages. The 

researcher cleaned up the room and placed the animals in the housing area. The 

isoflurane concentration for field blank was below 0.17 ppm.  

Time Course Model in Mice 

Two researchers completed a tail vein injection and euthanasia/ dissection of five 

mice. A large induction chamber was placed in a class 2 A2 BSC. The induction 

chamber was flooded with 5% isoflurane at a flow rate of 3 L/min for approximately 5 

minutes. The isoflurane concentration was reduced to 2.5% at a flow rate of 3 L/min and 

all five mice were placed in the induction chamber to induce anesthesia. 

One researcher placed mice in and removed mice from the induction chamber. 

This researcher also injected the tail veins of the mice. A technician prepped the tail vein 

injections. Two mice were euthanized and dissected immediately after the tail vein 

injection. Mice were euthanized on the bench top CO2 euthanasia station, which is a 

specially designed cage lid which fits tightly over the mouse cage and pumps CO2 into 

the cage. The technician immediately dissected the euthanized animals and collected 

tissues in a second BSC. The other three mice were euthanized and dissected in the 

laboratory at two and four hours after tail vein injection; by the researcher. The tail vein 

injection and two dissections were completed in the same room in approximately 1 hour. 

The researchers cleaned up and took the remaining three mice to the lab for holding. 

A ReFresh canister was attached to the induction chamber and placed in the hood to 

scavenge waste gas. The vaporizer was flushed with O2 before being turned off. Both 
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researchers were monitored for isoflurane exposure during the tail vein injections, the 

first two dissections, and cleanup from the procedure. Researchers were not monitored 

in the lab for isoflurane exposure as isoflurane use was completed for the day and the 

researchers were leaving the procedure room in which isoflurane was used. The 

isoflurane concentration for the field blank was below 0.35 ppm. 
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