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Abstract: Human prostatic acid phosphatase (PAcP) is a 100 kDa glycoprotein composed 

of two subunits. Recent advances demonstrate that cellular PAcP (cPAcP) functions  

as a protein tyrosine phosphatase by dephosphorylating ErbB-2/Neu/HER-2 at the 

phosphotyrosine residues in prostate cancer (PCa) cells, which results in reduced 

tumorigenicity. Further, the interaction of cPAcP and ErbB-2 regulates androgen 

sensitivity of PCa cells. Knockdown of cPAcP expression allows androgen-sensitive PCa 

cells to develop the castration-resistant phenotype, where cells proliferate under an  

androgen-reduced condition. Thus, cPAcP has a significant influence on PCa cell growth. 

Interestingly, promoter analysis suggests that PAcP expression can be regulated by  

NF- B, via a novel binding sequence in an androgen-independent manner. Further 

understanding of PAcP function and regulation of expression will have a significant impact 

on understanding PCa progression and therapy. 
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Abbreviations: AcP, acid phosphatase; AcPT, testicular acid phosphatase;  

AI, Androgen-independent; AS, Androgen-sensitive; cPAcP, cellular prostatic acid phosphatase; CR 

PCa, castration-resistant prostate cancer; DHT, 5 -dihydrotestosterone; EGF, epidermal growth factor; 

EGFR, EGF receptor; HER-2/ErbB-2/neu, human epidermal growth factor receptor-2; FBS, fetal 

bovine serum; HDAC, Histone deacetylase; IHC, Immunohistochemistry; hLAcP, human lysosomal 

acid phosphatase; hPAcP, human prostatic acid phosphatase; PCa, prostate cancer; pI, isoelectric 

point; PI3K, phosphoinositide 3-kinase; PKC, protein kinase C; PSA, prostate-specific antigen; PTP, 

protein tyrosine phosphatase; p-Tyr, phosphotyrosine; qRT-PCR, quantitative reverse  

transcription-polymerase chain reaction; sPAcP, secretory PAcP; TM-PAcP, transmembrane PAcP; 

Tyr-P, tyrosine phosphorylation.  

1. Introduction 

Human prostatic acid phosphatase (PAcP; E.C.3.1.3.2) is a prostate epithelium-specific 

differentiation antigen found in large amounts initially in seminal fluid. Gutman and his colleagues [1] 

made the critical observation that serum PAcP activity was significantly higher in prostate cancer 

(PCa) patients, particularly those with bone metastasis, than that in normal adult males. Subsequently 

in 1941, Huggins and colleagues further documented the correlation of circulating PAcP activity with 

prostate tumor burden [2]. Since then, serum PAcP was studied extensively as a serum marker for the 

diagnosis of PCa, prior to the introduction of prostate-specific antigen (PSA) [3–5]. Still, a number of 

studies have identified serum PAcP as a significant prognostic factor and predictor of biochemical failure 

and clinical recurrence of PCa [6–9]. In addition, a recent study highlighted that serum PAcP levels serve 

as a useful independent predictor of tumor recurrence following radical prostatectomy [10]. 

It has become increasingly clear that cellular PAcP (cPAcP), in addition to its role as a prostate 

epithelial differentiation marker [11,12], serves as an excellent measure to elucidate the molecular 

mechanism of cross-talk between androgens and tyrosine phosphorylation signaling involved in 

prostate cancer cell growth regulation [13–15]. Furthermore, cPAcP also serves as an excellent model 

in examining the biological activity of histidine-dependent acid phosphatases (AcPs) and their 

evolutionary relationship [16]. Hence, due to the biological importance of PAcP, it is imperative to 

understand the regulation of PAcP expression for its potential clinical applications. In light of these 

findings, we review PAcP biological function and compare its structure with other acid phosphatases 

(AcPs). We focus on the transcriptional regulation of human PAcP (hPAcP) expression to understand 

the molecular mechanisms that govern the expression pattern of PAcP, moving a step closer to an 

understanding of the altered expression pattern during PCa. Finally, we briefly describe the current 

understanding of PAcP as an immunogen in the immunotherapy of advanced PCa.  



Int. J. Mol. Sci. 2013, 14 10440 

 

2. Biology of Human Prostatic Acid Phosphatase  

2.1. Acid Phosphatases (AcPs) 

AcPs are enzymes which hydrolyze a broad variety of small organic phosphomonoesters under 

acidic conditions. AcP was first described in human erythrocytes [17], and to date, at least five 

different AcPs have been reported in human tissues [12,18,19]. Of groundbreaking importance was 

work by Gutman and colleagues demonstrating the elevation of serum PAcP in advanced PCa [1].  

2.2. PAcP Isoforms 

Human PAcP is classically known as a prostate epithelium-specific 100 kDa glycoprotein [20], 

consisting of two subunits with molecular weight of about 50 kDa each [21]. In normal differentiated 

prostate epithelia, PAcP protein can be detected intracellularly as the cellular form (cPAcP) and in 

seminal fluid as the secretory form (sPAcP). The two forms of PAcP protein are apparently transcribed 

from the same gene followed by different post-transcriptional modifications. Due to the initial report 

on the immunological identity, it was suggested that the immunologic specificity of this enzyme 

resides on the protein moiety rather than the carbohydrate moiety [22,23]. These two forms of PAcP 

were later found to differ in some of their biochemical properties, including a partial overlapping of 

isoelectric points (pIs) and antigenicity [14,24–26]. Further studies have also revealed that these PAcP 

isoform proteins differ in glycosylation and hydrophobicity [27,28]. Antibodies with specificity 

against human sPAcP, but not cPAcP, have been reported [29]. Recent observations have shown the 

presence of a novel spliced variant form (TM-PAcP) containing a transmembrane domain in prostatic 

vesicles and membranes, and also in many mouse non-prostatic cells and tissues [30]. Although  

TM-PAcP may act as an analgesic in mice, its presence in human tissues other than prostate, and its 

biological function, are yet to be determined.  

2.3. Tissue Distribution of PAcP 

Immunohistochemistry (IHC) staining demonstrated that high levels of hPAcP are primarily 

localized in the differentiated columnar epithelial cells of prostate [31–33]. Nevertheless, positive IHC 

staining of PAcP, with weak reactivity, in non-prostatic tissues is also reported [32,34–41]. A study 

based on quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses described 

low PAcP mRNA expression in many non-prostatic cells including bladder, kidney, pancreas, cervix, 

testis, lung and ovary [42]. Recent comprehensive analyses confirmed that PAcP mRNA is 

overwhelmingly expressed in prostate cells when compared with the levels in other tissues  

analyzed [43], though its protein expression was not investigated. In cancerous cells, PAcP protein can 

be detected in some breast and rectal carcinomas, but at levels considerably much lower than that seen 

in PCa [34,44]. 
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2.4. Physiological Levels of PAcP 

cPAcP expression is negligible before adolescence in male prostates. In normal adults, cPAcP is 

found at high levels of approximately 0.5 mg/gm wet prostate tissue [12,45]. sPAcP is secreted into 

seminal fluid at a physiological concentration of approximately 1 mg/mL [46]. In normal healthy 

individuals, the plasma levels of sPAcP are on the order of 1–3 ng/mL, while its level is elevated in a 

disease state and correlates with the PCa stage. 

2.5. PAcP for the Detection of PCa 

Circulating levels of PAcP have long been used as a biomarker in PCa diagnosis. Though the serum 

PAcP level is low in healthy individuals, its level is elevated in individuals with metastatic PCa and 

correlates with the stage of PCa [47–49]. Hence, elevated serum PAcP level was used as an indicator 

for the diagnosis of PCa until the availability of gold standard PSA. In parallel, cPAcP was used to 

determine the prostate origin of metastatic cancers. Interestingly, the level of cPAcP corresponds 

inversely to PCa progression, i.e., the higher the grade, the lower the cPAcP protein [50–52], despite 

an elevated level of sPAcP in patient circulation. Emerging observations on the inverse relationship 

between cPAcP level and tumor progression suggest that cPAcP can be a useful marker for predicting 

PCa prognosis. Results of transcriptome-based tissue microarray analyses using HG U133A GeneChip 

analyses reveal that cancerous specimens with Gleason scores of 6–9 have significantly decreased 

PAcP expression when compared to non-cancerous prostate tissue [14]. Recent studies validate that 

serum PAcP level, like serum PSA, is significantly increased with clinical stages of the disease [53]. 

Furthermore, serum PAcP is elevated in patients with bone metastases, higher than those without bone 

metastases, and importantly, the accuracy of circulating PAcP in detecting bone metastases is  

equal to PSA [53]. 

3. Structure of Human Prostatic Acid Phosphatase 

3.1. Homology Alignments of Human PAcP Protein with Other Mammalian Species  

Sequence analyses reveal that hPAcP closely resembles other mammalian PAcPs (Figure 1A). 

Human PAcP protein shows approximately 98% sequence identity with chimpanzee, pigmy 

chimpanzee and gorilla [54], 93% with monkey [54], 89% with cow [55], 88% with mouse [56] and rat 

PAcP [30]. In addition, the glycosylation sites (Asn62, Asn188 and Asn301), cysteine residues  

(Cys at 129, 183, 281, 315, 319 and 340) and the active site amino acid residues (His12 and Asp258) 

are conserved in all mammalian PAcP analyzed (Figure 1A).  
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Figure 1. (a) Sequence alignment of human prostatic acid phosphatases shows that the 

active sites are evolutionarily conserved in closely related mammals. Only active site 

residues are shown with the amino acid position. Mature protein starts with lysine (K). 

Active site histidine (H) and aspartate (D) are highlighted in green, cysteine (C) with pink 

and glycosylation at asparagine (N) with gray. The number in the parenthesis indicates the 

percentage of similarity with hPAcP; (b) Sequence alignment of hPAcP with hLAcP, 

AcPT and rat PAcP shows that the active sites are evolutionarily conserved in closely 

related mammals. Only active site residues are shown with the amino acid position. Mature 

protein starts with lysine (K). Active site histidine (H) and aspartate (D) are highlighted in 

green, arginine (R) with red, cysteine (C) with pink, and glycosylation at asparagine (N) 

with gray. The hPAcP sequence is given in the first row, subsequent rows display the AcP 

sequence from other sources. The number in the parenthesis indicates the percentage of 

similarity with hPAcP. 

 

3.2. Biochemical Properties of the Human PAcP Gene and mRNA 

The gene encoding hPAcP is located on chromosome 3q21 [57]. The mRNA encodes the mature 

protein of 354 amino acid residues with a calculated molecular mass of 41,126 Da [58,59]. In addition 

to the 354 residues, the 5'-end of the coding region encodes a signal peptide of 32 amino acids. The 

hPAcP gene contains 10 exons. The signal peptide, and the first eight amino acids of the protein are 

encoded by exon 1, and the rest of the amino acids and 3'-untranslated region are encoded by exons 2 

to 10 [57,60]. The hPAcP gene contains three Alu-type repetitive sequences upstream of the proximal 

promoter within 3kb, and two copies of the sequence in the 3'-untranslated region of the gene. In 

human LNCaP prostate carcinoma cells, the major transcription start site is located at  

50 nucleotides upstream of the gene’s ATG codon [61]. In normal human prostate, two species of 

PAcP mRNA (2.4 and 3.3 kb) are found; while in prostate carcinomas including LNCaP cells, only the 

3.3 kb species is detected [58,62,63]. The molecular mechanism of the lack of 2.4 kb mRNA 

expression remains under investigation.  

In rat prostate, at least three species of mRNA (4.9 kb, 2.3 kb and 1.5 kb) are detected [64], and 

their differences in length are in part due to the variation in the 3' non-coding regions [65]. The longest 

4.9 kb mRNA is insensitive to androgen treatment; while the medium size 2.3 kb mRNA shows an 
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initial increase, with a later decrease to 46% after castration [65]. Interestingly, the shortest 1.5 kb 

rPAcP mRNA reaches 14% after three days of castration [65]. Since the shortest mRNA transcript 

exhibits the highest sensitivity to androgens, it is proposed to be responsible for translating rPAcP 

protein [65]. Nevertheless, the possibility of the larger size mRNA species also contributing to the 

production of rPAcP protein cannot be ruled out. The sequence identity and the molecular significance 

in multi mRNA species, and also their evolutionary relationship, are unknown at present and require 

further investigation. 

3.3. Structural Comparison of hPAcP with hLAcP and AcPT at mRNA and Protein Levels 

Genomic analyses reveal that the human lysosomal acid phosphatase (hLAcP) gene contains  

11 exons [66]. The 11th exon of the hLAcP gene encodes the COOH-terminal domain, which includes 

a transmembrane segment, and is found to be absent in the human PAcP gene [59]. This raises a 

concern regarding the origin of TM-PAcP [30]. Virkkunen et al. [67] demonstrated that rPAcP 

contains 11 exons similar to hLAcP, suggesting that rPAcP and hLAcP, but not hPAcP, may have 

evolved from the same ancestral gene. Nevertheless, structural analyses demonstrated that 71% of the 

rPAcP gene is identical to hPAcP in the 5' region, and that exons 2 through 9 are similar in sizes [67]. 

Interestingly, the testicular acid phosphatase (AcPT) gene is composed of 11 exons, and the protein is 

predicted to have a luminal domain, a transmembrane domain and a cytoplasmic domain with the  

N-terminal end of the protein encoding a signal peptide [19]. 

Amino acid sequence analyses show that the hPAcP protein has at least 50% sequence similarity 

with hLAcP [68] and AcPT [19]. While rPAcP shows 88% sequence identity with hPAcP, the 

similarity between rPAcP and hLAcP is only 45% [64]. Furthermore, similar to hPAcP but unlike 

hLAcP or rLAcP, the rPAcP sequence lacks a membrane-anchoring domain [64]. Interestingly, 

alignment of the amino acid sequences of hPAcP, hLAcP, hAcPT and rPAcP indicates a high sequence 

similarity among these mature polypeptide chains, including the position of the cysteine residues, the  

N-glycosylation sites, and the histidine catalytic sites [68–70]. All six cysteine residues present in the 

overlapping areas of the mature hPAcP, rPAcP, hLAcP and rLAcP proteins are positionally conserved, 

suggesting that these residues are important for the tertiary structure of AcPs. The active site residues, 

two arginines (Arg11 and Arg15), one histidine (His12) and one aspartate (D258) in hPAcP, are also 

conserved in these AcPs (Figure 1B). Furthermore, the antigenic determinants for both hPAcP and 

hLAcP are similarly located at both of the terminal regions with a higher similarity on the  

NH2-terminal peptide than the COOH-terminal site [71]. Nevertheless, it should be noted that these 

two proteins exhibit a low immune cross-reactivity. The unique immunological activity of hPAcP 

protein allows it serving as a potent antigen in immune therapy of advanced castration-resistant PCa.  

3.4. Structural Analysis of the hPAcP Protein  

The precursor form of hPAcP protein is composed of 386 amino acids. After the cleavage of the  

32 amino acid signal peptide, the mature PAcP protein (354 amino acids; Mr 41,126 Da) becomes 

catalytically active. Native hPAcP protein is a dimer [20,21,72], consisting of two subunits [73]. 

Sequence analyses have revealed that each monomer contains three asparagine-linked glycosylation 

sites (62, 188 and 301), and six cysteine residues forming two disulfide bonds (Cys129–340 and 
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Cys314–319) and two free residues (Cys183 and Cys281) [74–76]. The glycosylation and disulfide 

linkages support the stability of hPAcP protein.  

Secondary structural analyses demonstrated that hPAcP is composed of 44% -helix (16 helices; 

158 residues) [77], 12% -strand (ten strands; 45 residues) and the rest are loops and -turns [78]. 

Denaturation-renaturation and subunit reassociation studies showed that hPAcP activity may depend on 

dimer formation [73]. The three dimensional crystal structure of hPAcP protein revealed that each 

subunit has two domains: The larger domain is /  type composed of a central seven-stranded mixed  

-sheet with helices on both sides; while, the second, smaller domain contains six -helices and is 

formed mostly by long-chain excursions from the first domain and -loop with no secondary structural 

elements [76]. The PAcP active site residues His12 and Asp258 are found to be located between the 

domains. Site-directed mutagenesis studies have shown that His12 and Arg11 are essential for catalysis, 

while the substitution of residues corresponding to Arg15, Arg79, His257 and Asp258 severely impairs 

the catalytic activity [75]. Furthermore, His12 acts as an acceptor of the phosphate group, Asp258 is a 

proton donor for the substrate-leaving group, and His257 may participate in substrate binding, or may 

facilitate the breakdown of the phosphoenzyme complex [75]. It was also observed that the presence of 

His12 in the conserved “RHGXRXP” motif [74] revealed the enzymatic dephosphorylation property of 

PAcP through the formation of a phosphohistidine intermediate [16,74,79,80]. 

3.5. Biochemical Characterization of hPAcP Isoforms and Allosteric Regulation 

Several PAcP isozymes with different molecular weights or pIs have been reported [24,25,28,81–84]. 

Vihko [24] proposed that a minor species of purified PAcP protein from prostate tissue is the authentic 

cPAcP in prostate cells and it exhibits only partial cross-reactivity with Ab to sPAcP. Lin et al. [82] 

purified an acidic form of PAcP protein from PCa tissue and identified it as the cancer-associated form 

of the enzyme. This acidic form of PAcP is highly glycosylated, including sialylation, which 

contributes to the elevation of plasma PAcP in PCa patients.  

Analyses of PAcP protein isolated from human seminal fluid reveal two isoforms of the enzyme, 

PAcP-A and PAcP-B [71]. PAcP-A is the major isoenzyme and PAcP-B represents the minor species. 

Each isoform has multiple pI values of 5.05–5.35 vs. 5.05–5.12, substrate and inhibitor specificities, 

respectively. Both isoenzymes consist of two 50 kDa subunits. PAcP-B is found to have three 

components, designated as ,  and , with a molar ratio of 2:1:1. Interestingly, PAcP-A contains only 

 components. Thus, PAcP-A is a homodimer, containing two identical  subunits with high specific 

activity, whereas PAcP-B is a heterodimer (  or ) with low activity [71]. Lee et al. [71] suggested 

that the -subunit functions as the catalytic subunit of PAcP and the functions of the - and -subunits 

are still not known. It is biochemically significant to determine if the - and/or -subunit are regulatory 

subunits. In parallel, van Etten et al. [74] showed that purified PAcP protein from seminal fluid 

exhibits different cleavage forms at the C-terminal sequence. This finding raises the possibility that  

- and -subunits are partially cleaved products of -subunit.  

Importantly, enzymatic characterization by serial dilutions of purified PAcP protein reveals that the 

monomeric PAcP protein exhibits very low phosphatase activity and the dimerization of the mature 

PAcP protein allows PAcP to obtain the full catalytic activity [85]. This dimerization of the PAcP 

monomer exhibits the allosteric activation phenomenon [85]. This activation by dimerization is similar 
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to the requirement of oligomerization for receptor protein tyrosine kinase (RPTK) activation. Thus, 

oligomerization plays an important role in the activation of PAcP, a histidine-dependent tyrosine 

phosphatase [16]. Results from Porvari et al. [86] indicate that Trp106 and His112 residues of mature 

rPAcP are involved in regulating its dimerization and subsequent activation. Thus, hPAcP may serve 

as an interesting model in studying the molecular mechanism of PAcP dimerization relating to its 

biological function. 

4. Biological Function of Prostatic Acid Phosphatase 

4.1. Cellular PAcP as a Tumor Suppressor 

PAcP has a high level of expression in well-differentiated normal human prostate epithelial cells, 

which is in accordance with a slow growth rate [12,45]. Despite the elevated level of sPAcP in PCa 

patient sera, several studies clearly show that the cPAcP level is decreased in PCa archival specimens, 

compared with the adjacent non-cancerous cells [14,87–90]. Hence, it is proposed that prostate 

epithelia having a low level of cPAcP expression are at a high risk of carcinogenesis [87]. The notion 

is further supported by the observation that in human PCa cell lines, the cellular level of PAcP is 

inversely correlated with the proliferation rate [91]. In LNCaP and MDA PCa cell lines, upon passage, 

decreased cPAcP expression correlates with increased growth rates of LNCaP C-81 and MDA PCa2b 

AI cells [14,92–94]. Conversely, the expression of cPAcP by cDNA transfection into LNCaP C-81 and 

PC-3 cells diminishes their growth rates [15,89,95]. Furthermore, decreased endogenous PAcP 

expression by antisense cDNA or siRNA in LNCaP C-33 cells is associated with increased growth 

rates and tumorigenicity [14,15] (Figure 2). Further, a single intratumoral injection with the expression 

vector encoding wild type PAcP protein, but not the inactive mutant, suppresses the xenograft  

tumor development by androgen-independent LNCaP C-81 cells [96]. Supportively, in  

1 ,25-dihydroxyvitamin D3 (the active form of Vitamin D) treated androgen-independent (AI) LNCaP 

C-81 cells, cellular PAcP level was increased, which in-turn decreases PCa cell proliferation by 

selectively reducing tyrosine phosphorylation [97]. In parallel, stable PAcP cDNA-transfected 

subclonal cells had reduced tumor development when compared with control LNCaP C-81 cells [96]. 

These results collectively demonstrate that the active form of cPAcP has a significant tumor 

suppression effect, not only in in vitro cell cultures, but also in the mouse xenograft tumor model.  

4.2. sPAcP: Functions beyond Tumor Suppressor 

While sPAcP in seminal fluid is proposed to be involved in fertility, in part by affecting the motility 

of sperm [98], this role of sPAcP has been questioned [99,100]. Additionally, a sPAcP fragment 

forming the amyloid fibrils called semen-derived enhancer of viral infection (SEVI) may enhance HIV 

transmission [101,102]. The biological activity of sPAcP requires further investigation. 
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Figure 2. Association of cPAcP and ErbB-2 phosphorylation levels in androgen-sensitive 

(AS) LNCaP C-33 and androgen-independent (AI) LNCaP C-81 and PC-3 cells. 

Knockdown of endogenous PAcP in LNCaP C-33 cells leads to increase ErbB-2 tyrosine 

phosphorylation and tumorigenicity. Conversely, ectopic expression of cPAcP expression 

in AR-positive LNCaP C-81 and in PAcP-null PC-3 cells restores their androgen 

sensitivity, decrease the growth rate and tumorigenicity. 

 

5. Regulation of PAcP Expression 

5.1. Effects of Multi Factors on PAcP Expression  

Cell density has a significant effect on the expression of functional genes involved in cell growth 

regulation [103–105]. Pioneer studies revealed that human cPAcP protein level is correlated with the 

differentiation of the human prostate gland, which is associated with increased cell density and 

confluence [11,12]. In LNCaP human prostate carcinoma cells and canine prostate primary epithelia, 

cPAcP protein level is elevated with cell density increases [106–108] and PAcP mRNA levels are 

decreased in LNCaP cells [95,108]. It was thus hypothesized that in high density-cultured cells, the 

accumulated level of PAcP protein suppresses the transcription of PAcP gene by a feed-back 

mechanism, or decreases the half-life of its mRNA [109].  

The expression of PAcP has been thought to be directly regulated by androgens [110]. Recent 

studies showed that the PAcP gene promoter does not contain a functional androgen-responsive 

element, differing from PSA [110–112]. Further studies revealed that androgens can up-and downregulate 

PAcP mRNA, depending on cell densities [109]. Additionally, growth factors such as EGF and TGF-  

show negative regulatory effects on PAcP mRNA. On the other hand, TGF- 1, which inhibits normal 

prostatic epithelial cell growth [113,114], upregulates the expression of PAcP mRNA [115]. All these 

studies together support the notion that PAcP expression is regulated in an androgen-independent, 

manner [110–112]. Further studies are needed to elucidate the molecular mechanism of regulating 

PAcP expression. 
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Secretion of PAcP protein was observed when LNCaP cells were cultured in media devoid of steroids 

and growth factors [92,110,116,117]. Additionally, sPAcP secretion is mediated by a regulatory process 

including androgens, Rab27a, PI3K and PKC [118–121]. However, the elevated sPAcP protein level can 

be explained by the increased half-life period of sPAcP in slow-growing, high density cells. The 

molecular mechanisms responsible for the lower PAcP mRNA level in high density cells is not yet clear. 

5.2. Transcriptional Regulation of hPAcP Gene Expression 

Transcriptional regulation of gene expression is primarily achieved by modulation of its promoter 

activity. The formation of a transcription complex depends upon the specific association of  

multi-transcription factors which can lie either within close proximity of the promoter or at far 

distance. The expression of PAcP is regulated by the coordination of the cis-regulatory elements of its 

promoter [61,67,112,122] and transcription factors [123], and also epigenetic regulation [124].  

Sequence analyses reveal that the human PAcP gene promoter DNA, within 3 kb upstream of the 

coding region, lacks the canonical TATA box and the GC box, and that there are five putative 

androgen response elements (AREs) in this gene [61,67]. While the PSA promoter is upregulated by  

androgens [125–127], PAcP expression is not androgen-dependent and the AREs are not  

functional [113,114,122]. Utilizing two androgen receptor (AR)-negative, androgen-independent PCa 

cell lines, PC-3 and DU 145, the reporter gene assay showed that the PAcP promoter is highly  

active in those cells in the absence of AR cDNA co-transfection or the addition of androgens.  

These results clearly demonstrate that the promoter activity of the PAcP gene is regulated by an  

androgen-independent manner [110,111,122]. 

It has been demonstrated that the 1.4 kb promoter DNA sequence (from 1356 to +87) exerts an 

inverse correlation with the growth of LNCaP cells [63]. Using human PCa cell lines PC-3 and  

DU 145, PAcP-null cells, a region upstream of the PAcP gene from 2899 to +87 bp was linked to the 

reporter of the chloramphenicol acetyltransferase (CAT) gene. Analyses by sequential deletions of the 

sequence reveal that the region between 1258 and 779 contains a positive regulatory element(s) by 

enhancing the PAcP promoter activity in PC-3 and DU 145 human PCa cells, but not in non-prostate 

cells, such as WI-38 lung diploid cells, A-431 epidermoid carcinoma cells and HeLa cervix epitheloid 

carcinoma cells [112,122]. Further studies indicate that PAcP transcriptional activation requires at least 

200 bp of the 5'-flanking sequence [112]. The sequence further upstream, such as from 5' to 799 bp, 

does not show any significant effect on the transcriptional activity. It is still possible that this region  

of 779 to +87 contains some unknown sequences which are involved in the regulation of PAcP 

promoter activity, and the actual enhancer region might extend towards the transcription start site.  

Deletion analyses of the PAcP promoter indicate that the 1305/+87 bp proximal sequence exhibits 

the highest reporter gene activity in both human PCa cell lines LNCaP and PC-3. This activity is 

suppressed by two regions, including 2583 to 1305 and 2899 to 2583 fragments, indicating that 

these two fragments contain negative cis-regulatory elements. Furthermore, there is a cooperative 

effect between these two regions [112]. Interestingly, the second suppressor ( 2899 to 2583) is more 

active in PC-3 cells than in LNCaP cells, and has a position-independent activity. This fragment also 

exhibits orientation-independent inhibitory activity in both PC-3 and HeLa cells. Therefore, the high 
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level of the cell-specific expression of the PAcP gene is apparently governed by the positive element, 

but not by the negative element [122].  

Sequence analyses on the PAcP positive regulatory fragment from 1356 to 779 show that there is 

no consensus binding site for ubiquitous transcription factors, except for AP1 and CREB proteins. 

However, the putative AP1 binding sequence (PSD sequence) in the cis-active region of the PAcP 

promoter does not interact with the AP1 protein, nor can its consensus oligonucleotides compete with 

the PSD oligonucleotide in the DNA-protein complex formation [123]. Additionally, the putative 

CREB-binding site is not within the protein interaction domain in footprinting assays [123]. The  

577 bp fragment ( 1356 to 779) contains a non-consensus nuclear factor B (NF- B)-binding site, 

which is required for NF- B up-regulation of PAcP promoter activity in PCa cells. In addition, in  

PC-3 cells, the TNF-  could stimulate the transcriptional activity of p1356 about 20-fold higher than 

p779. However, TNF-  fails to have the same effect in HeLa cells [123]. Different NF- B dimers, 

homo- or hetero-dimeric complexes of various subunits, can bind to the known B sites bearing the 

consensus sequence GGGRNNYYCC or GGRRNNYCCC [128]. Nevertheless, gel shift experiments 

and mutation analyses reveal that AGGTGT ( 1254 to 1249), in the promoter of human PAcP gene, 

is the core sequence for NF- B-binding and activation. It is a novel binding sequence for NF- B 

located inside the cis-active enhancer element of the PAcP promoter [123] (Figure 3). Interestingly, 

this sequence also appears in several genes with high levels of expression in normal prostate epithelial 

cells including PSA, Nkx-3.1, and MIC-1 [123] and its biological significance requires  

further investigation. 

Figure 3. The schematic representation of the PAcP gene promoter. The transcription 

starts at +1 and the grey box indicates the translational region for PAcP protein  

(starts at +50 bp). The yellow boxes indicate the Alu repeat. The novel NF- B binding site 

is identified in the positive regulatory domain (Green box; at 1245 bp upstream). The 

computer analysis of the sequence shows at least nine additional putative transcriptional 

binding sites. 

 

5.3. Epigenetic Regulation of PAcP  

Like other solid tumors, PCa is also driven by epigenetic changes such as DNA methylation and 

histone modifications in tumor suppressor genes. Better understanding of epigenetic changes of tumor 

suppressor genes and the treatment-induced restoration of tumor suppression gene function have made 

them attractive targets for prostate cancer treatment [129,130].  
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Several lines of evidence demonstrated that cPAcP functions as a negative growth regulator of 

prostate epithelia [82,90,96,131], i.e., cPAcP protein inversely correlates with the growth rate of PCa 

cell lines [2,5,45,90,96]. Western blot analyses in LNCaP C-81 human PCa cells shows the restoration 

of cPAcP upon HDAC inhibitor treatments including sodium butyrate (Figure 4), trichostatin A (TSA), 

and valproic acid (VPA) [124]. Further, in NaB- and VPA-treated cells, increased cPAcP protein 

concurs with decreased ErbB-2 Tyr1221/2 and Tyr1248 phosphorylation (Figure 4) [124]. This 

dephosphorylation function of cPAcP is at least in part due to its intrinsic protein tyrosine phosphatase 

activity [95,131,132]. In addition, the acetylation of histones H3 and H4 were greatly upregulated by 

VPA treatment in LNCaP C-81 cells [124]. Interestingly, HDAC inhibitor-treated PCa cells also 

increase their androgen responsiveness of growth stimulation [124]. Collectively, these data indicate 

that cPAcP is involved in HDAC inhibitor-induced growth suppression and functions as a tumor 

suppressor gene in regulating PCa progression and metastasis [124]. Further understanding of the 

restoration of this tumor-suppressor protein, cPAcP, will lead to a new avenue for treating patients 

with advanced CR PCa. 

Figure 4. Effects of NaB on cPAcP protein expression and ErbB-2 tyrosyl 

phosphorylation. LNCaP C-81 cells were plated in different cell densities (0.3, 0.5 and  

1 × 10
6
 cells/T25) in regular culture conditions for 2 days and then treated with 1 mM NaB 

for 48 h. The cells were harvested and the total protein was subjected to western blot 

analyses. NaB effects on cPAcP protein expression and ErbB-2 phosphorylation at 

Tyr1221/2 levels were shown. -actin was detected as a loading control. The data shown is 

a representative from three sets of independent experiments. 

 

6. ErbB-2/HER-2/neu (ErbB-2) Signaling and Androgen Sensitivity Regulated by cPAcP 

ErbB-2 protein, one of the most studied type-1 receptor tyrosine kinases in human cancers, has been 

found to be elevated in a small subpopulation of advanced PCa patients under androgen deprivation 

therapy (ADT). Although there is not a known ligand to activate ErbB-2, autophosphorylation of 

ErbB-2 at different tyrosine residues has been shown to transmit diverse biological responses.  

Several lines of evidence, including studies on xenograft animal models, support the notion that 

elevated ErbB-2 specific activity plays a critical role in CR PCa progression [133–136]. In parallel, it 

is shown that the overall tyrosyl phosphorylation level of ErbB-2 protein is inversely correlated with 

cPAcP activity [13,15,92,131]. Ectopic expression of cPAcP by cDNA transfection restores androgen 
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sensitivity of AR-positive, AI PCa cells. Conversely, knockdown of cPAcP expression by siRNA in 

AS PCa cells leads to increased cell growth in steroid-reduced conditions with a concurrent increase in 

tyrosine phosphorylation of ErbB-2 [14,15]. Importantly, the cPAcP-knockdown cells develop 

xenograft tumors in female mice in which the circulating testosterone level is similar to that in 

castrated male mice [15]. In PAcP knock-out mice, the prostate develops carcinomas spontaneously 

and the protein tyrosine phosphorylation activity is increased [137,138]. The increased p-Tyr level of 

ErbB-2, at least in part due to decreased cPAcP activity, is associated with decreased androgen 

responsiveness of PCa cells [89,92,134]. This is similar to the observation in advanced CR prostate 

carcinomas in which cPAcP mRNA and protein levels are diminished [89,139,140]. Thus, cPAcP is 

involved in regulating the androgen sensitivity of PCa cells. 

cPAcP can dephosphorylate human ErbB-2 at different sites. In AI human LNCaP C-81 and MDA 

PCa2b AI PCa cells, the phosphorylation levels of Tyr1221/2 and Tyr1248 are elevated [15]. 

Conversely, the ectopic expression of WT cPAcP in LNCaP C-81 cells by cDNA transfection 

decreases the phosphorylation levels of Tyr1221/2 and Tyr1248 in a dose-dependent manner and the 

cells restore the androgen sensitivity [15,89,134]. Apparently, Tyr1221/2 and/or Tyr1248 of ErbB-2 

can be regulated by cPAcP and are involved in regulating DHT sensitivity [13]. Due to the clinical 

importance of androgen sensitivity in PCa, further studies are needed to determine the specific site in 

this mode of regulation. 

Overexpression of ErbB-2 also enhances AR activity by activating ERK/MAPK, a  

non-steroid-dependent AR activation pathway [133,141]. This AR activation leads to the emergence of 

AI PCa cells that can survive and proliferate in an androgen-ablated environment, leading to the 

recurrence of PCa [142,143]. Supportively, ERK1/2 are activated in advanced prostate carcinomas and 

AI PCa cells in which cPAcP is decreased or null, suggesting that decreased cPAcP results in activated 

ErbB-2 and down-stream ERK1/2 signaling for CR PCa progression [135,144,145]. In parallel, in the 

face of low or null PAcP, both ErbB-2 and Akt are activated, resulting in increased cell  

proliferation [15]. Subsequently, Akt can phosphorylate AR at Ser213 and Ser791 sites and abrogation 

of Akt signaling also abolishes the AI survival and growth of these cells [146]. Thus, it is possible that 

cPAcP dephosphorylates PI3K and/or PI3P and thus blocks Akt activation. Additionally, 

phosphorylation of p52Shc at Tyr317 mediates androgen-stimulated PCa proliferation [147], the 

ligand-activated AR interacts with active STAT5 and enhances its nuclear translocation, and STAT5 

can, in turn, increase the nuclear translocation of AR in these PCa cells [148]. Conversely, in AI 

PAcP-null PCa cells, ectopic expression of PAcP results in decreased pTyr1221/2 of ErbB-2 and 

blocks its downstream signaling, which leads to cell growth suppression through the inactivation of 

p52Shc, ERK1/2, Akt, Src, STAT-3, and STAT-5 [15]. Together, these results provide an explanation 

for the clinical phenomenon that in PCa cells, the decrease of cPAcP expression in advanced PCa cells 

contributes to the activation of ErbB-2, primarily by phosphorylation regulation. This leads to 

ERK/MAPK, Akt, STAT-3 and STAT-5 activation and advanced PCa cell survival, proliferation and 

PSA production under androgen-ablated conditions (Figure 5). Thus, the interaction between cPAcP 

and ErbB-2 regulates the downstream signaling by ErbB-2 and is involved in controlling the basal as 

well as the androgen-stimulated proliferation of human PCa cells [15,134].  
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Figure 5. Schematic representation of ErbB-2 signaling and androgen sensitivity regulated 

by cPAcP in prostate cancer cells. The solid red arrow indicates the classical ligand 

dependent activation of androgen receptor (AR) pathway. Unbound AR resides in the 

cytosol in association with heat shock proteins (hsps). Androgen (DHT) enters into the 

cytoplasm and binds to the AR by displacing associated hsps, which allows the AR to enter 

into the nucleus, where it dimerizes, recruits various co-regulatory proteins and binds to the 

androgen response element (ARE), leading to the transcriptional regulation of the target 

gene. Solid black arrows indicate one of the major cPAcP-regulated pathways in prostate 

cancer cells with clinical significance. Progression of androgen-sensitive PCa cells towards 

androgen independence is accompanied by an early decrease/loss of cPAcP expression in 

PCa cells, results in hyperphosphorylation of HER-2 at tyrosine residues (1221/2 and/or 

1248), leading to androgen-independent cell proliferation. Activated HER-2 can transduce 

its signals via p52Shc (blocked by dominant-negative (DN) HER-2 cDNA transfection or 

an HER-2 inhibitor, AG879) to activate the downstream ERK/MAPK pathway (blocked by 

p52Shc Y317F mutant cDNA transfection or an MEK inhibitor, PD 98059 and U0126) 

through Ras/Raf mediation. These events could also lead to AR phosphorylation and 

activation, resulting in an increase in androgen-independent cell proliferation. Activated 

HER-2, via Akt, may also phosphorylate AR. Alternatively, the loss of cPAcP expression 

results in the accumulation of PI3P, which may lead to activation of the Akt pathway. 

 

7. PAcP as a Therapeutic Agent  

With the limited efficacy of conventional radiotherapy and chemotherapy and with significant 

morbidities of surgical procedures in advanced prostate cancer, other approaches for treating clinical 

PCa are under active consideration. Recent research supports the notion that immunotherapy is a 

potential therapeutic strategy for prostate cancer as this epithelial malignancy has special features, 



Int. J. Mol. Sci. 2013, 14 10452 

 

including: The slow growth rate, the ability to induce auto antibodies, the expression of tissue-specific 

antigens, and susceptibility to antitumor immune response [149–154].  

Studies with experimental animals have indicated that cPAcP has potential for therapeutic effect 

against PCa. A single intratumoral injection of a vector encoding the wild type PAcP protein, but not 

an inactive mutant, results in suppression of the growth and progression of xenograft prostate  

tumors [96]. Similarly, the injection of DNA vaccine encoding PAcP protein elicits antigen-specific 

CD8 T cells in rodents [155,156]. Thus, the restoration of cPAcP expression in PCa cells may provide 

a new avenue for treating CR PCa in which the expression of cPAcP is decreased.  

Using a patient’s own immune cells, immunotherapeutic vaccines induce an antitumor  

response [157] by targeting tumor-associated antigens (TAAs) or by disrupting molecular pathways 

that promote tumor growth [158,159]. Despite the low efficacy with PSA as the immunogen tested 

initially, PAcP exhibits unique immune reactivity, with tissue-specific expression, and thus serves as a 

useful antigen in developing immune therapy towards PCa. Supportively, the naturally occurring 

PAcP-specific T-helper cells are found in about 11% of patients with PCa [160]. In parallel, the 

dendritic cells loaded with an engineered antigen-cytokine fusion protein consisting of PAcP and  

GM-CSF are capable of inducing a potent cellular immune response, in vivo, to rodent tissues and 

tumors that express PAcP [161].  

Based on the above described preclinical observations, a dendritic cell product consisting of 

autologous dendritic cells loaded with the human PAcP-GM-CSF fusion protein has been  

developed [161,162]. Sipuleucel-T is an autologous active cellular immunotherapy product composed 

of autologous peripheral blood mononuclear cells (PBMCs), including antigen-presenting cells (APCs) 

with a recombinant fusion protein PA2024 (full length PAcP) linked to an adjuvant (granulocyte 

macrophage colony-stimulating factor). The autologous immunotherapeutic product infused to the 

patients is thought to activate PAcP specific CD4+ and CD8+ T cells, which mediate the antitumor 

response in prostate cancer patients [163].  

An earlier multiple phase I/II trial of Sipuleucel-T in thirty one metastatic and non-metastatic PCa 

patients demonstrated a 100% T-cell proliferation response to the antigen PA2024 and 38% to native 

PAcP with PSA declines of 25% in six patients. The median time to disease progression was about  

29 weeks [161]. In an earlier phase II study, Sipuleucel-T treatment resulted in significant 

development of antigen-specific cellular levels in all patients from week 4 throughout the follow-up 

period. PSA declines of about 25% in two patients, and a negligible amount in one patient, were 

observed, with median time to disease progression of about 4 months [164]. The later phase II study 

also shows survival benefit with Sipuleucel-T [165,166]. The larger multi-institutional phase III 

(IMPACT or D9902B) study with 512 metastatic CR PCa revealed 4.1 months of additional survival 

benefit for Sipuleucel-T treated patients when compared with placebo treated patients [162]. Further, 

the meta-analysis from all three phase III trials (D9901, D9902A and IMPACT) showed Sipuleucel-T 

treated groups had higher number of pain-free patients [167], with T-cell activation and enhanced 

cytokine production observed in PA2024 cultures but not in GM-CSF cultures [168]. Importantly, 

another meta-analysis revealed that the median survival difference for African Americans was  

30.7 months when compared to 4.1 months in the overall cohort, suggesting that African American 

patients may benefit more from Sipuleucel-T [169]. As the sample size is small (5.8%) from the total 

population [169], further investigation is needed. Interestingly, a study on comparative analysis of the 
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toxicity and survival benefit revealed Sipuleucel-T has relatively low toxicity and higher median 

survival benefit when compared with other FDA approved PCa treatment agents [170]. In addition,  

a recent study suggests that Sipuleucel-T treatment shows the most benefit for the patients with less 

advanced diseases [171].  

8. Conclusions 

Circulating PAcP activity has a long history of serving as a surrogate marker for diagnosing PCa as 

well as for evaluating the efficacy of ADT for advanced PCa. Several lines of evidence collectively 

support the importance of cPAcP enzyme in PCa, particularly during castration-resistant progression, 

and its role in regulating the growth of prostate epithelial cells through its neutral PTP activity by 

dephosphorylating p-Tyr of ErbB-2. The theoretical and experimental approaches based on peptide 

studies confirm that PAP could dephosphorylate ErbB-2 protein. The structural analyses and mutant 

experiments further identify the active site residues, His12 and Asp258, responsible for the 

dephosphorylation of ErbB-2 protein. In addition, the generation of PAcP knockout cell lines and 

PAcP “knock-out mouse” models have supported the notion that disrupting the expression of PAcP 

leads to tumor development in prostate tissue, which suggests cPAcP signaling as a potential 

therapeutic target for advanced PCa. Therefore, due to the potential importance of the PAcP gene as a 

novel tumor suppressor in prostate cancer, and the promising clinical trial results from the cPAcP 

immunotherapy, further investigation on the biology of cPAcP expression may provide novel valuable 

insights into its inhibitory role in PCa for potential therapeutic applications.  
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