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RESEARCH Open Access

Nicotine, IFN-γ and retinoic acid mediated
induction of MUC4 in pancreatic cancer requires
E2F1 and STAT-1 transcription factors and utilize
different signaling cascades
Sateesh Kunigal1, Moorthy P Ponnusamy2, Navneet Momi2, Surinder K Batra2 and Srikumar P Chellappan1*

Abstract

Background: The membrane-bound mucins are thought to play an important biological role in cell–cell and cell–matrix

interactions, in cell signaling and in modulating biological properties of cancer cell. MUC4, a transmembrane mucin is

overexpressed in pancreatic tumors, while remaining undetectable in the normal pancreas, thus indicating a potential

role in pancreatic cancer pathogenesis. The molecular mechanisms involved in the regulation of MUC4 gene are not yet

fully understood. Smoking is strongly correlated with pancreatic cancer and in the present study; we elucidate the

molecular mechanisms by which nicotine as well as agents like retinoic acid (RA) and interferon-γ (IFN-γ) induce the

expression of MUC4 in pancreatic cancer cell lines CD18, CAPAN2, AsPC1 and BxPC3.

Results: Chromatin immunoprecipitation assays and real-time PCR showed that transcription factors E2F1 and STAT1 can

positively regulate MUC4 expression at the transcriptional level. IFN-γ and RA could collaborate with nicotine in elevating

the expression of MUC4, utilizing E2F1 and STAT1 transcription factors. Depletion of STAT1 or E2F1 abrogated the

induction of MUC4; nicotine-mediated induction of MUC4 appeared to require α7-nicotinic acetylcholine receptor

subunit. Further, Src and ERK family kinases also mediated the induction of MUC4, since inhibiting these signaling

molecules prevented the induction of MUC4. MUC4 was also found to be necessary for the nicotine-mediated invasion

of pancreatic cancer cells, suggesting that induction of MUC4 by nicotine and other agents might contribute to the

genesis and progression of pancreatic cancer.

Conclusions: Our studies show that agents that can promote the growth and invasion of pancreatic cancer cells induce

the MUC4 gene through multiple pathways and this induction requires the transcriptional activity of E2F1 and STAT1.

Further, the Src as well as ERK signaling pathways appear to be involved in the induction of this gene. It appears that

targeting these signaling pathways might inhibit the expression of MUC4 and prevent the proliferation and invasion of

pancreatic cancer cells.
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Background

Smoking is strongly correlated with cancers of the lung,

pancreas, and prostate [1-3]. In relation to pancreatic

pathology, smoking has been described as an important

risk factor for chronic pancreatitis and remains the only

widely acknowledged environmental risk factor for pan-

creatic cancer [4]. The nature of association between

smoking and pancreatic cancer is, however, not yet well

understood, and it remains to be elucidated whether

tobacco smoke is a true etiologic factor or it helps aggra-

vate the disease in presence of other causal risk factors

[5]. Such information will provide an insight into the

molecular mechanisms by which smoking accelerates

the pancreatic inflammatory process and/or contributes

to the pancreatic cancer development. Cigarette smoke

contains a variety of chemicals, many of which are well-

established carcinogens; tobacco specific nitrosamines,

which are structurally related to nicotine, fall under this

category [6]. Moreover, studies have shown that nico-

tine, the major addictive component of the tobacco

smoke, induces widespread changes in the pancreatic

exocrine function. Nicotine has been found to promote cell

proliferation, angiogenesis as well as tumor metastasis

[2,7,8], suggesting that it has the potential to act as a tumor

promoter. Further, it has been reported that nicotine can

prevent apoptosis induced by various chemotherapeutic

agents as well as radiation, by activating various survival

pathways in cancer cells [9].

MUC4, a member of the membrane-bound mucin gene

family, is a high molecular weight O-glycoprotein produced

by secretory epithelial cells for the lubrication and protec-

tion of ducts and lumen [10]. MUC4 is aberrantly expressed

in pancreatic adenocarcinoma and tumor cell lines, while

remaining undetectable in the normal pancreas or chronic

pancreatitis [11]. Furthermore, a progressive increase in

MUC4 expression has been observed in precancerous pan-

creatic intraepithelial neoplasias (PanINs) [12], indicating

its role in disease development. Functional studies on

MUC4 have provided substantial evidence for its role in the

promotion of pancreatic cancer cell growth and metastasis

[13]. Recent studies have shown that knock-down of MUC4

expression reduced pancreatic tumor cell growth and me-

tastasis. Further the studies on Muc4 shows that it influ-

ences tumor growth via the suppression of apoptosis and

potentiate metastasis via multiple mechanisms. It has been

shown that overexpression of the cell-surface Muc4/SMC

disrupts integrin-mediated cell adhesions as well as the

homotypic cell-cell interactions, causing the dissociation of

tumor cells in culture [14].The expression of MUC4 can be

regulated at both transcriptional and post-transcriptional

levels [15,16]. There are reports showing that CDX, HNF,

FOXA, GATA and HNF1α transcription factors regulate

MUC4 transcription through their binding sites present on

theMUC4 promoter [17].

Given the presence of various regulatory elements in the

promoter of MUC4, it is not surprising that it responds to

a variety of extracellular signaling molecules. Indeed,

MUC4 is induced by IFN-γ as well as retinoic acid (RA)

[18]. IFN-γ is a cytokine that is critical for innate and adap-

tive immunity against viral and intracellular bacterial infec-

tions. It is secreted by activated T lymphocytes and natural

killer cells and regulates a variety of physiological responses

[19] . The binding of IFN-γ to its cell surface receptor acti-

vates the receptor-associated tyrosine kinases, resulting in

the activation of various STAT transcription factors and ex-

pression of their target genes [20]. Findings of Andrianifa-

hanana et al., [21] suggest that IFN-γ can induce the

expression of MUC4 through STAT1. RA is present in the

plasma [22] and exerts its effects via the nuclear RA recep-

tors and retinoic X receptors. Typically, heterodynes of

RAR/RXR act as transcription factors to promote the tran-

scription of RA-induced genes [23,24]. The multifunctional

agent retinoic acid (RA) and its derivatives have been used

to treat many tumor types. The antitumor effects of retin-

oid are in part due to their ability to inhibit proliferation of

cancer cells. However, smokers receiving dietary vitamin A

and beta carotene in chemoprevention studies had a higher

incidence of cancer in particular pancreatic and lung can-

cer. These studies imply that lower doses of retinoids may

have tumor-promoting activity [25]. Based on these reports

we attempted to check the effect of RA on E2F1 and Stat1

transcription factor and in turn the expression of MUC4.

Choudhury et al., [26] have shown that RA treatment cul-

minated the TGF-β-2-mediated up regulation of MUC4 ex-

pression. Interestingly, IFN-γ and RA are known for their

ability to evoke a synergistic effect, which leads to an

enhanced induction of target gene(s) and an exacerbation

of the associated biological response(s) [18]. The impact of

this synergism has been observed in a wide range of malig-

nant tumor cell types, including pancreatic tumor cells

[26].

In the present study we explored the molecular

mechanisms governing MUC4 expression in pancreatic

cancer cell lines in response to stimulation with different

agents that are known to affect the biology of pancreatic

cancer. Our studies show that E2F1 and STAT1 mediate

the expression of MUC4 in response to various signals

and that the depletion of MUC4 prevents the prolifera-

tion and invasion of these cells in response to nicotine

stimulation. These findings also reveal that different

downstream signaling events mediate the induction of

MUC4 in response to these agents.

Results

IFN-γ and RA co-operate with nicotine to induce the

MUC4 promoter

Smoking is a well-known risk factor for pancreatic cancer,

while MUC4 is aberrantly over expressed in pancreatic
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cancer and contributes to its pathogenesis [27]. Recently,

nicotine was shown to induce mucin genes in cancer

[28,29] and that many endogenous molecules like Retinoic

Acid (RA) [26] and IFN-γ [18] can induce expression of

MUC4 in CD18/HPAF pancreatic cancer cells. Earlier

studies had shown that nicotine stimulation of non-small

cell lung cancer cells leads to an induction of E2F1 binding

to promoters followed by their transcriptional activation

[7,30]. An examination of the MUC4 promoter showed

the presence of four E2F binding sites at positions (-346 to

- 362, -349 to - 365, -409 to - 425 and -410 to - 426).

Given that nicotine stimulates the binding of E2F1 to a

variety of promoters, and since STAT1 is known to induce

MUC4, we decided to examine whether these factors me-

diate the induction of MUC4 in pancreatic cancer cells.

To examine whether E2F1 and STAT1 can bind to the

MUC4 promoter and whether such an association is

induced by nicotine IFN-γ and RA, a series of chromatin

immunoprecipitation experiments were carried out on

four pancreatic cancer cell lines, namely CD-18/HPAF,

ASPC-1, CAPAN-2 and SW1990. CD18 is a poorly differ-

entiated cell line derived from HPAF has mutated K-Ras

gene and deletions of the p53 gene; Rb-1 gene is wild type.

AsPC1 is a poorly differentiated human pancreatic adeno-

carcinoma cell line has the mutated K-Ras, p53 and p16

genes and deletion of BRCA2 gene and wild type Rb-1.

SW1990 is a well differentiated human pancreatic adeno-

carcinoma with K-ras mutation. CAPAN2, a moderately

differentiated human pancreatic adenocarcinoma cell line

has the mutated K-Ras gene and deletions of the p53 gene

[31].

PC cells were rendered quiescent by serum starvation

and stimulated with nicotine, IFN-γ alone, nicotine in

combination with IFN-γ, RA alone and nicotine in com-

bination with RA, respectively for 48 h. ChIP assay

lysates were prepared using our published protocols

[29,32] and immunoprecipitated with antibodies against

E2F1, STAT1 as well as with an irrelevant antibody as

control. It was found that there were minimal amounts

of E2F1 or STAT1 associated with the MUC4 promoter

in quiescent CD18/HPAF cells. Stimulation with nico-

tine, IFN-γ or RA induced the binding of both E2F1 and

STAT1 to the promoter (Figure 1A-D). When the cells

were stimulated with a combination of nicotine with

IFN-γ, there appeared to be a synergistic binding of

the two factors to the promoter; in contrast, stimula-

tion with nicotine and RA together appeared to have

an added effect. There was no binding observed in

lanes immunoprecipitated with the control antibody.

Similar results were also obtained in other three cell

lines (Figure 1A-D), but there was no noticeable co-

operative effect of these agents on the association of

E2F1; there appeared to be an added effect in the

case of STAT1 binding in this case.

Transcriptional activation of genes is generally asso-

ciated with acetylation of histones in their promoter re-

gion [33]. Both E2F1 and STAT1 mediated induction of

transcription is known to correlate with enhanced acetyl-

ation of histones. To examine whether such an event

occurs in the case of MUC4 gene, the ChIP assay lysates

were immunoprecipitated with an antibody to acetylated

lysines on histone H3. As shown in Figure 1A, there was

only low amount of acetylated lysines in the quiescent

cells. Stimulation with nicotine, IFN-γ or RA led to a

marked increase in the acetylation of lysines on the

MUC4 promoter, suggesting that the promoter is tran-

scriptionally active. Similar expression of MUC4 at pro-

tein level was confirmed by western blotting in CD18

and SW1990 cell lines (data not shown). Attempts were

made to assess whether an enhanced binding of E2F1

and STAT1 correlated with elevated expression of

MUC4. Real-time PCR assays showed that nicotine

induced the expression of MUC4 in both CD18/HPAF

that produces relatively high levels of MUC4 [26] and

also in ASPC-1, CAPAN-2 and SW1990. As shown in

Figure 2A-D, nicotine increased MUC4 expression more

than 2-fold in CD18/HPAF cells and nearly 2-fold in

ASPC-1, CAPAN-2 and SW1990 cells compared to qui-

escent control cells. Further, we observed that IFN-γ and

RA increased the expression of MUC4 in CD-18/HPAF,

ASPC-1, CAPAN-2 and SW1990 cells (Figure 2A). Inter-

estingly, combination of nicotine with IFN-γ or RA led

to an addictive induction of the promoter, correlating

with the enhanced binding of E2F1 and STAT1 seen in

ChIP assays. Taken together, these results suggest that

STAT1 and E2F1 mediate the induction of MUC4 in re-

sponse to nicotine, IFN-γ and RA.

E2F1 and STAT1 are necessary for nicotine, IFN-γ and RA-

mediated MUC4 induction

Since we found that stimulation with nicotine, IFN-γ or

RA led to an increased recruitment of E2F1 and STAT1,

attempts were made to see whether these transcription

factors are necessary for the induction of this gene. To

examine this possibility, real-time PCR experiments were

conducted on cells transfected with a control siRNA or

siRNA to E2F1 or STAT1. Essentially, cells were trans-

fected with the siRNAs for 24 hours and allowed to re-

cover for 18 h. They were rendered quiescent by serum

starvation and subsequently stimulated with nicotine,

IFN-γ or RA for 24 h. RNA was prepared and real-time

PCR was conducted using standard protocols. The effi-

ciency of siRNA transfection was supported by real-time

PCR analysis for both E2F1 and Stat1 (Figure 3D). As

shown in the Figures 3A, B and C, it was found that de-

pletion of E2F1 or STAT1 significantly reduced the nico-

tine-mediated induction of MUC4 in CD18/HPAF cells

at the transcriptional level. The results were more
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obvious in IFN-γ stimulation, where the induction was

completely inhibited when these factors were depleted

(Figure 3B). Similarly, RA stimulation required both these

factors in CD18/HPAF cells (Figure 3C). Given that E2F1

siRNA and STAT1 siRNA reduces the expression of these

transcription factors as expected (Figure 3D), these results

in combination with the ChIP assay results, strongly sug-

gest that E2F1 and STAT1 play a major role in mediating

the induction of the MUC4 gene in pancreatic cancer cells

in response to various upstream signals.

Nicotine induces MUC4 in a receptor-dependent fashion

Nicotine exerts its biological effects through nicotinic

acetylcholine receptors (nAChRs) that are widely expressed

in neurons and at neuromuscular junctions; they are

present on a wide array of non-neuronal cells as well. We

next examined whether nicotine-mediated recruitment of

E2F1 and STAT1 on the MUC4 promoter required nAChR

function. Towards this purpose, quiescent CD18/HPAF

cells were stimulated with nicotine in the presence of hex-

amethonium bromide or α-bungaratoxin, which are

nAChR antagonists; atropine, which is an antagonist of

muscarinic acetylcholine receptors, was used as a control.

ChIP assay results suggests that α-bungarotoxin sensitive

α7 nAChR subunit plays an important role in mediating

nicotine-induced recruitment of E2F1 and STAT1 to the

MUC4 promoter, since cells treated with this agent showed

lower amounts of E2F1 and STAT1 on the MUC4 pro-

moter (Figure 3E). On the other hand, cells treated with at-

ropine showed no reduction in the recruitment of these

factors, suggesting that muscarinic type acetylcholine

receptors play no role in the recruitment of these regula-

tory factors.

Experiments were conducted to assess whether the tran-

scriptional induction of MUC4 correlated with the

enhanced binding of these factors and whether nAChR

antagonists had a similar effect. Real-time PCR experiments

were conducted on CD18/HPAF cells treated with hexam-

ethonium bromide, α-BT or atropine and stimulated with

nicotine. The induction of MUC4 was assessed by real-time

PCR. As shown in Figure 3F, stimulation with nicotine

induced MUC4 promoter in CD18 cells; the stimulation

was abrogated in the presence of hexamethonium bromide

and α-BT, but not atropine. These results suggest that

nAChRs, especially the α7 subunit, plays a major role in

nicotine-mediated stimulation of the MUC4 gene.

Figure 1 IFN-γ and (RA) co-operate with nicotine to induce the MUC4 promoter. Chromatin IP assays showing the occupancy of E2F1 and

STAT1 on the MUC4 promoter in 4 different pancreatic cancer lines. CD18/HPAF-SF (A), ASPC-1 (B), SW1990 (C) and CAPAN2 (D). Cells were

treated with nicotine, IFN-γ, IFN-γ in combination with nicotine, RA and RA in combination with nicotine showed increased E2F1 and STAT1

binding on the MUC4 promoter. Sonicated genomic DNA is used for input. C-Fos was used as a negative control. Nonspecific IgG was used as a

negative control in pull-down assays.
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Differential contribution of Akt, Src and ERK signaling in

regulating MUC4 expression

Experiments were conducted to understand the down-

stream signaling events that mediate the induction of

MUC4 in response to nicotine, IFN-γ and RA stimulation.

We focused on Akt, Src and Erk pathways, since they are

known to mediate the effects of nicotine in different sys-

tems. In this initial set of experiments, ChIP assays were

conducted on quiescent CD18 cells or those stimulated

with nicotine, IFN-γ or RA alone, or in the presence of

LY249002, a PI3 kinase inhibitor, or PD98059, a MEK in-

hibitor or PP2, a Src kinase inhibitor. It was found that

nicotine-mediated recruitment of E2F1 and STAT1

required signaling through all the three pathways tested

(Figure 4A); Src seemed especially vital for the enhanced

association of STAT1 with the promoter. In contrast, IFN-

γ stimulation did not require PI3 kinase/Akt pathway to

recruit E2F1 or STAT1, but ERK and Src seemed to con-

tribute. In the case of RA stimulation, the contribution of

Src seemed minimal, while Akt and ERK pathways

appeared to be important. The signaling requirements

were similar in both the cell lines tested.

Real-time PCR assays were conducted to assess

whether the requirement of E2F1 and STAT1 observed

with the inhibitors correlated with the expression of the

MUC4 gene as well. As shown in Figure 4B, it was found

that the expression pattern paralleled the binding of

E2F1 and STAT1; thus, nicotine stimulation required

mainly ERK and Src pathways, while IFN-γ required the

contribution of all the three pathways to a certain extent.

One point of variation was the contribution of the PI3K/

Akt pathway, which had minimal impact on the recruit-

ment of E2F1 and STAT1, but had significant impact on

gene expression. In the case of RA stimulation, the main

contributors were PI3 Kinase/Akt pathway as well as

ERK pathway, with Src playing a minimal role. These

studies show that MUC4 gene can respond to various

signaling pathways induced by different upstream

molecules.

Real-time PCR experiments were also conducted to as-

sess whether the same pathways are operational when

two of the stimulatory agents are used in combination.

As shown in Figure 4C-D the PI3/Akt, ERK as well as

Src seemed to be involved in the induction of the MUC4

promoter when nicotine and IFN-γ was used in combin-

ation. Similarly, Src seemed to have only a minimal effect

when RA was combined with nicotine. These results

show that the major mediators of MUC4 induction are

Figure 2 IFN-γ and (RA) co-operate with nicotine to induce the MUC4 promoter. Real time-PCR showing the expression of MUC4 in CD18/

HPAF (A), ASPC-1 (B), SW1990 (C) and CAPAN-2 (D) treated with nicotine, IFN-γ, IFN-γ in combination with nicotine, RA and RA in combination

with nicotine. The upregulation of MUC4 upon stimulation was significant in pancreatic cancer cells treated with nicotine, IFN-γ, IFN-γ, RA or

combinations (*p≤ 0.01, **p≤ 0.03). The results shown are the average of three separate experiments.
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PI3K/Akt, ERK and Src kinases, depending on the up-

stream activation agents.

Involvement of JAK-STAT signaling in upregulation of

MUC4

Expression of MUC4 at protein level increased at 24 h in

Nicotine and after 4 h in IFN-γ and RA treatment as

shown by SDS-Agarose gel electrophoresis (Figure 5A).

Further, we found that the expression of MUC4 was

more than 8 fold in IFN-γ treated cells compared to the

control cells and more than 3 fold in RA treated cells.

Furthermore the expression of MUC4 in nicotine and

IFN-γ treated cells was nearly one and half fold more

than IFN-γ alone and nearly 0.5 fold more in nicotine

and retinoic acid than retinoic acid alone treated CD18

cells (Figure 5B). A time dependent treatment with nico-

tine, IFN-γ and Retinoic acid showed a gradual increase

in the phosphorylation of Tyk2 and Stat1 in the HPAF/

CD18-SF cells (Figure 5C). 1 μM nicotine showed a

slight increase in the Tyk2 and Stat1 phosphorylation in

CD18 cells at 10-15 min and 30-45 minutes respectively

(Figure 5D), whereas, no change was observed in the

total Tyk2 and Stat1 expression. We also checked for the

different Jak kinase family members but we did not see

any change in the phosphorylation status of other family

members (data not shown). These results suggest that

Figure 3 E2F1 and STAT1 are necessary for MUC4 induction by nicotine, IFNγ and RA. Real time-PCR showing the expression of MUC4 in

CD18/HPAF, ASPC-1, CAPAN-2 and SW1990 pancreatic cancer cells where E2F1 and STAT1 are knocked down using respective siRNAs and

subjected to nicotine stimulation (A). Real time-PCR showing the effect of siRNA targeting E2F1 or STAT1 on expression of Muc 4 in response to

IFN-γ stimulation in CD18/HPAF pancreatic cancer cells (B). Real time-PCR showing the effect of siRNA targeting E2F1 or STAT1 on expression of

Muc 4 in response to RA stimulation in CD18/HPAF pancreatic cancer cells (C). The efficiency of E2F1-siRNA and STAT1-siRNA transfection in CD18

cells is also shown by Real time-PCR (D). (E) Chip assay results suggest that α7-subunit of nAChR play an important role in mediating nicotine-

induced up-regulation of MUC4 expression in CD18/HPAF cells. (F) Real time-PCR showing the reduction in the expression of MUC4 in CD18/HPAF

cells treated with α-BT prior to nicotine stimulation. Nicotine induces MUC4 in a receptor-dependent fashion (*p≤ 0.01, **p≤ 0.03).
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Tyk2 and STAT1 contribute to the induction of MUC4

in response to various signals.

MUC4 is necessary for nicotine-induced proliferation and

invasion of pancreatic cancer cells

Fauquette et al. [34-36] has reported that MUC4 plays a

pivotal role in the proliferation and invasion of pancre-

atic cancer cell lines. Our earlier experiments had shown

that nicotine promotes the proliferation as well as inva-

sion of a variety of lung cancer cell lines and that nico-

tine enhances metastasis in mouse models of lung cancer

[2]. Given this background, experiments were conducted

to assess whether MUC4 plays a role in mediating the

proliferation as well as invasion of pancreatic cancer

cells. In the first set of experiments, CD18/HPAF cells

were transfected with a control siRNA or siRNA to MUC4;

cells were rendered quiescent by serum starvation for 18 h

and stimulated with nicotine for 24 h. Cell proliferation

was assessed by measuring BrdU incorporation, using the

kit according to the manufacturer’s protocol. It was

found that depletion of MUC4 greatly reduced the pro-

liferation of both CD18 cells when stimulated with nico-

tine (Figure 6A-C). Similar results were obtained when a

different siRNA to MUC4 was used (data not shown).

This result clearly shows that MUC4 is a major mediator

of the proliferative effects of nicotine. IFN-γ and RA did

not have a significant proliferative effect on the cells and

were not studied further.

Boyden chamber assays were carried out to assess

whether MUC4 play a role in nicotine-mediated invasion

of pancreatic cancer cells. As in the previous experi-

ments, CD18 cells were transfected with a control siRNA

or siRNA to MUC4 and serum starved for 18 h. Cells

were stimulated with nicotine and plated on Boyden

chambers. Invading cells could be visualized using crystal

violet staining of the membranes (Figure 6D). It was

found that depletion of MUC4 greatly inhibited the inva-

sive properties of both the cell lines. The results are

Figure 4 Differential contributions of Akt, Src and ERK signaling in regulating MUC4 expression. (A) ChIP assay conducted on CD18 cells

stimulated with nicotine, IFN-γ or RA in the presence of chemical inhibitors of LY294002, PD98059 and PP2 showed ERK and Src-family kinases

may be involved in the upregulation of MUC4 upon nicotine stimulation. At the same time, in the case of IFN-γ LY294002, PD98059 and PP2

showed significant decreased expression of MUC4, whereas with RA stimulation LY294002 and PD98059 showed decreased expression of MUC4

but PP2 did not show significant inhibition in the expression of MUC4. (B) Real time-PCR supported the ChIP assay results where ERK and Src-

family kinases were involved in the upregulation of MUC4 upon nicotine stimulation. In the case of IFN-γ, PI3K, MEK and Src family kinases are

involved in the expression of MUC4, whereas with RA stimulation PI3K and MEK kinases are involved in the expression but Src-family kinases had

a lesser role. (C) Real time-PCR showing combination of nicotine and IFN-γ involves ERK as well as Src in the induction of the MUC4 promoter

whereas (D) Src seemed to have only a minimal effect when RA was combined with nicotine (*p≤ 0.01, **p≤ 0.03).
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depicted graphically in Figure 6B; these results were con-

firmed by using a different siRNA to MUC4 and similar

results were obtained (data not shown). These studies

show that MUC4 is a major mediator of nicotine func-

tions and is involved in promoting proliferation as well

as invasion of pancreatic cancer cells. Figure 6E, shows

that RA stimulated cells have invasive properties similar

to nicotine stimulated cells but this is significantly inhib-

ited by the depletion of MUC4 in CD18 cells. But IFN-γ

did not have any significant effect on the invasive behav-

ior of CD18 cells.

Discussion

Understanding of molecular mechanisms that govern

tissue-specific gene expression often lead to the identifi-

cation of transcription factors responsible for overex-

pression of certain genes leading to tissue specialization

and maturation. In this report, we show that E2F1 and

STAT1 are activators of MUC4 mucin tumor marker.

We find a positive correlation between the binding of

E2F1 and STAT1 with MUC4 promoter and its expres-

sion in pancreatic cancer cell lines. As reported in other

studies, MUC4 is expressed in 83 % of pancreatic ductal

adenocarcinoma samples, both poorly differentiated as

well as well-differentiated types [34]. No expression was

found in normal pancreas or chronic pancreatitis [37].

The significant overexpression of MUC4 points to an

important role for MUC4 in tumor progression, espe-

cially in pancreatic cancer. However, the molecular

mechanisms underlying the dysregulation of MUC4

observed in pancreatic cancer are still poorly under-

stood. In this paper, we investigated the role of E2F1 and

STAT1 transcription factors on MUC4 regulation in

pancreatic cancer cells and found that both the

Figure 5 Involvement of Jak-Stat signaling in upregulation of MUC4. (A) The expression of MUC4 in CD18 cells upon treatment with

Nicotine, IFN-γ and RA were analyzed by agarose gel electrophoresis. Serum-starved CD18 cells were treated with 1 μM nicotine, IFN-γ and RA for

the given time points. (B) MUC4 expression at protein level was analyzed in nicotine in combination of IFN-γ and also nicotine in combination

with retinoic acid by western blot analysis and the quantification of the bands is shown below. (C) Kinetics (starting at 10 min - 2 h) of

Phosphorylation status of Jak kinases at the protein level was analyzed by immunoblotting. (D) Kinetics (starting at 10 min - 2 h) of

Phosphorylation status of Stat1 at the protein level was analyzed by immunoblotting. In addition, the levels of total Tyk2, Jak2 and Stat1 were also

assessed by immunoblotting. β-actin was used as a loading control. All immunoblotting results are representative of two independent

experiments.

Kunigal et al. Molecular Cancer 2012, 11:24 Page 8 of 13

http://www.molecular-cancer.com/content/11/1/24



transcription factors can positively regulate MUC4 tran-

scription. The results obtained at the promoter level

correlate well with those obtained at the mRNA level, in

response to three different extracellular signals.

The biological effects of nicotine are mediated by

nAChRs, which are widely expressed in neurons and

neuromuscular junctions; certain subtypes of the recep-

tor are expressed on a variety of non-neuronal cells as

Figure 6 Nicotine induces proliferation and invasion of pancreatic cancer cells. (A) Quiescent CD18 cells were stimulated with 1 μM

nicotine for 18 h and S-phase entry was measured by BrdU assays. The proliferative effects of nicotine in pancreatic cancer cells were abrogated

in the MUC4 silenced cells, indicating that MUC4 function is required for the proliferative effects of nicotine. (B) Shows the efficiency of MUC4-

siRNA transfection in CD18 cells. (C) Quantification of proliferation assay. (D) Nicotine was able to potently promote invasion of CD18 cells at a

concentration of 1 μM as seen in a Boyden-chamber assay. The pro-invasive activity of nicotine was abrogated by MUC4-siRNA demonstrating a

requirement for MUC4 role in invasion. Graphical representation of the results from Boyden-chamber assay shows the results are significant

(*p≤ 0.01, **p≤ 0.04). (E) RA was able to potently promote invasion of CD18 cells at a concentration of 10 nM as seen in a Boyden-chamber assay.

The pro-invasive activity of RA was abrogated by MUC4-siRNA significantly demonstrating a requirement for MUC4 role in invasion. Graphical

representation of the results from Boyden-chamber assay (*p≤ 0.01, **p≤ 0.03).
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well. Recent reports show that cigarette smoke ingredients

can modulate the α7 and α4β2 nAChRs and has shown

the presence of these receptors on lung and pancreatic

cancer cells [2,38]. Attempts made to elucidate the

increased recruitment of E2F1 and STAT1 in response to

nicotine stimulation showed a requirement of the α7

subunit. This was determined using specific antagonists

of the α7-subunit (α-bungarotoxin), which blocked nico-

tine-mediated recruitment of the transcription factor on

to the MUC4 promoter. Apart from this, the Real-time

PCR results showed that the expression of MUC4 upon

nicotine stimulation was significantly suppressed by α-

bungarotoxin. These results suggest that the increased

expression of MUC4 by nicotine is mediated through

α7-subunits nAChRs on pancreatic cancer cells. Earlier

studies had shown that different subunits mediate the

proliferative and survival functions of nicotine in lung

cancer cells [2,7,9,30]; it appears that α7, which is more

relevant to cell proliferation, mediates the induction of

MUC4 in these experiments.

The proto-oncogene c-Src is a non-receptor tyrosine

kinase whose expression is correlated with cancer pro-

gression and poor prognosis in pancreatic cancer. Src

family kinases are involved in regulating signaling of re-

ceptor tyrosine kinases, G-protein-coupled receptors and

FAK influencing wide array of functionalities of tumor

cell behavior like proliferation, survival, angiogenesis, ad-

hesion, invasion, and metastasis [39,40]. Src integrates

divergent signals, facilitating the action of other signaling

proteins; it is able to channel phosphorylation signals

through Ras/Raf/ERK1/2 and also PI3-K/AKT pathways

[41,42]. Attempts were made to understand the molecu-

lar mechanisms underlying the overexpression of MUC4

by nicotine, IFN-γ and RA. It is well documented that

nicotine stimulates phosphorylation and activation of

ERK1/2 [43]; the Akt pathway has been implicated in

nicotine function for cell survival [9] and our lab

reported that nicotine activates Src kinase [7]. ChIP

assays as well as the real-time PCR results showed that

the ERK and Src-family kinases are involved in the upre-

gulation of MUC4 upon nicotine stimulation. At the

same time in the case of IFN-γ stimulation, all the three

inhibitors (LY294002, PD98059 and PP2) showed a

decreased expression of MUC4 whereas with RA stimu-

lation, PP2 did not show a significant inhibition in the

expression of MUC4. This suggests that the PI3 kinase

pathway plays a role in IFN-γ and RA-mediated induc-

tion of MUC4, but not a major role in nicotine-mediated

stimulation of this promoter. It thus appears that different

signaling components mediate the induction of MUC4 in

pancreatic cancer cells depending upon the stimulant.

While these signaling molecules facilitate nicotine stimu-

lated induction of MUC4, it is likely that other kinases like

the JAK family proteins might also contribute to the

induction. These JAK kinases are known to modulate mul-

tiple STAT family members, including STAT1 and STAT3.

These members of the signal transducer and activator of

transcription (STAT) family of transcription factors have

been implicated in transformation, tumor cell survival, in-

vasion, and metastasis. Hence role of additional STAT

family members cannot be ruled out. A schematic of the

signaling pathways involved in the induction of MUC4 is

shown in Figure 7.

The E2F transcription factors play a role in diverse bio-

logical functions such as cell proliferation, differentiation

and apoptosis. Studies presented here show that it may

also regulate the expression of genes like MUC4, which

contribute to oncogenesis and tumor progression. Inter-

estingly, E2F1 and STAT proteins appear to contribute

to the induction of MUC4 in response to multiple sig-

nals, including the major addictive component of

cigarette smoke. Our results show that nicotine-induced

MUC4 can promote the proliferation and invasion of

pancreatic cancer cells, whereas, RA-induced MUC4 can

promote invasion but not proliferation.

Conclusions

These studies demonstrate that E2F1 and STAT1 tran-

scription factors play an important role in the regulation

of MUC4 gene transcription in pancreatic cancer cells.

Our findings will lead to a better understanding of the

mechanisms leading to the aberrant expression of MUC4

in pancreatic cancer cell lines. Additionally, this study

reveals the complexity involved in the regulation of

MUC4 promoter and shows that this process may in-

volve many signaling pathways and transcription factors

that might mediate the over expression of MUC4 in pan-

creatic cancer.

Methods

Cell culture

CD18, CAPAN-2 and SW1990 pancreatic cancer cell lines

were cultured in DMEM (Mediatech Cellgro, Manassas,

VA) containing 10 % FBS (HyClone, Logan, UT) and

ASPC-1 was cultured in RPMI1640 containing 10 % FBS.

All reagents for cell culture were purchased from Invitro-

gen (Carlsbad, CA, USA). IFN- γ (50 ng) was obtained

from Peprotech (Rocky Hill, NJ, USA). RA (10 nM) was

obtained from (Sigma Chemical Company, St. Louis, MO).

The studies involving signal transduction inhibitors were

done on cells that were rendered quiescent by serum star-

vation for 24 h, following which cells were treated with

indicated concentrations of the inhibitors for 30 min.

Thereafter, cells were stimulated with 1 μM nicotine

(Sigma Chemical Company, St. Louis, MO) in the presence

or absence of the inhibitors for 48 h. The concentrations of

inhibitors used for the various experiments were 1 μM
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PP2, 1 M atropine, 1 μM DhβE, 1 mM α-bungarotoxin

and 20 μM hexamethonium bromide.

Western Blot analysis

Cell lysates were prepared as described previously [13].

Protein concentrations were determined using a BIO-

RADD/C protein estimation kit. For MUC4, the proteins

(30 μg) were resolved by electrophoresis on a 2 % SDS-

agarose gel under reducing conditions. Resolved proteins

were transferred onto the nitrocellulose membrane and

blocked in 5 % non-fat milk in phosphate buffered saline

(PBS) for 1 h and subjected to the standard immunode-

tection procedure using specific antibodies. MUC4

immunodetection, anti-MUC4 mouse monoclonal anti-

body (8 G7, generated in our laboratory) in dilution of

1:1000 was used. Further, the membranes were incubated

in Horseradish peroxidase-conjugated secondary anti-

bodies (Thermoscientific, Rockford, IL) (diluted at

1:2000 in PBST) for 1 h at room temperature, followed

by three washes in PBST. The blots were processed with

ECL Chemiluminescence kit (GE Healthcare) and the sig-

nal was detected by exposing the processed blots to X-ray

films (Biomax Films, Kodak, NY). Lysates from CD18 cells

stimulated with nicotine, IFN-g and retinoic acid for differ-

ent time points were prepared by Nonidet P-40 lysis as

described in [44] 60 μg of total Lysates were run on 8 %

SDS-polyacrylamide gel and transferred on nitrocellulose

membrane by semidry method to assess the levels of Stat1

and Jak kinases by Western blotting. Actin (Sigma) was

used as loading control for total lysates.

Chromatin Immunoprecipitation (ChIP) analysis

Quiescent pancreatic cancer cell lines were stimulated

with 1 μM nicotine for 24 h. A total of 2.5 × 107 cells

were used per immunoprecipitation (IP) reaction. Cells

were crosslinked with 1 % formaldehyde for 20 min at

room temperature. The crosslinking was terminated by

addition of 0.125 μM glycine. Subsequently, cells were

harvested and lysates were prepared [44,45]. The lysates

were immunoprecipitated with polyclonal E2F1 and

polyclonal STAT1 antibodies (Santa Cruz Biotechnology,

Inc.). The differential binding of E2F1 and STAT1 to the

region −131 to +46 (containing putative E2F1 and

STAT1 binding sites) of the MUC4 promoter was analyzed

by PCR. The sequences of the PCR primers used are as

follows: E2F1 (region −131 to +46) forward primer, 5′-

CGCCTCTACTCCCAGAAG-3′; E2F1 (region −131 to

+46) reverse primer, 5′ -TGTAGAGATGCGGTGGTC-3′;

STAT1 (region −920 to −773) forward primer, 5′-

CCAAAGCAGAGGACACAC-3′.

Real-time PCR analysis

Real-time PCR was performed in a total volume of 25 μl

using qPCR-Master-Mix-plus-dNTP kit (BioRad, USA)

Figure 7 Schematic representation of signaling involved in MUC4 expression upon Nicotine, IFN-γ and Retinoic acid stimulation.

Nicotine-mediated recruitment of E2F1 and STAT1 requires signaling through all the three pathways tested. In contrast, IFN-γ stimulation did not

require PI3 kinase/Akt pathway to recruit E2F1 or STAT1, but ERK and Src seemed to contribute. In the case of RA stimulation, Akt and ERK

pathways appeared to be important in upregulation of MUC4 expression.
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and analyzed on a BioRad Real-Time PCR system (BioRad,

USA). A 1 μl of cDNA per sample was used as template.

All amplifications were performed in triplicates. The ther-

mal cycling conditions included 50°C for 2 min and 95°C

for 10 min, followed by 40 cycles of 95°C for 15 s and 60°C

for 1 min.

Primers and probes

Primers and probe sets for MUC4 were sourced from pub-

lished reports [46] and synthesized by IDT DNA Tech-

nologies. A short 82 bp fragment of MUC4 at its 3’ end

was amplified using a forward primer (5’-TGGA

CATGCGGGCCTTT-3’) binding in exon 22 and a reverse

primer (5’-GGCGGTGCTGCAGAA-3’) binding in exon

23 of full-length MUC4. The endogenous human glyceral-

dehyde-3-phosphate dehydrogenase (GAPDH) was used as

control.

Matrigel invasion assay

The invasive ability of CD18 cells was assayed according

to the method reported before [2] . Briefly, the upper

surface of the filters was precoated with collagen (100 μg

/ filter). Matrigel was applied to the upper surface of the

filters (50 μg/ filter) and dried in a hood. These filters

were placed in Boyden chambers. Cells were grown to

70 % confluency in respective media and were rendered

quiescent by serum starvation, then treated with 1 μM

nicotine in the presence or absence of indicated inhibi-

tors for 18 h. Following treatment, cells were trypsinized

and 10,000 cells were plated in the upper chamber of the

filter in media containing 0.1 % bovine serum albumin

(Sigma Chemical Company, St. Louis, MO), inhibitors

and nicotine. Media containing 20 % fetal bovine serum

was placed in the lower well as a chemo-attractant, and

the chambers were incubated at 37°C. After 36-48 h,

nonmigrating cells on the upper surface of the filters

were removed by wiping with cotton swabs. The filters

were processed first by fixing in methanol followed by

staining with crystal violet. The cells migrating on the

other side of the filters were quantitated by counting 3

different fields under 40X magnification. Data presented

is a mean of 3 independent experiments.

Proliferation assays

Bromodeoxyuridine (BrdU) labeling kits were obtained

from Roche Biochemicals, Indianapolis, IN and prolifera-

tion assay was performed as described earlier [47].

Briefly, cells were plated in poly-D-lysine coated cham-

ber slides at a density of 10,000 cells per well and ren-

dered quiescent by serum starvation for 24 h. Cells were

then stimulated with 1 μM nicotine, IFN-γ or RA for 18 h.

S-phase cells were visualized by microscopy and quanti-

tated by counting 3 fields of 100 cells in quadruplicate.

Data is presented as the percentage of BrdU positive cells

out of the 100 cells counted.

Statistical analysis

Statistical analysis was conducted using Student t test.

Values were considered significant when p was less than

0.05
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