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RESEARCH ARTICLE

Isolation and characterization of a novel
bacteriophageWO from Allonemobius socius

crickets in Missouri
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Abstract

Wolbachia are endosymbionts of numerous arthropod and some nematode species, are

important for their development and if present can cause distinct phenotypes of their hosts.

Prophage DNA has been frequently detected inWolbachia, but particles ofWolbachia bac-

teriophages (phageWO) have been only occasionally isolated. Here, we report the charac-

terization and isolation of a phageWO of the southern ground cricket, Allonemobius socius,

and provided the first whole-genome sequence of phageWO from this arthropod family out-

side of Asia. We screened A. socius abdomen DNA extracts from a cricket population in

eastern Missouri by quantitative PCR forWolbachia surface protein and phageWO capsid

protein and found a prevalence of 55% and 50%, respectively, with many crickets positive

for both. Immunohistochemistry using antibodies againstWolbachia surface protein showed

manyWolbachia clusters in the reproductive system of female crickets. Whole-genome

sequencing using Oxford Nanopore MinION and Illumina technology allowed for the assem-

bly of a high-quality, 55 kb phage genome containing 63 open reading frames (ORF) encod-

ing for phageWO structural proteins and host lysis and transcriptional manipulation.

Taxonomically important regions of the assembled phage genome were validated by

Sanger sequencing of PCR amplicons. Analysis of the nucleotides sequences of the ORFs

encoding the large terminase subunit (ORF2) and minor capsid (ORF7) frequently used for

phageWO phylogenetics showed highest homology to phageWOAu of Drosophila simu-

lans (94.46% identity) andWOCin2USA1 of the cherry fruit fly, Rhagoletis cingulata

(99.33% identity), respectively. Transmission electron microscopy examination of cricket

ovaries showed a high density of phage particles withinWolbachia cells. Isolation of phage

WO revealed particles characterized by 40–62 nm diameter heads and up to 190 nm long

tails. This study provides the first detailed description and genomic characterization of
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phageWO from North America that is easily accessible in a widely distributed cricket

species.

Introduction

It is estimated that 66% of all insect species and the majority of filarial parasites that infect

humans are infected/colonized withWolbachia, obligate intracellular bacteria belonging to the

order Rickettsiales [1]Wolbachia cause phenotypes such as cytoplasmic incompatibility (CI)

and feminization in arthropods, or support growth and reproduction in filarial nematodes [2,

3]. Cytoplasmic incompatibility is the most prevalentWolbachia-induced phenotype in insect

hosts and presents a form of conditional sterility whereby crosses between infected males and

uninfected females produce unviable offspring; infected females may successfully mate with

Wolbachia-infected or uninfected males, conferring them a selective advantage [4, 5].Wolba-

chia are divided into several supergroups based on their ftsZ gene sequence, with supergroups

A and B found exclusively in arthropods and supergroups C and D found exclusively in nema-

todes [6].Wolbachia are abundant in male and female germlines and are enriched along the

reproductive tract, but also present in somatic structures (e.g., the brain and gastrointestinal

tract) of select host species. Transmission is predominantly vertical, from female to offspring,

although horizontal transmission has been documented in nature [4, 5, 7]. Active bacterio-

phages infectingWolbachia (phage WO) were first discovered in 2000 and remain one of few

published cases of bacteriophages that infect intracellular bacteria [8]. Phages are estimated to

infect most of theWolbachia taxa in the supergroups A and B, but are believed to be absent

fromWolbachia supergroups C and D [9]. The persistence of the phage despite its documented

lytic activity has led to the hypothesis that phage WO provides benefit to itsWolbachia or

arthropod host [10]. Phage WOmay regulateWolbachia density and therefore, affect develop-

ment and phenotype of its eukaryotic host [11]. Further, phage WO providesWolbachia with

accessory genes for cytoplasmic compatibility and male killing [12, 13].

In recent years, an increasing number ofWolbachia genomes have been sequenced and

phage WO is of interest for being the only known mobile genetic element inWolbachia, and

its hypothesized role in generating the high level of diversity seen amongWolbachia today [10,

14]. Evidence has been provided for horizontal gene transfer betweenWolbachia strains medi-

ated byWO phages [15]. For a majority ofWolbachia phages, sequence data is limited to the

minor capsid protein-coding gene, and there remain entire families and genera ofWolbachia-

harboring arthropods in which phage has not yet been described [8]. One such example is

found in crickets (Gryllidae) of the genus Allonemobius (ground crickets), whose members

include A. socius (the southern ground cricket) and A.maculatus (the spotted ground cricket),

found throughout North America.Wolbachia belonging to supergroup B has been identified

in A. socius (strain: wSoc), where it is hypothesized to play a role in lengthening female crick-

ets’ spermathecal ducts, thus increasing their control over mate choice. [16–18]. However, a

phage WO has neither been identified nor described in Allonemobius.

In the present study we identified, for the first time, a phage WO in Allonemobius crickets

(phage WOSoc) and estimated its prevalence in a local A. socius population. We characterized

the novel phage WOSoc by immunohistochemistry, transmission electron microscopy, and

whole genome sequencing, expanding the limited set of fully described bacteriophages ofWol-

bachia by adding this novel bacteriophage for which we provide evidence of phage particle

production, and complete genes which may mediate bacterial cell wall lysis and manipulation

of host translation.
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Materials andmethods

Sample collection and DNA extraction

Adult A. socius crickets (n = 40) were collected in the summer of 2019 from Forest Park,

St. Louis, Missouri, USA (N 38.4˚ 38’, W 90˚ 17’). Crickets were sexed based on the presence

(female) or absence (male) of an ovipositor and ecological data including morphological fea-

tures and geographical distribution were used to confirm species identification. All insects

were euthanized by placement at -20˚ C for 30 minutes before dissection and homogenization

of abdomens in 500 μL of phosphate buffered-saline by 15-minute high-intensity beating with

a 3.2 mm chrome Disruption Bead (BioSpec Products, Bartlesville, USA) on the Vortex-Genie

2 mixer (Scientific Industries, Inc., Bohemia, USA). The homogenate was spun down, and

DNA was prepared from the supernatant using the DNeasy Blood & Tissue Kit (Qiagen, Hil-

den, Germany) according to manufacturer recommendations, with elution into 100 μL sterile

water and storage at -20˚C or 4˚C until use.

PCR for phage andWolbachia detection

Conventional PCR reactions with total cricket abdomen genomic DNA template were run

using previously validated primers to the conservedWolbachia surface protein (WSP) gene

[19] and to theWolbachia phage capsid protein (WPCP) gene [20]. PCR was performed in

25 μL reactions with 0.625 μL of 10 μM forward and reverse primers (250 nm final concentra-

tion), 2 μL DNA template (2–5 ng), 12.5 μL Hot Start Taq DNA Polymerase (2X (New England

Biolabs, Ipswich, USA), and 9.25 μL sterile water. Following an initial 30 s denaturation at

95˚C, 40 cycles were run with 30 s denaturation at 95˚C, 60 s annealing at 55˚C, 1 min exten-

sion at 68˚C, and a single 5 min final extension at 68˚C. For each primer set and reaction, ster-

ile water was run as a non-template control. PCR products were sent to Genewiz (South

Plainfield, USA) for Sanger sequencing. Forward and reverse primer sequencing reactions

were performed for each region of interest and chromatograms were visually inspected for

base call quality.

Real-time PCR prevalence estimates

Primer 3 software [21] was used to create qPCR-optimized WSP andWPCP primers from

their respective wSoc andWOSoc sequences (Table 1). For each DNA template and primer

set, qPCR reactions were performed in duplicate 25 μL reactions with 0.625 μL of 10 μM for-

ward and reverse primers (250 nm final concentration), 2 μL DNA template, 12.5 μL Power

SYBR Green Master Mix (Thermo Fisher, Waltham, USA), and 9.25 μL sterile water using the

standard Power SYBR Green PCRMaster Mix RT-PCR Protocol (Protocol Number 436721)

on a QuantStudio 6 Flex Real-Time PCR System (Thermo Fisher). As positive controls for the

WSP andWPCP primer sets, we used 2μL Sanger-confirmed WSP- andWPCP-positive

Table 1. List of primers designed and used in the study.

Primer
name

Forward primer sequence (5’–>3’) Reverse primer sequence (5’–>3’) Amplicon length
(bp)

Description

wSoc 60 qPCR detection of wSoc in crickets

WOSoc 60 qPCR detection of WOSoc in crickets

WOSoc tail 6144 Region containing tail tube protein, tape measure
protein, and ankyrin repeat domain

WOSoc
capsid

2335 WOSoc major and minor capsid protein genes

https://doi.org/10.1371/journal.pone.0250051.t001
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cricket genomic DNA. Sterile water was run as the negative control. A conservative cycle

threshold (CT) r value of� 23 for positive determination was set for both primer sets based on

melting curve and relative abundance analysis corresponding to three standard deviations

below the negative control detection level.

Immunohistology for visualization ofWolbachia

For immunohistology, 10 whole Allonemobius crickets were fixed in 80% ethanol, embedded

in paraffin, and sectioned at 10 μm. Sections were stained with a monoclonal mouse antibody

against the Brugia malayi Wolbachia surface protein (1:100) for 1 hour at room temperature

or overnight at 4˚C using the alkaline phosphatase-anti-alkaline-phosphatase (APAAP) tech-

nique according to the manufacturer’s protocol (Dako, Carpinteria, CA, USA). Hybridoma

supernatant was kindly provided by Dr. Patrick Lammie and the antibody was purified as

described previously [22]. All antibodies were diluted in TBS with 0.1% BSA. TBS with 1%

albumin was used as a negative control, whereas sections from B.malayi worms from previous

studies [22] were used as positive controls, respectively. After a 30 min incubation with the sec-

ondary rabbit-anti mouse IgG antibody (1:25) (Dako) followed a 30 min incubation step with

alkaline-phosphatase-anti-alkaline-phosphatase (1:40) (Millipore Sigma, St. Louis, USA). As

substrate, SIGMAFAST Fast Red TR/Naphthol AS-MX (Millipore Sigma) Tablets were used,

and sections were counterstained with Mayer’s hematoxylin (Millipore Sigma). Sections were

analyzed using an Olympus-BX40 microscope and photographed with an Olympus DP70

camera.

DNA extraction, library preparation and whole genome sequencing

High molecular weight (HMW) DNA was purified from a homogenate of a whole single adult

female cricket prepared by 15 min beating with a lead bead using the MagAttract HMWDNA

Kit (Qiagen) according to manufacturer specifications, eluting in 100 μL sterile water. Pres-

ence of HMWwas visualized by gel electrophoresis as a dark band (stained with DNA Gel

Loading Dye 6X, Thermo Fisher) above the 15 kb DNA ladder limit (1 kb Plus DNA Ladder,

Thermo Fisher). Presence of WPCP in HMWDNA was confirmed by qPCR. DNA was then

purified further using AMPure XP beads (Beckman Coulter, Brea, USA) at a ratio of 1.8:1

bead to DNA sample. Library was prepared according to Oxford Nanopore’s 1D Genomic

DNA Ligation Protocol (Version GDE_9063_v109_revA) using the LSK-109 Ligation

Sequencing Kit (Oxford Nanopore Technologies, Cambridge, England) with DNA fragments

of all sizes purified using the Short Fragment Buffer. 60 μL of library containing 12 μL genomic

DNA was loaded as input into the flow cell and the sequencing reaction run for 20 hours using

MinKNOWGUI software (Oxford Nanopore Technologies) set to the High Accuracy Flip-

Flop Model, generating 6.1 giga base pairs of data (estimated N50: 2.46 kb). Basecalling of

Fast5 files into Fastq format was performed using Guppy neural network basecalling software

[23]. Base statistics, average quality per read, sequence duplication level, and GC content were

assessed using FastQC software (Babraham Institute, Cambridge, UK). In parallel, genomic

DNA was extracted from the ovary tissue of a single cricket using Qiagen DNeasy kits as

described above and sequenced using a NovaSeq 6000 Sequencing System (Illumina, San

Diego, USA) with 2x150 bp output generating 12.2 giga base pairs of data, following qPCR

confirmation of phage positivity in the sample

Assembly and annotation of the WOSoc genome

Putative WOSoc reads were extracted by mapping MinION sequences against published

phage WO reference genomes using Minimap2 software [24]. Mapped reads were then
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mapped against themselves in order to merge overlapping reads. The self-mapping output and

the MinION-generated Fastq sequences were input into CANU Single Molecule Sequence

Assembler [25] to generate a phage assembly consisting of multiple contigs. Quality trimming

and adapter clipping of Illumina reads was performed using Trimmomatic [26]. The PRICE

assembly tool [27] was used to extend existing contigs using the Illumina data. Redundans was

used collapse redundant contigs, scaffold contigs, and close gaps using both the Oxford Nano-

pore Technologies (ONT) reads and Illumina reads. ONT reads were error-corrected using

FMLRC [28] before feeding them into the Redundans pipeline [29]. We then manually curated

the assembly and corrected assembly errors. Finally, Pilon automated genome assembly

improvement pipeline [30] was used to polish the assembly and reduce base-call errors. Anno-

tation of the assembled phage genome was performed using the Rapid Annotation Using Sub-

system Technology Toolkit (RASTtk) SEED-based prokaryotic genome annotation engine

with default presets, which has established validity for annotating phage genomes [31, 32],

identifying genomic “features” (protein-coding genes and RNA). RASTk annotations were

manually verified by BLASTing amino acid RASTK-identified features againstWolbachia

phage WO (taxid:112596); features automatically assigned “hypothetical protein” were rela-

beled with known function if homologous (>80% query cover,>80% identity) to a described

phage protein. Genomic features were visualized in scaffolds independently and manually

color-coded by function using Gene Graphics visualization application [33].

PCR and Sanger sequencing for genome verification

Primers were manually designed to amplify phage tail and capsid regions based on the Min-

ION reads (Table 1). Conventional PCR reactions were run with these primers and cricket

abdomen DNA as described previously with a 60˚C annealing temperature for both primer

sets. Amplicons were gel-excised, purified, and 3730 Sanger sequenced.

Phylogenetic analyses

DNA sequences of phage WO open reading frames 2 (ORF2) and 7 (ORF7), respectively cod-

ing for the large terminase subunit and minor capsid, are biomarkers known to produce highly

congruent phage WO phylogenies [8]. Nucleotide sequences of ORF2 and ORF7 of WOSoc

were compared to published gene sequences in NCBI Genbank. Phylogenetic trees were gener-

ated based onWOSoc ORF2 and ORF7 identity to the top 4 BLAST hits based on pairwise

alignments using the NCBI BLAST Tree View Neighbor-Joining tree method with distances

from the node computed by NCBI presets. ORF2 sequence was extracted from Scaffold 1 of

the phage assembly, while the entire ORF7 gene was provided by Sanger sequencing of the cap-

sid region as described above.

Phage particle purification

Phage was purified according to the protocol described in [34] with slight modification. Unless

otherwise noted, all reagents were purchased from Sigma-Aldrich, St. Louis, USA. Complete

mature A. sociusmales and females (N = 70) were euthanized and thoroughly homogenized in

40 mL of SM buffer (50 mM Tris-HCL, pH 7.5, 0.1 M NaCl, 10 mMMgSO4 • 7 H2O and 0.1%

w/v gelatin containing 1 μg/mL RNase A). Homogenate was incubated on ice for 1 hour fol-

lowed by 11,000xg centrifugation for 10 minutes at 4˚C to remove debris. Solid polyethylene

glycol (PEG) was added to homogenate to a final concentration of 10% and mixed by manual

shaking for 1 minute, followed by an additional 1-hour incubation on ice and 11,000xg centri-

fugation for 10 minutes at 4˚C. Supernatant was discarded and the remaining pellet was resus-

pended in 10 mL of SM buffer. To the suspension, an equal volume of chloroform was added
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followed by centrifugation at 3,000xg for 15 minutes at 4˚C to remove the PEG. The aqueous

layer containing phage was filtered through a 0.22 μM vacuum filter to removeWolbachia and

other bacteria. Phage lysate was concentrated using Amicon Ultra-15 100 kDA Centrifugal

Units (Millipore, Burlington, USA) according to [35] and reconstituted in a final volume of 1

mL of SM buffer.

Transmission electron microscopy (TEM) for visualization of WOSoc
particles

From freshly caught adult female A. socius, ovaries were dissected and adsorbed to an electron

transparent sample support (EM) grid. Tissue was washed in PBS and fixed in 1% glutaralde-

hyde for 5 minutes at room temperature, followed by two 30-second washes with deionized

water. Phage particles were negatively stained in 1% uric acid for 1 minute and wicked gently

and placed in a grid box to dry. Phage suspension was processed identically, with 50 μL of the

concentrated suspension adsorbed to an EM grid. Samples were observed on a JEOL 1200 EX

transmission electron microscope (JEOL USA Inc., Peabody, USA) equipped with an AMT

8-megapixel digital camera (Advanced Microscopy Techniques, Woburn, USA)

To confirm the presence of phage inWolbachia by TEM, one half of the ovaries of each of 6

crickets was fixed in 2% paraformaldehyde/2.5% glutaraldehyde (Polysciences Inc., Warring-

ton, USA) in 100 mM phosphate buffer, pH 7.2, for 1 hour at room temperature. The other

half of the ovary sample was added to 1X PBS for DNA extraction and confirmation ofWolba-

chia presence by PCR. Only samples that were positive by PCR for Wolbachia were further

processed for TEM. These samples were washed in phosphate buffer and post-fixed in 1%

osmium tetroxide (Polysciences Inc.) for 1 hour. Samples were then rinsed extensively in dis-

tilled water prior to staining with 1% aqueous uranyl acetate (Ted Pella Inc., Redding, USA)

for 1 hour. Following several rinses in distilled water, samples were dehydrated in a graded

series of ethanol and embedded in Eponate 12 resin (Ted Pella Inc.). Sections of 95 nm were

cut with a Leica Ultracut UCT ultramicrotome (Leica Microsystems Inc., Bannockburn, USA),

stained with uranyl acetate and lead citrate, and viewed on a JEOL 1200 EX transmission elec-

tron microscope (JEOL USA Inc.) equipped with an AMT 8-megapixel digital camera

(Advanced Microscopy Techniques) [36].

Results

Prevalence of phage WO andWolbachia in A. socius

DNA encoding WSP was used as a marker for assessing the prevalence ofWolbachia in crick-

ets. In order to confirm the DNA sequence of WSP of Missouri crickets, DNA was amplified

by conventional PCR using the pre-validated WSP primers. WSP sequence showed 100% iden-

tity to WSP of A. socius from Virginia (Accession: AY705236.1). A 400 bp amplicon of phage

DNA was amplified by conventional PCR using pre-validated primers corresponding to nucle-

otide positions 7353–7761 of phage WO of cricket Teleogryllys taiwanemma cricket and

showed close homology to the capsid protein genes from phage WO of Supella longipalpa

(95.50% identity, 100% query coverage, Accession: KR911861.1) and Cadra cautella (94.50%

identity, 100% query coverage, Accession: AB478515.1). The A. sociusWSP and phage WOSoc

WPCP gene sequences were used to design SYBR-based real-time PCR assays for WSP and

WPCP, respectively. Using the strict CT cutoff of 23 cycles, we determined that from 40 insects

sampled 19 (47.5%) were positive for both WPCP andWSP DNA via qPCR with our opti-

mized primers; three samples (7.5%) were WSP-positive but WPCP-negative (Table 2).
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Confirmation of theWolbachia prevalence results was done using an orthogonal approach,

i.e visualization by immunohistology. Endobacteria were found in about 50% of the female

crickets. They were detected throughout the abdomen, however density was highest in the

reproductive tract (Fig 1).Wolbachia were detected in distinct, but varying parts of the panois-

tic ovarioles. In the apical part of the ovariole,Wolbachia were seen in the inner section of the

follicle epithelium (Fig 1C), but in more mature eggs, these cells are devoid ofWolbachia and

endobacteria were concentrated in large numbers in one pole of the egg cell (Fig 1F). The high

density ofWolbachia in developing eggs ensures transovarial transmission ofWolbachia and

phage WO [37]. It is expected that in this context, whereWolbachia negatively impacts its

Table 2. Prevalence estimates ofWolbachia surface protein (WSP) and phage capsid protein (WPCP) DNA in Allonemobius socius crickets fromMissouri.

WSP

Positive N (%) Negative N (%) Total N (%)

WPCP Positive N (%) 19 (47.5%) 1 (2.5%) 20 (50%)

Negative N (%) 3 (7.5%) 17 (42.5%) 20 (50%)

Total N (%) 22 (55%) 18 (45%) 40 (100%)

Estimates are based on a SYBR qPCR assay with a strict cutoff of CT� 23 in 40 adult A. socius abdomen genomic DNA extracts.

https://doi.org/10.1371/journal.pone.0250051.t002

Fig 1. Immunohistological localization of wSoc. Black arrows indicateWolbachia (red).A. Posterior abdomen containing intestinal
tissue and oviduct containingWolbachia (200μm). B.Ovary tissue showing dense clusters ofWolbachia at the site of maturing oocytes
(200μm). C.Wolbachia localized to the follicle epithelium.D (50 μm), E, and F. Close-up of oocytes in the female cricket oviduct showing
Wolbachia cells in studding follicles. The nucleus (GV) is visible in the upper oocyte in F. (20 μm) Abbreviations: FE = follicle epithelium;
od = oviduct; ov = ovaries; GV = germinal vesicle. Scale bar: 10 μm.

https://doi.org/10.1371/journal.pone.0250051.g001
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host’s fitness, host selection will act to limit or eliminate the endosymbiont, which may explain

the less than ubiquitous wSoc prevalence. At the same time, high phage density favors the

insect host in a parasiticWolbachia context, which benefits from the reduction inWolbachia

density resulting from phage-mediated lysis or transcriptional regulation, which could pro-

mote phage abundance to the high levels seen in wSoc-infected insects [6].

Isolation and visualization of phage WO of A. socius

Although we detected DNA encoding capsid protein of phageWO inmostWolbachia-positive A.

socius samples, it was theoretically possible that this was exclusively prophage DNA integrated into

the genome ofWolbachia and that no phage particles were formed. Therefore, we used TEM to

visualize particles of phageWO ofA. socius. Several intracellularWolbachia-containing stereotypi-

cal hexagonal phage particles were detected in ovarian tissue (Fig 2). Small clusters ofWolbachia

cells that contained up to 30 complete phage particles per cells were obverted to mature egg cells

(Fig 2A, 2B, 2D). TEM examination of the filtrate from phage precipitation revealed numerous

phageWO particles. Measurement of 10 particles showed an average diameter of the icosahedral

head structure of 55 nm (±7 nm SD) and 155 nm (± 20 nm SD) long, striated tails (Fig 2E, 2F).

TheWOSoc genome indicates potential for lysis and transcriptional
manipulation of the host

Following the detection of phage DNA inWSP-positive crickets and the demonstration of dis-

tinct phage particles, we set out to genomically characterize the novel phageWO to gain insight

into its lytic potential and its similarity to knownWO phages. Using the well-characterized

genome ofWOVitA1 (aWolbachia bacteriophage found in the parasitic wasp,Nasonia vitripen-

nis) as a reference genome, we identified 511 homologous WOSoc reads from theMinION run

of whole-cricket homogenate HMWDNAwith an average quality per read (Phred Score) of 23,

corresponding to an overall base call accuracy exceeding 99%. From these reads, we assembled 12

contigs totaling 53,916 bp at an average depth of 14.6X and a GC content of 35%. After confirm-

ing and extending these contigs with Illumina reads and removing low quality reads and reads

derived from theWolbachia genome, theWOSoc genome was captured in 4 high-quality scaf-

folds totaling 55,288 bp (Fig 3). To further validate our assembly, we Sanger-sequenced PCR-

amplified phage sequences from taxonomically important phage regions using primers generated

from the scaffolds. These sequences collectively represented nearly one-eighth of the assembly

including a continuous 6,144 bp contig containing complete open reading frames for tail mor-

phogenesis proteins and a 2,289 bp region encoding the major and minor capsid proteins and

head decoration protein (all sequence data are available in S1 File and the assembly is available in

GenBank under the accession IDsMD788653-MW788656). RASTtk annotation identified 63

features which included 33 described and 30 hypothetical or unidentified ORFs based on similar-

ity and bidirectional best hit computation. An additional 10 ORFs were manually assigned a

function based on high homology to described phage elements [38]; in total, 43 described and 20

hypothetical proteins comprised the final WOSoc genome annotation (see S2 File for a complete

list of these features including full-length protein and gene sequences). Of the 43 described ORFs,

17 (39.5%) encoded structural features including phage tail (N = 9), head (N = 5), and baseplate

(N = 3). We also identified genes necessary for phage replication (DNA repair and transcription);

a glycosyl transferase which may protect phage DNA from host nucleases or, alternatively, is used

by lysogenic phages to modify host serotype [39], and a PAAR (Proline-Alanine-Alanine-aRgi-

nine)-domain-containing protein which has been hypothesized to sharpen the phage contractile

tail facilitating translocation of phage DNA across the bacterial lipid membrane [40]. WOSoc was

found to encode two putative lysis proteins: N-acetylmuramoyl-l-alanine amidase (NAMLAA), a
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powerful and highly species-specific bacterial cell wall lysin, and a patatin-family phospholipase

proposed to mediate entry or exit fromWolbachia cells [41, 42]. Multiple WOSoc elements (site-

specific resolvases and transposases) are associated with catalysis of site-specific integration into

the bacterial genome [43]. We discovered four putative helix-turn-helix domains, DNA-binding

motifs which regulate bacterial transcription, allowing viral transcriptional regulation [44]. We

identified two virulence factors, including an NAD-dependent epimerase, which has been shown

to alter cell surface properties and mediate virulence of gram-negative bacteria [45]. Over one-

sixth (9,982 bp) of theWOSoc genome is comprised of ankyrin repeats, consistent with other

WO phages; while the function of these repeats in phageWO is unknown, ankyrin is known to

mediate protein-protein interactions in multiple domains of life, and its high abundance in the

Wolbachia genome relative to other bacteria may be the result of genomic flux imposed by phage

WO [46]. Collectively, these features suggest that WOSoc is an active, particle-forming phage

containing genes, which may regulate host transcription, site-specific integration, andWolbachia

cell lysis, reflecting an intimate interaction with its bacterial host.

Phylogenetic analysis of WOSoc suggests a close relationship withWO
phages of flies

In order to compare phage WOSoc to a larger number of phage WO for which the complete

genome sequence is not available, we performed pairwise comparison with published ORF2

and ORF7 phage WO sequences. Phage WOSoc ORF2 showed the highest homology to phage

WOAu of Drosophila simulans (94.46% nucleotide identity, 100% query coverage, Accession:

Fig 2. Transmission electron microscopy (TEM) of WOSoc particles. A. Clusters of intracellularWolbachia wSoc (arrows) in the ovary of A. socius (scale bar
2 μm). B.Densely packedWOSoc phage (arrows) inside aWolbachia endobacterium (scale bar 500 nm). C. andD. Compact, electron dense hexagonal arrays
of WOSoc (arrows) inWolbachia (scale bar 500 nm). E. and F. Complete, purified phage particles with 47 to 62 nm capsids (arrow) and 175 to 130 nm tails
(arrow head, scale bar 100 nm). Abbreviations: ov, ovaries; W,Wolbachia, rER, rough endoplasmic reticulum; m, mitochondrion.

https://doi.org/10.1371/journal.pone.0250051.g002
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LK055284.1), while phage WOSoc ORF7 was most similar to WOCin2USA1 of cherry fruit

fly, Rhagoletis cingulata (99.33% nucleotide identity, 100% query cover, Accession:

CP072012.1.1), both insects of the order Diptera. (Fig 4).

Discussion

The present study identified for the first time a particle-forming phage WO in North Ameri-

can crickets and provided the whole genome sequence of phage WOSoc. About half of female

Fig 3. Annotation of the WOSoc genome. 63 features from the RASTk annotation of the 4-scaffoldWOSoc assembly are displayed: ankyrin repeats (N = 4),
baseplate assembly (N = 3), phage head (N = 5), integration intoWolbachia’s genome (N = 4), lysis ofWolbachia cells (N = 2), propagation (DNA replication
and mismatch repair, injection machinery, protection from host endonucleases) (N = 6), tail formation (N = 9), transcriptional regulation (N = 4), virulence
(N = 4), function in phage undescribed (N = 2), hypothetical proteins (N = 20). Abbreviations: NAMLAA = N-acetylmuramoyl-L-alanine amidase;
ANK = ankyrin. Scale bars: 1 kb within their respective scaffolds.

https://doi.org/10.1371/journal.pone.0250051.g003
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A. socius crickets screened by PCR containedWolbachia. Within arthropod populations,Wol-

bachia and phage WO infection prevalence closely resembled that seen in other supergroup B

infected species [47–49]. More than 85% ofWolbachia-positive crickets were also positive for

phage WODNA, indicating co-transmission ofWolbachia and phage WOSoc.Wolbachia

phage particles may be present in only a subset ofWolbachia infecting an individual; together

with the potential for high variation ofWolbachia density within an insect population, it is

possible we failed to pick up small amounts of phage DNA in specimens with low, but detect-

ableWolbachia density. In a DNA extract of one cricket, we detected phage WODNA, but not

WolbachiaDNA, which may have resulted from contamination with DNA from a phage-posi-

tive sample.

Immunohistological detection ofWolbachia in A. socius showed high densities of endobac-

teria in maturing egg cells. TEM examination of ovaries of A. socius revealed numerous phage

WO particles arranging in varying structures within theWolbachia cells. Occasionally, intra-

cellular, electron-dense, hexagonal arrays where detected that could be the product of phage

WOSoc self-assembly into ordered nanoarrays as seen in other bacteriophages [50]. Little

information is available that describes the ultrastructure of assembled phage WO particles

withinWolbachia, however the observed morphology of isolated phage WOSoc particles is

similar to other isolated phage WO particles [51–53].

Genomic evidence showed the potential of complete phage WOSoc particle formation and

validated the morphology results. Previous reports link the presence of prophage WODNA

with host phenotypes [54, 55]. However, our study showed not only the presence of prophage

WODNA, but also demonstrated particle formation and active propagation of phage WOSoc.

Phage WO contains several insertions sequences (IS); generally, these are transposase-encod-

ing genes flanked by short repeat sequences. As lateral transfer of phage WO betweenWolba-

chia strains occurs, these IS may introduce insertions, deletions, and inversions in the host

genome, potentially driving the high level of diversity seen amongWolbachia today [10, 15,

56]. Phages are considered to be relatively host-specific, but potential host species can be pre-

dicted based on sequences of annotated receptor-binding proteins [57]. Unfortunately, these

sequences are not always available and further experimental studies have to elucidate the host

range of phage WOSoc and its potential to genetically manipulateWolbachia. We have

Fig 4. Phylogenetic comparison of WOSoc with published phage sequences.Neighbor-joining trees generated from published phageWO nucleotide
sequences aligned to WOSocA. Large terminase subunit (ORF2), showing homology to WOAu of Drosophila simulans and B.minor capsid protein (ORF7),
showing high homology to WOCin2USA1 of the cherry fruit flu, Rhagoletis cingulata. Scale bars denote distance from the node as calculated by the NCBI Tree
View software.

https://doi.org/10.1371/journal.pone.0250051.g004
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identified resolvases and transposases, which may recognize and bind host DNA to mediate

site-specific integration, providing a mechanism for lysogeny [58], as well as proteins which

may mediateWolbachia cell penetration and lysis. The isolation of phage WOSoc offers excit-

ing possibilities for understanding the evolutionary and current role ofWolbachia’s only

known mobile genetic element and an active regulator ofWolbachia density on the endosym-

biont-induced characteristics such as cytoplasmic incompatibility and reproductive support.

Future studies may show whether phage WOSoc plays a role in the spermathecal duct shorten-

ing which is a well-documented effect ofWolbachia in Allonemobius genus crickets [16].

So far, there are only a handful of complete phage WO genome sequences available in the

public databases, and this study has expanded the list by adding a validated 55 kilobase genome

of phage WOSoc. Like closely related active phage WO of Cadra cautella, WOSoc contains

intact open reading frames encoding proteins essential to phage particle formation, including

tail morphogenesis and DNA packaging, which are absent in inactive, prophages ofWolbachia

[59].

Wolbachia are considered as targets for alternative chemotherapy of human filariasis,

caused by parasitic nematodes [60] and as alternative tools for vector control [61]. Traditional

techniques to control vector-borne diseases (particularly mosquito-transmitted diseases

including dengue, malaria, yellow fever, and filariasis) have relied often on the use of larvicides

and insecticides, incurring technical and financial challenges while risking toxicity and off-tar-

get environmental effects [62, 63]. Transfecting mosquitos withWolbachia has shown promise

for reducing vector population size (by nature of cytoplasmic compatibility) and vector com-

petence [64–66]. A better understanding of the role of phage WO in regulatingWolbachia

populations is important to optimize these intervention strategies, which are limited byWol-

bachia’s host specificity and phenotypic effects. Future studies are needed to show whether

phage WOSoc can be utilized to manipulateWolbachia in A. socius or other host species

infected byWolbachia.

Supporting information

S1 File. Assembled nucleotide sequences of phage WOSoc. Sequences in FASTA format of
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