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De novo Assembly of the Brugia 
malayi Genome Using Long Reads 
from a Single MinION Flowcell
Joseph R. Fauver Martin Weil Mitreva   & Peter U. Fischer

sequencing technologies can reduce the cost of genome sequencing and long reads produced from 

assembling the genome of Brugia malayi

B. malayi reference genome with 

complete genome of the endosymbiotic bacteria Wolbachia was assembled alongside the nuclear 

established reference genome using comparably fewer resources.

Lymphatic !lariasis is one of the world’s leading causes of morbidity and disability adjusted life years, particularly 
in the low and middle-income countries of the tropics1. Lymphatic !lariasis can cause severe swelling in limbs 
and the groin that can result in pain, disability, and social stigma. "e most e#ective strategy for preventing trans-
mission is community directed mass drug administration (MDA) of anti-helminthic drugs2. Currently, MDA 
is the foundation of the Global Program to Eliminate Lymphatic Filariasis (GPELF), a large-scale global health 
program aimed at eliminating lymphatic !lariasis as a public health problem2. Since the initiation of this program, 
more than 7 billion treatments have been distributed which has reduced the population at risk of infection by 
1/3rd to an estimated 554 million people3. Lymphatic !lariasis is caused by infection with the !larial nematodes 
Brugia malayi, Brugia timori, and Wuchereria bancro!i, the latter of which is the most common species4. "ese 
worms are transmitted to humans via the bite of infectious mosquitoes. A highly inbred B. malayi strain (FR3) 
maintained in gerbils (Meriones unquiculatus) is a widely used laboratory model to study lymphatic !lariasis. 
"e FR3 strain of B. malayi was used for gene discovery experiments in the Filarial Genome Project as early as 
19945. Whole genome sequencing and assembly of the B. malayi genome was reported in 2007 using a variety of 
approaches that included sequencing of bacterial arti!cial chromosomes and fosmids6,7. "e genome was updated 
in 2016 with data generated from Paci!c Biosciences (PacBio) Single Molecule Real-Time (SMRT) sequencing 
and optical mapping to produce an ~88 Mb genome made up of 197 sca#olds, 205 contigs8. While still dra$, the 
updated genome is highly contiguous and complete, with an N50 greater than 14 Mb and BUSCO and CEMGA 
estimates higher than 95%. "is reference genome provides a foundation to assess the quality of genome assem-
blies generated with other platforms and so$ware.

Single molecule sequencing platforms, such as the Oxford Nanopore Technologies (ONT) Minion and PacBio 
SMRT sequencing have drastically reduced the cost and required infrastructure for generating more complete 
and highly contiguous genome assemblies9. Multiple eukaryotic genomes have been successfully sequenced and 
assembled with reads generated from ONT platforms, including the human genome10–13. For example, Tyson et 
al. used reads generated from the ONT Minion to resolve complex genomic rearrangements and extended the 
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genome of Caenorhabditis elegans14. "at study demonstrated the potential of this technology to reconstruct and 
improve a high-quality nematode genome. We therefore sought to assess the performance of the ONT MinION 
platform for sequencing !larial parasitic nematodes. Using data generated from a single &owcell, we were able 
to de novo assemble a nearly complete nuclear genome of B. malayi that approached the quality of the reference 
genome in terms of size, contiguity, and content. "e complete mitochondrial genome of B. malayi was assembled 
and obtained from individual reads, and the nearly complete genome of the Wolbachia endosymbiont (wBm) 
was also assembled. "is study demonstrates the ONT MinION platform is able to generate the data necessary 
to assemble a nearly complete genome from !larial parasites using demonstrably fewer resources than previous 
approaches.

Materials and Methods
Adult B. malayi worms (FR3 strain) were provided by the NIH/

NIAID Filariasis Research Reagent Resource Center for distribution by BEI Resources, NIAID, NIH15. Worms 
were kept in culture for 21 days prior to being frozen at −80C for storage. "ree mature female worms were 
pooled in a 1.5 mL tube and crushed with a disposable pestle (VWR, Pennsylvania, USA). Disrupted worm tis-
sue was incubated with 180 µL of Bu#er ATL (Qiagen, Hilden, Germany) and 20 µL proteinase K (Qiagen) for 
48 hours in a 56 °C water bath with occasional vortexing. Following incubation, DNA was extracted using the 
MagAttract HMW DNA kit (Qiagen) according to the manufacturer’s protocols. Total genomic DNA was eluted 
into 100 µL of 10 mM tris-HCL. A general size distribution of total DNA was determined using a 0.8% agarose gel. 
DNA quality and quantity were determined using a Nanodrop spectrophotometer ("ermoFisher, Massachusetts, 
USA) and Qubit &uorometer ("ermoFisher), respectively. Genomic DNA was subjected to size selection using 
0.4x volume of AmpureXP beads (Beckman Coulter, California, USA) to remove small fragments, resulting in a 
lower concentration of DNA.

Library preparation and sequencing. A total of 1.2ug of DNA was used as input for the 1D genomic 
ligation (SQK-LSK109) library preparation kit (ONT, Oxford, United Kingdom). "e ligation sequencing kit was 
used to improve data yields. Libraries were prepared according to manufacturer’s protocols. Reaction volumes for 
the DNA repair, end-prep, and adaptor ligation steps were halved to conserve reagents. "e !nal library quantity 
was 672 ng, and a total of 292 ng was used to load onto the sequencer. Based on the estimated size distribution, 
25–40 fmol of library was sequenced using the ONT MinION Mk1B platform with a R9.4.1 &owcell. Prior to ini-
tiation, a total of 1,190 pores were available for sequencing per the initial mux scan. MinKNOW so$ware (version 
18.12.9, ONT) was used to run the &owcell with active channel selection every 1.5 hours and no script modi!ca-
tions. "e &owcell was “refueled” at 24 hours by removing excess liquid from the waste chamber, opening both 
the priming port and SpotON sample port, and adding a mixture of 37.5 µL of SQB and 37.5 µL of H2O directly to 
the SpotON sample port. "e sequencer was run for an additional 24 hours for a 48-hour run time. Raw.fast5 !les 
were directly exported to an external SSD drive.

Signal data (.fast5 !les) was basecalled using 
Guppy (version 2.3.5, ONT) following completion of the sequencing run. "e resulting.fastq !les were used as 
input to generate run statistics with NanoPlot (version 1.19.0)16. Multiple approaches were used to generate a total 
of 4 genome assemblies. Reads were de novo assembled using Canu (version 1.7.1) and wtdbg2 (version 2.3) using 
default parameters17,18. Assemblies were created with Canu using 1) all reads generated, 2) a subset of total reads 
selected for size and quality using Filtlong (version 0.2.0)19, as well as with wtdbg2 using 3) all reads generated, 
and 4) the subset of reads >5 Kb in length. Following genome assembly, individual reads were aligned to the B. 
malayi reference genome (BioProject PRJNA10729) using minimap2 (version 2.15, -ax map-ont option) to deter-
mine depth of coverage across the genome as well as individual read nucleotide identity20. Depth of coverage was 
determined using samtools depth, and nucleotide identity was determined using read_length_identity.py script 
from Wick et al.21,22. Analysis so$ware was run on a single node on the McDonnell Genome Institute high perfor-
mance computing clusters. A typical node consists of dual CPUs: Intel(R) Xeon(R) CPU E5-2680 v4 (2.40 GHz) 
hosted on PowerEdge M630 blade servers.

Nuclear genome assembly assessment. For the purpose of this study, all assemblies were compared to 
the B. malayi reference genome (obtained from parasite.wormBase.org in March, 2019). QUAST (version 5.0.2) 
and MUMmer (version 4.0.0) were used to assess assemblies for quality and relatedness23,24. BUSCO analysis 
was performed to assess the completeness of the MinION based assemblies and reference assembly (version 
3.0.1)25,26. A selection of RNA-Seq samples were downloaded from EBI’s Array Express (https://www.ebi.ac.uk/
arrayexpress/) and were subsequently cleaned using Trimmomatic (version 0.36)27,28. Cleaned reads were mapped 
to the MinION generated assemblies using HiSat2 (version 2.1.0) and the percentage of reads aligned was used to 
assess assembly completeness29. Genome polishing was performed with signal data (.fast5 !les) using Nanopolish 
consensus (version 0.11.0) with default parameters30. Nanopolish was run with parallel in 50Kb segments of the 
genome and took around 3 days to complete using the compute resources stated above31. Percentage of cover-
age and identity was determined using MUMmer dna-di#. "e polished genome was aligned to the reference 
genome using minimap2 (-ax asm5 option) and BEDtools (version 2.27.1) was used to query the alignment for 
areas of no coverage in 10Kb windows32. Because the reference genome has multiple sca#olds, which are repre-
sented by stretches of N’s, N’s were removed to calculate the percentage of length covered between the assemblies. 
Additionally, BEDtools was used to identify uncovered regions and intersect those regions with B. malayi features 
as another metric for assembly completeness.

Mitochondria and Wolbachia genome assembly and assessment. "e mitochondrial genomes were 
compared in Geneious (version 2019.0.3) using the Mauve plugin33,34. Nucleotide identity of individual reads 
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corresponding to the mitochondrial genome was calculated as described above. "e “Annotate from” tool in 
Geneious was used to transfer gene, tRNA, and rRNA annotations from the reference mitochondrial genome to 
the mitochondrial assembly. Nanopore reads aligning to the Wolbachia contig “wBm_Wolbachia” in the reference 
genome were extracted with samtools and used as input for de novo assembly using wtdbg2 as described above. 
Nanopolish was used to polish the resulting genomes as described above. "e polished genome was compared to 
the reference Wolbachia genome using MUMmer dna-di#.

Results
Sequencing statistics. All data presented in this study were generated from a single sequencing library on 
a single MinION &owcell. More than 2 million reads were generated that resulted in 7.7 Gb of called reads and 
an estimated 87.3X depth of coverage (Table 1, Supplementary Fig. S1). "e mean and median read lengths were 
3,594 and 2,303 nucleotides (n.t.), respectively, with an average read identity of 78.5% compared to the reference 
genome (Fig. 1). "is average uses reads that did not align and resulted in an identity of value zero. "e longest 
read produced by the sequencing run (191,199 n.t.) aligned to the reference genome with 81.6% identity. Data was 
!ltered and subsampled to between 45–50X coverage to determine if using only the longest, highest quality reads 
for assembly would facilitate improved genome contiguity and shorten assembly time. Filtered data using Filtlong 
and a hard 5Kb cut-o# increased both median (6,235 n.t., 7,841 n.t.) and mean read length (8,766 n.t., 10,641 n.t.), 
as well as average read identity (89.3%, 85.7%) compared to the reference genome (Fig. 1).

Subsampled read inputs produce more contiguous assemblies. Four assemblies were generated 
with two tools, Canu and wtdbg2, using various iterations of the data generated (Table 2). "e assembly time of 
wtdbg2 was remarkably faster than that of Canu. Allocating the same computational resources, all assemblies with 
wtdbg2 took hours on wall clock time, while the wall clock time for Canu took days. All generated assemblies 
have a GC content of ~28% that is similar to the reference assembly (28.5%). "e total estimated genome size 
varied more in wtdbg2 assemblies compared to Canu assemblies. Similarly, total contig counts were more variable 
in wtdbg2 assemblies compared to Canu assemblies (Table 2, Fig. 2). For both assemblers, the use of !ltered and 
subsampled data improved contiguity. However, the assembly generated with wtdbg2 using these data produced 
a genome that was substantially smaller (82.6 Mb) than the reference genome (88.2 Mb). "is phenomenon is 
described in the wtdbg2 manual. "e assembly generated with Canu using !ltered and subsampled data was sim-
ilar to the reference genome in size (89.7 Mb to 88.2 Mb) and contiguity (202 to 205 contigs). "e Canu_Filtlong 

Read Set Reads
Total Bases 
(Gb)

Median Read 
Length (Kb)

Median Q 
Score

Average 
Identity (%)

Estimated 
DOCa

All Reads 2,143,662 7.77 2.30 11.0 78.5 87.3

Filtlong Reads 513,325 4.50 6.23 10.3 89.3 51.0

Reads > 5 k 378,033 4.02 7.84 10.0 85.7 45.6

Table 1. Information on input sequences used for assemblies. aDepth of Coverage.

Figure 1. Length and identity of reads generated from a single MinION &owcell. (a) Read length distribution 
of all reads (red), reads !ltered and subsampled with Filtlong (green), and reads !ltered with a hard 5Kb cuto# 
(blue). Total number of reads were binned into 1Kb sets using BBMap and graphed using the geom_area 
function in the ggplot2 library in R. (b) Violin plots showing percent nucleotide identities of the same iterations 
of the data compared to the reference B. malayi genome. Percent identities of individual reads were determined 
using read_length_identity.py script (see Methods) and graphed using the geom_violin function in the ggplot2 
library in R55.
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assembly had the highest percentage of RNA-seq reads aligning to the genome (78.5%) and BUSCO score (94.4% 
of expected gene content) compared to the other MinION assemblies. "erefore, the Canu_Filtlong assembly was 
used for additional analysis.

Genome assembly using nanopore data resembles reference assembly. We employed a variety of 
methods to compare the MinION generated assembly to the reference B. malayi assembly. First, the assemblies 
were aligned, compared, and visualized using MUMmer (Fig. 3). "e two genomes agree across the 5 major 
contigs of the reference genome, although there are likely portions of the Canu_Filtlong genome that are assem-
bled incorrectly. For example, a 1.77 Mb portion of a 8.1 Mb contig is inverted and aligns to a di#erent region 
on Chromosome X, and a 0.9 Mb portion of a 7.1 Mb contig is inverted and aligns to Chromosome 1, where 
the remainder of the contig makes up a large portion of Chromosome 4 (Fig. 3). In total, 96.9% of the reference 
genome was covered by the Canu_Filtlong assembly. A total of 93.3% of the reference genome is contained in 
4 sca#olds and 1 contig, of which the Canu_Filtlong assembly spanned greater than 99% (Figs. 3 and 4a). "e 
remaining 3.1% of the genome that was not covered by the Canu_Filtlong assembly was largely the result of no 
alignments to the smaller contigs that were not placed within the larger reference assembly (Figs. 3 and 4a). A sin-
gle 3,020 b.p. contig was produced in the Canu_Filtlong assembly that was not present in the reference genome. 
A BLASTn query of this contig produced a top hit to Homo sapiens isolate 1a satellite DYZ1 sequence (Genbank 
I.D. KF941193.1), indicating likely contamination with human DNA. A total of 190 gene features (0.9% of total 
coding genes) fell within the 3.1% of the genome not covered by the Canu_Filtlong assembly (Supplementary 
Data S1). "ere were no gene features identi!ed in areas of no coverage based on individual reads, as most regions 
not covered by reads were where contigs are sca#olded (i.e. stretches of N’s). For the reference genome, the GC 
content of the uncovered contigs (27%) did not di#er substantially from the GC content of the whole genome 
(28%) (Fig. 4b).

Assembly Name
Size 
(Mb)

Number of 
contigs

Largest contig 
(Mb)

N50 (Mb) 
(#contigs)

N90 (Kb) 
(#contigs) GC%

RNAseq 
mapping (%)

BUSCO 
(%)

Canu All 91.2 230 9.8 3.1 (8) 211.6 (42) 28.6 69.2 93.7

Canu_Filtlong 89.7 202 10.7 2.4 (8) 400.5 (38) 28.6 78.5 94.4

wtdbg2 All 91.3 690 9.0 2.4 (10) 64.1 (75) 28.4 73.3 92.1

wtdbg2 Reads >5 k 82.6 231 8.2 2.5 (10) 481.3 (43) 28.5 66.7 91.7

Reference (FR3)a 88.2 197 24.9 14.2 (3) 13,500 (5) 28.3 82.9 97.0

Table 2. Assembly metrics from four assemblies generated with MinION data. a"e reference genome 
(BioProject:PRJNA10729) contains both sca#olds and contigs, here we are listing the number for sca#olds.

Figure 2. Cumulative lengths of all assemblies compared to the B. malayi reference genome. "e Canu_Filtlong 
assembly (yellow line) most closely matched the reference assembly (green line) in length (89.7 Mb) with the 
fewest number of total contigs (202). "e total number of contigs for each assembly is listed in parenthesis in the 
legend. Cumulative lengths graph was generated using the geom_line function in the ggplot2 library in R.
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Additional analyses were performed to assess and quantify the mismatches between the two assemblies. "e 
average identity of the MinION-derived assembly across the reference nuclear genome was 98.6%. A substantial 
portion of mismatches identi!ed were insertions/deletions (indels) (Table 3). Following genome polishing with 
Nanopolish, the overall nucleotide identity between the two assemblies increased to 99.2%. While the number of 
single nucleotide polymorphisms (SNP) decreased by 5,711 (6.5% decrease), the number of indels were reduced 
by 487,619 (46.8% decrease). Polishing the genome resulted in 43% less mismatches when compared to the orig-
inal assembly. "e number of mismatches were evenly distributed across the 5 major sca#olds/contigs and the 
remaining contigs, as measured by similar mismatches per 1,000 b.p. (Supplementary Table S1).

We sought to determine if these mismatches would impact the identi!cation of gene sets and their e#ect on 
the coding sequences of identi!ed genes. BUSCO assessment of the polished Canu_Filtlong assembly identi!ed 
95.7% of expected single-copy orthologs, while 97.0% were identi!ed in the reference assembly (Supplementary 
Table S2). Of the genes identi!ed in the polished Canu_FIltlong assembly, 3.8% were fragmented, compared to 
0.3% in the reference assembly, indicating more genes were only partially recovered. "e average CDS length was 
substantially shorter in the polished Canu_Filtlong assembly compared to the reference, 120 b.p. vs. 133.7 b.p, 
respectively, suggesting the introduction of premature stop codons and frame shi$ mutations in coding sequences 
(CDS) (Supplementary Table S2). As well, the average number of CDS per gene was higher for the polished 
Canu_Filtlong assembly.

Assessment of the Brugia malayi mitochondrial genome. Individual reads aligned to the mitochon-
drial genome with greater than 500X coverage (Supplementary Fig. S1). No contig in the !nal assembly produced 
a high-quality alignment to the mitochondrial genome. However, a 13,264 b.p. sequence was identi!ed in the 
“unitig” output of Canu that aligned to the reference mitochondrial genome with 96% nucleotide pairwise iden-
tity. Each of the 12 genes, 2 rRNA subunits, and 22 tRNA regions identi!ed in the annotated reference genome 
were found on the Canu_Filtlong assembly of the mitochondrial genome. Due to the small size of the mitochon-
drial genome, we sought to determine whether individual reads spanned it’s the entire length. Aligned reads were 
!ltered by length to correspond to >90% (12,291b.p.) of the mitochondrial genome length. 201 reads between 
12,291-13,647b.p. in length aligned to the mitochondrial genome with an average nucleotide identity of 95% 
(Supplementary Fig. S2).

Assembly of the Wolbachia endosymbiont wBM. In addition to the nuclear and mitochondrial 
genomes of B. malayi, most of the ~1 Mb genome of wBM, a bacterial endosymbiont of B. malayi, was assembled 
into two contigs that spanned 96.6% of the reference wBM genome with 99.3% nucleotide identity. However, a 
large gap (~30 Kb) of the reference wBM genome was not covered by the ONT assembly, although it was covered 
by individual reads. Using these reads as input into wtdbg2, a single contig 1,071,092 b.p. in length was generated, 

Figure 3. Alignment of the Canu_Filtlong assembly to the B. malayi reference genome shows a high degree of 
similarity. Canu_Filtlong assembly (y-axis) spans the 5 major contigs/sca#olds that make up >93% of the B. 
malayi reference genome and the wBM genome (x-axis). "e majority of disagreements between the assemblies 
occur in smaller contigs as seen by the dots in the lattice of vertical and horizontal lines in the upper right 
corner of the graph. Forward matches are displayed in blue, reverse matches are displayed in green. "e dotplot 
representing a 1-to-1 alignment of the two assemblies was generated with the 0.1 delta !le output from dnadi# 
using mummerplot with options -fat -png -!lter -medium options selected in the MUMmer package.
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As generating data for genome sequencing and assembly projects are expensive with conventional approaches, 
it is important to note that the total cost of equipment and consumables (in addition to common laboratory 
reagents) for the data generation portion of this project was less than $1,000 U.S. However, the computational 
costs of de novo assembly of a moderately sized genome are steep. For this study, we assembled the B. malayi 
genome using Canu on a remote server that contained substantially more compute resources than typically found 
on a personal computer, although assembly programs can be operated on less powerful machines. As well, the 
MinION platforms output an additional !le type (.fast5) not seen on other sequencing platforms, increasing the 
amount of storage space required for large-scale sequencing projects. "e ONT MinION platform has the poten-
tial to rapidly expand our understanding of the genomes for many neglected tropical parasites, however data stor-
age and computational cost may still be prohibitively high for some groups who do not have access to compute 
resources. "ird-party companies are increasing access to both external data storage and compute resources that 
can be leveraged to perform bioinformatic analysis.

In addition to generating and improving upon reference genomes, the MinION platform can facilitate 
genomic investigations of disease transmission. Indeed, the MinION has been at the center of multiple outbreak 
investigations including the West African Ebola virus epidemic and the Zika virus epidemic in the Americas37,38. 
Genomic studies of !larial parasites may provide useful epidemiological insights into worm transmission dynam-
ics and local population structure. In the context of the GPELF, which uses MDA of anti-helminthic drugs to 
interrupt parasite transmission, !ne-scale genomic studies might identify sources of residual transmission in 
communities following MDA. While MDA has proven e#ective at shrinking the map of lymphatic !lariasis 
endemic areas, residual transmission following multiple rounds of MDA has been documented in multiple coun-
tries39–47. A comparative genomic approach may help elucidate the dynamics of residual transmission by identi-
fying population speci!c markers to determine whether reinfection, reintroduction, or incomplete clearance has 
occurred following MDA48–50. While the ONT MinION has the potential to bring a genomics component to a 
large-scale disease elimination program such as the GPELF, technical hurdles will need to be overcome.

For instance, the sample type used in this study, whole adult worms, are typically not accessible in patients 
with !lariasis as they reside in “nests” within the lymphatic system4. Nests can be detected by ultrasound but can 
only be extracted by invasive surgery. Micro!lariae that circulate in the blood can be obtained by !nger prick as 
is routinely done for diagnostic purposes. However, micro!lariae are much smaller than adult worms and are 
targeted by the anti-parasitic drugs given during MDA. "is decreases the amount of parasite material available 
for obtaining high molecular weight DNA required for MinION sequencing. We were able to obtain over 1 µg of 
DNA from three adult worms, while thousands of micro!lariae would be needed to generate a similar quantity 
of DNA. Contamination with host DNA also becomes problematic when trying to sequence DNA isolated from 
circulating micro!lariae. "is can be improved by !ltration of micro!lariae from peripheral blood or di#eren-
tial lysis and puri!cation techniques for manual separation of parasite from host material. As well, molecular 

Figure 5. "e genome of the Wolbachia endosymbiont assembled into a single contig. "e outside light blue 
track represents the Wolbachia assembly using only ONT data. "e inner dark purple track represents the 
reference Wolbachia genome. "e light and dark grey track represents AT and GC content, respectively. A single 
insertion of 4.3 kb at 870 kb was not represented in the ONT assembly. Wolbachia genomes were aligned using 
MUMmer and visualized using Gview56.
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techniques like whole genome ampli!cation would work to increase the signal to noise ratio in complex biological 
samples, although they do introduce replication errors. Small et al. overcame this issue by sequencing individual 
L3 larvae collected from mosquitoes that fed on blood from an infected individual to shed light on intrahost 
population dynamics48. However, to discern transmission dynamics within a community, sequences would need 
to be obtained from many parasites, ideally from samples collected during routine monitoring and evaluation 
programs. Recent studies have shown the bene!t of optimizing DNA extraction techniques to generate whole 
genome sequences from a minute amount of parasite material51. Continuing to improve techniques for concen-
trating, purifying, and extracting DNA from worms in peripheral blood will be necessary to provide adequate 
input for MinION sequencing.

"e FR3 strain of B. malayi sequenced in this study is highly inbred and likely has little genetic variation. "e 
accuracy of our consensus assembly following polishing compared to the reference was greater than 99%, and 
most of the identi!ed mismatches were indels. Indels in homopolymer regions are the most common error type 
encountered on the ONT MinION platform, which implies that the majority of the mismatches are the result of 
sequencing errors as opposed to genuine variation52,53. "ese errors likely resulted in premature stop codons in 
the coding sequence of genes, as indicated through shorter average CDS lengths and an increase in the average 
number of CDS predicted per gene. "is error rate may still be too high to con!dently detect informative variants 
in a population. Further complicating matters, individuals with lymphatic !lariasis are typically infected with 
more than one genetically distinct worm49. Increasing sequencing depth to parse out speci!c haplotypes could 
overcome this problem. We obtained between 70–100x coverage across most of the genome with a single &owcell. 
However, this result was obtained with ideal input material from laboratory-controlled infections. As well, !ltered 
and subsampled data with preference given to the longest reads produced the best assemblies. "ese results sug-
gest that it may be possible to obtain su;cient sequencing depth by multiplexing samples on a single &ow-cell. 
Because multiple loci are needed to accurately represent population structures, whole genome approaches will 
be needed to identify informative markers51,54. However, at its current state, the platform would not be recom-
mended for population genomic studies of !larial worms.

"is study demonstrates the MinION’s ability to generate adequate data to de novo assemble the genome of a 
eukaryotic parasite at minimal cost. "e ONT platforms allow for genomic analysis of understudied organisms 
that were previously cost prohibitive, as well as in areas that did not have the infrastructure or capacity for genome 
sequencing. As the accuracy and ease of use of the MinION continues to improve, it may be feasible to include 
genomic analysis as a part of large-scale disease elimination programs.

Data availability
All sequencing data has been submitted to NCBI SRA database (BioProject: PRJNA565193) and the final 
assembly has been submitted to Nematode.net (www.nematode.net).
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