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ABSTRACT Staphylococcus aureus is a major cause of prosthetic joint infection (PJI),

which is characterized by biofilm formation. S. aureus biofilm skews the host im-

mune response toward an anti-inflammatory profile by the increased recruitment of

myeloid-derived suppressor cells (MDSCs) that attenuate macrophage proinflamma-

tory activity, leading to chronic infection. A screen of the Nebraska Transposon Mu-

tant Library identified several hits in the ATP synthase operon that elicited a height-

ened inflammatory response in macrophages and MDSCs, including atpA, which

encodes the alpha subunit of ATP synthase. An atpA transposon mutant (∆atpA) had

altered growth kinetics under both planktonic and biofilm conditions, along with a

diffuse biofilm architecture that was permissive for leukocyte infiltration, as observed

by confocal laser scanning microscopy. Coculture of MDSCs and macrophages with

∆atpA biofilm elicited significant increases in the proinflammatory cytokines interleu-

kin 12p70 (IL-12p70), tumor necrosis factor alpha (TNF-a), and IL-6. This was attrib-

uted to increased leukocyte survival resulting from less toxin and protease produc-

tion by ∆atpA biofilm as determined by liquid chromatography with tandem mass

spectrometry (LC-MS/MS). The enhanced inflammatory response elicited by ∆atpA

biofilm was cell lysis-dependent since it was negated by polyanethole sodium sulfa-

nate treatment or deletion of the major autolysin, Atl. In a mouse model of PJI,

∆atpA-infected mice had decreased MDSCs concomitant with increased monocyte/

macrophage infiltrates and proinflammatory cytokine production, which resulted in

biofilm clearance. These studies identify S. aureus ATP synthase as an important fac-

tor in influencing the immune response during biofilm-associated infection and bac-

terial persistence.

IMPORTANCE Medical device-associated biofilm infections are a therapeutic chal-

lenge based on their antibiotic tolerance and ability to evade immune-mediated

clearance. The virulence determinants responsible for bacterial biofilm to induce

a maladaptive immune response remain largely unknown. This study identified a

critical role for S. aureus ATP synthase in influencing the host immune response

to biofilm infection. An S. aureus ATP synthase alpha subunit mutant (∆atpA)

elicited heightened proinflammatory cytokine production by leukocytes in vitro

and in vivo, which coincided with improved biofilm clearance in a mouse model

of prosthetic joint infection. The ability of S. aureus ∆atpA to augment host pro-

inflammatory responses was cell lysis-dependent, as inhibition of bacterial lysis

by polyanethole sodium sulfanate or a ∆atpA∆atl biofilm did not elicit height-

ened cytokine production. These studies reveal a critical role for AtpA in shaping

the host immune response to S. aureus biofilm.
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S
taphylococcus aureus is an opportunistic pathogen that expresses a wide array of

virulence determinants to evade host immune responses (1–4). S. aureus can

asymptomatically colonize several sites of the human body, most often in the anterior

nares, where approximately 30% of individuals are persistent S. aureus carriers and up

to 60% of the population may be intermittent carriers (5, 6). A patient’s carrier status is

a risk factor for postsurgical S. aureus infection (7, 8). This is particularly relevant for

arthroplasty procedures, as S. aureus is a frequent cause of prosthetic joint infection

(PJI) with methicillin-resistant S. aureus (MRSA) strains responsible for up to half of

these infections (9, 10). As a result, patients who are S. aureus carriers are subjected to

decolonization protocols prior to arthroplasty as a standard of care at many medical

institutions (11, 12). Not only are PJIs often associated with bacteria that harbor genes

that encode antibiotic resistance, but they are also typified by biofilm formation, which

affords antibiotic tolerance and dampens host proinflammatory immune responses (1,

13, 14).

Biofilms are communities of bacteria encased by a self-produced matrix consist-

ing of proteins, carbohydrates, and extracellular DNA (eDNA) (15, 16). The extra-

cellular matrix provides structure to the biofilm and also allows for nutrient

distribution and the exchange of substrates (17). Additionally, there is metabolic

diversity within the biofilm, which provides rapid adaptation to stressors and

antibiotic tolerance (16). Our laboratory has previously shown in a mouse model of

PJI that S. aureus biofilm can actively suppress proinflammatory responses by the

preferential recruitment of myeloid-derived suppressor cells (MDSCs) and anti-

inflammatory monocytes/macrophages (MFs) to the site of infection (14, 18). These

MDSCs produce interleukin 10 (IL-10) to create an immunosuppressive environment

that allows for biofilm persistence (19, 20). Importantly, MDSC infiltrates are also

more pronounced in tissues from patients with PJI than with aseptic loosening,

reinforcing the findings in the mouse PJI model (21, 22).

A screen of the Nebraska Transposon Mutant Library (NTML) (23) was conducted to

identify mutations that elicited a heightened proinflammatory response from MFs and

MDSCs during coculture with mature S. aureus biofilm. Significant hits occurred in

genes within the ATP synthase operon, specifically in atpA, atpD, and atpG. These genes

encode the alpha, beta, and gamma subunits of the ATP synthase catalytic core,

respectively. ATP synthase is a central metabolic enzyme that is driven by the proton

motive force generated by the respiratory chain, and it functions to synthesize ATP (24,

25). With regard to S. aureus, a recent study identified that atpG was required for

virulence in a mouse model of skin and soft tissue infection (SSTI) (26). This was

attributed, in part, to a failure in intracellular acidification, which is required for the

optimal activity of fermentative enzymes that generate energy in the face of respira-

tion defects (26). However, the role of S. aureus ATP synthase in influencing biofilm

development and subsequent effects on host immunity has not yet been explored. In

this report, we show that atpA was essential for biofilm persistence in a mouse model

of PJI. Disruption of atpA reduced toxin and protease production, which resulted in a

heightened proinflammatory response due to enhanced leukocyte survival.

RESULTS

ATP synthase plays a critical role in dictating biofilm growth and structure. To

characterize the role of S. aureus ATP synthase in influencing MDSC and MF activation,

we focused on atpA since this gene is upstream of atpD and atpG in the operon and,

as such, was also inactivated in the NTML atpA mutant. These subunits compose the

catalytic core of ATP synthase; therefore, disruption of these genes renders the enzyme

nonfunctional. Bacterial ATP synthase is critical for energy production, homeostasis,

and maintaining the proton motive force (24). Therefore, we first characterized the

growth kinetics of ∆atpA, which was assessed in tryptic soy broth (TSB) and RPMI-1640

with 1% Casamino Acids (CAA) under both planktonic and biofilm growth conditions.

RPMI-1640 is a standard base medium for eukaryotic cells and was utilized throughout

this study for biofilm-leukocyte coculture experiments since it better models the

Bosch et al. ®
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mammalian tissue milieu compared to TSB. ∆atpA displayed a postexponential-phase

growth defect in both medium formulations compared to wild type (WT) (Fig. 1A).

Biofilm burden was reduced in ∆atpA during the first 3 days of growth but then reached

titers similar to WT biofilm (Fig. 1B). Biofilm architecture was notably different in ∆atpA,

with an increased maximum thickness and roughness coefficient compared to WT

(Fig. 1C to D). All the ∆atpA phenotypes were complementable (Fig. 1).

S. aureus ATP synthase attenuates MDSC and MF inflammatory responses to

biofilm. Previous studies from our laboratory have demonstrated that S. aureus biofilm

skews leukocytes to an anti-inflammatory state, which promotes bacterial persistence

(18, 19, 27). To determine if S. aureus ATP synthase-dependent pathways play a role in

this process, primary bone marrow-derived MDSCs and MFs were cocultured with

∆atpA biofilm to quantify cytokine production. MDSCs and MFs exposed to ∆atpA

biofilm produced significantly higher levels of the proinflammatory cytokines IL-12p70,

tumor necrosis factor alpha (TNF-a), and IL-6 than WT biofilm (Fig. 2A). Although the

anti-inflammatory cytokine IL-10 was also significantly elevated in response to ∆atpA

(Fig. 2A), collectively, the increases in IL-12p70, TNF-a, and IL-6 suggest a proinflam-

matory bias in response to ∆atpA biofilm. These findings were replicated in human

monocyte-derived MFs, where TNF-a, IL-6, and IL-8 production was significantly en-

hanced in response to ∆atpA compared to WT biofilm, whereas IL-10 release was

minimal and not affected (Fig. 2B). The increased cytokine production elicited by ∆atpA

FIG 1 S. aureus ∆atpA biofilm displays early growth defects and altered structure. (A and B) The growth of S. aureus WT, ∆atpA, and ∆atpA::atpA was

characterized by OD600 in tryptic soy broth (TSB) or RPMI-1640 supplemented with 1% Casamino Acids (CAA; mean 6 SD of one representative experiment;

n 5 6 biological replicates) (A) and CFU of in vitro biofilm at various stages of development (mean combined from 2 independent experiments; n 5 6 biological

replicates) (B). (C) Representative three-dimensional (3D) images of 4-day-old biofilm acquired using confocal laser scanning microscopy. (D) Maximum thickness

and roughness coefficient measurements were calculated by Comstat 2 analysis (mean combined from 1 to 4 independent experiments; n 5 3 to 15 biological

replicates). Significant differences are denoted by asterisks (*, P , 0.05, **, P , 0.01, and ****, P , 0.0001; one-way ANOVA with Tukey’s multiple-comparison

test).
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biofilm in mouse and human leukocytes was complementable (Fig. 2). Heightened

proinflammatory cytokine release was also elicited by ∆atpD and ∆atpG biofilm

(Fig. S1), highlighting the importance of ATP synthase in influencing leukocyte activa-

tion. Additionally, ∆atpA was more susceptible to killing by mouse MFs (Fig. S2),

demonstrating that functional ATP synthase renders S. aureus more resistant to MF

bactericidal activity.

We next determined if the diffuse structure of ∆atpA biofilm (Fig. 1C and D) altered

MF interactions since previous studies demonstrated that MFs are unable to invade a

WT S. aureus biofilm (28, 29). ∆atpA biofilm had more MFs contacting the biofilm

surface as visualized by confocal laser scanning microscopy, whereas MFs were ex-

cluded from WT biofilm (Fig. 3A). The diffuse structure of ∆atpA biofilm could make

pathogen-associated molecular patterns (PAMPs), such as lipoteichoic acid (LTA), pep-

tidoglycan (PGN), and eDNA, more accessible to invading leukocytes to account for

their heightened cytokine production. This possibility was further supported by the

finding that eDNA concentrations were significantly increased in ∆atpA biofilm (Fig. 3B).

S. aureus LTA and PGN are recognized by Toll-like receptor 2 (TLR2), and eDNA engages

TLR9, with both TLRs signaling through myeloid differentiation factor 88 (MyD88) (30,

31). To assess the role of PAMPs in potentiating the inflammatory response to ∆atpA

biofilm, cocultures were performed with TLR22/2 or MyD882/2 MDSCs and MFs. The

response to ∆atpA biofilm was equivalent for WT, TLR22/2, and MyD882/2 MDSCs and

MFs, indicating that the heightened cytokine response to ∆atpA biofilm was MyD88-

and TLR2-independent (Fig. 4). MyD882/2 MDSCs and MFs were unresponsive to TLR2

(Pam3CSK4 and PGN) and TLR9 (CpG DNA) agonists, confirming defects in TLR signaling

(Fig. S3). However, leukocyte viability during the biofilm coculture period revealed

increased MDSC and MF survival with ∆atpA compared to WT biofilm (Fig. 5). There-

fore, enhanced cytokine production by leukocytes cocultured with ∆atpA biofilm likely

results, in part, from an increased number of viable cells being able to sustain cytokine

production and not from improved recognition of biofilm antigens.

To identify proteins that may contribute to the increased survival of MDSCs and

MFs in response to ∆atpA biofilm, liquid chromatography with tandem mass spec-

trometry (LC-MS/MS) was performed. This analysis revealed a significant reduction in

many virulence factors and toxins in ∆atpA biofilm supernatants, including serine

FIG 2 AtpA is critical for attenuating leukocyte cytokine production in response to S. aureus biofilm. S. aureus 4-day-old biofilms were cocultured with 5 3 104

mouse bone marrow-derived MDSCs or macrophages (A) or human monocyte-derived macrophages (B) for 2 h, whereupon cytokine production was quantified

using a mouse or human cytometric bead array inflammation kit. Results represent the mean combined from 4 independent experiments (n 5 7 to 21 biological

replicates) (A) and mean of 1 experiment (n 5 3 biological replicates) (B) repeated with monocytes from 3 different donors. Significant differences are denoted

by asterisks (***, P , 0.001, and ****, P , 0.0001; one-way ANOVA with Tukey’s multiple-comparison test).
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proteases, a-hemolysin, and leukocidin-like proteins that are known to induce leuko-

cyte death (2) (Table 1; Fig. S4; Data Set S1), supporting the observations of more viable

MDSCs and MFs in ∆atpA biofilm cocultures and the lack of hemolysis by ∆atpA on

blood agar (data not shown). LC-MS/MS also confirmed decreased levels of ATP

synthase subunits as well as select metabolic enzymes in ∆atpA biofilm extracts

(Table 2; Fig. S4B; Data Set S2).

S. aureus ATP synthase contributes to biofilm persistence during orthopedic

implant infection. To elucidate the role of S. aureus ATP synthase during biofilm

infection, a mouse model of PJI was utilized. To ensure an equal growth phase of WT

and ∆atpA prior to in vivo inoculation, bacteria were collected in exponential phase at

an optical density at 600 nm (OD600) of 0.25 (Fig. S5). A similar heightened inflammatory

profile was observed during PJI with ∆atpA as was seen in vitro, with significantly higher

levels of IL-6, TNF-a, IFN-g, granulocyte colony-stimulating factor (G-CSF), granulocyte-

macrophage colony-stimulating factor (GM-CSF), monocyte chemoattractant protein 5

(CCL5), and interferon-inducible protein 10 kDa (CXCL10) expression, primarily at day 7

postinfection (Fig. 6). Although IL-10 levels were also significantly elevated in response

to ∆atpA (Fig. 6D), the totality of the data suggest a proinflammatory bias in response

to ∆atpA biofilm. Additional proinflammatory mediators were also elevated in ∆atpA-

infected mice, although these did not reach statistical significance (Fig. S6). The

enhanced proinflammatory response in ∆atpA-infected mice coincided with reduced

FIG 3 S. aureus AtpA prevents macrophage biofilm invasion and regulates eDNA release. (A) Bone marrow-derived

macrophages were stained with CellTracker deep red (pseudocolored blue) and cocultured for 2 h with 6-day-old S. aureus

biofilm transduced with a GFP reporter plasmid and imaged by confocal laser scanning microscopy. Representative 3D

(left) and side view (middle) z-stack images, as well as orthogonal views (right), are shown from two independent

experiments, each with one biological replicate and 5 to 6 images per replicate. (B) S. aureus biofilms were grown in 6-well

plates, whereupon eDNA was quantified at day 6 by quantitative PCR. Results represent the mean from one experiment

(n 5 3 biological replicates). Significant differences are denoted by asterisks (*, P , 0.05; one-way ANOVA with Tukey’s

multiple-comparison test).
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bacterial burden in the tissue, knee joint, and femur (Fig. 7A), concomitant with

decreased MDSC and increased monocyte and MF infiltrates in the infected tissue

(Fig. 7B) that was complementable (Fig. 7C). Furthermore, functional ATP synthase was

necessary for establishing persistent PJI, as ∆atpA-infected mice had no detectable

bacteria in implant-associated tissues at 3 months postinfection (Fig. S7).

Inhibiting cell lysis in DatpA attenuates leukocyte proinflammatory responses.

We next investigated potential mechanisms for the unique structure of ∆atpA

biofilm that may account for its ability to enhance leukocyte cytokine release. A

major component of the extracellular polymeric substance (EPS) of biofilm is eDNA,

which is released by the lysis of a subset of bacterial cells within the biofilm (32).

Since eDNA levels were significantly increased in ∆atpA biofilm (Fig. 3B), we

examined whether inhibiting biofilm lysis with polyanethole sodium sulfanate

(PAS), which blocks the major S. aureus autolysin Atl (33), would reverse the

heightened inflammatory response elicited by ∆atpA. PAS treatment of ∆atpA

biofilm significantly reduced eDNA levels (Fig. 8A), resulting in a more compact

structure (Fig. 8B and C). PAS had little effect on WT biofilm, both in terms of

morphology and eDNA release (Fig. 8). Treatment with DNase partially restored

∆atpA biofilm structure (Fig. 8B), suggesting the involvement of other cell lysis-

dependent factors. Overall, these data suggest that enhanced eDNA release par-

tially contributes to the altered structure of ∆atpA biofilm, which can be reversed

by inhibiting cell lysis. PAS treatment also diminished the enhanced proinflamma-

tory response of MDSCs and MFs to ∆atpA biofilm (Fig. 9). Even though DNase

treatment partially restored biofilm structure, it did not attenuate cytokine produc-

tion elicited by ∆atpA biofilm (Fig. 9), revealing that leukocyte activation is driven

by cell lysis-dependent factors other than eDNA in agreement with the findings

with MyD882/2 leukocytes (Fig. 4). PAS treatment significantly reduced macro-

phage viability following coculture with ∆atpA biofilm (Fig. 9D), in agreement with

FIG 4 Enhanced proinflammatory mediator production elicited by S. aureus ∆atpA biofilm is TLR2- and MyD88-independent. WT,

MyD882/2, and TLR22/2 bone marrow-derived MDSCs (A) and macrophages (B) were cocultured with 4-day-old WT or ∆atpA biofilm for

2 h, whereupon supernatants were analyzed using a mouse cytometric bead array inflammation kit. Results represent the mean combined

from 3 independent experiments (n 5 15 biological replicates). Significant differences are denoted by asterisks (*, P , 0.05, **, P , 0.01,

***, P , 0.001, and ****, P , 0.0001, one-way ANOVA with Tukey’s multiple-comparison test).
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its ability to diminish cytokine production to levels observed with WT biofilm

(Fig. 9B). A similar trend was observed with MDSCs, although this did not reach

statistical significance (Fig. 9C). Macrophage viability was also reduced during

coculture with DNase-treated ∆atpA biofilm, but this was less dramatic than PAS

(Fig. 9D).

Deletion of the major S. aureus autolysin Atl reverses heightened proinflam-

matory cytokine release from leukocytes in response to DatpA biofilm. A main

target of PAS in staphylococci is autolysins (33), and the major S. aureus autolysin,

Atl, plays a role in cell wall turnover, division, and biofilm formation (34, 35). Since

PAS treatment attenuated leukocyte proinflammatory cytokine production in re-

sponse to ∆atpA biofilm, we constructed a double-mutant strain (∆atpA ∆atl) to

assess the role of Atl-mediated cell lysis in ∆atpA biofilm. As expected, both atpA

and atl were critical for S. aureus growth in broth and biofilm culture, and the

∆atpA∆atl strain exhibited attenuated growth under both conditions (Fig. 10A and

B). However, the diffuse biofilm structure of ∆atpA was reversed in ∆atpA∆atl with

a significant reduction in the maximum thickness and roughness coefficients

(Fig. 10C and D). Atl-mediated lysis also contributed to the enhanced cytokine

production by MDSCs and MFs in response to ∆atpA biofilm since this was

significantly reduced in ∆atpA∆atl (Fig. 11). Taken together, our findings demon-

strate that the increased inflammatory properties of MDSCs and MFs cocultured

with ∆atpA biofilm is a lysis-dependent phenotype since the chemical inhibition of

cell lysis or Atl deletion dampens leukocyte cytokine production.

DISCUSSION

In the present study, a screen of the NTML identified a role for S. aureus ATP

synthase in attenuating MDSC and MF cytokine production, and S. aureus ∆atpA was

cleared in a mouse model of PJI, demonstrating the importance of ATP synthase in

FIG 5 S. aureus AtpA dictates leukocyte survival during biofilm coculture. Bone marrow-derived MDSCs

(A) or macrophages (B) were cocultured with 4-day-old biofilm for 2 h, whereupon cell viability was

accessed by flow cytometry using a live/dead stain. Results are presented as the percentage of live

CD45-positive (CD451) leukocytes and represent the mean combined from 3 independent experiments

(n 5 5 to 17 biological replicates). Significant differences are denoted by asterisks (****, P , 0.0001;

one-way ANOVA with Tukey’s multiple-comparison test).
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biofilm persistence. This report provides a link between bacterial ATP synthase activity

and host immunity during biofilm development, which is largely influenced by in-

creased bacterial cell lysis.

Previous studies have shown that the inactivation of S. aureus ATP synthase leads to

increased susceptibility to polymyxins, gentamicin, and nitric oxide (26, 36, 37). ATP

synthase is the primary energy generator for cellular respiration, so it was not unex-

pected that atpA disruption affected S. aureus growth in both planktonic and biofilm

conditions. Interestingly, ∆atpA biofilm elicited heightened proinflammatory cytokine

production in mouse MDSCs and MFs, and similar results were obtained with human

monocyte-derived MFs, demonstrating the translational relevance of these findings.

TABLE 1 Virulence factors are significantly reduced in supernatants from DatpA biofilm

Protein Gene

Log2 difference

(DatpA/WT)a

Serine protease SplC splC 24.34

Serine protease SplE splE 23.94

Serine protease SplF splF 23.89

Serine protease SplB splB 23.85

Uncharacterized leukocidin-like protein 2 SAB1876c 22.63

Lipase 1 lip1 22.50

Zinc metalloproteinase aureolysin aur 22.45

Alpha-hemolysin hly 22.38

Lipase 2 lip2 22.36

Lysozyme-like protein 7 lys-7 22.02

UPF0173 metal-dependent hydrolase SAUSA300_1653 SAUSA300_1653 21.92

1-phosphatidylinositol phosphodiesterase plc 21.75

Uncharacterized leukocidin-like protein 1 SAOUHSC_02241 21.53

Glutamyl-tRNA(Gln) amidotransferase subunit A gatA 21.43

Uncharacterized lipoprotein SAOUHSC_02650 SAOUHSC_02650 21.38

Staphopain A sspP 21.37

Aspartate carbamoyltransferase pyrB 21.37

50S ribosomal protein L16 rplP 21.36

Staphylokinase sak 21.31

Elastin-binding protein EbpS ebpS 21.30

33-kDa chaperonin hslO 21.20

50S ribosomal protein L17 rplQ 21.10

Clumping factor A clfA 21.10

Serine protease SplA splA 21.03

aAll proteins were significantly different; P , 0.05.

TABLE 2Metabolic protein expression is reduced in DatpA biofilm extracts

Protein Gene

Log2 difference

(DatpA/WT)a

ATP synthase subunit alpha atpA 25.08

ATP synthase gamma chain atpG 23.71

ATP synthase subunit beta atpD 23.39

ATP synthase subunit b atpF 23.35

Arginine deiminase arcA 21.74

Low-molecular-weight protein-tyrosine-phosphatase ptpA 21.68

Threonine-tRNA ligase thrS 21.59

Ornithine carbamoyltransferase argF 21.47

Carbamate kinase 2 arcC2 21.28

Alanine dehydrogenase 1 ald1 21.27

Dihydroorotase pyrC 21.26

L-Threonine dehydratase catabolic TdcB tdcB 21.24

Alcohol dehydrogenase adh 21.23

Carbamate kinase 1 arcC1 21.19

ATP synthase subunit delta atpH 21.13

DNA-binding protein HU hup 21.13

Argininosuccinate synthase argG 21.04

Formimidoylglutamase hutG 21.03

Clumping factor A clfA 21.02

aAll proteins were significantly different; P , 0.05.
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The increase in cytokine production likely resulted from improved leukocyte viability

based on the reductions in toxin and protease production by ∆atpA biofilm. Of note, a

prior screen of the NTML identified atpA as important for attenuating macrophage

proinflammatory cytokine production in response to planktonic S. aureus (38), revealing

the broader implications for bacterial ATP synthase-dependent mechanisms in dictat-

ing leukocyte activation.

The essential role of S. aureus ATP synthase in influencing the host inflammatory

response during biofilm formation in vivo was demonstrated by the finding that ∆atpA

was cleared in a mouse PJI model at 3 months postinfection. However, it is important

to emphasize the differential involvement of S. aureus ATP synthase during biofilm

versus nonbiofilm infections. For example, a recent study by Grosser et al. in a mouse

SSTI model demonstrated that S. aureus ∆atpG was cleared within 3 days (26), whereas

in the current study, ∆atpA was still detected at day 28 postinfection in a mouse PJI

biofilm model. This highlights the distinctions in S. aureus persistence between biofilm

versus acute tissue infection, and the metabolic state of bacteria in each setting may

explain the differential survival of S. aureus ATP synthase mutants.

S. aureus biofilms exhibit metabolic heterogeneity, with a subpopulation of meta-

bolically dormant organisms (39, 40). Therefore, it is conceivable that this population of

cells is more recalcitrant to the loss of S. aureus ATP synthase, enabling their increased

survival in the host. This is supported by a recent study demonstrating that ATP

depletion is responsible for promoting antibiotic-tolerant persister cells in S. aureus (41).

In contrast, S. aureus is metabolically active during acute tissue infection, which may

explain why bacteria are more sensitive to the loss of respiratory capacity and rapidly

cleared. Indeed, the reduced fitness of ∆atpG was attributed, in part, to a failure in

intracellular acidification, which is required for the optimal activity of fermentative

enzymes that generate energy in the face of respiration defects (26). A critical role for

S. aureus atpA in attenuating the host immune response in vivo was demonstrated by

the finding that ∆atpA elicited heightened proinflammatory mediator production in a

mouse model of S. aureus PJI. This coincided with a significant reduction in MDSCs

concomitant with increased monocyte and MF recruitment, a relationship that our

prior studies have established coincides with biofilm clearance (18, 20, 22, 27, 42).

FIG 6 S. aureus AtpA attenuates inflammatory mediator production during prosthetic joint infection (PJI). C57BL/6NCrl mice were infected with 103 CFU of S.

aureus WT or ∆atpA using a model of PJI. Implant-associated tissue was collected at days 3 or 7 postinfection, and inflammatory mediators quantified using

a multianalyte bead array. IL-6 (A), TNF-a (B), IFN-γ (interferon-gamma) (C), IL-10 (D), G-CSF (granulocyte colony-stimulating factor) (E), GM-CSF (granulocyte-

macrophage colony-stimulating factor) (F), CCL5 (regulated upon activation T cell expressed and secreted; RANTES) (G), and CXCL10 (interferon-inducible

protein 10 kDa) (H) concentrations were normalized to the protein concentration per sample and bacterial titer of each mouse to correct for differences in

infectious burden between WT and ∆atpA. Results from day 3 represent the mean combined from 2 independent experiments (n 5 10 mice/group) and day

7 from one experiment (n 5 5 mice/group). Significant differences are denoted by asterisks (*, P , 0.05; Student’s t test with Holm-Sidak correction).
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We hypothesized that the diffuse structure of ∆atpA biofilm might enable better

recognition of S. aureus PAMPs leading to increased cytokine production, which was

suggested by elevated eDNA levels in ∆atpA biofilm. However, this seems unlikely,

since cytokine levels were equivalent in MyD882/2 and WT leukocytes following

coculture with ∆atpA biofilm, although a role for MyD88-independent pathways cannot

be disregarded (i.e., nucleotide-binding and oligomerization domain [NOD] receptors).

In terms of TLR9 involvement, this was not unexpected since TLR9 is an endosomal

receptor (43) and MFs fail to phagocytose S. aureus biofilm (42), which would prevent

eDNA from triggering TLR9 intracellularly. Furthermore, treatment of ∆atpA biofilm

with DNase did not attenuate enhanced cytokine release by MDSCs or MFs.

A prior study from our laboratory revealed a critical role for bacterial lysis in blocking

MF phagocytosis in response to S. aureus biofilm (42). In the current report, we found

that inhibiting lysis of S. aureus ∆atpA using two independent approaches, namely, PAS

FIG 7 S. aureus AtpA is critical for regulating leukocyte influx and biofilm persistence. (A) C57BL/6NCrl mice were infected with 103 CFU of S. aureusWT or ∆atpA

using a model of prosthetic joint infection. Animals were sacrificed at the indicated intervals, whereupon bacterial burden in the implant-associated tissue, joint,

femur, and implant was quantified with results expressed as log10-transformed values from 3 independent experiments (n 5 13 to 16 mice/group). (B) Flow

cytometry was performed on implant-associated tissue to quantify infiltrating leukocyte populations. (C) Bacterial burden and (D) leukocyte influx are shown

for complementation studies at day 14 postinfection combined from 2 independent experiments (n 5 9 to 10 mice/group). Significant differences are denoted

by asterisks (*, P , 0.05, **, P , 0.01, ***, P , 0.001, and ****, P , 0.0001; one-way ANOVA with Tukey’s multiple-comparison test).

Bosch et al. ®

September/October 2020 Volume 11 Issue 5 e01581-20 mbio.asm.org 10

 o
n
 O

c
to

b
e
r 2

7
, 2

0
2
0
 b

y
 g

u
e
s
t

h
ttp

://m
b
io

.a
s
m

.o
rg

/
D

o
w

n
lo

a
d
e
d
 fro

m
 



treatment or a ∆atpADatl strain, negated the enhanced proinflammatory cytokine

response by MDSCs and MFs. This finding suggests that factors released following

∆atpA biofilm lysis are responsible for promoting leukocyte proinflammatory activity.

Additionally, LC-MS/MS analysis revealed a significant reduction in numerous toxins

and proteases in ∆atpA compared to WT biofilm. Among the proteins that were

significantly reduced in ∆atpA biofilm were serine proteases of the Spl family (SplB,

SplC, SplE, and SplF) and aureolysin, in addition to several toxins, such as Hla and

leukocidin-like proteins. It is well established that Hla and leukocidins induce leukocyte

lysis by binding to specific immune receptors (2, 44–46), which suggested that the

reduction in these virulence factors in ∆atpA biofilm may be responsible for the

increased viability of MDSCs and MFs. Indeed, this was observed and suggested that

the increase in proinflammatory cytokines in response to ∆atpA biofilm resulted from

a larger number of viable leukocytes that continued to produce cytokines. This high-

lights the critical role of toxins targeting leukocyte survival, in agreement with earlier

reports (47). Our recent study identified many of the same proteins to be responsible

for inhibiting MF phagocytosis in response to S. aureus biofilm (42).

FIG 8 Inhibiting bacterial lysis negates the aberrant morphology and eDNA levels of S. aureus ∆atpA biofilm. (A) Biofilms were grown

in 6-well plates in the presence of PAS (10 mg/ml), and eDNA concentrations were quantified at day 3 (n 5 2 to 3 biological replicates).

(B) GFP-expressing WT or ∆atpA were grown in 8-well chamber slides and treated with DNase (100 U/ml) or PAS (10 mg/ml) at the time

of biofilm inoculation and throughout the 4-day maturation period, whereupon images were acquired by confocal laser scanning

microscopy. (C) Maximum thickness of biofilms was calculated using Comstat 2 combined from 1 to 3 independent experiments (n 5 3

to 9 biological replicates). Significant differences are denoted by asterisks (****, P , 0.0001; two-way ANOVA with Tukey’s multiple-

comparison test).
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It remains unclear what combination of factors is responsible for inhibiting leuko-

cyte proinflammatory responses to WT biofilm as demonstrated in this study. The

metabolic deficit following the loss of ATP synthase in S. aureus likely impinges on

multiple pathways, making the ability to pinpoint the phenotypes to one factor

unlikely. Nevertheless, this study highlights a previously unappreciated role for ATP

synthase in modulating the host immune response to S. aureus biofilm and infection

persistence.

MATERIALS AND METHODS

Animals. C57BL/6NCrl (RRID IMSR_CRL:27), MyD882/2 (RRID IMSR_JAX:009088), and TLR22/2 mice

(RRID IMSR_JAX:022507) were bred in-house at the University of Nebraska Medical Center (UNMC), and

mice of the same sex were randomized into standard-density cages upon weaning (n 5 5 animals per

cage). Mice were housed in a restricted-access biosafety level 2 (BSL2) room equipped with ventilated

microisolator cages and maintained at 21°C under a 12-h light:12-h dark cycle with ad libitum access to

water and chow with nestlets provided for enrichment. This study was conducted in strict accordance

with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National

Institutes of Health. The protocol was approved by the UNMC Institutional Animal Care and Use

Committee (18-013-03).

S. aureus strains. The strains used in this study are described in Table S1. The S. aureus clinical isolate

USA300 LAC 13C was cured of the LAC-p03 erythromycin (erm) resistance plasmid (23, 48) and is referred

to as WT. The USA300 JE2 NTML strain DatpA was moved to the LAC USA300 13C background via f11

transduction as previously described (23). Strain background was validated by plasmid purification, and

∆atpA was confirmed by growth on erm plates and PCR using atpA_fwd and atpA_rev primers (Table S1).

Chromosomal complementation of ∆atpA was performed by replacing the transposon for the native

gene using the allelic exchange plasmid pJB38 as previously described (49). Briefly, the atpA gene flanked

with 1-kb arms was amplified using ATPase_alpha_C_fwd and ATPase_alpha_C_rev primers, and the

shuttle vector was amplified using pJB38_fwd and pJB38_rev primers (Table S1). The resulting fragments

were assembled using the NEBuilder HiFi DNA assembly cloning kit (New England Biolabs) to generate

the pAQ67 plasmid that was electroporated into E. coli E10B. Subsequently, pAQ67 was electroporated

into S. aureus RN4220 followed by transduction into ∆atpA using f11 to perform the allelic exchange

process (49, 50). The ∆atpA∆atl strain was constructed by f11 transduction of the NTML atpA mutation

into a USA300 LAC 13C atl clean deletion mutant (∆atl) (51), with atpA and atl loss verified by PCR. To

FIG 9 AtpA-dependent inhibition of leukocyte cytokine production is cell lysis-dependent. Bone marrow-derived MDSCs (A) or macrophages (B) were

cocultured for 2 h with biofilm treated with DNase (100 U/ml) or PAS (10 mg/ml), whereupon supernatants were analyzed using a mouse cytometric bead array

inflammation kit (results represent the mean combined from 3 independent experiments; n 5 13 to 16 biological replicates). Viability of MDSCs (C) and

macrophages (D) following PAS or DNase treatment with results presented as the percentage of live CD451 leukocytes (n 5 5 to 6 biological replicates from

2 independent experiments). Significant differences are denoted by asterisks (**, P , 0.01, ***, P , 0.001, and ****, P , 0.0001; two-way ANOVA with Tukey’s

multiple-comparison test).
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visualize biofilm development, bacterial strains were transduced with pCM29-green fluorescent protein

(GFP) (52) using f11 and confirmed by chloramphenicol resistance.

S. aureus planktonic and biofilm growth. S. aureus strains were grown on Trypticase soy agar (TSA)

with 5% sheep blood 1 day prior to the inoculation of broth cultures. For in vitro biofilm experiments,

single colonies were added to 5 ml of RPMI-1640 supplemented with 1% CAA, 1% L-glutamine, and 1%

HEPES (referred to as biofilm medium) and grown overnight at 37°C with constant shaking at 250 rpm

for 16 to 18 h prior to use. Overnight cultures were diluted to an OD600 of 0.05 for inoculation into 96-well

and 12-well plates, or 8-well glass-bottom chamber slides (Thermo Fisher Nunc) that were previously

coated with 20% human plasma in carbonate-bicarbonate buffer overnight at 4°C. Chloramphenicol

(5 mg/ml) was added to biofilm medium for maintenance of the pCM29-GFP plasmid. Static biofilms were

grown at 37°C with approximately 50% of medium replaced every 24 h. Where indicated, biofilms were

treated with 100 U DNase or 10 mg/ml of PAS beginning at the time of biofilm inoculation to assess the

role of extracellular DNA or cell lysis, respectively, on MDSC and MF inflammatory properties.

Growth rates of S. aureus strains in liquid medium were determined using an Infinite Pro 200 (Tecan).

Static biofilms were visualized using a Zeiss 710 META laser scanning confocal microscope (Carl Zeiss) at

340 magnification. To obtain a representation of biofilm development and structure, z-stack images

(0.88-mm sections) were collected from 2 to 3 biological replicates (wells) for each strain, with results

confirmed in 2 to 3 independent experiments. Maximum thickness and the dimensionless roughness

coefficient of biofilms was determined using Comstat 2 (ImageJ) (53–55).

MDSC and MF cultures. Primary bone marrow-derived MDSCs and MFs were prepared from

C57BL/6, MyD882/2, or TLR22/2 mice as previously described (19, 22, 56). MDSCs were expanded for

4 days in RPMI-1640 supplemented with 10% fetal bovine serum (FBS), 1% L-glutamine, 1% HEPES, 1%

antibiotic-antimitotic, 50 mM beta-mercaptoethanol, 40 ng/ml GM-CSF, and 40 ng/ml G-CSF with

40 ng/ml IL-6 added at day 3 of culture. Following expansion, MDSCs were purified using an anti-Ly6G

microbead kit (Miltenyi Biotec). MFs were propagated for 7 days in RPMI-1640 supplemented with 10%

FIG 10 Atl deletion reverses the aberrant morphology of S. aureus ∆atpA biofilm. (A) OD600 measurements of S. aureus strains in tryptic soy broth (TSB) or

RPMI-1640 supplemented with 1% Casamino Acids (CAA) (n 5 6 biological replicates). (B) CFU of in vitro biofilms at various stages of maturation (n 5 3 to 6

biological replicates). (C) Representative 3D images of 4-day-old biofilm acquired using confocal laser scanning microscopy. (D) Maximum thickness and

roughness coefficient measurements were calculated by Comstat 2 analysis combined from 2 independent experiments (n 5 12 biological replicates).

Significant differences are denoted by asterisks (**, P , 0.01, ***, P , 0.001, and ****, P , 0.0001; one-way ANOVA with Dunnett’s multiple-comparison test with

WT control [B] or one-way ANOVA with Tukey’s multiple-comparison test [D]).
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FBS, 1% L-glutamine, 1% HEPES, 1% antibiotic-antimitotic, 50 mM beta-mercaptoethanol, and 10%

conditioned medium from L929 fibroblasts as a source of macrophage colony-stimulating factor (M-CSF)

(28, 57). For visualizing MF invasion into biofilm by confocal microscopy, MFs were stained with

CellTracker deep red (1 mM; Invitrogen) according to the manufacturer’s instructions.

Human monocytes were obtained from healthy human donors by the UNMC Elutriation Core

Facility by countercurrent centrifugal elutriation, in full compliance and with approval of the

Institutional Review Board (IRB). Cells were cultured at 1 3 106 cells/ml in RPMI-1640 supplemented

with recombinant human M-CSF, 10% human serum, and 1% antibiotic-antimitotic for 7 days until

harvest for experiments.

Quantification of cytokine production by leukocytes following biofilm coculture. MDSCs and

MFs (5 3 104/well) were cocultured with biofilm for 2 h at 37°C in a 96-well plate, whereupon plates

were centrifuged and supernatants stored at 220°C until analysis. Cytokine production was quantified

using BD cytometric bead array mouse (catalog no. 552364) and human (catalog no. 551811) inflam-

mation kits (both from BD Biosciences) according to the manufacturer’s instructions and analyzed by flow

cytometry using a BD LSR II.

Gentamicin protection assay. To determine whether S. aureus ∆atpA was more susceptible to MF

killing, a gentamicin protection assay was utilized. Overnight cultures of WT, ∆atpA, and ∆atpA::atpA were

washed 1 time with PBS and incubated with MFs at a multiplicity of infection (MOI) of 1:1, 5:1, and 10:1

(bacteria:MF) in a 96-well plate for 1 h at 37°C to allow for phagocytosis. After 1 h, plates were

centrifuged, and fresh medium containing 100 mg/ml gentamicin was added for 30 min at 37°C to kill

residual extracellular bacteria. Next, fresh medium containing low-dose gentamicin (1 mg/ml) was added,

and MFs were incubated for various intervals over a 24-h period. At the indicated time points, MFs were

lysed with 100 ml sterile H2O followed by serial dilution on blood agar plates to quantify intracellular

bacterial burden.

Orthopedic implant model. To evaluate the importance of atpA during biofilm development in vivo,

a mouse model of S. aureus PJI was used as previously described (58). Since ∆atpA had a postexponential-

phase growth defect in TSB compared to WT, cultures were grown overnight at 37°C at 250 rpm and

reinoculated at a starting OD600 of 0.05 the following day and allowed to replicate for 4 h. There was no

significant difference in the growth rate or number of viable bacteria following the 4-h subculture

(Fig. S5). Sex- and age-matched C57BL/6NCrl mice (8 to 10 weeks old) were anesthetized with a

ketamine/xylazine cocktail, and a medial parapatellar arthrotomy was performed to expose the distal

femur. A burr hole was created in the femoral intercondylar notch using a 26-gauge needle, whereupon

a 0.8-cm-long orthopedic-grade Kirschner wire (0.6 mm diameter, Nitinol [nickel-titanium]; Custom Wire

FIG 11 Atl deletion prevents the enhanced cytokine response elicited by S. aureus ∆atpA biofilm. Bone marrow-derived MDSCs

or macrophages were cocultured with biofilm for 2 h, whereupon supernatants were analyzed using a mouse cytometric bead

array inflammation kit. Results represent the mean combined from 2 independent experiments (n 5 6 biological replicates).

Significant differences are denoted by asterisks (**, P , 0.01, ***, P , 0.001, and ****, P , 0.0001; one-way ANOVA with Tukey’s

multiple-comparison test).
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Technologies) was inserted into the intramedullary canal, leaving approximately 1 mm of the wire

protruding into the joint space. Approximately 103 CFU of either WT, ∆atpA, or ∆atpA::atpA was

inoculated into the joint cavity, with inocula verified the following day after growth on blood agar. The

surgical site was sutured closed, and Buprenex (Reckitt Benckiser Health Care) was administered

immediately following surgery and 24 h later for pain relief. Animals did not display any ambulatory

defects or pain behaviors after this period and exhibited normal activity.

Flow cytometry. Leukocyte infiltrates into the surrounding soft tissue following S. aureus PJI were

characterized using flow cytometry as previously described (59). Briefly, the soft tissue surrounding the

knee joint was excised, disrupted using the blunt end of a 3-ml syringe plunger in PBS containing

protease inhibitor (Thermo Scientific, Rockford, IL), and passed through a 70-mm filter. Red blood cells

(RBCs) were lysed using RBC lysis buffer (BioLegend, San Diego, CA), and the single-cell suspension was

stained with CD11b-fluorescein isothiocyanate (FITC), CD45-allophycocyanin (APC), Ly6G-phycoerythrin

(PE), Ly6C-peridinin chlorophyll protein (PerCP)-Cy5.5, F4/80-PE-Cy7 (BioLegend and BD Biosciences, San

Diego, CA), and a Live/Dead fixable blue dead cell stain kit (Invitrogen, Eugene, OR) according to the

manufacturers’ instructions. Cell populations were analyzed using a BD LSR II and FACSDiva software (BD

Bioscience, San Jose, CA), where MDSCs (CD11bhigh Ly6G1 Ly6C1 F4/802), neutrophils (CD11blow Ly6G1

Ly6C1 F4/802), monocytes (Ly6G2 Ly6C1 F4/802), and MFs (Ly6G2 Ly6C2 F4/801) are reported as the

percentage of live CD451 cells.

Multianalyte microbead array. To quantify inflammatory mediator expression associated with WT

and ∆atpA PJI, homogenates prepared from the soft tissue surrounding the infected joint were analyzed

using a Milliplex MAP mouse cytokine/chemokine magnetic bead panel (catalog no. MCYTMAG-70K-

PX32; Millipore Sigma, Billerica, MA). Results were normalized to the total protein concentration per

sample and bacterial burden to adjust for the differences in titer between WT and ∆atpA-infected

animals.

Mass spectrometry. The conditioned medium and cell extracts from WT and ∆atpA biofilm were

evaluated by LC-MS/MS to compare changes in the extracellular and intracellular proteome,

respectively. WT and ∆atpA biofilm were grown in 6-well plates as described above, whereupon

supernatants were collected, centrifuged at 14,000 rpm for 10 min, and passed through a 0.2-mm

filter to remove any bacterial cells, followed by vacuum centrifugation to concentrate extracellular

proteins. Biofilms were disrupted in cell lysis buffer (13 PBS supplemented with 13 protease

inhibitor and one-half phosphatase inhibitor tablet [both from Thermo Fisher Scientific]) and lysed

using a bead beater (Bullet Blender, Next Advance), and cell membranes were removed by

centrifugation at 14,000 rpm for 10 min.

The protein concentration for each sample was determined using a bicinchoninic acid (BCA) protein

assay kit (Pierce). Protein digestion for mass spectrometry and tandem mass tag (TMT) labeling of

peptides were conducted following the manufacturer’s recommendations. Briefly, 100 mg of protein from

each sample was reconstituted to 100 ml with 100 mM triethylammonium bicarbonate (TEAB). Proteins

were next reduced with 5 ml of 200 mM tris (2-carboxyethyl) phosphine (TCEP) (1 h incubation at 55°C)

and alkylated with 5 ml of 375 mM iodoacetamide (IAA) for 30 min in the dark at room temperature (RT).

The reduced and alkylated proteins were purified with acetone precipitation at 220°C overnight. The

protein precipitates were collected by centrifugation at 8,000 3 g for 10 min at 4°C, and the pellets were

air-dried and resuspended in 100 ml of 50 mM TEAB. Next, proteins were digested for 24 h at 37°C using

2.5 mg of trypsin per sample. The amount of peptide yield in each sample was determined using a Pierce

colorimetric peptide assay kit. The amounts of peptides to be tagged were normalized and mixed with

41 ml of TMT reagent (TMTsixplex; Thermo Fisher Scientific) freshly dissolved in acetonitrile (ACN,

20 mg/ml) for 1 h at RT, and the reaction was quenched with 8 ml of 5% hydroxylamine (15 min incubation

at RT). Tagged tryptic peptides were pooled and concentrated to ;20 ml by vacuum centrifugation and

analyzed using a high-resolution mass spectrometry nano-LC-MS/MS Tribrid system (Orbitrap Fusion

Lumos coupled with an UltiMate 3000 high-performance liquid chromatography (HPLC) system; Thermo

Scientific).

Approximately 800 ng of peptides were run on pre- (Acclaim PepMap 100, 75 mm by 2 cm;

nanoViper) and analytical columns (Acclaim PepMap RSLC, 75 mm by 50 cm, nanoViper; both from

Thermo Scientific). Peptides were eluted using a 125-min linear gradient of ACN (4 to 45%) in 0.1%

fluorescent antibody (FA) and introduced to the mass spectrometer with a nanospray source. The MS

scan was performed using the following detector settings: Orbitrap resolution, 120,000; scan range,

375 to 1,500 m/z; replicative-form (RF) lens, 60%; automatic gain control (AGC) target, 5.0E5; and

maximum injection time, 150 ms. Ions with an intensity higher than 5.0E3 and a charge state of 2 to

7 were selected in the MS scan for further fragmentation. MS2 scan parameters included collision-

induced dissociation (CID) collision energy, 35%; activation Q, 0.25; AGC target, 1.0E4; and maximum

injection time, 150 ms. MS3 scan parameters were high-energy collisional dissociation (HCD) colli-

sion energy, 65%; Orbitrap resolution, 50,000; scan range, 100 to 500 m/z; AGC target, 1.0E5, and

maximum injection time, 200 ms.

All MS- and sequential mass spectrometry (MSn)-collected spectra were analyzed using a Protein

Discoverer pipeline (version 2.1; Thermo Fisher Scientific). SEQUEST HT was used to search the Swiss-Prot

database (selected for S. aureus, 2019_03; 11,082 entries) using the following parameters: enzyme,

trypsin; maximum missed cleavage, 2; precursor mass tolerance, 10 ppm; peptide tolerance, 60.02 Da;

fixed modifications (carbamidomethyl [C] and TMTsixplex [any N terminus]); and dynamic modifications

(oxidation [M] and TMTsixplex [K]). The parameters for reporter ions quantifier were assigned as follows:

integration tolerance, 20 ppm; integration method, most confident centroid; mass analyzer, FTMS

(Fourier transform mass spectrometry); MS order, MS3; activation type, HCD; minimum collision energy,
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0; and maximum collision energy, 1,000. A percolator was used to calculate the false discovery rate (FDR)

for the peptide spectral matches using the following parameters: target FDR (strict), 0.01; target FDR

(relaxed), 0.05; and validation based on q value. Quantification parameters were set as follows: peptides

to use, unique; and normalization mode, total peptide amount. The complete set of differentially

expressed proteins is presented in Data Set S1 and S2 in the supplemental material. Proteomaps (60) was

used to generate Voronoi treemaps to visualize differentially expressed proteins in biofilm supernatant

and extracts (Fig. S4).

Extracellular DNA quantification. eDNA isolation from static biofilms grown in 6-well plates was

performed as described previously (61). Briefly, after 6 days of growth, biofilms were chilled to 4°C, 50 mM

EDTA was added to the supernatant, and biofilms were mechanically disrupted in TES Buffer (Tris-HCl, pH

8.0, with 500 mM NaCl). Samples were subjected to subsequent phenol:chloroform:isoamyl alcohol

(25:24:1) and chloroform:isoamyl alcohol (24:1) extractions and stored overnight at 220°C in 10% 3 M

sodium acetate in EtOH. The next day, eDNA was pelleted by centrifugation and washed prior to

resuspension in Tris-EDTA (TE) buffer. For eDNA quantification, qPCR for gyrA was performed using

LightCycler DNA Master SYBR Green I (Roche).

Statistics. Significant differences were determined using a one- or two-way analysis of variance

(ANOVA) with Tukey’s or Dunnett’s multiple comparisons, apart from the in vivo studies and gentamicin

protection assay where significance between two groups was determined by a Student’s t test with

Holm-Sidak correction using GraphPad Prism version 6.04. Outliers were identified using a ROUT test

(Q 5 1%) in Prism. For all analyses, P , 0.05 was considered statistically significant.
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