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Abstract 

With one third of the Hepatitis B virus (HBV) infection population of the world, chronic 

Hepatitis B (CHB) has become a top burden in China. CHB is a lifelong infection with HBV 

which can cause serious health problems, like cirrhosis, liver cancer or even death. HBV 

infection is known to result in various clinical conditions, including asymptomatic HBV 

carriers to chronic hepatitis and primary hepatocellular carcinoma. Several studies have 

shown that host genetic susceptibility could be an important factor that determines these 

various outcomes of HBV infection. Many Single Nucleotide Polymorphisms (SNPs) and 

Copy Number Variations (CNVs) have been associated with genetic susceptibility for 

many diseases including the HBV infection. SNPs and CNVs of the host could determine 

the CHB outcomes and disease progression. In this project, we conducted SNP-based 

and copy number polymorphic region (CNPR) - based CNV analysis of the genotyping 

data generated from 2,689 CHB patients and 1,200 healthy controls in Chinese 

population by Illumina Human OmniExpress BeadChip and OmniZhonghua BeadChip.  

Based on the analysis results, we found 8 deletion CNPRs, as well as 3 duplication 

CNPRs were significantly changed between CHB patients and healthy controls. Moreover, 

there were nine genes revealed the copy number loss, including FGFR3 (p=1.49X10-7), 

FGR-3 (p=1.49X10-7), LETM1 (p=1.49X10-7), TACC3 (p=1.49X10-7), TMEM129 

(p=1.49X10-7), PANK4 (p=4.55X10-4), PLCH2 (p=4.55X10-4), CED-6 (p=2.04X10-4), 

DIRC1 (p=2.04X10-4), as well as three genes revealed the copy number gain, including 

FLJ43080 (p=2.50X10-5), CSMD3 (p=6.288X10-5), MGAT4C (p=1.52X10-4) in CHB 

patients compared with healthy controls. It is important to understand the functions of 

these genes and the mechanisms through which these genes are associated with HBV 



infection and CHB development. Through the CNVs analysis, we provided potential 

therapeutic targets and novel diagnosis markers for HBV infection and CHB development.   

 

Introduction 

Southern Medical University Nanfang Hospital is a large-scale comprehensive tertiary 

hospital with medical, teaching, scientific research and preventive health care. The 

comprehensive ranking of the Nanfang Hospital is stable at around 15 in the domestic 

authority list, and 15 specialties have entered the top ten rankings of China's best 

specialists list (Fudan Edition).  

The liver disease center in Nanfang Hospital is the “State Key Laboratory of Organ Failure 

Research” and the “Guangdong Provincial Key Laboratory of Viral Hepatitis Research” 

and the member of the Chinese Medical Association Infectious Diseases. The center 

consists of two parts: the clinical department for patients with various liver diseases and 

the laboratory for basic research on liver diseases. In the past ten years, the research 

group has been focusing on the genomic variation and molecular mechanism of liver 

cancer development, and has achieved a series of research results. They published many 

articles in the leading journals in the field of genetics and liver diseases, like Nature 

Genetics and Hepatology. During these studies they have accumulated abundant 

experience in liver disease research and collected a large number of samples. They have 

a high-quality sample library of up to 3,000 liver cancer samples and more than 4,000 

chronic hepatitis B control samples closely matched with liver cancer cases, including the 

Qidong area in Jiangsu Province, covering many high-risk areas of the country. In 



summary, Nanfang Hospital is an outstanding teaching hospital and great place for me 

completing my capstone project. 

Hepatitis B is a liver infection disease caused by hepatitis B virus (HBV) and spreads via 

blood or body fluids among people (CDC, 2018a). HBV infection can result in various 

outcomes, from a short-term illness (Acute hepatitis B) to a lifelong infection (Chronic 

hepatitis B) (CDC, 2018b). The risk of developing a chronic hepatitis B infection depends 

on the age of who first exposure to HBV. Approximately 90% of infants who infected with 

HBV will develop a chronic hepatitis B (CHB). CHB can cause serious health issues, like 

cirrhosis, liver cancer or even death (CDC, 2018b). Globally, hepatitis B resulted in 

887,000 deaths due to complications, including cirrhosis and hepatocellular carcinoma, 

in 2015 (WHO, 2018). An estimated 257 million people are living with chronic hepatitis B 

virus infection worldwide, of which around 90 million reside China (WHO, 2016). With 

over one third of the HBV infected population of the world, China has been identified as 

the area with highest hepatitis burden (WHO, 2016). Although CHB has been found that 

was associated with approximately 90% of neonatal HBV infection and 30% of childhood 

infection (Yan et al., 2014). The mechanisms of HBV infection and CHB development still 

remains largely unknown. With rapid advances in genome-wide association studies 

(GWAS), genetic variations have received more attention and the identification of 

disease-related genetic variations has improved our understanding in the pathway of 

disease development and provided tons of potential targets for the therapeutic treatment.  

Host genetic susceptibility has also been demonstrated as an important factor which 

determines the outcome of HBV infection, such as single nucleotide polymorphism (SNPs) 



and gene copy number variations (CNVs) (He et al., 2006; Li et al., 2017a; Qiu et al., 

2017), but is not well documented.  

SNP, the most common type of genetic variation among people, is a variation in a single 

nucleotide that occurs within a gene or in a regulatory region near a gene (NIH, 2018). 

As most popular class of genetic variation among people, SNPs were demonstrated affect 

disease progression of HBV infection in many studies (Chang et al., 2014; Komatsu et al., 

2014; Li et al., 2017b; Tai et al., 2017). CNVs, another important type of genetic variation, 

received more attention recently. CNVs range from 1 Kbp to several Mbp, are defined as 

deletions or duplications of genome segments. Recently, CNVs were believed to be the 

causes of many human diseases and were associated with the susceptibility of various 

liver diseases, including HCV infection and Hepatocellular carcinoma  (Budzko et al., 

2016; Zhou et al., 2017). To date, the association of CNV with chronic Hepatitis B infection 

are still not systematically documented. 

To identify the CNVs associated with susceptibility to chronic HBV infection and outcomes, 

we recruited 2,689 CHB patients and 1,200 healthy controls from Qidong Liver Cancer 

Institute in Qidong County, China. By using the computational tool PennCNV and 

ParseCNV, we analyzed the genotyping data generated by Illumina Human OmniExpress 

BeadChip and OmniZhonghua BeadChip and evaluated the association of SNPs and 

CNVs with CHB susceptibility. We identified novel CHB associated CNVs in genes, which 

advanced the understanding of genetic factors influencing HBV infection and outcome 

and provided the potential targets related with HBV infection which have potential 

implication in prevention and clinical care of HBV infection and CHB patients.  

 



Research Methods 

Populations 

The 2,689 CHB patients and 1,200 healthy controls used in the initial GWAS scan were 

recruited by Qidong Liver Cancer Institute in Qidong County, Jiangsu Province in eastern 

China, during the period from May 2006 to December 2012. CHB patients were positive 

for both hepatitis B surface antigen (HBsAg) and antibody immunoglobulin G to hepatitis 

B core antigen for at least 6 months. The controls were collected during the same period 

time as the CHB cases were enrolled. They were randomly selected from a pool of healthy 

volunteers who visited the Qidong Liver Cancer Institute for their routinely scheduled 

physical examinations. Both the cases and controls were residents in Qidong County, 

which is one of the highest endemic regions for chronic hepatitis B virus (HBV) infection 

and HBV-related hepatocellular carcinoma (HCC) in China. For each subject, 3 ml whole 

blood was obtained for extraction of genomic DNA and 3 ml serum sample was obtained 

for detection of HBsAg and antibodies to hepatitis C virus (HCV), and human 

immunodeficiency virus (HIV) using an enzyme linked immunosorbent assay (ELISA). 

The characteristic information for each subject, including age, gender, ethnicity, HBV 

infection status and history of other liver diseases were also collected with a standard 

interviewer-administered questionnaire and/or from medical records. The exclusion 

criteria for the cases were 1) positive for antibodies to HCV, or HIV, 2) with a history of 

any other types of liver disease, such as autoimmune hepatitis, toxic hepatitis, and 

primary biliary cirrhosis, 3) not residents in Qidong County. The exclusion criteria for the 

controls, in addition to the three items of exclusion criteria for the cases, were 1) positive 



for HBsAg, 2) with a history of HBV vaccination, 3) with a history of CHB, 4) with a history 

of HCC, 5) less than 30 years old.  

 

Genotyping and quality control in GWAS 

The genome-wide genotyping analysis was conducted using Illumina Human 

OmniExpress BeadChip (delivering superior power for GWAS, providing high sample 

throughput with comprehensive genomic content and including 733,202 single-nucleotide 

polymorphisms [SNPs] across the genome) for cases and OmniZhonghua BeadChip 

(delivering exceptional coverage of common, intermediate, and rare variation found within 

Chinese populations for GWAS and including 900,015 SNPs, containing ~80% of the 

SNPs in HumanOmniExpress BeadChip) for controls at Genergy Biotechology Inc. 

(Shanghai, China). Genotyping was performed according to the Infinium HD protocol from 

Illumina (San Diego, CA).   

During individual quality control of genotyping data, samples were removed if they (i) had 

an overall genotyping rate of <95%; or (ii) were duplicates or showed familial relationships 

(PI_HAT > 0.025). SNPs will be excluded if they had (i) a call rate of <95%; (ii) a minor 

allele frequency (MAF) of <0.01; or (iii) P < 1 × 10−3 in a Hardy-Weinberg equilibrium test 

among controls.  

During individual quality control analysis of CNV calling, samples with highly variable 

signal intensity were removed, including (i) LRR_SD(standard deviation of Log R 

Ratio) >0.3; (ii) BAF_drift (measuring departure of the B Allele Frequency from the 



expected values) > 0.01; (iii) WF(waviness factor, the amount of dispersion in signal 

intensity) >0.05 or WF<-0.05; (iv) Number of CNVs>50 (number of called-CNVs).  

 

CNV calling 

CNV Calling Raw signal intensity files were first generated by the export function provided 

in Illumina GenomeStudio. Then we used UCSC Genome Browser’s liftover tool to map 

SNPs to the newer reference genome assembly (http://genome.ucsc.edu /cgi-

bin/hgLiftOver). PennCNV is a software tool for Copy Number Variation (CNV) detection 

from SNP genotyping arrays. By removing probes that can not be uniquely mapped to the 

genome and choosing proper population frequency of B allele (PFB) and GCmodel files, 

we used PennCNV to identify CNVs and generated a quality control summary for each 

sample (Lin CF et al., 2013).  

 

Quality Controls in CNV calling 

During CNV calling, CNVs were removed if (i) number of SNPs spanning less than 10; (ii) 

length of CNV <50 kb. We also removed the CNVs calls located in certain regions, 

including HLA regions, immunoglobulin regions, telomere regions, centromere regions. 

Previous studies show that these regions were especially likely to harbor spurious CNV 

calls(Wang et al., 2007). 

 

 



Statistical Analysis  

Predicted CNVs from the sample genomic locus can have various start and end points 

across individuals. To make the analysis simpler, we divided the genome into copy 

number polymorphic regions (CNPRs). Each individual was then assigned a copy number 

(CN) state for each CNPR according to the CNV predicted in that region, with CN = 2 if 

no CNV was predicted. In order to distinguish the CNV with a single duplication of one 

allele and single deletion of the other (CN=2) from non-CNV status (CN=2), we further 

encoded CN state with deletion and duplication variables. Plink 1.09 was used to perform 

association analysis (Purcell S et al., 2007). The outcome variable was a binary variable 

indicating HBV infection.  Explanatory variables were age, gender, and CNV type. Logistic 

regression analysis was used to adjust for age, gender as well as CNV type. Fisher exact 

tests were used if 25% of cells with expected count were less than 5. If all expected counts 

were greater or equal to 5, Chi-squared tests were used to compare categorical variables. 

Bonferroni tests were used to adjust for multiple comparison. 

 

Results 

Patient characteristics 

The characteristics of the recruited patients were summarized in Table 1. There were 

2,689 CHB patients (69.14%) and 1,200 healthy controls (30.86%). However, 70 healthy 

controls and 181 CHB patients were found missing the age and gender information and 

were excluded for analysis. The total number of healthy controls used in the analysis was 

1,130, while the number of CHB patients was 2,508. The median age for normal people 



was 52 years (range, 30-80 years), the median age for CHB patients was 50 years (range, 

15-87 years). There were 722 males (63.89%) and 408 females (36.11%) among the 

healthy controls, while 1,818 males (72.49%) and 690 females (27.51%) among the CHB 

patients.  

Table 1. Patient characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group Variable No. (%) 

Control 

(n=1,200) 

Median age, years (range) 52 (30 to 80) 

Male 722 (63.89) 

Female 408 (36.11) 

Missing 70 (5.83) 

Final Num 1,130 

CHB patients 

(n=2,689) 

Median age, years (range) 50 (15 to 87) 

Male 1,818 (72.49) 

Female 690 (27.51) 

Missing 181 (6.73) 

Final Num 2,508 



 

 

The distributions of age and gender of controls and CHB patients were shown in the 

Figure. 1. 

 

Figure 1. Age and Gender distribution of normal controls and CHB patients. (A) The 

boxplot of age distribution of normal controls and CHB patients. (Blue- normal controls; 

Red- CHB patients).  (B) Gender distribution of normal controls and CHB patients. 

(Blue- male; Red- female). 

 

SNP-based CNV Analysis 

We implemented the case-control association analysis following the PennCNV 

introduction (PennCNV) which were used to identify the stretch of SNPs that tend to have 

copy number changes in CHB cases versus controls by Fisher’s Exact Test. The P-values 

derived from the Fisher Exact Test comparing CHB cases and controls, were generally 

shown by Manhattan plot. The Manhattan plot was produced by scattering the P-values 



in -log10 scale in the vertical axis and the physical position of SNP along chromosomes 

in the horizontal axis. Different chromosomes were generally distinguished with colors. 

Using -log10 scale was to highlight the small P-values, which suggested potential 

disease-related SNPs (Zeng et al., 2015). The horizontal solid red line marked a 

significance cut off of 10-8, and the horizontal dashed blue line marked a significance cut 

off of 10-6. As shown in figure 2, the Manhattan plot displayed the -log10 deviance P value 

for CNV losses in the SNP-based CNV test. We identified 110 loci (p<10-8) with deletion 

enrichment in the CHB cases. While the Figure. 3 displayed the -log10 deviance P value 

for CNV gains in the SNP-based CNV test. There were 124 loci (p<10-8) with duplication 

enrichment in the CHB cases were found here.  

 



Figure 2. SNP-based CNV Manhattan plot. Manhattan plot displayed the -log10 deviance 

P value for CNV losses in the SNP-based CNV test. The y-axis showed the distribution 

of –log10 (p) where p was the Fisher’s Exact Test P-value for copy number changes in 

CHB cases versus controls. P value cutoffs corresponding to10-6 and 10-8 were 

highlighted in red solid line and blue dashed line, respectively. The x-axis showed 

chromosomes numbered from 1 (left) to X (right). 

 

Figure 3. SNP-based CNV Manhattan plot. Manhattan plot displayed the -log10 deviance 

P value for CNV gains in the SNP-based test. The y-axis showed the distribution of –log10 

(p) where p was the Fisher’s Exact Test P-value for copy number changes in CHB cases 

versus controls. P value cutoffs corresponding to10-6 and 10-8 were highlighted in red 



solid line and blue dashed line, respectively. The x-axis showed chromosomes numbered 

from 1 (left) to X (right). 

 

CNPR-based CNV Analysis 

To further identify the specific loci that confer risk of HBV infection, we preformed the 

CNPR-based CNV analysis and found 8 deletion CNPRs, as well as 3 duplication CNPRs 

were significantly changed between CHB patients and healthy controls. Moreover, there 

were nine genes revealed the copy number loss, including FGFR3 (p=1.49X10-7), FGR-

3 (p=1.49X10-7), LETM1 (p=1.49X10-7), TACC3 (p=1.49X10-7), TMEM129 (p=1.49X10-7), 

PANK4 (p=4.55X10-4), PLCH2 (p=4.55X10-4), CED-6 (p=2.04X10-4), DIRC1 (p=2.04X10-

4), as well as three genes revealed the copy number gain, including FLJ43080 

(p=2.50X10-5), CSMD3 (p=6.288X10-5), MGAT4C (p=1.52X10-4) in CHB patients 

compared with healthy controls. Besides the CNPRs in genes, the intergenic regions 

chr19:32757923-32761177 (p=8.97X10-54), chr11:50432844-50586426 (p=7.76X10-12), 

chr9:12003711-12010873 (p=5.79X10-8), chr19:24244157-24354405 (p=4.55X10-4), 

chr5:18673077-18728095 (p=9.02X10-38) were also associated with CHB. Among these 

genes, the function of FGFR3 and CSMD3 have been demonstrated by other researchers 

related with the HBV infection (Lai et al., 2016; Van et al., 2016); while, the other genes 

were novel and not reported. The detailed information was listed in the Table 2. 

 

 

 



 

Table 2. Gene-based CNV Analysis 

CNPR* N in Cases N in Control Nearby Gene 
Distance from 

Nearby Gene, bp P** 

Deletion           
chr19:32757923-32761177 243 0 AK075337 60054 8.97E-54 
chr11:50432844-50586426 52 0 AB231715, AB231716, AB231717 96465 7.76E-12 
chr9:12003711-12010873 77 11 TYRP1 672513 5.79E-08 

chr4:1690555-1785787 32 0 
FGFR3, FGR-3, LETM1, TACC3, 

TMEM129 0 1.49E-07 
chr1:2369108-2444569 16 0 PANK4, PLCH2 0 4.55E-04 
chr19:24244157-24354405 16 0 LOC100101266 106068 4.55E-04 
chr5:18673077-18728095 1 94 BC028204 706723 9.02E-38 
chr2:189165214-189310804 2 13 CED-6, DIRC1 0 2.04E-04 
Duplication           
chr5:109856282-109991005 22 0 FLJ43080 0 2.50E-05 
chr8:114024371-114181033 36 4 CSMD3 0 6.288E-05 
chr12:85169592-85337570 19 0 MGAT4C 0 1.52E-04 

*CNPR, copy number polymorphic region (hg18)         
**Fisher exact test was used and used 5x10-4 as the significant cutoff. 5x10-4 is a conservative bar for CNV genome-wide significance surviving 
multiple testing correction based on analysis of Illumina and Affymetrix genome-wide SNP arrays. 
Red highlight: Genes have been linked with HBV previously 



Discussion 

Accounting for one third of chronic hepatitis B virus infection occurrence in the world, the 

chronic hepatitis B infection and HBV-related complications has become large disease 

burden in China. There are more than 90 million chronic carriers of HBV in China and 

most people with HBV infection in China are unaware that they carry the disease (Chen, 

2018). HBV is a member of small DNA viruses and infects one major cell of liver, 

hepatocytes. Using a RNA proviral intermediate, HBV replicates by reverse transcription 

(Beck and Nassal, 2007). It is known that HBV infection can result in various clinical 

conditions and approximately 90% of neonatal HBV infection and 30% of childhood 

infection will finally develop to CHB (Yan et al., 2014). The main risk factors related with 

CHB include familial spread, infant infection, infection due to immunologic inadequacy, 

and a history of other liver disease (Qiu et al., 2017). The causes of the CHB are intricated 

and remain largely unknown.  

It has been demonstrated that host genetic susceptibility is an important factor which 

determines the outcome of HBV infection(He et al., 2006; Li et al., 2017a; Qiu et al., 2017). 

In 2013, Chiao-Feng et al proposed a method which make us possible to call CNVs 

directly from the GWAS genotyping data (Lin et al., 2013). And recently, by using this 

method, some CNVs were firstly identified to be associated with schizophrenia and 

hepatocellular carcinoma (Purcell et al., 2007; Sakai et al., 2015; Zhou et al., 2017). But 

CHB related CNVs are rarely reported. In the current study, we analyzed the genotyping 

data generated from CHB patients and normal controls and found 8 deletion CNPRs, as 

well as 3 duplication CNPRs are significantly changed between CHB patients and healthy 

controls. Moreover, there were nine genes revealed the copy number loss, including 



FGFR3 (p=1.49X10-7), FGR-3 (p=1.49X10-7), LETM1 (p=1.49X10-7), TACC3 (p=1.49X10-

7), TMEM129 (p=1.49X10-7), PANK4 (p=4.55X10-4), PLCH2 (p=4.55X10-4), CED-6 

(p=2.04X10-4), DIRC1 (p=2.04X10-4), as well as three genes revealed the copy number 

gain, including FLJ43080 (p=2.50X10-5), CSMD3 (p=6.288X10-5), MGAT4C (p=1.52X10-

4) in CHB patients compared with healthy controls. Besides the CNPRs in genes, the 

intergenic regions chr19:32757923-32761177 (p=8.97X10-54), chr11:50432844-

50586426 (p=7.76X10-12), chr9:12003711-12010873 (p=5.79X10-8), chr19:24244157-

24354405 (p=4.55X10-4), chr5:18673077-18728095 (p=9.02X10-38) were also associated 

with CHB. Among these genes, the function of FGFR3, LETM1, CED-6 and CSMD3 have 

been demonstrated by other researchers related with the HBV infection. Although other 

genes’ functions in the HBV infection and CHB development haven’t been demonstrated, 

they could be the potential targets for CHB prevention and therapy.  

Interestingly, FGFR3, a protein coding gens, makes a protein called Fibroblast Growth 

Factor Receptor 3. The FGFR3 protein plays important role in cellular processes, 

including regulation of cell growth and proliferation, determination of cell type, 

angiogenesis, wound healing and so on. Related studies found over-expressed FGFR3 

levels in human hepatocellular carcinoma (Qiu et al., 2005). Moreover, FGFR3 has been 

well documented in the various cancer and suggested as therapeutic target, including 

bladder cancer (Gust et al., 2013),   lung cancer (Yin et al., 2016) and urothelial carcinoma 

(Kim et al., 2018). In this study, we found significant deletion of copy number in FGFR3 

in CHB cases compared with healthy controls which indicated the important role of 

FGFR3 in CHB disease progress and could be a potential risk factor for the hepatocellular 

carcinoma development.  



CSMD3 (CUB and Sushi multiple domains 3) is a gene encodes a protein and functions 

as a tumor suppressor. Lai et.al created a transgenic mouse models by transferring the 

HBV pre-S/S gene and its promoter into C57B6 mice and found decreased CSMD3 

expression in the mice models which indicated that downregulation of CSMD3 may 

contribute to the hepatocarcinogenesis. We found significant duplication of copy number 

in CSMD3 in CHB cases compared with healthy controls which confirmed the role of 

CSMD3 in HBV related hepatocarcinogenesis. 

Although, there were 8 genes revealed copy number deletion and 2 genes revealed copy 

number duplications that were not linked with HBV infection or CHB previously. Our 

findings also provided rational targets for the disease prevention. For example, LETM1 

(Leucine Zipper And EF-Hand Containing Transmembrane Protein 1), involved in the 

transport of charged calcium atoms (calcium ions) across membranes within mitochondria, 

was found been upregulated in the breast cancer (Li et al., 2015) Besides the LETM1, 

FGR, DIRC1, TACC3 and MGAT4C were also found related with various type of cancer. 

For example, FGR was over-expressed in the primary tumor samples (Stransky et al., 

2014); overexpression of DIRC1 was associated with tumor progression in gastric 

cancer(Li et al., 2018); TACC3 was found involved in proliferation and differentiation of 

tumor cells, cancer progression and metastasis (Zhao et al., 2018). Moreover, TMEM129 

were found related with the virus infection. TMEM129, as a novel E3 ligase, is hijacked 

by the human cytomegalovirus and play role in averting immune recognition of the 

infected cell (van den Boomen et al., 2014). Our results manifested these genes might be 

potential targets of HBV infection and related disease. The impact of copy number 

variations on gene expression complex and haven’t been fully elucidated. But the CHB-



related CNVs identified by us could be potential targets. The further confirmation and 

identification of these genes are needed which help elucidate underlying mechanisms of 

HBV infection and CHB progression.  

There are also several limitations of our study. Firstly, we do not have access to 

information about the medical information, education, risk behaviors of subjects in the 

clinical cohort. It is possible that these risk factors affect our results and the associations 

we saw in our study are due to population stratification. Secondly, our population-based 

study was performed exclusively in Chinese individuals and thus might not be 

generalizable to other ancestries. Thirdly, our findings in this study may need further 

validation by using other independent samples.  

 

Conclusions 

We analyzed the genotyping data generated from CHB patients and normal controls and 

identified 110 loci (p<10-8) with deletion enrichment and 124 loci (p<10-8) with duplication 

enrichment in the CHB cases. We also found nine genes revealed the copy number loss, 

including FGFR3 (p=1.49X10-7), FGR-3 (p=1.49X10-7), LETM1 (p=1.49X10-7), TACC3 

(p=1.49X10-7), TMEM129 (p=1.49X10-7), PANK4 (p=4.55X10-4), PLCH2 (p=4.55X10-4), 

CED-6 (p=2.04X10-4), DIRC1 (p=2.04X10-4), as well as three genes revealed the copy 

number gain, including FLJ43080 (p=2.50X10-5), CSMD3 (p=6.288X10-5), MGAT4C 

(p=1.52X10-4) in CHB patients compared with healthy controls, which providing novel 

diagnosis markers and targets in HBV infection and CHB progression. 
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Capstone Experience Reflection 

My experience with the placement site 

It’s my great honor to work in the Southern Medical University Nanfang Hospital and thank 

my preceptor gave me this opportunity to work with him. I believe what I learnt during this 

period will benefit me a lot in my future works. 

As mentioned previously, chronic hepatitis B virus infection is a serious disease burden 

and public health issue in China. I am very interested in CHB related research and public 

health activities. Nanfang Hospital is a large-scale comprehensive tertiary hospital with 

medical, teaching, scientific research and preventive health care. They did a lot of efforts 

on the HBV infection prevention and therapy. As I have known, the Nanfang hospital 

provides three years’ free therapy to the HBV patients and arranges HBV prevention-

related activities every year. They also give strong support to the HBV-related researches 

and made outstanding contributions in understanding the mechanisms of HBV infection 

and CHB progression.  

I started the work of identifying the CHB associated CNVs from genotyping data with my 

preceptor on August, 2018 and it has been half year. During this period, I learnt the 

genome-wide association study (GWAS) for my first time. GWAS studies are very 

complex for me and I have no idea about its principle, application and method at the 

beginning. After the learning during this period, I realized that GWAS, an observational 

study of a genome-wide set of genetic variants in different individuals, is very powerful 

and useful tool in detecting common genetic variants associated with complex disorders. 

The study design and statistical method for GWAS are very interesting for me. Although 

I didn’t have chance to be involved in the data collection process (i.e., recruiting 



participants, collecting samples, and generating data), I still went over thousands of 

human data, which was not expected by me. It’s my first time to handle such a large size 

of data. Moreover, I can’t physically work in the Nanfang hospital as my full-time work in 

the United States, the distance and jet lag were all the difficult part for moving this project. 

I very appreciate the help from my preceptor who work in the late night to help me 

understand this project and solve the problems. I also learnt new software this period 

which I find is very useful, including Xshell and PennCNV. Xshell is a powerful terminal 

emulator from South Korea, supports SSH1, SSH2, FTP, SFTP, Telnet, rlogin, and Serial 

protocols. It enables users to directly connect to the remote hosting via Internet, so as to 

easily control Linux servers on Windows. By using the Xshell, I can access the data in 

Nanfang Hospital using my laptop and work on the analysis easily. PennCNV is an 

excellent tool for Copy Number Variation (CNV) detection from SNP genotyping arrays. It 

can be used to identify a stretch of SNPs that tend to have copy number changes in cases 

versus controls using Fisher’s Exact Test. By using these two softwares, we found 

interesting CNVs associated with the susceptibility of CHB. 

 

Greatest contributions/accomplishments 

The greatest accomplishments I made from my capstone project are helping in the data 

cleaning, SNP-based CNV analysis, gene-based CNV analysis and give suggestions in 

the statistical method. We analyzed the genotyping data generated from CHB patients 

and normal controls and identified 110 loci (p<10-8) with deletion enrichment and 124 loci 

(p<10-8) with duplication enrichment in the CHB cases. We also found nine genes 

revealed the copy number loss, including FGFR3 (p=1.49X10-7), FGR-3 (p=1.49X10-7), 



LETM1 (p=1.49X10-7), TACC3 (p=1.49X10-7), TMEM129 (p=1.49X10-7), PANK4 

(p=4.55X10-4), PLCH2 (p=4.55X10-4), CED-6 (p=2.04X10-4), DIRC1 (p=2.04X10-4), as 

well as three genes revealed the copy number gain, including FLJ43080 (p=2.50X10-5), 

CSMD3 (p=6.288X10-5), MGAT4C (p=1.52X10-4) in CHB patients compared with healthy 

controls, which providing novel diagnosis markers and targets in HBV infection and CHB 

progression, which providing novel diagnosis markers and targets in HBV infection and 

CHB progression. 

I also worked on the Patient characteristics. We previously had 2,689 CHB patients and 

1,200 healthy controls. We didn’t perform the all the patient’s data for this study, because 

some of patients’ information was missing. I worked on clean the data to narrow the 

population in this study to 2,508 CHB patients and 1,130 healthy controls. 

As I have the pharmacology background previously, I contributed in validating the 

pharmacology functions of associated genes identified from our analysis. The GWAS data 

is useless if we don’t know the identified genes’ biology functions. My participation helped 

make the findings more meaningful. 

 

Greatest challenges 

The greatest challenges we met is the distance and jet leg during our communication 

and work. I couldn’t physically work in Nanfang hospital which do bring inconvenience 

during this period. At the beginning, we couldn’t find proper time zone for the discussion 

and I have the difficult to access the database in Nanfang hospital. In the other hand, 

the GWAS is a brand new field for me. I need spend lots of time on reading literatures to 

help me understand the purpose, principle, methods in this study. I worried a lot at the 



beginning as the project didn’t move smoothly. I appreciate the tolerance and patience 

from my preceptor. My preceptor gave me lots of encourage and helped me on every 

small issue I met. We communicated every week and found best time work for both of 

us. With the help from my preceptor, I learnt to use the Xshell and finally accessed the 

data base in Nanfang hospital successfully. Although I had a hard time at the beginning, 

the long-distance work experiences make me stronger and push me learn more skills, 

including time planning, communications, terminal emulator tools and so on.  

 

Views of public health practice 

Public health practice can’t ignore the impact of genomics in the 21st century. I didn’t 

realize the importance of genomics for public health practice before. After my capstone 

project, I have understand better how the genomics impact the public health practice. 

With the rapid advance of genomics technologies, predication of individual risks by 

genomics studies could affect clinical therapy strategies. Developments in public health 

practice will be necessary to ensure rapid and effective implementation of genomics 

studies. 

 

Public health education 

My public health education help me understand better the ethical issues in the GWAS. 

GWAS data is derived from DNA information which is a powerful personal identifier and 

provide information not just on the individual, but also on the individual’s relatives, related 

groups, and population. The GWAS data contains large amount of individual-specific 

digital information and can be easily share across the internet. To understand better the 



ethical issues in GWAS, I read lots of literatures and found there are three important 

aspects of the context of genome research methods that may affect the ethical challenges, 

including one data using in many different projects; data sharing; unauthorized use of 

digital information. In our study, we don’t have access of patients’ medical history, family 

information, personal information. So all of these factors are not used in the analysis.  
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