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Abstract
Background: Staphylococcus aureus (S. aureus) is a common
cause of hospital- and community-acquired infections that
can result in various clinical manifestations ranging from
mild to severe disease. The bacterium utilizes different
combinations of virulence factors and biofilm formation to
establish a successful infection, and the emergence of
methicillin- and vancomycin-resistant strains introduces
additional challenges for infection management and
treatment. Summary: Metabolic programming of immune
cells regulates the balance of energy requirements for ac-
tivation and dictates pro- versus anti-inflammatory function.
Recent investigations into metabolic adaptations of leuko-
cytes and S. aureus during infection indicate that metabolic
crosstalk plays a crucial role in pathogenesis. Furthermore, S.
aureus can modify its metabolic profile to fit an array of
niches for commensal or invasive growth. Key Messages:
Here we focus on the current understanding of im-
munometabolism during S. aureus infection and explore
how metabolic crosstalk between the host and S. aureus
influences disease outcome. We also discuss how key
metabolic pathways influence leukocyte responses to other
bacterial pathogens when information for S. aureus is not
available. A better understanding of how S. aureus and

leukocytes adapt their metabolic profiles in distinct tissue
niches may reveal novel therapeutic targets to prevent or
control invasive infections. © 2023 The Author(s).

Published by S. Karger AG, Basel

Introduction

Staphylococcus aureus (S. aureus) is a common human
commensal and significant opportunistic pathogen.
Approximately 30% of humans are carriers of S. aureus,
primarily in the nose and frequently at other body sites
such as the skin and throat [1, 2], and S. aureus colo-
nization is a known risk factor for developing invasive
infections [3]. S. aureus is a leading cause of skin and soft
tissue infections, endocarditis, bacteremia, pneumonia,
osteomyelitis, and medical device infections typified by
biofilm formation. Disease typically originates from the
invasion of colonizing strains into the bloodstream or
following a breach of protective epithelial or mucosal
barriers during injury or medical device placement;
however, in rare cases, isolates can be transferred between
individuals. S. aureus encodes an array of virulence
factors and immune evasion strategies that facilitate both
commensal and opportunistic lifestyles [4–6].

S. aureus can cause either acute or chronic infections,
which is dictated by various host and bacterial factors
[7–10]. In terms of leukocyte responses, neutrophils
(PMNs) play a significant role in controlling infection as
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patients with chronic granulomatous disease, typified by
mutations in nicotinamide dinucleotide phosphate
(NADPH) oxidase, are more susceptible to recurrent S.
aureus infections due to impaired reactive oxygen species
(ROS) production [11]. Macrophages (MΦs), T cells, and
B cells also play important roles in regulating bacterial
growth. However, S. aureus has the potential to cir-
cumvent these protective responses by a number of
mechanisms [12], including inhibiting PMN and MΦ
extravasation, activation, and phagocytosis [13–15].
S. aureus also encodes various toxins such as leukocidins,
phenol-soluble modulins, and hemolysins that kill leu-
kocytes and promote bacterial survival [16–18]. Fur-
thermore, S. aureus can form biofilm, which programs the
immune response to an anti-inflammatory state that
facilitates chronic infection [19–23].

Current attempts to develop a S. aureus vaccine have
proven unsuccessful, highlighting the immune evasive
properties of the pathogen [24, 25]. The poor translation
of protection from animal models to humans is likely
influenced by S. aureus virulence factors that selectively
target human but not mouse leukocytes, human-adapted
S. aureus strains, and differences in immune reactivity
between species [26–28]. Individuals with S. aureus-re-
active antibodies can become infected with the pathogen
and S. aureus causes recurrent infections [29–31], ad-
ditional evidence that the organism possesses a height-
ened ability to evade immune mechanisms, unlike other
bacteria where effective vaccines have been developed.
Newer vaccine platforms being explored in mouse models
are targeting different S. aureus antigens (i.e., α-toxin,
leukocidins) than those used in prior clinical trials [32,
33], but it remains to be determined whether this will
translate into clinical efficacy. S. aureus also has a high
propensity to acquire antibiotic resistance through hor-
izontal gene transfer as reflected by the increased prev-
alence of methicillin-resistant and vancomycin-resistant
S. aureus strains, representing another major challenge
for treatment [34, 35]. In addition, S. aureus exhibits
antibiotic tolerance during biofilm infections such as
endocarditis, medical device-associated infections, and
conjunctivitis, representing an additional barrier to
treatment [36].

Therefore, effective infection management will ben-
efit from developing alternate strategies that critically
depend on a better understanding of host-pathogen
interactions. Both the host and pathogen undergo
substantial metabolic adaptations that can either aug-
ment or hinder the immune system, affecting disease
pathogenesis. Immune cell activation is regulated by
metabolic rewiring after encountering pathogens [37].

These metabolic changes influence cytokine/chemokine
expression, ROS production, and the functional prop-
erties of innate and adaptive immune cells. The study of
how metabolism programs immune cell activity is
termed immunometabolism [38] and a significant
amount of foundational knowledge in this field comes
from studies with MΦs. For example, proinflammatory
MΦs exhibit a bias toward glycolysis, which generates
intermediates required for proinflammatory cytokine
and prostaglandin production, in addition to NADPH to
fuel ROS. Conversely, anti-inflammatory MΦs depend
on the tricarboxylic acid (TCA) cycle and oxidative
phosphorylation (OxPhos) along with fatty acid oxi-
dation (FAO) [39]. Metabolism also influences T cell,
B cell, and epithelial cell responses during infection,
highlighting the intricate association between cellular
metabolism and functional activity [40].

On the other side of the coin, recent studies have
demonstrated that bacterial metabolites also act on host
cells to regulate homeostasis, differentiation, and pro-
liferation [41, 42]. Bacterial metabolites can either
stimulate host defense mechanisms or inhibit antimi-
crobial activity to mitigate or promote infection, re-
spectively [43]. This review will summarize recent
findings on metabolic alterations that occur during S.
aureus infection, both from the bacterial and host per-
spectives, with a focus on innate immunity and possible
implications on pathogenesis. We also discuss the impact
of these metabolic pathways in other bacterial infections
when information on S. aureus is lacking. The reader is
directed to a recent comprehensive review on S. aureus
metabolism [44], which is outside the scope of this work.

Brief Introduction to Cellular Bioenergetic Pathways

Immune cells alter their metabolic pathways following
a pathogen encounter to tailor their effector functions
[43, 45, 46]. Key pathways that generate intermediates
and end products required for leukocyte proliferation,
activity, and survival include glycolysis, pentose phos-
phate pathway (PPP), TCA, FAO, fatty acid synthesis
(FAS), and amino acid metabolism (Fig. 1). Although
these metabolic pathways generate different end prod-
ucts, they are interdependent for overall energy
production.

Glucose uptake from the extracellular environment
initiates glycolysis in the cytosol where glucose is con-
verted through ten enzymatic reactions to pyruvate.
Glycolysis is an inefficient means of energy production,
yielding only two ATP per unit of glucose, which raises
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the question of why cells would prefer this metabolic
pathway, even in the presence of oxygen (aerobic gly-
colysis). This is because glycolytic intermediates are also
used to synthesize nucleotides and amino acids as well as
regulate ROS production, making this a preferred
pathway for proinflammatory cells that require robust
biomolecule synthesis for antibacterial activity [47].
Pyruvate is the final product of glycolysis and is either
actively transported into mitochondria to initiate the
TCA cycle or converted to lactate in the cytosol and
excreted to maintain glycolytic flux and NAD+/NADH

levels. Under hypoxic conditions, lactate production is
increased due to diminished electron transport chain
(ETC) activity that requires oxygen. The PPP diverts
glycolytic intermediates to produce nucleotides and
amino acids and also generates NADPH, which is critical
for maintaining cellular redox balance and fueling
NADPH oxidase activity as well as cholesterol and fatty
acid synthesis [48]. The TCA cycle occurs in mito-
chondria and utilizes pyruvate-generated acetyl-CoA to
initiate the cycle, generating NADH and FADH2 that
drive the ETC to produce ATP. Like glycolysis, TCA

Fig. 1. Overview of major metabolic pathways. Glucose is
transported into cells and converted to pyruvate during gly-
colysis, which can be metabolized to lactate or enter the tri-
carboxylic acid (TCA) cycle to generate NADH and FADH2.
Fatty acid oxidation (FAO) produces NADH, FADH2, and
acetyl-CoA of which acetyl-CoA enters the TCA cycle. NADH
and FADH2 are utilized in the electron transport chain (ETC) for
ATP production. Intermediates from glycolysis feed into the

pentose phosphate pathway (PPP), which generates NADPH and
precursors for nucleotides and amino acids. Citrate from the
TCA cycle is used in lipid and amino acid synthesis. Fatty acids
combine with glycerol to synthesize triglycerides and phos-
pholipids in the cytosol (figure created using BioRender). GLUT,
glucose transporter; MCT, monocarboxylate transporter; MPC,
mitochondrial pyruvate carrier; CIC, citrate/isocitrate carrier; α-
KG, alpha-ketoglutarate.

14 J Innate Immun 2024;16:12–30
DOI: 10.1159/000535482

Arumugam/Kielian

D
ow

nloaded from
 http://karger.com

/jin/article-pdf/16/1/12/4165494/000535482.pdf by guest on 27 February 2024

https://doi.org/10.1159/000535482


intermediates are used for amino acid and lipid synthesis
[49]. FAO is the process of catabolizing fatty acids into
acetyl-CoA, which can feed into the TCA cycle and ETC
to generate ATP.

Other biosynthetic pathways include FAS that requires
citrate, whereas branched chain fatty acid production
uses amino acids for elongation. Furthermore, glycerol is
used as a substrate for triglycerides and phospholipids
that are crucial components of cellular membranes and
organelles. Apart from being precursors for protein
synthesis, amino acids can be shuttled into other meta-
bolic pathways. For example, glutamine and aspartate are
used for de novo nucleotide biosynthesis and glutamine is
converted to α-ketoglutarate, which feeds into the TCA
cycle [50]. Also, L-arginine is used by inducible nitric
oxide synthase (iNOS) to generate the free radical nitric
oxide that exerts antimicrobial activity through protein
nitrosylation, lipid peroxidation, and DNA damage [51].
Given the interconnection between these metabolic
pathways (Fig. 1), several studies have identified their
importance in regulating the immune response against S.
aureus infection and disease pathogenesis, which are
discussed below.

Glycolysis ShapesHost Immune Responses to S. aureus

Increased glycolytic activity is an essential pathway
for MΦ, dendritic cell, and PMN activation in response
to proinflammatory stimuli such as Toll-like receptor
and other pattern recognition receptor ligands [52–56].
For example, lipopolysaccharide (LPS) treatment of
MΦs leads to hypoxia-inducible factor 1a (HIF-1a)
stabilization, which promotes the transcription of
several genes encoding glycolytic enzymes including
hexokinase 2 (HK2) and phosphofructokinase as well
as glucose transporters (i.e., GLUT3) to increase IL-1β
production [57–60]. Recently, MΦ glycolytic activity
was shown to induce antibiotic tolerance in S. aureus
by limiting glucose and ATP availability for the bac-
terium [61]. This was attributed to the ability of S.
aureus α-toxin to activate the NLR family pyrin do-
main containing 3 (NLRP3) inflammasome since an-
tibiotic efficacy was increased in a mouse bacteremia
model when NLRP3 was inhibited. This highlights a
“tug of war,” where glycolysis is typically required for
MΦ proinflammatory activity, yet it places pressure on
S. aureus to become more metabolically dormant to
evade antibiotics that require active cell wall and
protein biosynthesis for efficacy. However, since most
S. aureus infections are eventually cleared, it remains to

be determined whether this phenotype is selective for
specific antibiotic classes, how the timing between
infection and antibiotic dosing influences antibiotic
sensitivity versus tolerance, and how other immune
effector mechanisms compensate for the acquisition of
S. aureus antibiotic tolerance within the MΦ niche.

Importance of Glycolysis in Keratinocytes and
Mammary Epithelial Cells during S. aureus Infection

Keratinocytes defend against cutaneous infections by
providing physiological and immunological barriers in
the skin. S. aureus infection enforces metabolic stress on
keratinocytes and induces glycolysis through HIF-1a
activation to promote IL-1β and IL-18 expression [62]
(Fig. 2a). Interestingly, this response was dependent on
bacterial glycolysis since neither a S. aureus glycolytic
mutant (Δpyk) nor PAMPs alone were able to promote
keratinocyte glycolysis. Hexokinase (HK) represents the
first irreversible step in glycolysis, which is inhibited by
2-deoxyglucose (2-DG), and 2-DG typically suppresses
proinflammatory responses in many leukocyte pop-
ulations [63, 64]. However, 2-DG treatment of mice
infected with wild-type (WT) S. aureus resulted in
larger skin lesions and delayed wound healing with no
change in bacterial abundance. Interestingly, animals
infected with Δpyk had significantly lower bacterial
burden and minimal dermonecrosis compared to WT
bacteria, highlighting the importance of S. aureus gly-
colysis in promoting cutaneous infection. While bac-
terial glycolysis was critical for establishing infection,
the larger skin lesions observed with 2-DG treatment
suggest that host glycolysis is also required to control
excessive inflammation but not S. aureus growth. It
would be interesting to dissect whether glycolytic ac-
tivity in keratinocytes versus invading leukocytes is
responsible for this phenotype and whether inhibiting
glycolysis after bacterial infection has any effect on
pathology.

S. aureus has also been shown to increase glycolysis in
mammary epithelial cells through a 6-phosphofructo-
2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3)-de-
pendent mechanism to augment HIF-1a and ROS
levels [65]. This response was negated by blocking host
glycolysis with either 2-DG or a PFKFB3 antagonist
(PFK15). In a mouse model of S. aureus mastitis,
PFK15 treatment attenuated inflammation resulting in
reduced tissue damage and bacterial burden, sug-
gesting a deleterious effect of glycolytic activity [65].
These findings reiterate the complexities of host cell
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glycolysis in dictating S. aureus infection outcome
(Fig. 2a).

S. aureus small colony variants (SCVs) are often as-
sociated with persistent infections [66]. SCVs are slow
growing, have a pinpoint colony size, and possess mu-
tations in various genes, especially those associated with
electron transport. Because of these mutations, SCVs
have altered metabolism, with increased glycolysis and
decreased TCA cycle activity and respiration [67]. Both a
prototypic SCV (ΔhemB) and WT S. aureus induced
glycolysis in keratinocytes, resulting in ROS production
and necroptosis, unlike their heat-killed counterparts
[68]. Interestingly, necroptosis had no effect on ΔhemB
growth and instead induced a metabolic adaptation to
augment fumC expression, an enzyme that degrades
fumarate. Since fumarate is a negative regulator of gly-
colysis, increased fumC expression promoted glycolysis,
providing permissive conditions for bacterial survival
[68]. This study indicates that S. aureus can actively
induce metabolic pathways that are beneficial for bac-
terial persistence in host cells.

Role of Glycolysis in PMN Antimicrobial Activity

Neutrophils rely on glycolysis for energy production
since they have fewer mitochondria, and as such, in-
hibiting mitochondrial respiration does not impact ATP
production [69–72]. In contrast, blocking glycolysis with
2-DG impairs PMN phagocytosis and ROS production,
and thereby bacterial killing, highlighting the importance
of glycolysis for their antimicrobial properties [73, 74].
The glycolytic intermediate glucose-6-phosphate fuels the
PPP to generate NADPH, which is used by NADPH
oxidase for ROS production in activated PMNs [75].
Pyruvate kinase M2 (PKM2), one of the rate-limiting
glycolytic enzymes that converts phosphoenolpyruvate to
pyruvate, was shown to regulate PMN ROS production
without affecting phagocytosis during S. aureus infection
[76]. Upon activation by the endogenous regulator
fructose-1,6-bisphosphate, PKM2 forms a tetramer that
promotes high glycolytic activity that is essential for ROS
production. However, in the absence of an activator,
PKM2 assumes a monomeric or dimeric form that

Fig. 2. Modulation of glycolysis during S. aureus infection.
a Planktonic S. aureus promotes the expression of glycolytic
enzyme (HK2 and PFK1) and proinflammatory (IL-1β) genes by
increasing HIF-1a in mammary epithelial cells and keratinocytes.
b Biofilms elicit a distinct metabolic response, whereby lactate
released by S. aureus biofilm is transported into G-MDSCs and
MVs, where it inhibits HDAC11, a negative regulator of HDAC6.

This results in unchecked HDAC6 activity, which is a tran-
scriptional inducer of IL-10, leading to elevated IL10 production to
promote biofilm persistence. During S. aureus biofilm infection,
host lactate biosynthesis does not affect IL-10 levels (figure created
using BioRender). GLUT, glucose transporter; MCT1, mono-
carboxylate transporter 1; HIF-1α, hypoxia-inducible factor 1α;
HDAC, histone deacetylase.
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localizes to the nucleus and regulates transcription factor
activation, including HIF-1a- and signal transduction
and activator of transcription proteins [77]. NADPH
oxidase activation requires protein kinase C-dependent
phosphorylation, which is induced by diacylglycerol
(DAG) [78]. DAG is synthesized from two independent
pathways, namely, (1) phosphatidylinositol 4,5-bi-
sphosphate hydrolysis by phospholipase C and (2) de
novo synthesis from the glycolytic intermediate dihy-
droxyacetone phosphate [79]. While DAG produced
from both pathways contributes to ROS production by
PMNs, PKM2 regulates ROS release in activated PMNs
by controlling de novo DAG synthesis. PKM2 was
important for bacterial containment in S. aureus peri-
tonitis and cutaneous infection models, where PKM2-
deficient mice displayed higher bacterial burden and
delayed wound healing compared to WT animals. An
earlier study reported defective PMN pyruvate kinase
activity in a patient experiencing recurrent S. aureus
infections [80] and together, these studies demonstrate
that glycolytic intermediates and the PPP are critical for
PMN ROS production and subsequent antimicrobial
activity.

Metabolism ShapesMyeloid-Derived Suppressor Cells
during S. aureus Infection

Myeloid-derived suppressor cells (MDSCs) are im-
mature myeloid cells that possess anti-inflammatory
activity and are associated with various pathological
conditions such as infection, cancer, and autoimmune
diseases [81–84]. MDSCs are characterized into two
major subsets, namely, granulocytic (G-MDSCs) or
monocytic (M-MDSCs), based on their similarities with
PMNs and monocytes, respectively [85]. In general,
G-MDSCs exert their suppressive activity through ROS
and arginase 1 (Arg-1), whereas M-MDSCs use iNOS and
anti-inflammatory cytokines such as IL-10 and TGF-β to
inhibit T cell responses [86–88]. G-MDSCs play a
pathological role in mouse models of S. aureus infection
by inhibiting proinflammatory responses, leading to in-
creased bacterial survival [21, 89–93] and G-MDSCs have
also been shown to accumulate at the site of prosthetic
joint infection (PJI) in humans [94]. A recent study re-
ported that glycolysis was important for driving G-MDSC
maturation into PMNs in a mouse model of systemic S.
aureus infection, although this had no effect on bacterial
burden [95]. However, these observations were made in
MDSCs distant from the infection site, which may affect
their properties since MDSCs were not in direct contact

with bacteria. T cells are important for generating pro-
tective immune responses to S. aureus [96, 97], which can
be inhibited by MDSCs [91]. T cell proliferation during S.
aureus infection was reported to be inhibited by lactate
released from MDSCs, which prevented NAD+ regen-
eration and glycolysis that is a hallmark of activated
T cells [98]. However, the effects of lactate during S.
aureus infection are likely influenced by the tissue niche
and growth state of bacteria since our laboratory has
shown that lactate production by host cells had no effect
on S. aureus biofilm infection, but rather S. aureus-de-
rived lactate was a potent driver of G-MDSC anti-
inflammatory activity by eliciting IL-10 production
[99]. Therefore, additional studies are needed to better
understand the G-MDSC-pathogen metabolic dynamic
in distinct niches of S. aureus infection.

Lactate Released from S. aureus Biofilm Programs
G-MDSC and MΦ Anti-Inflammatory Activity

S. aureus canmodulate the host immune response by
secreting metabolites in the infection milieu. As
mentioned earlier, our laboratory recently showed that
lactate produced by S. aureus biofilm promoted IL-10
production by MΦs and G-MDSCs [99]. We leveraged
S. aureus lactate dehydrogenase mutants and a
monocarboxylate transporter 1 (MCT1) inhibitor to
demonstrate that biofilm-derived lactate was trans-
ported into G-MDSCs and MΦs to inhibit histone
deacetylase 11 (HDAC11). Under normal conditions,
HDAC11 interacts with HDAC6 to inhibit IL-10
transcription [100]; however, during S. aureus biofilm
infection, bacterial-derived lactate blocks this inter-
action to promote IL-10 transcription in G-MDSCs
and MΦs (Fig. 2b). S. aureus lactate dehydrogenase
mutants displayed less survival than WT bacteria with
a concomitant decrease in anti-inflammatory
G-MDSCs and increased PMN and monocyte infil-
trates. This phenotype was shown to be IL-10-de-
pendent, confirming the action of lactate on pro-
moting IL-10 production, which is important for
polarizing the anti-inflammatory biofilm milieu [21].
However, ChIP-seq demonstrated that S. aureus lac-
tate also affected the expression of additional genes,
revealing a larger footprint of biofilm-derived lactate
on host responses. D-lactate levels were elevated in the
synovial fluid of PJI patients compared to individuals
with aseptic joint revision [99] and lactate has been
shown to be a sensitive marker for diagnosing PJI in
humans [101–103], supporting the importance of
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bacterial lactate metabolism in the setting of biofilm
infection.

Host lactate also plays a role in shaping leukocyte
responses during various pathological conditions such as
infection and cancer [104–106]. In LPS-activated MΦs,
lactate was shown to suppress proinflammatory cytokine
production via G protein-coupled receptor 81 (GPR81)-
mediated signaling [107]. Lactate also impaired TLR4-
mediated inflammasome activation through GPR81
signaling in MΦs and monocytes, and lactate adminis-
tration attenuated inflammation and disease severity in
models of acute pancreatitis and liver injury [108].
Lactate has been shown to modify mitochondrial
antiviral-signaling protein to prevent its mitochondrial
localization and interaction with RIG-1, thereby atten-
uating type I interferon production [109]. These data
suggest that host lactate can target multiple mechanisms
to regulate leukocyte proinflammatory activity.

Collectively, these studies highlight the importance of
glycolysis, lactate, and glycolytic intermediates produced
by both the host and S. aureus in shaping immune re-
sponses. However, it is clear that the effects of host versus
pathogen metabolism are context-dependent. On the one
hand, glycolysis in keratinocytes and PMNs drives
proinflammatory responses to kill planktonic S. aureus,
whereas in biofilm, bacterial-derived lactate is a major
signal that leads to epigenetic remodeling in G-MDSCs
and MΦs to promote IL-10 production that ensures
bacterial persistence. Although the importance of gly-
colysis has been studied in keratinocytes, epithelial cells,
and PMNs during S. aureus infection, less information is
available in other key cell types involved in S. aureus
infection, such as MΦs, G-MDSCs, and T cells. In ad-
dition, how host glycolysis is altered during biofilm in-
fection requires further investigation as most of our
current knowledge is derived from planktonic infections.
Another enigma that remains to be understood relates to
the dichotomy in infectious outcomes between S. aureus
planktonic versus biofilm infection when proin-
flammatory cytokine expression is a hallmark of both. In
the case of planktonic S. aureus infection, this response is
typically linked to bacterial clearance [110, 111]. How-
ever, proinflammatory mediators are also produced
during biofilm infection and although they have been
shown to play a role in preventing S. aureus outgrowth
[112–115], infection persists. Although seemingly
counterintuitive, this may be explained, in part, by the
fact that proinflammatory mediators are important for
G-MDSC expansion and suppressive activity [85, 116],
and S. aureus biofilm infections are typified by a large
G-MDSC infiltrate [90, 92, 94, 117–119]. In addition, the

large bacterial biomass associated with biofilm elicits
continued proinflammatory mediator release, which
would perpetuate the G-MDSC inhibitory loop. Another
contributing factor is the induction of a robust IL-10
response during S. aureus biofilm infection that promotes
infection persistence [93, 99]. Therefore, a better un-
derstanding of how leukocytes are seemingly refractory to
the antimicrobial actions of proinflammatory cytokine
stimulation during S. aureus biofilm infectionmay help to
“flip the switch” to reprogram cells for enhanced bac-
tericidal activity [120].

TCA Cycle Activity Influences Leukocyte Inflammatory
Properties

Toll-like receptor ligands such as LPS induce glycolytic
metabolism in proinflammatory MΦs, leading to break
points in the TCA cycle [121]. This is typified by accu-
mulation of the TCA cycle intermediates α-ketoglutarate,
fumarate, itaconate, succinate, and citrate, which can
modulate the immune response [122]. For example,
succinate and α-ketoglutarate inhibit prolyl hydroxylases,
proteins that bind the transcription factor HIF-1a, and
promote its degradation under normoxia [123, 124].
However, during aerobic glycolysis, HIF-1a stabilization
promotes the transcription of glycolytic genes, which acts
in a positive feedback loop to augment glycolysis and IL-
1β production in MΦs [63]. Succinate dehydrogenase
(SDH), also known as mitochondrial complex II, is a TCA
cycle enzyme that catalyzes the conversion of succinate to
fumarate and is a key player in regulating MΦ proin-
flammatory gene expression following LPS stimulation by
boosting succinate oxidation and mitochondrial ROS
[125]. Inhibition of SDH reduced IL-1β concomitant with
increased IL-10 and IL-1RA expression, thereby blocking
the proinflammatory phenotype of LPS-induced MΦs.
Citrate, another TCA cycle intermediate, is exported from
mitochondria to the cytoplasm via citrate carrier where it
promotes NO and prostaglandin production by MΦs in
response to IFN-γ and TNF [126].

The TCA cycle break that ensues during glycolysis
effectively reduces OxPhos substrates, highlighting how
metabolic diversion can augment glycolysis to provide
intermediates for the numerous biosynthetic reactions
that are a hallmark of proinflammatory MΦs and
PMNs. However, it is important to note that the TCA
cycle is not completely inactive when cells are highly
glycolytic; anaplerotic reactions can occur from amino
acids feeding into various points in the TCA cycle, most
notably glutamine conversion to α-ketoglutarate. This
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highlights metabolic plasticity and that pathways are in
a constant state of flux, adapting to the energetic re-
quirements of the leukocyte and integrating exogenous
signals from the infectious milieu to tailor immune cell
polarization.

Itaconate Supports S. aureus Persistence

Itaconate, a metabolite derived from the TCA cycle
intermediate cis-aconitate by the enzyme IRG1, is a
competitive inhibitor of SDH due to its structural sim-
ilarity with succinate. IRG1 deletion in MΦs resulted in
unchecked SDH activity and heightened proin-
flammatory responses concomitant with increased HIF-
1a activation [127]. The IRG1-SDH axis also plays a
central role in regulating immune tolerance and trained
immunity during LPS-induced sepsis [128]. 4-Octyl
itaconate, an itaconate derivative, inhibited glycolysis
in LPS-activated MΦs by targeting glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and thereby sup-
pressed LPS-induced metabolic changes required for IL-
1β and iNOS expression [129]. Further, Qin et al. [130]
revealed that the glycolytic enzymes fructose-
bisphosphate aldolase A (ALDOA), GAPDH, and lac-
tate dehydrogenase A (LDHA) are modified by itaconate
to inhibit glycolysis and promote MΦ anti-inflammatory
activity [130]. Together, these studies suggest that itac-
onate utilizes multiple mechanisms to modulate MΦ
activation.

In terms of S. aureus, itaconate was elevated in the
bronchoalveolar lavage fluid during acute lung infection,
concomitant with IRG1 induction [131]. Itaconate in-
hibited S. aureus aldolase activity, effectively blocking
glycolysis, a preferred metabolic pathway for the bacte-
rium during infection. This induced S. aureus metabolic
adaptation, typified by increased extracellular polysac-
charide production, reduced ribosomal activity, and
decreased virulence factor expression, consistent with a
transition to biofilm growth. This is supported by the
finding that S. aureus acquired antibiotic tolerance in the
presence of host-derived itaconate, which is a hallmark of
biofilm formation. Like S. aureus, P. aeruginosa also
exploits host itaconate during lung infection where it
degrades and metabolizes itaconate to produce energy
[132]. Although these studies reflect the ability of diverse
bacterial species to utilize host-derived itaconate to their
advantage, itaconate also influences leukocyte activity to
prevent S. aureus clearance. For example, bacterial bur-
den was significantly lower in Irg1−/− compared to WT
mice in a S. aureus pneumonia model. This was attributed

to itaconate production by PMNs, which inhibited their
glycolytic activity and ROS production to impair bacterial
killing [133] (Fig. 3a). In contrast to these anti-
inflammatory effects, itaconate benefits the host during
Mycobacterium tuberculosis (Mtb) and Klebsiella pneu-
monia infection by controlling excessive inflammation
and limiting tissue damage [134, 135]. Likewise, itaconate
can exert direct antibacterial activity by inhibiting the
glyoxylate cycle in Pseudomonas indigofera, Salmonella
enterica, and Mtb [136–139]. Therefore, the effector
functions of itaconate during infection are context-de-
pendent given its antibacterial properties and ability to
induce adaptations in bacteria and/or modulate leukocyte
activity.

Fumarate Mediates Trained Immunity to S. aureus
Infection

Fumarate, another TCA cycle intermediate, partic-
ipates in the induction of trained immunity in
monocytes [140]. Specifically, fumarate inhibits the
KDM5 family of histone demethylases, leading to
enhanced histone H3 lysine 4 methylation to regulate
proinflammatory cytokine gene expression [140].
Dimethyl fumarate (DMF), a fumarate derivative,
succinylates the catalytic cysteine residue of GAPDH
to suppress glycolysis, effectively mediating anti-
inflammatory effects in myeloid and lymphoid cells
[141]. Moreover, both DMF and fumarate modify
gasdermin D to block its interaction with caspase-1,
which is required for gasdermin D cleavage and
oligomerization to induce cell death [142]. DMF
treatment revealed beneficial effects in mouse models
of LPS shock and experimental autoimmune en-
cephalitis by its ability to inhibit gasdermin D [142].

While these studies suggest that fumarate can control
both pro- and anti-inflammatory activity, fumarate was
found to induce trained immunity and protect against
secondary infection in a model of S. aureus cutaneous
infection [68] (Fig. 3b). However, S. aureus SCVs that
accumulate during infection upregulate fumarate hy-
dratase (fumC) that converts fumarate to malate, effec-
tively reducing fumarate levels in the infected skin. This
decrease in fumarate allows SCVs to circumvent trained
immunity, which prevents protection against subsequent
bacterial challenge. Increased fumC expression has also
been observed in S. aureus clinical isolates from cystic
fibrosis and atopic dermatitis subjects, suggesting that
fumarate is an important target for S. aureus pathogenesis
[143, 144] (Fig. 3b).
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Recently, fumarate, along with itaconate and argino-
succinate, was found to accumulate in LPS-activatedMΦs
to mediate protein succincylation [145]. Fumarate hy-
dratase (FH) inhibition or genetic deletion increased
intracellular fumarate levels resulting in TCA cycle re-
wiring, suppression of mitochondrial respiration, and
increased membrane potential. Mitochondrial dysfunc-
tion following FH inhibition led to mitochondrial RNA
release, activating the intracellular RNA sensors Toll-like

receptor 7 (TLR7), melanoma differentiation-associated
protein 5 (MDA5), and retinoic acid-inducible gene I
(RIG-I) to induce interferon-β production. Similar
findings were reported in another study, where FH loss
resulted in altered mitochondrial morphology and mi-
tochondrial DNA release into the cytosol that was sensed
by cyclic GMP-AMP synthase stimulator of interferon
genes to induce type I interferon production [146]. To-
gether, these results suggest that fumarate metabolism

Fig. 3.Effect of TCA cycle intermediates during S. aureus infection.
a S. aureus infection induces immune responsive gene 1 (IRG1)-
mediated itaconate production in neutrophils. Itaconate inhibits
ROS and glycolysis to attenuate neutrophil anti-bacterial activity.
b During S. aureus infection, fumarate accumulation inhibits
histone demethylase KDM5 to augment proinflammatory gene

expression. S. aureus fumarate hydratase (fumC) is increased in
SCVs that arise during infection, which degrades fumarate to
promote glycolysis and impair proinflammatory gene expression
through epigenetic modifications (figure created using BioRender).
ROS, reactive oxygen species; α-KG, alpha-ketoglutarate; KDM5,
lysine demethylase 5.
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plays an important role in regulating MΦ activation.
However, additional studies are needed to explore how
this pathway influences S. aureus infection.

OxPhos Activity Exerts Differential Effects on
Leukocyte Responses to S. aureus

NADH from the TCA cycle enters OxPhos to transfer
electrons in the ETC, where ATP is generated by ATP
synthase using electron flow. In MΦs, LPS stimulation ar-
rests ETC-dependent ATP production and succinate oxi-
dation increases mitochondrial transmembrane potential,
leading to reverse electron transport-mediated ROS synthesis
[125]. This ROS can further activate the inflammasome or
exert anti-microbial activity. In PMNs, mitochondrial ROS
and NET production were shown to be dependent on ETC
complexes during S. aureus infection [147]. Specifically,
PMN bactericidal activity was attenuated when mitochon-
drial ROS was inhibited using either the complex III in-
hibitor antimycin A or the antioxidant mitoTEMPO. On the
other hand, anti-inflammatory MΦs exhibit an OxPhos bias
[148]. For example, we have shown that S. aureus biofilm
skews monocytes/MΦs toward OxPhos over glycolysis in a
mouse model of S. aureus PJI [118] (Fig. 4). Inhibiting
oxidative metabolism in monocytes/MΦs using targeted
nanoparticles containing the ATP synthase inhibitor oli-
gomycin reprogrammed cellular metabolism in vivo, leading
to heightened proinflammatory cytokine production and
significant reductions in S. aureus burden. Further,
monocyte/MΦ metabolic reprogramming in combination
with systemic antibiotics effectively cleared an established
biofilm infection that represents the most challenging
treatment scenario [118]. This study also showed that
monocyte/MΦ metabolic reprogramming influences
G-MDSC metabolism, emphasizing the importance of
metabolic crosstalk, not only between different leukocyte
populations but also S. aureus. Based on these findings, it is
evident that the effects of OxPhos during S. aureus infection
are cell- and context-dependent. In addition, the growth
phase of bacteria also likely plays a role, whether organisms
are in a planktonic or biofilm state.

Significance of Lipid Metabolism in Host Immunity to
S. aureus and Other Bacterial Pathogens

Both FAO and FAS are important for regulating
leukocyte function (Fig. 5). For example, fatty acid uptake
and triglyceride synthesis were increased in LPS-activated
proinflammatory MΦs, whereas lipolysis was repressed

[149]. In addition, inhibition of MΦ FAS decreased in-
flammation and MΦ recruitment in vivo [150]. This
study showed that FAS was necessary for Rho GTPase
trafficking and membrane remodeling to facilitate MΦ
inflammatory signaling. In contrast, initial reports with
etomoxir, an inhibitor of mitochondrial carnitine
palmitoyl-transferase 1 (Cpt1), suggested that FAO was
important for anti-inflammatory MΦ polarization in
response to IL-4 [151]. However, subsequent studies
using Cpt1a-deficient MΦs have shown that the anti-
inflammatory effects of etomoxir are mediated through
altered CoA levels and not FAO [152]. Again, this
highlights the complexity of metabolism and the need for
cleaner systems such as genetic deletion rather than re-
lying on inhibitors alone to understand the importance of
metabolism in shaping immune responses.

The role of FAO and FAS has been studied in
various infections, such as Mtb and S. enterica
[153–156]; however, whether these metabolic path-
ways influence S. aureus infection remains relatively
unknown. While some omega-3 fatty acids have been
shown to be antimicrobial and inhibit biofilm for-
mation [157, 158], their effects on immune responses
to S. aureus remain to be defined. In a mouse model of
S. aureus sepsis, animals fed a polyunsaturated fatty
acid diet displayed increased survival and PMN
abundance compared to mice receiving a saturated
fatty acid diet, although the exact role of polyunsat-
urated fatty acids in this setting is unknown [159].
Omega-3 fatty acids, either alone or in combination
with vancomycin, reduced bacterial burden in the
bone and implant concomitant with less TNF and IL-6
production in a rat model of S. aureus implant-
associated osteomyelitis [160] (Fig. 5). Recently, a
Cpt1a variant with reduced enzymatic activity has
been identified in humans and linked to susceptibility
to various infections, including S. aureus [161]. Cpt1a
inhibition with etomoxir increased bacterial burden in
a mouse model of S. aureus pneumonia (Fig. 5) and
impaired PMN recruitment and fatty acid-mediated
mitochondrial bioenergetics during Acinetobacter
baumannii infection. In addition, FAO was found to be
critical for amplifying chemotactic signals and PMN
migration using both Cpt1a inhibitors and fatty acid
supplementation [161]. Collectively, these findings
raise the possibility that dietary fatty acids may in-
fluence PMN trafficking and potentially provide some
benefit during S. aureus infection. However, as with
any metabolic node, the net flux through other
pathways, not to mention the metabolic status of
bacteria, will likely dictate efficacy.
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Amino Acid Metabolism Shapes Leukocyte Effector
Functions

Amino acid metabolism is important for both innate
and adaptive immune cells [162, 163]. Glutamine flux
into the TCA cycle is associated with anti-inflammatory
MΦ polarization following IL-4 exposure, while the
aspartate-arginosuccinate shunt is involved in proin-
flammatory MΦ programming by LPS [164]. Both Arg-
1 and iNOS utilize arginine as a substrate to produce
ornithine and nitric oxide, respectively. While iNOS is
induced in proinflammatory MΦs to control bacte-
rial growth, Arg-1 is associated with MΦ anti-
inflammatory activity to promote fibrosis and wound
healing via the action of polyamines that are synthe-
sized from ornithine [51]. Polyamines are abundant in
S. aureus abscesses and interfering with polyamine
synthesis using difluoromethylornithine (DFMO), a
potent inhibitor of ornithine decarboxylase, resulted in
increased bacterial burden and decreased survival in

mouse models of S. aureus sepsis and skin abscesses
[165]. Additionally, skin lesions in DFMO-treated mice
exhibited limited fibrosis, revealing an essential role for
polyamines in wound healing. In a mouse model of
sepsis, competitive inhibition of arginase with S-(2-
boronoethyl)-L-cysteine protected against S. aureus
infection, resulting in increased survival [166]. How-
ever, no phenotypes were observed when Arg-1 was
deleted in myeloid cells using Arg-1fl/fl Tie-2Cre mice in
either biofilm models of S. aureus PJI or catheter-
associated infection, whereas effects were detected in
abscesses that have characteristics of planktonic growth
[167]. Together, these results demonstrate that the role
of Arg-1 and subsequent polyamine production in
myeloid cells in response to S. aureus is context-
dependent.

Differential preferences for iNOS and Arg-1 activity
also typify MDSC subtypes, which are utilized by
M-MDSCs and G-MDSCs, respectively, to mediate im-
munosuppression [168, 169]. Another amino acid that

Fig. 4. OxPhos-mediated metabolic reprogramming during S.
aureus biofilm infection. During S. aureus biofilm infection,
monocyte and MV metabolism is reprogrammed to utilize oxi-
dative phosphorylation (OxPhos) to promote anti-inflammatory
activity and biofilm persistence. Inhibition of ATP synthase with
oligomycin-loaded nanoparticles reprograms monocyte meta-
bolism to promote ROS production and proinflammatory gene

expression. This change in monocyte metabolism also alters
G-MDSC metabolism. These metabolic alterations decreased
bacterial burden and increased S. aureus susceptibility to systemic
antibiotics to mitigate established biofilm infection (figure created
using BioRender). G-MDSCs, granulocytic-myeloid-derived sup-
pressor cells; ROS, reactive oxygen species; iNOS, inducible nitric
oxide synthase; HIF-1a, hypoxia-inducible factor 1a.
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MDSCs utilize to inhibit T cell activation is tryptophan.
Tryptophan is an essential amino acid and substrate of
indoleamine 2,3-dioxygenase 1 (IDO1), which catalyzes
tryptophan catabolism [170]. IDO1 expression by
MDSCs reduces local tryptophan concentrations, thereby
suppressing T cells that require tryptophan for prolif-
eration [171]. Tryptophan catabolism also produces the
immunoregulatory molecules kynurenine and serotonin,
which have been reported to affect leukocyte function
during infection. For example, humanMΦs and dendritic
cells produce kynurenine in an IDO1-dependent manner
in response to Listeria monocytogenes, where kynurenine
and other tryptophan catabolites promoted antimicrobial
activity [172]. In addition, accumulation of tryptophan
metabolites, such as 3-hydroxy-DL-kynurenine and
alpha-picolinic acid, protected vascular allografts against
methicillin-resistant S. aureus, S. epidermidis, E. coli, and
P. aeruginosa [173, 174]. Collectively, these studies in-
dicate that various products of amino acid metabolism

can influence the pro- versus anti-inflammatory attri-
butes of leukocyte populations that shape the infection
milieu. This is likely important in tissues where glucose
becomes limiting, such as chronic infections that are
poorly perfused, where both the host and bacteria must
metabolically adapt to utilize different carbon sources,
such as amino acids resulting from protein degradation
for de novo energy production via the pathways described
above.

Potential Metabolic Targets to Modulate S. aureus
Infection

Given the link between bacterial infections and met-
abolic diseases such as diabetes [175, 176], the potential
efficacy of metabolic drugs to control infection and as-
sociated pathology has received increasing attention.
Diabetic individuals are at increased risk for severe S.

Fig. 5. Role of fatty acids in S. aureus infection. Long-chain fatty
acids are imported into mitochondria through CPT1a and are
oxidized to form acetyl-CoA, acyl-CoA, NADH, and FADH2.
NADH and FADH2 provide electrons for the electron transport
chain (ETC), while acetyl-CoA enters the TCA cycle. Citrate from
the TCA cycle is transported to the cytosol, where it is converted to

acetyl-CoA to drive fatty acid synthesis. Exogenous fatty acids can
augment neutrophil antibacterial activity. Etomoxir inhibition of
Cpt1a-dependent FAO impairs S. aureus killing resulting in in-
creased infectious burden (figure created using BioRender). α-KG,
alpha-ketoglutarate; CIC, citrate/isocitrate carrier; CPT1a, carni-
tine palmitoyltransferase 1a.
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aureus infections, primarily in the skin [177–179] that
can progress to bacteremia [180]. This is also observed in
mouse models, where S. aureus skin infection was more
severe in diabetic mice and correlated with diminished
ROS production, PMN activation, and impaired hu-
moral responses compared to nondiabetic mice [181,
182]. S. aureus burden and infection severity were also
significantly increased in abscesses and osteomyelitis
following streptozotocin-induced hyperglycemia [183,
184]. Collectively, these findings support the fact that S.
aureus thrives in a glucose-rich environment, which is
known to induce a wide array of virulence factors that
can augment host tissue damage and leukocyte dys-
function [183, 185, 186].

Targeting glycolytic enzymes such as HK, PFKFB3,
and pyruvate kinase have shown benefit in attenuating
inflammation during immune-mediated inflammatory
diseases, such as experimental autoimmune encepha-
lomyelitis and rheumatoid arthritis [187–191]. Simi-
larly, GLUT1, HK, and phosphofructokinase are
promising targets for cancer treatment [192]. These
findings support the importance of glycolytic flux
during chronic diseases, and it would be interesting to
explore these drugs in the context of S. aureus infec-
tions. Metformin, a compound widely used in diabetes
to reduce glucose levels, was shown to inhibit Mtb
growth in MΦs and synergize with conventional anti-
tuberculosis chemotherapy to control Mtb infection in
mice [193]. This was further evaluated in human co-
horts, where metformin improved clinical outcome and
decreased disease severity. A recent study reported that
diabetic patients taking metformin experienced sig-
nificantly less mortality following S. aureus bacteremia
compared to control groups [194], suggesting a ben-
eficial role for metabolic intervention and disease
outcome, although additional studies are needed. Other
notable drugs that control metabolism include meth-
otrexate, rapamycin, and DMF that target dihy-
drofolate reductase, mammalian target of rapamycin
(mTOR), and Kelch-like ECH-associated protein 1
(KEAP1), respectively [195–197]. However, there are
currently no metabolic compounds approved or in
clinical trials for S. aureus infection. Given the im-
portance of various metabolic pathways in altering
immune responses to S. aureus, drugs that selectively
target key pathways, from either the host or bacterial
perspectives, would be interesting to explore. As dis-
cussed previously, using oligomycin or fatty acids as
adjunct therapy with antibiotics may improve treat-
ment outcomes compared to antibiotics alone [118,
195]. An added advantage of utilizing drugs that target

metabolic pathways is a lower chance of bacteria-
developing resistance [198] and their well-documented
safety record. This remains an area for future explora-
tion in the context of S. aureus, particularly considering
the myriad of tissues that the organism can exploit in
humans and associated metabolic diversity in each
niche.

Conclusions

Unlike many other bacterial infections that exhibit
tropism for a particular tissue, S. aureus can adapt and
survive within multiple cell types and locations in the
body [199]. Our understanding of how S. aureus and
leukocyte metabolism shapes infectious outcomes and
the consequences of host-pathogen metabolic crosstalk
has been expanding in recent years [27, 120, 200, 201].
Nevertheless, specific influences of diverse clinical
isolates, infection sites, and planktonic versus biofilm
modes of growth on leukocyte metabolism remain
relatively unexplored. The ability of S. aureus to adapt
to different metabolic intermediates during infection
(i.e., itaconate) or actively secrete metabolites to
thwart productive antibacterial immune responses
(i.e., lactate) highlights the extensive metabolic flexi-
bility of the organism. Advancements in the field using
techniques that measure metabolism at the single-cell
level, such as single-cell energetic metabolism by
profiling translation inhibition (SCENITH) and Met-
Flow [202, 203], will improve our understanding of
metabolic interactions between multiple leukocyte
populations and at the tissue level. However, these
methods measure metabolism at the protein, not the
metabolite level, which requires conventional mass
spectrometry approaches. The development of sensors
that can monitor metabolites is expanding [204, 205]
and real-time monitoring and spatiotemporal organi-
zation of metabolites during disease conditions will
extend our understanding of metabolite shuttling and
subsequent cellular responses. Recently, a correlative
imaging approach, metaFISH [206], was developed by
combining matrix-assisted laser desorption ionization-
mass spectrometry imaging with fluorescence in situ
hybridization, allowing the spatial distribution of
metabolites to be identified in a tissue section. This is a
significant advance to reveal the complex relationship
of metabolites to host defense, cell-cell communication,
and nutritional exchange during host-pathogen inter-
actions. Integrating data from various animal models
with findings from human samples from both the S.
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aureus and leukocyte perspectives will be essential to
gain a better understanding of the metabolic com-
plexity of infectious niches and developing novel
therapeutic approaches to combat this important hu-
man pathogen.
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