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ABSTRACT 

The damped exponential approach to signal representa

tion was first i~troduced by Huggins. This paper utilizes 

this approagh in the analysis of the descending limb of the 

peripheral arterial pressure wave. Since these waveforms 

are similar to damped exponentials, the important attributes 

of the signal can be conveniently measured. 
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INTRODUCTION 

The waveform of the arterial pulse has long been of 

medical-physiological. interest. iUlen palpating the radial 

pulse, clinicians subjectively attempt to asce'rtain the 

contour of the pulsation. Certain types of pulses are 

1 

Imo\m to be associated with disease. For instance a bound-

ing or collapsing pulse is encountered in hypertension, 

emotional states ~~d aortic regurgitation (1). A pulse 

which has a prolonged upstroke and a blunted peale is asso

ciated with severe degrees of aortic stenosis. 
.-; .~ > 

With the advent of arterial catheterization techniques 

it has' been possible to record pressure. waveforms in both 

central as well as peripheral arteries. Central pressure 

\"Taveforms found in a n\l.!'J,ber of clinical conditions as de-

~cribed by Wiggers (2) are shovm in Figure 1. 

Attempts. to categorize waveforms objectively have led 

to both time domain and frequency domain analyses. Most 

time domain studies have el'll.phasized some parameter of the 

waveform such as its derivative. For example, Mason (3) 

claims that analysis o,f the first al'ld second derivatives 

of the brachial pressure curve is helpful in the differ

entiation of valvular aortic stenosis, combined stenosis 

~~d regurgitation, and pure aortic regurgitation. In a 

recent study by Arani and Charleton (4) it was found that 

the derivative of the rising pressure' curve was correlated 

. : ~ 
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with the degree ,of aortic stenosis when an estimate of 

arterial compliance was taken into account. Simmons (5) 

has written a comput'er program to analyze selected samples, 
, , 

of the peripheral pulse wave in order to obtain information . , , 

about the normal r~~ge of pulse' wave variations. 

Frequency domain analysis was employed by PuIs and 

Heizer (6) who performed Fourier transforms on peripheral 

pulse waves of patients grouped by age. They noted that in 

gen~ral the lid_eli component of the waveform was decreased in 

older age groups, p~esumably reflecting the higher incidence 

of arteriosclerosis in these groups. Gold\~ and watt (7) 

have attempted to characterize the descending portion of 

the arterial waveform by p_arameters of a circuit model which 

~heyhave developed. Their approach will be presented in 

a later section. An exponential approach to the analysis 

of the pulse waveform has-not been found in the literature.' 

PHILOSOPHY OF SIGNAL ANALYSIS 

Huggins (8,9) remarks that signal representations are 

needed for either of two purposes: to represent the trans-

mission properties of a system ond to characterize the 

information-bearing attributes of a signal. The best repre

sentation for the other purpose. For example the Fourier 

analysis has had -great applic~tion in characterizing the 

transmission properties of linear time invariant systems. 

i 

i 
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Yet such an analysis is not necessarily the best procedure 

3 

to specify the information-bearing attributes of a signal. 

The Fourier resolution is analytically complete and may have 

infinite dimensionality. ~ However , the best representation 

of the information-bearing attributes of a signal will be 

that which has the lowest possible number of dimension, and 

is therefore, necessarily approximate. 

In characterizing the information content of a signal 

the problem arises in· selecting those parameters which lead 

.to the best representation of the signal.' Only when these 

parameters are the amplitudes of the spectral decomposition 

of the signal is there a linear relationship between the 

parrunetel~s and the signal waveform. Usually, however, the 

significant parameters are the na.tural fre,quencies of the 

dynamical system, whicf1. are non-linearly related to the 

signal waveform.· It is therefore quite difficult to perform 

mathematical operations on the signal waveform in order to 

estimate the value of the paramet~rs. Huggins empha~izes 

that while the precise ana.lytical solution for these para

meters may be extremely difficult, experimental attempts at 

solution should not be. discouraged. Such an empirical 

approach may be inexact in any mathematical sense but may 

yield a representation which is qualitatively valid and . 

quantitatively usefuL 

----1.1'), ,((1\ 
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SIGNAL REPRESENTATION BY DAMPED EXPONENTIALS 

The Fourier frequency decomposition of a signal repre

sents one resolution into orthogonal components. Many 

other'complete sets of orthogonal components may be devised 

for approximating a given signal. 

For the class of signals which are characterized tempor- .' 

ally by the epochs and intensities of the forcing function 

and ::;tructurally by the 'transmission properties of the dynam

ical system, an appropriate representation should portray 

independently &~d explicitly both the temporal ~~d structural 

attributes of the signal. Such a representation can be 

formulated by the convolution of an impulsive forcing 

:('unction f( t) and a system-memory function h('tJ. 

S(t)",. f(t) ~ h(r) 

The temporal attributes of tho signal are determined 

largely by epochs and intensities of the impulsive forcing 

function whereas the 'structural characteristics of the 

signal are primarily dotermined by the, system-memory function. 

For convenience sake let f(t) be an impulaive function 

with a signal epoch at t = O •. Then for t> 0, the 13ignal is 

represented by h(t}. The signal can now be characterized 

by the amplitudes Ak a.."'l.d the natural frequencie's" sk of 

her) where 

~ --- , --~-------.:'-...--'..,j' 1'~·"""~-----~----"---r1.. ,n ,.()' - ~''''''''"'(l .: .' '''''f"' 
f < ..(: 
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As noted before, however, it is quite difficult to 

calculate these pal""ameters, especially skI the natural 

frequencies. Another approach involves approximating h(t) 

by a set of 'c0efficients ~ which are the amplitudes of a 

linear combi~ation of exponen~ials vnLose complex frequen-

cies Pk are a prescribed set, so that 

h(t) = E Bn. ePh,+ 
,~ 

The new set of complex frequencies Pk are an approxi-

mation to the set of natural frequencies Sk-It is inter

esting to note that a collection of highly damped exponen-

tials exhibit a strong correlation with one another. For 

instance, the .yorrelation coefficient between 

damped, exponentials e'P/!; a.."1.d.ePn.
t is 

E ... irt, ]Y2 'YJ = (Ri + pi) (F'" + Fh ) 
Jk. Pj + Pk,'* 

the two 

, -1'5t 
Thus, for example, the exponential e 

; 
may be approxi

mated with gr'eat accuracy by a combination of -:1t; e and <-

• It can therefore be appreciated that, a preselec~ed 

set 04: complex frequencies which tl span" a region in the 

left half of the II s plane tt might reasonab~y repre sent 

an~ complex ~reauency which fall in the srune area. 

THE PROBLEM,'QP' SELECTING A BASIS SET 

As men'tioned in: the previous section" one can more 

Ol" less approximate a signal by a prescribed set of 

frequencies which tlspan ll a region of the liS plane fl wherein 

, 
~, ___ ~ ________ ", ~ ."1,;,,,1,0)1-\,1. 

r. ~," """""'YYJJ- M"'" 
t / ~l 
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the natural frequencies lie. A difficult problem is 

encoun~ered, hO'wever,in selecting an optimal basis set 

which minimizos the error botwoel'l the signal and its 

representati.on. 

A complete representation for the set of exponentials 

. eP>a,'t may be formed by employing Szasz I s theorem (10) wl}ich 

states that such a set is complete when and only when 

-i:b -2. t' -3t For example, th~ infinite set e , e I e ••• is a 

6 

complete set. In f'act one could select an unlimited num

ber of complete representations ef the signal which involve 

infinite sets of cxponentials. This of course is not a 

practical 'approach to the p:r>eblem. Another approach to the 

problem involves determining a finite set of N components 

'which, in some manner, is chosen to minimize the mean-

square error over the entire ensemple of signals. Such a 

method has not been' adequately solved, although Huggins (8) 

suspects that thore exists an optimL1m basis set for every, 

specified value of N. 

In the absence of a well defined mathematical solution 

to the problem of choosing a basis set, an empirical 

selection of components has been used in this investigation. 

The empirical approach will be presented in a lat,er s\3ction. 

---- .jj 
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conSTRUCTION OF AN ORTHONORMAL SET OF FUNCTIONS 

Assur.1ing that the problem of selecting the set of 

N component exponentials has been solved (i.e. Pkare' 

given)" the coordinates ~ appearing in the r'epresentat'ion' 

of h(1"') == ~:B~ef'n.-t may be obtained. As noted previously" 
1 

however" the set of damped exponentials are not uncorre-

lated and, hence, a change in the amplitude of one component 

may be more or less neutralized by suitable changes in the 

amplitudes of the other components (9)'.' This results in 

mathematical equations whose solutions are excessively 

sensitive to slight numerical errors. '.- . . 

To avoid this' difficulty it is necessary to ortho

gonalize the components of thE: prescribed set so that the 

system-memory func~ion he,) is best approximated by ortho-

gonal functions as 

" 

where the ({)~<.('-') are orthogonal functions formed from the 

prescribed set of .complex frequencies and the ck are the 

amplitudes which,minimize .the mean-square error between 
,., 

11. (Cj and f..1 c~ <P~(1") • , 

A unique and simple method to construct orthonormal 

functions from a prescribeu set of component exponentials 

is contributed by Kautz (11). Given a set of exponential 

... , e -Sn 7'" extending ?ver the 

semi-infinite interval, '7':: 0 ; a soOt of, orthonormal 



----, 
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functions (lJj.C't')., <PC! (r), .... , ((In (1-') may be constructed 

having frequency-domain representatives as follows: 

g?1(S) :& -r- $;1 - S:l, . .L 
{S - S,:l.} 

.sl?,(S) = 1- s~ -!;2. (s i- $;1.) 
. ( s - S!l.)( s -s 2) 

~11(Sh: Y-SI1-$;. (Sf-Sj.)(S+SZ) .... ($+~11-~) 
(S-S~(S-S0·· '(S-5~~(S-S~ 

The orthogonality can be demonstrated in the frequency 

~omain by showing that pole and zero cancellation leads 

to an inner product, 
c+jw 

J ~j (-s) ~fe(S) A 
C~.}J» {..77'J ., 

in which the integrand is analytic in a half plane vlhen 

J'¢k., and hence the integral vanishes by Cauchy's integral 

theorem (12). 

8 

If the set of natural frequencies have complex com

ponents the equations above yield orthonornlal fUnctions 

which are themselves complex. To obtain real functions 

from complex exponential components of the form Sic ~ - O<.+)w, . 

'" . Sli .. -0(. - JW , the complex conjugates must be added 

in pairs. As described by Kautz (11) the method is similar 

except that when the pair of conjugate poles Sit. and $11-

are first introduced, a real zero at - JS~f is also included 

along with the two new poles to obtain the first function. 

For the second function the zero is mirrored on the jw 

axis at + JSta,1 • For example, given S<1'· Sl. and $3 where $3,. 



If ~ 
\),1(1,1 
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is real and Sa and ~3 are complex conjugates, the fre

Quency representation of the orthonormal functions is 

~i.(5) = -1- $:1,. - 5.~. .1. 
(.£-S.1) 

~(S):; -v..S2 - S2 (S + S.l)( S ;(Sgl) 
(s - S;l.)( S -Sa) (5-5

3
) 

~a(S)::: -V-S3 - 83 (S tS:t.) ($ -I S3! ) 
(s - £:1.) (s - s.~)( s- $3) 

Kautz I 'method thus provides a method for constructing a 
' . 

. set of orthonormal functions from the prescribed set of 

exponential components. 

DETERMINATION Oli' TEE SIGNAL COORDINATES 

Returning to the problem of specifying h(?,,} given a 

9 

set of cpmponent exponenti.als which have beenorthogonalized, 

.one may then attempt to solve for the amplitude~ of these 

orthonormal functions which will best approximate.h("("), 
N 

h(.f) ~ z::, en. (/)y/?) 
n.-:!. 

The amplitud~s ck will be selected to minimize the mean-

square error which is given by , 
.0' N -

E .. f [h (7') ~ E. era Q)f?,(1-')]~ d (' " 
. 0 17.-:1 

By setting cl Ejdc;pfor each ck the problem reduces to 

evaluating 'tho integrals 
00 

C~ ;: f h(r) (Pia (1') d r 
o 

The solution of the above integral for each ck yields a 

, 
·1 
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unique set of coefficients which results in the le~st 

mean-square error approximation to he,). These coefficients 

are the coordinates _vthich determine the signal representa-

·tion. 

EXPERIMENTAL SELECTION OF COMPONENT EXPONENTIALS 

The experimental analysis emplo~ed in this paper 'is 

limited to the descending portion of the brachial pressure 

wave because an estimation of the natural frequencies of 
. 

. the, .. \1aVeform has been contributed by Gold~vyn and '~Vatt (7). 

They presented an electrical model (Figure 2) of the arter

ial system which accounts for the descending segment of the 

waveform. From this model they derived an unforced system 

equation, the general solution of which is 
- ex t -Ols"ti ) 

Vj.I:t) ... 0( 2. e 3 + 0<. .... e COS (0<." t -0(.7 

where ~, 0(,5' and o<..sare parameters related to Cl, C21 

and L whereas O(.a' 0(11'1 and os-are functions of the initial 

conditions. Based upon the above equation and given a 

measured brachial pressure curve pet), a digital computer 

was programmed to determine the set of ~i so that a least 

squares approximation of the form 

) 
-(I(3"'t -«st ( ) ptt - «j.'" C{ae t 0:.+<:: c.os a"t - 0(.7 

could be achieved (C<.l.is the constant Itreference pressure ll
). 

The measured pressure curves p(t) are shown in Figure 3 

and the corresponding sets of ~i are: given in Table I. 
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Note that the natural frequencies, I'il'lich are the poles of 

the transfer function, are located on the "s planeI' at 

11 

-"'3 El..."ld -cx5 :tjoe". For the lInormalll patient 'these values 

are -3.68 and -4.07r j23.6 respectively (Figure 4). 

Admittedly those· values represent only the natural frequen~ 

cies from one normal patient. However~ given the difficul

ties in finding an optimal basis set as ment~oned earlier 

in the paper, it 'was decided to use these parameters in an 

empirical approach to the problel:J. of selecting the basis 

set. Thus the component exponentials employed in this 

analysis consist of e:: S •6 ?..,." e-(4.07 .... j23.') -r .and 

·(4.07 - j 2:3-(,,) r e . 

OONSTRUOTION OF Trill EXPERIMENTAL SET 

OF ORTHONORI1LAL FUNOTIONS 

Utilizing Kautz! s procedure Vl0can now form the 

orthonormal functions from the set of exponents described 

above. 
. -3.~"'1"" . 

The dominant component appears to be e which 

we have selected to be the fundar.ental component sl' from 

which q>:J.(r) is formed, viz, 

~(s)_ :J 7·72. ·1 
:L - (5 + 3.<6(,,) 

\0 -'1 [ ,J _ r-:;=;;:;- - 3·8' 1" CDl.Cr) = 0\. .9?;1.(S)j "" V 7.72. e 

If s2 and s 3 are the complex conjugates -4.07:t j23.; 6, . then 

F'.1,,;i)\ 1 
-~--------_-f! '111'(' , r )j 
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CPa. ('r) ~ ~(r>; are formed in a similar manner 

~2.<.S)'" -j~./t ($ - '3.~c,) ( S l' 2+2 . 
(S+3.£,C,)(Sr4-.07-j2~'(,)(S+t.07+j 23.~) . 

C'Pa<J')= ....;~.I1- (-.277 e-3
.%1" + 1.39' e-"1-·071"COS (23.' 1"'-220) 

~ ($1:,..,fi;if ($-3·'60,)(6 -:<.t)· 
<3 (S+3E(,,)(s+4.07-j23.~)(S+4.01+J23.(p) 

(Pl~)=.yS ·1'+ (. 3~0 e-3 '%1" + /.t,Lj- e-f:07'( COS (23.(" 1" rti,¢) 

These three orthonormal functions qJi(~)' CPs tt') and (P3(JV) 

are the basis funotions'whioh were used in analyzing the 

pulse wave s • 

To prove that these functions 'were in faot ortho

normal a computer performed the fo1.1owing operations over 

1.2 seoonds. 

fC4(n~('ndr = .999 

JY~("r')rJitr)dr ~ .994 

fqt~){jj(()dr = .992 

f(JJl"r) (fJ./1"')clr ;: .01,5 

j(f;jr) cP./J?dr :. .007 

fditn (/)/7>&1: ;:;: .00,5 

These results .oorrelate well with the requirement for 

orthonormal funotions whioh is 
<>0 

( ([J:/r), cPYc-tl'») =J(!JJ .. (J) (jJh,(1-) ct 'Y ::: { 1 ) j = Jc.. 
o OJj~~ 

i 

.l , 
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DATA AND li'lETHODS 

,Twenty-five pressure curves, shown in Figure 5, were 

obtained from a study by Hancock and Abe1mann (13). The 

curves are direct brachial arterial pressure tracings 

obtained by insertion through the skin of an 18 guage 

needle into the brachial artery at the crook of the arm. 

The needle was connected by a rigid tubing to an el,ectro-

manometer and the tracing, was recorded on a direct-writing 

oscillograph. 

13 

Of the twenty-five patients, ten were "normal subjectsfl 

whose age ranged from 20 to 37 years old. Seven patients 

had proved severe aortic ~tenosis (narrowing of the valvular 
. 

aperture). Three -patients had prov~d severe aortic stenosis-

in combination with aortic regurgitation (incompetent aortic 

valve). Three patients had pure aortic regurgitation and 

two patients had mitral insufficiency (incompetent valve 

between left ventricle and left atrium). 

The three pressure tracings contributed from the work 

of Goldwy:n ana. Watt (7) were also included in the analysis. 

One patient was normal, one had aortic regurgitation, and 

the third had a cardiomyopathy. 

The descending limb of the twenty-eight pressure curves 

are normalized in the followi~g manner. The "d-c" or end-

diastolic pressure was then subtract~d from the ~urve SO 

that each curve decayed to "zero'!!. Each traCing was ,then 
" 
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normalized in magnitude by dividing each pressure point 

on the curve by the highest pressure value. The normalized 

curves were then sampled at 40 milleseconds. A digital 

computer reconstructed the pressure tracings from the sam

pled points by a second order approxirnation method. The 

computed pressure tracings were the h(l') used in the 

experimental analysis. It is realized that perhaps infor-

mation is lost in such a normalizing procedure. On the 

other hand we are primarily concerned here with waveform 

analysis and not with magnitude analysis. 
" 

Given the waveforms h(11 and the orthonormal functions 

$(~), a digital computer was programmed to calculate the 

signal coordinates c
k 

from the integral 

"" Ck ::: J h(-r) tl1,(7) d r ~" 1,2,3 
o - .3 

The error of, the approx.imation, Mro) ;" ~ CIa0n (7') , was 

evaluated by two methods. The error function SCr) defined 

by 

was plotted by the computer along with its respective wave-
3 

forms h(1") and its approximation §..1. Ck()n.('(). The second 

method involved calculating the integral of the squared 

error, viz" 
"'" '. E=/ [h(7') - ~ CIc, 0~('(')]ad (' 
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RESuLTS AND DISCUSSION 

The calcult{aed signal cooI'dinates foI' the twenty-
J -

eight wavefoI'ms,togetheI' with each patient l·S diagnosis'" 

aI'e listed in T~ble' II. The I'anges of the Ck'foI' normal 

patients aI'e: .28 < cl < .46~ -.031 < 02 < .075, and 

-.033 < c
3
< .026. The I'anges for abnormal patients aI'e: 

15 

.22 < cl < .37, -.006 < 02 < .083, and -.043 < c
3 

<: .061. T'.ne 

relationship between cl' the pure exponential component, 

and c2 ' the laI'gest damped sinusoidal compo~ent, is plotted 

in FiguI'es 6, 7, and 8. FiguI'e 6 shows the plotted points 

·in both normal and abhoI'mal patients. Figures 7 and 8 

are graphs showing the same point s sepaI'ated into nOI'mal 

and abnoI'mal'patient categories. In general the abnormal 

gI'OUP, especially thos~ 'if}.. th combined aortic stenosis and 

regurgi tat ion, tend to have a lmveI' cl component and a 

higheI' c2 component than the normal group. Yfuile the 

signal coordinates themselves do not provide an absolute 

separation of 'abnoI'mal fI'om normal patients, these paI'ame-

ters quantifY,arterial waveforms and should be useful in 

measuring the effect of stI'ess, drugs, etc., at least in 

individual patients. 

The magnitude of the lI a_c tl component of the signal 

is considered in FiguI'es 9 and 10 which aI'e histograms 

,showing the relationship of tih1s magnitude to normal and 

abnormal patients I'espectively. ·Note that the abnormal 

I· 



,---,." 

patients tended to .have a greatel? Ila_o" oomponent than 

normal patients. It should be noted, however, that the 

abnormal group is also older than the normal group. One 

may postulate that the more elastic arterial system in 

the younger group may filter the 1l a- c !l components which 

are observed in the older group. 

Figures 11-20 are plots from individual patients. 

16 

In each figure the upper plot consists of two functions: 

11.(1"), the normalized brachial waveform (cross hatched line), 
-9. 

and t:. C/o. C/h (1-') which is the best approximation to h(11. 
~"".:z. ~ 

The lower plot in each figure represents the error function 

£(r) , which has been normalized so that the maximum posi-

tive error is one. The true maximum positive error and the 

integral of .the squared error, E, is indicated in the upper 

right hand portion of the figure. The integral of the 

squared error is also.given in Table III for each patient. 

The value of the integral of .the squared errOl" did not 

appear to differentiate normal from abnormal patients. 

Note that the error function S(~) represents the remainder 

of he?'). Hence" S(7) is orthogonal to the component fun

ctions ~(r)" q;(t''>, an,d (j):.?l~) • i.e. 
""" 

;-Ell) (j'J'atl') eX l' := 0 fc. " 1) 2 .3 
o 

In the limited number of cases observed, similar patterns 

of Etc:) were. observed in certain abnormal patients. 
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SUWfARY OF RESULTS 
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1. The group of patients with cardiac valvular disease 

tended to have a greater II a-c II component in their 

pressure waveforms than the group of young normals. 

2. The waveform of the error function VIas observed to 

be similar in certain abnormal patients. 

SUGGESTIONS FOR FURTHER STUDY 

1. Investigation of the error function to ascertain 

whether "abnormal ll information is contained in the 

waveform. 

2. Extension of the exponential an~ysis to include the 

ascending limb of the arterial pulse wave. 
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3. The use of exponential analysis to screen large numbers 

ot patients for the presence of heart diseas~ and/or 

peripheral vascular disease • 
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TABLE I 

Computed Parameters (Xi For Selected Patients 

(from Go1d~~ and watt) 

Patient 26 27 28 

Clinical Status·:;· N CM Ali 

0(1 68.5 38.9 41.5 

0(2 68.9 L~7 .8 140.5 

0(3 3.86 3.06 7.01 

0(4 -13.2 21.7 -21.6 

t<5 -4·07 2.74 3.27 

<:X 6 23.6 22.6 19.8 

~7 -1.73 0.54 -1.32 

.~. 

N normal 
CM cardiomyopathy 
AR aortic regurgitation 

18 
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TABLE II 

Patient Clinical status·::- cl 

"""'" 
1 1'1' , 0 .4,8 

2 1'1' 0.291 ' 

3 1'1' 0.280 

4 1'1' 0.326 , 1'1' 0.]27 

6 1'1' 0.34, 

7 1'1' 0.344 

8 N 0·333 

9 N 0.3,1 
i 10 N 0.402 , 

)-

11 AS & AR 0.221 

12 AS 0.3,3 

13 AS 0.330 

14 AS 0.319 

15 AS 0.307 

" 16 AS & AR 0.217 

17 AS & AR 0.221 

18 AS 0.272 

19 AS 0.219 
~ 20 AS 0.316 

21 AR 0.272 

22 ' AR 0.348 

23 AR 0.316 

, I,; 

I 'Iii, .. 

c2 

-0.031 

0.07, 

0.02, 

0.034 

0.041 

0.020 

0.003 

0.0,3 

-0.000 

0.00, 

0.051 

0.027 

0.012 

0.057 

0.OL~6 

0.0,3 

0.083 

0.059 

0.064 

0.040 

0.063 

-0.006 

0.041 

°3 

0.001 

-0.002 

-0.016 

-0.033 

-0.002 

-0.019 

0.007 

-0.008 

0.026 

-0~030 

0.006 

-0.017 

0.012 

-0.037 

-0.021 

-0.000 

-0.028 

-0.019 

-0.011 

0.003 

-,0.043 

"'0.007 

-0.022 

19 

t., ..... , 
\ .. 



~~ \~ 

i \ ~I ~ r ,; 'Ii:!1 
\_'-"~ , 

20 

TABLE II 

Patient Clinical status':: cl c2 c
3 

l~' 24 ME. 0.367 -0.003 0.061 

2$ MR 0.315 0.06$ 0.014 

26 N 0.272 0.033 -0.0$2 

27 CM 0.270 0.107 -0.021 

28 AR 0.282 0.082 ·-0.020 

~-

N normal 

CM cardiomyopathy 
~ 

AR aortic regurgitation 

AS aortic stenosis 

MR mitral regurgitation 
.i 

I 

, 1 
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TABLE III 

Patient Integral o:f Max. Pos. 

Squared Error Error 

""""" 
1 .0005L1-4 .159 

2 .000255 • .121 

3 .000297 .189 

4 .000416 .085 

5 .000257 .066 

6 .000303 .107 

7' .000354 .150 

8 ... 000666 .227 

9 .000335 .099 
.~ 

.000408 .109 10 

11 .000282 .209 

12 .000659 .103 

13 .000135 .070 

14 .000286 .07'1 

15 .000366 .098 

16 .000485 .239 

17 .000886 .214 

18 .000562 .122 

19 .000718 .229 

20 .000322 .073' 

21 .000585 .176 
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22 

23 

24 

25 

26 

27 

28 

TABLE III 

Integral of 

l:..-...---..iI. ''t'-' 
_. -,} \ q" I ,'----- --.- ~. 

14,~'J ')(i 

Squared Error 

.000156 

.000171 

.001616 

.000190 

.000398 

.000237 

.000652 

22 

Max. POSe 

Error 

.071 

.057 

.200 

.099 

.086 

.052 

.292 
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and Abelmann. The first group are normal subjects. The 

middle group have severe aortic stenosis. The first three 
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FIGURE 12. 

Integral of the squared error = 0.00030 

Maximum positive error = .107 
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FIGURE 13. 

Integral of the squared error = 0.00067 

Maximum positive error = .227 

Patient 8 

~ 
~~~ 

~ -~'-'-".'.~""~' ' ~ .. ,c~~, .. ......... ''''-..:-; ~~~-... . ',' , ... ,' '. ;'" .. ,. ~ ·"-""-"~7~~.~ '{ ••.•. : ... ,.'. • ..., ~l ! ') : .. , .... 
I , I : : I I • t, • I • . , 

~- J.4,-.,L~ 
, . 

--:-;::;..,-;... 

" 
~ } 

.ri~~ 
\-,'" 
~,:L"', ' ~ , 

tl " 
Ii 
Ii 
Ii 
d 
II 

II 
;.:~ 

(
= - ' 
;:: 

1r 
IL 
~; -
!, 

i! 
Ii 
It 
H 
a ., 
IJ 
!i 
.j 

1 ~ 

lr _l 
(= -
~;.. :: .. 
-it: 

r . 
t 
II 
'I 

Ii 
II 

¥ L 
;~lr ,\\U 

'~f" 
\;~ 

'-'~'-'t 
j '-

liiJ, 

g; 
-"'-x:. 

L 

'f 
'. 'L. .. ' 
,~~ .:-
'l. ->;;:" 

,x ¥;r. 

r" , 



,~ .... 
:,' '~:;:) 
\>":0, 
J'-

I 

::t-i' 
;:\ 

l 

....., 
I 

J 
~~ 
~c 

-l 
-,,\ 

·,;i~/ 

) 

\ 
'~ 

) ) 

FIGURE 14. 

Integral of the squared error = 0.00029 

Maximum positive error = .071 
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FIGURE 15. 

Integral of the squared error = 0.00089 

Maximum positive error = .2i4 
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FIGURE 16. 

Integral,of the squared error" 0.00072 

Maximum positive error = .~28 
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FIGURE 17. 

'. 

Integral of the squared error = 0.00017 

Maximum positive error = .057 
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FI~URE 18. 

I __ 

Integral of the squared error a 0.00040 

Maximum positive error = .086 
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FIGURE 19 

Integral.of the sq~ared error = 0.00024 

Maximum' positive error = .052 
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FIGURE 20. 

Integral of the squared error a 0.00065 

Haximum positive error "" .292 
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