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ABSTRACT
The damped exponentlal approach to signal representa-
. tion was first introduced by Huggins. Thils paper utilizes 3
’Am; ) this spproach in the analysis of the descending limb of the
' peripheral arterial pressure wave. Since these waveforms
| are similar to damped exponentlala, the important attributes
 of the signal can be conveniently measursd. - {
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INTRODUCTION

The waveform of the arterial pulse has long been of
medical-physioldgical.interest. When palpating the radlal
pulse, cliniclans subjectiﬁely attempt to ascertain the .
»contour of the pulsatlon. Certain types of pulses are
known to be assoclated with disease. For instance a bound-
ing or collapsing pulse 1s encounbtered in hypertension,

emotional states and aortic regurgitation (1)' A pulse

which has a prolenged uperoke and a blunted pea& is asso=-

~ clated with severe degrees of aortic stenosis. -

With the advent of arterial catheterization techniques
it has been possible to record pressure waveforms in both
central as well as periphéral arteries. Central pressure'
waveforms found in a number of 01inical conditions as de-‘

seribed by Wiggers (2) are shown in Figure 1.

Attempts. to categorize waveforms objectively have led

to both time domain and frequency domain analyses. Host
time domain studies have emphasized some parameter of thaf
waveform such as its derivative. Tor example, Mason (3) .
claims that analysis of the first and second derlvat*veg
of the brachlal pressure curve is helpful in the differ-
entlation of valvular aoftic stenosis, combined stenosis
and regurgitation, and pﬁre aortic regurgitation. In a

recent study by Arani and Charleton (L) it was found that

the derivative of the rising pressure curve was correlated

(7o)
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with the‘degreercf4aortié éténosis when an éstimaté of
arterial complian;e was taken inte account. Sinmons (5)
has written a computer program to énalyze seiected'Samples.
of the peripheral pulse wave in order to obtain infbfmatidn‘
ab&ut the normal range of pulse wave variations. -
Frequency domain analysis was employed by Puls and
Heizer (6) who performed'Fourier ﬁransforms on peripheral

pulse waves of pabients grouped by age. They noted that in

‘general the "d-c" component. of the waveform was decreased in’

older age groups, presumably reflecting the higher incidence
of arteriosclerosis in these groups. Goldwyn and Watt (7)
have attempted to characterize the descending portion of

the arterial waveform by parameters of>a circuit model which
they have dqveloped.i Their approach will be presented in |
a later section. An exponential approach to the analysis

of the pulse wavelorm has not been found in the literature.
. PHILOSOPHY OF SIGNAL ANALYSIS

Huggins (8,9) remarks that signal repfesentatiéns.are‘
needed for eifther of two purposes: to represent the trans-
mission properties of a system and to characterize the
information-bearing attributes of a signal.‘ The best repre-
sentafion for the other purpose. For-examﬁle the ?ourier
analysis has had‘greattapplication in characterizing the

transmission propertles of linear time invariant systemse.
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1 Yet such an analysis is not necessarily the best procedure
ﬁo specify the information-besring attributes of a signal. !
The Fourier resolution 1s analytically complete and may have
infinite dimensionality.  However, the best representation ‘,

-~ of the information-bearing abttributes of a signal will be

that which has the lowest possible number of dimension, and
is therefore, necessarlly approximate. : ;
In characterizing the information content of a signél

the problem arises inAselecting those parameters which lead -
(to the best repregentation of the signal. - Only when these ‘ , : ; 
paranmeters are the amplitﬁdes Qf the spectf;l decomposition
of the signal is ﬁherg 2 linear relationship between the
parameters and the signal waveform. Usually, however, the
significant pafameters aré the natural freguencies of the
dynamical system, which are non-linéarly related to the
signal waveform. It ié therefore quite difficult to pérform , |
‘mathematical éperations.on the signal waveform in order to
estirate the value of the parameters. Hﬁggins emphasizes
that while the precise analytical solution for these para-
méters may be extremely.difficult, experimental attempts at : |
solutioﬁ should not be discouréged. ‘Such an empirical
approach may be inexact in any mathematical sense dbut may
vield a represeﬁtation which is qualitatively valid andl.

quantitatifely usefule.
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SIGNAL REPRESENTATION BY DAMPED EXPONENTIALS

The Fourier frequency decomposition of a signal repre-
sents one resolution into orthogonal components. Mény
other-cgmplete sets of orthogonal components hay be devised

for aspproximating a given signal.

For the class of signals which are characterized tempor-

ally by the epochs . and intensities of the foreing function

‘and structurally by the ' transm1s31on properties of the dynam—

lcal system, an apnroprlate reprcsentation should portray
lndependently and explicitly both the temporal and structural
attributes of the signal. Such a representatioen can be

formulﬁted by the convolution of an Impulsive forcing

Cfunction f£(t) and a system-memory function h{T.

stt) = £ty xh(m)

The temporal attribubes of the signal are dotermined

largely by epochs and intensities of the impuléive forcing
functlion whereas the structural charactefistics of the

signal are primarily determined by the system-memory functlon. .

For convenience sake let f(t) be an impulsive function
with a signal epoch at t=0. Then for t¥ 0, the signal is
represented by hi(t). The signél can now be characterized
by the amplitudes-Ak and the natural frequencies;<sk ef
h(T) vhere |
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As noted before, however, it is quite difficult to
éalculéte these parameters, especlally sy, the natural
frequencies. Another approach involves approximating h(t)
by a set éf-coefficients'Bk which are the amplitudes of a
linear combiﬁation of exponentials whose complex frequen-
cles py are a prescribed set, so that

h) <€ By e
The néw set of complex frequencles pj are an approxi-

mation to the set of natural frequencies syp. It is inter-

esting to note that a collection of highly darmped exponen-

tials exhibit a strong cerrelation with one another. For.
instance, the'gorrelation coefficlent between the two

damped-.exponentialsv ePi‘t and -epnt is ’
= Kme ) (p=Pa) 1%
. L F? - Pé* \ X
Thus, for example, the exponential 1ot may be approxi-

mated with great accuracy by a combination of € ¥ana =

-2t - .
ea » It can therefore be appreciated that a preselected

set of complex frequencies which "span" a region in the
left half of the "s plane" might reasonably represent

-

any complex frequency which fall in the same area.
THE PROBLEM, OF SELECTING A BASIS SET

As mentioned in the previous section, one can more

or‘less approximate a signal by a prescribed set.of'

frequencies which "span" a region of the "s plane"” wherein

ry o
AN S

F’?

Lovnoy |
o B

v
i
A



o . . :
1 P s ; - o PO, il . . B 3 G
g».m,? . RN NI - B

Pl o .
[ETRTS

i e e B OTUNRE L L e e e e
v A :

the natufél frecuencies lie. A difficult problem is
encounterea, howevér,'in selectbing an optimal basis set
" which minimizes the érror between the signal and its
representation.
p-—~“[ o . A complete representation for tﬂe set of exponentlials
| ».eﬂﬁ'may be formed by employing Szasz's theoren (10) which
states thﬁt such a set is‘complete when and only when |

o&m 2 "ﬁe(Prz) — o0 . ‘ o

N2 el 14| pet b |®

-it ot .
For example, the infinite set € , €20 ,&%® ... is a

complete set. In fact one could select’an unlimited num-
ber of complete representations ef the signal which involve
infinite sets of exponentials. This or course is not a : i
' practical'approach to the problem. Another approach to the '
problen invelves determining a finite set of W ésmponents
whiéh, in somne manper,vis chosen to miniﬁize thé mesn~ -
.squaré error over the entire ensemble of signals. Such a
method has not been adequately solved,.altﬁougthuggins (8)
suspects that there exists an optimum basils set for every. .,
specified value of N. -
In the absence ofba well defined mathematical gsolution
to the problem of choosing a basis set, an empirical‘ |
selection of components ha; been used in this invesﬁigation..‘

The empirical approach will be presented in a later section.
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CONSTRUGTION OF AN ORTHONORMAL SET OF FUNCTIONS

-Assunming that the problem of selectlng the set of

N component exponen tials has been solved (i.e. Py are

given), the coordinates B, appearing in the representation

N .
of h(T) = §18hcpkt may be obtained. As noted previously,

.
however, the set of damped exponentials are not uncorre-

lated and, hence, a cheange in the amplitude of one component

may be more or less neutralized by suiltable changes in the
aplitudes of the other components (). This results in
mathematical equations whose solutions are excesgively
sengitive to slight numericai BYTITOTS . '

To avold this difficulty it is necessary £o ortho-
gonalize theAcomponents of the pre§cribed set so that thq

sjstem-memory function h(7) 1s best approximated by ortho~-

gonal functions as

h(?) 2 E cn@z@')

-

where the 0, are orthogonal functions formed from the

prescribed set ofucomplex frequencies and the ¢ are the

'amplitudes which. mlnlmlze +bo mean-square error between

h(Tj &nd Cn@gfj .

A unique and simple method to construct orthonormal

functions from a nrescribed‘set of component exponentials

is contrlbuted by Kaubz (11). Gilven a set of exponential

TS AT o « -Sp”

functions e s € 3 seey € extending over the

semi-infinite interval, 720 , a set of orthonormal
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functions @)y Ot s eves Du(®) may be constructed
having frequency-domain representatives‘as follows:
@1(5) =2 'V"Si ‘gi 1
(s-54)
2(3)—- [=Sa— é?. CS +S:L)
(s-s,)(s-Sy)

8.6)= =5 n%n (s:80¢s+8) -o (srb) -
(8-35(8-S,) « 'CS Sn.ﬂ(s D)

Tﬁe orthogonaiity can be demonstrated in the frequency

domain by showing that 1:’101e ‘and zero cancellation leads

to an inner prodiict, '

f &) Be6) 4a

in which the 1ntegrand is analytic in a hali‘ plane when

J#7h and hence the :Lntegral vanishes 'by Cauchy's integral
) o theorem (12). | ' A
! If the set of nabturdl frequencies have complex com-
ponents‘ the equations above yield orthonormal functions
which are themselves complex. To obtain real functions
from complex exponential components of ‘the form S,az-ocf,jw,
g,‘,_‘ - -0l = W s .the complex conjugates must be added
in palirs. As described by Xautz (1ll) the method is ‘similar
except that when the pair of conjugate poles S and g,@
are first introduced, a real zero at - JS,] 1s also included
along with the two new poles to obltain the first func’cion.
For the second function the zero is mirrored on the Jw

axls at + Jspl « For example, glven S,., §, and S;where S,

e . : :

RIp: M XK1/0) [N
5\ o e » s P ey . Growe
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is real and S, and S, are complex conjugates, the fre- o
quency representation of the orthonormal functions is

Do) =Y-s.-8 1

W,.“ ( S~ S,)
| Tfs) - V-52-8s (s+3.X841S.D)
. (5-5)(5-5) (575
$e®) = W/:;“_gs (5%51)(5-1531)
(s-8)(s~S3)(s5-5S5)

Keutz' ‘method thus provides a method for constructing N

~get 5r orthonormal functions from the prescribed set of

* exponential components. | ' -

. DETERMINATION OF THE SICNAL COORDINA ;_
" | .
| Returning to the problem of specifying h(? given a | 1

‘ set of component exponentials which’ ‘have been orthogonalized,

.one may then attempt to solve for the amplitudes of these
orthonormal functions which will best 'approximate,h(v?') R
h(@) = g CrP®)
The amplituaes Cpc will be selected to minimize the mean-
square error which 1s glven by : . |
E - f[h(?) -5 ¢ 0,0 dr .

By setting dE/C}c 0for each ¢, the problem reduces to :
4 i .evaluatiﬁg ‘the integrals . = : |

| Co = [0 @MY Retzz. |

'I‘b.e solutlon of the above integral for each Cy s;ields a 1 v

i
|
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unigue set of coefficients which results in the least
mean~square error approximation to h(7?). These coefflclents
are the coordinates which determine the signal representa-

‘tione.

EXPERIMENTAL SELECTION OF COMPONZNT EXPONENTIALS

Tﬁe experimental analysis émployed in this paper is
limited to the descending portion of the brachial pressure i3
wave because an estimation of the natural frequencles of | ff

,‘,thguwaveform has been contributed by Golawyn and Watt (7).
They presented an electrical model (Figure 2) of the arter-
1al system which accounts for the descending segment of the

- ;,a- : - waveform. From this modél they derived an unforced system

equation, the general golution of which 1s

, o v,it) = o<3_e“°°3J°+oc4.e'°‘5tcos CR T

where X9 Kg and uzare’parameters related to C1, Cp,
- and L vhereas &, oy, and o0 are functions of ‘the initial
‘conditions. Based upon the above equétion end given a 4 i
'méasured.brachial pressure curve p(t), a digital computer . |

was programued to determine the set of o so that a least

squares approximation of the fbrm ' ' ' ;

P = o = o, e ¢ % €5 cos (at = o)
could be achieved (X,is the constant "peferonce pressupe“f. ‘ § 
The measured pressure curves b(t)_are'shown in Figure 3 o |

and the corresponding sets of &; are given in Table I.
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Note that the natural frequencies, wilch are the poles of
the transfer function, are located on the "s plane™ at

-5 and -xgtj, .« For the "normal” patlent these values
are =-3.68 and -L.07=x j?B.é»respectively (Figure L).
Admittedly these values represent 6nly the natural freq{len—’ ’
cies from one normal patient. However, given the difficul-
ties in - finding an optimal basls set as mentioned earlier
in the paper, it was decided to use these parameters in an
empirical gpproach to the problem of selecting the basisv
set.,  Thus the componént exponentials employed in this

analysis consist of e"?"c’%"’, e-(‘%-07+j23-é)7’

e“[‘)‘-07 = ?3’6)?’ .

and

— - CONSTRUCTION OF THE EXPERIMENTAL SET
___ R _ OF ORTHONORMAL FUNGTIONS

. Utilizing Kaubz's procedure we can now form 'the.
orthonormal functions from the set of exponents described
above. » The dominant component“appears' to be 6-3‘?6?)~Jhiéh
e have selected to ‘.be the fundamental componentt 8ys from

which ‘QDQ.(?‘) is formed, viz,

SN 772 2

_ (S+3-§6>)
~ - OM=XT[3,0] = VTTE e

If 5. and 33 are the complex coﬁjugate‘s -1 07 £ j23.6, then

-3.836 7

2
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QEGR)Q Q%@& are.formed-in a similar manner
Q0-V3/F (s5-396)(s+eo+) ‘
(3+3.3@)Qs++.07~j 23:6)(s+407+j236) E
Qe ~oiF (—-277&%%7 1137 &+ 05 (23.0 227

i 9. /317 (5-3.90(s-2)
(2+386)($+407-j23.0)(s+4.07+j23:0)
QORVETF (386 €357+ 164 &7 T cos(23.67+4%°)
These three orthonormal functions = @i, @) and @)
are the basls functions'whiqh were used inlanalyzing the
-pulse waves. | ’ ’
To prove that these functions were in fact ortho-
normal a computer performed the following operétions.evér
. 1.2 seconds. ,
P | | SemQmar = 999
, ’ - Je@mAT = .99k
Jgm@@dt = .99
Jom @erdr =015
- Sfafr AT = .007
JOD QAT = 005
These results correlate well with the requiremeﬁﬁifor
orthonormal functions which is |
‘ w :
(@0, 0.0) = of G0 @AY = é: j: }:—
o~ :

e e —
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DATA AND METHODS

-Twenty-five pressure curves, shpwn in Figure 5, were
obtained from a study by Hancock and Abelmann (l3).b The 4
curves are direct brachial arterial ﬁressure ﬁrdqings ‘
obtained by insertion through the skin of an 18 guage
needle into ﬁhe brachial artery at the crook of the arm.

The needle was connecﬁed by a rigid tubiﬁg to an electro-
menometer and the tracing was recorded on a direct-writing
oscillograph. .

0f the twenty-five patients, ten were “normal subjectsg"

whose age ranged from 20 to 37 years old. Seven patlents
“had proved severe aortic stenosis (narrowing of the valvular
P N ; aperture). Three patients had prQV9d severe éortic stenosisi
in combination with aortic regurgitation (incompetent aortic
valve). Three patients had pure aortic regurgitation and '
two patienté had mitral insufficiency (incompetent valve
between left ventricle and left atrium).

' The threé pressure tracings contributed from the work
of Goldwyn and Watt (7) were also included in the analysis. ‘ ;
One patient was normal, one had aortic fegurgita’cion, and
the third had a cardiomyopathy. . | o
f " The descending limb of the twenty-eight pressure curves
i are normaliéed in the following nanner. Thé “d-q" or end- N
%? L -~ dlastolic pressure was then subtracted from the curve sd

that each curve decdayed to "zero". XZach tracing was then

T ) T ) . . v
Q.Sum', (74 10 . Jm Y0
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hormalized in magnitude by\dividing sach pressﬁre}point

on the curve by the highest pressure value. The normalized
curves were then sampled at L0 milleseconds. A digital
cqmputér reconstructed the -pressure tracings from the sam-
Pled points by a second order approximation method. The

computed pressure tracings were the h(T) used in the

L3

'experimental enalysis. It is realized that perhaps infor-

mationvis lost in such a normalizing procedure. On ﬁhe
other hand we are'primarily concerned here with waveform
analysis and not with magnitude analysis.

Given the waveforms h{7T) and the orthonormal functions
Q(r), a digital computer was programed to caiculate the

signal coordinates ¢, from the integral

k
Co = [r) Q) AT k-1,23

The error of.the approximation,/ﬁ?ﬁ5=§i.ChQLGﬂ , Was
evaluated by two methods. The “error function E@) defined
by . 3 |

cw) -~ hit) - éi C B.(T)

was plotted by the compubter along with its respective wave-
forms h(?) and its approximation éi.ChQZGﬂ. The second
method involved calculating the integral of the squared

error, Vviz,

E = fw [ A7) - é C, @h(f)f&i ~
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RESULTS AND DISCUSSION

The calcu;gﬁéd signal coordinates for the twenty-
. eight waveforms, together with,each patientts diagnosiss.
P i‘ '. ‘ are listed in Table II. The ranges of the ck'for normal
patients are: .28< cl( 16, ~.031 <e, <075, and
~.033 <03< 026, The rangés for abnormal patients are:
< .083, and -.043<c_ K .061l, The

2 3
! : relationship between 1 the pure exponentilal component, ' %

| +22< ey < 37, =4006<c

and Cos the largest damped sinuscidal component, 1s plotted

in Figures 6, 7, and 8. Filgure 6 shows the plotted points
in both normal and abhormal patients. Figures 7 and 8
are graphs Shoﬁing the same polnts separated Iinto normal
and abnormal'patieﬁt cateéories. In general the abnormal
group, especlially those with combinéd aortic stenosisband
i regurgitation, tend to héve a lower cj component and a.
L higher ¢, component than the normal group. While the |
| | signal coordinates themselves do not provide an absoluﬁe
? separation of abnormal from ﬁormal patients, thesé»paréme-
| ters quantify arterial wavéforms and should be useful in
measuring the effect Q? stress,ldrugs, etc., at least in
‘individual patients. |

The magnitude of the "a-c! COmpqnent of‘the signal
is consideréd in Figures 9 and 10 which are histograns
_showing the relationship of this magnitude to no?ﬁai and

abnormal patients respectively; Note %that the abnormal

i
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patients tended to have a greater "a-c" component than
normal patlents. It should be noted, however, that the
abnormal group is also older then the normal group. One
may postulate that the more elastic arterial system in
the younger group mey filter the "a-c' components which
are observed In the older group. | ' .

” Figures 11-20 are plots from individual patients.
In eachAfigure the upper plot consists of two functions:
h(7), the normalized brachial waveform (cross hatched line),

3
and g?ichd%(?ﬁ which is the best approximation to h(7).

The lower plot in each Tigure represents the error funcition
£() , which has been normalized so that the maximum posi-
tive error is one. The true meximum ?ositive error and the
integral of the sguared error, E, ls indicated iIn the upper
right hand portion of the figure. The integral of the
squared error is also.given in Tabie III for sach pablent.
The value of the integral of the squared error did not
appear to differentiate,nqrmal from abnormal patients.
Note that the error function £(7) represents the remainder
of (). Hemnce, E() 1s orthogonal to the component fun-
ctions D), (7@), and @ (7 » Ll.e. o

/sm Qodr=-0 k1,23
In the llmited number of cases observed, similar patterns

of E£() were observed in cerbain abnormal patients.
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SUMMARY OF RESULTS

1. The group of patients with cardiac valvular disesse

tended to have a greater "a-c" component in their ‘ i

i"'ﬁm‘
pressure waveformg than the group of young normals.
2.  The waveform of the error function vwas observed to -
be similar in certain abnormal patients.
SUGGESTIONS FOR FURTHER STUDY
: 1. Investigation of the error function to ascertain
whether "abnormal' information 1s contained in the
waveforme.
P 2. Extension of the exponential analysis to include the
E o _ ascending limb of the arterial pulse wave.
j . 3. The use of exponential analysis to screen large numbers
; of patients for the presence of heart disease and/or .
I " .
% peripheral.vascular disease.
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TABLE I 1
Computed Parameters o For Selected Patients j
(from Goldwyn and Watt) "

Patient : 26 27 28
Clinical Status™ N cH , AR

0(2‘ , ) i;

;ﬁw - . K3 - 3.86 | '3.06 7.01 ‘
oy -13.2 21.7 2146 1
Xy o LheO7 - 2.7h 0 3e27

oLy _ 2346 22.6 - 19.8

b('? “10?3 OQS).‘- -1032

- "N normal

CM cardiomyopathy |
AR aortic rsgurgiltation

“\f r.‘, el ’ . :
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TABLE II
[ Patlent Clinicgl Status™ cq oy 103
— 1 N 0488 -0.031  0.001
f 2 N - 0.291 0.075  '-0.002
f 3 N 0.280 0.025 -0.016
§ I N 0.326 0.034  -0.033 |
| 5 N 0.327  0.041  -0.002 |
E 6 ¥ 0.345  0.020  -0.019 |
% 7 N 0,30l 0.003 0.007
E 8 ¥ o - 0.333 0.053  -0.008
9 ¥ ©0.351  =0.000 0.026
' 10 N " 0.l02 0.005  =0.030
o~ 11 AS & AR 0.221 . 0.051 0.006
| 12 A 0.353 10.027  =0.017 |
§ 13 AS 0.330 0.012 0.012 |
| 1 AS 10.319 0.057  =0.037 §
] 15 - A8 . 0.307. 0.046 . -0.021 ’
| 16 AS & AR~ 0.217  0.083  -0.000
E 17 AS & AR 0.221  0.083  -0.028
3 18 AS : 0.272 0.059 -0.019
E 19 AS ©0.219 0.06  -0.011 j
~ 20 AS . 0.316 0.0L40 0.003 |
E 21 AR 0.272 0.063  -0.0L43 f
? 22 AR 0.348  -0.006  <0.007
| 23 AR 0.316 0.041  =0.022
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TABLE II
Patient Clinical Status”™ | 4 ¢y c3

2l MR _ 0.367 . - =0.003 0.061

25 ¥R . 0.315  0.065  0.01L

26 W T 0.272 0,033 -0.052"

27 - CH 0.270 0.107 -0.021

28 - AR 0.282 0.082 ° =0.020

i

N normal

cm cardiomyopathy

AR s=ortic regurgitation
AS eortic stenosis

MR mitral regurgitation
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| TABIE IIT
{ Patient , . Integral of Max. Pos. |
f ‘ Squared Error  Error
fm .
1 ©.0005ls ' .159
2 000255 o 121
| 3 .000297 . - . .189
| L .0004416 -. .085
| 5 .000257 .066
| 6 .000303 © 107
| 7 ~ o 1.00035 | .150
] 8 - | © 4000666 | o .227
5 g . " .000335 .099

- J, | : , | 000408 .109
| | .000282 - .209 - %
.000659 o 103
.000135 - 070
000286 ‘ | o7
000366 . . .098 ‘
.000435 . 239
.000886 .21k
.000562 | 122

| i i i i = = R ™ Ry W
@ N oo VM F W b O

- 19 .000718 o .229
20 .000322 ST L0T3
21 000585 - 176
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TABLE III

Patient ‘ _ Integral of

Squared Error

22 ‘ .000156
23 . .000171

'2h‘ ) . ' .001616

25 .000190
26 , .000398
27 | ' .000237

28 +000652

a1 b . i
e P S O

Max.

Error

.071
.057
.200
.099
.086

- 052

292

5 e

Pos.
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FIGURE "2. In this figure v, and v, rep-
resent the pressures in the cén’cral and
per.ipheral vessels respec‘tiVely, Like="

e o wise Cl and 02 are related to the elasti-

) city of the arteries. The inductance L . "
takes into account the inertia of the ‘ :
blood. (from Goldwyn and Wablt)
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Integral of the squared error = 0.00030
Maximum positive error = .107
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FIGURE 14.

Integral of thé squared error = 0.00029

Maximum positive error = ,g71
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FIGURE 15.

Integral of the squared error = 0.00089

Maximum positive error = 214
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FIGURE 16.

Integral of the squared error = 0,00072

Maximum positive error = ,228
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FIGURE 17.

1 Integral of the squared error = 0.00017
. © Maximum positive error = ,057
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FIGURE 18.

Integral of the squared error = 0,00040

Maximum positive error = .086

Patient 26.
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FIGURE 20.

Integral of the squared error = 0.00065

Maximum positive error = ,292
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